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ABSTRACT

This thesis concerns the study of a class of second order quasilinear elliptic differ-

ential operators. For 1 < p <∞, the model equation we consider is:

L(u) = −∆pu− σ|u|p−2u. (0.0.1)

Here the potential σ is a function (or distribution), and the differential operator ∆pu

is the p-Laplacian. Such operators are said to have ‘natural growth’ terms, and when

p = 2, the operator reduces to the classical time independent Schrödinger operator.

We will study the operator under minimal conditions on σ, where classical reg-

ularity theory for the operator L breaks down. Our focus will be on two heavily

studied problems:

1. An existence and regularity theory for positive solutions of L(u) = 0, under

the sole condition of form boundedness on the real-valued potential σ:

|〈|h|p, σ〉| ≤ C

∫
Ω

|∇h|p dx, for all h ∈ C∞0 (Ω). (0.0.2)

Here σ is assumed to lie in the local dual Sobolev space L−1,p′

loc (Ω), and the pairing in

display (0.0.2) is the natural dual pairing.

2. The pointwise behavior of fundamental solutions of the operator L. Here we

will be concerned with positive solutions of L(u) = 0 with a prescribed isolated

singularity.

The techniques developed to attack these two related problems will be quite differ-

ent in nature. The first problem relies on a study of the doubling properties of weak

reverse Hölder inequalities along with certain weak convergence arguments. The sec-

ond problem is approached via certain nonlinear integral equations involving Wolff’s

potential, and makes use of tools from non-homogeneous harmonic analysis.
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Chapter 1

Introduction

Let Ω ⊂ Rn be an open set, with n ≥ 2. For 1 < p < ∞, consider the following

operator L, defined by:

L(u) = −∆pu− σ|u|p−2u in Ω, (1.0.1)

for a real valued potential σ. Here ∆pu is the p-Laplacian, defined by:

∆pu = div(|∇u|p−2∇u). (1.0.2)

Our methods extend to treat more general second order quasilinear operators, but

for ease of exposition in this introduction we will consider the model operator L.

The operator (1.0.1) is one of the simplest operators which arises in the study of

quasilinear elliptic partial differential equations, and has attracted the attention of

many authors, it arrises as the Euler-Lagrange equation corresponding to a very

simple energy functional, and it a quasiilinear generalization of the time independent

Schrödinger operator. It formed the model operator in the studies of the local behavior

of quasilinear equations by Ladyzhenskaya and Uraltseva [LU68], Serrin [Ser64, Ser65]
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and Trudinger [Tru67].

By adapting the techniques developed by De Giorgi (in [LU68]) and Moser (in

[Ser64, Tru67]) in their seminal works on linear elliptic equations, these papers es-

tablished the Harnack inequality for positive weak solutions of L(u) = 0 in Ω under

suitable Lq conditions on σ. More precisely, it is shown that if σ ∈ Lqloc(Ω) for q > n/p,

then for each ball B(x, r) so that B(x, 2r) ⊂ Ω, it follows that:

sup
z∈B(x,r)

u(z) ≤ C inf
z∈B(x,r)

u(z), (1.0.3)

for a constant C = C(n, p, ||σ||Lq(B(x,2r))).

The local integrability assumption imposed on σ in the works [LU68, Ser64, Tru67]

serves as a compactness condition, from which it follows that one can treat the pertur-

bation term as negligible for the purposes of establishing Hölder continuity and local

boundedness of solutions. It is well known that the condition here on σ is optimal

(on the scale of Lebesgue spaces) in order to obtain locally bounded solutions. One

can also recover the Harnack inequality by working with more refined notions of local

compactness on σ. An example here is the quasilinear Kato class (see [Bir01]):

lim
ρ→0+

sup
x∈Rn

∫ ρ

0

(
|σ|(B(x, r))

rn−p

)1/(p−1)
dr

r
= 0. (1.0.4)

Here |σ| is the total variation of σ. The use of conditions such as (1.0.4) in establishing

local regularity goes back to the fundamental papers on linear equations by Trudinger

[Tru73] and Aizenman and Simon [AS82] (see also [CFG86]). The reader should

consult the monograph [MZ97] for more information in this regard.

The central theme of this thesis is the study of the operator L in the absence of

any compactness conditions on the potential σ. In particular, we will discuss two

related problems. The first problem we consider is to develop a suitable theory of the

homogeneous problem L(u) = 0 under minimal assumptions on σ. Here we will be
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concerned with the existence of positive weak solutions of L(u) = 0, along with the

optimal local regularity that solutions can possess. Uniqueness for such equations is

known to fail in general. The results proved here are in fact new in the linear case

p = 2, where the operator L reduces to the time independent Schrödinger operator.

The second problem is the pointwise behavior of fundamental solutions of the operator

L in Rn. By definition, fundamental solutions are positive solutions u(x, x0) of the

equation:

L(u) = δx0 , inf
x∈Rn

u(x, x0) = 0.

Here δx0 is the Dirac delta measure with pole at x0 ∈ Rn. Loosely speaking1, fun-

damental solutions of L are the positive solutions of L(u) = 0 in Rn\{x0} with a

non-removable isolated singularity at x0. We now turn to making a few motivational

remarks regarding the second problem, before moving on to describe what is done in

more detail.

The study of solutions with singularities is of basic importance in partial differen-

tial equations. For the operator L, the first comprehensive study of singular solutions

of L(u) = 0 in the puctured space with a prescribed isolated singularity was carried

out by Serrin [Ser64, Ser65]. Of primary interest in this regard are:

(i). Estimating the growth of a positive solution of L(u) = 0 near an isolated

singularity.

(ii). Establishing the existence of positive singular solutions of L(u) = 0 with a

prescribed isolated singularity and precisely the pointwise behavior from (i).

For a given operator, it is usual that establishing (ii) is more subtle than (i). By

using the Harnack inequality, Serrin found a solution to both of these problems under

suitable local compactness assumptions on σ. This generalized to nonlinear operators

work of Royden [Roy62] and Littman, Stamppachia and Weinberger [LSW63] on

linear operators with bounded measurable coefficients. The studies of such singular

1This is in fact precise, as long as non-removable is understood correctly, see Section 3.2.5 below.
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solutions have subsequently amassed a significant literature, see the book of Véron

[Veron96].

Here we offer an approach to singular solutions which does not require the validity

of Harnack’s inequality, nor do we require any radial symmetry in the lower order term

σ. Our results here describe precisely the effect of the lower order term σ|u|p−2u on

the p-Laplacian, and show that the operator L is highly non-symmetric.

Finally we remark that in all our results, the p-Laplacian operator may be replaced

by a more general second order operator, for instance the A Laplacian operator (see

[HKM06]).

1.0.1 Chapter 2: the homogeneous problem

In the first part of this thesis, we will consider positive solutions of the homogeneous

problem, that is, positive solutions of the equation:

−∆pu = σ|u|p−2u in Ω. (1.0.5)

Throughout this work the potential σ is a distribution belonging to the local dual

Sobolev space L−1,p′

loc (Ω) (see the end of this introduction for notation). We will

therefore admit very rough and highly oscillating potentials. This portion of the

thesis forms part of some joint work by the author in collaboration with Professors

V. G. Maz’ya and I. E. Verbitsky [JMV11, JMV11b].

The primary result of Chapter 2 is a two way correspondence between the exis-

tence of a suitable class of positive2 weak solutions of (1.0.5) with the validity of the

following weighted Sobolev-Poincaré inequality:

|〈σ, |h|p〉| ≤ C

∫
Ω

|∇h|pdx for all h ∈ C∞0 (Ω), (1.0.6)

2Here positive means positive except on a set of p-capacity zero.
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where σ ∈ L−1,p′

loc (Ω). Furthermore, our class of weak solutions enjoy the optimal local

Sobolev regularity for potentials σ under the condition (1.0.6).

