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ABSTRACT 

This study reports how 24 grade 4-6 students in one elementary and middle 

school interpreted formal and informal representations of variables. While interpretations 

for variables represented as letters (e.g., x and y) have been well established for students 

in algebra classes and beyond, little research into elementary school students‘ initial 

interpretations of variables exists. This study examined student interpretations of formal 

(e.g., x  + y = 12) and informal representations of variables (e.g.,  +  = 12).  

 The students in this study were consistent in their meaning of various 

representations of variables presented in equations, but did not parallel normative 

algebraic solutions. For example, students treated the representation of the variables as 

different variables even if they were the same (e.g., y + y = 12). Student also consistently 

produced multiple solutions for each variable. For example, they supplied the ordered 

pair solutions such as (6,6), (5,7), (4,8), regardless of the representation of the variable 

(e.g., y + y = 12; a + b = 12; and  +  = 12).   

 Further, these students did not exhibit many of the misconceptions exhibited by 

students in algebra classes and beyond. For example, the common misconception that 

different variables can only take on different values was not a typical response for these 

students (Fujii, 2003). 

 However, when these same tasks were presented as word problems, students 

treated variables in an algebraically normative way. In other words, the students were 

more ―successful‖ solving the word problems (Koedinger & Nathan, 2004). Students 

attended to the syntactic and semantic structure of the word problems to determine 

meanings for the variables that were not evident in the equations.
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CHAPTER 1: INTRODUCTION 

Rationale for the Study 

Successful completion of an algebra course, or equivalent, serves as a gatekeeper 

for students‘ future educational, professional, and economic opportunities (e.g., Ball, 

2004; National Academy of Science, 2007). Those who successfully complete an algebra 

course are at a considerable advantage over their peers who have not. This critical role of 

algebra has also been a focus in several recent high profile reports. Trends in 

Mathematics and Science Study (TIMMS), Rising Above the Gathering Storm (National 

Academy of Science, 2007), Mathematical Proficiency for All Students (Ball, 2004), and 

Foundations for Success (National Mathematics Advisory Panel, 2008) have each placed 

an increased emphasis on two specific, but related, aspects of learning and teaching 

algebra. First, students‘ early mathematics education must prepare them for success in 

algebra (Kilpatrick & Izsak, 2008). Second, in order to increase students‘ proficiency in 

algebra their experiences in algebra and beyond must also support all students in 

attaining this goal. 

In addition to the increased emphasis on the importance of students‘ success in 

algebra, is the corresponding emphasis on algebra for all. From a social justice 

perspective Robert Moses has argued for and worked toward this goal through the 

Algebra Project (Moses, 2011). The stance that all students can be successful in 

mathematics in general, and algebra in particular, is also consistent with the Equity 

Principle in NCTM‘s Principles and Standards for School Mathematics (NCTM, 2000). 

Likewise, Achieve has taken the position that everyone can do algebra (American 
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Diploma Project (ADP), 2004).  Further, numerous state legislatures have taken the 

position that students must complete the equivalent of at least an algebra course in order 

to receive a high school diploma.  

 Considerable knowledge exists regarding the teaching and learning of algebra 

(e.g., Blanton, et al., 2007; Booth, 1984; Brizuela & Schliemann, 2004; Carpenter, Levi, 

Berman, & Pligge, 2005; Drijvers, 2003; Kaput, 2008a; Kieran, 2007; Kuchemann, 1981; 

Lee, 2006; NCTM, 2000; Radford, Bardino, & Sabena, 2007). This includes the 

relatively new and evolving domain of research on early algebra, which has begun to 

develop a knowledge base addressing the relationships between arithmetic and algebra 

(e.g., Blanton & Kaput, 2001; Carpenter, Franke, & Levi, 2003; Carraher & Schliemann, 

2007; Kieran, 2007; Schliemann, et al., 2003; Van Amerom, 2003; Warren & Cooper, 

2008b). One finding consistent across these areas of research is that many students at all 

levels demonstrate difficulties with the meaning and use of conventional mathematical 

symbols (e.g., Cooper & Warren, 2008; Fujii, 2003; Kuchemann, 1981).  

A subset of the research on students‘ meaning and use of conventional 

mathematical symbols addresses students‘ meanings for and subsequent use of variables.  

In fact, the research (cf., Booth, 1984; Carraher, Brizuela, & Schliemann, 2000; Carraher, 

Schielmann, & Brizuela, 2001; Ellis, 2007; Knuth, Alibali, McNeil, Weinberg, & 

Stephens, 2005; Kuchemann, 1981; Lannin, Barker, & Townsend, 2006; MacGregor & 

Stacey, 1997; Swafford & Langrall, 2000; Warren & Cooper, 2008b) has established a 

great deal about students‘ meaning and use of conventional letter-symbolic 

representations of variables. This research has demonstrated that many students appear to 

have different meanings and strategies for dealing with variables and these strategies may 
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vary across task types (e.g., word problems, word equations and equations (Koedinger & 

Nathan, 2004)). However, the setting for the majority of this research has been at the 

middle school level and beyond and does not include students‘ meanings and use of 

informal representations of variables, or why or how difficulties arise.   

Before progressing further, I briefly discuss the evolution of the definition of 

variable. Philipp (1992) stated that Gottfried Wilhelm Leibnitz (1646-1716) and Sir Isaac 

Newton (1643-1727) first introduced the notion of variables representing varying 

quantities which was closely tied to the notion of function. By 1718 Johann Bernoulli 

regarded a function as any expression consisting of a variable and constants, and Euler 

later regarded function as any equation or formula consisting of a variable and constants 

(Eves, 1983). However, Philipp (1992) applied a definition of variable as ―consisting of a 

symbol standing as a referent for a set consisting of at least two elements,‖ which is often 

used today (p. 557). 

When using this definition 

[e]ven the literal symbol x in the statement x +3 = 7 is a variable, because 
x represents any of the elements of the set in the unstated but implicitly 
assumed domain, be it the real numbers, the rational numbers, the integers, 
the natural numbers, as so forth (Philipp, 1992, p. 557). 
 

Throughout the remainder of this dissertation, I use this definition of variable. 

Purpose of the Study 

Therefore, the purpose of this study was to examine the meaning grade 4-6 

students develop for variables across representations of these variables, tasks with 

equivalent mathematical structures, and task types. Typically, mathematics curriculums 

introduce students to conventional letter-symbolic representations of variables around 
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fifth grade. Including grades 4-6 allowed a glimpse into students‘ meanings before, 

during, and immediately after this introduction.   

Research Questions 

In this study, I provided an initial answer to the following research question: How 

do grade 4-6 students interpret various representations of variables when presented in 

different forms and different task types? To answer the aforementioned question, I 

addressed the following subquestions:  

a. What solution sets do grade 4 – 6 students generate for tasks with equivalent 

mathematical structures across representations of variables (i.e., blanks, letters, 

shapes and words) and different task types (i.e., word problem or equation)? 

b. How do grade 4-6 students interpret variables across various representations 

of the variable (i.e., place holder or letter-symbolic)? 

c. How do grade 4-6 students interpret variables across different task types 

(word problem or equation)? 

d. How do grade 4 - 6 students interpret variables across various representations 

of a variable (i.e., place holder or letter-symbolic) and different task types 

(word problem or equation)? 

Design Framework 

 I focused this study on representations of variables, task types, and various core 

tasks with common mathematical structures. Based on a review of the literature and 

elementary textbooks I developed the task design framework (see Figure 1) to guide the 

development of tasks used in this study.  This framework includes four representations of 

variables: blanks, letters, shapes, and words. It also includes three task types:  word 
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problems, word equations, and equations/expressions. I combined the equations and 

expressions based on their common reliance on mathematical symbolism.  The final 

dimension consists of the individual core mathematical tasks. I was then able to write 

each of the core mathematical tasks to include the given representation of the variable 

and task type producing twelve tasks with a common mathematical structure.  

 

Task design framework definitions 

Problem representation Variable representation 

WP – Word Problem 
WE – Word Equation 
EQ/EX – Equation/Expression 
 

W – Words (Literal) 
Bl – Blank (Placeholder) 
S – Shape (Placeholder) 
LS – Letter-symbolic 

Mathematically equivalent tasks: Each task is modified to include a representation of 
the variable (W, Bl, V) and a problem type (WP, WE, EQ/NS) resulting in twelve 
tasks, each with mathematically equivalent structures. 

 

Figure 1. Task design framework. 
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For this study, I focused primarily on three core mathematical tasks. From these 

three core mathematical tasks, I developed a set of tasks as the primary measures used 

this study. Each task was written in four different formats (1) a word problem with the 

variable represented in words, (2) an equation with the variable represented with shape(s), 

(3) an equation with the variable represented with blank(s), and (4) an equation with the 

variable represented with letter(s) representing a subgroup of the task design framework, 

see Figure 2. These tasks are the tasks used throughout interview one of the interview 

protocol and guided the task design of the second interview. 

 

Figure 2. Task design of study.  
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CHAPTER 2: LITERATURE REVIEW 

 In the following sections, I discuss the conceptual framework including the 

literature I drew upon to develop this framework. I then review the extant literature 

related to the teaching and learning of algebra, and early algebra. I provide an overview 

of this research in general by reviewing the research on teaching and learning of algebra 

and then early algebra describing the relationship of this literature to students meaning 

for mathematical symbols, specifically variables. I then expand on the problem area this 

study addresses, namely the section on the teaching and learning of algebra focuses on 

three categories of research: generational, transformational, and global/meta-level 

activities (Kieran, 2007). Each of the three categories addresses a specific aspect of this 

study as students must use variables to generate equations and expressions, transform 

these equations and expressions, and the role their experiences in and outside of school 

play in their solving, justifying, and modeling in algebraic activities.  

 In the section on research findings from early algebra, I describe three current 

perspectives employed for examining the relationships between arithmetic and algebra: 

numerical reasoning, quantitative reasoning, and functions (Kieran, 2007). In the 

following sections, I discuss how each perspective provides important ideas related to 

and in support of current and future research on students‘ meanings for variables. Finally, 

in light of the review of the extant literature I describe the problem area under 

consideration.  

While much of this research does not directly address students‘ meanings for 

variables, it does provide evidence of the importance of students‘ understanding and 

meaning for mathematical symbols in general and variables specifically. If students do 
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not understand these symbols then the corpus of research on algebra and early algebra 

would be difficult if not impossible to examine. Therefore, students understanding of 

these symbols is critical to their further mathematical development.  

Conceptual Background 

To guide this study related to students‘ meaning and use of variables, I drew on 

the extant literature related to algebra and early algebra in developing the conceptual 

framework described in this section (e.g., Booth, 1984; e.g., Carraher & Schliemann, 

2007; Kieran, 2007; Koedinger & Nathan, 2004; Kuchemann, 1981; MacGregor & 

Stacey, 1997). Specifically, I focused on difficulties and misconceptions that students 

demonstrate for the meaning and use of variables, and the types of tasks in which 

students engage with variables. From this review of the literature, I identified three 

interrelated factors that may influence students‘ construction of meanings for variables: 

(a) various representations of variables, (b) task types, and (c) tasks with common 

mathematical structures. I elaborate on each of these in the following sections. 

 Representations of variables. Within the extant research on students‘ 

understanding of mathematical symbols, conventional letter-symbolic representation of 

variables has been the primary focus of research on variables (e.g.,Fujii & Stephens, 

2008; Kaput, 2008a; MacGregor & Stacey, 1997; Radford, 2000; Sfard & Linchevski, 

1994). In order to examine elementary students‘ meanings for variables, I extended these 

representations of variables to include both informal and formal representations of 

variables including but not limited to blanks, shapes, words, and letters. While there has 

been an ongoing debate in the field regarding the inclusion or exclusion of unknown 

single values as variables, I agree with Carraher and Schliemann‘s (2007) suggestion that 
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there are good reasons for treating unknowns as variables or indeterminates for which a 

single value will satisfy an equation or inequality. For instance, in situations commonly 

seen by elementary students, such as solving 3 + x = 8 for x, treating x as a variable that 

can stand for any numerical value of which only one satisfies the equation can be an 

important and powerful position that can assist students transitioning to variable usage in 

algebra (Saul, 2001).  

Extending the definition of variable to include informal representations of 

variables increases the potential issues associated with variable use. Carpenter, Franke, 

and Levi (2003) noted the difficulty that common notations used in elementary grades 

like ―Find the different numbers you can put in the boxes: ☐ + ☐ = 9‖ can produce (p. 

75). They noted that this notation could be confusing to students as well as contribute to 

the development of misconceptions about the use of variables. They suggest that it would 

be preferable to use the number sentence ☐ +  = 9. However, this change in notation 

assumes that students attend to and recognize the square and triangle as different 

variables.  

For instance, in the first number sentence, ☐ + ☐ = 9, do the boxes have to 

represent the same number or can they represent different numbers? While conventions 

exist for the treatment of x in x + x = 9, no conventions exist, or at least have not been 

clearly agreed upon, for ―boxes‖ unless we retrospectively apply the conventions for 

conventional letter-symbolic variables to these informal representations. In addition, in 

☐ +  = 9 we do not know if elementary students interpret this notation as requiring the 

square and triangle to be different values, (i.e., they cannot be the same value) a common 

misconception in algebra courses and beyond, or if they differentiate between the square 
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and triangle. The phrasing of the prompt for ☐ + ☐ = 9 also imposes a specific meaning 

on the representation of the boxes that the students may not hold. By asking the student 

what numbers they can put in the box, the box takes on the role of a placeholder that they 

are to fill in as opposed to a representation that can stand for or represent numbers. 

From my review of elementary mathematics textbooks, I found that another 

common representation for unknowns, or variables, in the elementary grades is the use of 

a blank as a placeholder (Pearson Education, 2011). It is very difficult if not impossible 

to distinguish between two different variables using blanks. For instance, the equation ☐ 

+ ☐ = 9 could be written as ___ + ___ = 9. However, rewriting the second equation, ☐ + 

 = 9, using blanks is problematic if we apply the conventions for formal letter-symbolic 

variables that the same variable in the same equations must be the same value and 

different variables can have different values. We know little about how students view 

these various representations. Therefore, unless researchers address the semantic and 

syntactic issues associated with the use of these symbols, ongoing confusion and 

misconceptions could result. 

 Task Type. In addition to the potential influence of various representations of the 

variable on the corresponding meaning elementary students construct for these 

representations, the type of task in which the variable is used also appears to be a 

potentially relevant factor. Elementary students regularly see tasks with varying 

quantities presented in equations, number sentences, and word problems. As students 

progress in their mathematical studies these task types extend to include, but are not 

limited to, inequalities, tables, graphs, and combinations of these task types. 
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Koedinger and Nathan (2004) reported on the common conception among 

teachers and researchers that word problems are the most difficult for students to solve at 

both the algebraic and arithmetic levels. They note that apart from their own study they 

―found no prior experimental data that compared students‘ solution correctness for 

matched algebra story problems and equations‖ (p. 131).  

Koedinger and Nathan (2004) specifically explored what they referred to as the 

representational effect for students in early algebra, in two studies. This effect refers to 

the impact that using different representations of problems (i.e., story problem, word 

equation, and symbolic equation) have on students‘ performance.   

The first study consisted of seventy-six students from an urban high school (58 

enrolled a mainstream Algebra course and 18 ninth graders enrolled in a geometry 

course). The second study consisted of 171 students enrolled in a first-year Algebra I 

course at three urban high schools. Using four different core mathematical tasks, 

Koedinger and Nathan (2004) generated 96 problems by varying difficulty factors, 

problem representation, or task type, (i.e., word problem, word equation, or symbol 

equation); unknown position (i.e., result or start); and number types (whole numbers or 

decimal numbers) per cover story.  

For example, one of the problems, a decimal word problem with starting unknown 

position stated, 

After buying donuts at Wholey Donuts, Laura multiplies the number of 
donuts she bought by their price of $0.37 per donut. Then she adds the 
$0.22 charges for the box they came in and gets $2.81. How many donuts 
did she buy? (p. 132).  
 

The corresponding word equation, with the referents included in the algebraic 

word problem removed, stated,  
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―Starting with some number, if I multiply it by .37 and then add .22, I get 
2.81. What number did I start with?‖ (p. 132). Finally, the corresponding 
symbol equation stated, ―Solve for x: x * .37 + 22 = 2.81‖ (p. 132).  
 

 In their first study, Koedinger and Nathan (2004) found main effects for each of 

the three factors. For task type, 76 students performed better on the word problems (66%) 

and the word equations (62%) than they did for the corresponding symbol equations. In 

addition, students performed better on the result-unknown problems in comparison to the 

start-unknown problems, and better on whole number problems than on decimal number 

problems. They note that, ―the differences between verbal and symbolic representation, 

and not the difference between situational context and abstract description, accounts for 

the observed performance differences‖ (p. 143). 

In addition to differences in students‘ success across problem representations, 

students also demonstrated differences in the solution strategies they employed across 

different task types. For instance, 50% of students employed an unwind strategy, 

reversing the processes described in the problem, for word problems. For word equations, 

only 22% of the students used the unwind strategy and 23% used a guess and test strategy. 

For the equations, 32% of students gave no response, in comparison to 19% for word 

equations, and 18 % for word problems, and 22% manipulated symbols to solve the 

equation.  

Of the strategies employed by the students in the study, the ―guess and test‖ 

strategy resulted in the highest likelihood of leading to a correct answer (71% of the time), 

and the unwind strategy resulting in a correct answer 69% of the time. Also, the unwind 

strategy was employed most often, 335 times out of 819 responses, followed by an 

answer with no discernable strategy occurring 161 times. 
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Therefore, not only did the task type result in differences in student performance 

data but also in the solution methods the students used to solve the problem. Since the 

strategy the students used was dependent to some degree on the task type, it is not 

possible to determine if one strategy results in a higher percentage of correct answers in 

general. However, the influence that the task type had on students‘ solution strategies is 

an important result.  

Further, the task type appears to play an import role in student performance data. 

Koedinger and Nathan (2004) found that the task type, or problem representation, 

changed beginning algebra students‘ performance on the task and their underlying 

cognitive processes. Specifically, they found that the common conception by researchers 

and teachers that the word problems would be most difficult for students to solve was not 

necessarily the case. They note that,  

―contrary to some views of situated cognition, this result is not simply a 
consequence of situated world knowledge facilitating problem-solving 
performance, but rather a consequence of student difficulties with 
comprehending the formal symbolic representation of quantitative 
relationships‖ (p. 129). 
 
However, I argue that the story problem shown above is not in the form that a 

traditional story problem would tend to take. Instead, it takes the same form as their word 

equation but includes a context, in this case buying of donuts, in that it describes a 

calculation. I suggest that if the story problem above were found in a current mathematics 

textbook it would take a form similar to, Wholey Donuts sells donuts for $0.37 each plus 

$0.22 for a box to hold the donuts. If Laura buys some donuts, how much would she 

spend? Previous studies, (e.g., Hudson, 1983) have found that even small differences in 

the way problems are phrased can result in differences in student strategy selection and 
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performance. Therefore, this difference in the phrasing of the word problem, describing a 

context in general versus strictly supplying a description of the calculation within a 

context, may result in differences in performance and solution strategy selection by 

students.  

Based on the research findings that students often have difficulty with 

mathematical symbols, including variables, I believe it is important to note that 

Koedinger and Nathan (2004) did not take into consideration the differences in the 

representation of the variables across the task types in their findings. For instance, in the 

examples provided, the variable in the word problem was in words with a specific 

referent, donuts; the variable in the word equation was in words with no referent; and the 

variable in the symbol equation was a conventional letter-symbolic representation, x. 

Since Koedinger and Nathan found that the differences in performance were due to 

students‘ difficulties comprehending formal symbolic representations of quantitative 

relationships, differences in the symbolic representation of variable and potential 

differences in the meanings students have across these representations may also play a 

contributing factor in the students‘ performance, as I argued in the previous section. 

Therefore, the type of task in which the representation of the variable occurs 

likely plays an important role in students‘ selection of solution strategy, performance, and 

the meaning they assign to the given representation of the variable. While Koedinger and 

Nathan (2004) have provided preliminary insights into the relationship between task type, 

solution strategy, and student performance, questions remain regarding the phrasing of 

the task types including the representation of the variable used in and across task types. 
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 Tasks with common mathematical structures. As noted earlier, Koedinger and 

Nathan (2004) developed the tasks used in their study from four core mathematical tasks 

generating 96 problems by varying difficulty factors, problem representation, or task type, 

(i.e., word problem, word equation, or symbol equation); unknown position (i.e., result or 

start); and number types (whole numbers or decimal numbers). This structure resulted in 

eight subsets of the tasks, each including either integer or decimal values with each 

having what they referred to as a common mathematical structure (e.g., each of the 12 

forms of the decimal story problem noted earlier are based on the equation 7 x 0.37 + .22 

= 2.81).  

 In their analysis, Koedinger and Nathan (2004) used the problem type (word 

problem, word equation, and symbol equation) as the unit of analysis when comparing 

student performance and solution strategies. However, no such analysis occurred across 

tasks with common mathematical structures. This was reasonable as the purpose of their 

study was to examine student performance across each of the three task types. Given their 

claim that the differences in student performance were due to student difficulties 

comprehending formal symbolic representations of quantitative relationships, examining 

how students‘ difficulties comprehending formal symbolic representations of quantitative 

relationships were manifested across task types with a common mathematical structure is 

a natural extension of the study.  

Such an extension is reasonable when extending the factors under consideration to 

include both formal and informal representations of variables used across these tasks, a 

consideration that is noticeably absent from the existing research.  As noted earlier, the 

representation of the variable used across their task types was limited, varying from 



 

 16 

contextualized words with a referent in the word problems to decontextualized words 

without a referent in the word equations, to letters in the symbol equations. Since students 

often see and use representations of variables other than words and letters, including 

these in this extension of the study would provide a better sense of the role these various 

representation play in student performance, solution strategy selection, and meaning for 

the representation of the variable.  

Conceptual Framework 

As noted in the previous section, in my review of the extant literature I identified 

three intertwined categories related to variable: (a) various representations of variables, 

(b) task types, and (c) tasks with common mathematical structures. In a general sense, 

people construct new knowledge and understanding from their previous knowledge and 

beliefs (Bransford, Brown, & Cocking, 2000). This includes the prior knowledge students 

have constructed inside and outside their school experiences. This prior knowledge 

becomes a basis from which students construct their conceptions of variables. In the 

ongoing process of constructing their meaning of variables as they engage with and in 

new experiences, these new experiences then becomes the prior knowledge in which the 

students engage in their worlds both within and outside of school in a continuously 

recursive cycle as shown in Figure 3.  

As demonstrated in the review of the literature above, how students develop 

meaning for representations of variables and what factors contribute to their meanings is 

a domain lacking important research findings. Therefore, I focused this study on the 

portion of Figure 1 contained within the dashed box. I acknowledge that the students‘ 

prior experiences, including prior experiences both within and outside of mathematics, 
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their classroom, and school play an important role in their construction of knowledge in 

general. However, the inclusion of these was beyond the scope of this study. 

 

 
Figure 3. Development of student meaning for representations of variable.  

The dashed box in Figure 3 illustrates the three interrelated factors related to 

students‘ meanings for representations of variables. In the elementary grades, textbooks 

often represent variables and unknowns in multiple ways (e.g., blanks, shapes, words, and 

letters), which may play an important role in the difficulties, and misconceptions students 
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develop for conventional letter symbolic representations of variables. Research has also 

demonstrated that the task type in which the representation of the variable occurs 

influences student performance as well as their selection of solution strategy. Finally, 

while we know that differences in task type influence student performance, research has 

not established if or how these differences occur across various task types with common 

mathematical structures.  

By reviewing the literature, it is evident that researchers, curriculum developers, 

and teachers assume that students naturally progress from these multiple representations, 

which often stand for a single solution, to a single conventional representation that can 

stand for multiple values. It is also possible that they have not recognized the potential 

relationship between student meanings between informal and formal representations, as 

these connections are not present in the extant research reviewed. In either case, research 

has not adequately examined these assumptions. 

With the various potential combinations of representation of variables and task 

types across common or different mathematical structures, students may develop or 

generalize meanings for these representations of variables that are dependent upon each 

of these three factors. Therefore, in addition to coordinating and synthesizing their 

meanings for various representations of variables, they may need to coordinate different 

meanings for the same representation as determined by its use. Unless we know more 

about the meanings students have for informal and formal representations of variables we 

cannot begin to explore how they use this prior knowledge to construct meaning for 

conventional letter-symbolic representations of variables or how to assist them in 
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overcoming or preventing the common misconceptions held by so many students in 

algebra and beyond. 

 

Research Findings on Student Learning of Algebra 

In the following sections, I review the relevant extant literature related to K-

college level students learning of algebra. In this review, I demonstrate that the vast 

majority of the existing research has been conducted at the middle school through college 

levels in algebra courses and beyond. Therefore, our current knowledge base for early 

algebra is in dire need of further research. At the middle school through college level, 

Kieran (2007) identified and synthesized three areas of research addressing the teaching 

and learning of algebra; (a) generational activities, (b) transformational activities, and (c) 

global/meta-level activities. I organize the following synthesis of the research for middle 

school through college levels around these three activity types. 

Generational Activities. Kieran (2007) described generational activities as ―the area 

where, according to Radford (2001), the role of algebra is that of a language to express 

meaning, and where the habit of mind of those who are in ‗algebra mode‘ can find 

expression (Cuoco, Goldenberg, & Mark, 1996)‖ (p. 714). This includes: 

 Equations containing an unknown that represents problem situations (c.f., 
Bell 1995); 

 Expressions of generality arising from geometric patterns or numerical 
sequences (c.f., Mason, 1996); and 

 Expressions of the rules governing numerical relationships (c.f., Lee & 
Wheeler, 1987) (p. 713). 

Kieran (2007) noted that researchers have found that many students exhibit 

difficulties within such activities. This includes, but is not limited to difficulties and 

misconceptions for letter-symbolic notation representations (c.f., Arcavi, 1994; Booth, 
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1984; Carraher, et al., 2001; Fujii & Stephens, 2008; Kuchemann, 1981; Philipp, 1992), 

multiple representations (c.f., Koedinger & Nathan, 2004; Kuchemann, 1981; Lobato, 

Ellis, & Munoz, 2003), and working within the context of word problems (c.f., Koedinger 

& Nathan, 2004; Kuchemann, 1981). 

Within the use of conventional letter-symbolic representations of variables, Fujii 

and Stephens (2008) found that ―students who are aware of the proposition that the same 

letter stands for the same number … tend to think that the converse of this proposition is 

also correct‖ (p. 1-51). In other words, they believe that when two or more variables are 

present in an equation the variables must take on different values and cannot be the same 

value (e.g., for a + b = 12, a and b cannot both be 6).  While this misconception has been 

well documented with students‘ use of conventional letter-symbolic representations of 

variables, the existing research does not provide adequate evidence to determine if the 

same case holds for student meanings for informal representation of variables. Therefore, 

it is unclear if this misconception is independent of the representation of the variable, if it 

is present during elementary grades, or arises later.  

In addition, Carraher, et al., (2001) found that students were often not comfortable 

with the introduction of letters as representations of variables. When introduced to the 

idea of using a letter to stand for a person‘s height the students in their study were 

hesitant to accept the notation. After several lessons using this teacher-introduced 

notation, the students began to use the language that the letter could stand for any number. 

However, it is unclear from the study if students adopted these meanings, or simply 

parroted the teacher‘s language. Further complicating the issue of student meanings for 

variables, Kuchemann (1981) reported ―the continuing tendency to regard letters as 
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symbols for objects rather than numbers appears to be a significant stumbling block in 

learning algebra‖ (p. 136). Therefore, the issue of students acceptance and understanding 

of letters as representations for variables goes beyond their developing the concept of 

variable as standing for a number(s) to include their understanding of these 

representations as objects that can be operated on within the conventions of algebraic 

manipulation, which I will discuss further in the section on transformational activities. 

Although the current research findings show that students often have difficulties 

with multiple representations (i.e., the relationships between tables, graphs, and 

equations), a broader understanding of representations should extend to different 

representations of variables, especially when considering the developing research base 

for early algebra and the prominence of such representations in the elementary 

curriculum. This position is supported by Bell, Costello, and Kuchemann‘s (1983) 

finding that for students, ―structurally equivalent symbolic and conceptual tasks are not 

necessarily recognized as the same‖ (p. 89). In other words, even though the tasks are 

structurally equivalent, the differences in the ways that the tasks are represented, 

including but not limited to differences in the representation of the variable, results in 

students not recognizing them as the same. They reported that the following two pairs of 

tasks (see Figure 4) had a low correlation (about 0.37) indicating that students saw them 

as substantially different, possibly pointing to how the structurally equivalent tasks‘ 

different representations resulted in students viewing them differently. 
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1a. Look at the square in the top picture. Four of the ten equal parts are shaded. Now 
look at the bottom picture. This square must have the same amount shaded. How 
many of the five equal parts should be shaded so that the same amount will be 
shaded in both squares? The squares are unit squares. 

 

 

1b.  

 

2a. If there are six triangles for every fifteen circles, how many triangles would there 
be for five circles? 

 

 

2b.   

Figure 4. Different representations of mathematically equivalent tasks (Bell, et al., 1983, 
p. 90). 

 
In addition to student difficulties across representations, researchers have found 

that students may also develop misconceptions based on the classroom implementation of 

multiple representations. Lobato and Ellis (2002) examined students generalizations for 

   

4
10

=
5

   

6
15

=
5



 

 23 

slope and linear functions in a reform curriculum that regularly uses real-world settings to 

develop concepts. All of the students interviewed developed the unintended 

generalization of y = mx + b as a difference. While this points to the importance of the 

teachers‘ beliefs (i.e., personal mathematics), actions and expectations (Blanton & Kaput, 

2005; Cai, 2004; Zbiek, Peters, Boone, Johnson, & Foletta, 2009), it also demonstrates 

how students interpret and construct their own personal mathematics as a result of 

engaging in instructional tasks. Lobato and Ellis described how four focusing phenomena 

(―goes up by‖ language, well ordered tables, graphing calculator, and uncoordinated 

sequences and differences) contributed to students‘ generalization of the slope-intercept 

form of a linear equation as a difference.  

This highlights the importance of attending to how and what knowledge students 

construct as well as the influence, potentially unintended and erroneous, instructional 

practices can have on these constructs. As students engage in and work with informal 

representations of variables, the conventions of use, if they exist, and the potential 

misconceptions that may arise, as mentioned earlier, need monitored. However, the lack 

of existing research on student meanings for variables, including the conventions of use 

that they infer from the contexts in which the variables are used, make instructional 

decisions difficult.  

While Lobato and Ellis (2002) focused their research on students using curricula 

that employed real-world settings to introduce and develop concepts, students regularly 

see a variety of task types including, but not limited to, word problems and equations. 

Koedinger and Nathan (2004) found that a common conception among mathematics 

teachers and researchers—word problems are the most difficult type of task for students 
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to solve is not necessarily the case (see Figure 5 for an example of the tasks used in their 

study). They found that students performed better on algebra story problems than word 

equations (i.e., a description of the computation employed), or symbolic equations.  

However, the algebra story problem shown in Figure 5 is not in the form that a 

traditional story problem would tend to take. Instead, it takes the same form as their word 

equation shown in Figure 5 but includes a context, in this case the buying of donuts. I 

hold that if the algebra story problem above were found in a current mathematics 

textbook it would take a form similar to, Wholey Donuts sells donuts for $0.37 each plus 

$0.22 for a box to hold the donuts. If Laura buys some donuts, how much would she 

spend? Therefore, the differences found between the algebra story problems and word 

equations may not reflect the reality of the task types in which students would generally 

engage in mathematics classrooms. However, these findings do point to the influence that 

task type plays in students‘ solutions and solution methods as reported in chapter 1. 

Task Type Task 

Algebra story 

problem 

After buying donuts at Wholey Donuts, Laura multiplies the 
number of donuts she bought by their price of $0.37 per donut. 
Then she adds the $0.22 charge for the box they came in and 
gets $2.81. How many donuts did she buy? 

Word Equation Starting with some number, if I multiply it by .37 and then 
add .22 I get 2.81. What number did I start with? 

Equation Solve for x: 
x * .37 + .22 = 2.81 

Figure 5. Example of task types (Koedinger & Nathan, 2004, p. 132) 

 
Two other issues with Koedinger and Nathan‘s (2004) findings reflect the limited 

research on students‘ meanings for various representations of variables.  First, they did 

not take into account how the different representations used in the task types (i.e., words 

and letter-symbolic) may have resulted in differences in student solutions or solutions 



 

 25 

methods. Second, the solution sets for different task types (i.e., values of the variable) 

differ even for tasks with a common mathematical structure and differ in the solutions 

referents. For the algebra story problem in Figure 5, the potential solution set is limited to 

whole numbers of donuts. For their corresponding word equation and equation, they 

place no limitation on the solution set due to the absence of a referent. Therefore, while 

these tasks have a common mathematical structure, these differences, and students‘ 

attention to or lack of attention to them, may result in differences in how difficult each 

problem is to solve. This, along with the difficulties with variables reported thus far, 

raises the need for further research including the inclusion of other variable 

representations.  

 Thus, generational activities, an integral part of algebra courses, including their 

use of contextual situations, are problematic for students on several dimensions including 

student meaning-making for variables. As noted, much of the literature on generational 

activities has occurred in algebra classes and beyond. Included in these findings are 

misconceptions that often arise with the introduction and use of variables. When 

introduced to formal algebraic symbols, students often develop misconceptions of the 

possible domain for which the variables represent, leading to potential difficulties with 

their future work with variables.  

Transformational activities. Kieran (2007) characterized transformational 

activities as including,  

collecting like terms, factoring, expanding, substituting one expression for 
another, adding and multiplying polynomial expressions, exponentiation 
with polynomials, solving equations and inequalities, simplifying 
expressions, substituting numerical values into expressions, working with 
equivalent expressions and equations, and so on.‖ (p. 714).  
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The focus of this type of activity is on the use of mathematics as a tool, on the 

discipline of algebra, and the rules governing its use. In this sense, it extends generational 

activities to the solving of the generated tasks.  

Research in these areas provides several important findings related to the meaning 

that students have for mathematical symbols, pointing to the importance of attending to 

students meaning-making as they engage with these symbols. Kieran (2007) reported that 

within transformational activities, research has found that students often develop 

misconceptions about the equal sign (c.f., Behr, 1976), treating it as a sign to ―do‖ 

something (e.g., students may agree that 3 + 5 = 8 + 2 is true). Linchevski and Livneh 

(1999) found that, overall, students who had interpretive difficulties with equations 

containing several unknowns and numerical terms replicated the same errors in purely 

numerical contexts, demonstrating the consistency of student transformational errors 

across arithmetic and algebraic tasks. This may point to the possibility that the errors 

students make in numerical contexts predict the types of errors they make in 

transformational activities. This is but one illustrative example of the potential connection 

between students‘ arithmetic activity and algebraic activity. 

Kieran (2007) discussed Graham and Thomas‘s (2000) teaching experiment with 

13- and 14 year old students‘ use of the letter-store function key (often seen as the STO 

button) of the graphing calculator as a model for variable to evaluate different 

expressions for a variety of values. In using the letter-store function on the graphing 

calculator, students were able to evaluate expressions by assigning values to letter-

symbolic variables. In the study, students ―came to see that different expressions were 

being used to represent the same process‖ (p. 723). In addition, students‘ views of 
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expressions and variable changed suggesting ―that a task that is transformational in nature 

can simultaneously be related to generational activity, if it leads to an evolution of 

students‘ conceptions of the objects of algebra‖ (p. 723). The dynamic nature of this 

assigning of values points to the importance of examining multiple situations from which 

students can generate meanings for variables. However, as noted previously, little such 

research exists for representations of variables other than the letter-symbolic.  

Kieran (2007) reported other findings on transformational activities included 

bracket expansion errors (Booth, 1984; Bazzini, Boero, and Garuti, 2001a; and Ayers, 

2000), equations errors (e.g., Herscovics & Linchevski, 1994; Kieran 1984b; and Vlassis, 

2001), errors in checking equation solutions (Perrent & Wolters, 1994; Pawley, 1999), 

and difficulties with systems of equation (Filloy, Rojano, & Solares, 2003, 2004; Drijvers, 

2003). Booth reported that students often do not see the need for using brackets. For 

example, some students perform the first written operation (e.g., multiplying a + m by p 

resulted in pa + m). Further, if the student knows which operation they should be 

performed first then they do not see a need to record this fact with brackets to ensure the 

correct order of operations.  

These studies demonstrate that approximately half of the students in middle 

school and lower secondary grades fail to correctly solve equations that include various 

numerical operations on one or both sides of the equal sign. These errors include students 

only attending to the first term after the equal sign, and errors with computation (e.g., 115 

– n + 9 = 61 transformed to 106 – n = 61, referred to as jumping off with the posterior 

operation by Linchevski and Herscovics (1996)). When students make errors solving 

equations they often repeat these same errors when checking their solutions, thereby 
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confirming their erroneous solution as correct. Kieran (2007) reported that Filloy, Rojano, 

and Solares (2003) found that students also tend to make more sense of comparison 

approaches to solving systems of equations then using substitution, and tend to not accept 

expressions as valid solutions. Kieran further noted ―the extension of the notion of 

transitivity of equality from the numeric to the algebraic domain, as well as the idea of 

substituting one expression with another, was not at all obvious to students‖ (p. 724).  

Kieran (2007) described conflicting findings on the use of concrete manipulatives 

for transformational activities for algebra. For example, studies by Filloy and Rojano 

(1989), and Boulton-Lewis, et al. (1997) found that balance scales, and concrete 

manipulatives (cups, counters, and sticks) were not helpful for students in learning about 

equations and equation solving. In contrast, Brown, Eade, and Wilson (1999), Linchevski 

and Williams (1996), and Radford and Grenier (1996) ―have argued that the balance scale 

facilitates the understanding of the operation of eliminating the same term from both 

sides of an equation‖ (p. 724). It is unclear from the research how much errors such as 

those reported in this section are limited to algebraic problems as opposed to arithmetic. 

