1 2	EVALUATION OF IN VITRO AND IN VIVO EQUINE MICROBIAL POPULATION SHIFTS IN RESPONSE TO COLIC CONDITIONS
3 4	Erin Venable
5 6	Dr. Monty Kerley, Dissertation Supervisor
7 8	Abstract
9	
10	We designed two continuous culture experiments to test the effects of starch
11	dosage and starvation upon equine fecal microflora. Diets were designed containing
12	fructooligosaccharides and mannanoligosaccharides in order to investigate treatment
13	effects on VFA and NH ₃ concentration, and pH following starvation or starch overload.
14	This research indicated that total volatile fatty acid (VFA) concentration may be
15	affected by treatment following starch overload. Additionally, branched chain VFA, and
16	butyric acid concentrations were different across treatment in both experiments. This
17	research indicated that following an abrupt change in the starch content of the diet, or a
18	starvation period, those effects may be ameliorated by diet.
19	In our third experiment, we performed pyrosequencing in order to
20	phylogenetically characterize the shifts in the microbial populations observed in the feces
21	of eight horses collected from both the colic (large intestinal-nonsurgical) and healthy
22	states. Healthy samples were collected by the attending/referring veterinarian 60 days (\pm
23	30) post discharge. DNA was extracted from the fecal samples and the V1, V2, and V3
24	region of the 16S rDNA was amplified via emulsion PCR.
25	When ubiquitous microbes were ranked colic > healthy, four were significant. All
26	sick horses had greater reads of Clostridium phytofermentans, an uncultured Clostridiales
27	bacterium, and Bacteroidetes as well as an uncultured bacteroidetes bacterium. These
28	data suggest there is a need for broad bacterial diversity in the healthy equine gut.