Note that even in the case when σ ∈ L1
loc(Ω), one cannot work with the condition

(1.0.6) by separating between the positive and negative parts of σ due to the possible

interaction between them.

In the case p = 2, when the operator L reduces to the time independent Schrödinger

operator, potentials σ satisfying (1.0.6) are known as form bounded, see [Maz85,

RSS94]. In fact our results are new even in the linear case, and settle an unsolved

question in the theory of the Schrödinger operator of how to associate a theory of

positive weak solutions to:

−∆u = σu in Ω,

for distributional, or highly singular oscillatory potentials σ.

Simultaneously to studying positive solutions to the equation (1.0.5), we will de-

duce new existence results for the related equation:

−∆pv = (p− 1)|∇v|p + σ. (1.0.7)

Equation (1.0.7) is of interest physically, as it is the stationary part of certain

Hamilton-Jacobi type equations used in optimal control theory, see e.g. [ADP06].

The equation (1.0.7) is related to (1.0.5) by a logarithmic substitution v = log u which

has its origins in the study of Sturm-Liouville problems (see [Hi48]). This substitution

is known to be delicate as singular measures can arise when going from the equation

(1.0.7) to (1.0.5), as was noticed by Ferone and Murat [FM00]. Furthermore, due to

the nonlinearity in the gradient on the right hand side of (1.0.7), deducing a priori

estimates direct from which one can deduce the existence of solutions is nontrivial, see

e.g. [Ev90, FM00]. For a number of related results for equations of the type (1.0.7),

the reader can consult [FM00, AHBV09, Por02, MP02, GT03, ADP06, PS06].
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The relationship between the validity of (1.0.6) with the existence of solutions of

(1.0.5) and (1.0.7), along with the quantitative properties of these solutions, is a topic

which has attracted the interest of many authors. For results in a variety of special

cases or under additional compactness assumptions on σ, see e.g. [BK79, Ag83, AS82,

An86, BNV94, BM97, MZ97, Sme99, FM00, MS00, Sha00, AFT04, PT07, Pin07,

Lin08, AHBV09, LSS] and references therein. The contribution of the present work

is that no additional assumption will be imposed on σ beyond the condition (1.0.6).

We will momentarily expand on the difficulties caused by working with this condition

alone, after we present an application.

We will see that a consequence of our main results regarding the equations (1.0.5)

and (1.0.7) is a characterization of the inequality (1.0.6). This had remained an

unsolved question in the theory of Sobolev spaces [MSh09], and is an extension of the

work of Maz’ya and Verbitsky [MV02a] in the case p = 2.

Indeed, if Ω = Rn, we will see that for any potential σ in a local dual Sobolev

space, then σ satisfies (1.0.6) if and only if there exists a vector field ~Γ along with a

constant C1 > 0 so that:

σ = div(~Γ), and∫
E

|~Γ|p′dx ≤ C1capp(E) for all compact sets E ⊂ Rn.

The set function capp(E) is the p-capacity associated to the homogeneous Sobolev

space L1,p(Rn) (see (2.0.12) for definitions).

Let us now remark on the technical novelties of working with the equations (1.0.5)

and (1.0.7) under the sole condition (1.0.6). They arise from the following essential

characteristics of σ satisfying (1.0.6):

• σ does not in general lie globally in any dual Sobolev space, i.e. σ /∈ L−1,s(Ω)

for any s > 0;

• there are no local compactness conditions on σ.
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From the first item in the list, it is clear that one cannot follow standard methods

to achieve global estimates which would yields the existence of solutions of (1.0.5).

Indeed, there are simple examples of σ so that a solution u of (1.0.5) need not lie

in L1(Ω). On the other hand, from the second item it follows that finding the cor-

rect quantity to work with locally is a subtle issue, and one cannot verify standard

compactness conditions from the calculus of variations.

Like the classical works [LU68, Ser64, Tru67], our principal results make crucial use

of Caccioppoli inequalities in order to deduce local gradient estimates. However, in our

set-up, it is not possible to iterate these estimates using the fundamental techniques of

De Giorgi or Moser. Instead, for an appropriate sequence of approximate solutions, we

(somewhat loosely speaking) interpolate between a Caccioppoli type inequality and

an estimate in the BMO3 norm of the logarithm of the approximate sequence. This

yields uniform local doubling properties on the approximate sequence, from which

one can obtain suitable local estimates.

In order to conclude the local doubling properties, we obtain the following char-

acterization of weak reverse Hölder weights which are doubling (see Proposition 2.1.4

in Section 2.1.3 or Appendix A for definitions and a complete discussion):

Suppose w is a nonnegative function which satisfies a weak reverse Hölder inequal-

ity in an open set U . Then w is doubling in U if and only if log(w) ∈ BMO(U).

Once these local uniform estimates are proved, the passage to the limit resembles

the general scheme of treating elliptic equations with measure data which was spelled

out in the important papers [BBGPV, DMMOP]. In particular we are required to

prove a convergence in measure result for the gradients of our approximating sequence.

The distributional nature of our underlying potential σ means such an estimate is

somewhat involved.

The method of using a uniform doubling condition in order to compensate for a

3BMO = bounded mean oscillation
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lack of compactness could prove useful in deducing local estimates for a variety of

PDEs where one has to work under minimal assumptions on the underlying coeffi-

cients and data.

1.0.2 Chapter 3: the fundamental solution

Fix a point x0 ∈ Rn. The second part of this thesis is concerned with the pointwise

behavior of a positive solution of L(u) = 0 in the punctured space Rn\{x0}, with an

isolated singularity at x0. This work was carried out in collaboration with Professor

I. E. Verbitsky [JV10].

Here we are interested in pointwise estimates, as in the previously cited work of

Serrin [Ser64, Ser65]. We will continue to work with the condition (1.0.6), however,

in the absence of the Harnack inequality, we will make the assumption that σ is a

nonnegative measure in order to make the problem tractable4.

Following the ideas of Bôcher, we recast the problem as studying the fundamental

solution of the operator L, i.e. positive solutions u(x, x0) of the equation:

−∆pu = σ|u|p−2u+ δx0 , inf
x∈Rn

u(x) = 0. (1.0.8)

where δx0 is the Dirac delta measure concentrated at x0.

It is well known ([Ser64], [Ser65], [Veron96]) that, under suitable compactness

assumptions on σ, there exists a positive constant c so that

1

c
G(x, x0) ≤ u(x, x0) ≤ cG(x, x0), (1.0.9)

if |x− x0| < R for some R > 0, where G(x, x0) is the fundamental solution of ∆p on

4It is a substantial open problem to extend what is done here to the full generality of distributional
potentials σ satisfying (1.0.6), even when p = 2.
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Rn:

G(x, x0) = γp,n |x− x0|
p−n
p−1 , when 1 < p < n. (1.0.10)

Here γp,n = p−1
n−p

(
nωn−1

)− 1
p−1 and ωn−1 is the surface area of the n − 1 dimensional

sphere in Rn. Moreover, it was shown recently by L. Verón (see [PT07], Lemma 5.1)

that limx→x0 u(x, x0)/G(x, x0) = c if σ ∈ L∞loc(R
n). These arguments make crucial

use of the Harnack inequality, and build on the classical constructions of fundamental

solutions to linear operators [LSW63, Roy62]. However, as we will see below, if one

allows for rough potentials σ, u(x, x0) may behave very differently in comparison to

G(x, x0), both locally and globally.

In Chapter 3, we obtain sharp global estimates for the behavior of fundamental

solutions, a typical estimate is the following:

Suppose 1 < p < n. Then any fundamental solution u(x, x0) with pole at x0

satisfies the following lower bound:

u(x, x0) ≥ c |x− x0|
p−n
p−1 exp

(
c

∫ |x−x0|

0

(σ(B(x, r)

rn−p

)1/(p−1)dr

r

)
· exp

(
c

∫ |x−x0|

0

σ(B(x0, r))

rn−p
dr

r

)
,

(1.0.11)

for any x, x0 ∈ Rn under necessary conditions on the measure σ. Here c is a positive

constant depending on n and p.