Researchers have established that students often have difficulties with the conventions of 

use for letter-symbolic variables, which may manifest themselves as such errors as these. 

Therefore, the errors students make in transformational activities are often the 

same as those they make when working in numerical situations, however we know less 

about whether the converse is true. Students in the studies showed numerous difficulties 

with manipulating algebraic equations and expressions. Compounding this issue are the 

difficulties students have with generational activities. When a student has misconceptions 

about the variable representation, especially letter-symbolic, then they will 
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correspondingly have difficulties with transformational activities involving these symbols. 

Therefore, their chances of success with algebra can be seriously at-risk. 

Global meta/level activities. Kieran (2007) reported that in global/meta-level 

activities algebra is used as a tool, but this is not exclusive to algebra. This domain 

includes students‘ outside experiences and conceptions that influence their algebraic 

activities. Global/Meta-level activities include: problem solving, modeling, working with 

generalizable patterns, justifying and proving, making predictions and conjectures, 

studying change in functional situations, looking for relationships or structure, and so on. 

(p. 714). 

An important aspect of each of these global/meta-level activities is the critical role 

played by variables. Modeling, generalizing patterns, justification and proof, conjecturing, 

changes in functional relations, and finding relationships and structures all require the use 

of variables (Kaput, 2008a).  

Kieran (2007) posited that the roots of generalizing in algebra involve the use of 

algebraic notation (e.g., variables) for expressing proof (e.g., Bell, 1976; Fischbein & 

Kedem, 1982; Mason & Pimm, 1984). More recently Mason, Graham, Pimm, and Gowar 

(1985; see also Mason, Graham, Johnson-Wilder, 2005) took the position that 

generalization is a route to algebra (p. 725). However, even with the important role that 

these activities play, Kieran reported that Lee (1987), 

found that few students use algebra or appreciate its role in justifying a 
general statement about numbers‖ when used as a tool for expressing 
general rules for both numeric and geometric patterns, or for providing 
justifications for equivalence of differing forms for these generalizations 
(p. 725). 
Healy and Hoyles (1999), and Warren (2000) have shown that while students can 

use symbolic forms to generalize patterns, the use of formal symbols does not come 
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easily to students. Ainley, Wilson, and Bills (2003) expanded on this idea when they 

reported on the distinction between students‘ generalization of the context and 

generalization of the calculation, finding the former to be insufficient for students to 

accomplish the latter.  Ainley, et al., (2003) reported that student responses for the task 

shown in Figure 6 fell into three categories. Some of the students only generalized the 

context giving a ―general description of the arrangement of furniture, but did not describe 

the calculation‖ (p. 12). These students treated the middle and end tables separately. The 

resulting ―calculation which arises from this description is more complex than the ‗two 

chairs for each tables and two for the ends‘ image, and this may have been a factor which 

inhibited these pairs from being able to express a calculation‖ (12).  

 
Figure 6. The 'tables and chairs' question. 

Some students who generalized the context then described a calculation, the initial 

description of the table arrangement was dynamic. These students focused on what 

occurred as more tables were added. These descriptions of the calculation were ―algebra-

like expressions…though these were not always written down‖ (Ainley, et al., 2003, p. 

12) 

The final group of students provided a description of the calculation directly. 

These students ―were usually able to move easily to a written version of the calculation 

expressed in algebra-like notation, even though they sometimes struggled with syntax‖ 

2—11

This paper focuses on responses to the question shown in Figure 1, which comes about
two thirds of the way through the interview.

Figure 1: The ‘tables and chairs’ question
This question was chosen so that we could see whether pupils were able to articulate a
generalised relationship containing a variable (in Mason et al’s term seeing and saying).
They were encouraged to write down (recording) so that we could see whether or not
they would make use of an algebra-like notation. During the interviews, the researcher
encouraged the children to articulate and share ideas, and, if they seemed stuck,
sometimes suggested that they try particular numerical examples (e.g. what would

happen if there were 20 tables?). The interviewer also prompted the pupils to try to write
down an answer, but did not insist on this if they seemed reluctant to do so for any
reason. Often the pupils preferred to say aloud what they would write.

Cohort A

All of the pairs in cohort A (those who had some experience of algebra), showed some
evidence of algebraic activity, in that they were able to articulate a general relationship
between the numbers of tables and chairs. Here are some examples of their statements.

1. Two on each table except for  the ends, which is three.

2. For each end one you would need three and … for each other table you would

need two

3. For every table there’s two chairs plus the other two that are on the end

4. You would do, two for each table, two chairs for each table … and then you would

need … two more for the sides

5. Well, every table you get, you need to double it and then … add ‘em on … the

number of chairs must be double and add two.

6. Just however many tables double that, and then, plus  two for the ends

7. So it could be times how many tables there are, times two … plus two

8. You take the tables and you times it by two and then plus  two

These examples vary in a number of ways. Clearly some are expressed more fluently and
confidently than others. Statements 1 and 2 seem to see the arrangement in terms of two
kinds of table (the ‘ends’ which have three chairs, and the ‘middles’ which have two)
while the remaining statements seem see each table as having two chairs, and treat the

Can you explain how to work out how many chairs are needed for
each long table?  Can you write it down?

Tables and chairs are arranged like this in the school dining room:
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(Ainley, et al., 2003, p. 13). Ainley, et al. found that the students ―who were unable to 

articulate an algebra-like version of the rule had previously generalized the calculation 

required; generalizing the context did not seem to be sufficient to support pupils in 

moving to a symbolic version of the rule‖ (p. 14).  This raises the question of the role of a 

well-formed understanding of variable in students‘ ability to model a generalization with 

an algebra-like rule. 

 Kieran (2007) reported that students use of tabular representations in 

generalization activities often leads to a disconnect between numerical and geometric 

relationships. The students use the tabular representation to derive a closed-form formula 

for which a few examples are checked. Kieran argues that such use of tabular 

representations ―shortcircuits all the richness of the process of generalization‖ (p. 725). In 

order to make the break from informal representations to conventional symbolic algebra 

to express generalizations, Radford (2003) stated that this break ―involves two ruptures, 

one with the sensual geometry of the patterns and the other with their numerical features 

such as rank‖ (p. 725). In other words, students must make a break between the extension 

of and drawing of the geometric patterns themselves (i.e., extending the geometric 

patterns) and numerical identification of the patterns such as the step number in the 

pattern. This requires a way to generalize and prove an algebraic generalization, which 

often requires the use of variables.  

 Research has demonstrated both student success and difficulties with 

generalization and proof. Kieran reported that studies by Edwards (1998), Miyakawa 

(2002), and Dreyfus, Hershkowitz, and Schwartz (2001) found that students with limited 

backgrounds in proof have difficulty using conventional algebraic notation, including 



 

 32 

variables, to express generalizations, and prove that these symbolic representations are 

generalizations. Specifically, Miyakawa found that both algebraic competence and 

general mathematical competence are related to student difficulty with constructing 

algebraic proofs, pointing to the inter-related nature of these domains of mathematics. 

However, Dreyfus, Hershkowitz, and Schwartz reported the success of seventh grade 

students in collaboratively constructing an algebraic proof that the difference between the 

products of the diagonals of rectangles of the following type is 12, see Figure 7. 
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Figure 7. Rectangles where differences in products of diagonals is 12. 

 
These students first generalized the process, and then justified it using an algebraic 

representation. The rectangles were generated using a spreadsheet where entering any 

value in the upper left quadrant generated the other three quadrants. The students 

generalized the values of the rectangle and the subsequent products and differences and 

then expressed this generalization algebraically. 

 In discussing a study by Healy and Hoyles (2000) involving students with prior 

experience in formulating and testing conjectures, Kieran (2007) noted that ―when 

students were asked to pick the argument that they thought would get the best mark, the 

majority of students chose the ones based on algebraic form‖ (726). However, when they 

examined students‘ own arguments they found that students were ―unlikely to base their 

own arguments on similar algebraic constructions, feeling that these arguments neither 

communicated nor illuminated the mathematics involved‖ (p. 726). Instead, students 
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were more likely to provide numerical examples and then provide a narrative explaining 

the generalization. This difference between selecting and generating arguments may be 

due in part to the difficulties students have with algebraic symbols. In other words, how 

students understand these algebraic forms and symbolizations and the role they assign to 

them in communicating and justifying may help explain this difference.  

 These findings demonstrate that students have numerous difficulties and 

misconceptions with algebra in a variety of areas and for a variety of reasons. These 

include using algebra as a language to generate meaning for and modeling of situations, 

transforming algebraic equations and expressions, and the influence of outside 

experiences and conceptions on students‘ algebraic understanding.  

 Summary. Generalization, justification, and proof are essential aspects of 

mathematics, including algebra. The use of symbolic forms to generalize patterns, as well 

as other situations, is an important element of algebra. If students exhibit the difficulties 

reported from the literature with generational and transformational activities, then the use 

of these symbolic representations to generalize both contexts and calculations may be 

impacted. Additionally, the role that students‘ outside experiences and conceptions, 

including but not limited to their experiences in elementary mathematics classes, bear on 

how they come to understand algebra and points to the importance of not only taking 

them into account in an algebra class but also in the types of experiences that students 

have during their elementary mathematics experiences. With the well established findings 

on students‘ difficulties with mathematical symbols, including variables, extending the 

meanings students have for variables to informal representations in classes prior to their 

introduction and use in an algebra class is likely to provide a more well rounded 
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understanding of their meanings for letter-symbolic representations of variables and the 

misconceptions that often accompany their use.  

Research Findings on Early Algebra (EA) 

As previously noted, research on student learning of algebra has predominantly 

occurred at the middle school through college levels. With the increased emphasis on 

algebra noted in the opening section of this study, a corresponding increased interest in 

the role of algebra at the elementary grades has arisen. However, as Carraher and 

Schliemann (2007) noted, while some agreement exists for algebra within the elementary 

curriculum ―the research basis needed for integrating algebra into the early mathematics 

curriculum is still emerging, little, known, and far from consolidated‖ (p. 671). The study 

reported in this dissertation builds on what we know about research on EA as well as 

some of the gaps in this existing research. Therefore, in the following section I provide a 

synthesis of the existing research on EA and how EA may provide students with a 

foundation for future work in algebra.  

Carraher and Schliemann (2007, p. 678) cite Bass‘ (1998) view of school algebra. 

School algebra – and the root of all algebra – is about the following: 

 The basic number systems – the integers and the real numbers and those 
derived from them, such as the rational and complex numbers. 

 The arithmetic operations (+, -, , ) on these number systems. 
 The linear ordering and resulting geometric structure defined on 

the real line. By these I [Bass] mean the notions of size (whether 
one number is larger or smaller than another) and of distance 
between numbers. 

 The study of algebra equations that arise naturally in these systems. (p. 8, 
emphasis in original). 
 

Based on this view, Carraher and Schliemann examined how conceptions of algebra 

impact early algebra. Specifically, they examined arithmetic as understood as the science 
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of (1) numbers (2) numbers, quantities and magnitudes (3) numbers, quantities, 

magnitudes and functions (p. 678). 

Arithmetic, numerical reasoning, and EA. In examining arithmetic and 

numerical reasoning as an entry point to EA, Carraher and Schliemann (2007) noted that 

the field axioms, (i.e., commutativity, associativity, distributivity, identity, and inverse 

axioms for addition and multiplication), ―highlight the connections between arithmetic 

and algebra for those who are already comfortable with algebraic ideas and notations‖ (p. 

679, emphasis added).  

 Researchers have examined student generalizations of classes of number 

sentences, including but not limited to, the field axioms (e.g., Carpenter, et al., 2003; 

Fujii & Stephens, 2008). Carpenter, et al. found that students could generalize that adding 

zero to a number results in the number they started with. Likewise, if you subtract a 

number from itself you get zero. Fujii and Stephens (2008) found that students can 

engage in quasi-variable thinking, ―general explanations of why number sentences like 

78 – 49 + 49 = 78 are true and their ability to generate specific instances of what they will 

later see as a general relationship (78 – a  + a = 78)‖ (p. 128). They note that students 

often impose ―boundary values‖ that are not valid when applied to formal algebraic 

equations where the variable can be unbounded. For instance, in the previous example 

students often limit the values of a to be between 0 and 78 since a is subtracted from 78. 

Therefore, part of the students‘ assigning of boundary values may be related to their 

understanding of numbers and operations (e.g., in this case students believe that it is not 

permissible to subtract a greater value from a lesser value reflecting their understanding 

of the operation of subtraction and/or negative values). 
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 Carraher and Schliemann (2007) summarized the relationship of numerical 

reasoning and EA as follows. 

1. Arithmetic has an inherently algebraic character and can be usefully 
regarded as a part of algebra rather than as a domain distinct from 
algebra; 

2. Young students sometimes make algebraic generalizations without 
using algebraic notation (although natural language is often poorly 
suited for expressing algebraic relations); 

3. Studies of arithmetic as an entry point into algebra are promising, but 
most of what needs to be known has yet to be investigated (p. 681). 
 

While this indicates that arithmetic may have an algebraic character, the 

question becomes whether students engaging in arithmetic are by default 

engaging in algebra. Further, if Carraher and Schliemann‘s suggestion is correct, 

what do we do with the students who are not already comfortable with algebraic 

ideas and notations?  

Arithmetic, quantitative reasoning, and EA. While research has discovered 

much about students‘ understanding of measured and unmeasured physical quantities, 

Carraher and Schliemann (2007) noted two reasons why this research has had limited 

influence in the development of and research on EA. First, ―given the sparse theoretical 

groundwork about quantitative thinking, with noteworthy exceptions (e.g., Schwartz, 

1996a; Thompson, 1988; Smith & Thompson, in press), it continues to be challenging to 

relate investigations about quantities, particularly unmeasured and indeterminate 

quantities, to studies associated with arithmetic, broadly conceived‖ (p. 683, emphasis 

added). Second, mathematics educators tend to avoid studies from developmental 

psychology ―that seek out universals and downplay the roles of teaching and particular 

representational forms on students‘ thinking‖ (p. 683). 
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For example, the number line is a staple of elementary mathematics classrooms as 

children learn about counting, natural numbers, and integers. However, students often 

struggle with whether to consider a number as a point on the number line or a 

displacement (distance). In addition, Carraher and Schliemann (2007) correctly stated 

that ―as students‘ concept of number develops, it becomes increasingly difficult for them 

to reconcile operations on numbers with displacements, intervals, and points on the 

number line; something that has implications for using number lines to discuss scalar 

quantities‖ (p. 683). For instance, students can model 8 – 3 on the number line in several 

ways. First, they can express the answer, 5, as a point on the number line. Second, they 

can represent the operation as a displacement or distance from zero after moving eight 

units to the right and then three units to the left. Finally, they can represent the operation 

as the interval from 3 to 8. Each representation carries a unique, yet related, conception of 

the operation on the numbers. This demonstrates how the use of representational forms 

that may initially seem simple and straightforward can result in difficulties and 

misconceptions for students.  

Quantities are often used to assist students in making connections between 

mathematics and real-world situations as well as to move from solving tasks presented in 

an algebraic form to word problems, often found at the end of problem sets. When using 

quantities, the referent becomes important as it introduces issues with exploring 

operations. For instance, multiplying two quantities, a and b means different things if 

both are lengths of line segments, often modeled as an array or area, versus one referring 

to a line segment and the other as a number. Similarly, Carraher and Schliemann (2007) 

noted that the relatively simple problem of purchasing 8 juices that cost $.75 each 
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becomes somewhat problematic when solved using multiplication while attending to the 

referent. Students can interpret the multiplication as  

(a) multiply .75 by 8, obtaining 6.00 and then attaching the unit of 
measure, $; (b) multiply $0.75 by 8, obtaining $6.00 straightaway; or (c) 
multiply two quantities, the intensive quantity, [a quantity independent of 
the size of the system, in this case a unit value] $.75/can, by the extensive 
quantity [a quantity proportional to the system size, in this case the 
number of cans], 8 cans, obtaining $6.00 as the result (p. 684).  
 
This points to potential difficulties, and differences, in the meanings students 

develop for variables depending on the context of the problem, the task type, and the 

representation of the variable and invariant quantities. 

One line of research addressing these issues has been to not assign specific values 

to magnitudes but to leave them indeterminate and variable. Such an approach is 

consistent with the work of Davydov (1990). Carraher and Schliemann (2007) noted that 

it is easy to appreciate ―the relevance of indeterminates for introducing variables: only a 

slight adjustment in thinking would appear to be needed to shift from treating a letter 

representing a single, indeterminate value to each and every value in the domain‖ (p. 685, 

emphasis added). While this may appear to be a simple shift, as viewed from the 

perspective of someone who already is aware of this understanding of domain, it is not as 

clear if it is the case for students. 

Arithmetic, functions, and EA. Function has come to play a central role in 

middle school and high school mathematics. Carraher and Schliemann (2007) noted that 

several researchers have suggested that function be the main focus of study in algebra. 

One of the main ways that teachers and researchers have implemented functions in EA is 

through the study of numerical and geometric growing patterns (e.g., see Cooper & 

Warren, 2008; Papic & Mulligan, 2007; Radford, 2000; Swafford & Langrall, 2000; 



 

 39 

Warren & Cooper, 2008a; Yeap & Kaur, 2008). Through the study of these patterns, 

students identified, extended, and generalized patterns, often using informal language and 

methods. The findings were that students might generate recursive and/or explicit rules.  

 Another extension of the focus on function in EA is the potential use of multiple 

representations of the functions. For example, Carraher and Schliemann (2007) 

incorporated natural language, line segments, function tables, Cartesian graphs, and 

algebra notation in representing operations as functions in elementary classrooms. They 

found that: 

 Reasoning about variable quantities and their interrelations would 
constitute a natural setting for the discussions about variable and functions. 

 When we [Carraher, Schliemann, and Brizuela] introduced function tables 
relating number of items and price, we found that although the children 
could correctly fill in the tables, they did not attend to the invariant 
relationship between the values in the first and second columns. 

 The introduction of letters to denote any value for the first variable in a 
function table proved to be a powerful tool for children to focus on the 
general rule of the two variables. (pp. 691-692) 
 
The second finding listed above is consistent with Lobato and Ellis‘ (2002) 

findings from a study in a secondary mathematics class examining ―the nature of the 

generalizations students formed about slope and linear functions as a result of their 

interactions with a reform curriculum that regularly develops concepts in real-world 

settings‖ (p. 2). They found that all students who were interviewed developed the 

unintended generalization of y = mx + b as a difference. They describe how four focusing 

phenomena (―goes up by‖ language, well ordered tables, graphing calculator, and 

uncoordinated sequences and differences) contributed to students‘ generalization of the 

slope-intercept form of a linear equation as a difference. Similar to the findings reported 

in the previous sections, the language, representations, and symbolism teachers and 
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researchers use in instruction play an important, and sometimes unintended, role in the 

meaning that students make. 

Summary. While the research noted in this section holds promise for identifying 

what EA may include and its implementation in the elementary grades, it is also clear that 

students may not always recognize the ―algebraic‖ nature of the mathematics in which 

they are engaging, including relationships between variant and invariant quantities and 

symbolism used to express relationships and generalizations. EA does not require 

introducing new ideas into the elementary mathematics program, although it may. It does 

require both the teacher and student to reconceptualize the nature of the activities they 

currently use. Therefore, it seems evident that student engagement in arithmetic activities 

is insufficient for their engagement in algebraic ideas. Instead, they need opportunities to 

explore relationships and generalizations within and by using arithmetic (e.g., the field 

axioms, and functional relationships). However, they must also have the opportunity to 

develop their understanding of the symbolism needed to express, describe, and justify 

these relationships and generalizations beyond listing specific cases. 

The Problem: Student Meaning for Variable 

While there are multiple ways for researchers to define algebra (c.f., Carraher & 

Schliemann, 2007; Kaput, 2008b; Kuchemann, 1981; Radford, 2006; Sfard & Linchevski, 

1994), a common element involves the use of symbolism. Kaput (2008a) took a broad 

view of symbolization to include both conventional mathematical notation as well as 

informal written and verbal notation. Others used a narrower view to only include 

conventional mathematical notation (Fujii, 2003; Kuchemann, 1981). Included in the 
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broad range of definitions of algebra, and more specifically symbolization, are the use of 

letters as variables.  

A critical aspect of every facet of the previously discussed research involves 

student use and meaning for the formal and informal representations of variables. 

Students‘ understanding of and use of variables is a crucial aspect of algebra regardless of 

how one defines algebra. Carraher and Schliemann (2007) recognized this when they 

stated, 

Given the importance of variables in algebra, there are good reasons for 
mathematics educators to treat unknown values as indeterminates or 
variables. This holds even for equations. For instance, in 8 = 5 + x, x is 
profitably conceived as a variable (and is thus free to vary) despite the fact 
that there is only one value, namely 3, for which 8 = 5 + x is true. Any 
other substitution for x is legitimate even though it results in a false 
statement. Such a framing can help students become familiar with 
variables from early on rather than having to radically overhaul the 
meaning of symbols that originally had constricted meanings. (p. 685) 
 
We can make the same argument for other commonly used representations of 

unknowns, such as blanks, words, and shapes used as placeholders. Carraher and 

Schliemann further noted, ―one can imagine a line of research to investigate the 

conditions under which numerical assignment facilitates or interferes with learning, 

something from which a learning progression in number line understanding and EA 

might eventually develop‖ (p. 685). For this study, I view and refer to unknowns as 

variables, and therefore representations of unknowns as representations of variables.  

Research studies have shown that the majority of students demonstrate difficulties 

with interpreting letters as specific unknowns or generalized numbers (Booth, 1984; 

Carraher, et al., 2000; Cooper & Warren, 2008; Fujii, 2003; Knuth, et al., 2005). As noted 

previously, researchers conducted the majority of these studies at the middle school 
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through college levels. Research studies at the elementary school level involved 

situations where the researcher provided letters as variables to students, often resulting in 

initial student confusion or rejection of the notation (e.g., Booth, 1984; e.g., Carraher, et 

al., 2000; Stacey, 1989).  

My review of the literature showed that little research exists on how students 

conceptualize, generalize, and understand variables, represented as both formal 

conventional, and informal symbolizations, before and during the transition to formal 

symbols. In addition, when researchers did introduce variables in the studies (e.g., Booth, 

1984; Carraher, et al., 2000; Carraher, et al., 2001; Cooper & Warren, 2008; Koedinger & 

Nathan, 2004; MacGregor & Stacey, 1997), an implicit assumption often existed that 

students would quickly adopt and understand their use. In doing so, the researchers did 

not attend to the semantic and syntactic issues associated with the use of the variables 

(Kaput, 1999, 2008a).  

Research has demonstrated the crucial role that variables play in students‘ success 

in algebra. Booth (1984) found that student difficulties in algebra appear to stem from 

three main issues, ―namely [a] the meaning children attached to letters, [b] the process of 

operating with letters and [c] question of notation and convention in algebra‖ (p. 12). 

These issues correspond to the three types of activities discussed in the review of the 

literature on algebra, generational, transformational, and global/meta-level respectively. 

Booth reported that students bring a broad range of meanings to letters including, but not 

limited to, their understanding and attention to the referent when presented in a context, 

the idea that they do not stand for numbers, and that the letters will stand for a unique 

number instead of a range of numbers. When operating with letters, student errors 
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included not representing a solution with variables that they could solve with numbers, 

ambiguity between 4m and 4 m‘s, not recognizing that 4m and m + m + m + m were 

equivalent, and use of sequence of letters (e.g., x + y = z because of the sequence of the 

letters in the alphabet. Notation and conventional symbolization when using variables 

was another area in which students showed difficulty. These included not using brackets, 

or parentheses, when appropriate, and replacing open algebraic sums, such as a + b, with 

ab.  

An example of the confusion with formal algebraic symbols that can occur 

emerged in a study by Carraher, et al., (2000) with third grade students who were 

learning in an ―algebrafied‖ arithmetical setting. As students solved a problem related to 

people‘s heights Carraher introduced T as a variable. The researchers asked two children 

who had solved the general case what T stood for. They provided responses of ―tall‖ and 

―ten‖. When the researcher explained that T could stand for whatever Tom‘s height might 

be, the students were reluctant to accept this explanation. Carraher, et al. report that over 

the next several classes students began to use the words ―whatever‖ and ―any‖ to explain 

letters, variables that represented measures. It is not clear from the research how students 

interpreted these letters or whether they were parroting the terminology of the researcher.  

As noted earlier, Fujii (2003) found that students who understood that the same 

letter (variable) stood for the same number in a given equation tended to believe that 

different letters could not stand for the same number. Fujii also reported that some 

students do not realize that the same letter in the same expression or equation must stand 

for the same numerical value at the same time. This supports Booth‘s (1984) finding that 
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students have difficulty operating on letters and bring a range of meanings to the use of 

conventional formal symbols.  

Knuth, et al., (2005) suggested that middle school students‘ understanding of 

literal symbols, particularly when the literal symbols can have multiple-values, may be 

fragile, particularly for students in grade 6. They link this to the types of tasks in which 

students engage in elementary school where literal symbols often have single-value 

solutions. While the above findings focused on conventional letter-symbolic 

representations of variables, I posit that similar findings may be found for other 

representations of variables. Currently little is known about how students understand and 

use other representations of variables. 

Knuth, et al. (2005) further reported that,  

students often encounter literal symbols during their elementary school 
education (e.g., 8 + 3 = , 3 + ? = 7). However, the nature of such 
exposure may lead students to consider literal symbols in less 
sophisticated and mathematically powerful ways (e.g., as specific 
numbers)‖ (p.  75).  
 

While Knuth correctly points to issues with the use of literal symbols in elementary 

school, another issue arises. Teachers, researchers, and curricular materials do not always 

represent variables using letters, especially in early elementary school, as the examples 

above demonstrate. From a review of commonly used curricular materials (Pearson 

Education, 2011) I found that representations of variables included blanks, boxes, words, 

question marks, and other non-conventional symbolizations. While conventions exist for 

the use of letter-symbolic representations of variables, no such clearly established and 

accepted conventions exist for literal symbols. Instead, it appears teachers and 

researchers impose the conventions they learned for letter-symbolic representations on 
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these informal representations of variables. Yet, the research is lacking on student 

conceptions and generalization of these informal notations, and how they build upon this 

when introduced to conventional symbolization.  

In addition to the representations of the variables, the representations of the tasks 

in which the variables are used also play an important role. As noted previously, 

Koedinger and Nathan (2004) reported on the widely held belief that algebra story 

problems are more difficult for students to solve than word equations, or equations. They 

found that, 

Contrary to beliefs held by practitioners and researchers in mathematics 
education, students were more successful solving simple algebra story 
problems than solving mathematically equivalent equations. Contrary to 
some views of situated cognition, this result is not simply a consequence 
of situated world knowledge facilitating problem-solving performance, but 
rather a consequence of student difficulties with comprehending the 
formal symbolic representation of quantitative relations (p. 129). 
 
It is interesting to note that within the task types used by Koedinger and Nathan, 

the representation of the variable changes from donuts in the algebra story problem, to 

number in the word equation, and x in the equation. However, the researchers did not take 

into account the distinction between these different representations in the research 

findings. This raises the question of whether the differences reported by Koedinger and 

Nathan were due to the representation of the task, as claimed, the representation of the 

variable, or both. 

In summary, students experience multiple representations for unknowns in the 

elementary program and when these unknowns are considered as variables, as Carraher 

and Schliemann (2007) suggested, the connections between these representations, or lack 

thereof, becomes an important aspect of the mathematical experiences of elementary 
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students. Yet, little is know about how students view these representations for variables 

and if or how they make connections across representations of the variable. In addition, 

the findings of Koedinger and Nathan (2004) point to the role that the representation of 

the task may play in students understanding of and success with tasks even when these 

tasks are mathematically equivalent.  

In addition to addressing a gap in the existing research, this study also addresses 

issues and questions raised by teachers as important to their practice. In Linking Research 

& Practice (NCTM, 2010), 25 questions were constructed from a synthesis of 350 

questions submitted from mathematics education practitioners at the NCTM Research 

Agenda Conference. A subset of these questions was ―chosen, along with accompanying 

text, to present to the community‖ (p. 6). The findings from this study will help to answer 

and inform further research on four of these questions: 

 What are coherent frameworks for characterizing the development of 
student thinking about specific mathematical concepts or processes? (p. 
15) 

 What are the mathematical concepts and reasoning processes that prepare 
and enable students to learn and use algebra? (p. 16) 

 What ―interventions‖ help teachers reach students who they perceive have 
difficulty developing mathematical proficiency? (p. 26) 

 How can teachers engage students in productive struggle to support the 
development of mathematical proficiency? (p. 28) 
 

Summary. Much of the reviewed literature depends on students understanding of 

mathematical symbols, including variables. However, as I discussed in the summary of 

each section, students‘ understanding of these symbols is a crucial component embedded 

within each of the areas of research. While much research has been conducted on 

students understanding, or misconceptions, of these symbols little has been done 

specifically on students‘ meaning of formal and informal representations of variables 



 

 47 

prior to their introduction and use at the algebra level and beyond. While we know much 

about misconceptions that students have for variables in algebra and beyond we do not 

know if these same misconceptions are present prior to their introduction to conventions 

of use for letters. Therefore, we also do not know if these misconceptions are present as 

students begin their study of algebra, or if these misconceptions arise as teachers 

introduced to these conventions. Furthermore, this gap in the research results in our not 

knowing what prior knowledge and experiences students build upon as they construct 

their meanings for variables and the conventions for their use. This study addresses this 

gap in the research. 
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Chapter 3: Methodology 

As noted above, early algebra in general, and elementary grade student 

understanding and utilization of variable representations specifically, are in need of 

further research. Therefore, researching how elementary students interpret representations 

of variables and solve tasks involving these representations across representations of 

variables and representations of tasks is the focus of this study. These results provide 

evidence needed to answer the research questions under investigation.  

Theoretical Framework 

I draw on two theoretical frameworks to frame this study. In the following 

sections I describe Kaput‘s (Kaput, 2008a, 2008b) conception of algebra and the process 

of symbolization. I then describe Sfard and Linchevski‘s (1994) conception of algebra 

and the process of symbolization. I describe how each of these perspectives provides 

valuable insight into how students develop meaning for mathematical symbols. I then 

describe how a merging of the ideas behind each of these conceptions provides a more 

comprehensive framework to describe and understand students meaning making for 

mathematical symbols than either conception alone. It is from this more comprehensive 

framework that I view students‘ meaning making for representations of variables.  

Algebra from a symbolization perspective. Kaput (2008b) understands algebra 

as consisting of two core aspects that are embedded in three strands (see Figure 8). At the 

core of this perspective are the relationships between generalization and the process of 

symbolization.  
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The Two Core Aspects 

(A) Algebra as systematically symbolizing generalizations of regularities and 
constraints. 
 

(B) Algebra as syntactically guided reasoning and actions on generalizations 
expressed in conventional symbol systems. 

Core Aspects A & B Are Embedded in Three Strands 

1. Algebra as the study of structures and systems abstracted from computations 
and relations, including those arising in arithmetic (algebra as generalized 
arithmetic) and in quantitative reasoning. 
 

2. Algebra as the study of functions, relations, and joint variation. 

3. Algebra as the application of a cluster of modeling languages both inside and 
outside of mathematics. 

Note. From Kaput, J. J. (2008b, p. 11).  
Figure 8. Core Aspects and Strands of Algebra. 

Kaput (2008b) theorized a process to describe students meaning making for 

algebraic symbols and noted that the 

 only way a person can make a single statement that applies to multiple 
instances (i.e., a generalization), without making a repetitive statement 
about each instance, is to refer to multiple instances through some sort of 
unifying expression that refers to all of them in some unitary way, in a 
single statement (p. 20).  
 

In this sense, generalizing and symbolizing are inextricably related and necessary for 

student development of the two core aspects of algebra noted in Figure 8.  

Several researchers have argued that developing students‘ ability to generalize in 

the elementary grades is an important aspect of early algebra (e.g., Carraher, Martinez, & 

Schliemann, 2008; Davydov, 1990; Dorfler, 1991; Kaput, 1999, 2008b; Warren & 

Cooper, 2008a; Yeap & Kaur, 2008). Taking Kaput‘s (2008b) perspective on algebra, 

symbolization and the processes that students engage in as they generate both informal 

and formal conventional algebraic symbolizations are also important aspects of algebra at 

all levels. 
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The types of symbolic objects and the meanings students develop for expressing 

generalizations are broader than conventional notation systems and include private, or 

individual, student symbolism that may be, and is often, informal oral or written 

descriptions that do not fully capture generalizations, variables, mathematical symbols 

(e.g., +, =, √, ∑, π, and ∫), graphs, or tables, to name a few. This symbolism represents a 

referent from which the student generalizes. Students may then attend to either the 

symbol or the referent. As Kaput (2008a) stated,  

This perceptual difference is analogous to a deep epistemological 
distinction between mathematics as an object of study in its own right 
versus mathematics as an intellectual tool, as a means of seeing, 
organizing, and reasoning about experience, including the highly 
structured experience that takes the form of science and the ever-widening 
areas of human endeavor where mathematics is applied (p. 25).  
 
Kaput (2008a) notes that an individual may look at or look through symbols while 

engaging in the process of symbolization. At any particular time, the symbol system can 

be the students‘ focus or the student can attend to and take action on the referent by 

looking through the symbols. On the other hand, the student may attend to and take 

action on the symbols themselves. By action, Kaput refers to both mental and physical 

actions. 

As they develop meanings for mathematical symbols, students are confronted 

with and engage in mediated experiences in the world of mathematics. As they engage in 

the world of mathematics, they begin to build ―oral, written, and drawn descriptions of 

the situation – records of those aspects of the situation that are accessible to them at the 

time.‖ (p. 28). Then, ―the physical symbolization [this world of mathematics] is built 

from and tested against observations about [the mediated experiences] in the social 

context of discussion and interaction‖ (p. 29). This new conceptualization is a result of 
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the symbolization process emphasizing, ―the constructive, additive nature of the process 

of symbolization, as opposed to the view often taken that it is abstractive and subtractive‖ 

(p. 31).  

Kaput‘s (2008a) process of symbolization provides a perspective through which 

students‘ views of symbols, in general, and variables in particular, can be studied. Based 

on this perspective, it seems reasonable to hypothesize that student conceptions of 

informal representations of variables, through mediated experiences, will be foundational 

to their generalizations of conventional letter-symbolic variable symbolization. If so, this 

points to the importance of understanding the generalizations of the informal 

representations. 

Reification. Sfard and Linchevski (1994) take a slightly different perspective on 

algebra, and mathematics, in terms of the progressions that must occur. This is evident in 

their statement that ―mathematics is a hierarchical structure in which some strata cannot 

be built before another has been completed‖ (emphasis added, p. 195). This hierarchical 

structure is based, in part, on the claim that  

the same representation, the same mathematical concepts, may sometimes 
be interpreted as processes and at other times as objects: or, to use the 
language introduced elsewhere (Sfard, 1991), they may be conceived both 
operationally and structurally‖ (p. 193). 
  

This is similar to Kaput‘s (2008a) referents and symbols.  

Viewing algebra operationally includes students‘ verbal descriptions, which are 

often initially informal and lack the specificity necessary to adequately describe the 

generalization under consideration. Their theoretical perspective of the development of 

algebra begins with operational generalized arithmetic and moves to structural 
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generalized arithmetic. Following this development of generalized arithmetic comes 

operational abstract algebra and structural abstract algebra.  

Through this perspective, Sfard and Linchevski (1994) viewed algebra through 

the lens of the theory of reification, ―our mind‘s eye‘s ability to envision the result of 

processes as permanent entities in their own right‖ (p. 194). They noted that while what 

one sees in algebraic symbols depends on the specific problem and context, it also 

depends on ―what one is prepared to notice and able to perceive‖ (p. 192). Based on this 

theoretical perspective they claimed ―algebra is a hierarchical structure in which what is 

conceived operationally at one level must be perceived structurally at a higher level‖ (p. 

202). Reification, therefore, progresses from the operational (process-oriented) to the 

structural (mathematical objects)  

The reification process, from the operational (process-oriented) to the structural 

(mathematical objects), requires the introduction of symbolic notation. However, the 

introduction of symbolic notation is insufficient for reification to occur. Elaborating on 

the distinction between the operational and the structural, Sfard and Linchevski (1994) 

noted: 

The operational way of thinking dictates the actual actions to be taken to 
solve the problem at hand, while the structural approach condenses the 
information and broadens the view. The abstract objects serve as 
landmarks with the help of which the problem-solving process may be 
navigated. Since a jump from operational to structural mode of thinking 
means a transition from detailed and diffuse to general and concise – from 
the foot of a mountain to its top – it is only natural that it is accompanied 
by an increase in student‘s ability to cope with the task at hand (p. 203). 1 
 

                                                        
1 A more thorough explanation of these perspectives see (Kaput, 1999, 2008a, 
2008b; Sfard & Linchevski, 1994) 
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Sfard and Linchevski‘s (1994) theory of reification extends Kaput‘s view of 

generalization and symbolization. While Kaput provides a perspective on how the 

process of building from informal to formal conventional symbolizations may occur, 

reification goes further to examine how this development occurs. As students move from 

treating these symbols, and their use, as processes and reify these objects, it becomes 

even more important to understand how the students conceive of these informal 

representations.  

If students reify representations of variables of which they have generalized 

incomplete conceptions or misconceptions then the students may carry these errors on as 

they progress from informal to formal representations. For example, if they conceive of 

informal representations of variables as representing single values, as often used in the 

elementary grades, then the student may generalize this same conception to formal 

conventional representations of variables. This raises the question of the extent to which 

the common errors and misconceptions for letter-symbolic variable representations are a 

result of the conceptions students carry from their generalizations of the informal 

representations versus misconceptions that they generate through the introduction of the 

formal letter-symbolic letter representations. 

Reified generalizations. Critical to the consideration of the development of 

meaning for algebraic symbols, Davydov (1990) distinguished the process of 

generalization from the result of this process noting both phenomena are often linked to 

generalization. A key aspect of this process involves students‘ transition from informal 

generalizations to formal mathematically expressed generalizations using conventional 

mathematical symbols. Understanding the process through which students progress as 
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they generalize patterns and come to understand these symbols may provide educators 

and researchers with a generalization trajectory. Such a trajectory may shed light on how 

to assist students in making sense of variables and other mathematical symbols, an area 

that has been well documented as being difficult for students (Arcavi, 1994; Clement, 

Lochhead, & Monk, 1981; Hiebert, 1988).  

Thorpe (1999) stated that students ―should see algebra as an aid for thinking 

rather than a bag of tricks‖ (p. 31). Referring to Whitney (1985), he noted that,  

students should grow in their natural powers of seeing the mathematical 
elements in a situation, reasoning with these elements to come to relevant 
conclusions, and carrying out the process with confidence and 
responsibility‖ (p. 31).  
 

To reach this goal requires a rethinking of the process to include both the process of 

symbolization and reification discussed above as well as the sequencing of tasks.   

As noted above, similarities between the perspectives of students‘ algebraic 

reasoning, put forth by Sfard and Linchevski (1994) and Kaput (1999, 2008a, 2008b) 

exist in the way that students build their conceptions from their prior knowledge and 

experiences. Differences exist in what the students generalize based largely on how each 

conceptualizes algebra. Taking Kaput‘s (2008b) position that ―the heart of algebraic 

reasoning is comprised of complex symbolization processes that serve purposeful 

generalization and reasoning with generalization‖ (p. 9), reification provides a lens 

through which to view how students view new conceptualizations. 

 Kaput‘s model of the symbolization process provides one way to examine how 

students iteratively revisit their conceptions based on the interaction between mediated 

experiences and representations. This model provides a lens for examining 

generalizations, and the symbolizations that students develop to express these 
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generalizations. However, It does not provide a way of examining how the students view 

these symbolizations (e.g., as an object or a process).  

As noted earlier, Lobato, et al. (2002) examined ―the nature of the generalizations 

students formed about slope and linear functions as a result of their interactions with a 

reform curriculum that regularly develops concepts in real-world settings‖ (p. 2). They 

found that the students they interviewed developed the unintended generalization of y = 

mx + b as a difference (i.e., the difference in y-values is the same for consecutive values 

of x). They describe how four focusing phenomena (―goes up by‖ language, well ordered 

tables, graphing calculator, and uncoordinated sequences and differences) contributed to 

students‘ generalization of the slope-intercept form of a linear equation as a difference. 

These students developed meaning for this equation in an unintended manner. Kaput‘s 

(2008a) model provides a way to study how students came to this generalization. Sfard 

and Linchevski‘s (1994) reification model provides a way to examine how the students 

view the symbolization of the generalization and how this symbolization itself becomes 

an object upon which students generalize, as opposed to strictly a process.  

A combination of the representations in which students engaged (e.g., well 

structured tables with consecutive values for x) along with the mediated activity of the 

focusing phenomena appears to have contributed to the unintended student 

generalizations. Sfard and Linchevski‘s (1994) reification model provides a way to 

examine how the students view the symbolization of the generalization and how this 

symbolization itself becomes an object upon which students generalize, as opposed to 

strictly a process.  



 

 56 

 Sfard and Linchevski (1994) cited Freudenthal (1978) who stated that ―If a 

learning process is to be observed, the moments that count are its discontinuities, the 

jumps in the learning process (p. 78)‖ (p. 195). Kaput described how students construct 

generalizations through an iterative process of communicating and analyzing the 

relationships between mediated representations and experiences as they move toward 

more or less conventional symbols. Using Sfard and Linchevski‘s idea of reification, we 

can examine the discontinuities that arise to investigate how students view these objects 

and processes as they develop meaning for various algebraic symbols. Identifying these 

objects and processes during moments of discontinuity provides researchers with an 

opportunity to identify a chain of significance (Cobb, Gravemeijer, Yackel, McClain, & 

Whitenack, 1997) for the development of student‘s algebraic reasoning.  

Task sequencing. A crucial aspect of this perspective involves sequencing 

experiences and representations provided to students. The traditional sequencing of topics 

and tasks in U. S. mathematics classrooms has not changed significantly in the last 

hundred years. Often, teachers and researchers take this sequence, beginning with the 

operational and then moving to the structural, for granted. This may produce unintended 

and erroneous student conceptualizations. Beginning with operational stages (i.e., 

numeric computations in generalized arithmetic, and processes on symbols in abstract 

algebra) can result in erroneous generalizations based on incomplete understanding and 

generalizations of the operations. 

  For instance, researchers have documented students‘ erroneous conceptions of the 

equals sign. As Sfard and Linchevski noted, ―when algebraic expressions are seen as 

processes rather than objects, the equality sign is interpreted as a ‗do something signal‘ 
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(Behr, et al., 1976; Kieran, 1981)‖ (p. 208). They note how the use of the equal sign in 

calculators may reinforce this idea. However, for the majority of students in the U. S. this 

equal sign is often represented as a ―do something signal‖ and therefore, not surprisingly, 

they develop this conceptualization.  

 Davydov (1990) argued for the ―ascent from the abstract to the concrete‖ (pp. 

129-139) and has developed a curriculum that employs this perspective. Students begin 

with the abstract, generalities and symbolizations, and move to the concrete. Therefore, 

researchers must reconsider the assumption, as the National Mathematics Advisory Panel 

(NMAP) suggests, that the teaching of mathematics requires the sequencing of ―major 

topics (from whole numbers to fractions, from positive numbers to negative numbers, and 

from the arithmetic of rational numbers to algebra) and an increasingly complex 

progression from specific number computations to symbolic computations. The structural 

reasons for this sequence and its increasing complexity dictate what must be taught and 

learned before students take course work in Algebra‖ (p. 17).  

In examining student thinking and conceptions of variables, it seems relatively 

obvious that their progression toward the correct use of conventional mathematical 

symbols, including variables, may follow the symbolization process described by Kaput 

(2008a). However, as I argue above, this view of symbolization does not take into 

account the process of how students move from informal symbolizations (in the case of 

variables this includes but is not limited to words, blanks, and shapes) to the conventional 

letter-symbolic representations used in algebra courses. This is where Sfard and 

Linchevski‘s (1994) idea of reification plays an important role. As students move from 

these informal symbolizations to the conventional letter-symbolic representations we 
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need to understand how, or if, they reify these informal representations. In Kaput‘s 

process of symbolization, this occurs during the analysis and communication between the 

representations and the mediated experience in the world, which yields a new 

conceptualization. Currently the research literature does not provide insight into how 

students view these informal representations or how the representation of the task in 

which they are presented influence the students‘ understanding or use of these variable 

representations.  

I posit that students reify and/or transfer their generalizations, understandings, and 

conceptions of the common representations of variables in which they engage in 

elementary grades (e.g., blanks, words, and shapes as placeholders) to conventional 

letter-symbolic representations of variables through their experiences in and outside of 

the classroom. It is interesting to note that the majority of the research cited on student 

difficulties with, and misconceptions of, variables are descriptive in nature but provide 

little insight into the roots of these difficulties and misconceptions. If Kaput‘s process of 

symbolization provides a meaningful framework for describing students‘ meaning 

making for mathematical symbols then students likely generalize and/or reify their 

conceptions and use of the informal literal symbols for variables that they commonly 

engage with in elementary grades to the formal conventional letter-symbolic 

representation of variable that is used in algebra courses and beyond. Yet, we know very 

little about students‘ understanding and use of these informal representations. Therefore, 

in this study I propose to examine both how students use a variety of informal 

representations of variables along with the conventional letter-symbolic representations 

of variable across different representations of tasks. 
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Participants 

The students included in this study consisted of fourth and fifth graders from a 

Midwestern K-5 elementary school and sixth graders from a Midwestern middle school 

composed of sixth and seventh graders. Table 1 displays the demographic data for each 

school population in 2010.  

Table 1 

 School Demographic Data 

 Elementary Middle School 
Total Enrollment 759 791 
Asian 9.9% 4.0% 
African American 7.1% 23.5% 
Hispanic 2.9% 5.6% 
Indian 0.7% 0.6% 
White 79.4% 66.2% 
Free/Reduced Lunch 11.4% 39.3% 

 

I sent consent forms to each of the 150 fourth graders, 131 fifth graders, and 161 

sixth graders enrolled in each grade.  Each consent form included four separate consent 

statements; participation in the study, videotaping of interviews, use of videos at 

professional conferences and for professional development, and release of demographic 

data. The parent or guardian could also choose to exclude their student from inclusion in 

the study. Of the consent forms sent, 61 (41.7%), 61 (46.6%), and 43 (37.1%) 

respectively were returned. Of those returned, 30 (20.0%), 32 (24.4%), and 15 (12.9%) 

parents or guardians gave full consent (i.e., consented to each of the four consent 

statements) for participation in the study, see Table 2. Some students returned forms with 

partial consent (i.e., consent was given for some, but not all, of the four consent 

statements). Four consent forms were returned with all four consent statements and the 
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statement indicating they wished to be excluded from the study marked, see All Marked 

for fifth grade in Table 2. 

Table 2 

Consent Data 

Grade  

(N) 

Full Consent 

(N, %) 

Partial Consent 

(N, %) 

Opt Out 

(N, %) 

All marked 

(N, %) 

Total  

(N, %) 

4 
(150) 

30 7 24 0 61 
20.0% 4.7% 16.0% 0.0% 40.7% 

5 
(131) 

32 4 21 4 61 
24.4% 3.1% 16.0% 3.1% 46.6% 

6  
(161) 

15 9 19 0 43 
12.9% 7.8% 16.4% 0.0% 37.1% 

 

The students‘ classroom teachers identified each of the students for whom full 

consent or partial consent was given as low-, typical- or high-achieving in mathematics. 

Each student was assigned a number indicating the grade in which they were enrolled and 

a roster number (e.g., 42 was the second student listed for fourth grade). Each of the 

students who the teachers identified as low-, typical- or high-achieving in mathematics 

were listed in a spreadsheet by grade and the level their teacher indicated. I randomized 

the order of each of these lists and selected the first three students in each list for 

participation in the study. 

None of the sixth grade students for whom consent was received was identified as 

low-achieving. Therefore, only six sixth grade students, three typical- and three high-

achieving, were included in the study (N=24). One fourth grade teacher did not return the 

categorization information resulting in the total number of students with full consent from 

which the final nine included in the study to be reduced by three students, see Table 3. 
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Table 3 

 Teacher Achievement Feedback Data 

Grade Low-achieving Typical-achieving High-achieving Total 

4 4 14 9 27 
5 7 16 9 32 
6 0 20 7 17 

 

The students in the study consisted of 12 male and 12 female students. The grade 

4-5 students were all from the same Midwestern elementary school, and the grade 6 

students were all from the same Midwestern middle school. All but one student was 

Caucasian, the other was Asian. This latter student spoke both English and Chinese. One 

student also qualified for free/reduced lunch. 

A review of the elementary mathematics textbook series, EnVisions (Pearson 

Education, 2011) the students in this study have used over the last two years 

demonstrates the variety of variable representations under consideration in this study. 

This textbook series includes blanks, letters, shapes and words, among other symbols, as 

representations of variables. Nearly all of the tasks containing a variable consisted of a 

single variable that had a single value satisfying the task. This included tasks where 

students were to find the missing value as well as tasks where students were expected to 

substitute a given value for a variable into an expression and then evaluate the expression.  

For example, shapes are a common staple throughout much of the series, often 

using a light blue shaded square to represent a variable. In addition, the text uses squares, 

like those included in this study, along with letters. For instance, the following task is 

included on a unit assessment for 5th grade. 
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        ☐       ☐ 

   ☐ 

 This use of ☐ is problematic on two fronts. First, the square in the second 

equation could take on any non-zero value and make the equation true. However, the 

intention is that this square is 9 in the second equation and 8 in the final equation. The 

intention of the authors therefore appears to use the ☐ as a placeholder for the student to 

fill in as opposed to a symbol to represent a number. However, as outlined in this study, it 

is not clear if students will make this subtle distinction.  

 The textbook also used blanks in the earlier grades. In third grade, students saw 

problems such as 18 – 9 = ____ , and 3 + ____ = 7. The textbook appears to discontinue 

the use of blanks after third grade as no further use of them was found.  

In the teachers‘ guide for third grade, a tip is provided to teachers for helping 

students solve the problem of the day (Pearson Education, 2011, p. 48A). In this problem 

students are to write a number sentence and then solve the problem, ―Hope had 14 dolls 

in her collection. She received 2 more as gifts. How many dolls did Hope have then?‖ 

The tip states, ―Have students use a question mark, a box, or a variable (such as n or x) to 

represent the unknown quantity in the number sentence‖ (Pearson Education, 2011). This 

tip implies that only letters, conventional representations of variables, are in fact variables. 

Question marks or boxes are not considered variables if used in the same task. This use of 

variable also parallels the definition of variable cited earlier (Philipp, 1992) 
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Instrumentation 

I conducted two semi-structured task-based interviews per student of 

approximately 30 minutes each (i.e., forty-eight total interviews). I developed the 

particular tasks used, follow-up questions, and order of the tasks (see Appendix A), in 

two phases. In the initial phase, I generated sets of tasks designed to gather data to answer 

the research questions for this study. In the second phase, I piloted the tasks and the 

interview protocol and made revisions based on the results. 

The first interview for this phase consisted of tasks similar to those in the final 

form. The second interview consisted of presenting students with fictional student 

responses to each of the tasks from the first interview. The fictional student responses 

represented the common errors students make with letter-symbolic variables of assigning 

different values to multiple instances of the same variable within an equation, and 

believing that different variables within the same equation cannot be the same value. I 

developed the tasks in the final version of the second interview based on the results of the 

pilot, reported below, and initial analysis of the first interviews. 

Task development. In generating the tasks for this study, I focused on three 

aspects of students‘ meanings for variables. This arose initially from Fujii and Stephens‘ 

(2008) findings that ―students who are aware of the proposition that the same letter stands 

for the same number … tend to think that the converse of this proposition is also correct‖ 

(p. 1-51). In other words, if the variables are different then they cannot take on the same 

value. For example, for equations such as x + y = 12 students stated that the variables 

cannot both be 6 since they are different letters. There is no research to determine if 

students in elementary grades also exhibit this same meaning for variables or if this arises 
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sometime later. If this same meaning exists for students in elementary grades then this 

finding would have implications for instruction at the elementary grades. If the students 

do not exhibit this meaning then it arises at some point later, possibly during the 

introduction of conventional letters as variables. Either way, the findings will be 

important for future research, curriculum developers, and future research. 

In order to gather evidence to determine if students in the study have this meaning 

for variables, I identified three important meanings for pairs of variables for which I 

needed to gather data. These consisted of determining if the students treated two variables 

as the same or different within a task (i.e., have the same referent), if the students 

assigned multiple, or single values to the variables, and if they assigned the same and/or 

different values to both variables. 

To determine if the students treated the pairs of variables as the same or different 

I decided that it would be important to gather data for pairs of variables that were the 

same (e.g., y + y =12) and different (e.g., a + b =12) within each task. Such tasks would 

provide evidence of whether the students have developed an intuitive sense of the 

conventions used for letters as variables or if they treat different variables as the same. 

I also wanted to develop a series of tasks where the normative algebraic solutions 

would produce a single solution (e.g., y + y =12), multiple solutions (e.g., a + b =12), and 

no solution (e.g., x + 6 = x). While this study does not necessarily expect students to have 

constructed a normative algebraic solution strategy for the tasks, these tasks provide the 

opportunity to compare students‘ solutions across different core mathematical tasks, as 

viewed from a normative algebraic perspective.  
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Finally, in order to determine if the students in this study exhibited Fujii and 

Stephens‘ (2008) findings that ―students who are aware of the proposition that the same 

letter stands for the same number … tend to think that the converse of this proposition is 

also correct‖ (p. 1-51), I needed to gather evidence to determine if the students assigned 

the same and/or different values for each variable. Students who do hold this 

misconception would not assign the solution of 6 for each y in y + y =12. The tasks used 

needed to provide this opportunity along with the opportunity to demonstrate the 

converse, that a + b = 12 could have a solution of a = 6 and b = 6, as well as other 

solutions. 

In order to develop tasks that would provide this evidence, the tasks had to consist 

of pairs of variables. Further, the tasks needed to consist of at least three core 

mathematical tasks. I decided to use relatively simple addition tasks in an effort to put the 

focus of the students‘ solutions and solution strategies on the meaning of the variables 

and minimize the computation. Therefore, I decided to use two core addition tasks with 

sums of 12; y + y =12 and a + b = 12. Since these two tasks, when viewed from an 

algebraically normative perspective, had a single and multiple solution respectively, I 

also decided to use a core task with no solution when viewed from an algebraically 

normative perspective, x + 6 = x. 

Interview protocol development. During May and June of 2010, I piloted the 

initial tasks with four students, two fourth graders, one fifth grader, and one sixth grader. 

This resulted in several subsequent modifications to the tasks. In the remainder of this 

section, I describe these changes and the episodes from the pilots that prompted these 

modifications. I only provide general descriptions of the tasks in the final version of the 
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protocol in this section and provide a more detailed description of the tasks in the 

following section.  

During the pilot, I found that the information I intended the tasks from the second 

interview to gather was available from student responses to the tasks in the first interview. 

In addition, I found that the tasks in the two interviews did not provide evidence of 

students‘ recognition, or lack thereof, between tasks with a common mathematical 

structure. Based on the results of the interviews, I modified the tasks for the first 

interview slightly to improve clarity of tasks. I included a word problem whose solution 

set included non-integer solutions (i.e., originally the word problem for the addition tasks 

with different addends unknown referred to numbers of pencils each person had and was 

changed to a continuous problem for sharing a length of ribbon).  

In order to gather information on how students attended to similarities and 

differences across tasks with common mathematical structures, I eliminated the fictional 

student response tasks in the second interview. I replaced these with sorting and 

comparing tasks where I asked students to sort or compare sets of tasks with common 

mathematical structures as well as for tasks of the same task type. Due to the short time 

needed for the first interviews, I included the sorting tasks in the first interview.  

Based on the results of the pilot, I redesigned the second interview to include 

confirmatory, modeling (i.e., generational activities), and manipulation (i.e., 

transformational activities) tasks. The confirmatory tasks consist of tasks similar to the 

tasks from the first interview to gather evidence of the consistency of student responses 

since the first interview.  
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The final sets of tasks for the second interview focused on comparing expressions 

(e.g., a + a and a + 5), asking which of two expressions would be greater, when, and for 

what values. While students would still need to apply a meaning to the variables in the 

expressions, they would no longer have a given sum from which to generate pairs of 

addends. The students would also need to decide, if they selected one of the expressions, 

if it would always be greater. For the second type of manipulation task, I showed the 

students two equations modeling an algebraic tautology (e.g.,   +  –  = ) and 

asked them if it would be true always, sometimes, or never.  

Following the pilot phase of the study, in June and July 2010, I revised the initial 

tasks. I designed these tasks to provide students with an opportunity to solve sets of tasks 

with mathematically equivalent structures. Within each set, problems have different task 

types (i.e., word problems and equations) and different representations of the variable(s) 

(i.e., words, blanks, shapes, and letters). The addition tasks with common unknown 

addends contain unknowns, as opposed to variables. However, as I argued previously, we 

can consider these representations of variables as any value of which only one of these 

values will satisfy the task. Further, students regularly did not attend to or distinguish 

between the same or different representations of the variables during the pilot. Therefore, 

one of the purposes of this particular set of tasks is to gather evidence from which I may 

infer their distinction between the use and representation of unknown and variable, even 

if not familiar with this terminology.  

I conducted the interviews from October through December 2010. The first 

interview consisted of two types of tasks. For the first type, students completed individual 

tasks (see Figures 9 - 11) presented in the following order, tasks 1, 2, 8, 11, (3, 7), 6, 10, 
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9, 4, 12, 5. Task 3 and 7 are identical since textbooks do not traditionally use different 

types of blanks to represent different values, as done with letters and shapes. I ordered the 

tasks by staggering the order of the word problems for each core mathematical task. I 

used the word problem for the addition task with common addends before any of the 

corresponding equations. I used the word problem for the addition task with different 

addends unknown after each of the corresponding equations. Finally, I used the equations 

for the addition task with no solution both before and after the corresponding word 

problem.  

The students solved each task after I showed them a printed version of the task and 

read it to them. Once a student finished the task, I asked them follow-up questions to 

gather additional evidence of their thinking (see the interview protocol in Appendix A for 

specific questions for each task). These questions included but not limited to: 

 Tell me what you thought about as you tried to solve this problem. 

 What does the [representation of the variable] in this problem mean? (The 

purpose of this question is to examine (a) the referent of variable (e.g., number of 

gummy bears for the word problems), and (b) the domain that the student assigns 

to the variable. This will most likely require follow-up probing questions based on 

the student response. 

 Could the [representation of the variable] be any number? Why or why not?  

 Give me an example of what numbers the [representation of the variable] can be. 
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1. Shakira and Tim have the same number of gummy bears. Together they have 12 

gummy bears. How many gummy bears could Shakira have? How many gummy 

bears could Tim have? 

2. Show:  +  = 12   Ask: What numbers can the  be? 

3. Show: ___ + ___ = 12 Ask: What numbers can go in to blanks? 

4. Show: y + y = 12 Ask: What numbers can y be? 
 

Figure 9. Individual tasks: Addition - common unknown addends. 

 
5. Together Tom and Anne have 12 feet of ribbon. How long could Tom‘s ribbon 

be? How long could Anne‘s ribbon be? 

6. Show:  +  = 12 Ask: What numbers can the  and  be? 

7. Show: ___ + ___ = 12 Ask: What numbers can the blanks be? 

8. Show: a + b = 12 Ask: What numbers can a and b be? 
 

Figure 10. Individual tasks: Addition - different unknown addends. 

 
9. I start with some number then add 6 and get the same number I started with. 

What is the number I started with? 

10. Show:  + 6 =  Ask: What numbers can the  be? 

11. Show: ___ + 6 = ___ Ask: What numbers can the blanks be? 

12. Show: x + 6 = x Ask: What numbers can x be? 
 

Figure 11. Individual tasks: Addition - Common unknown addend and sum. 

 
For the next part of the interview, I had students engage in sorting and comparing 

tasks. I showed the students each of the task types for the addition tasks with common 

addends unknown (problems 1-4) and the addition tasks with different addends unknown 

problems 5, 6, and 8 omitting problem 7 which is the same as problem 3). I then asked 
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them to put together problems that mean the same thing. Once they completed sorting the 

tasks I asked them why they put the tasks together as they did and what was different 

about the their groups.  

Next, I showed the student each of the tasks for the addition task with one addend 

and sum unknown with no solution (problems 9-11) and asked them tell me how they 

were the same and different. I then followed up by stating that in the first interview they 

had told me what numbers would work in each problem and asked them if there were any 

of these problems that have the same numbers that would work for them and why. I then 

showed them the word problems (problems 1 and 5) and equations with the variable 

represented with shapes (problems 2 and 6), and letters (problems 4 and 8) respectively 

for the addition tasks with common addends unknown and different addends unknown 

and asked them the same follow-up questions as for the previous set of tasks.  

The second interview consisted of four types of tasks, confirmatory, modeling, 

algebraic property equations, and comparing expressions. I designed the confirmatory 

tasks after the initial tasks the students completed in the first interview (see Figure 12). I 

designed these tasks for the sole purpose of establishing if the students‘ responses form 

the initial set of tasks in the first interview had changed in the period between the two 

interviews. For these tasks, I also included odd sums to see if student answers were 

different then for even sums (e.g., would they still give a double such as three-and-one-

half for y + y = 7).  
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1. Juan and Alexa each have a piece of string. Together they have 16 inches of string. 

How long can Alexa‘s string be? How long can Juan‘s string be?  

2. Show:  +   = 8 Ask: What numbers can the blanks be? 

3. Show: ___ +        = 5 Ask: What numbers can the blanks be? 

4. Show:  +  = 12 Ask: What numbers can  and  be? 

5. Show: y + y = 7 Ask: What numbers can y be? 

8. Show and say: I am thinking of two numbers. When I add these two numbers 

together I get 7. What can my numbers be? 

9. Show: ___ + ___ = 7 Ask: What can the blanks be? 

12.  Show:  +  = 7 Ask: What can the shapes be? 
 

Figure 12. Confirmatory tasks. 

 
To address the issues noted earlier of students not attending to differences 

between the same or different variable representations in the same equation I designed a 

modeling task (see Figure 13) where I first gave the student the same word problem from 

the first interview where Shakira and Tim have the same number of gummy bears. I then 

provide two fictional student equations ( +  = 12 and  +  = 12) and asked if 

either of these number sentences meant the same thing as the word problem. If the 

student responded that either or both equation did mean the same thing as the word 

problem I asked them to explain why, this included asking them what the representations 

of the variables in each equation meant. 
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6.  Show: Shakira and Tim have the same number of gummy bears. Together they 
have 12 gummy bears. How many gummy bears could Shakira have? How many 
gummy bears could Tim have? 

 
Say: For this problem, I saw two students write these two number sentences. 

 
 +  = 12        +  = 12  

 
Does either of these number sentences mean the same thing as this word problem? 

Why or why not? 
 

If the say neither works ask: How would you write a number sentence for this 
problem? 

 

Figure 13. Modeling task. 

 
If the student stated that neither of the two fictional student equations meant the 

same thing as the word problem I asked them, ―how would you write a number sentence 

for this problem?‖ If they generated an equation I asked them to explain why it meant the 

same thing as the word problem, this included asking them what the representations of 

the variable(s) meant. 

The next set of tasks consisted of two equations modeling an algebraic property. 

Students were asked if these equations were true: always, sometimes, or never. I 

developed these two tasks to gain further evidence for how the students thought about 

and used the representations of the variables. These two tasks were unique in that they 

did not have any numeric parts, only variables (see Figure 14). Therefore, the students 

would not be able to rely on basic fact knowledge to generate a list of solution pairs as 

they had before. Instead, they would have to make some type of generalization about the 

equation.  
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7.    Show:   +  –  =    Ask: Will   +  –  =  be true always, sometimes, 

or never? Why? 

15.  Show: x  + y - y = x Ask: Will x  + y - y = x be true always, sometimes, or never? 

Why? 

Figure 14. Algebraic property tasks. 

The final set of tasks in the second interview consisted of pairs of expressions that 

the students were asked to compare (see Figure 15).  These four tasks all had equivalent 

mathematical structures in that one expression was the sum of two values represented 

with the same variable and the other expression was the sum of the same representation 

used in the first expression and five. Students were asked which of the two expressions 

was more.  

10.  Say and Show:  +        5 + .  Ask: Which is more,  +  or 5 + ? 

11.  Say and Show: ___ + ___        5 + ___.  Ask: Which is more, ___ + ___ or 5 + ___? 

13.  Say and Show: a + a              5 + a.  Ask: Which is more, a + a or 5 + a? 

14.  Say and Show: I am thinking of a number. Which is more, my number added to itself or five 

plus my number? 

Figure 15. Expression comparison tasks. 

 

Analysis 

 I video recorded and analyzed each interview (see appendix B for a copy of the 

analysis form). The analysis involved aspects of grounded theory methodology. I used the 

existing research on student difficulties with letter-symbolic variables described in the 

literature review to establish initial codes/themes. However, as I anticipated, I modified, 

replaced, and developed further codes during the analysis. I began by examining the 
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values that individual students assigned to the variables, how they interpreted the various 

variable representations, and their solution strategies to determine if they, 

1. Assigned the same or different values to the same variable in a single 

equation/problem, 

2. Assigned the same or different values to different variables in a single 

equation/problem, 

3. Interpreted different representations of variables across tasks with 

mathematically equivalent structures the same or different, including solution 

sets for each variable (I will establish descriptive codes for each of the 

differences if they arise), 

4. Treated two blanks within an equation as representing the same or different 

variable, 

5. Solved equations/problems with equivalent mathematical structures but 

different task types and different representations of the variables the same or 

different (I will establish descriptive codes for each of the differences if they 

arise). 

Second, I used the data analysis spiral, see Figure 16, (Creswell, 2007) as a 

framework for analyzing the data collected. However, the case(s) will now reflect the 

commonalities and differences across students at both the entire sample and grade levels.  
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Figure 16. Data analysis spiral (Creswell, 2007, p. 151). 

 
Once I completed the interviews, I used the data analysis spiral  (Creswell, 2007) 

as a framework for analyzing the data collected. I worked with IRB to establish the data 

management procedures in order to ensure student confidentiality while still being able to 

identify students in case I needed to follow-up with any of the students. The initial 

codings used reflected the types of variable interpretations and solutions I expected to 

find based on the review of the literature. However, as I reviewed the data, as I 

anticipated, further codes and/or sub codes emerged during the reading and memoing 

portion of the analysis. I compared, refined, and recoded the data based on these new 

codes and sub codes, revisiting the data until no new codes emerged. 

Codes. Based on the review of the extent research, I developed codes for three 

categories: variable comparison, solution type, and variable value. For the variable 

comparison category, I coded student responses as either Same or Diff. I coded student 

responses as Same if they demonstrated evidence that the student treated the two 

variables as having the same referent.  Typically, responses coded as Same arose when a 

student stated that the variable quantities were the same and/or by only assigning the 
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same value or referent to both variables. Student responses coded as Diff demonstrated 

evidence that the student treated the two variables as having different referents. Typically, 

responses coded as Diff arose when a student stated that the variable quantities were 

different and/or assigned different values to each. 

For the solution type category, I coded student responses as SOL_Var, 

SOL_SingVal or SOL_None. I coded student responses as SOL_Var if they provided 

multiple numerical values for each representation of the variable. I coded student 

responses as SOL_SingVal if they provided a single numerical value for the 

representation of the variable. Finally, I coded student responses as SOL_None if they 

indicated there was no solution, or no number that the representation of the variable could 

have that would work for the problem. 

For the variable value category, I coded student responses as either VAL_Same or 

VAL_Diff. I coded student responses to indicate if the numerical values given by the 

student were the same for both variables, VAL_Same, and/or if the numerical values 

given by the student were different, VAL_Diff for both variables. Unlike the former two 

categories where I only assigned one code per category, I assigned one or both codes to 

student responses. 

Using the data analysis spiral, I developed codes for the sorting tasks and for the 

comparison tasks, see Figures 17 and 18. I developed these codes by sorting and 

comparing student responses and establishing initial codes. I then recoded the responses 

and edited codes until no further codes or clarifications emerged. 
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Code Description 

WP/EQ Student sorted the tasks into two groups, one with the word problems and 
the other with the equations. 

All Same Student placed all of the tasks into a single group indicating that they were 
all the same. 

VarRep Student sorted the tasks into groups based on the representation of the 
variable (i.e., letters, shapes, words, and blanks). 

SameDiff Student sorted the tasks into groups where the two representations of the 
variable were the same (e.g., y and y) and the two representations of the 
variable were different (e.g., a and b). 

Other Student sorted the tasks into groups not characterized by one of the above 
codes.  

Figure 17. Sorting codes. 

 
Code Description 

Same Two tasks compared mean the same thing (same #s work for both)  

SS/DD Same representation means same number, and/or different representation means 
different number (e.g., 6,6 not for sum of 12) 

Rep# Representation alone determines number (e.g., square big number, triangle small 
number) 

SS/DD L Same letter means same #/Different letter means diff # (does not hold for shapes) 

Figure 18. Comparison codes. 

 
During the describing, classifying, and interpreting phase of the analysis, I used 

the codings from the reading and memo part of the analysis to identify commonalities and 

differences across cases. In the course of this part of the analysis, I worked toward a rich 

description of how the meanings students displayed for representations of variables, (e.g., 

treating them the same and/or differently from other representations of the variable), and 

similarities and/or differences in their solutions. This required multiple passes through the 

data and codings. 
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Finally, based on the results of the prior analysis, I generated a rich in-depth 

description of students‘ meanings for representations of variables in the tasks and their 

solution methods. In the next chapter, I report the findings in detail.  

Reliability. Finally, in order to check the reliability of the codes, two researchers 

viewed the videos and coded the student responses for three randomly chosen student 

interviews for each of interviews one and two (12.5% of all interviews). I compared these 

sample codes against my original codes, resulting in 91.9% agreement. 
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Chapter 4: Analysis and Findings 

 In this chapter, I summarize how grade 4-6 students interpret various 

representations of variables when presented in different representations and different task 

types. I present these results in six sections. I begin by providing an overview of the 

results of the coding of student responses. I then organize and discuss the results in 

relation to each of the four research subquestions. To answer each of the research 

questions, I sorted the data from the general results to highlight the appropriate attributes 

of the tasks (e.g., representation of the variable or task type). Finally, I synthesize these 

results to address the main research question under investigation. 

General Results 

 The following section provides an overview of the initial coding results, using the 

codes described in chapter three, for the tasks from both interviews in three subsections 

corresponding to the three criteria I used to develop the tasks: variable comparison, 

solution type, and variable value categories. I begin by providing a description of these 

tasks.  

Tasks. Initial analysis of the first set of interviews consisted of coding each 

student response for each of the first eleven tasks where students were asked what values 

could be applied for variables in the equations. These eleven tasks consisted of three core 

mathematical tasks written as an equation with the variable represented as a blank, letter, 

or shape, and a word problem with the variable represented as a word(s) (see Figure 19).  

I coded the student responses for these eleven tasks across three categories: variable 

comparison, solution type, and variable values.  
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Each task consisted of two variables of the same representation of the variable 

(i.e., words, shapes, blanks, or letters) that were either the same representations (e.g., y 

and y, or ___ and ___), or different representations (e.g., a and b, or  and ) per task. 

Therefore, it was important to determine if each student interpreted the representation of 

the variable as the same or different values, the type of solution(s) provided (i.e., single 

value, variable values, or no solution) for the equation, and the potential values they 

assigned to the variables. As noted in chapter three, the equation with blanks as the 

representation of the variables was used for the equation with blanks for the common 

unknown addends and different unknown addends core mathematical task since blanks 

are not generally represented differently to distinguish between them. 

In the first interview, the students also engaged in sorting the common unknown 

addends (e.g., y + y = 12), different unknown addends tasks (e.g., a + b = 12), and then 

the no solution tasks (e.g., x + 6 = x). The students then compared tasks for the common 

unknown addends and different unknown addends tasks with the same task type (i.e., 

equation or word problem) with different representations of the variables. These results 

are discussed later in the section on students meaning of variables across different 

representations of variables. 

The confirmatory tasks for the second interview (see Figure 20) were coded using 

the same codes for the initial eleven tasks from the first interview. These tasks were 

designed to determine if students continued to interpret the tasks, and the meanings for 

the representations of variables, similarly for interviews one and two.
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Core Mathematical Equation (E) Word Problem (W) 
Task Blank (b) Letter (l) Shape (s) Word (w) 
Common unknown 
addends, Sum known 
(C) 

___ + ___ = 
12 

(CEb) 

y + y = 12 
(CEl) 

 +  = 12 
(CEs) 

Shakira and Tim have the same number of gummy bears. 

Together they have 12 gummy bears. How many gummy 

bears could Shakira have? How many gummy bears could 

Tim have? (CWw) 

Different unknown 
addends, Sum known 
(D) 

___ + ___ = 
12 

(DEb) 

a + b = 12 
(DEl) 

 +  = 12 
(DEs) 

Together Tom and Anne have 12 feet of ribbon. How long 

could Tom‘s ribbon be? How long could Anne‘s ribbon 

be? (DWw) 

Common unknown 
addend and sum, 
addend known, no 
solution (N) 

___ + 6 = ___ 
(Neb) 

x + 6 = x 

(NEl) 
 + 6 =  

(NEs) 
I start with some number then add 6 and get the same 

number that I started with. What is the number? (NWw) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; E – equation; W – word problem; b – blanks; l - 
letters; s – shapes; w –words;  
Figure 19. Interview one initial eleven tasks.
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Two explicit differences exist between the initial eleven tasks and confirmatory 

tasks. First, all of the sums in the first interview were even. This could result in a false 

positive for the VAL_Same code (i.e., assigning the same value to both variables) if 

students assigned the same value to both addends in the common unknown addends and 

different unknown addends tasks due to their knowledge that only even sums have 

common addends for what they have had described to them as their basic math facts (i.e., 

whole numbers versus rational number solutions). For example, a student may state that a 

sum of 12 could be 6 + 6 but a sum of 7 could not have common addends because the 

basic math facts do not include such a solution. 

  If this were the reason for the VAL_Same responses, then the student would not 

necessarily be determining these values based on their meaning for the representation of 

the variable but instead on the particular task. This seemed like a plausible scenario to 

explore based on the quasi-variable (Fujii & Stephens, 2008) discussion from interview 

one included in the section on students‘ solutions later in this chapter.
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Core Mathematical Equation (E) Word Problem (W) 
Task Blank (b) Letter (l) Shape (s) Word (w) 
Common unknown 
addends, Sum known 
(C) 

___ + ___ = 5 
(CEb)  

 
___ + ___ = 7 

(CEb) 

y + y = 7  
(CEl) 

8 =  +    
(CEs) 

 

Different unknown 
addends, Sum known 
(S) 

___ + ___ = 5 
(DEb) 

 
___ + ___ = 7 

(DEb) 

 12 =  +  
(DEs)  

 
 +  = 7 

(DEs) 

Juan and Alexa each have a piece of string. Together they 

have 16 inches of string. How can Juan‘s string be? How 

long can Alexa‘s string be? (DWw) 

 

I am thinking of two numbers. When I add these two 

numbers together, I get 7. What can my numbers be? 

(DWw) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; E – equation; W – word problem; b – blanks; l - 
letters; s – shapes; w –words;  
Figure 20. Interview two confirmatory tasks.
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The second change for tasks in the second interview included the use of equations 

of the form sum = addend + addend. This was to attempt to avoid the common use of the 

equal sign as an operation (Booth, 1984)  and to put the equations in a form that is 

different from the form that students regularly see their ―basic math facts‖ in an effort to 

distance these from their rote application of these facts. Figure 20 shows the eight 

confirmatory tasks categorized by core mathematical task, task type, and representation 

of variable.  