The sharpness of this lower bound is illustrated explicitly by our primary result:

Under a natural assumption on σ, there exists a fundamental solution u(x, x0) of L

satisfying the corresponding upper bound, i.e. for another positive constant c, depend-

ing on n, p and σ, it holds that:

u(x, x0) ≤ c |x− x0|
p−n
p−1 exp

(
c

∫ |x−x0|

0

(σ(B(x, r))

rn−p

)1/(p−1)dr

r

)
· exp

(
c

∫ |x−x0|

0

σ(B(x0, r))

rn−p
dr

r

)
.

(1.0.12)
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These theorems extend to nonlinear operators very recent results [FV10], [FNV10],

[GH08] regarding the behavior of the Green function of the time independent Schrödinger

operator −∆u− σu.

It is known that, for singular σ, fundamental solutions of the operator L are

not unique even when p = 2. However, we offer a natural substitute for such a

result by proving that whenever there exists a fundamental solution, then there also

exists a (unique) minimal fundamental solution. In addition to the pointwise bounds

presented above, the regularity of the constructed fundamental solution u(x, x0) away

from the pole x0 will be considered.

It is somewhat surprising that expressions involving both the linear potential:

Iρpσ(x0) =

∫ ρ

0

σ(B(x0, r))

rn−p
dr

r
,

of fractional order p, and the nonlinear Wolff’s potential, introduced in [HW83],

Wρ
1,pσ(x) =

∫ ρ

0

(
σ(B(x, r))

rn−p

)1/(p−1)
dr

r
,

should appear, in the exponential form, in global bounds of fundamental solutions of

the operator L.

In a recent paper of Liskevich and Skrypnik [LS08], an indication of this behavior

involving the linear potential Ip(σ) when 1 < p ≤ 2 appeared for the first time. They

studied isolated singularities of operators of the type L(u) = −∆pu−σ |u|p−2 u, under

the assumption that σ is in the quasilinear Kato class (1.0.4). However, the precise

pointwise behavior of fundamental solutions in terms of these two local potentials

appears here for the first time, and explicitly shows the non-self adjoint nature of the

operator L.

A simple corollary of our results gives necessary and sufficient conditions on σ

which ensure that u(x, x0) and G(x, x0) are pointwise comparable globally. This

10



requires the uniform boundedness of the Riesz potential Ipσ when 1 < p ≤ 2 and the

Wolff potential W1,pσ when p > 2 (see Corollary 3.6.2):

Suppose there is a constant c > 0 so that (1.0.9) holds for all x, x0 ∈ Rn. Then

necessarily,

sup
x∈Rn

∫ ∞
0

σ(B(x, r))

rn−p
dr

r
<∞ if 1 < p ≤ 2, (1.0.13)

sup
x∈Rn

∫ ∞
0

(
σ(B(x, r))

rn−p

)1/(p−1)
dr

r
<∞ if p > 2. (1.0.14)

Conversely, (1.0.13)–(1.0.14) are sufficient for (1.0.9) to hold for all x, x0 ∈ Rn,

under a natural smallness assumption on σ discussed in Chapter 3.

The methods employed in this section are based on nonlinear integral equations.

That these integral equations arise in the study of such quasilinear equations follows

from the fundamental estimates of Kilpeläinen and Maly [KM92, KM94]. For a pos-

itive measure µ, these estimates describe the pointwise behavior of positive solutions

of the equation:

−∆pu = µ

in terms of the nonlinear Wolff’s potential.

Recently there have been additional developments in this regard, with the develop-

ment of gradient estimates for quasilinear equations in terms of nonlinear potentials,

due to Duzaar and Mingione [DM10, DM11].

With the increase in activity in studying quasilinear equations from the point of

view of integral equations, the techniques of this work are likely to have application

in a host of related problems.

To show the flexibility in our approach, in Chapter 3 we will simultaneously achieve

sharp pointwise bounds for fundamental solutions of the analogous equations with the

fully nonlinear k-Hessian operator Fk(u) replacing the p-Laplacian operator. Indeed,

if we let 1 ≤ k ≤ n be an integer, then the second operator we consider, denoted by

11



G, is the fully nonlinear operator defined by:

G(u) = Fk(−u)− σ |u|k−1 u.

Here σ is again a nonnegative Borel measure, and Fk is the k-Hessian operator,

introduced by Caffarelli, Nirenberg and Spruck [CNS85], and defined for smooth

functions u by:

Fk(u) =
∑

1≤i1<···<ik≤n

λi1 . . . λik

with λ1, . . . λn denoting the eigenvalues of the Hessian matrix D2u. The theory of the

k-Hessian with measure data was developed by Trudinger and Wang [TW99], and

Labutin [Lab02].

1.0.3 Notation

Here we record some (standard) notation which will be common throughout this

thesis. For an open set Ω ⊂ Rn, we say that an open subset U is compactly supported

in Ω, denoted by U ⊂⊂ Ω, if there is a compact set K ⊂ Ω so that U ⊂ K ⊂ Ω.

For 1 < p <∞, we denote p′ = p/(p− 1), the Hölder conjugate exponent.

Let us now move onto introducing function spaces, all functions and distributions

in this thesis will be real valued. For 0 < p < ∞, and an open set Ω ⊂ Rn, define

the Lebesgue space Lp(Ω) to be the space of Borel measurable functions f so that:

||f ||Lp(Ω) =
(∫

Ω

|f |pdx
)1/p

<∞.

We then define the local space Lploc(Ω) as the space of Borel measurable functions

f so that for each compact set K ⊂ U , it follows that ||f ||Lp(K) < ∞. L∞(Ω) is

then defined as the space of functions which are essentially bounded, with L∞loc(Ω) the

space of functions which are locally essentially bounded.
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Let us next introduce the homogeneous Sobolev space. First, let C∞0 (Ω) to be the

set of infinitely differentiable functions on Ω with compact support. For 1 < p <∞,

we then let L1,p
0 (Ω) to be the closure of the norm ||∇h||Lp(Ω) in C∞0 (Ω). When viewed

as a factor space, L1,p
0 (Ω) is a complete Banach space, see [Maz85]. The dual space

of L1,p
0 (Ω) is denoted by L−1,p′(Ω).

We will usually use the localized version of the homogeneous Sobolev space and

its dual. We say that f ∈ L1,p
loc(Ω) if ψf ∈ L1,p

0 (Ω) for all ψ ∈ C∞0 (Ω). Similarly, we

say a distribution σ ∈ L−1,p′

loc (Ω), if ψσ ∈ L−1,p′(Ω) for all ψ ∈ C∞0 (Ω). By standard

arguments (see e.g. [Maz85]), it therefore follows that σ ∈ L−1,p′

loc (Ω) if and only if for

each open set U ⊂⊂ Ω, there exists ~ΓU ∈ (Lp
′
(U))n such that σ = div(~ΓU) in D′(U)

(i.e. in the distributional sense).

In the second part of this thesis, weighted function spaces will crop up. For a

measure σ, we denote by Lploc(Ω, dσ) the space of functions which are locally integrable

to the p-th power with respect to σ measure.