Tasks 7 (  +  –  = ) and task 15 (x + y – y = x) from the second interview 

both model a generalization, or algebrafication, of an arithmetic property: adding a value 

to a starting value and then subtracting the same value, resulting in the original starting 

value. Task 7 uses shapes and task 15 uses letters as representations of variables. In each 

case, I asked students if the equation would be true always, sometimes true, or never true. 

I then asked the students follow up questions to determine why they answered as they did 

and to provide examples to support their responses. I then coded the student responses 

using the same three categories used for the other sets of tasks: variable comparison, 

solution type, and variable values. I discuss details of the results for these tasks in the 

section on students‘ meaning for variables across representations of variables and task 

type. 

 The final set of tasks for the second interview consisted of the core mathematical 

task of deciding which of two expressions (the sum of a number and itself, and the sum of 

the number and 5) are greater and for what values. This core mathematical task was 

written with shapes (task 10:  +  and 5 + ), blanks (task 11: ___ + ___ and ___ + 

5), letters (task 13: a + a and a + 5), and words (task 14: I am thinking of a number. 
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Which is more, my number added to itself or five plus my number?).  These tasks were 

coded for the three categories described for the eleven tasks from interview one and the 

confirmatory tasks from interview two: variable comparison, solution type, and variable 

value. I discuss details of the results for these tasks in the section on students‘ meaning 

for variables across representations of variables and task type. 

Variable comparison. Each student‘s response was coded as Same or Diff for 

the variable comparison category, see Table 4. Student responses coded as Same 

demonstrated evidence that the student treated the two variables as having the same 

referent.  Typically, responses coded as Same arose when a student stated that the 

variable quantities were the same and/or by only assigning the same value to both 

variables. Student responses coded as Diff demonstrated evidence that the student treated 

the two variables as having different referents. Typically, responses coded as Diff arose 

when a student stated that the variable quantities were different and/or assigned different 

values to each. This category provided evidence for how, or if, students differentiated 

between various representations of variables, the same or different, across various task 

types and tasks with common and different mathematical structures.  

For students in algebra classes, and beyond, the convention that the same variable 

in the same equation must take on the same value is a crucial element of learning algebra. 

However, as noted in chapters one and two, we know little of how elementary grade 

students interpret variables, either the same or different, within the same problem. This 

category provides insights into the meanings students in grades four through six have for 

these situations.  
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Table 4 shows the total number of codes, and percentages, for each task for the 

variable comparison category for each grade and for the total sample. 

Table 4  

Interview One Variable Comparison Results 

 4
th

 grade 5
th

 grade 6
th

 grade Total 

 Same Diff Same Diff Same Diff Same Diff 

1 
CWw 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
 (100%) 

0 
(0%) 

2 
CEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

3 
DEl 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

4 
NEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

5 
CEb/DEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

6 
DEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

7 
NEs 

1 
(11.1%) 

8 
(88.9%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

1 
(4.2%) 

23  
(95.8%) 

8 
NWw 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

9 
CEl 

2 
(22.2%) 

7 
(77.8%) 

0 
(0%) 

9 
(100%) 

1 
(16.7% 

5 
(83.3%) 

3 
(12.5%) 

21  
(87.5%) 

10 
NEl 

1 
(11.1%) 

8 
(88.9%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

1 
(4.2%) 

23  
(95.8%) 

11 
DWw 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; 
E – equation; W – word problem; b – blanks; l - letters; s – shapes; w –words;  
 

Student responses were consistent for problems 1(CWw), 2(CEs), 3(DEl), 4(NEb), 

5(CEb/DEb), 6(Des), 8(NWw), and 11(NEl) treating each pair of variables as different 

from each other. The only task where students consistently treated the two variables as 

the same was for the no solution word problem (i.e., I start with some number then add 6 

and get the same number that I started with).  
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Table 5 shows the total number of codes, and percentages, for each confirmatory 

task for the variable comparison category for each grade and the entire sample population. 

For the variable comparison category students consistently treated the two 

variables as different, Diff, regardless of the representation of the variable or task type. In 

addition, only tasks 1(SWw), 4(DEs), 8(DWw), and 12(DEs) would be coded as Diff if 

applying normative algebraic conventions of use. Tasks 3(CEb/DEb) and 9(CEb/DEb) 

were excluded since the blank is problematic, as described before, and tasks 2(CEs) and 

5(CEl) would be coded as Same. Further, of the six student responses coded as Same, 

treating the two variables as the same for the confirmatory tasks in the second interview, 

four occurred at the fourth grade level and two at the fifth grade level. Interestingly, task 

5, the common unknown addend task presented as an equation with a letter as the 

representation of the variable (i.e., y + y =7) would be coded as Same if the conventional 

uses of algebra were employed. The only two responses coded as Same, treating the two 

variables as the same, were at the fourth grade level.  

Student responses were consistent for the variable comparison codings from 

interview one to interview two. This was the case when comparing the codes by variable 

representation and core mathematical task as well as by task type and core mathematical 

task. These results confirmed the results for the variable comparison category from 

interview one to interview two. I included the results for each interview and a table 

comparing percentage point change from interview one to interview two in Appendix C.  
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Table 5  

Interview Two Variable Comparison Results 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  Same Diff Same Diff Same Diff Same Diff 

1 
DWw 

0 
(0%) 

9 
(100%) 

1 
(11.1%) 

8 
(88.9%) 

0 
(0%) 

6 
(100%) 

1 
(4.2%) 

23 
(95.8%) 

2 
CEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

3 
CEb/SEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

4 
DEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

5 
CEl 

3 
(33.3%) 

6 
(66.7%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

3 
(12.5%) 

21 
(87.5%) 

8 
DWw 

0 
(11.1%) 

9 
(88.9%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(4.2%) 

24 
(95.8%) 

9 
CEb/DEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

12 
DEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; 
E – equation; W – word problem; b – blanks; l - letters; s – shapes; w –words;  
 

Solution type. I also coded student responses to reflect the types of solution sets 

they gave for the variables, see Table 6. I coded student responses as SOL_Var if they 

provided multiple numerical values for each representation of the variable, SOL_SingVal 

if they provided a single numerical value for the representation of the variable, and 

SOL_None if they indicated that there was no solution or no number that was an 

appropriate solution to the task. These codes provided an overview of the types of 

solution sets (multiple values, single values, or no solutions) the students used for various 

representations of variables across task types and problems with common and different 

mathematical structures.  
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Table 6 

Solution Type Category Results 

 4
th

 grade 5
th

 grade 6
th

 grade Total 

 SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

1 
CWw 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

2 
CEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

0 
(0%) 

3 
DEl 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

0 
(0%) 

4 
NEb 

7 
(77.8%) 

2 
(22.2%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22   
(91.7%) 

2 
(8.3%) 

0 
(0%) 

5 
CEb/DEb 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

0 
(0%) 

6 
DEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24  
(100%) 

0 
(0%) 

0 
(0%) 

7 
NEs 

7 
(77.8%) 

1 
(11.1%) 

1 
(11.1%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

21  
(87.5%) 

1 
(4.2%) 

1 
(4.2%) 

8 
NWw 

0 
(0%) 

2 
(22.2%) 

7 
(77.8%) 

0 
(0%) 

0 
(0%) 

8 
(88.9%) 

0 
(0%) 

0 
(0%) 

4 
(66.7%) 

0 
(0%) 

2 
(8.3%) 

19  
(79.2%) 

9 
CEl 

7 
(77.8%) 

2 
(22.2%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

5 
(83.3%) 

1 
(16.7%) 

0 
(0%) 

21  
(87.5%) 

3 
(12.5%) 

0 
(0%) 

10 
NEl 

7 
(77.8%) 

1 
(11.1%) 

1 
(11.1%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22   
(91.7%) 

1 
(4.2%) 

1 
(4.2%) 

11 
DWw 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22   
(91.7%) 

2 
(8.3%) 

0 
(0%) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; E – equation; W – word problem; b – blanks; l - 
letters; s – shapes; w –words;  
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For example, Sally, who treated the two variables as the same, Same, was also 

coded as SOL_SingVal since she stated that only six and six, a single value for each 

variable, were the only values that made the equation true. Jill, whose response I coded as 

Diff, I also coded as SOL_Var since she provided multiple pairs of values that would 

work for the variables, (i.e., 5 and 7, 6 and 6, 9 and 3, and 2 and 10). 

These codes do not address the types of numbers (e.g., whole, integer, rational) 

that students stated the variables could represent or the completeness of their solutions. 

For instance, Jill, above coded as SOL_Var, did not give a complete solution set for the 

whole numbers to which she was referring. I further discuss the types of numbers that 

students stated for the various representations of the variables (e.g., whole numbers, 

integers, and rational) in the section on quasi-variables.  

All students in the study gave responses resulting in consistent codings for 

problems 1(CWw), 2(CEs), 3(DEl), 5(CEb/DEb), and 6(DEs). The majority of the 

differences in the remaining problems occurred at the fourth grade (problems 4(NEb), 

7(NEs), 8(NWw), 9(CEl), 10(NEl), and 11(DWw)) as opposed to fifth grade (tasks 

8(NWw), and 11(DWw)) and sixth grade (problems 8(NWw), and 9(CEl)). Of the six 

problems where differences in coding arose, four occurred for the no solution tasks 

(problems 4(NEb), 7(NEs), 8(NWw), and 10(NEl)), which appear to have been more 

challenging for the fourth graders than the fifth or sixth graders. However, the common 

coding of students‘ responses did not demonstrate a meaning that corresponded with the 

conventional algebraic usage of variables. For the three equation formats of the problem, 

students primarily provided multiple solutions, treating the two variables as different, 

even though they represented them with the same symbol.  
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 I primarily coded the fourth grade students who I coded differently from the rest 

of the students for the no solution problems as SOL_SingVal (n = 6) compared to those 

coded as SOL_None (n = 2). The one student whose solution I coded as SOL_None also 

demonstrated evidence of treating the variables as the same values, an algebraically 

correct interpretation and solution of the problems. However, this student only applied 

this meaning to the equations with the variables represented with shapes (e.g.,  +  = 

12) and letters (e.g., y + y  = 12), not the equation where the representation of the 

variables were blanks (e.g., ___ + ___ = 12). For this latter equation, this same student 

provided multiple pairs of values that would work treating the two blanks as different.  

 Of the six student responses coded as SOL_SingVal for the no solution task, four 

were from, Brett, who interpreted each of the four formats of the problem the missing 

addend as the same as the given addend, six, resulting in a sum of twelve. Therefore, this 

student treated the two variables as different but due to his assumption about the problem 

believed that there was only a single solution. The other two student codes were single 

instances for a single problem, the equation with blanks as the representation of the 

variable and the other the word problem.  

 The other student whose solution was coded as SOL_SingVal for the equation 

with blanks as the representation of the variable assumed that the sum for this problem 

had to be twelve, resulting in the missing addend being six. When asked her if there were 

other numbers that worked she indicated that there would not be because then you would 

not get twelve as an answer. When I asked her what would happen if the answer were not 

twelve she stated, ―then you wouldn‘t really know what you were doing.‖ It is unclear 

from the interview if this student believed that the addends had to be the same or if the 
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sum had to be twelve. The other students whose solution I coded as SOL_SingVal for the 

word problem switched the order of the addends giving an answer of 0 + 6 = 6.  

Table 7 shows the total number of codes, and percentages, for each confirmatory 

task for the solution type category for each grade and the entire sample population. I 

consistently coded students‘ responses for the solution type category as SOL_Var, 

regardless of the representation of the variable or task type. Of 192 total codes, SOL_Var 

was coded 186 times, SOL_SingVal was coded four times, and SOL_None twice. The 

four SOL_SingVal codes arose in tasks 1 (DWw), 2 (CEs), and 5 (CEl). The two 

instances of the SOL_None coding only occurred in task 5 (CEl). Further, of the non-

SOL_Var coding that occurred, all but one occurred at fourth grade. The other single 

instance occurred with a fifth grade student. 

 While the majority of responses were coded as SOL_Var, this was only the 

appropriate coding for tasks 1(DWw), 4(SEs), 8(DWw), and 12(DEs) when applying 

algebraic conventions to the tasks. SOL_SingVal was the appropriate coding for tasks 

2(CEs) and 5(CEl), each a common unknown addend task, when applying algebraic 

conventions to the tasks. None of the tasks would have ―no solutions‖ when applying the 

usual algebraic conventions to the tasks. I excluded tasks 3 and 9 due to the difficulties of 

distinguishing between blanks discussed before. I elaborate on this idea further in the 

next section on solutions. 
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Table 7 

Solution Type Results 

 

4
th

 grade 5
th

 grade 6
th

 grade Total 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

1 
SWw 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22 
(91.7%) 

2 
(8.3%) 

0 
(0%) 

2 
CEs 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

23 
(95.8%) 

1 
(4.2%) 

0 
(0%) 

3 
CEb/SEb 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

4 
SEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

5 
CEl 

6 
(66.7%) 

1 
(11.1%) 

2 
(22.2%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

21 
(87.5%) 

1 
(4.2%) 

2 
(8.3%) 

8 
SWw 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

9 
DEb/SEb 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

12 
SEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; E – equation; W – word problem; b – blanks; l - 
letters; s – shapes; w –words;  
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 Of the four SOL_SingVal codings, only two were appropriate when applying 

algebraic conventions to the tasks and both occurred with fourth grade students. However, 

the two instances occurred with two different tasks, 2(CEs), 8 =  + , and 5(CEl), y + 

y =7, and by two different students, Brett and George respectively. Therefore, neither 

student consistently applied this meaning across tasks or representations of variables.  

 Student responses were consistent for the solution type codings from interview 

one to interview two. This was the case when comparing the codes by variable 

representation and core mathematical task as well as by task type and core mathematical 

task. Since these results confirm the results for the variable comparison category from 

interview one to interview two, I provide no further discussion here. I included the results 

for each interview and a table comparing percentage point change from interview one to 

interview two in appendix C. 

Variable values. Last, I coded student responses to indicate if the numerical 

values given by the student were the same for both variables, VAL_Same, and/or if the 

numerical values given by the student were different, VAL_Diff for both variables, see 

Table 8. For the first student response discussed above, her response was coded as VAL-

_Same since the only solution she provided, six and six, was the same value for each of 

the two variables. The latter student response was coded as both VAL_Same, since she 

also provided the solution six and six, and VAL_Diff since she also provided the 

solutions five and seven, nine and three, and two and ten which assigned different values 

to each of the two variables. 
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Table 8 

Variable Value Category Results 

 4
th

 grade 5
th

 grade 6grade Total 

 
VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

1 
CWw 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9  
(100%) 

0 
(0%) 

6  
(100%) 

0  
(0%) 

24  
(100%) 

2 
CEs 

9 
(100%) 

9 
(100%) 

9  
(100%) 

9  
(100%) 

6  
(100%) 

6  
(100%) 

24  
(100%) 

24  
(100%) 

3 
DEl 

9 
(100%) 

9 
(100%) 

9  
(100%) 

9  
(100%) 

6  
(100%) 

6  
(100%) 

24  
(100%) 

24  
(100%) 

4 
NEb 

9 
(100%) 

0 
(0%) 

9  
(100%) 

0 
(0%) 

6  
(100%) 

0 
(0%) 

24  
(100%) 

0  
(0%) 

5 
CEb/ 
DEb 

9 
(100%) 

9 
(100%) 

9  
(100%) 

9  
(100%) 

6  
(100%) 

6  
(100%) 24  

(100%) 
24  

(100%) 
6 

DEs 
9 

(100%) 
8 

(88.9%) 
9  

(100%) 
9  

(100%) 
6  

(100%) 
5  

(83.3%) 
24  

(100%) 
22   

(91.7%) 
7 

NEs 
8 

(88.9%) 
0 

(0%) 
9  

(100%) 
0 

(0%) 
6  

(100%) 
0  

(0%) 
23  

(95.8%) 
0  

(0%) 
8 

NWw 
0 

(0%) 
1 

(11.1%) 
0 

(0%) 
0 

(0%) 
0  

(0%) 
0  

(0%) 
0  

(0%) 
1  

(4.2%) 
9 

CEl 
7 

(77.8%) 
9 

(100%) 
9  

(100%) 
9  

(100%) 
5  

(83.3%) 
6  

(100%) 
21  

(87.5%) 
24  

(100%) 
10 

NEl 
8 

(88.9%) 
0 

(0%) 
9  

(100%) 
0 

(0%) 
6  

(100%) 
0  

(0%) 
23  

(95.8%) 
0  

(0%) 
11 

DWw 
8 

(88.8%) 
9 

(100%) 
8 

(88.9%) 
9  

(100%) 
6  

(100%) 
6  

(100%) 
22   

(91.7%) 
24  

(100%) 
C – common unknown addends task; D – different unknown addends task; N – No solution task; 
E – equation; W – word problem; b – blanks; l - letters; s – shapes; w –words;  

 
Unlike the previous categories, which required each student response to have a 

single code for the category, student responses for this category could be either of the two 

codes or both. This code provides evidence of, specifically for tasks coded as Diff for the 

variable comparison category, the degree to which students in grades four through six 

recognize the convention that the same variable in the same problem must be the same 

value, and the common algebraic misconception that different variables cannot be the 

same value. As noted in chapter two, this misconception has been well documented for 
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students in algebra and beyond but we do not know if this same misconception arises 

with students before taking an algebra course. I discuss this in detail below.  

I coded two students, Sally and Jill, as Same, SOL_SingVal, and VAL_Same. and 

Diff, SOL_Var, VAL_Same, and VAL-Different respectively. While it may appear the 

codings for Diff/Same and VAL_Diff/VAL_Same are redundant, these codes provide the 

data necessary to identify students who recognize that the two variables are different and 

apply the common misconception that the values must also be different versus being able 

to be different and the same. (e.g., the solution to x  + y = 12 is only 6 and 6). It is 

interesting to note that this misconception did not occur for any of the students in the 

course of solving the first eleven tasks. However, it did arise during the comparison tasks 

when the students compared pairs of equations from the first eleven tasks, comparing two 

equations with the common mathematical structures but different representations of the 

variables, or equations with different mathematical structures but the same 

representations of the variables. I discuss this further in the section describing the 

findings for the comparison tasks.   

The fifth grade students gave consistent responses for every problem except 

problem 11 (word problem for the core mathematical task y + y = 12). In this problem, I 

coded one student‘s response differently from the rest of the sixth graders. This student 

stated that the two people had to have the same length of ribbon, even though the 

problem did not indicate this.  

The sixth grade students provided consistent responses for every problem except 

for problem 9(CEl) where I coded one student‘s response differently. This student stated 

that only 6 and 6 would work for the equation y + y =12. However, this same student did 



 

 97 

not apply this same idea to either the equation with same shape as the representation of 

the variables or for the equation with blanks as the representation of the variables. They 

also did not apply this when comparing the equations y + y = 12 and a  + b  = 12 where 

they sated that these two equations were the same and that the same numbers worked for 

both equations.  

Table 9 shows the total number of codes, and percentages, for each confirmatory 

task for the solution type category for each grade and the entire sample population. In 

contrast to the results for the variable comparison and solution type category codings, the 

coding of the variable value category for the interview two confirmatory tasks were 

inconsistent with those from interview one. In interview one, with the exception of the no 

solution tasks and the word problem for the common unknown addend problem, I 

consistently coded student responses as both VAL_Diff and VAL_Same for each task. 

This occurred in the second interview for tasks 1 (DWw), 2 (CEs), and 4 (DEs).  

However, as noted in the opening section describing interview two, one change 

that was made from the first eleven tasks in interview one and the confirmatory tasks in 

the second interview was the inclusion of tasks with odd sums to test for false positives in 

the data from the first interview. The confirmatory tasks that had an even sum were tasks 

1 (i.e., Juan and Alexa each have a piece of string. Together they have 16 inches of 

string.), 2 (i.e., 8 =  + ), and 4 (i.e., 12 =  + ), the same tasks that had a common 

coding pattern with the tasks from interview one. The remaining confirmatory tasks, 

where there were a high percentage of responses coded as VAL_Diff and a varying 

percentage of student responses coded as VAL_Same ranging from 25% to 62.5%, were 

tasks with odd sums.  
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Table 9 

Variable Value Codings for Interview Two Confirmatory Tasks 

 4
th

 grade 5
th

 grade 6
th

 grade Total 

 VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

1 
DWw 

8 
(88.9%) 

9 
(100%) 

8 
(88.9%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

22 
(91.7%) 

24 
(100%) 

2 
CEs 

8 
(88.9%) 

9 
(100%) 

9 
(100%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

23 
(95.8%) 

24 
(100%) 

3 
CEb/DEb 

9 
(100%) 

3 
(33.3%) 

9 
(100%) 

1 
(11.1%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

9 
(37.5%) 

4 
SEs 

9 
(100%) 

7 
(77.8%) 

9 
(100%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

24 
(100%) 

22 
(91.7%) 

5 
CEl 

6 
(66.6%) 

5 
(55.6%) 

9 
(100%) 

5 
(55.5%) 

6 
(100%) 

5 
(83.3%) 

21 
(87.5%) 

15 
(62.5%) 

8 
DWw 

9 
(100%) 

1 
(11.1%) 

9 
(100%) 

2 
(22.2%) 

6 
(100%) 

3 
(37.5%) 

24 
(100%) 

6 
(25%) 

9 
CEb/DEb 

9 
(100%) 

2 
(22.2%) 

9 
(100%) 

2 
(22.2%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

9 
(37.5%) 

12 
DEs 

9 
(100%) 

3 
(33.3%) 

9 
(100%) 

4 
(44.4%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

12 
(50%) 

C – common unknown addends task; D – different unknown addends task; N – No solution task; 
E – equation; W – word problem; b – blanks; l - letters; s – shapes; w –words;  
 

Summary. From the initial coding of student responses, I can make two 

observations. First, student responses were very consistent across the three categories for 

the eleven tasks from the first interview. Even where there were differences in codes the 

number of differences were small. Second, the change from even sums in the first 

interview to the inclusion of odd sums in the second interview appears to have made a 

difference in the number and consistency of student coded responses. I elaborate on each 

of these ideas in the following chapter.  
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Students solutions across various representations of variables, task types and 

core mathematical tasks (research question a) 

 
 In the following section, I compare each student‘s response codes to the 

algebraically normative coding for each task in interview one and two (see Figure 18). A 

normative algebraic response is a response that treats the variables, in terms of the three 

coding categories, as they would if conventional algebraic meanings and uses were 

employed. This provides an overview of how students solved the tasks and how closely 

their solution methods and meanings aligned with or paralleled an algebraic normative 

response to the tasks. As noted in Chapter 1, the purpose of this study is not to determine 

if students, prior to instruction, solve problems using an algebraically normative solution 

process itself, a topic lacking a research base. Instead, the purpose is to begin research on 

the prior knowledge related to meaning of variables with which elementary students enter 

algebra courses.  

 

Variable 

comparison Solution Type Variable value 

Common 
unknown 
addends 

Same – treated the 
two variables as 
the same. 

SOL_SingVal – 
provided a single value 
solution for each 
variable. 

VAL_Same – provided 
the same value for both 
variables. 

Different 
unknown 
addends 

Diff – treated the 
two variables as 
different. 

SOL_Var – provided 
multiple value solutions 
for each variable. 

VAL_Same 

VAL_Diff provided the 
same and different value 
for both variables. 

No Solution Same – treated the 
two variables as 
the same. 

SOL_None  - indicated 
that there was no 
solution. 

VAL_Same* - provided 
the same value for both 
variables. 

*While these tasks have no solution, this is due to the representation of the variables 
having the same value.  

 
Figure 21: Normative algebraic responses for each core mathematical task. 
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Results by task. Table 10 shows the number, and percent, of student codes for 

each of the eleven tasks from interview one by grade that paralleled a normative algebraic 

interpretation of the task across the three categories: variable comparison, solution type, 

and variable value.  

Since differentiating between blanks is problematic and there is no existing 

research on students‘ meanings for these representations of variables, I included two 

entries for task 5 (___ + ___ = 12), task 5a(CEb) and task 5b(DEb). 5a(CEb) reports the 

number and percent of students whose solutions paralleled a normative algebraic 

interpretation of the problem where the student treated the two blanks as the same 

variable (i.e., common unknown addends). 5b(DEb) reports the number and percent of 

students whose solutions paralleled a normative algebraic interpretation of the problem 

where the student treated the two blanks as different variable (i.e., different unknown 

addends). 

The percentages of students who paralleled a normative algebraic interpretation of 

the tasks varied from 0% in tasks 2(CEs), 4(NEb), and 5a(CEb) to 100% for tasks 

1(CWw), 3(DEl), and 5b(DEb). Further, students‘ solutions did not parallel a normative 

algebraic solution for tasks 7 (4.2%), 9 (12.5%) and 10 (4.2%).  Students‘ solutions also 

paralleled a normative algebraic solution for tasks 6 (95.8%), 8 (79.2%), and 11 (91.7%).  

Table 11 shows the number, and percent, of student codes for each of the eight 

confirmatory tasks from interview two by grade that paralleled a normative algebraic 

interpretation of the task across the three categories: variable comparison, solution type, 

and variable value, see figure 21. 
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As in the tasks with blanks from interview one, I included two entries for tasks 3 

(___ + ___ = 5), and 9 (___ + ___ =7). Task 3a and 9a display the number and percent of 

students whose solutions paralleled a normative algebraic interpretation of the problem 

where they treated the two blanks as the same variable (i.e., common unknown addends). 

Task 3b and 9b display the number and percent of students whose solutions paralleled a 

normative algebraic interpretation of the problem where they treated the two blanks as 

different variable (i.e., different unknown addends). 

Fewer tasks in interview two reflected student responses paralleling a normative 

algebraic solution than in interview one, see Tables 10 and 11. Task 1 had a large number 

of responses, 91.7%, paralleling a normative algebraic response. The next highest percent 

of these responses was task 12 with 50% of student responses paralleling a normative 

algebraic solution. The remaining tasks varied from 0% to 37.5% of student responses 

paralleling a normative algebraic solution. However, the purpose of these tasks was only 

to determine if student responses from interview one to interview two had changed. 

Therefore, the number and variety of tasks in these confirmatory tasks are not as 

extensive as those from interview one. Therefore, any comparison of the results must 

consider this.
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Table 10 

Student Normative Algebraic Responses From Interview One 

 1 2 3 4 5a 5b 6 7 8 9 10 11 

 CWw CEs DEl NEb CEb DEb SEs NEs NWw CEl NEl DWw 
4th 

grade 
9 0 9 0 0 9 8 1 7 2 1 8 

100.0% 0.0% 100.0% 0.0% 0.0% 100.0% 88.9% 11.1% 77.8% 22.2% 11.1% 88.9% 
5th 

grade 
9 0 9 0 0 9 9 0 8 0 0 8 

100.0% 0.0% 100.0% 0.0% 0.0% 100.0% 100.0% 0.0% 88.9% 0.0% 0.0% 88.9% 
6th 

grade 
6 0 6 0 0 6 6 0 4 1 0 6 

100.0% 0.0% 100.0% 0.0% 0.0% 100.0% 100.0% 0.0% 66.7% 16.7% 0.0% 100.0% 

Total 24 0 24 0 0 24 23 1 19 3 1 22 
100.0% 0.0% 100.0% 0.0% 0.0% 100.0% 95.8% 4.2% 79.2% 12.5% 4.2% 91.7% 

C – common unknown addends task; D – different unknown addends task; N – No solution task; E – equation; W – word problem; b – blanks; l - 
letters; s – shapes; w –words;  
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Table 11 

Student Normative Algebraic Responses From Interview Two 

 1 2 3a 3b 4 5 8 9a 9b 12 

 DWw CEs CEb DEb DEs CEl DWw CEb DEb DEs 

4th grade 8 0 0 3 7 1 1 0 2 3 
88.9% 0.0% 0.0% 33.3% 77.8% 11.1% 11.1% 0.0% 22.2% 33.3% 

5th grade 8 0 0 1 9 0 2 0 2 4 
88.9% 0.0% 0.0% 11.1% 100.0% 0.0% 22.2% 0.0% 22.2% 44.4% 

6th grade 6 0 0 5 6 0 3 0 5 5 
100.0% 0.0% 0.0% 83.3% 100.0% 0.0% 50.0% 0.0% 83.3% 83.3% 

Total 22 0 0 9 22 1 6 0 9 12 
91.7% 0.0% 0.0% 37.5% 91.7% 4.2% 25.0% 0.0% 37.5% 50.0% 

C – common unknown addends task; D – different unknown addends task; N – No solution task; 
E – equation; W – word problem; b – blanks; l - letters; s – shapes; w –words;  
 

The differences between the two interviews may have arisen from the inclusion of 

odd sums in interview two. For instance, the examples cited in the general results for Paul, 

Tricia, and Mark for the task y + y = 7 demonstrated the confusion that arose from the 

inclusion of the odd sums. Paul indicated that the same value could not be assigned to 

each y as he only drew from whole numbers. Mary, on the other hand, provided the 

solution 3½ and 3½ drawing on, at least positive, rational values. Greg appears to draw a 

distinction between the types of values he could use to answer the task. When I asked 

him if the y‘s could be the same, he indicated that they could be if you used fractions. He 

was unsure about when fractional responses would be appropriate. He also stated that if 

you used negatives then the other y could be greater than the sum, but again he was 

unsure about when this would be appropriate.  

Results across representations of variables. Table 12 displays the data from 

interview one by the representation of the variable used in the task then by the core 

mathematical task. From this table a similar pattern emerges. Students, in the sample as a 

whole, were inconsistent in providing solution that paralleled a normative algebraic 
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solution. None of the students‘ solutions paralleled a normative algebraic solution when 

the representation of the variable was a blank. This appears to highlight the difficulty 

with interpreting blanks, which are indistinguishable from each other.  

Table 12 
 
Interview One Normative Algebraic Responses by Representation of Variable and Core 

Mathematical Task 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

b 

C 0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

D 0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

N 0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

l 

C 2 
(22.2%) 

0 
(0.0%) 

1 
(16.7%) 

3 
(12.5%) 

D 9 
(100.0%) 

9 
(100.0%) 

6 
(100.0%) 

24 
(100.0%) 

N 1 
(11.1%) 

0 
(0.0%) 

0 
(0.0%) 

1 
(4.2%) 

s 

C 0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

D 8 
(88.9%) 

9 
(100.0%) 

6 
(100.0%) 

23 
(95.8%) 

N 1 
(11.1%) 

0 
(0.0%) 

0 
(0.0%) 

1 
(4.2%) 

w 

C 9 
(100.0%) 

9 
(100.0%) 

6 
(100.0%) 

24 
(100.0%) 

D 8 
(88.9%) 

8 
(88.9%) 

6 
(100.0%) 

22 
(91.7%) 

N 7 
(77.8%) 

8 
(88.9%) 

4 
(66.7%) 

19 
(79.2%) 

b – blanks; l letters; s – shapes; w –words; C – common unknown addends task; D – different 
unknown addends task; N – No solution task 
 
 As shown in the letter section of Table 12, when the representation of the variable 

was a letter all students‘ solutions paralleled a normative algebraic solution for the 

different unknown addends tasks (e.g., a + b =12). As shown in the shapes section of 
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Table 4.9, when the representation of the variable was shapes, all but one student‘s 

response paralleled a normative algebraic solution (95.8%) for the different unknown 

addend tasks (e.g.,  +  = 12). However, when the representation of the variable was 

words in a word problem, see word section of Table 12, the percentage of student 

responses paralleling a normative algebraic solution for the common unknown addend, 

different unknown addend, and no solution tasks were 100%, 91.7%, and 79.2% 

respectively. Students appeared to draw on the referent and descriptive nature of the word 

problems, which were not in the equations, to generate meanings that were algebraically 

implicit in the equations.  

Table 13 displays these results by the representation of the variable used in the 

task by the core mathematical task. From this table a similar pattern emerges. As in the 

previous table, fewer student responses in the sample paralleled a normative algebraic 

solution. As demonstrated in the shape section of Table 13, shapes used as the 

representation of the variable for different unknown addends tasks had the most student 

responses paralleling a normative algebraic solution with 70.8%. The next most common 

task paralleling a normative algebraic solution were word problems with different 

unknown addends and words as the representation of the variable with 58.3% of student 

responses paralleling a normative algebraic solution. 
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Table 13 

Interview Two Confirmatory Task Normative Algebraic Responses by Representation of 

Variable and Core Mathematical Task 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

b 
C 0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 

D 5 
(27.8%) 

3 
(16.7%) 

10 
(83.3%) 

18 
(37.5%) 

l C 1 
(11.1%) 

0 
(0.0%) 

0 
(0.0%) 

1 
(4.2%) 

s 
C 0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 

D 10 
(55.6%) 

13 
(72.2%) 

11 
(91.7%) 

34 
(70.8%) 

w D 9 
(50.0%) 

10 
(55.6%) 

9 
(75%) 

28 
(58.3%) 

b – blanks; l letters; s – shapes; w –words; C – common unknown addends task; D – different 
unknown addends task; N – No solution task 
 

Results by task type. Table 14 displays the number and percent of students 

whose responses paralleled a normative algebraic solution by task type (Equation, or 

Word problem), and then by core mathematical task. When I presented the tasks as an 

equation, (see the equation section of Table 14) all but one student response (71 of 72) 

paralleled a normative algebraic solution for the different unknown addend tasks (98.6%). 

In contrast, the equations for the core mathematical tasks common unknown addends, and 

no solution tasks did not parallel a normative algebraic solution with 4.2% and 2.8% 

respectively. However, when the representation of the variable involved words (e.g., I am 

thinking of two numbers. When I add these two numbers together, I get 7), in a word 

problem, the percentage of student responses paralleling a normative algebraic solution 
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for the common unknown addend, different unknown addend, and no solution tasks were 

100%, 91.7%, and 79.2% respectively.  

Table 14 

Interview One Normative Algebraic Responses by Task Type and Core Mathematical 

Tasks 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

E 

C 2 
(7.4%) 

0 
(0.0%) 

1 
(5.6%) 

3 
(4.2%) 

D 26 
(96.3%) 

27 
(100.0%) 

18 
(100.0%) 

71 
(98.6%) 

N 2 
(7.4%) 

0 
(0.0%) 

0 
(0.0%) 

2 
(2.8%) 

W 

C 9 
(100.0% 

9 
(100.0% 

6 
(100.0% 

24 
(100.0%) 

D 8 
(88.9%) 

8 
(88.9%) 

6 
(100.0%) 

22 
(91.7%) 

N 7 
(77.8%) 

8 
(88.9%) 

4 
(66.7%) 

19 
(79.2%) 

E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

Table 15 displays these results by the task type used in the task then by the core 

mathematical task. From this table a similar pattern emerges. As in the previous tables, 

fewer student responses in the sample as a whole paralleled a normative algebraic 

solution. Word problems for different unknown addends tasks (e.g., Together Tom and 

Anne have 12 feet of ribbon) had the most student responses paralleling a normative 

algebraic solution with 58.3%. The tasks with the next highest percent of responses 

paralleling a normative algebraic solution were equations with different unknown 

addends with 54.2% of student responses paralleling a normative algebraic solution. This 

latter result appears to be more of a result of the students consistently treating the two 
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variables as different regardless of whether the two variables were the same or different 

which parallels the normative algebraic solution for different unknown addend tasks.  

Table 15 

Interview Two Confirmatory Task Normative Algebraic Responses by Task Type and 

Core Mathematical Task 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

E 
C 1 

(2.8%) 
0 

(0.0%) 
0 

(0.0%) 
1 

(1.0%) 

D 15 
(41.7%) 

16 
(44.4%) 

21 
(87.5%) 

52 
(54.2) 

W D 9 
(50.0%) 

10 
(55.6%) 

9 
(75%) 

28 
(58.3%) 

E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 
 Quasi-variables. Every student in the study incorporated the idea of limiting 

boundary values to the sums in each of the first eleven tasks reported above. Students 

indicated that missing addends could not be greater than the given sum because adding 

resulted in the number you are adding increasing in magnitude. This was exemplified in 

the following exchange with Kate, a sixth grader, where she was asked if there were any 

numbers that the first square could not be in the equation  +  = 12. 

M: Are there any numbers that this first square cannot be? 
K:  13 and up 
M: Why couldn‘t it be thirteen and up? 
K: Because you can‘t add anything to thirteen or above to get twelve. 
 
During the first interview, the focus of the tasks and the follow-up questions did 

not lend themselves to determining if the students would assign negative values to the 

variables. Initially I assumed that if a student gave a response such as the one supplied by 
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Kate above, then I could infer that they did not believe they could use negative values. 

However, I called this assumption into question during the following two exchanges.  

George, a fourth grader, supplied solutions for the equation a + b =12. When I 

asked him about numbers that would not work, he used the sum as a boundary value but 

then also brought up the possibility of using negative numbers. 

M: So are there any numbers the a could not be, that wouldn‘t work? 
G: Thirteen or over. 
M: Okay, so kind of like the last one? 
G: [nods his head affirmatively] unless you had negative. 
M: If I had a negative? So, tell me about that. What did you mean by 
that? 
G: Because if it had, well, if you were doing, well, negative one plus. 
M: Would that work? 
G: [nods his head affirmatively] 
M: So it could be thirteen? 
G: yes, if you were doing negatives. 
M: what about fourteen? 
G: mhm because then you could do negative two. 
M: What about one hundred? 
G: [nods his head affirmatively] 
M: One thousand? 
G: [nods his head affirmatively] 
M: One million? 
G: [nods his head affirmatively] 
 
In this exchange, George invoked the idea of the sum being a boundary number, 

which it would be for whole numbers or non-negative rational numbers, but then 

acknowledged that there was an exception to this: negative numbers. Another fourth 

grader, Tia, provided a similar response to that of George for the same task. 

M: So, what numbers could those be? 
T: 12 and under, and no negatives.  
M: And why can‘t they be negatives. 
T: Because it gets a little too confusing and negatives it‘s really hard to 

add.  
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Tia‘s response differed from George‘s in that she did not directly acknowledge that 

negative values could be used but did acknowledge that they exist and that the primary 

reason she would not use them is that they are difficult to use, not that they cannot be 

used. Therefore, in both cases the students used the sum as a boundary value which 

limited the upper end of the solution set for the variables even though they acknowledged 

the existence of the negative values and, at least in Georges case, further noted that their 

use was an exception to this boundary value.  

 In addition to the commonality of the use of the sum as a boundary value, students‘ 

responses were also consistent in that initially every student supplied only whole number 

solutions to the tasks. Much like the two discussions reported above, it was only through 

follow up questions that the students‘ beliefs about non-integer rational solutions began 

to come to the surface. Through specifically asking students if values such as the mixed 

number 2½ would work in the equation, initial views of their meaning and use of 

fractions began to come into focus. For instance, of the 24 students, 15 indicated that 

variables in use could take on a fractional value of at least one number that was 

specifically asked of them. This should not be taken as the students holding the belief that 

the variables could be any rational number. That would be beyond the scope of the 

evidence collected for this interview.  

 Of the remaining nine students, eight indicated that 2½ would not work: the one 

other student did not supply enough evidence upon which to make any inferences about 

this topic. While most students did not provide justification for the exclusion of the 

prompted mixed number beyond stating that it was unacceptable, some students appeared 

to hold the belief that these were not ―even numbers.‖ For instance, the following 
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conversation with Carry, a fifth grader, occurred when she was asked if 3½ could be used 

for one of the squares in  +  = 12. 

M: Could I put like three and a half in that first square? 
C: Um, no. 
M: Why wouldn‘t that work? 
C: Because that‘s a like fraction of a number so, it‘s a fraction. So you 
would have to have another fraction I guess. 
 
Carrie‘s statement that 3½ is a ―fraction of a number‖ was interesting. It was not 

clear from this exchange or others during this interview, if she made a distinction 

between numbers and fractions of a number. It may be that if she made such a distinction 

then they would not be valid because she did not view fractions as numbers. Either way, 

this exchange demonstrated Carry‘s confusion with the use of fractions, which she 

continued to state would not be valid solutions in the other ten tasks. 

A more definitive example of this confusion occurred with Julie, a fourth grader, 

when she attempted to find solutions for the equation a + b =12. After providing a set of 

whole number solutions, (e.g., 6 and 6, 5 and 7, and 10 and 2) I asked her if 2½ would 

work as shown in the exchange below. 

M: Would two-and-a-half work for this one [points to the a in a + b = 12]. 
J:  Maybe.  
M: What do you mean, maybe? 
J: Like there could be, okay, probably not. 
M: Why not? Tell me what you were thinking about. 
J: A half is not a number and I thought numbers could get answers like, it 
might have to be twelve-and-a-half. 
 

 Julie‘s statement that, ―a half is not a number‖ provides a glimpse into her meaning for 

fractions. Her statement that using 2½ would result in an answer that also had a half, 

which she rejected as a possible acceptable answer, points to a narrow interpretation of 

what is meant by the word ―number.‖  
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 While the purpose of this study was not to explore the students‘ number sense or 

knowledge of the number sequence, including the rational numbers, these arose during 

the questioning intended to explore how the students thought about the tasks posed and 

how they went about solving them. Therefore, a subset of the tasks in the second 

interview were specifically designed to gather further evidence of students use of integers 

and rational numbers as possible solutions to the equations, which are reported on further 

in the quasi-variable section for interview two.   

Summary. The results of this section illustrate that coded student responses were 

inconsistent with normative algebraic solutions across tasks with equivalent mathematical 

structures. While none of the coded student responses paralleled a normative algebraic 

solution when I presented the task with blanks, students‘ response codes for the word 

problems were much higher for the word problems. Coded student responses also 

paralleled a normative algebraic solution for the different unknown addend tasks except 

when I presented them as an equation with blanks as the representation of the variable.  

When I presented the tasks as equations coded student responses did not parallel a 

normative algebraic solution for the common unknown addend or the no solution tasks. 

However, the coded student responses did parallel a normative algebraic response for the 

different unknown addends tasks, although the confirmatory tasks were less so.  

The inclusion of odd sums in the confirmatory tasks may have resulted in fewer 

coded student responses paralleling a normative algebraic solution. For those tasks, 

where both an even and an odd sum were present in the confirmatory tasks, student 

responses mirrored those from the initial tasks from the first interview. However, the odd 
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sums did not and had a lower percentage of coded student responses paralleling a 

normative algebraic response.  

Finally, the boundary values that students employed as they solved the tasks may 

have also played a role in the differences in the coding results between the even and odd 

sums. In addition to the majority of students limiting the solution values to those equal to 

or less than the sum but greater than or equal to zero, students demonstrated a fragile 

understanding of number and their properties. As demonstrated in the section on quasi-

variables, some students showed evidence of viewing fractions differently than they 

viewed whole numbers, often referring to the latter as numbers and the prior as 

something else. Further, their confusion regarding the whole number properties of even 

numbers (i.e., only even numbers have two equal whole number addends) and the 

extension of this property to fractions reduced the number of students who believed that 

the addends of an odd sum could be the same value.  

Student meaning of variable across representations of variables (research 

question b) 

In the following section, I examine the data to determine students‘ meaning of 

variables across representations of variables. I examined the coded student responses for 

each of the three categories: variable comparison, solution type, and variable value, 

across the representations of the variables (i.e., blanks, letters, shapes, and words) for the 

initial eleven tasks from interview one, and the confirmatory tasks from interview two. 

For each of these sets of tasks I sorted the codes by the representation of the variable and 

then by the core mathematical task. 
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Interview 1 variable comparison across representations of variables. In order 

to determine how students interpreted variables across various representations of the 

variable for tasks with common mathematical structures, the initial eleven tasks from 

interview one were resorted by the representation of the variable used (i.e., blank, letter, 

shape, or word) and the core mathematical task (i.e., common unknown addends, 

different unknown addends, or no solution). I then analyzed each of the three coding 

categories: variable comparison, solution type, and variable value to determine initial 

inferences for students‘ meaning of the representations of the variables. 

 Table 16 shows the results for the variable comparison category codings by 

representation of the variable and then core mathematical task for the variable 

comparison category. As demonstrated in the first section of the table, all students across 

all three grade levels (100%) treated the two blanks in each equation ___ + ___ = 12 as 

different variables (i.e., providing different values for the two blanks) regardless of the 

task type. As noted in the opening section of this chapter, the equation ___ + ___ = 12 

was used as the equation for both the common unknown addends task as well as the 

different unknown addends task since blanks are not generally modified to be 

distinguishable.  
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Table 16 

Variable Comparison Across Representations of Variables 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

    Same Diff Same Diff Same Diff Same Diff 

b 

C 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

l 

C 
2 

(22.2%) 
7 

(77.8%) 
0 

(0%) 
9 

(100%) 
1 

(16.7%) 
5 

(83.3%) 
3 

(12.5%) 
21 

(87.5%) 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
1 

(11.1%) 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
1 

(4.2%) 
23 

(95.8%) 

s 

C 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
1 

(11.1%) 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
1 

(4.2%) 
23 

(95.8%) 

w 

C 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

The second section of Table 16 shows the coding results for variables represented 

as letters (e.g., a + b =12 and y + y = 12). These results show that when letters were used 

as the representation of the variable, the majority of student responses (n=68) 

demonstrated that students treated the two letters as different, supplying different values 

for each letter. As shown in the last column of Table 16, only four students treated the 

letters as the same by supplying only the same value to both letters, three for y + y = 12 
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and one for x + 6 = x. In addition, each of these four student responses occurred in either 

the common unknown addends task y + y =12 or no solution equation x + 6 = x where, 

algebraically speaking, this would be a correct interpretation and use of the variables. 

However, the three students who demonstrated this meaning for the common unknown 

addends task inconsistently employed this meaning when they solved the no solution task 

x + 6 = x. Of these three students, only a single fourth grader, Sally, treated the x‘s as the 

same, resulting in her concluding that there was no solution for this task since it was not 

possible to add 6 to a number and get that same number. 

In problem 9(CEl), y + y = 12, an equation with common addends and a sum of 

twelve with the same letter as the representation of the variables, three students, two 

fourth grade students and one fifth grade student, indicated that the y‘s in y + y = 12 were 

the same. For example, one fourth grade students I will call her Jill, stated, ―Earlier we 

were talking about a and b, and since these are the same letters . . . I‘m thinking it‘s like 

six plus six equals twelve because it‘s the same letter and it‘s the same number.‖ The 

following discussion occurred for the same task with another fourth grader. 

M: So what do the y‘s mean in this one? 
S: They could mean a number. 
M: So what numbers would work? 
S: Five, seven and a six and a six, nine and a three, two and a ten. 
 

Unlike Jill, this student gave multiple pairs of values for the y‘s, which included pairs of 

different numbers, implying that the y‘s were not the same. 

 When shapes were used as the representation of the variable (e.g., ☐ + ☐ = 12 

and ☐ +  = 12), every student but one treated the shapes as different variables by 

providing different values for each shape regardless of the core mathematical task. Sally, 

who treated the letters as the same variable in both the common unknown addends and no 
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solution task as reported above, did not treat the shapes in the common unknown addends 

task, ☐ + ☐ = 12, as the same variable. Instead, she provided multiple different number 

pair answers such as 10 and 2, 8 and 4, 11 and 1, as well as 6 and 6. She did treat the 

shapes in the no solution task  + 6 =  as the same variable just as she did for the 

letters. Therefore, she did not consistently treat the same representation of the variable as 

the same in all cases.  

 Finally, when words were used as the representation of the variable in word 

problems, the last section of Table 16, the codes for the students‘ responses were not only 

consistent, but also paralleled an algebraically correct interpretation that the variables 

were the same for the common unknown addends task (i.e., Shakira and Tim have the 

same number of gummy bears. Together they have 12 gummy bears) and no solution task 

(i.e., I start with some number then add 6 and get the same number that I started with) 

and different for the different unknown addends task (i.e., Together Tom and Anne have 

12 feet of ribbon). Therefore, it appears that the more descriptive nature of the word 

problems, as compared to the equations with the variables represented as blanks, letters, 

and shape, assisted students in interpreting when two representations of variables were 

the same or different variables.  

Table 17 shows the results of the variable comparison codings for the 

confirmatory tasks by representation of the variable and then core mathematical task.  As 

demonstrated in the final column of the table, students consistently treated the variables 

as different across all confirmatory tasks. Only four instances of students treating the two 

representations of the variable as the same occurred, three fourth graders for the common 

unknown addends tasks where the variable was represented with letters (i.e., y + y =12) 
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and one fifth grader for the different unknown addends task where the variable was 

represented with words.  

Therefore, the students in the study, other than the four instances noted above, 

treated the two representations of the variable as different variables regardless whether 

they were the same or different representation (e.g., y + y = 12 or a + b =12), the 

representation of the variable (i.e., blanks, letters, shapes, or words), or core 

mathematical task.  

Table 17 

Confirmatory Task Variable Comparison Coding Across Representations of Variables 

  4
th

 grade 5
th

 grade 6
th

 grade Total 
    Same Diff Same Diff Same Diff Same Diff 

b 
C 

0 18 0 18 0 12 0 48 
(0%) (100%) (0%) (100%) (0%) (100%) (0)% (100%) 

S 
0 18 0 18 0 12 0 48 

(0%) (100%) (0%) (100%) (0%) (100%) (0%) (100%) 

l C 
3 6 0 9 0 6 3 21 

(33.3%) (66.0)% (0%) (100%) (0%) (100%) (12.5%) (87.5%) 

s 
C 

0 9 0 9 0 6 0 24 
(0%) (100%) (0%) (100%) (0%) (100%) (0%) (100%) 

S 
0 18 0 18 0 12 0 48 

(0%) (100%) (0%) (100%) (0%) (100%) (0%) (100%) 

w S 
0 18 1 17 0 12 1 47 

(0%) (100%) (5.6%) (94.4%) (0%) (100%) (2.1%) (97.9%) 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 
 Since the purpose of the confirmatory tasks was to determine if the student 

responses changed from the first interview to the second I determined the percentage 

point change in coding results by subtracting the first percentage from interview one from 

the corresponding percentage in interview two, see Table 18. From this table it is 

apparent that coded student responses for the variable comparison category were 



 

 119 

consistent from interview one to interview two. The only change for the entire population 

was a 2.1 percentage point increase in students treating the variables as the same and a 

2.1 percentage point decrease in students treating the variables as different when the 

variable was represented in words.  There was an 11.1 percentage point increase in 

students treating the variables as the same and an 11.1 percentage point decrease in fourth 

grade students treating the letters as different in the common unknown addends task. 

There was also a 16.7 percentage point decrease in students treating the variables as the 

same and a 16.7 percentage point increase in sixth grade students treating the letters as 

different in the common unknown addends task. These were due to a switch of one 

student response for each. 

Table 18 

Percentage Point Change in Variable Comparison Coding From Interview One to 

Interview Two 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  
Same Diff Same Diff Same Diff Same Diff 

b 
C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

l C 11.1% -11.1% 0.0% 0.0% -16.7% 16.7% 0.0% 0.0% 

s 
C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

w D 0.0% 0.0% 5.6% -5.6% 0.0% 0.0% 2.1% -2.1% 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

Solution type across representations of variables. In this section, I report on 

students‘ solution types, whether they provided multiple solutions, single solutions, or no 

solution for each variable for each task. While the previous section examined whether the 
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students treated the two variables in each task as the same or different variables it was 

also important to determine if the students provided multiple, single, or no solutions for 

each variable for each task.  

Table 19 shows the results for the solution type responses by representation of the 

variable and core mathematical task. As demonstrated in the first section of the table, 

students across all three grade levels treated the two blanks in each equation (i.e., ___ + 

___ = 5 and ___ + ___ = 7) as having multiple possible values except for the two fourth 

graders discussed in the previous section. Therefore, other than these two students 

apparent interpretation of the problems, students consistently provided multiple values 

for the blanks across all core mathematical tasks.  

The results from the section of the table, showing the representation of the 

variable as a letter, demonstrate that when I represented the variable with letters, students‘ 

solution types were highly consistent. Sixty–seven of all students providing multiple 

values for each letter, four providing single values for each variable, and one student 

stating that the problem did not work (i.e., no solution). Students did not appear to 

distinguish between equations where the same letter was used (i.e., y + y =12) and 

different letters were used (i.e., a + b =12) in that they supplied the solutions 6 and 6 as 

well as pairs of different numbers such as 10 and 2. Only three students stated that the 

former equation had a single solution and none stated that the latter had a single solution.
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Table 19 

Solution Type Across Representation of Variables 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

b 

C 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

D 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

N 7 
(77.8%) 

2 
(22.2%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22 
(91.7%) 

2 
(8.3%) 

0 
(0%) 

l 

C 7 
(77.8%) 

2 
(22.2%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

5 
(83.3%) 

1 
(16.7%) 

0 
(0%) 

21 
(87.5%) 

3 
(12.5%) 

0 
(0%) 

D 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

N 7 
(77.8%) 

1 
(11.1%) 

1 
(11.1%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22 
(91.7%) 

1 
(4.2%) 

1 
(4.2%) 

s 

C 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

D 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

N 7 
(77.8%) 

1 
(11.1%) 

1 
(11.1%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

21 
(87.5%) 

1 
(4.2%) 

1 
(4.2%) 

w 

C 0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

D 8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22 
(91.7%) 

2 
(8.3%) 

0 
(0%) 

N 0 
(0%) 

2 
(22.2%) 

7 
(77.8%) 

0 
(0%) 

0 
(0%) 

8 
(88.9%) 

0 
(0%) 

0 
(0%) 

4 
(66.7%) 

0 
(0%) 

2 
(8.3%) 

19 
(79.2%) 

b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task 
(e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
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 As shown in the section of Table 19 showing the results for the representation of 

the variable as a shape, when shapes were used as the representation of the variables (e.g., 

 +  = 12), the results were more homogeneous with all but two students supplying 

multiple values for each variable in each task. Two fourth graders‘ responses produced 

the lone exceptions. Sally, stated that the no solution task  + 6 =  had no solution 

applying the same meaning to letters, as reported earlier, as she did for shapes. The other 

fourth grader, Brett, interpreted each of the four formats of the problem with the missing 

addend (e.g.,  +  = 12) as having the same value, six in this case. 

 Finally, as seen in the section for the use of words as variables in Table 19, all 

students gave single value solutions for the common unknown addends word problem 

(i.e., Shakira and Tim have the same number of gummy bears. Together they have 12 

gummy bears.). Of students providing a codeable response, all but two students provided 

multiple solutions for the different unknown addends problem (i.e., Together Tom and 

Anne have 12 feet of ribbon) and no solution for the no-solution problem (i.e., I start with 

some number then add 6 and get the same number that I started with). In each instance, 

the students provided a single value for each variable.  

 Table 20 shows the results of the solution type responses for the confirmatory 

tasks broke down by representation of the variable and then core mathematical task. 

Student consistently provided multiple values for each variable across all of the 

confirmatory tasks. Of the 240 total coded responses, only four students provided single 

values for the variables, one each for the common unknown addends tasks when the 

variable was represented with a letter, y + y = 7 with a solution of 3½ and 3½, and a 

shape, 8 =  +  with a solution of 4 and 4. These occurred only at the fourth grade 
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level. The other two instances occurred for the different unknown addends tasks when the 

variable was represented with words (i.e., I am thinking of two numbers. When I add 

these two numbers together, I get 7), one each at fourth and fifth grade.  
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Table 20 

Confirmatory Task Solution Type Coding Across Representations of Variables 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

b 
D 

18 0 0 18 0 0 12 0 0 48 0 0 
(100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) 

S 
18 0 0 18 0 0 12 0 0 48 0 0 

(100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) 

l D 
6 1 2 9 0 0 6 0 0 21 1 2 

(66.7%) (11.1%) (22.2)% (100%) (0%) (0%) (100%) (0%) (0%) (87.5%) (4.2%) (8.3%) 

s 
D 

8 1 0 9 0 0 6 0 0 23 1 0 
(88.9%) (11.1%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) (95.8%) (4.2%) (0%) 

S 
18 0 0 18 0 0 12 0 0 48 0 0 

(100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) 

w S 
17 1 0 17 1 0 12 0 0 46 2 0 

(94.4%) (5.6%) (0%) (94.4%) (5.6%) (0%) (100%) (0%) (0%) (95.8%) (4.2%) (0%) 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task 
(e.g., a + b =12); N – No solution task (e.g., x + 6 = x)
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Since the purpose of the confirmatory tasks was to determine if the student 

responses changed from the first interview to the second, I determined the percent change 

in coding results from the first interview to the second, see Table 21. From this table it is 

apparent that coded student responses for the solution type category were consistent from 

interview one to interview two. A small change occurred in the common unknown 

addends tasks with the variable represented with letters, y + y = 7, with an 8.3 % decrease 

in single value solutions and an 8.3 % increase in students responding that there was no 

solution. Further, when the variable was represented with shapes, a 4.2 percentage point 

decrease was found in multiple value solutions (e.g., y + y = 7 has solutions of 7 and 0, 6 

and 1, 5 and 2, and 3 and 4) and an 4.2 percentage point increase in students responding 

that there was no solution. The only other change occurred for the different unknown 

addend task was where I represented the variable with words, a 4.1 percentage point 

decrease in single value solutions and a 4.1 percentage point increase in students 

providing multiple solutions.
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Table 21 

Percentage Point Change in Solution Type Coding Across Representations of Variables from Interview One to Interview Two 

 

4
th

 grade 5
th

 grade 6
th

 grade Total 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

b 
C 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

l C -11.1% -11.1% 22.2% 0.0% 0.0% 0.0% 16.7% -16.7% 0.0% 0.0% -8.3% 8.3% 

s 
C -11.1% 11.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -4.2% 4.2% 0.0% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

w D 5.5% -5.5% 0.0% 5.5% -5.5% 0.0% 0.0% 0.0% 0.0% 4.1% -4.1% 0.0% 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task (e.g., a + b 

=12); N – No solution task (e.g., x + 6 = x) 



 

 127 

 

Variable values across representations of variables. This final category 

examined if the student provided the same and/or different values for the two variables in 

each task. In contrast to the previous categories, student responses were coded with both 

codes if they provided the same value to each variable and different values for each 

variable. This category, along with the variable comparison category, provided the 

necessary information to determine if students who treated the variables as different 

believed that they must also have different values or if they could have the same value.  

 Table 22 displays the results for the variable value responses by representation of 

the variable and core mathematical task. Students across all three grade levels treated the 

two blanks in each equation as being able to take on different values. However, the 

equation ___ + ___ = 12, used for the common unknown addends and different unknown 

addends tasks resulted in all student providing single values for each blank (i.e., 6 and 6). 

Thus, every student in the study produced solutions where the two blanks took on the 

same and different values from each other for the common unknown addends and 

different unknown addends tasks when a blank was the representation of the variable.  

As shown in the first section of Table 22, the no solution version of the equation 

with blanks, ____ + 6 = ____, resulted in all 24 students providing only different values 

for the two blanks. No students provided the same value for the two blanks, which may 

be a result of the structure of the problem rather than the students meaning for the blanks 

since it is not possible to add six to a number and get the same number even if the blanks 

were interpreted as having to be the same number. 
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 As shown in the second section of Table 22, when letters were used as the 

representation of the variable, student responses were consistent for both the different 

unknown addends task a + b = 12 and no solution tasks x  + 6 = x. For the different 

unknown addends task, a + b =12, every student provided the same value (i.e., 6 and 6) 

for a and b as well as different values for a and b (e.g., 10 and 2). For the no solution task, 

x + 6 = x, all students provided only different values for the two letter representations. As 

was the case with blanks, this may be more a result of the structure of the problem than 

the students meaning for the letters since it is not possible to add six to a number and 

obtain the same number even if the letters are interpreted as representing the same 

number. 
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Table 22 

Value Comparison Across Representation of Variables 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

b 

C 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

S 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

N 
9 

(100%) 
9 

(100%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

l 

C 
7 

(77.8%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
5 

(83.3%) 
6 

(100%) 
21 

(87.5%) 
24 

(100%) 

S 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

N 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
23 

(95.8%) 
0 

(0%) 

s 

C 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

S 
9 

(100%) 
8 

(88.9%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
5 

(83.3%) 
24 

(100%) 
22 

(91.7%) 

N 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
23 

(95.8%) 
0 

(0%) 

w 

C 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 
8 

(88.9%) 
9 

(100%) 
8 

(88.9%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
22 

(91.7%) 
24 

(100%) 

N 
0 

(0%) 
1 

(11.1%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
1 

(4.2%) 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

From the third section of Table 22, when letters were used as the representation of 

the variables for the common unknown addends tasks, y + y = 12, every student provided 

the same value, 6 and 6, and all but three students provided different values for the two ys. 

Three students provided the same value for the two ys, two from fourth grade and one 

from sixth. I identified that these same three students treated the ys as the same variable 
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for the variable comparison category and provided a single solution in the solution type 

category as reported above. All other students treated the ys as different variables, 

providing different values for each, for the variable comparison category and provided 

multiple solutions as reported above. Therefore, of the 24 coded student responses for y + 

y =12, three paralleled a normative algebraic solution. 

 In the third section of Table 22, when shapes were used as the representation of 

the variable, student responses were consistent for both the common unknown addends 

task,  +  = 12. All students provided the same and different values for the two 

squares. For the no solution task,  + 6 = , all students provided different values for 

the triangles. One student, Sally, indicated that no numbers worked for this task and 

therefore she did not assign a value to the variables. This resulted in eight of the nine 

fourth graders providing different values for the triangles. Even though their responses 

were consistent, they did no parallel a normative algebraic solution in that they did not 

correspond to the algebraic convention that the same variable in the same equation 

represented the same value. A normative response for the common unknown addends 

task would have the same value for the squares and the no solution task would be not be 

coded as no numerical values for the triangles make the equation true.  

In the final section of Table 22, when words were used as the representation of the 

variable in a word problem, student responses were consistent for the common unknown 

addends problem (i.e., Shakira and Tim have the same number of gummy bears. Together 

they have 12 gummy bears) with every student providing only the same value for both 

variables (i.e., 6 and 6). For the different unknown addends task (i.e., Together Tom and 

Anne have 12 feet of ribbon), all 6 sixth graders provided both the same and different 
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values for the variable, see Table 22. For the fourth and fifth graders‘ responses, eight of 

nine students provided different values for the variables and nine of nine provided the 

same value for both variables, see Table 22. In each case, the difference between the 

numbers of responses providing different values and the same value was due to one 

student at each grade providing a single value solution. In other words, these two students 

believed that the two addends had to be the same even though this was not stated or 

implied in the task. It was not clear from the interviews why the students interpreted the 

task this way. It is possible that they inferred this from other tasks. 

Table 23 displays the results for the variable value responses for the confirmatory 

tasks by representation of the variable and core mathematical task. In addition, Table 4.20 

displays the percentage point differences from interview one to interview two for the 

overlapping categories. 
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Table 23 

Variable Value Codings by Representation of the Variable for Interview Two 

Confirmatory Tasks 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

   
VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

  Diff Same Diff Same Diff Same Diff Same 

b 
C 18 5 18 3 12 10 48 18 

(100%) (27.8%) (100%) (16.7%) (100%) (83.3%) (100%) (37.5%) 

S 18 5 18 3 12 10 48 18 
(100%) (27.8%) (100%) (16.7%) (100%) (83.3%) (100%) (37.5%) 

l C 6 5 9 5 6 5 21 15 
(66.7%) (55.6%) (100%) (55.6%) (100%) (41.7%) (87.5%) (62.5%) 

s 
C 8 9 9 9 6 6 23 24 

(88.9%) 100%) (100%) (100%) (100%) (100%) (95.8%) (100%) 

S 18 10 18 13 12 11 48 34 
(100%) (55.6%) (100%) (72.2%) (100%) (91.7%) (100%) (70.8%) 

w S 17 10 17 11 12 9 46 30 
(94.4%) (55.6%) (94.4%) (61.1%) (100%) (75.0%) (95.8%) (62.5%) 

b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

 It is evident that a decrease occurred in the number of students providing the same 

value for both variables for nearly all tasks. The two tasks where the representation of the 

variable was a shape change 0% for the common unknown addend (e.g., y  + y = 7) and 

decreased 20.9% for the different unknown addends tasks (e.g., 12 =  + ) from 

interview one to interview two.  The common unknown addend confirmatory task with 

shapes as the representation of the variable was an even sum task (i.e., 8 =  + ), as 

were the corresponding tasks from interview one. For these similar tasks, no change 

occurred in the percent of students responses providing the same value for both variables, 
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and a slight decrease of 4.7 percentage points occurred for responses providing different 

values for both variables.  

In examining the student responses it appears that the change in the sum from an 

even to an odd sum influenced the values students assigned to missing addends. For 

example, when Mark, a fourth grader, was asked to solve the equation y + y =7 he stated, 

― Actually, you can‘t do this because the y’s, like the seven is odd and two of the same 

numbers can‘t equal seven.‖ Two important points need to be made regarding Mark‘s 

response. First, from his response we can infer that he believes that the y‘s must be the 

same value, a meaning he did not consistently apply to other representations. Second, his 

interpretation of what it means for a number to be odd influenced his response.  

Other students provided similar responses but did not state that the y‘s had to be 

the same value. For example, Paul, a sixth grader, provided multiple solution pairs for y + 

y = 7 including 3 and 4, 6 and 1, and 7 and 0. When asked if the two numbers could be 

the same value he stated that they could not because, ―seven isn‘t an even number.‖ Paul 

provided a similar response to this task in terms of his view of the two y‘s taking on the 

same value but had different meanings for the variables.  

Tricia, another sixth grader, demonstrated a similar interpretation of the variables 

as Paul, supplying multiple solutions to y + y = 7. However, her response to whether the 

two y’s could be the same value differed from Paul and Mark as she provided 3½ and 3½ 

as a solution. Therefore, her interpretation for the two y‘s was that they could be the same 

or different and her view of values for the domain of the variables were not limited to the 

set of whole numbers as they were for Mark and Paul.  
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Finally, George, a fourth grader, held a similar meaning for the variables in y + y 

= 7 as Mark, and a similar meaning for odd as Tricia. However, he was unsure when 

solutions could be whole numbers, integers, or negative numbers.  

M: What do the y‘s mean in that one. 
G: They can represent a number and they cannot be the same number 

unless you are using fractions. 
M: But if I was using fractions, they could be the same numbers? 
G: Yeah, well you can‘t have 3 and 3, that‘s 6. Can‘t have 4 and 4, that‘s 8 

but there‘s no two [values] between that. So you can use fractions you 
could do three-and-a-half and then plus three-and-a-half, or three and 
two-fourths and three-and-two-fourths. 

M: So are there any numbers that first y could not be? 
G: If you‘re not using negatives then they couldn‘t be any number under 

zero, and any number over seven. 
M: What if I could use negatives? 
G: Then you could put any negative you want, but after that you would 

have to have a certain other number. 
M: To get the other one? 
G: Yeah. 
M: So how do you decide in a problem whether or not you can use 

negatives or fractions? 
G: Well, it depends on what kind of problems you‘re doing, what you‘re 

learning at that point. You could use it pretty much any time unless you 
are supposed to do something else. 

 
Based on these illustrative examples it appears that the inclusion of odd sums 

impacted the differences seen for the variable value responses from interview one to 

interview two.  

Table 24 shows the percentage point change from interview one to interview two 

for the variable value responses for tasks with a common variable representation, task 

type, and core mathematical task across both interviews. Differences arose for responses 

indicating that the variables would have the same value for all but the common unknown 

addends tasks with the representation of the variable as a shape, see Table 24. 
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Table 24 

Confirmatory Task Variable Value Coding Across Representation of Variables 

Percentage Point Difference from Interview One to Interview One 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

 
 

VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

 Diff Same Diff Same Diff Same Diff Same 

b 
C 0.0% -72.2% 0.0% -83.3% 0.0% -16.7% 0.0% -62.5% 
D 0.0% -72.2% 0.0% -83.3% 0.0% -16.7% 0.0% -62.5% 

L D -11.1% -44.4% 0.0% -44.4% 16.7% -58.3% 0.0% -37.5% 

s 
C -11.1% 0.0% 0.0% 0.0% 0.0% 0.0% -4.2% 0.0% 
D 0.0% -33.3% 0.0% -27.8% 0.0% 8.4% 0.0% -20.9% 

w D 5.5% -44.4% 5.5% -38.9% 0.0% -25.0% 4.1% -37.5% 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 
 The different unknown addends with the variables represented, as shapes had no 

change in the percentage of students‘ responses providing different values for both 

variables. However, a decrease of 20.9 percentage points occurred in the students 

providing the same value for both variables. While all of the different unknown addend 

tasks with shapes as the representation of the variables had even sums for interview one, 

interview two consisted of one odd and one even sum task. When examined separately, 

task 4 (12 =  + ) resulted in different values provided for every student response and 

the same value by 22 of the 24 student responses (91.7%). However, tasks 12,  +  = 

7, with an odd sum, resulted in different values provided for every student response and 

the same value provided by 12 of the 24 student responses (50%). Therefore, the smaller 

change from interview one to interview two for this category was partly the result of 

having both an odd and an even sum task in interview two.  
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Likewise, while all of the different unknown addend word problems in the first 

interview had even sums, the two different unknown addend word problems in the 

confirmatory tasks for interview two consisted of one with an odd sum and one with an 

even sum. When examined separately, task 1 (i.e., Juan and Alexa each have a piece of 

string. Together they have 16 inches of string), with an even sum, resulted in different 

values provided by 22 of the 24 student responses (91.7%) and the same value provided 

by 24 of the 24 student responses (100%). However, all student responses for tasks with 

an odd sum involved different values and six of the 24 student responses (25%) involved 

the same value. Therefore, the smaller change from interview one to interview two for 

this category was partly a result of having both an odd and an even sum task in interview 

two.  

The common unknown addends with letters as the representation of the variable 

(i.e., y + y = 7) also had a greater decrease in the number of students who provided the 

same value for both variables than the tasks with shapes as the representation of the 

variables and the same as the different unknown addends word problems. However, only 

a single task involved an odd sum. All but one of the students (23 of 24) included 

different values as these students viewed the two y‘s as being different variables (i.e., 

representing different referents). Of the 23 students providing different values for both 

variables, all also provided multiple solutions. However, of these 23 students, nine 

provided different values for the two y‘s (e.g., 5 and 2, and 3 and 4). The remaining 

fourteen students provided the same and different values for the two variables, indicating 

that the y‘s could take on different values or the same value. Therefore, of the 15 student 

responses the same value for both variables, fourteen provided different values for both 
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variables Only one student, the fourth grader George, treated the two y‘s as only having 

the same value. 

Summary. In this section I reviewed the data for each of the three categories: 

variable comparison, solution type, and variable value, for the initial eleven tasks from 

interview one and the confirmatory tasks from interview two across representations of the 

variables. When the representation of the variable was blanks, letters, and shapes for the 

initial eleven tasks from interview one, students consistently treated the representation of 

the variable as different variables for the initial eleven tasks from interview one and the 

confirmatory tasks from interview two regardless of the core mathematical task being 

modeled. In interview one, only five of 216 students treated the two variables as the same, 

providing a single common value for both variables. Of these five, three were for the 

common unknown addends tasks with the variable represented with letters (e.g., y + y = 

12). The other two were both for the common unknown addend task, one when I 

represented the variable with letters (e.g., a + b = 12) and the other represented with 

shapes (e.g.,  +  = 12). I further demonstrated that this coding pattern was consistent 

from interview one to interview two.  

However, when I represented the variables with words in a word equation, all 

students treated the variable as the same for the common unknown addend and no 

solution tasks. Further, all student treated the variables as different for the different 

unknown addends tasks (e.g., Together Tom and Anne have 12 feet of ribbon.). However, 

since words as representations of the variable only occurred in word problems and the 

blanks, letters, and shapes only occurred in equations the task type may also play a 
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contributing role in this distinction. This is explored further in the section on students 

meaning of variables across task types.  

 When I represented the variable with blanks, letters, and shapes, students 

consistently produced multiple solutions for both the initial eleven tasks from interview 

one and the confirmatory tasks from interview two regardless of the core mathematical 

task modeled. In interview one, only seven of 216 student responses involved a single 

solution. Of these seven, four were for the no solution tasks (e.g., x + 6 = x) with the 

other three all for the common unknown addend task with the variable represented with 

letters (e.g., a + b = 12). Of these, only one student stated there was no solution, which 

was for the no solution task with the variable represented with shapes. I further 

demonstrated that this coding pattern was consistent from interview one to interview two. 

However, when the representation of the variable was presented in words students 

consistently provided single solutions for the common unknown addends task, multiple 

solutions for the different unknown addend tasks, and no solution for the no solution 

tasks. Therefore, the representation of the variable appears to impact the type of solutions 

students provided (i.e., multiple solutions, single solution, or no solution). However, 

since words as representations of the variable occurred only in word problems and the 

blanks, letters, and shapes only occurred in equations, the task type may also contribute 

to this distinction. This is explored further in the section on student meaning of variables 

across task types. I further demonstrate that student responses were consistent from 

interview one to interview two. 

In contrast to the prior two categories, student responses for the variable value 

category were inconsistent across representations of the variables from interview one to 
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two. In interview one, when the representation of the variable was blanks, letters, or 

shapes coded students were very consistent for the same core mathematical tasks. For 

these representations of the variables, students consistently provided the same and 

different values for the two variables for the common unknown addends and the different 

unknown addends tasks. They also produced only different values for the no solution core 

mathematical tasks (e.g., x + 6 = x).  

However, student interpretations changed when the representation of the variable 

involved words. All students provided the same values for both variables in the common 

unknown addends tasks. All students provided the same values for both variables and all 

but two provided the different values for both variables in the different unknown addends 

tasks (e.g., a + b = 12). Finally, for the no solution core mathematical task only one 

student provided a solution where the values were the same for both variables. 

In interview two, I found no change in the percent of student responses providing 

different values for the two variables when the representation of the variable was a blank 

or a letter. However, a decrease of 62.5 percentage points was found for the common 

unknown addends and different unknown addends tasks when the variable was presented 

as blanks. In addition, a 37.5 percentage point decrease occurred for the different 

unknown addends tasks when the variable was presented as letters. Less change occurred 

when the representation of the variable was letters with a 4.2 percentage point decrease in 

different solutions provided for both variables for the common unknown addends tasks 

and a 20.9 percentage point decrease in the different unknown addends tasks. Finally, 

when the representation of the variables were presented in words a 4.1 percentage point 

increase was found in different solutions provided for both variables and a 37.5 



 

 140 

percentage point increase in the same solutions provided for both variables responses for 

the different unknown addends tasks. As noted earlier, when I presented the even sum 

confirmatory tasks, the coding results were consistent from interview one to interview 

two for the variable value category. The differences occurred for the odd sum 

confirmatory tasks.  

However, not every combination of representation of variable, task type, and core 

mathematical were included in the confirmatory tasks. Therefore, the only comparisons 

made were for blanks and shapes for both the common unknown addends (e.g., ___ + ___ 

= 12 and  +  = 12) and different unknown addends task (e.g. a + b = 12 and  +  

= 12), and words for the different unknown addends tasks (e.g., Together Tom and Anne 

have 12 feet of ribbon).  

Student meaning of representations of variables across task types (research 

question c) 

In the following section, I examine the data to determine students‘ meaning of 

variables across task types. I provide the coded student responses for each of the three 

categories: variable comparison, solution type, and variable value, across the task types 

(i.e., equations and word problems) for the initial eleven tasks from interview one, and 

the confirmatory tasks from interview two. For each of these sets of tasks I sorted the 

codes by the task type and then by the core mathematical task. 