Finally, on occasion we will use the symbol A . B to mean that A ≤ CB with the

constant C > 0 depending on the allowed parameters of the particular result being

proved.
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Chapter 2

The homogeneous problem

Let Ω ⊂ Rn be an open set, with n ≥ 2, and let 1 < p < ∞. For a real valued

distribution σ ∈ L−1,p′

loc (Ω), we will be concerned with the connections betweeen the

following classical Sobolev inequality:

|〈|h|p, σ〉| ≤ C

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω), (2.0.1)

with the existence of positive weak solutions to the quasilinear equation:

− div(|∇u|p−2∇u) = σ|u|p−2u in Ω, (2.0.2)

and (possibly sign changing) weak solutions of:

−div(|∇v|p−2∇v) = (p− 1)|∇v|p + σ in Ω. (2.0.3)

Since it is the effect of the lower order term which is of most interest here, for

ease of exposition we will only consider the p-Laplacian operator in equations (2.0.2)

and (2.0.3). However our methods continue to work for operators with more general

structure.
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Note that it is not obvious how one makes sense of equation (2.0.2) under the sole

condition (2.0.1), so let us make a couple of comments in how we interpret (2.0.2).

Definition 2.0.1. A function u is a weak solution of (2.0.2) if both u and |u|p−2u

lie in the local homogeneous Sobolev space L1,p
loc(Ω), and (2.0.2) holds in the sense of

distributions.

If one uses weak solutions of (2.0.2) in the sense of Definition 2.0.1 then all terms

in (2.0.2) are well defined as distributions. Throughout this chapter, positive will

mean in the sense of Sobolev functions in L1,p
loc(Ω), i.e. positive except on a set of null

p-capacity (see (2.0.12)). We are now in a position to state our principle theorem.

Theorem 2.0.2. Let n ≥ 1 and let Ω ⊂ Rn be an open set, then for 1 < p <∞ the

following statements hold:

(i). Suppose that σ ∈ L−1,p′

loc (Ω) satisfies:

〈|h|p, σ〉 ≤ λ

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω), (2.0.4)

with the parameter λ in the range 0 < λ < (p − 1)2−p if p ≥ 2, and 0 < λ < 1 if

1 < p < 2. In addition suppose:

−〈|h|p, σ〉 ≤ Λ

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω), (2.0.5)

for some Λ > 0. Then, there exists a positive weak solution u of (2.0.2) (see Definition

2.0.1) satisfying:

∫
Ω

|∇u|p

up
|h|pdx ≤ C0(Λ, p)

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω). (2.0.6)

Furthermore, if we define v = log(u), then v ∈ L1,p
loc(Ω) is a weak solution of (2.0.3)
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satisfying:

∫
Ω

|∇v|p|h|pdx ≤ C0(Λ, p)

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω). (2.0.7)

(ii). Conversely, if there is a solution v ∈ L1,p
loc(Ω) of (2.0.3) so that (2.0.7) holds

for a constant C0, then the inequality (2.0.4) holds with λ = 1 and (2.0.5) holds for

a constant Λ = Λ(C0).

In statement (i) of Theorem 2.0.2, the local regularity of the solution u, up−1 ∈

L1,p
loc(Ω) to (2.0.2) is optimal (i.e. cannot be replaced by L1,q

loc(Ω) for any q > p). This

is the case even when p = 2. Indeed:

Remark 2.0.3. The conditions 0 < λ < (p − 1)2−p if p ≥ 2, and 0 < λ < 1 if

1 < p < 2, are sharp in order to obtain the condition that both u and up−1 ∈ L1,p
loc(Ω).

This can be seen from working with the potential:

σ = t · c0|x|−p, for c0 =
(n− p

p

)p
, and 0 < t ≤ 1.

If t = 1, then (2.0.4) holds with best constant λ = 1 by the classical multidimensional

variant of Hardy’s inequality. An elementary calculation shows that the equation

(2.0.2) has a positive solution u(x) = |x|γ, for γ = γ(t, n, p), so that, when p ≥ 2:

γ =
p− n
p(p− 1)

, if t = (p− 1)2−p,

and, for all p > 1:

γ =
p− n
p

, if t = 1.

Furthermore, in the case when p ≥ 2 and t = (p − 1)2−p, the solution u(x) = |x|γ

is the unique (up to constant multiple) positive solution of (2.0.2) in L1,p
loc(R

n). In

the case t = 1, the solution u is unique up to constant multiple for all p > 1. See
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[Pol03, PS05] for these assertions. This shows that one cannot relax the hypothesis

of Theorem 2.0.2.

This example also shows that in the generality of our set-up, one cannot expect

global integrability properties (at least in unweighted Sobolev spaces).

By considering the same example in the case p = 2, one can also see that there

exist positive solutions of (2.0.2) so that u 6∈ L1,p
loc(Ω), see [JMV11] where further

examples are discussed.

In regard to higher integrability of the solution itself, one can obtain improved

integrability properties if one is allowed more control in the parameter λ > 0, see

Section 2.3 for a precise statement. This is based on a lemma by Brezis and Kato

[BK79] in the classical case p = 2.

Regarding the proof of Theorem 2.0.2, it is statement (i) which requires work.

The ideas behind the proof have been sketched in the introduction - we will obtain

uniform local doubling properties from which local gradient estimates will follow.

Along the way, we obtain a characterization of when a nonnegative weight function

satisfying a weak reverse Hölder inequality is doubling (see Sec. 2.1.3 for definitions).

Our main hard analysis tool here is Proposition 2.1.4 which may be of independent

interest.

2.0.4 A characterization of the inequality (2.0.1)

The second result of this chapter is a characterization of the Sobolev inequality (2.0.1).

This is a generalization to the Lp-case of the main result of Maz’ya and Verbitsky

in [MV02a]. We will focus on the case when Ω = Rn, since one can obtain simi-

lar inequalities for a wide class of domains by the method spelled out in [MV02a].

Furthermore, we will be concerned with n ≥ 2, since the one dimensional case was

studied in [MV02b].
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Theorem 2.0.4. Let n ≥ 2, and suppose σ ∈ L−1,p′

loc (Ω), then:

|〈|h|p, σ〉| ≤ C

∫
Rn

|∇h|pdx, for all h ∈ C∞0 (Rn), (2.0.8)

if and only if:

(i) in the case 1 < p < n:

σ = div(~Γ), with: (2.0.9)

∫
Rn

|h|p|~Γ|p′dx ≤ C

∫
Rn

|∇h|pdx for all h ∈ C∞0 (Rn). (2.0.10)

(ii) in the case p ≥ n, σ ≡ 0.

The strength of Theorem 2.0.8 lies in casting the inequality (2.0.8) with indefinite

weight σ, in terms of the inequality (2.0.10) with positive weight |Γ|p′ . The latter

inequality has a rich history in its own right, and was characterized as a result of the

work of V. G. Maz’ya, D. R. Adams, and B. E. J. Dahlberg in the late 70’s/early

80’s, see [Maz85, AH96]. Combining this work with Theorem 2.0.4, one obtains the

following:

Remark 2.0.5. Let 1 < p < n, then the inequality (2.0.8) holds if and only if

σ = div(~Γ) with a constant C > 0 such that:

∫
E

|~Γ|p′dx ≤ Ccapp(E) for all compact sets E ⊂ Rn. (2.0.11)

Here capp(E) is the capacity associated with the homogeneous Sobolev space L1,p(Rn),

defined (for a compact set E) by:

capp(E) = inf{||∇h||pLp(Rn) : h ≥ 1 on E, h ∈ C∞0 (Rn)}. (2.0.12)

It is well known that for such inequalities, that the capacity is the correct quantity
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to work with, since one needs to work with an energy condition. As such, there is

an alternative Sawyer type testing condition that one may use, due to Kerman and

Sawyer (see [KS86] for the L2-case). The equivalence between this testing condition

and the capacity condition in the Lp-case may be found in (for instance) [Ver99], see

also Section 3.3 of Chapter 3 below.

2.0.5 The plan of the chapter

The plan of the chapter is as follows. In Section 2.1 we develop the required prelim-

inaries. Section 2.2 is the heart of the chapter, and Theorem 2.0.2 is proved there.