Variable comparison. In order to determine how students interpreted variables 

across various task types for tasks with common mathematical structures, the initial 

eleven tasks from interview one were resorted by the task type (equation or word 

problem) and then the core mathematical task (common unknown addends, different 
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unknown addends, or no solution). These were then analyzed for each of the three coding 

categories: variable comparison, solution type, and variable value. 

 Table 25 shows the results for the variable comparison student responses broke 

down by task type and then core mathematical task. When totaling the results for the total 

column in Table 25, the student responses was highly consistent for tasks posed as 

equations regardless of the core mathematical task with 211 responses treating the two 

representations of the variables as different and only five treating them as the same. All 

student responses treated the two variables as different for the different unknown addends 

with sum known task (e.g., a + b = 12) when presented as an equation, which parallels a 

normative algebraic responses. However, the student responses were similar for the 

common unknown addends tasks (e.g., y + y = 12) and no solution task (e.g., x + 6 = x) 

when presented as an equation. For these two core mathematical tasks, student responses 

did not parallel an algebraically normative solution but were highly consistent with the 

responses for the different unknown addends tasks. This provides evidence that, in 

general, students did not view two variables in the same equation as the same when 

presented with the same representation. Further, they did not distinguish between 

equations where the variables were the same from equations where the variables were 

different.  

As discussed previously, a single fourth grade student, Brett, attributed to the four 

student responses that involved treating the variables as the same. He responded this way 

for, two each for the common unknown addends and no solution tasks. The single 

instance of treating the two variables as the same occurred at the sixth grade level with 
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Maggy‘s response that the letters in y + y =12 were the same, which she did not extend to 

other representations of the variable for the same core task. 

Table 25 

Variable Comparison Across Task Type 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

    Same Diff Same Diff Same Diff Same Diff 

E 

C 
2 

(7.4%) 
25 

(92.6%) 
0 

(0%) 
27 

(100%) 
1 

(5.6%) 
17 

(94.4%) 
3 

(4.2%) 
69 

(95.8%) 

S 
0 

(0%) 
27 

(100%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
72 

(100%) 

N 
2 

(7.4%) 
25 

(92.6%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
18 

(100%) 
2 

(2.8%) 
70 

(97.2%) 

W 

C 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
E- equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

The results for the word problems differed from those of the equations in two 

primary ways. First, student responses were consistent for tasks posed as word problems 

across each of the three core mathematical tasks. Second, the percent of student responses 

that involved treating the two variables as the same and different for the common 

unknown addend (i.e., Shakira and Tim have the same number of gummy bears. Together 

they have 12 gummy bears) and no solution tasks (i.e., I start with some number then add 

6 and get the same number that I started with) differed for the equations as compared to 

the word problems. The percent of student responses that involved treating the 

representations of the variables as the same and different for the common unknown 

addend when presented as an equation and word problem, were 4.2% and 95.8%, and 

100% and 0% respectively. Similarly, the percent of responses that involved treating the 
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representations of the variables as the same and different for the no solution task when 

presented as an equation and word problem were 2.8% and 97.2%, and 100% and 0% 

respectively.  

Table 26 shows the results of the task type student responses for the confirmatory 

tasks broke down by task type and then core mathematical task.  These responses 

demonstrate that students consistently treated the two variables as different across the 

confirmatory tasks. Only four instances of students treating the variables as the same 

arose in the analysis, three for the common unknown addend task and one for the word 

problem, see Table 26. Three student responses, all fourth grade, involved treating the 

two representations of the variables as the same for the common unknown addends tasks 

where the task was presented as an equation, see first row of Table 26. The other instance 

occurred for one fifth grader who treated the two representations of the variables as the 

same for the different unknown addends task presented as a word problem (e.g., I am 

thinking of two numbers. When I add these two numbers together, I get seven). 

Table 26 

Confirmatory Task Variable Comparison Coding Across Task Types 

  4
th

 grade 5
th

 grade 6
th

 grade Total 
    Same Diff Same Diff Same Diff Same Diff 

E 

C 
3 33 0 36 0 24 3 93 

(8.3%) (91.7%) (0%) (100%) (0%) (100%) (3.1%) (96.9%) 

D 
0 36 0 36 0 24 0 96 

(0%) 1(00%) (0%) (100%) (0%) (100%) (0%) (100%) 

W D 
0 18 1 17 0 12 1 47 

(0%) (100%) (5.6%) (94.4%) (0%) (100%) (2.1%) (97.9%) 
b – blanks; l letters; s – shapes; w –words; C – common unknown addends task (e.g., y + y =12); 
D – different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
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 Since the purpose of the confirmatory tasks was to determine if the student 

responses changed from the first interview to the second, I calculated the percentage 

point change in coding results from the first interview to the second, see Table 27. From 

this table it is apparent that student responses for the variable comparison category were 

consistent from interview one to interview two. The only changes were a 1.1 percentage 

point increase in students viewing the two representations of the variable as the same and 

a 1.1 percentage point decrease in those viewing them as different. Further the common 

unknown addends equation and a 2.1 percentage point increase in responses treating the 

two representations of the variable as the same and a 2.1 percentage point decrease in 

those treating them as different for the different unknown addends word problem. 

Table 27 
 
Percentage Point Change in Task Type Coding from Interview One to Interview Two 

 
4th grade 5

th
 grade 6

th
 grade Total 

Same Diff Same Diff Same Diff Same Diff 

E 
C -0.9% 0.9% 0.0% 0.0% 5.6% -5.6% 1.1% -1.1% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

W D 0.0% 0.0% 5.6% -5.6% 0.0% 0.0% 2.1% -2.1% 
E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

Solution type. To determine the types of solutions students provided across 

various task types with common mathematical structures, the initial eleven tasks were 

resorted by the task type (equation or word problem) and the core mathematical task 

(common unknown addends, different unknown addends, or no solution), see Table 28.  

 Nearly all variation in student responses occurred at the fourth grade level. A 

single difference occurred at the fifth grade level where Tim‘s response of a single value 
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for the different unknown addends equations (e.g., 12 =  + ) as described earlier. A 

single difference at the sixth grade level was Maggy‘s response supplying multiple 

solutions for the common unknown addends equations. 

 The remaining differences occurred at the fourth grade level. The only categories 

where all fourth grade responses were coded the same was the different unknown 

addends equation where the 27 responses provided multiple solutions for each variable, 

and the word problem for the common unknown addends where the nine responses 

provided a single solution for the variables.  

In problem 7, an equation with no solution with shapes as the representation of 

the variables, one of the fourth grade students, Sally, interpreted the two triangles in  + 

6 =  as identifying the same value, as demonstrated in the exchange below. 

M: What do those triangles mean? 
S: The same number. 
M: So what numbers would work for that? 
(long pause) 

M: Tell me what you‘re thinking. 
S: Well, I was thinking one like maybe zero but zero wouldn‘t work either. 

I couldn‘t put six there cause then the answer would be twelve. So, I‘m 
trying to think of one that will fit together. I don‘t think that can work. 

M: Why couldn‘t it work? 
S: Because any number you put here [first triangle] cannot be the same 

here [second triangle] because you are adding six to it.  
 

 Sally applied the same meaning for the variables in problem 10 (x + 6 = x) which 

is the same problem type but with the representation of the variables involved letters 

instead of shapes  + 6 = . In addition, she also stated that the corresponding word 

problem had no solutions. Therefore, she applied a consistent interpretation for these 

three problems. However, she did not employ the same meaning when the representation 

of the variables involved blanks, ___ + 6 = ___. Instead, she treated the blanks as having 
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different values (e.g., 6 + 6 = 12). Interestingly, she was the only student across all three 

grades to apply this meaning to each of these forms of the problem. However, all but two 

of the students in the study stated that the corresponding word problem had no solution. 

Therefore, it appears that students across the grades did not interpret the word problem in 

the same way as the corresponding equations.  

 The two discrepant interpretations for the common unknown addend equation 

(e.g., ___ + ___ = 12 and y + y = 12) occurred when the representation of the variable 

was a letter. Both students treated the common letter in the equation y + y = 12 as the 

same value and determined that the only solution for this equation involved assigning a 

value of 6. It is worth noting that these two students were the only ones who applied this 

interpretation across all of common unknown addends equations regardless of the 

representation of the variable. Even Sally and Maggy did not carry the meaning they had 

for the letters to the equivalent equations with the representation of the variables as 

blanks or shapes. However, all fourth graders, and in fact all students in the study, viewed 

the two variables as the same and assigning the same value when the common unknown 

addend task was presented as a word problem. In addition, the consistent response by all 

students for the common unknown addend word problem was normative while the 

consistent response for the equivalent equations were not normative. In fact, only 4.2% of 

all students gave a normative response to the common unknown addends equations (e.g., 

y + y = 12). 
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Table 28 

Solution Type Across Representation of Variables 

 
4

th
 grade 5

th
 grade 6

th
 grade Total 

    

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

E 

C 
25 

(92.6%) 
2 

(7.4%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
17 

(94.4%) 
1 

(5.6%) 
0 

(0%) 
69 

(95.8%) 
3 

(4.2%) 
0 

(0%) 

D 
27 

(100%) 
0 

(0%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
72 

(100%) 
0 

(0%) 
0 

(0%) 

N 
20 

(74.1%) 
4 

(14.8%) 
2 

(7.4%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
65 

(90.3%) 
4 

(5.6%) 
2 

(2.8%) 

W 

C 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

D 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
22 

(91.7%) 
2 

(8.3%) 
0 

(0%) 

N 
0 

(0%) 
2 

(22.2%) 
7 

(77.8%) 
0 

(0%) 
0 

(0%) 
8 

(88.9%) 
0 

(0%) 
0 

(0%) 
4 

(66.7%) 
0 

(0%) 
2 

(8.3%) 
19 

(79.2%) 
E – equation; W - word problem; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task (e.g., a + b =12); N – 
No solution task (e.g., x + 6 = x) 
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 An examination of the totals from Table 28 demonstrates that responses across the 

grade levels for the different unknown addends tasks (e.g., a + b = 12 and Together Tom 

and Anne have 12 feet of ribbon) were also consistent regardless of the task type, but in 

contrast to the common unknown addends equations they were also normative. Every 

student‘s response for the equation task types, and all but two for the word problem, 

provided multiple solutions for the variables, see Table 28. The two anomalies for the 

word problem occurred with one fourth grader, Julie, and one fifth grader, Tim, who each 

provided a single value solution for the variables.  

When comparing the responses for the equations with common unknown addends 

and different unknown addends tasks in Table 28 nearly all of the students provided 

multiple solutions for the variables, 95.8% and 100% respectively. This indicates that 

students did not distinguish between equations where the representations of the two 

variables were the same and when they were different, resulting in normative responses 

for the different unknown addends (e.g., a + b = 12) where this type of solution is 

normative. 

The largest discrepancy in responses for solution type occurred for the no solution 

tasks. The response percentages for multiple solutions, single solutions, and no solutions 

were 90.3%, 5.6%, and 2.8% respectively for the equations and 0%, 8.3%, and 79.2% 

respectively for the word problems, see Table 28. In a similar pattern to the reversal of 

coding percentages between students providing multiple solution values and single 

solutions for the common unknown addends equations (i.e., ___ + ___ = 12 and y  + y = 

12) and word problem (i.e., Shakira and Tim have the same number of gummy bears. 

Together they have 12 gummy bears), the no solution equations (i.e., ___ + 6 = ____ and 
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x + 6 = x) and word problem (i.e., I start with some number then add 6 and get the same 

number that I started with) percentages switched between students providing multiple 

solutions and no solution, 90.3% and 79.2% respectively when switching from the 

equations to the word problems, see Table 28.  

Differences arose for each of the forms of this task for the fourth grade students 

but only for the word problem version for fifth grade and sixth grade. The single fifth 

grade student who was responded differently, Tim, was unsure about how to interpret the 

word problem (i.e., I start with some number then add 6 and get the same number that I 

started with), as is demonstrated in the exchange below.  

T: I don‘t know.  
M: So what are you thinking about? 
T: I don‘t know. I don‘t really get it.  
M: What? 
T: I don‘t get it. 
M: So you don‘t get the question? 
T: Well, I don‘t know the answer. 
M: So, what were you thinking about? 
T: I thought maybe zero but that wouldn‘t be the same, or twelve cause six 

plus six equals twelve.  
M: So, what are you thinking about there. What is kind of hard there? 
T: Because you can‘t have like a number then plus six and get that same 

number. 
M: So you can‘t do that? 
T: [Shakes head no.] 
M: So are there any numbers that will work? 
T: zero and zero. 
M: So if you take zero plus six you get zero? 
T: No. 
M: So you just told me that you can‘t take a number and add six and get 

that same number, right? 
T: [Shakes head yes.] 
M: So would there be any numbers that work for this? 
T: three and three. 
M: So if I take three plus six do I get three? 
T: [Shakes head no.] 

 



 

 150 

Both sixth grade students who I did not code with one of the solution codes were 

unsure about the solution to the problem and did not provide a solution. One sixth grade 

student, Maggy, originally thought that zero was a solution but realized that she did not 

get the same number as the sum. When asked if she thought there would be any solutions 

for this task she said, ―maybe.‖ The other student, Paul, was also unsure about the 

solution to this problem as demonstrated in the exchange below. 

M: So this one says I start with some number then add six and get the 
same number I started with. What can that number be? 

P: Zero. 
M: I start with zero and add six. 
P: Oh, I start with one number then add six and get. 
M: Tell me what you are thinking about. 
P: I don‘t know. I don‘t really know a number that you can add six and get 

the same number.  
M: Why not? What happens when you add six to a number? 
P: It becomes, if you added six to zero it‘d be six and if you add six to one 

it would just . . .  you just do six, and you add that number so six plus 
two would equal eight. 

M: So are there any numbers you can add six to and get the same number? 
P: (No response.) 
M: Not sure? 
P: No.  

 
In each of these cases, the student did not provide a numerical solution and did not state 

that there would be no solution.  

Therefore, for this set of tasks students‘ responses were highly consistent across 

each of the three core mathematical tasks when these tasks were presented as equations. 

In other words, the core mathematical tasks did not affect responses for the majority of 

the students. This resulted in only the different unknown addends equation (e.g., a + b = 

12) responses as normative while all of the word problems for each of the three core 

mathematical tasks; common unknown addends (e.g., Shakira and Tim have the same 

number of gummy bears. Together they have 12 gummy bears), different unknown 
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addends (e.g., Together Tom and Anne have 12 feet of ribbon), and no solution (e.g., I 

start with some number then add 6 and get the same number that I started with) being 

normative with student responses comprising 100%, 91.7%, and 79.2% of responses 

respectively, see Table 28. Therefore, the task type appeared to influence the solutions 

that students provided.  

Table 29 shows the results of the solution type responses for the confirmatory 

tasks broke down by task type and then core mathematical task. Student responses 

consistently provided multiple solutions across all of the confirmatory tasks. Of the 150 

responses from Table 29, four student responses provided single solutions for each 

variable, two each for the common unknown addends equations and different unknown 

addends word problems. Both of these instances occurred at fourth grade. Two student 

responses indicated that there were no solutions for the common unknown addends 

equations. 
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Table 29 

Confirmatory Task Solution Type Coding Across Task Types 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

E 
C 

32 2 2 36 0 0 24 0 0 92 2 2 
(88.9%) (5.6%) (5.6%) (100%) (0%) (0%) (100%) (0%) (0%) (95.8%) (2.1%) (2.1%) 

D 
36 0 0 36 0 0 24 0 0 96 0 0 

(100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) (100%) (0%) (0%) 

W D 
17 1 0 17 1 0 12 0 0 46 2 0 

(94.4%) (5.6%) (0%) (94.4%) (5.6%) (0%) (100%) (0%) (0%) (95.8%) (4.2%) (0%) 
E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task (e.g., a + b =12); N – 
No solution task (e.g., x + 6 = x) 
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Table 30 

Percentage Point Change in Solution Type Coding Across Representations of Variables from Interview One to Interview Two 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

Multiple 

Values 

Single  

Value 

No  

Solution 

E 
C 3.7% 1.8% -5.6% 0.0% 0.0% 0.0% -5.6% 5.6% 0.0% 0.0% 2.1% -2.1% 
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

W D -5.5% 5.5% 0.0% -5.5% 5.5% 0.0% 0.0% 0.0% 0.0% -4.1% 4.1% 0.0% 
E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – different unknown addends task (e.g., a + b =12); N – 
No solution task (e.g., x + 6 = x) 
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Since the purpose of the confirmatory tasks was to determine if the student 

responses changed from the first interview to the second, I calculated the percentage 

point change in coding results from the first interview to the second, see Table 30. From 

this Table it is apparent that student responses for the solution type category were 

consistent from interview one to interview two. A small change occurred in the common 

unknown addends equation, a 2.1 percentage point decrease in students stating there was 

no solution and a 2.1 percentage point increase in students providing single values for 

both variables. The only other change occurred for the different unknown addends word 

problem, a 4.1 percentage point decrease in students providing multiple solutions and an 

4.1 percentage point increase in students providing single value solutions. 

Variable value responses across task types. Table 31 shows the results for the 

variable value responses by task type (i.e., equation or word problem) and then core 

mathematical task. When the tasks were presented as equations, student responses were 

consistent. The equations for the no solution core task resulted in all students providing 

different values for both variables, a non-normative response since no values will make 

these equations true when applying algebraic conventions to the representations of the 

variables. Nearly all student responses included both the same and different values for the 

two variables for the common unknown addends and different addends tasks: 95.8% and 

100%, and 100% and 97.2% respectively.  

The difference in the percentages for the student responses providing both the 

same and different values for both variables for the common unknown addends were due 

to the three students reported earlier: Jill, Sally, and Maggy who treated the variables as 

the same and assigned a single value to them when the equation was presented with letter 
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representations of the variables. Other than these three students, all students assigned the 

same and different values to the two variables regardless of whether or not the two 

representations of the variables were the same or different.  

Table 31 

Variable Value Across Task Types 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

    

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

E 

C 25 
(92.6%) 

27 
(100%) 

27 
(100%) 

27 
(100%) 

17 
(94.4%) 

18 
(100%) 

69 
(95.8%) 

72 
(100%) 

D 27 
(100%) 

26 
(96.3%) 

27 
(100%) 

27 
(100%) 

18 
(100%) 

17 
(94.4%) 

72 
(100%) 

70 
(97.2%) 

N 25 
(92.6%) 

0 
(0%) 

27 
(100%) 

0 
(0%) 

18 
(100%) 

0 
(0%) 

70 
(97.2%) 

0 
(0%) 

W 

C 0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

D 8 
(88.9%) 

9 
(100%) 

8 
(88.9%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

22 
(91.7%) 

24 
(100%) 

N 0 
(0%) 

1 
(11.1%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1 
(4.2%) 

E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

The difference in the percentages for students providing both the same and 

different values for the two variables for the different unknown addends were due to two 

student responses for the equation were shapes were used as the representation of the 

variable.  

Sally, a fourth grader, viewed the two shapes in  +  = 12 as taking on 

different values and stated that these could not be the same values as demonstrated in the 

following exchange. 

M: So what do the shapes mean for this one? 
S: Different numbers. 
M: So what numbers can I put in there that would make that work? 
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S: Different numbers, eight and four. I can‘t do six and six because they 
represent different numbers. Ten and twelve, eleven and one, five and 
six, wait, five and seven.  

 

 Likewise, Tricia, a sixth grader, treated the two shapes in  +  = 12 as 

different when comparing the variables and believed that they could not be the same 

values as demonstrated in the following exchange. 

T: For these I think they have to be different numbers but they can still be 
any other number as long as they equal twelve. So it could be like nine 
and three, would be 12. So, you could put any number that was. I think 
maybe they are both just blanks and it doesn‘t matter if they are the 
same number or not but I know they are both just symbols you would 
use. 

M: So at first you said something about they can‘t be the same number? 
T: I don‘t know. I can‘t remember if they can‘t be the same number. 

Actually, I think they can be the same number, they are just different 
symbols. Yeah, they can be the same number because of the a and b 

one. They‘re like, it‘s kind of, maybe they can‘t be the same number 
because they are different and they probably would have used the same 
one. I think they might need to be different numbers but they can be 
any other number any other number it didn‘t really matter what they 
were as long as they equal twelve together.   

 
While Sally and Tricia applied a normative algebraic convention to the shapes in 

terms of treating them as different values, they also exhibited the common misconception 

that different variables cannot be the same value. While they applied this meaning for the 

equation when the variables were shapes, they did not extend this meaning to the same 

core problem when the variables were letters.  

When the same core tasks were presented as word problems the results for the 

different unknown addends were close to those for the equations with 91.7% and 100%, 

and 100% and 97.2% For providing different and the same values for the two variables 

respectively. Two students who believed that the answer to the word problem for the 

different unknown addends were the same (i.e., 6 and 6 alone) resulting in the difference 
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in the percentages between students providing different values for the two variables, 

91.7%, and those providing the same values for both variables, 100%. 

However, the results for the common unknown addend (e.g., y + y = 12) and the 

no solution tasks (e.g., x + 6 = x) were very different when the task type is considered. As 

noted above, all student responses for the common unknown addend equation except two 

provided the same and different values for both variables. When I presented this same 

task as a word problem, no student provided different values for both variables and all 

student responses provided the same value for both variables.  For the no solution 

equations, all coded responses, 97.2% of all responses, provided different values for both 

variables and none provided the same value for both variables. When I presented this 

same task as a word problem, only one student‘s response, Brett, provided the same value 

for both variables. This single response resulted from him switching the order of the 

addends implied in the problem to get the equation 6 + 0 = 6. The rest of the students 

indicated that no solution for this task existed. 

Table 32 shows the results for the variable value responses for the confirmatory 

tasks broke down by task type and then core mathematical task. In addition, Table 33 

shows the percentage point differences from interview one to interview two for the 

overlapping categories. 
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Table 32 

Variable Value Codings by Task Type for Interview Two Confirmatory Tasks 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

   
VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

  Diff Same Diff Same Diff Same Diff Same 

E 
C 32 19 36 17 24 21 92 57 

(88.9%) (52.8%) (100%) (47.2%) (100%) (87.5%) (95.8%) (59.4%) 

D 36 15 36 16 24 21 96 52 
(100%) (41.7%) (100%) (44.4%) (100%) (87.5%) (100%) (54.2%) 

W D 17 10 17 11 12 9 46 30 
(94.4%) (55.6%) (94.4%) (61.1%) (100%) (75.0%) (95.8%) (62.5%) 

E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
 

 The same pattern of a decrease in the percentage of responses providing the same 

value for both variables and little to no change in the percentage of student responses 

providing different values, as noted in the discussion thus far for the variable value 

category, is also evident when viewed by task type and core mathematical task. The 

examples and explanation for these differences in the prior sections are also applicable 

and relevant to the results when viewed by task type and core mathematical task.  

Table 33 
 
Variable Value Across Task Type Percentage Point Difference from Interview One to 

Interview Two 

  
4

th
 grade 5

th
 grade 6

th
 grade Total 

   VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

  Diff Same Diff Same Diff Same Diff Same 

E 
C -3.7% -47.2% 0.0% -52.8% 5.6% -12.5% 0.0% -40.6% 
D 0.0% -54.6% 0.0% -55.6% 0.0% -6.9% 0.0% -43.0% 

W D 5.5% -44.4% 5.5% -38.9% 0.0% -25.0% 4.1% -37.5% 
E – equation; W – word problem; C – common unknown addends task (e.g., y + y =12); D – 
different unknown addends task (e.g., a + b =12); N – No solution task (e.g., x + 6 = x) 
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Summary. In the previous section I reviewed the data for each of the three 

categories: variable comparison, solution type, and variable value, for the initial eleven 

tasks from interview one and the confirmatory tasks from interview two across task types. 

In addition, I determined the percentage point change from interview one to interview 

two for each category across task types. In this section, I summarize these results.  

When the task type involved equations, student responses indicated that they 

consistently treated the representation of the variables as taking on different variables for 

both the initial eleven tasks from interview one and the confirmatory tasks from interview 

two regardless of the core mathematical task modeled. In the first interview, only five of 

216 student responses involved students viewing the two variables as the same, see Table 

32. Of these five responses, three were for the common unknown addends equation. The 

other two were both for the no solution equations. I further demonstrated that this 

response pattern was consistent from interview one to interview two.  

However, when I presented the task as a word problem, all student responses 

treated the two variables as the same for the common unknown addends and no solution 

word problems, see Table 32. Further, all student responses treated the two variables as 

different for the different unknown addends word problems. However, since words as 

representations of the variable only occurred in word problems and the blanks, letters, 

and shapes only occurred in equations, the representation of the variable might also play 

a contributing role in these results, see Table 32. This is explored further in the section on 

students meaning of variables across task types. I further demonstrate that student 

responses were consistent from interview one to interview two. 
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 When I presented the tasks as an equation, student responses consistently included 

multiple solutions for both the initial eleven tasks from interview one and the 

confirmatory tasks from interview two regardless of the representation of the variable and 

the core mathematical task being modeled. In interview one, only four of 216 student 

responses involved a single solution. Of these four, two were for the common unknown 

addends equation (e.g., y + y = 12), both at fourth grade, and the other two for the 

different unknown addends word problem (e.g., Together Tom and Anne have 12 feet of 

ribbon), one each at fourth and fifth grade. Further, two student responses stated there 

was no solution for the common unknown addends equation, both at fourth grade, stating 

there was no solution. I further demonstrated that this coding pattern was consistent from 

interview one to interview two. 

In contrast to the prior two categories, coded student responses for the variable 

value category were inconsistent across task types from interview one to two, see Table 

33. In interview one, when the task involved an equation, student responses were 

consistent for the common unknown addends and different unknown addends tasks with 

nearly all students providing both the same and different values for the two variables 

100% and 95.8%, and 97.2% and 100% respectively. For the no solution equation from 

interview one, no students provided different values for the two variables and nearly all 

(97.2%) provided different values. However, when I presented the task as a word 

problem in interview one, the student responses changed. All students provided the same 

values for both variables in the common unknown addends tasks. All students provided 

the same values for both variables and all but two provided the different values for both 

variables in the different unknown addends tasks. Finally, for the no solution core 
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mathematical task only one student provided a solution where the values were the same 

for both variables. 

In interview two, no change occurred in the percent of student responses provided 

different values for both variables when I presented the task as an equation. However, a 

decrease of 40.6 percentage points occurred for the common unknown addends equation 

and a 43 percentage point decrease in the different unknown addends equations. In 

addition, a 37.5 percentage point decrease occurred for the different unknown addends 

word problems. A smaller change occurred in students responding with different values 

for both variables when I presented the task as a word problem. As noted earlier, when I 

presented even sum confirmatory tasks, the coding results were consistent from interview 

one to interview two for the variable value category. The differences occurred for the odd 

sum confirmatory tasks.  

However, as noted in the summary of the previous section, not every combination 

of representation of variable, task type, and core mathematical were included in the 

confirmatory tasks. Therefore, the only comparisons made were for blanks and shapes for 

both the common unknown addends and different unknown addends task, letters for the 

common unknown addends tasks, and words for the different unknown addends tasks.  

Student meaning for variables across representation of variables and task 

type (research question d) 

In the following section, I discuss students‘ meaning of variables across 

representations of variables and task types. While the previous two sections examined the 

data for each of these separately, this section involves data that explore students‘ 

meanings for variables when considering both the representation of the variable and the 
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task type. In this section, I share coded student responses for the comparison and sorting 

tasks for the initial eleven tasks from interview one, and the algebraic property tasks from 

interview two. Finally, I summarize the findings from this section along with the results 

from the prior two sections.  

 Sorting tasks. The students completed two sorting tasks. For the first sorting task, 

the students sorted the seven tasks for the common unknown addends (e.g., y + y = 12 

and  +  = 12) and different unknown addends tasks (e.g., a + b = 12 and  +  = 

12). The second sorting task included the four no solution tasks. I instructed students to 

sort the tasks into groups that meant the same thing. I then asked the students to explain 

how they grouped the problems and how the groups they generated were different from 

each other.  

The student responses were coded using one of five codes to determine the 

criteria the students used to sort the tasks into groups of tasks that mean the same thing, 

see Figure 21. I developed these codes using a constant comparison method to capture the 

essence of the commonalities across students‘ responses and the strategies employed for 

sorting the tasks. As codes were developed, the codes were applied, modified, and 

additional codes were added until no further codes emerged. 
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Code Description 

WP/EQ Student sorted the tasks into two groups, one with the word problems and 
the other with the equations. 

All Same Student placed all of the tasks into a single group indicating that they 
were all the same. 

VarRep Student sorted the tasks into groups based on the representation of the 
variable (i.e., letters, shapes, words, and blanks). 

SameDiff Student sorted the tasks into groups where the two representations of the 
variable were the same (e.g., y and y) and the two representations of the 
variable were different (e.g., a and b). 

Other Student sorted the tasks into groups not characterized by one of the above 
codes.  

Figure 22. Sorting Codes 

 
Table 34 shows the number of responses for each of the two sorting tasks, and 

corresponding percentages, for each grade as well as for all students included in the study. 

A single fourth grade student did not complete the sorting or comparison tasks for the 

first interview resulting in 23 total responses.  

For both sorting tasks, the number of students sorting the tasks by task type (i.e., 

sorting into two groups, one with the word problems and the other with the equations) 

increased across grades four to six. For the first sorting task, the percent of students 

applying this sorting strategy from fourth to sixth grade was 22.2%, 33.3%, and 83.3% 

respectively. For the second sorting task, the percent of students applying this sorting 

strategy from fourth to sixth grade was 33.3%, 55.6%, and 100% respectively. As shown 

in the table, this strategy was the most often employed for the two sorting tasks, 43.5% 

and 60.9% respectively.   
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Table 34: 

Sorting Code Results 

Core  
Tasks Grouping strategy 4th 

grade 
5th 

grade 
6th 

grade Total 

C 

Two groups, one with the word problems 
and the other with the equations. 2 

(25%) 
3 

(33.3%) 
5 

(83.3%) 
10 

(43.5%) 

Placed all of the tasks into a single group 
indicating that they were all the same 

1 
(12.5%) 

0 
(0%) 

0 
(0%) 

1 
(4.3%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

1 
(12.5%) 

3 
(33.3%) 

0 
(0%) 

4 
(17.4%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

1 
(12.5%) 

0 
(0%) 

1 
(16.7%) 

2 
(8.7%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

3 
(37.5%) 

3 
(33.3%) 

0 
(0%) 

6 
(26.1%) 

N 

Two groups, one with the word problems 
and the other with the equations. 3 

(37.5%) 
5 

(55.5%) 
6 

(100%) 
14 

(60.9%) 

Placed all of the tasks into a single group 
indicating that they were all the same 

3 
(37.5%) 

0 
(0%) 

0 
(0%) 

3 
(13.0%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

1 
(12.5%) 

1 
(11.1%) 

0 
(0%) 

2 
(8.7%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

0 
(0%) 

1 
(11.1%) 

0 
(0%) 

1 
(4.3%) 

Sorted the tasks into groups based on the 
representation of the variable (i.e., letters, 
shapes, words, and blanks) 

1 
(12.5%) 

2 
(22.2%) 

0 
(0%) 

3 
(13.0%) 

C – common unknown addends task (e.g., y + y =12); N – No solution task (e.g., x + 6 = x) 
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 For the first sorting task, no student sorted the tasks into groups having 

mathematically equivalent structures (e.g., grouping y + y = 12 and  +  = 12). The 

closest any of the students came to such a grouping were the two students who sorted the 

tasks into groups where the two representations of the variable were the same (e.g., y + y 

= 12 and  +  = 12) and the two representations of the variable were different (e.g., a 

+ b = 12, and  +  = 12). These students grouped equations together that had 

mathematically equivalent structures but also put the word problems together into a 

separate group not recognizing the relationship between the word problems and the 

equations.  

For example, Sally generated four groups. One groups consisted of the two word 

problems, another contained the equations with the same variables (i.e., y + y  = 12 and  

+  = 12), another contained equations with different representations of the variables 

(i.e., a + b = 12, and  +  = 12). Her final group contained the equation with blanks, 

which she referred to as an ―oddball‖ and treated differently from the other equations. 

Sally stated that the group containing the equations with the same variable (y + y = 12, 

and  +  = 12) only had solution sets of 6 and 6. She stated that the group containing 

the equations with the different variables (a + b = 12, and  +  = 12) could not be 6 

and 6 since the representations of the variables were different. However, she stated that 

the numbers that could go in the blanks for ___ + ___ = 12 could be the same or different. 

Therefore, she held a different meaning for the blanks then she did for the other 

representations of the variables.  

For the second sorting task, only three fourth graders identified all equations and 

the word problem as the same. However, only one student identified a mathematically 
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valid reason for them being the same. One other student, Beth, initially stated that they 

were all the same because they were all adding six. However, when she was asked what 

the solutions were for the word problem she stated, ―I don‘t know.‖ When asked what 

numbers would work for the equations she initially stated that any number would work 

but later changed her answer to any number over 6, assuming that the sum had to be 

greater than the greatest addend. When asked if that would also work for the word 

problem she said it would not.  

The other student, Mark, said they could all equal the same number, ―like four‖ 

and they all had sixes. He appears to have believed that the two representations of the 

variables could be different (e.g., 4 + 6 = 10).  

 Comparison tasks. For the comparison tasks, each student was presented with a 

pair of tasks based on the representations of the variables (word, shapes, and letters). For 

one of the problems the variables were the same and for the other they were different 

(e.g., y + y =12 and a  + b =12, and  +  = 12 and  +  = 12). The purpose of these 

tasks was to gather evidence of any differences or similarities students had for these pairs 

of tasks. I coded each comparison task using the codes shown in Figure 22. I developed 

these codes based on the student responses using a constant comparison method.  
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Code Description 

Same Two tasks compared mean the same thing (same #s work for both). 

SS/DD Same representation means same number, and/or different 
representation means different number (e.g., 6 and 6 a solution for a  + 
b =12). 

Rep# Representation alone determines number (e.g., square big number, 
triangle small number). 

SS/DD L Same letter means same #/Different letter means diff # (does not hold 
for shapes). 

Figure 23. Comparison codes 

 
Table 35 shows the number of student responses for each of the comparison tasks, 

and corresponding percentages, for each grade as well as for all students included in the 

study. A single fourth grade student did not complete the sorting or comparison tasks for 

the first interview resulting in a final n = 23.  

Table 35 
 
Comparison Results 

Code 
4

th
 

grade 

5
th

 

grade 

6
th

 

grade 
Total 

Two tasks compared mean the same thing (same 
#s work for both). 

5 
(21.7%) 

7 
(30.4%) 

4 
(17.4%) 

16 
(69.6%) 

Same representation means same number, and/or 
different representation means different number 
(e.g., 6 and 6 a solution for a  + b =12). 

2 
(8.7%) 

0 
(0%) 

2 
(8.7%) 

4 
(17.4%) 

Representation alone determines number (e.g., 
square big number, triangle small number). 

1 
(4.3%) 

1 
(4.3%) 

0 
(0%) 

2 
(8.7%) 

Same letter means same #/Different letter means 
diff # (does not hold for shapes). 

0 
(0%) 

1 
(4.3%) 

0 
(0%) 

1 
(4.3%) 

 
When comparing the two sets of equations the students responded consistently 

(i.e., they did not change their responses based on whether the representation of the 

variables were shapes or letters). Sixteen students (69.6%) stated in each case that the 
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equations were the same, (i.e., it did not matter if the representation of the variables were 

the same or different). The common misconception held by students in algebra and 

beyond ―who are aware of the proposition that the same letter stands for the same number 

… tend to think that the converse of this proposition is also correct‖ (Fujii & Stephens, 

2008), occurred with four of the students, two fourth and two sixth graders.  

Two students, one fourth and one fifth grader, held that the representation of the 

variables determines the numbers that could be used in the equations. For example, Julie, 

a fourth grader, initially stated that the solutions for  +  = 12 would also work for  

+  = 12. When asked if the solutions for  +  = 12 would also work for  +  = 12 

she said, ―no.‖ She then said that she was not sure. She was also uncertain if 5 and 7 

could be solutions for both equations. She then stated that maybe 6 and 6 would work for 

 +  = 12 and 5 and 7 would work for  +  = 12. When asked if 6 and 6 would also 

work for  +  = 12 she said she was unsure. However, she did not demonstrate same 

uncertainty for y + y = 12 and a + b =12 where she stated that 6 and 6 was a solution as 

were 9 and 3 and 10 and 2. Therefore, the representation of the variables, shapes versus 

letters, resulted in different interpretations for her. 

The other student, Larry, a fifth grader, stated that he thought the squares in  + 

 = 12 and  +  = 12 meant ―big‖ numbers and the triangle meant ―small‖ numbers. 

Therefore, Larry stated that  +  = 12 meant two ―big‖ numbers added together to 

equal twelve and  +  = twelve meant a ―big‖ number plus a ―small‖ number equaled 

twelve. He did not indicate that the two ―big‖ numbers had to be the same. However, 

when presented with the equations y + y = 12 and a + b =12, he indicated that the same 

values were solutions for both variables in both equations. Therefore, similar to Julie, 
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different representations of the variables, shapes versus letters, resulted in different 

meanings for the variables.  

Finally, one fifth grader, Lisa sorted the tasks based on the belief that the same 

letter means same number and different letters mean different numbers for all cases 

except when the representation of the variables were shapes. She held that the same letter 

meant the same number and different letters meant different number in y + y = 12 and a + 

b =12. However, she did not extend this meaning to shapes where she said that she did 

not think that there was anything different about  +  = 12 and  +  = 12. When 

prompted further for any differences she stated that the shapes were different, ―but that 

doesn‘t matter.‖ 

 Algebraic property. Tasks 7 and 15 both model a generalization, or 

algebrafication, of an arithmetic property: if you add a value to a starting value and then 

subtract this same value, you get the starting value. Task 7 (  +  –  = ) uses shapes 

and task 15 (x + y – y = x) uses letters as representations of the variables. In each case, 

the students were asked if the equation would be true always, sometimes, or never. 