The majority of the section is devoted to the proof of statement (i) of Theorem 2.0.2,

which is proved first. In Section 2.3, we remark on additional integrability properties

the solution constructed can possess if one strengthens certain assumptions on the

potential. Subsequently, Section 2.4 is then concerned with deducing Theorem 2.0.4

from Theorem 2.0.2.

2.1 Preliminaries

2.1.1 Local properties of σ

Our first lemma, regarding local mollification, is completely elementary. Throughout

this paper we will fix a smooth nonnegative symmetric approximate identity φ so that

φ ∈ C∞0 (B1(0)), and: ∫
B1(0)

φ(x) dx = 1.

Lemma 2.1.1. Let 1 < p < ∞, and K ⊂⊂ Ω. Suppose ε > 0 such that ε <

dist(K, ∂Ω). Let:

φε(x) = ε−nφ(x/ε).
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If σ satisfies:

〈|h|p, σ〉 ≤ λ

∫
|∇h|pdx, for all h ∈ C∞0 (Ω). (2.1.1)

Then, with σε = φε ∗ σ, it follows:

∫
|h|pdσε ≤ λ

∫
|∇h|pdx for all h ∈ C∞0 (K). (2.1.2)

Here dσε = σεdx.

Proof. Let h ∈ C∞0 (V ). We first note that by the interchange of mollification and the

distribution (see Lemma 6.8 of [LL01]):

〈σ, φε ∗ |h|p〉 =

∫
B(0,ε)

φε(t)〈σ, |h(· − t)|p〉dt.

By elementary geometry, h( · − t) ∈ C∞0 (Ω) for all t ∈ Bε(0), and hence:

〈σε, |h|p〉 ≤ λ

∫
B(0,ε)

φε(t)
(∫

Ω

|∇h(x− t)|pdx
)
dt =

∫
Ω

|∇h(x)|pdx,

which proves the lemma.

2.1.2 A local existence result.

Let us next state a local existence result which we will use to produce a sequence of

approximate solutions:

Lemma 2.1.2. Let 1 < p < ∞, and suppose that V be a connected open set with

smooth boundary, and fix a ball B ⊂⊂ V . Let σ̃ ∈ C∞(V ) satisfy, for 0 < λ < 1:

∫
V

|h|pdσ̃ ≤ λ

∫
V

|∇h|pdx, for all h ∈ C∞0 (V ). (2.1.3)
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Then, there exists a positive solution v ∈ C1,α
loc (V ) ∩ L1,p(V ) of:

−div(|∇v|p−2∇v) = σ̃vp−1,

so that, with q = max((p− 1), 1):

∫
B

vqpdx = 1.

Furthermore, v satisfies the Harnack inequality in V .

Proof. The existence part follows from the classical theory of monotone operators

using the smoothness of σ̃, see e.g. Chapter 6 of [MZ97], or [Li69]. The Harnack

inequality along with the Hölder continuity (for all 1 < p < ∞) is contained in

Serrin’s paper [Ser64]. The Hölder continuity of the gradient can be found in (for

instance) [DiB83].

2.1.3 Weak reverse Hölder inequalities and BMO

In this section, deduce a characterization of when a nonnegative function satisfying

a weak reverse Hölder inequality is doubling. First we introduce some notation:

For an open set U , we say u ∈ BMO(U)1 if there is a positive constant DU so

that:

−
∫
B(x,r)

|u(y)−−
∫
B(x,r)

u(z) dz|pdy ≤ DU , for any ball B(x, 2r) ⊂ U. (2.1.4)

A well known consequence of the John-Nirenberg inequality (see e.g. [St93]) is that

one can replace the exponent p in (2.1.4) with any 0 < q < ∞, and one will obtain

a comparable definition of BMO. In addition, u ∈ BMOloc(Ω) if for each compactly

1BMO stands for bounded mean oscillation
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supported open set U ⊂⊂ Ω, there is a positive constant DU > 0 so that (2.1.4)

holds.

Definition 2.1.3. Let U ⊂ Rn be an open set, and let w be a nonnegative measurable

function. Then w is said to be doubling in U if there exists a constant AU > 0 so

that,

−
∫
B(x,2r)

w dx ≤ AU−
∫
B(x,r)

w dx, for all balls B(x, 4r) ⊂ U. (2.1.5)

Let w be a nonnegative measurable function. Then w is said to satisfy a weak reverse

Hölder inequality in U if there exists constants q > 1 and BU > 0 so that:

(
−
∫
B(x,r)

wqdx
)1/q

≤ BU−
∫
B(x,2r)

w dx, for all balls B(x, 2r) ⊂ U. (2.1.6)

Our argument hinges on the following result:

Proposition 2.1.4. Let U be an open set, and suppose w satisfies the weak reverse

Hölder inequality (2.1.6) in U . Then w is doubling in U , i.e. (2.1.5) holds, if and

only if log(w) ∈ BMO(U) (see (2.1.4)).

In particular, if w satisfies (2.1.6) and

−
∫
B(x,s)

| logw(y)−−
∫
B(x,s)

logw(z)dz|pdy ≤ DU , for all balls B(x, 2s) ⊂ U. (2.1.7)

Then there is a constant C(AU , DU) > 0, so that for any ball B(x, 4r) ⊂ U :

−
∫
B(x,2r)

w dx ≤ C(AU , DU)−
∫
B(x,r)

w dx (2.1.8)

Only the the sufficiency direction is required in what follows; however, since this

characterization does not seem to appear explicitly in the literature we prove the full

statement in Appendix A.
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2.2 Proof of the main result

Proof of Theorem 2.0.2, statement (i). This will be proved in several steps. Let us

assume that Ω is a connected open set. This is without loss of generality since we

can apply the argument below in each connected component. The assumption of

connectedness is used in a Harnack chain argument.

2.2.1 Construction of an approximating sequence

Let Ωj be an exhaustion of Ω by smooth connected domains, i.e. Ωj ⊂⊂ Ωj+1 and

∪jΩj = Ω (see e.g. [EE87]). In addition, let B be a fixed ball so that 8B ⊂ Ω1.

Let εj = min(2−j, d(Ωj, ∂Ωj+1)), and denote by σj = φεj ∗σ, here φ is as in Lemma

2.1.1. Applying Lemma 2.1.1, it follows that (2.1.3) holds with σ̃ = σεj and V = Ωj.

Hence we may apply Lemma 2.1.2 to deduce the existence a sequence of positive

solutions uj of: 
−div(|∇uj|p−2∇uj) = σju

p−1
j in Ω,∫

B

uqpj dx = 1.

(2.2.1)

Here q = max(p−1, 1), as before. In addition, in each Ωj we have that uj ∈ C1,α(Ωj),

and that uj satisfies the Harnack inequality. Our principle task will be to prove the

following estimate, which is a local gradient estimates for the tail of the sequence

{uk}k>j, inside Ωj.

Proposition 2.2.1. Whenever B(x, 4r) ⊂⊂ Ωj and k > j it follows that:

∫
B(x,r)

|∇uk|pdx ≤ C(Ωj, B(x, r), B,Λ, λ, p), (2.2.2)

and: ∫
B(x,r)

|∇(up−1
k )|pdx ≤ C(Ωj, B(x, r), B,Λ, λ, p). (2.2.3)
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The key in estimates (2.2.2) and (2.2.3) is that the bound is independent of k for

k > j.

2.2.2 Caccioppoli estimates on the approximating sequence.

In order to prove Proposition 2.2.1, we work with the following three lemmas, the first

and second of which are analogous to the relevant estimates in the linear case [JMV11].

The third estimate is due to the nonlinearity, since we require up−1
j ∈ L1,p

loc(Ω), and it

is where the assumption on σ that λ < (p − 1)p−2 comes in when p ≥ 2. Through

this section we will use the notation from (2.2.1).

Lemma 2.2.2. Suppose that (2.0.4) holds for 0 < λ < 1. For all k > j it follows

that:

∫
Ωj

|∇uk|phpdx ≤ C(λ, p)

∫
Ωj

upk|∇h|
pdx, for all h ∈ C∞0 (Ωj), h ≥ 0 (2.2.4)

Proof. Let us fix k and j as in the statement of the lemma, and let v = uk. With

h ∈ C∞0 (Ωj), h ≥ 0, test the weak formulation of (2.2.1) with vhp ∈ L1,p
0 (Ωj). Using

(2.0.4), it follows:

∫
Ωj

|∇v|php dx =

∫
Ωj

(|∇v|p−2∇v · ∇(vhp) dx−
∫

Ωj

v |∇v|p−2∇v · ∇(hp) dx

≤ 〈σk, hpvp〉+ p

∫
Ωj

v |h|p−1 |∇v|p−1 |∇ψ| dx

≤ λ

∫
Ωj

|∇(hv)|p dx+ p

∫
Ωj

v |h|p−1 |∇v|p−1 |∇h| dx,

(2.2.5)

here we have used Lemma 2.1.1 in the last inequality.

Recall Young’s inequality with ε: for any ε > 0, and for a, b ≥ 0:

ab ≤ εap + (pε)−1/(p−1) (p− 1)

p
bp
′
. (2.2.6)
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It follows from (2.2.6) that for any ε > 0 there exists a constant Cε, depending on ε

and p, so that:

p

∫
Ωj

v |h|p−1 |∇v|p−1 |∇h| dx ≤ ε

∫
Ωj

|∇v|php dx+ Cε

∫
Ωj

vp|∇h|p dx.

Therefore, raising (2.2.5) to the power 1/p and using Minkowski’s inequality along

with the elementary inequality:

(a+ b)1/p ≤ a1/p + b1/p for a, b > 0, (2.2.7)

we arrive at:

(∫
Ωj

|∇v|php dx
)1/p

≤ (λ1/p + ε1/p)
(∫

Ωj

|∇v|php dx
)1/p

+
(
Cε

∫
Ωj

vp|∇h|p dx
)1/p

.

Choosing ε < (1− λ1/p)p and rearranging, we recover (2.2.4).

Lemma 2.2.3. Suppose that (2.0.5) holds for some Λ > 0. Then, for all k > j it

follows that:

∫
Ωj

|∇uk|p

upk
hpdx ≤ C(Λ, p)

∫
Ωj

|∇h|pdx, for all h ∈ C∞0 (Ωj), h ≥ 0. (2.2.8)

Proof. We will test the weak formulation with (2.2.1) with hpu1−p
k , with h ∈ C∞0 (Ωj),

h ≥ 0. To this end, note that since uj satisfies the Harnack inequality in Ωj, there

exists a constant c > 0 so that uk > c on the support of h. It follows that hpu1−p
k ∈

L1,p
0 (Ωj) is a valid test function. This yields:

−
∫

Ωj

|∇uk|p−2∇uk · ∇
( hp

up−1
k

)
dx = −〈σk, hp〉. (2.2.9)
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On the other hand:

(p− 1)

∫
Ωj

|∇uk|p

upk
hpdx ≤−

∫
Ωj

|∇uk|p−2∇uk · ∇
( hp

up−1
k

)
dx+

+ p

∫
Ωj

|∇uk|p−1

up−1
k

|∇h|hp−1dx.

(2.2.10)

By Young’s inequality (2.2.6), for any ε > 0 we estimate the second term on the right

by:

p

∫
Ωj

|∇uk|p−1

up−1
k

|∇h|hp−1dx ≤ ε

∫
Ωj

|∇uk|p

upk
hpdx+ Cε

∫
Ωj

|∇h|pdx. (2.2.11)

Here Cε depends on p and ε. Applying (2.2.9) and (2.2.11) into (2.2.10), we estimate:

(p− 1− ε)
∫

Ωj

|∇uk|p

upk
ψpdx ≤ −〈σk, hp〉+ Cε

∫
Ωj

|∇h|pdx. (2.2.12)

Now, combining Lemma 2.1.1 with the lower form bound (2.0.5), it follows (since

h ∈ C∞0 (Ωj)):

−〈σk, hp〉 ≤ Λ

∫
Ωj

|∇h|pdx. (2.2.13)

Combining (2.2.13) and (2.2.12), we deduce (2.2.8).

The third lemma will only be used in the case p ≥ 2.

Lemma 2.2.4. Suppose that (2.0.4) holds with 0 < λ < (p − 1)2−p. Then, for all

k > j it follows that, for all h ∈ C∞0 (Ωj), h ≥ 0:

∫
Ωj

|∇(uk)
p−1|phpdx ≤ C(λ, p)

∫
Ωj

|(uk)p−1|p|∇h|pdx. (2.2.14)
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Proof. Fix k ≥ j and h as in (2.2.14), let v = uk. Note that:

∫
Ω

|∇v|pv(p−2)phpdx =
1

(p− 1)2

∫
Ω

|∇v|p−2∇v · ∇
(
v(p−1)2hp

)
dx

− p

(p− 1)2

∫
Ω

|∇v|p−2∇v · ∇hv(p−1)2hp−1dx.

(2.2.15)

Note that by the properties of v (see Lemma 3.6), it follows that v(p−1)2hp is a valid

test function for all p > 1. Therefore:

∫
Ω

|∇v|p−2∇v · ∇
(
v(p−1)2hp

)
dx =

∫
Ω

vp(p−1)hpdσk ≤ λ

∫
Ω

|∇(vp−1h)|pdx, (2.2.16)

where Lemma 2.1.1 has been applied in the second inequality. By substituting (2.2.16)

into (2.2.15), we derive from Minkowski’s inequality:

(∫
Ω

|∇v|pv(p−2)phpdx
)1/p

≤ λ(1/p)(p− 1)1−2/p
(∫

Ω

|∇v|v(p−2)phpdx
)1/p

+ λ(1/p)
(∫

Ω

vp(p−1)|∇h|pdx
)1/p

+
( p

(p− 1)2

∫
Ω

|∇v|p−1v(p−2)p+1|∇h|hp−1dx
)1/p

.

(2.2.17)

On the other hand, Young’s inequality together with (2.2.7) yield the following esti-

mate the third term in the right hand side of (2.2.17): for any ε > 0,

( p

(p− 1)2

∫
Ω

|∇v|p−1v(p−2)p+1|∇h|hp−1dx
)1/p

≤ ε
(∫

Ωj

|∇v|pv(p−2)phpdx
)1/p

+Cε

(∫
Ωj

vp(p−1)|∇h|pdx
)1/p

.
(2.2.18)

By assumption on λ, we have λ(1/p)(p − 1)1−2/p < 1. Hence we can choose ε > 0

sufficiently small in (2.2.18) (in terms of λ and p), so that:

(∫
Ω

|∇v|pv(p−2)phpdx
)1/p

≤ C(λ, p)
(∫

Ω

vp(p−1)|∇h|pdx
)1/p

,
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as required.

2.2.3 A uniform gradient estimate: the proof of Proposition
2.2.1

Having established the required Caccioppoli inequalities, we move onto proving Propo-

sition 2.2.1. This follows from using Proposition 2.1.4.

The proof of Proposition 2.2.1. Let us fix k > j, and let v = uqk with q = max(p −

1, 1).