Students were then asked follow up questions to determine why they answered as they 

did, and for examples of their thinking. The student responses were then coded using the 

same three categories used for the other sets of tasks: variable comparison, solution type, 

and variable values. Tables 36 and 37 display these results for each task.  
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Table 36 

Task 7 (  +  –  = ) Student Responses 

 Variable comparison Solution type Variable Value When equation is true 

  

Same Diff 

Multiple 

Values 

Single  

Value 

No  

Solution 
VAL_ 

Diff 

VAL_ 

Same Always Sometimes Never   

4th grade 9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

5th grade 6 
(66.7%) 

3 
(33.3%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

4 
(44.4%) 

9 
(100%) 

1 
(11.1%) 

8 
(88.8%) 

0 
(0%) 

6th grade 0 
(0%) 

5 
(83.3%) 

5 
(83.3%) 

0 
(0%) 

0 
(0%) 

5 
(83.3%) 

3 
(50%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

Total 16 
(66.7%) 

8 
(33.3%) 

23 
(95.8%) 

0 
(0%) 

0 
(0%) 

9 
(37.5%) 

21 
(87.5%) 

10 
(41.7%) 

14 
(58.3%) 

0 
(0%) 
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Table 37 

Task 15 (x + y – y = x) Student Responses 

 Variable comparison Solution type Variable Value When equation is true 

  

Same Diff 

Multiple 

Values 

Single  

Value 

No  

Solution 
VAL_ 

Diff 

VAL_ 

Same Always Sometimes Never   

4th grade 6 
(66.7%) 

3 
(33.3%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

3 
(33.3%) 

9 
(100%) 

5 
(55.6%) 

4 
(44.4%) 

0 
(0%) 

5th grade 6 
(66.7%) 

3 
(33.3%) 

8 
(88.9%) 

0 
(0%) 

0 
(0%) 

3 
(33.3%) 

8 
(88.9%) 

4 
(44.4%) 

3 
(33.3%) 

1 
(11.1%) 

6th grade 0 
(0%) 

4 
(66.7%) 

4 
(66.7%) 

0 
(0%) 

0 
(0%) 

3 
(50%) 

3 
(50%) 

0 
(0%) 

4 
(66.7%) 

1 
(16.7%) 

Total 12 
(50%) 

10 
(41.7%) 

21 
(87.5%) 

0 
(0%) 

0 
(0%) 

9 
(37.5%) 

20 
(83.3%) 

9 
(37.5%) 

11 
(45.8%) 

2 
(8.3%) 
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 Variable comparison. The student responses for the equation   +  –  =  

provides an interesting pattern in the variable comparison category where students treated 

the variables as referring to the same or different values. At the fourth grade level, every 

student viewed the same representation of the variable as the same variable, paralleling a 

normative algebraic interpretation. At the fifth grade level, 6 of 9 student responses 

involved interpreting the two pairs of representations of the variable (i.e., s and s) as 

the same and 3 of 9 treated the two pairs of variables as referring to different variables, 

assigning different values to each  and/or . At the sixth grade level, no student 

viewed the two pairs of representations of the variables as the same and five of six 

student responses demonstrated that that they viewed the two pairs of representations as 

different values with one student unsure whether to treat same representation of the 

variable as the same or different. Therefore, for this task the fourth graders paralleled a 

normative algebraic meaning of the variable. This normative response decreased at the 

fifth grade level and no sixth grade students displayed such a meaning.  

 For x + y – y = x the coding responses for fifth and sixth grade were consistent 

with those of   +  –  =  with the exception of one fewer coded response at the 

sixth grade level. Two sixth grade students were unsure whether they should treat the 

letters as the same or different. However the codes for the fourth grade responses shifted 

from all treating the two representations of the variables as the same for task seven, to 

66.7% treating the two representations of the variables as the same and 33.3% treating the 

two representations of the variables as different for x + y – y = x. Therefore, it appears 

that fourth graders, while paralleling a normative algebraic meaning for comparing 
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variables, were less stable in their comparison across this tasks where the core 

mathematical task stayed the same and the representation of the variable changed.  

 Solution Type. Across both tasks at each grade level, students assigned multiple 

values to each of the variables. As noted before, this does not address the types of values 

that they assigned. Instead, I only intended this coding scheme to establish the 

trichotomous distinction between multiple, single, or no assignment of values to variables. 

These results show that, for this population and these two tasks, the solution type was 

highly stable.  

 Variable value. For task seven, the student responses for the variable value 

category parallel those of the variable comparison category. The fourth grade responses 

all paralleled a normative algebraic response in that all of the fourth grade response 

assigned the same value to the same representation of the variable, in this case shapes. 

While all fifth grade responses also assigned the same value to the same representation of 

the variable, four of nine student responses also assigned different values to the same 

representation of the variable. At the sixth grade, only half of the students gave responses 

where they assigned the same value to the same representation of the variable while five 

of the six students also assigned different values to the same representation of the 

variable.   

For x + y – y = x, now representing the variables with letters instead of shapes, the 

fourth grade responses all paralleled a normative algebraic response in that all of the 

fourth grade response assigned the same value to the same representation of the variable, 

but 3 of 9 assigned different values to the same representation of the variable. At the fifth 

grade level, the number of responses for each code decreased by one resulting in eight of 



 

 174 

the nine responses assigning the same value to the same representation of the variable and 

three of the nine student responses assigned different values to the same representation of 

the variable. At the sixth grade level the number of student responses for x + y – y = x 

were the same as those for task seven.  

Therefore it appears that fourth graders, while paralleling a normative algebraic 

meaning for solution type for   +  –  = , were less stable in their comparison 

across these tasks where the core mathematical task stayed the same and the 

representation of the variable changed. The fifth and sixth grade responses were more 

consistent from task to task but less algebraically normative than those of the fourth grade 

responses.  

Always, sometimes, never. Finally, when asked if the equations would be true 

always sometimes or never, for task seven the coding results for when the equation would 

be true somewhat parallel those of the variable comparison and solution type category. 

The fourth grade responses all paralleled a normative algebraic response in that all of the 

fourth grade responses stated that the equation would be always true. At the fifth grade 

level 1 of 9 students stated that the equation would be true always and the remaining 

eight all said it would be true sometimes.  All sixth graders responded that the equation 

would be true sometimes.  

For x + y – y = x, as in the other categories except for solution strategy, the results 

were inconsistent with those of task seven. Five fourth graders responded that the 

equation would always be true with the remaining students stating that they equation 

would be true sometimes. Four fifth graders responded that the equation would always be 

true; three stated it would be true sometimes, and a single fifth grader stated that it would 
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never be true. No sixth graders responded that the equation would always be true; four 

stated it would be true sometimes, and a single sixth grader stated that it would never be 

true. 

Therefore it appears that fourth graders, while paralleling a normative algebraic 

meaning for when the equation would be true for task seven, were less stable in their 

comparison across these tasks where the core mathematical task stayed the same and the 

representation of the variable changed. The fifth and sixth grade responses were more 

consistent from task to task but less algebraically normative than those of the fourth grade 

responses.  

Comparing expressions. The final set of tasks for the second interview consisted 

of the core mathematical task of deciding which of two expressions (the sum of a number 

and itself, and the sum of the number and 5) are greater and for what values. This core 

mathematical task was written with shapes, blanks, letters, and words, see Figure 23. For 

each pair of expressions the student responses were coded for the three core categories: 

variable comparison, solution type, and variable value. In addition, student responses 

were coded to identify which of the expression they stated would be greater, or if it 

depended which would be more. If the student stated that it depended then follow-up 

questions were posed, to determine what they meant by this and for which values each 

would be greater. If a student stated that one of the expressions was greater, they were 

then asked if that expression would always be greater than the other. 
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Task #: Representation of 

variables 
Task 

10: shapes Which is more,  +  or 5 + ? 

11: blanks Which is more, ___ + ___ or 5 + ___? 

13: letters Which is more, a + a or a + 5? 

14: words I am thinking of a number. Which is more, my number 

added to itself or five plus my number? 

Figure 24: Expression comparison tasks 

 
 Variable comparison. The results of coded student responses for the variable 

comparison category are shown in Table 38. Student responses consistently involved 

different values for the non-word representation of the variables (i.e., shapes, blanks and 

letters) as shown in the total column in Table 38. However, when I presented the 

representation of the variable in words, more student responses (79.2%) involved the 

same value to both variables. The expressions with the non-word representations of the 

variables (i.e., blanks, letters, and shapes) resulted in different values being assigned by 

students, 83.3%, 87.5%, and 75% respectively, and providing the same value to both 

variables, 20.8%, 8.3%, and 20.8% respectively. In contrast, the expressions where the 

representation of the variable was words, in a word problem, students more often 

provided the same value for both variable, 79.2%, than different values for the two 

variables, 16.7%.  
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Table 38 

Variable Comparison Category for Expression Comparison Tasks 

  4
th

 grade 5
th

 grade 6
th

 grade Total 

  Same Diff Same Diff Same Diff Same Diff 

s 3 
(33.3%) 

6 
(66.7%) 

1 
(11.1%) 

8 
(88.9%) 

1 
(16.7%) 

6 
(100%) 

5 
(20.8%) 

20 
(83.3%) 

b 2 
(22.2%) 

6 
(66.7%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

2 
(8.3%) 

21 
(87.5%) 

l 3 
(33.3%) 

5 
(55.6%) 

1 
(11.1%) 

8 
(88.9%) 

1 
(16.7%) 

5 
(83.3%) 

5 
(20.8%) 

18 
(75%) 

w 6 
(66.7%) 

2 
(22.2%) 

8 
(88.9%) 

1 
(11.1%) 

5 
(83.3%) 

1 
(16.7%) 

19 
(79.2%) 

4 
(16.7%) 

b – blanks; l letters; s – shapes; w –words 
 

 Solution Type. Table 39 displays the results of the solution type responses for the 

expression comparison tasks. Student responses were consistent across all of the tasks. 

With the exception of a single instance in task 13 (i.e., Which is more, a + a or a + 5?), 

where one fifth grade student supplied a single value solution, every other response for 

every the tasks provided multiple values for the variables regardless of the representation 

of the variables. This was the same student reported earlier who believed that both letters 

had to be the same value.
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Table 39 

Solution Types for Expression Comparison Tasks 

 4
th

 grade 5
th

 grade 6
th

 grade Total 

 SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None  

s 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

b 9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

l 9 
(100%) 

0 
(0%) 

0 
(0%) 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

23 
(95.8%) 

1 
(4.2%) 

0 
(0%) 

W 8 
(88.9%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

23 
(95.8%) 

0 
(0%) 

0 
(0%) 

b – blanks; l letters; s – shapes; w –words 
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 Variable value. The results of coding student responses for the variable value 

category, see total column in Table 40, show that the expressions with the non-word 

representations of the variables (i.e., blanks, letters and shapes) all had a high percentage 

of responses that included different values for the two variables 87.5%, 95.8%, and 75% 

respectively. Further, these responses provided the same value to both variables, 91.7%, 

95.8%, and 91.7% respectively. For these tasks, students tended to assign both the same 

values to the same representation of the variable and different values to the same 

representation of the variable. In contrast, the expressions where the representation of the 

variable was words, in a word problem, a higher percentage of responses involved 

providing the same value for both variables, 91.7%, than responses with different values 

for both variables, 20.8%. In these latter tasks, students viewed ―my number‖ as always 

being the same value whereas they viewed the same letter, shape, and blank in the others 

as being able to take on both the same and different values.  

Table 40 

Variable Values for Expression Comparison Tasks 

 4
th

 grade 5
th

 grade 6
th

 grade Total 

  

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

s 7 
(77.8%) 

8 
(88.9%) 

8 
(88.9%) 

9 
(100%) 

6 
(100%) 

5 
(83.3%) 

21 
(87.5%) 

22 
(91.7%) 

b 8 
(88.9%) 

8 
(88.9%) 

9 
(100%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

23 
(95.8%) 

23 
(95.8%) 

l 6 
(66.7%) 

8 
(88.9%) 

7 
(77.8%) 

8 
(88.9%) 

5 
(83.3%) 

6 
(100%) 

18 
(75%) 

22 
(91.7%) 

w 2 
(22.2%) 

8 
(88.9%) 

1 
(11.1%) 

9 
(100%) 

2 
(33.3%) 

5 
(83.3%) 

5 
(20.8%) 

22 
(91.7%) 

b – blanks; l letters; s – shapes; w –words 
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Summary. The results of the sorting task demonstrate that students attended to 

the task type in determining tasks that meant the same for the common and different 

unknown addend, and no solution tasks, 43.5% and 60.9% respectively. This was 

supported in the previous sections were student coded responses were consistent across 

the three coding categories when the representation of the variable was blanks, letters, 

and shapes which were all presented in equations but different from those represented 

with words which were in word problems. The only differences in these results were the 

odd sum confirmatory tasks discussed previously.  

 The conclusion that students focus on task type versus representation of the 

variable was also supported in the comparison tasks were students compared the same 

variable representation and task type for the common and different unknown addend 

tasks. Students‘ responses demonstrated that they treated the two variables in each task as 

the same for 69.6% of coded responses. Further, only four students (17.4%) viewed the 

same representation of the variable as the same value and/or different representations of 

the variable meant only different values. One student held the same meaning for 

representations of the variables for letters but not for blanks or shapes. The remaining 

students inferred values for the representation of the variable based solely on attributes of 

the representation of the variable itself such as the square means a bigger number than the 

triangle because the square was bigger.  

 Student responses for the algebraic property tasks also pointed to the impact of 

the students‘ fragile and inconsistent meanings for variables in interpreting equations. For 

the equation   +  –  =  every student response for the solution type provided 

multiple values for the variables (95.8%) and 66.7% as treated the same representation of 
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the variable (e.g., the two squares in   +  –  = ) showing they held that the same 

representation meant the same number. However, only 10 of 24 students responses 

(41.7%) involved stating that the equation would always be true with the remaining 14 

stating the equation would be true sometimes. In contrast, when the equation was x + y – 

y = x all student responses for the solution type provided multiple values for the two 

variables (87.5%) but fewer student responses demonstrated that they treated the same 

representation of the variable as the same (50%) showing they held that the same 

representation meant the same number. Further, only nine of 24 students‘ responses 

(37.5%) stated that the equation would always be true, 11 stating the equation would be 

true sometimes (45.8%), and two stating it would never be true (8.3%). While there was 

some consistency in student coding between these two tasks the differences in coding 

appear to be due to the representation of the variable, although the influence of prior tasks 

may have also played a part. 

 Finally, the coding results for the expression comparison tasks were consistent 

with the coding results found for the eleven equations from interview one and the 

confirmatory tasks from interview two. Students consistently, although to a lesser degree, 

treated the same representations of the variables in the expressions as different when the 

representations were shapes, blanks, and letters, 83.3%, 87.5%, a and 75% respectively 

which were all presented symbolically (i.e., non-word). However, when I presented the 

representation of the variable in words in a word problem only 16.7% of student 

responses treated the variables as different with 19.2% treating the representation of the 

variables as the same.  
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 A similar difference occurred for the variable value category where students 

consistently assigned both the same and different values to the same representations of 

the variables in the expressions when the representations were shapes, blanks, and letters, 

91.7% and 87.5%, 95.8% and 95.8%, and 91.7% and 75% respectively which were all 

presented symbolically (i.e., non-word). However, when the representation of the 

variable was presented in words in a word problem only 20.8% of student responses 

provided different values for the two variables with 91.7%% assigning the same value to 

the representation of the variables. 

 Therefore, students‘ meanings across representations of variables and task types 

were fragile for the meaning of the variable and more consistent for the task type. The 

results appear to point to students attending more to the type of task in which the problem 

is posed than to the representations of the variables. Further, as discussed in the section 

on quasi-variables, the values presented in the tasks also influence the values that 

students assign to the variables. Students consistently assigned boundary values to the 

variables believing that addends had to be less than or equal to the sum, extending a 

property of whole numbers to integers and rational numbers. Further, differences between 

coding results for the even and odd sums also produced boundary values where the 

majority of students believed that odd sums had to have different addend values, 

extending a property of whole numbers to rational numbers.  

Summary. In the previous section I reviewed the data for each of the three 

categories: variable comparison, solution type, and variable value, for the initial eleven 

tasks from interview one and the confirmatory tasks from interview two across task types. 
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In addition, I determined the percentage point change from interview one to interview 

two for each category across task types. In this section, I summarize these results.  

When the task type was equations, student responses consistently treated the 

representation of the variables as different variables for both the initial eleven tasks from 

interview one and the confirmatory tasks from interview two regardless of the core 

mathematical task being modeled. In interview one, only five of 216 student responses 

involved treating the two variables as taking on the same values. Of these five, three were 

for the common unknown addends equation. The other two were both for the no solution 

equations. I further demonstrated that this coding pattern was consistent from interview 

one to interview two.  

However, when I presented the task as a word equation all student responses 

involved viewing the two variables as the same for the common unknown addend and no 

solution word problems. Further, all student responses involved viewing the two 

variables as different for the different unknown addends word problems. However, since 

words as representations of the variable only occurred in word problems and the blanks, 

letters, and shapes only occurred in equations the representation of the variable may also 

play a contributing role in these results. This is explored further in the section on students 

meaning of variables across task types. I further demonstrated that this coding pattern 

was consistent from interview one to interview two. 

 When I presented the tasks as an equation, student responses consistently 

produced multiple solutions for both the initial eleven tasks from interview one and the 

confirmatory tasks from interview two regardless of the representation of the variable and 

the core mathematical task being modeled. In interview one, only four of 216 students 
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responses involved a single solution. Of these four, two were for the common unknown 

addends equation, both at fourth grade, and the other two for the different unknown 

addends word problem, one each at fourth and fifth grade. Further, two student responses 

stated there was no solution for the common unknown addends equation, both at fourth 

grade, stating there was no solution. I further demonstrated that this coding pattern was 

consistent from interview one to interview two. 

In contrast to the prior two categories, student responses for the variable value 

category were inconsistent across task types from interview one to two. In interview one, 

when the task was presented as an equation coded student responses were very consistent 

for the common unknown addends and different unknown addends tasks with nearly all 

students providing both the same and different values for the two variables 100% and 

95.8%, and 97.2% and 100% respectively. For the no solution equation from interview 

one, no students gave different values for the two variables and nearly all (97.2%) gave 

different values. However, when I presented the task as a word problem in interview one, 

the student responses changed. All students provided the same values for both variables 

in the common unknown addends tasks. All students provided the same values for both 

variables and all but two provided the different values for both variables in the different 

unknown addends tasks. Finally, for the no solution core mathematical task only one 

student provided a solution where the values were the same for both variables. 

In interview two, there was no change in the percent of student responses 

provided different values for both variables when I presented the task as an equation. 

However, a decrease of 40.6 percentage points occurred for the common unknown 

addends equation and a 43 percentage point decrease in the different unknown addends 
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equations. In addition, a 37.5 percentage point decrease was found for the different 

unknown addends word problems. A smaller change occurred in students responding 

with different values for both variables when the task was presented as a word problem 

As noted earlier, when even sum confirmatory tasks were presented the coding results 

were consistent from interview one to interview two for the variable value category. The 

differences occurred for the odd sum confirmatory tasks.  

However, as noted in the summary of the previous section, not every combination 

of representation of variable, task type, and core mathematical were included in the 

confirmatory tasks. Therefore, the only comparisons made were for blanks and shapes for 

both the common unknown addends and different unknown addends task, letters for the 

common unknown addends tasks, and words for the different unknown addends tasks.  
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CHAPTER 5: DISCUSSION OF KEY FINDINGS, 

IMPLICATIONS, LIMITATIONS, FUTURE RESEARCH 

In this study, I sought to answer the question: How do grade 4-6 students interpret 

various representations of variables when presented in different forms and different task 

types? To answer the aforementioned question, I addressed the following subquestions.  

a. What solution sets do grade 4 – 6 students generate for tasks with equivalent 

mathematical structures across representations of variables (i.e., blanks, letters, 

shapes and words) and different task types (i.e., word problem or equation)? 

b. How do grade 4-6 students interpret variables across various representations 

of the variable (i.e., place holder or letter-symbolic)? 

c. How do grade 4-6 students interpret variables across different task types 

(word problem or equation)? 

d. How do grade 4 - 6 students interpret variables across various representations 

of a variable (i.e., place holder or letter-symbolic) and different task types 

(word problem or equation)? 

In this chapter, I synthesize the results reported in the previous chapters in light of 

the theoretical and conceptual frameworks discussed in chapter one. I divided this chapter 

into four main sections: discussion of key findings, implications, limitations, and 

recommendations for future research.  

Discussion of Key Findings 

 As noted in the first two chapters, the primary focus of research on students‘ 

meaning for and use of variables has focused almost solely on conventional letter-
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symbolic representation of variables (e.g., Fujii & Stephens, 2008; Kaput, 2008a; 

MacGregor & Stacey, 1997; Radford, 2000; Sfard & Linchevski, 1994). Further, nearly 

all of this research has been conducted at the middle school level and beyond with 

students in algebra classes and beyond (cf., Booth, 1984; Carraher, et al., 2000; Carraher, 

et al., 2001; Ellis, 2007; Knuth, et al., 2005; Kuchemann, 1981; Lannin, et al., 2006; 

MacGregor & Stacey, 1997; Swafford & Langrall, 2000; Warren & Cooper, 2008b). In 

other words, research on students‘ meanings for and use of conventional and informal 

representations of variables in the elementary grades is anemic. In this study, I extended 

the findings of the extant literature to include grade 4- 6 students meanings for formal 

and informal representations across various representations of the variable (i.e., blanks, 

letters, shapes, and words), task types (i.e., equations and word problems), and core 

mathematical tasks.  

Multiple Variable Tasks. I found that the students in this study did not struggle 

with tasks where they dealt with one or two pairs of variables. In fact, even though they 

did not generally employ a normative algebraic meaning (i.e., the same variables take on 

the same value and different variables take on different and the same values) and use of 

the variables, they drew on their knowledge of addition to reason about both single and 

multiple solutions for variables (e.g., y + y =12 and  +  = 12). Students tended to 

provide the same solutions for both of these examples (e.g., 6 and 6, 5 and 7, 4 and 8, 

etc.).  

From the review of the elementary grades textbooks that the students in this study 

used, enVisionMath (Pearson Education, 2011), I determined that generally the students 

dealt with tasks in which a single variable is used. It appears that such an approach is 
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common among curricular materials and may be due to the assumption that students are 

not developmentally ready to deal with multiple variables. Therefore, curricular materials 

often introduce single variable tasks [e.g., 18 – 9 = ____, ―Hope had 14 dolls in her 

collection. She received 2 more as gifts. How many dolls did Hope have then?‖ (Pearson 

Education, 2011)] that allow for single value solutions and then progress to multiple 

variable tasks and variables with multiple solutions.  

These findings support Carpenter, Franke, and Levi‘s (2003) concern that the 

inclusion of informal representations of variables increases the potential issues associated 

with variable use, such as the difficulty that common notations used in elementary grades 

like ―Find the different numbers you can put in the boxes: ☐ + ☐ = 9‖ can produce (p. 

75). They noted that this notation could be confusing to students as well as contribute to 

the development of misconceptions about the use of variables. They suggest that it would 

be preferable to use the number sentence ☐ +  = 9. However, this change in notation 

assumes that students recognize the square and triangle as different variables. Based on 

the results of this study, I argue that this same concern arises with formal algebraic 

symbols of variables as well. 

 Further, these results support the research findings (e.g., Booth, 1984) that a 

common difficulty that students have in algebra and beyond with using formal algebraic 

symbols involves viewing these symbols as ―objects.‖ However, these findings generally 

did not support the findings that students may interpret formal algebraic symbols as 

taking on specific unknown numbers when they should interpret them as generalized 

numbers. The students in this study regularly provided multiple values that satisfy the 
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tasks, as per their interpretation of the task, which did not always parallel a normative 

algebraic response.   

 However, I cautiously conclude that students viewed their solutions as sets of 

values, or generalized numbers, that satisfy the tasks. I found it difficult to determine if 

the students viewed each variable in this way or if they were instead interpreting each 

pair of values that satisfied the task as different and disconnected from the others. In 

other words, it is unclear if the students generalized their list of solutions as a set of 

solutions or as independent unrelated solutions. 

If the students are not viewing the variables as generalized numbers then the 

introduction of variables in situations that support the generalization of variables as 

objects or specific numbers, as is common in enVisionMath (Pearson Education, 2011),  

may contribute to these common misconceptions. Lobato and Ellis (Lobato & Ellis, 

2002) found that students generalized the slope-intercept form for linear equations, y = 

mx + b, as a difference and how four focusing phenomena (i.e., ―goes up by‖ language, 

well ordered tables, graphing calculator, and uncoordinated sequences and differences) 

contributed to this generalizations. In a similar fashion, the primary use of single 

variables with single value solutions may inadvertently lead students to make the 

generalization that variables represent single value solutions. Further, McNeil, et al., 

(2010) found that the use of letters as mnemonic symbols (e.g., h for height, d for the 

number of dogs) hindered students developing of an algebraically normative meaning for 

variables. Instead of viewing the letters as representing numbers, the students viewed 

them as objects (e.g., h meant height, d meant the number of dogs).  
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These findings are also at variance with Fujii and Stephens‘ (2008) findings that 

―students who are aware of the proposition that the same letter stands for the same 

number … tend to think that the converse of this proposition is also correct‖ (p. 1-51). In 

other words, the students in Fujii and Stephens‘ study often believe that when two or 

more variables are present in an equation the variables must take on different values and 

cannot be the same value (e.g., for a + b = 12, a and b cannot both be 6).  While this 

misconception arose for students in algebra and beyond in the research for formal 

algebraic symbols of variables, it arose for only a few students in this study and these 

students did not consistently apply this misconception across various representations of 

the variables or task types. 

Representations of Variables. Students in this study consistently treated multiple 

representations of variables in the same task as different regardless of whether the 

representations were the same (e.g., y + y =12) or different ( +  = 12) in equations. 

The few students who differentiated between the same and different variables 

inconsistently applied in this meaning across core mathematical tasks presented as 

equations with letters and shapes as the representation of the variables. When the 

representation of the variable was blanks, these students‘ responses differed from those of 

the letters and shapes. Students consistently treated the blanks as different even though 

the blanks were the same representation. In this way, they appear to have a different 

meaning for the same representation of the variable when presented with blanks than they 

did for the letters and shapes. However, when presented as words in word problems the 

students drew on the contextual situation to differentiate between two variables with the 

same or different referents.  
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In this regard, these findings are at variance with the potential difficulties with 

tasks such as ―Find the different numbers you can put in the boxes: ☐ + ☐ = 9‖ noted by 

Carpenter, Franke, and Levi (2003). The reason for this is likely due to students needing 

to recognize that the same variable carry the same value and different variables involve 

the same and different values. For instance, in the first number sentence, ☐ + ☐ = 9, The 

students in this study did not treat the two boxes as having the same value. While 

conventions exist for the treatment of x in x + x = 9, no conventions exist, or at least have 

not been clearly agreed upon, for ―boxes‖ unless we retrospectively apply the 

conventions for conventional letter-symbolic variables to these informal representations. 

In addition, for the equation ☐ +  = 9 students must interpret this notation as requiring 

the square and triangle to be different values (i.e., they cannot be the same value), a 

common misconception in algebra courses and beyond. However, the students in this 

study did not distinguish between tasks such as ☐ + ☐ = 9 and ☐ +  = 9.  

The phrasing of the prompt for ☐ + ☐ = 9, ―Find the different numbers you can 

put in the boxes” also imposes a specific meaning on the representation of the boxes that 

the students in this study did not appear to always hold. By asking the student what 

numbers they can put in the box, the box takes on the role of a placeholder that they are 

to fill in as opposed to a representation that can stand for or represent numbers. However, 

students in this study often stated that the square could be or represent a certain number 

or numbers instead of putting the number(s) in the boxes. While this was not an explicit 

focus of this study, it is worthy of further consideration. 

Since the students in this study did not make such distinctions, the suggestion that 

☐ +  = 9 would be preferable would not, for the students in this study, produce 
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differences in the solutions they provided or how they interpreted the variables. However, 

this distinction is one that we would like students to make and the inclusion of such tasks 

provides the opportunity for this to occur as well as address the misconception that 

variables take on single values and/or represent objects.  

Task Type.  As mentioned in the previous section, students consistently treated 

the multiple representations of variables in the same task as different regardless of 

whether the representations were the same (e.g., y + y =12) or different ( +  = 12) in 

equations. However, this was not true when the representation of the variable involved 

words in word problems.  

The students in this study paralleled a normative algebraic understanding of the 

variables in the word problems as they drew on the explicit meaning of the variables 

provided in the word problems. The language in the word problems supplied information 

not explicitly present in the equations providing the students the needed context to 

determine a normative algebraic solution. As noted in the previous two sections, students 

treated the multiple representations of variables in the same task as different regardless of 

whether the representations were the same (e.g., y + y =12) or different (e.g.,  +  = 

12) in equations. However, the students‘ solutions for the corresponding word problems 

with a common mathematical structure did not exhibit this same meaning.  

These results are similar to Koedinger and Nathan‘s (2004), although they studied 

algebra students solutions across task types using only words and letters as variables. 

While Koedinger and Nathan‘s (2004) study did not show the drastic difference in how 

students interpreted equations and word problems or include the potential differences that 

representations of variables may have had in students‘ solutions, the results  of this study 
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supports their findings that word problems were not necessarily more difficult for 

students to solve than symbolic equations. While Koedinger and Nathan (2004) explored 

the representational effect for students early in algebra courses, the impact that using 

different representations of problems (i.e., story problem, word equation, and symbolic 

equation) have on students‘ performance (see chapters two and three), this study focused 

on students‘ meanings for various representations of variables, something not considered 

by Koedinger and Nathan. For the students in this study, the consistent use of an 

algebraically non-normative solution appears related to the equations‘ lack of a referent, 

which was not the case with the word problems. 

 Quasi-Variable Thinking. Nearly all students in this study consistently 

demonstrated quasi-variable thinking (Fujii & Stephens, 2008) when interpreting 

representations of the variable regardless of the representation of the variable or task type, 

and all students did so for at least some of the tasks. For example, student initial 

responses were often limited to whole number solutions. When probed further some 

students included positive rational values and/or negative values. Further, students 

limited solutions to values that were less than the sum of the task, introducing boundary 

values (Fujii & Stephens, 2008) that the addends could not be greater than the sum. This 

was true even for those students who stated that negative numbers would be acceptable 

values for one of the addends. Students‘ use of boundary values was also evident in the 

large number of students who stated that the two variables in a task with an odd sum 

could not be the same value because only even numbers could have the same addends. In 

this case, the students erroneously extended a property of whole numbers to rational 

numbers.  
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 Students who stated that rational and/or negative values could be included in the 

solution nearly always did so only after I asked if these values could be included. While 

many students stated that one or both of these sets of values would not serve as solutions, 

the students who did state they could be solutions often stated that they would work if 

you included negatives or fractions. For these students, it appears that they needed some 

type of permission or explicit prompt to include these values. In other words, they tended 

to default to whole number solutions and were uncertain whether fractions or negative 

values should be included without prompting.  

This supports and extends Fujii and Stephens (2008) findings to include informal 

representations of variables for students prior to taking an algebra class. Even though the 

above findings point to the differences between student meanings for variables and 

paralleling of normative algebraic solutions for equations and word problems, the 

solutions the students provided did not include all possible solutions.  Fujii and Stephens 

(2008) found that students can engage in quasi-variable thinking, ―general explanations 

of why number sentences like 78 – 49 + 49 = 78 are true and their ability to generate 

specific instances of what they will later see as a general relationship (78 – a  + a = 78)‖ 

(p. 128). They also noted that students often impose ―boundary values‖ that artificially 

bound the solution set and are not valid when applied to formal algebraic equations where 

the variable can be unbounded. For instance, in the previous example students often limit 

the values of a to be between 0 and 78 since a is subtracted from 78.  

Implications  

 In this section, I provide implications primarily for researchers as they expand on 

and add to this study. However, the findings of this study also have implications for 
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instruction and curriculum developers. The latter implications are made with the 

acknowledgement of the limitations noted in the following section. Therefore, these 

implications necessitate further research in this area.  

 Based on the findings of this study, it is apparent that these students‘ meanings for 

variables were fragile and ill formed. Students‘ meanings for variables varied across 

representations of variables and task types. Therefore, if students in this study are typical 

of grade 4-6 students across the US, they need opportunities to explore the meanings of 

various representations of variables across various task types and common core 

mathematical tasks.  

 As reported earlier, students in elementary grades typically engage in tasks where 

they only work with single variables in an equation or expression [i.e., generational 

activities (Kieran, 2007)]. Often these tasks required students to determine a single value 

solution or substitute a single value into an expression and evaluate the result focusing on 

numerical and quantitative reasoning (Carraher & Schlieman, 2007). As reported in the 

extant research, this can result in students generalizing that variables represent a single 

value instead of a set of values (Booth, 1984). To address these issues I provide the 

following four implications from this research that, in addition to transformational 

activities, also include generational activities and global meta/level activities (Kieran, 

2007) as well as building on students numerical and quantitative reasoning and use of 

functions. 

 Meaning of variables. Students in this study consistently demonstrated quasi-

variable thinking (Fujii & Stephens, 2008), focusing on whole number solutions less than 

or equal to the sums of the addition tasks. As students are introduced to variables, and 



 

 196 

unknowns, the definition of variable needs to be extended beyond the current idea that 

the variable only takes on values satisfying the equation to all values, some of which 

satisfy the equation and others that do not. In doing so, the opportunity for discussing 

with students what sets of values do and do not satisfy the task will become a normative 

part of evaluating the use of variables by incorporating global meta/level activities 

(Kieran, 2007) and students‘ numeric and quantitative reasoning (Carraher & Schlieman, 

2007).  

 Through this interpretation of variables, as students move from working with whole 

numbers, to rational numbers, to integers and beyond, they will be better positioned to 

consider the viability of these values for solution sets. For instance, when students move 

from working with whole numbers to fractions they can be engaged in a conversation 

focused on whether these values should be included in the set of values that satisfy the 

task or the set of values that do not satisfy the task. These discussions can address the 

finding of this study that students tended to only consider whole number solutions, the set 

of numbers that they begin learning about in school, by providing a framework through 

which to consider other sets of numbers as they are introduced. 

 Extending the definition of variable as proposed could encourage students to view 

variables as varying quantities that can take of a variety of values, as opposed to the 

common misconception of a single value. Students can consider both the sets of values 

that make the task true, false, or not possible (e.g., x cannot take on the value of 0 

for   
 

 
  incorporating the use of functions as an entry point to early algebra. As 

students progress to higher mathematics, such experiences provide students the 

foundation to draw upon in understanding the trichotomous nature of inequalities (i.e., 
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dividing the Cartesian plane into three regions) 

  Multiple variable tasks. Students in this study were inconsistent with the 

meanings they assigned to variables across tasks with a common mathematical structure. 

While we may consider this inconsistency as a problem, we can also view it as an 

opportunity for students to compare how these tasks are similar and different. In order to 

accomplish this, students need to have experiences working with and comparing a variety 

of formal and informal representations of variables in various task types for tasks with a 

common core mathematical task, see figure 25 for an example. The results of this study 

demonstrated that students did not recognize such tasks as structurally equivalent. 

  For example, throughout this study students consistently interpreted word 

problems differently from equations with a common mathematical structure employing a 

normative algebraic solution for the former and not for the latter.  If students do not 

recognize that a given equation has an equivalent mathematical structure as a given word 

problem then it seems highly probable that they will also have difficulties writing an 

equivalent equation for a word problem [i.e., generational activities (Kieran, 2007)].  

1. Shakira and Tim have the same number of gummy bears. Together they have 12 

gummy bears. How many gummy bears could Shakira have? How many gummy 

bears could Tim have? 

2. Show:  +  = 12   Ask: What numbers can the  be? 

3. Show: ___ + ___ = 12 Ask: What numbers can go in to blanks? 

4. Show: y + y = 12 Ask: What numbers can y be? 
 

Figure 25. Tasks with various representations of the variable and a common 

mathematical structure. 

 This ability to model word problems using mathematical symbolism is an important 
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aspect of school mathematics. Therefore, providing students the opportunity to solve and 

compare tasks with a common mathematical structure but various task types and 

representations of variables will make the inconsistencies seen in this study explicit and 

then may be addressed. 

Extension of symbolization. Each of the prior implications is an important 

foundational component of students‘ early algebra experiences. In viewing these results 

through Kaput‘s (2008b) process of symbolization, it becomes evident that students‘ 

conceptions of informal representations of variables, through mediated experiences, are 

foundational to their generalizations of conventional letter-symbolic variable 

symbolization. Kaput‘s model of the symbolization process provides one way to examine 

how students iteratively revisit their conceptions based on the interaction between 

mediated experiences and representations.  

This model provides a lens for examining generalizations, and the symbolizations 

that students develop to express these generalizations. However, it does not provide a 

means for examining how the students view these symbolizations (e.g., as an object or a 

process) or how students‘ meanings for representations of variables contribute to the 

misconceptions and normative understanding of their meaning and use. If researchers, 

educators, and curriculum developers take the idea that students prior knowledge and 

experiences are to consider in students‘ development of meanings for variable then their 

meanings for these various representations of variables must be taken into account.  

Therefore, understanding students‘ generalizations of the informal representations 

is of great importance to researchers, educators, and curriculum developers. Educators, 

researchers, and curriculum developers need to consider the prior implications in 
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providing the students opportunities to make their understandings explicit. As these 

meanings become evident, further tasks and mediated experiences can then be 

knowledgably developed to build on and address students‘ misconceptions to guide them 

toward a normative understanding of variable and recognize the similarities across 

variables, task types, and mathematical tasks. 

Limitations 

 As noted in the opening chapters of this study, little research into students‘ 

meanings for variables exists prior to middles school algebra classes. Therefore, this 

study was exploratory in nature, and limitations were inevitable.  

 Generalizability. This study involved a small sample of twenty-three students.  