To prove (2.2.2) and (2.2.3), we will employ Proposition 2.1.4 in U = Ωj to show

that vp is doubling in Ωj, with constants independent of k. To verify the hypothesis of

Lemma 2.1.4, we first show that vp satisfies a weak reverse Hölder inequality, i.e. that

(2.1.6) holds in Ωj. To this end, let us fix B(z, 2s) ⊂⊂ Ωj, and let us first suppose

1 < p < n. By Sobolev’s inequality, for any ψ ∈ C∞0 (Ωj):

(∫
Ωj

v
pn
n−p |ψ|

pn
n−pdx

)n−p
pn ≤ C

(∫
Ωj

|∇v|p|ψ|p dx
)1/p

+C
(∫

Ωj

vp |∇ψ|p dx
)1/p

. (2.2.19)

Applying Lemma 2.2.2 (if p ≤ 2) or Lemma 2.2.4 (if p ≥ 2) in the first term on the

right hand side of (2.2.19), we deduce:

(∫
Ωj

v
pn
n−p |ψ|

pn
n−pdx

)n−p
n ≤ C

∫
Ωj

vp|∇ψ|pdx. (2.2.20)

Specialising (2.2.20) to the case ψ ∈ C∞0 (B(z, 2s)), with ψ ≡ 1 in B(z, s), and

|∇ψ| ≤ C/s, it follows:

(
−
∫
B(z,s)

(vp)
n
n−pdx

)n−p
n ≤ C−

∫
B(z,2s)

vp dx. (2.2.21)

The constant in C > 0 in (2.2.21) depends on p, and λ. Hence (2.1.6) holds in

U = Ωj, with w = vp and q = n/(n − p). In the case when p = n, we instead use

28



the Sobolev inequality (see e.g. [MZ97], Corollary 1.57): for each m <∞, and for all

f ∈ C∞0 (B(z, 2s)),

(
−
∫
B(z,2s)

|f(y)|m dy
)1/m

≤ C(m)
(∫

B(z,2s)

|∇f(y)|p dy
)1/p

. (2.2.22)

Using (2.2.22) as in (2.2.19) and following the argument through display (2.2.21), it

follows in the case n = p that (2.1.6) holds in U = Ωj, with w = vp for any choice

q <∞. When p > n, it follows in the same fashion from standard Sobolev inequalities

that (2.1.6) continues to hold in U = Ωj, and w = vp and any q ≤ ∞.

To apply Proposition 2.1.4, it remains to show log(v) ∈ BMO(Ωj). For this, note

that it follows from Poincaré’s inequality that whenever B(z, 2s) ⊂ Ωj:

−
∫
B(z,s)

| log v −−
∫
B(z,s)

log v|p dx ≤ Csp−n
∫
B(z,s)

|∇uk|p

upk
dx. (2.2.23)

Now, note that from Lemma 2.2.3, it readily follows that:

∫
B(z,s)

|∇uk|p

upk
dx ≤ Csn−p. (2.2.24)

Indeed, to prove display (2.2.24) one picks h ∈ C∞0 (B(z, 2s) so that h ≡ 1 on B(z, s)

and |∇h| ≤ C/s in display (2.2.8).

Applying (2.2.24) into (2.2.23), we immediately arrive at:

−
∫
B(z,s)

| log v −−
∫
B(z,s)

log v|pdx ≤ C(p,Λ). (2.2.25)

From (2.2.25), we conclude that log v ∈ BMO(Ωj), with BMO-norm depending only

on p,Λ (see (2.1.4)). In particular, vp satisfies both (2.1.6) and (2.1.7) in Ωj. From

Proposition 2.1.4, it follows that vp is doubling in Ωj, with constants depending on

p, λ and Λ, see (2.1.8).
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Since Ωj is a smooth connected set, one can find a Harnack chain from B(x, 2r) to

the fixed ball B ⊂⊂ Ω1. In other words, one can three positive constants c0, c1 and

N > 0, depending on the smooth parameterization of Ωj, along with points x0, . . . xN

and balls B(xi, 4ri) ⊂ Ωj so that:

1. B(x0, r0) = B(x, 2r), and B(xN , rN) = B;

2. ri ≥ c0 min(r0, rN), and |B(xi, ri) ∩ B(xi+1, ri+1)| ≥ c1 min(r0, rN)n for all i =

0 . . . N − 1.

Since vp is doubling in Ωj, it follows from the chain construction above, along with a

Harnack chain argument that:

−
∫
B(x,2r)

vpdx ≤ C(B(x, r), p,Ωj, B, λ,Λ)−
∫
B

vpdx.

It therefore follows from the normalization on vp that:

−
∫
B(x,2r)

vpdx ≤ C(B(x, r),m,M,Ωj, B, λ,Λ). (2.2.26)

To complete the proof, first suppose p ≥ 2. In this case, we combine the Caccioppoli

inequalities (Lemmas 2.2.2 and 2.2.3) with the estimate (2.2.26) to conclude that the

following two estimates hold:

∫
B(x,r)

|∇uk|pdx ≤
C

rp−n

(
−
∫
B(x,2r)

vpdx
)1/q

≤ C,

and: ∫
B(x,r)

|∇up−1
k |

pdx ≤ C

rp−n

(
−
∫
B(x,2r)

vpdx
)1/q

≤ C,

for a constant C > 0, depending on n, B, Λ, λ, Ωj and B(x, r). Here we have also

used Hölder’s inequality in the first of the two displays above. Hence both estimates

(2.2.2) and (2.2.3) are proved for a constant independent of k.
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In the case 1 < p < 2, note that combining Lemma 2.2.2 with (2.2.26), we conclude

that the estimate ∫
B(x,r)

|∇uk|pdx ≤
C

rp−n
−
∫
B(x,2r)

vpdx ≤ C,

holds, for a positive constant C > 0 depending on n, B, Λ, λ, Ωj and B(x, r). On the

other hand, as in display (2.2.24), as a consequence of Lemma 2.2.3 it follows that:

∫
B(x,r)

|∇uk|p

upk
dx ≤ C,

(making the constant C > 0 larger if necessary). But these estimates readily combine

to yield (2.2.3). Indeed:

∫
B(x,r)

|∇uk|pup(p−2)
k dx ≤

∫
B(x,r)∩{uk≥1}

|∇uk|pup(p−2)
k dx

+

∫
B(x,r)∩{uk≤1}

|∇uk|pup(p−2)
k dx

≤
∫
B(x,r)

|∇uk|pdx+

∫
B(x,r)

|∇uk|p

upk
dx ≤ C

(2.2.27)

Here we have used that −1 < p− 2 < 0. This completes the proposition in the case

1 < p < 2.

2.2.4 Convergence to a solution

Our first goal is to deduce the existence of a solution u(j) of (2.0.2) in each Ωj. We

will concentrate on the argument in Ω1.

From (2.2.2) and (2.2.3), it follows by choosing a suitable covering of Ω1 that:

∫
Ω1

|∇uk|pdx ≤ C, and

∫
Ω1

|∇(uk)
p−1|pdx ≤ C, (2.2.28)

for k ≥ 2, for a constant C = C(λ,Λ, n,Ω1, B, p). By weak compactness in Sobolev

spaces, we deduce that there is a subsequence uj,1 of uj, and u(1) such that:
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1. uj,1 → u(1) weakly in L1,p(Ω1);

2. up−1
j,1 → (u(1))p−1 weakly in L1,p(Ω1);

3. uj,1 → u(1) a.e. in Ω1.

Indeed, (1) and (3) follow from (2.2.2) and weak compactness and Rellich’s theorem.

But then up−1
j,1 converges almost everywhere to (u(1))p−1 in Ω1. Since up−1

j,1 is uniformly

bounded in L1,p(Ω1), it follows from standard Sobolev space theory (see Theorem 1.31

of [HKM06]) that (2) holds.