Due to the four consent statements required for participation in the study, the resulting 

sample may be more homogeneous, and less representative, than the student populations 

of the schools. Furthermore, the students in this study all used the same elementary 

mathematics textbook. In addition, no teacher-identified low-achieving sixth grade 

students were included in the study, making the sixth grade sample less representative of 

the population in comparison to the fourth and fifth grade samples. Thus, the results of 

this study cannot be generalized to different populations of students from different 

mathematical backgrounds. Thus, further research is necessary to determine the extent to 

which other students hold similar or different interpretations of variable representations.  

 Extension of tasks. The tasks included in this study only addressed the use of 

various representations of variables for equations, expressions, and word problems. The 

tasks used for this study did not include the same representations of variables for different 

task types (i.e., blanks, letters, and shapes were only used in equations and expressions 
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and words were only used in word problems). Therefore, comparisons of students‘ 

meanings for these specific representations of the variables across various task types were 

not possible. 

 In addition, the equations and word problems included in this study consisted only 

of relatively simple addition situations. The inclusion of mathematical tasks with other 

operations would further expand these findings. Further, during the course of the study it 

became evident that probing students more on what values work and do not work for 

variables across a variety of representations and task types may have provided 

worthwhile results that could result in greater detail into the values students assigned to 

variables.  

 Generational activities. Finally, providing students with opportunities to generate 

different representations of a task (e.g., writing a symbolic equation for a word problem 

or writing a word problem for a symbolic equation) could have expanded on the findings 

from the comparison tasks from interview one. For the common unknown addend word 

problems, having the students attempt to write a symbolic equation would have made the 

need for a way to represent the same value with two variables evident.  

Recommendations for Future Research 

 This study was exploratory in that the extant literature does not provide insight 

into the variety of meanings that students have for various formal and informal 

representations of variables across task types and tasks with common mathematical 

structures. Therefore, these results need replicated in order to determine the 

generalizability of the findings reported herein.   



 

 201 

Expanded studies. Future research needs to expand upon this study to include 

tasks with structures other than the addition problems used in this study, other grade 

levels, and a larger more generalizable sample of students in order to scale up the 

findings and implications for instruction, and curricular materials (Battista & Clements, 

2000; Clements, 2007). This should include further research that involves the same 

representations of variables across task types for tasks with common mathematical 

structures. The mathematical tasks also need to be extended beyond the addition tasks 

used in this study to include subtraction, multiplication, division, and part-part-whole 

tasks.  

 Trajectories. As the research base on students‘ meanings for variables evolves 

and becomes more cohesive; research can extend to generating learning trajectories for 

the development of students‘ meanings for variables. One way to accomplish this would 

be to examine the development of students‘ meanings for representations of variables 

through the lens of Kaput‘s (2008b) process of symbolization by identifying key stages 

along the continuum of students‘ construction of meaning for various representations of 

variables.  

 Mediated experiences. In addition, further research is needed to understand the 

mediated experiences that provide students with opportunities to develop deeper 

meanings for various representations of variables. These mediated experiences, in 

interaction with the meanings students have developed for the various representations of 

variables, result in new meanings that, as Kaput argued, move students toward the formal 

normative understanding of variables. However, little research into how different 

mediated experiences influence this development of meaning exists.  
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 Common misconceptions from algebra. Finally, the results of this study 

demonstrate that students in grades four through six did not exhibit many of the 

misconceptions for variables that students in algebra classes and beyond typically exhibit 

[e.g., different variables in an equation must take on different values from each other 

(Fujii, 2003)]. It appears that these misconceptions may arise somewhere between sixth 

grade and when students begin to demonstrate these misconceptions in algebra. Therefore, 

further research needs to be undertaken to identify when and why these misconceptions 

arise. Such research has the potential to provide important implications for instruction 

and curricular materials.  
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To be read prior to each interview: 

______ (Insert child’s name), I would like you to take part in a research project. This will 
help me understand how students think about ideas in math. You will get to solve 
different kinds of math problems with me like ones you solve in your math class. There is 
no risk beyond what you do in class every day. You should know that you can choose to 
stop at any time. Would you be willing to work with me today? 
Interview 1: Solving problems 

1. Shakira and Tim have the same number of gummy bears. Together they have 12 
gummy bears. How many gummy bears could Shakira have? How many gummy 
bears could Tim have? 

 Could [Shakira and Tim] have any other number of Gummy bears? Why or 
why not?  

 Are there any numbers of Gummy bears they cannot have? Why or why 
not? 

2. Show:  +  = 12   Ask: What number(s) can  be? 
 What do the squares in this problem mean?  
 Could the square be any number? Why or why not? Give me an example of 

what numbers the square can be. 
 Are there any numbers the first square cannot be? 

3. Show: a + b = 12 Ask: What numbers can a and b be? 
 What do the letters in this problem mean?  
 Could the letters be any number? Why or why not? Give me an example of 

what numbers the letters can be. 
 Are there any numbers a cannot be?  
 Are there any numbers that b cannot be? 

4. Show: ___ + 6 = ___ Ask: What numbers can go in the blanks? 
 What do the blanks in this problem mean?  
 Could the blanks be any number? Why or why not? Give me an example of 

what numbers the blanks can be. 
 Are there any numbers the first blank cannot be? 
 Are there any numbers the second blank cannot be? 
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5. Show: ___ + ___ = 12 Ask: What numbers can go in to blanks? 
 What do the blanks in this problem mean? 
 Could the blanks be any number? Why or why not? Give me an example of 

what numbers the blanks can be. 
 Are there any numbers the first blank cannot be? 
 Are there any numbers the second blank cannot be? 

 

6. Show:  +  = 12 Ask: What numbers can  and  be? 
 What do the shapes in this problem mean? 
 Could the shapes be any number? Why or why not? Give me an example of 

what numbers the shapes can be. 
 Are there any numbers the square cannot be? 
 Are there any numbers the triangle cannot be? 

7. Show:  + 6 =  Ask: What numbers can the  be? 
 What do the shapes in this problem mean? 
 Could the shapes be any number? Why or why not? Give me an example of 

what numbers the shapes can be. 
 Are there any numbers the first triangle cannot be? 
 Are there any numbers the second triangle cannot be? 

8. I start with some number then add 6 and get the same number that I started with. 
What is the number? 

 Could the starting number be any number? Why or why not?  
 Are there any numbers the starting number cannot be? Why or why not? 

9. Show: y + y = 12 Ask: What numbers can y be? 
 What do the letters in this problem mean?  
 Could the letters be any number? Why or why not? Give me an example of 

what numbers the letters can be. 
 Are there any numbers the first y cannot be? 
 Are there any numbers the second y cannot be? 

10. Show: x + 6 = x Ask: What numbers can x be? 
 What do the letters in this problem mean?  



 

 212 

 Could the letters be any number? Why or why not? Give me an example of 
what numbers the letters can be. 

 Are there any numbers the first x cannot be? 
 Are there any numbers the second x cannot be? 

11. Together Tom and Anne have 12 feet of ribbon. How long could Tom‘s ribbon be? 
How long could Anne‘s ribbon be? 

 Could [Tim or Anne] have any other length of ribbon? Why or why not?  
 Are there any lengths of ribbon they cannot have? Why or why not? 

 

Comparison tasks 
Show the following 8 tasks.  

Say: I want you to put together the problems that mean the same thing. 

After they are done, for each grouping ask:  

Why did you put these together? 

Do these have the same numbers that make them true? 

For all the groups ask:  

What is different about the groups? 

How is this group (select each group) different from the others? 

Shakira and Tim have the same number of gummy bears. Together they have 12 gummy 
bears. How many gummy bears does Shakira have? Tim? 

 +  = 12 

 ___ + ___ = 12  

 y + y = 12  

Together Tom and Anne have 12 pencils. How many pencils could Tom have? Anne? 
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  +  = 12  

 ___ + ___ = 12  

 a + b = 12  

 
 

Say: I am going to show you problems that you did last time and I want you to tell me 
how they are the same and how they are different. 

Show sets of tasks 

After the student has compared the tasks: 

Ask: When you did these last time you told me what numbers would work for each 
problem. Are there any problems that have the same numbers that work for them? 
Which ones?  

 

I start with some number then add 6 and get the same number that I started with. What is 
the number? 

  + 6 =   

 ___ + 6 = ___  

 x + 6 = x  

 

Shakira and Tim have the same number of gummy bears. Together they have 12 gummy 
bears. How many gummy bears does Shakira have? Tim? 
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Together Tom and Anne have 12 pencils. How many pencils could Tom have? Anne? 

 

 

 +  = 12    

 

 

 +  = 12  

 
 
 
 
y + y = 12  
 
 
 

 

a + b = 12  
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Interview 2: Confirmatory and modeling tasks. 

 
Confirmatory task 

1. Show: Juan and Alexa each have a piece of string. Together they have 16 inches of 
string. How can Juan‘s string be? How long can Alexa‘s string be? 

 Could [Juan and Alexa] have any other length of string? Why or why not?  
 Are there any lengths of string they cannot have? Why or why not? 

2. Show: 8 =  +    Ask: What number(s) can  be? 
 What do the squares in this problem mean?  
 Could the square be any number? Why or why not? Give me an example of 

what numbers the square can be. 
 Are there any numbers the first square cannot be? 
 Are there any numbers the second square cannot be? 

3. Show: ___ + ___ = 5 Ask: What numbers can go in to blanks? 
 What do the squares in this problem mean?  
 Could the square be any number? Why or why not? Give me an example of 

what numbers the square can be. 
 Are there any numbers the first blank cannot be? 
 Are there any numbers the second blank cannot be? 

4. Show: 12 =  +  Ask: What numbers can  and  be? 
 What do the shapes in this problem mean?  
 Could the shapes be any number? Why or why not? Give me an example of 

what numbers they can be. 
 Are there any numbers the square cannot be? 
 Are there any numbers the triangle cannot be? 

5. Show: y + y = 7 Ask: What numbers can y be? 
 What do the letters in this problem mean?  
 Could the y’s be any number? Why or why not? Give me an example of 

what numbers the square can be. 
 Are there any numbers the first blank cannot be? 
 Are there any numbers the second blank cannot be? 
 Can my two numbers be the same? 

 One of my numbers is 9. What is the other number? 

 One of my numbers is 2 ½. What is my other number? 
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Modeling 

Show: Shakira and Tim have the same number of gummy bears. Together they have 12 
gummy bears. How many gummy bears could Shakira have? How many gummy bears 
could Tim have? 

Say: For this problem, I saw two students write these two number sentences. 

 

 +  = 12        +  = 12  

Does either of these number sentences mean the same thing as this word problem? Why 
or why not? 

 
If the say neither works ask: How would you write a number sentence for this problem? 
 
 
 
Manipulation 

 

Show:   +  –  =  

Ask: Will   +  –  =  be true always, sometimes, or never? Why? 

 
 

Show: I am thinking of two numbers. When I add these two numbers together, I get 7. 
What can my numbers be? 

 Can my two numbers be the same? 

 One of my numbers is 9. What is the other number? 

 One of my numbers is 2 ½. What is my other number? 

Show: __ + __ = 7 Ask: What can the blanks be? 

 Can the two blanks be the same number? 

 Can one of the blanks be 9? Or One of the blanks is 9. What is the other 
blank? 

 One of the blanks is 2 ½. What is the other blank? 
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Say and Show:   +           5 + . Ask: Which is more,  +  or 5 + .  

Ask: Is [student response] always more? 

 Yes: How do you know? 

 No:  
o When is [student response] more? 

o When is [student response] less? 

Ask: Can  +  and 5 + . equal each other? 

 No: Why? 

 Yes: When will they be the equal to each other? 

Say and Show: ___ + ___      5 + ___. Which is more, ___ + ___ or 5 + ___? 

 Ask: Is [student response] always more? 

o Yes: How do you know? 

o No:  
 When is [student response] more? 

 When is [student response] less? 

 Ask: Can ___ + ___ and 5 + ___equal each other? 

o No: Why? 

o Yes: When will they be the equal to each other? 

Show:  +  = 7. Ask: What can the shapes be? 

 Can the two shapes be the same number? 

 One of the shapes is 9. What is the other shape? 

 One of the shapes is 2 ½. What is the other shape? 
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Say and Show: a + a              5 + a. Which is more, a + a or 5 + a? 

Ask: Is [student response] always more? 

 Yes: How do you know? 

 No:  

o When is [student response] more? 

o When is [student response] less? 

Ask: Can a + a and 5 + a equal each other? 

 No: Why? 

 Yes: When will they be the equal to each other? 

Say and Show: I am thinking of a number. Which is more, my number added to itself or 

five plus my number? 

 Ask: Is [student response] always more? 

o Yes: How do you know? 

o No:  

 When is [student response] more? 

 When is [student response] less? 

 Ask: Can my number added to itself and five plus my number equal each other? 

o No: Why? 

Yes: When will they be the equal to each other? 
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Appendix B: Analysis template 

Student:      Interview Date:                                 

Interview 1: Solving problems 

Time: 

Shakira and Tim have the same number of gummy bears. Together they have 12 gummy bears. How many gummy bears could 
Shakira have? How many gummy bears could Tim have? 

Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

 
 
 
 
 
 
 
Time: 

Show:  +  = 12   Ask: What number(s) can  be? 

Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 
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Time: 

Show: a + b = 12 Ask: What numbers can a and b be? 
Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 

 

 

 

Time: 

Show: ___ + 6 = ___ Ask: What numbers can go in the blanks? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

 

 

 

 

 

 

 

Time: 

Show: ___ + ___ = 12 Ask: What numbers can go in to blanks? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 
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Time: 

Show:  +  = 12 Ask: What numbers can  and  be? 
Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 

 

 

 

 

 

Time: 

Show:  + 6 =  Ask: What numbers can the  be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 

 

 

 

 

Time: 

I start with some number then add 6 and get the same number that I started with. What is the number? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 
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Time: 

Show: y + y = 12 Ask: What numbers can y be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 

 

 

 

 

 

Time: 

Show: x + 6 = x Ask: What numbers can x be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 

 

 

 

 

 

Time: 

Together Tom and Anne have 12 feet of ribbon. How long could Tom‘s ribbon be? How long could Anne‘s ribbon be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 
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Comparison tasks 

Time: 

Shakira and Tim have the same number of gummy bears. Together they have 12 gummy bears. How many gummy bears does Shakira 
have? Tim? 
Together Tom and Anne have 12 feet of ribbon. How long could Tom‘s ribbon be? How long could Anne‘s ribbon be?  
 +  = 12 ; ___ + ___ = 12 ; a + b = 12;  +  = 12; ___ + ___ = 12; y + y = 12 
Distinguish_Same_No 
Distinguish_Same_Yes 

VAL_Different 
VAL_Same 

Compare_AllSame 
Compare_WP_EQ 

 
 
 
 
 
 
 
 

Time: 

I start with some number then add 6 and get the same number that I started with. What is the number?  + 6 =  ; ___ + 6 = ___;  x 
+ 6 = x  
Distinguish_Same_No 
Distinguish_Same_Yes 

VAL_Different 
VAL_Same 

Compare_AllSame 
Compare_WP_EQ 
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Time: 

Shakira and Tim have the same number of gummy bears. Together they have 12 gummy bears. How many gummy bears does Shakira 
have? Tim? 
Together Tom and Anne have 12 pencils. How many pencils could Tom have? Anne? 
Distinguish_Different_No 
Distinguish_Different_Yes 

Distinguish_Same_No 
Distinguish_Same_Yes 

VAL_Different 
VAL_Same 

Compare_Same 
Compare_Different 

 
 
 
 
 
 

Time: 

 +  = 12             +  = 12  
Distinguish_Different_No 
Distinguish_Different_Yes 

Distinguish_Same_No 
Distinguish_Same_Yes 

VAL_Different 
VAL_Same 

Compare_Same 
Compare_Different 

 
 
 
 
 
 
Time: 

y + y = 12             a + b = 12  
Distinguish_Different_No 
Distinguish_Different_Yes 

Distinguish_Same_No 
Distinguish_Same_Yes 

VAL_Different 
VAL_Same 

Compare_Same 
Compare_Different 
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Student:      Interview Date:                                 

Interview 2: Confirmatory 

Time: 

Juan and Alexa each have a piece of string. Together they have 16 inches of string. How long can Juan‘s string be? How long can 
Alexa‘s string be? 

Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

Could [Juan and Alexa] have any other length of string? Why or why not?  
 
 
Are there any lengths of string they cannot have? Why or why not? 
 
 
Time: 

Show: 8 =  +    Ask: What number(s) can  be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent 

What do the squares in this problem mean?                                                                        Could the square be any number? Why or 
why not?  
 
 
Give me an example of what numbers the square can be.                                                   Are there any numbers the first square cannot 
be? 
 
 
Are there any numbers the second square cannot be? 
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Time: 

Show: ___ + ___ = 5 Ask: What numbers can go in to blanks? 
Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent  

 
What do the squares in this problem mean?                                                                Could the square be any number? Why or why 
not?  
 
 
Give me an example of what numbers the square can be.                                           Are there any numbers the first blank cannot be? 
 
 
Are there any numbers the second blank cannot be? 
 

Time: 

Show: 12 =  +  Ask: What numbers can  and  be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent 

 
What do the shapes in this problem mean?                                                                       Could the shapes be any number? Why or why 
not?  
 
 
Give me an example of what numbers they can be.                                                          Are there any numbers the square cannot be? 
 
 
Are there any numbers the triangle cannot be? 
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Time: 

Show: y + y = 7 Ask: What numbers can y be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent 

 
What do the letters in this problem mean?                                                                                  Could the y’s be any number? Why or 
why not?  
 
Give me an example of what numbers the y can be.                                                                   Are there any numbers the first y cannot 
be? 
 
Are there any numbers the second y cannot be?                                                                         Can the two numbers be the same? 
 
If one of the numbers is 9. What is the other number?                                                               One of the numbers is 2 ½. What is the 
other number? 
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Modeling 

Time: 

Show: Shakira and Tim have the same number of gummy bears. Together they have 12 gummy bears. How many gummy bears could 
Shakira have? How many gummy bears could Tim have? 

Say: For this problem, I saw two students write these two number sentences. 
 
 +  = 12       +  = 12  
 

Distinguish_Same_No 
Distinguish_Same_Yes 

Model_BothSame   
Model_DblSame 
Model_NeithSame  
Model_SumSame 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

 
 
 
 
 
 
 
Time: 

Show:   +  –  =  
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

Always            Sometimes 
Never  

 

 

 

 

 

 

 



 

 

229
9 

Time: 

I am thinking of two numbers. When I add these two numbers together, I get 7. What can my numbers be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent  

 
 
Can my two numbers be the same?                                                                                             If one of the numbers is 9. What is the 
other number? 

 
 
 
One of the numbers is 2 ½. What is the other number? 

 

 

 

Time: 

Show: __ + __ = 7 Ask: What can the blanks be? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

VM_Fill            VM_NotSure 
VM_Replace     VM_Represent  

 
 
Can the two blanks be the same number?                                                                                   If one of the numbers is 9. What is the 
other number? 

 
 
 
One of the numbers is 2 ½. What is the other number? 

 

 

 



 

 

230
0 

Time: 

Say and Show:   +           5 + . Ask: Which is more,  +  or 5 + .  
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same  +       or      5 +  

Ask: Is [student response] always more? 

 Yes: How do you know?                                                                  No:  
 When is [student response] more? 

 When is [student response] less? 

Ask: Can  +  and 5 +  equal each other? 

 No: Why? 

 Yes: When will they be equal to each other? 

 

 

 

 

Time: 

Say and Show: ___ + ___      5 + ___. Which is more, ___ + ___ or 5 + ___? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same ___ + ___      or      5 + ___ 

Ask: Is [student response] always more? 

 Yes: How do you know?                                                                  No:  
 When is [student response] more? 

 When is [student response] less? 

Ask: Can  +  and 5 +  equal each other? 

 No: Why? 

 Yes: When will they be equal to each other? 
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Time: 

Show:  +  = 7. Ask: What can the shapes be? 
Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same 

  

 
 
Can the two shapes be the same number?                                                                                     If one of the shapes is 9. What is the 
other shape? 

 
 
If one of the shapes is 2 ½. What is the other shape? 

 

 

 

Time: 

Say and Show: a + a              5 + a. Which is more, a + a or 5 + a? 
Distinguish_Same_No 
Distinguish_Same_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same a + a   or   5 + a 

Ask: Is [student response] always more? 

 Yes: How do you know?                                                                  No:  
 When is [student response] more? 

 When is [student response] less? 

 

Ask: Can  +  and 5 +  equal each other? 

 No: Why? 

 Yes: When will they be equal to each other? 
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Time: 

Say and Show: I am thinking of a number. Which is more, my number added to itself or five plus my number? 
Distinguish_Different_No 
Distinguish_Different_Yes 

SOL_Variable 
SOL_SingleValue 

VAL_Different 
VAL_Same  

Ask: Is [student response] always more? 

 Yes: How do you know?                                                                  No:  
 When is [student response] more? 

When is [student response] less? 

Ask: Can  +  and 5 +  equal each other? 

 No: Why? 

 Yes: When will they be equal to each other? 
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Appendix C: Data tables 
 
Table 41 

Variable Comparison Results, Interview Two 

  4 5 6 T 

  Same Diff Same Diff Same Diff Same Diff 

1 
SWw 

0 
(0%) 

9 
(100%) 

1 
(11.1%) 

8 
(88.9%) 

0 
(0%) 

6 
(100%) 

1 
(4.2%) 

23 
(95.8%) 

2 
CEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

3 
CEb/SEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

4 
SEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

5 
CEl 

3 
(33.3%) 

6 
(66.7%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

3 
(12.5%) 

21 
(87.5%) 

8 
SWw 

0 
(11.1%) 

9 
(88.9%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(4.2%) 

24 
(95.8%) 

9 
Deb/SEb 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 

12 
SEs 

0 
(0%) 

9 
(100%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

24 
(100%) 
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Table 42 

Solution Type Results, Interview Two 

 

4 5 6 T 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

1 
SWw 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

22 
(91.7%) 

2 
(8.3%) 

0 
(0%) 

2 
CEs 

8 
(88.9%) 

1 
(11.1%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

23 
(95.8%) 

1 
(4.2%) 

0 
(0%) 

3 
CEb/SEb 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

4 
SEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

5 
CEl 

6 
(66.7%) 

1 
(11.1%) 

2 
(22.2%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

21 
(87.5%) 

1 
(4.2%) 

2 
(8.3%) 

8 
SWw 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

9 
Deb/SEb 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 

12 
SEs 

9 
(100%) 

0 
(0%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

0 
(0%) 

6 
(100%) 

0 
(0%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

0 
(0%) 
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Table 43 

Variable Value Results, Interview Two 

  4 5 6 T 

 
VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

1 
SWw 

8 
(88.9%) 

9 
(100%) 

8 
(88.9%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

22 
(91.7%) 

24 
(100%) 

2 
CEs 

8 
(88.9%) 

9 
(100%) 

9 
(100%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

23 
(95.8%) 

24 
(100%) 

3 
CEb/ 
SEb 

9 
(100%) 

3 
(33.3%) 

9 
(100%) 

1 
(11.1%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

9 
(37.5%) 

4 
SEs 

9 
(100%) 

7 
(77.8%) 

9 
(100%) 

9 
(100%) 

6 
(100%) 

6 
(100%) 

24 
(100%) 

22 
(91.7%) 

5 
CEl 

6 
(66.6%) 

5 
(55.6%) 

9 
(100%) 

5 
(55.5%) 

6 
(100%) 

5 
(83.3%) 

21 
(87.5%) 

15 
(62.5%) 

8 
SWw 

9 
(100%) 

1 
(11.1%) 

9 
(100%) 

2 
(22.2%) 

6 
(100%) 

3 
(37.5%) 

24 
(100%) 

6 
(25%) 

9 
Deb/ 
SEb 

9 
(100%) 

2 
(22.2%) 

9 
(100%) 

2 
(22.2%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

9 
(37.5%) 

12 
SEs 

9 
(100%) 

3 
(33.3%) 

9 
(100%) 

4 
(44.4%) 

6 
(100%) 

5 
(83.3%) 

24 
(100%) 

12 
(50%) 
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Table 44 

Variable Comparison Across Representations of Variables, Interview One 

 
 4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

B 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

L 

D 
2 

(22.2%) 
7 

(77.8%) 
0 

(0%) 
9 

(100%) 
1 

(16.7%) 
5 

(83.3%) 
3 

(12.5%) 
21 

(87.5%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
1 

(11.1%) 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
1 

(4.2%) 
23 

(95.8%) 

S 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
1 

(11.1%) 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
1 

(4.2%) 
23 

(95.8%) 

W 

D 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
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Table 45 

Variable comparison across representation of variables, Interview two 

 
 4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

B 
D 0 

(0%) 
18 

(100%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
48 

(100%) 

S 0 
(0%) 

18 
(100%) 

0 
(0%) 

18 
(100%) 

0 
(0%) 

12 
(100%) 

0 
(0%) 

48 
(100%) 

L D 3 
(33.3%) 

6 
(66.7%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

3 
(12.5%) 

21 
(87.5%) 

S 
D 0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 0 
(0%) 

18 
(100%) 

0 
(0%) 

18 
(100%) 

0 
(0%) 

12 
(100%) 

0 
(0%) 

48 
(100%) 

W S 0 
(0%) 

18 
(100%)%) 

1 
(5.6%) 

17 
(94.4%) 

0 
(0%) 

12 
(100%) 

1 
(2.1%) 

47 
(97.9%) 

 
Table 46 

Variable Comparison Across Representation of Variables Percentage Point Difference 

from interview one to interview two 

    4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

B D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

L D -11.1% 11.1% 0.0% 0.0% 16.7% -16.7% 0.0% 0.0% 

S D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

W S 0.0% 0.0% -5.6% 5.6% 0.0% 0.0% -2.1% 2.1% 
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Table 47 

Variable Comparison Across Task Type, Interview One 

    4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

EQ 

D 
2 

(7.4%) 
25 

(92.6%) 
0 

(0%) 
27 

(100%) 
1 

(5.6%) 
17 

(94.4%) 
3 

(4.2%) 
69 

(95.8%) 

S 
0 

(0%) 
27 

(100%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
72 

(100%) 

N 
2 

(7.4%) 
25 

(92.6%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
18 

(100%) 
2 

(2.8%) 
70 

(97.2%) 

WP 

D 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

S 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

N 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
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Table 48 

Variable Comparison Across Task Types, Interview Two 

    4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

EQ 
D 3 

(8.3%) 
33 

(91.7%) 
0 

(0%) 
36 

(100%) 
0 

(0%) 
24 

(100%) 
3 

(3.1%) 
93 

(96.9%) 

S 0 
(0%) 

36 
(100%) 

0 
(0%) 

36 
(100%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

96 
(100%) 

WP S 0 
(0%) 

18 
(100%) 

1 
(5.6%) 

17 
(94.4%) 

0 
(0%) 

12 
(100%) 

1 
(2.1%) 

47 
(97.9%) 

 
 

Table 49 

Variable Comparison Across Task Type Percentage Point Difference from Interview One 

to Interview Two 

    4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

EQ D 0.9% -0.9% 0.0% 0.0% -5.6% 5.6% -1.1% 1.1% 

 S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
WP S 0.0% 0.0% -5.6% 5.6% 0.0% 0.0% -2.1% 2.1% 
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Table 50 

Solution Type Across Representation of Variables, Interview One 

 

 4 5 6 Total 

    

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

Blank 

D 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 

S 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 

N 
7 

(77.8%) 
2 

(22.2%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
22 

(91.7%) 
2 

(8.3%) 
0 

(0%) 

Letter 

D 
7 

(77.8%) 
2 

(22.2%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
5 

(83.3%) 
1 

(16.7%) 
0 

(0%) 
21 

(87.5%) 
3 

(12.5%) 
0 

(0%) 

S 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 

N 
7 

(77.8%) 
1 

(11.1%) 
1 

(11.1%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
22 

(91.7%) 
1 

(4.2%) 
1 

(4.2%) 

Shape 

D 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 

S 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 
0 

(0%) 

N 
7 

(77.8%) 
1 

(11.1%) 
1 

(11.1%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
21 

(87.5%) 
1 

(4.2%) 
1 

(4.2%) 

Word 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

S 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
22 

(91.7%) 
2 

(8.3%) 
0 

(0%) 

N 
0 

(0%) 
2 

(22.2%) 
7 

(77.8%) 
0 

(0%) 
0 

(0%) 
8 

(88.9%) 
0 

(0%) 
0 

(0%) 
4 

(66.7%) 
0 

(0%) 
2 

(8.3%) 
19 

(79.2%) 
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Table 51 

Solution Type Across Representation of Variables, Interview Two 

 

 4 5 6 Total 

    

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

Blank D 
18 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
0 

(0%) 
48 

(100%) 
0 

(0%) 
0 

(0%) 

S 
18 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
0 

(0%) 
48 

(100%) 
0 

(0%) 
0 

(0%) 

Letter D 
6 

(66.7%) 
1 

(11.1%) 
2 

(22.2%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
21 

(87.5%) 
1 

(4.2%) 
2 

(8.3%) 

Shape D 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
23 

(95.8%) 
1 

(4.2%) 
0 

(0%) 

S 
18 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
0 

(0%) 
48 

(100%) 
0 

(0%) 
0 

(0%) 

Words S 
17 

(94.4%) 
1 

(5.6%) 
0 

(0%) 
17 

(94.4%) 
1 

(5.6%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
0 

(0%) 
46 

(95.8%) 
2 

(4.2%) 
0 

(0%) 
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Table 52 

Solution Type Across Representation of Variables Percentage Point Difference from Interview one to Interview Two 

    4 5 6 Total 

 
  

SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ 

Var SingVal None Var SingVal None Var SingVal None Var SingVal None 

Blank D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Letter D 11.1% 11.1% -22.2% 0.0% 0.0% 0.0% -16.7% 16.7% 0.0% 0.0% 8.3% -8.3% 

Shape D 11.1% -11.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% -4.2% 0.0% 
S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Words S -5.5% 5.5% 0.0% -5.5% 5.5% 0.0% 0.0% 0.0% 0.0% -4.1% 4.1% 0.0% 
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Table 53 

Solution type across representation of variables, interview one 

    4 5 6 Total 

    

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

E 

D 
25 

(92.6%) 
2 

(7.4%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
17 

(94.4%) 
1 

(5.6%) 
0 

(0%) 
69 

(95.8%) 
3 

(4.2%) 
0 

(0%) 

S 
27 

(100%) 
0 

(0%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
72 

(100%) 
0 

(0%) 
0 

(0%) 

N 
20 

(74.1%) 
4 

(14.8%) 
2 

(7.4%) 
27 

(100%) 
0 

(0%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
0 

(0%) 
65 

(90.3%) 
4 

(5.6%) 
2 

(2.8%) 

WP 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

S 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
8 

(88.9%) 
1 

(11.1%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
0 

(0%) 
22 

(91.7%) 
2 

(8.3%) 
0 

(0%) 

N 
0 

(0%) 
2 

(22.2%) 
7 

(77.8%) 
0 

(0%) 
0 

(0%) 
8 

(88.9%) 
0 

(0%) 
0 

(0%) 
4 

(66.7%) 
0 

(0%) 
2 

(8.3%) 
19 

(79.2%) 
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Table 54 

Solution Type Across Representation of Variables, Interview Two 

    4 5 6 Total 

    

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

SOL_ 

Var 

SOL_ 

SingVal 

SOL_ 

None 

EQ 
D 32 2 2 36 0 0 24 0 0 92 2 2 

(88.9%) (5.6%) 5.6% (100.0%) (0.0%) (0.0%) (100.0%) (0.0%) (0.0%) (95.8%) (2.1%) (2.1%) 

S 36 0 0 36 0 0 24 0 0 96 0 0 
(100.0%) (0.0%) (0.0%) (100.0%) (0.0%) (0.0%) (100.0%) (0.0%) (0.0%) (100.0%) (0.0%) (0.0%) 

WP S 17 1 0 17 1 0 12 0 0 46 2 0 
(94.4%) (5.6%) (0.0%) (94.4%) (5.6%) (0.0%) (100.0%) (0.0%) (0.0%) (95.8%) (4.2%) (0.0%) 
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Table 55 

Task Type Across Task Type Percentage Point Difference From Interview One to Interview Two 

    4 5 6 Total 

    
SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ SOL_ 

Var SingVal None Var SingVal None Var SingVal None Var SingVal None 

EQ D 3.7% 1.8% -5.6% 0.0% 0.0% 0.0% -5.6% 5.6% 0.0% 0.0% 2.1% -2.1% 
S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

WP S -5.5% 5.5% 0.0% -5.5% 5.5% 0.0% 0.0% 0.0% 0.0% -4.1% 4.1% 0.0% 
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Table 56 

Value Comparison Across Representation of Variables, Interview One 

 
  

  4 5 6 Total 

  

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

B 

D 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

S 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

N 
9 

(100%) 
9 

(100%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 
0 

(0%) 

L 

D 
7 

(77.8%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
5 

(83.3%) 
6 

(100%) 
21 

(87.5%) 
24 

(100%) 

S 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

N 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
23 

(95.8%) 
0 

(0%) 

S 

D 
9 

(100%) 
9 

(100%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
24 

(100%) 
24 

(100%) 

S 
9 

(100%) 
8 

(88.9%) 
9 

(100%) 
9 

(100%) 
6 

(100%) 
5 

(83.3%) 
24 

(100%) 
22 

(91.7%) 

N 
8 

(88.9%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
23 

(95.8%) 
0 

(0%) 

W 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 
8 

(88.9%) 
9 

(100%) 
8 

(88.9%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
22 

(91.7%) 
24 

(100%) 

N 
0 

(0%) 
1 

(11.1%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
1 

(4.2%) 
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Table 57 

Interview Two Variable Comparison Across Representation of Variables 

 
 4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

B 
D 0 

(0%) 
18 

(100%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
12 

(100%) 
0 

(0%) 
48 

(100%) 

S 0 
(0%) 

18 
(100%) 

0 
(0%) 

18 
(100%) 

0 
(0%) 

12 
(100%) 

0 
(0%) 

48 
(100%) 

L D 3 
(33.3%) 

6 
(66.7%) 

0 
(0%) 

9 
(100%) 

0 
(0%) 

6 
(100%) 

3 
(12.5%) 

21 
(87.5%) 

S 
D 0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 0 
(0%) 

18 
(100%) 

0 
(0%) 

18 
(100%) 

0 
(0%) 

12 
(100%) 

0 
(0%) 

48 
(100%) 

W S 0 
(0%) 

18 
(100%)%) 

1 
(5.6%) 

17 
(94.4%) 

0 
(0%) 

12 
(100%) 

1 
(2.1%) 

47 
(97.9%) 

 
Table 58 

Variable Value Across Representation of Variables Percentage Point Difference from 

Interview One to Interview One 

  
4 5 6 T 

 
 

VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

 Diff Same Diff Same Diff Same Diff Same 

Bl D 0.0% 72.2% 0.0% 83.3% 0.0% 16.7% 0.0% 62.5% 
S 0.0% 72.2% 0.0% 83.3% 0.0% 16.7% 0.0% 62.5% 

L D 11.1% 44.4% 0.0% 44.4% -16.7% 58.3% 0.0% 37.5% 

S D 11.1% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% 0.0% 
S 0.0% 33.3% 0.0% 27.8% 0.0% -8.4% 0.0% 20.9% 

W S -5.5% 44.4% -5.5% 38.9% 0.0% 25.0% -4.1% 37.5% 
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Table 59 

Variable Value Across Task Types, Interview One 

    4 5 6 Total 

    
VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

VAL_ 

Diff 

VAL_ 

Same 

E 

D 
25 

(92.6%) 
27 

(100%) 
27 

(100%) 
27 

(100%) 
17 

(94.4%) 
18 

(100%) 
69 

(95.8%) 
72 

(100%) 

S 
27 

(100%) 
26 

(96.3%) 
27 

(100%) 
27 

(100%) 
18 

(100%) 
17 

(94.4%) 
72 

(100%) 
70 

(97.2%) 

N 
25 

(92.6%) 
0 

(0%) 
27 

(100%) 
0 

(0%) 
18 

(100%) 
0 

(0%) 
70 

(97.2%) 
0 

(0%) 

W 

D 
0 

(0%) 
9 

(100%) 
0 

(0%) 
9 

(100%) 
0 

(0%) 
6 

(100%) 
0 

(0%) 
24 

(100%) 

S 
8 

(88.9%) 
9 

(100%) 
8 

(88.9%) 
9 

(100%) 
6 

(100%) 
6 

(100%) 
22 

(91.7%) 
24 

(100%) 

N 
0 

(0%) 
1 

(11.1%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
0 

(0%) 
1 

(4.2%) 
 
Table 60 

Interview Two Variable Comparison Across Task Types, Interview Two 

    4 5 6 Total 

    Same Diff Same Diff Same Diff Same Diff 

E 
D 3 

(8.3%) 
33 

(91.7%) 
0 

(0%) 
36 

(100%) 
0 

(0%) 
24 

(100%) 
3 

(3.1%) 
93 

(96.9%) 

S 0 
(0%) 

36 
(100%) 

0 
(0%) 

36 
(100%) 

0 
(0%) 

24 
(100%) 

0 
(0%) 

96 
(100%) 

W S 0 
(0%) 

18 
(100%) 

1 
(5.6%) 

17 
(94.4%) 

0 
(0%) 

12 
(100%) 

1 
(2.1%) 

47 
(97.9%) 
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Table 61 

Variable Value Across Task Type Percentage Point Difference from Interview One to 

Interview Two 

    4 5 6 T 

   VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ VAL_ 

  Diff Same Diff Same Diff Same Diff Same 

E D 3.7% 47.2% 0.0% 52.8% -5.6% 12.5% 0.0% 40.6% 
S 0.0% 54.6% 0.0% 55.6% 0.0% 6.9% 0.0% 43.0% 

W S -5.5% 44.4% -5.5% 38.9% 0.0% 25.0% -4.1% 37.5% 
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