Let h ∈ C∞0 (Ω1), and let U ⊂⊂ Ω1 be an open set so that U ⊃ supp(h). Recall

that σ ∈ L−1,p′(U), and hence from property (2) it follows:

〈σj,1, up−1
j,1 h〉 → 〈σ, (u(1))p−1h〉, as j →∞. (2.2.29)

Indeed, by the triangle inequality we write:

|〈σj,1, up−1
j,1 h〉 − 〈σ, (u(1))p−1h〉| ≤ |〈σ, (up−1

j,1 − (u(1))p−1)h〉|+ |〈(σj,1 − σ), up−1
j,1 h〉|

The first term on the right converges to zero on account of the weak convergence

property (2). For the second term, we only need to estimate:

|〈(σj,1 − σ), up−1
j,1 h〉| ≤ ||∇(up−1

j,1 h)||Lp(U)||σj,1 − σ||L−1,2(U).

The right hand side here convergences to zero due to standard properties of the

mollification, along with the uniform bound (2.2.3). This establishes (2.2.29).

We next claim that there is another subsequence of uj,1 (again denoted by uj,1)

such that:

|∇uj,1|p−1 → |∇u(1)|p−1 in L1
loc(Ω1). (2.2.30)

The proof of (2.2.30) will be quite involved. For this reason we postpone the proof
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to Section 2.2.5, and complete the rest of the argument.

From (2.2.29) and (2.2.30), it follows that:

−div(|∇u(1)|p−2∇u(1)) = σ(u(1))p−1 in D′(Ω1). (2.2.31)

Here the dominated convergence theorem has been used on the left hand side, in

conjunction with (2.2.30). On the right hand side, we have applied the estimate

(2.2.29). In addition, from the normalization of the sequence {uj}j in (2.2.1), it

follows from Rellich’s theorem that:

∫
B

(u(1))qpdx = 1, with q = max(p− 1, 1).

Repeating this argument in each Ωk, by choosing a consecutive subsequence uj,k

of uj,k−1, we arrive at functions uk so that:

−div(|∇u(k)|p−2∇u(k)) = σ(u(k))p−1 in D′(Ωk), (2.2.32)

with: ∫
B

(u(k))qpdx = 1, with q = max(p− 1, 1). (2.2.33)

Clearly uk = uk−1 in Ωk−1 (equality here holding in the sense of Sobolev functions).

In conclusion, if one defines a function u by the formula u = uk in Ωk, then u is

well defined and:

−div(|∇u|p−2∇u) = σup−1 in Ω.

From (2.2.33) it follows that u is not the zero function. Furthermore, from construc-

tion and properties of uk, it follows that u is locally doubling in Ω. Therefore u > 0

a.e. in Ω, and hence log(u) is well defined almost everywhere.

Let us next show that u satisfies (2.0.6). Note that first log(uj,k)→ log(u) a.e. in
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Ωk. Hence from Lemma 2.2.3 and weak compactness, it follows that:

∫
Ω

|∇u|p

up
|h|pdx ≤ C(Λ, p)

∫
Ω

|∇h|p for all h ∈ Ωk. (2.2.34)

Since there is no dependence on k in constant appearing in (2.2.34), we let k → ∞

to deduce (2.0.6).

Save for the estimate (2.2.30) (which will be proved in Section 2.2.5), the remaining

part of statement (i) of Theorem 2.0.2 is to show that v = log(u) is a solution of

(2.0.3). This is the content of the following lemma:

Lemma 2.2.5. Let Ω be an open set, and suppose that σ ∈ L−1,p′

loc (Ω). If there exists

a positive solution u of (2.0.2) satisfying (2.0.6), then v = log(u) ∈ L1,p
loc(Ω) is a

solution of (2.0.3) so that (2.0.7) holds.

Proof. Let ε > 0. Then for h ∈ C∞0 (Ω), test the weak formulation of (2.0.2) with

ψ = h(u+ ε)1−p ∈ L1,p
c (Ω). This yields:

∫
Ω

|∇u|p−2∇u
(u+ ε)p−1

· ∇h dx = (p− 1)

∫
Ω

|∇u|p−2∇u · ∇u
(u+ ε)p

hdx+ 〈σ up−1

(u+ ε)p−1
, h〉. (2.2.35)

It follows from the condition (2.0.6) and dominated convergence that as ε→ 0:

∫
Ω

|∇u|p−2∇u
(u+ ε)p−1

· ∇h dx→
∫

Ω

|∇u|p−2∇u
up−1

· ∇h dx, and

∫
Ω

|∇u|p

(u+ ε)p
hdx→

∫
Ω

|∇u|p

up
hdx.

To handle the last term in (2.2.35), note that from (2.0.6) and the dominated con-

vergence theorem:

∇
( u

u+ ε

)p−1

= (p− 1)
∇u
u

( εup−1

(u+ ε)p

)
→ 0 in Lploc(Ω) as ε→ 0,

34



on the other hand, it is clear that:

u

u+ ε
→ 1 in Lploc(Ω) as ε→ 0.

Thus it follows:

u

u+ ε
→ 1 in L1,p

loc(Ω), as ε→ 0.

But since σ ∈ L−1,p′(V ) for any V ⊂⊂ Ω, we conclude:

〈σ
( u

u+ ε

)p−1

, h〉 → 〈σ, h〉, as ε→ 0.

It follows that v = log(u) is a solution of (2.0.3).

2.2.5 Convergence in measure

It remains to prove (2.2.30). Let us follow a well known reduction - from Vitali’s

convergence theorem and display (2.2.2); (2.2.30) will follow once we show that ∇uj,1

converges locally in measure to ∇u(1) in Ω1. Since the proof of this latter fact will be

slightly lengthy, let us state it as a lemma.

Lemma 2.2.6. For any ball Br = B(x, r) so that B2r = B(x, 2r) ⊂ Ω1, it follows

that, for any δ:

|{x ∈ Br : |∇uj,1 −∇uk,1| > δ}| → 0 as j, k →∞,

Proof. Our proof follows the standard method of [BBGPV], but is rather involved

due to the distributional nature of σ. The proof hinges on the local dual Sobolev

character of σ. Let δ > 0, and let ε > 0. First let us fix some notation: let uj,1 = vj,
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and u(1) = v. We write:

|{x ∈ Br : |∇uj,1 −∇uk,1| > δ}| ≤ I + II + III + IV

with, for A, µ > 0:

I = |{x ∈ Br : |∇vj| > A}|+ |{x ∈ Br : |∇vk| > A}|;

II = |{x ∈ Br : vj > A}|+ |{x ∈ Br : vk > A}|;

III = |{x ∈ Br : |vj − vk| > µ}|;

and finally, IV = |E|, with:

E = {x ∈ Br : |∇vj −∇vk| > δ, |vj − vk| ≤ µ; |∇vj| ≤ A;

|∇vk| ≤ A; vj < A, vk < A}.
(2.2.36)

It is the estimate for IV which is not immediate. Our goal is the estimate:

IV ≤ C(A, δ) · µmin(1,p−1) + o(1), as j, k →∞. (2.2.37)

Let us show how this estimate allows us to conclude the lemma. First, let us pick A

such that:

I + II ≤ ε/4,

one can clearly do this by the uniform integrability properties of the relevant functions

from estimates (2.2.2) and (2.2.3). Next (with A > 0 fixed), let us pick µ > 0 and N1

so that if j, k > N1 then:

IV ≤ ε/4,

this estimate follows from (2.2.37). Now, with µ > 0 fixed, it follows from the almost

everywhere convergence of vj to v one can choose N ≥ N1 so that for j, k > N so
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that:

III ≤ ε/2.

We conclude that for j, k > N :

|{x ∈ Br : |∇uj,1 −∇uk,1| > δ}| ≤ ε,

as required.

It therefore requires to prove (2.2.37). To this end, note the following elementary

vector inequalities, if p ≥ 2:

c |a− b|p ≤ (|a|p−2 a− |b|p−2 b) · (a− b), (2.2.38)

and, if 1 < p < 2;

c
|a− b|2

(|a|+ |b|)2−p ≤ (|a|p−2 a− |b|p−2 b) · (a− b), (2.2.39)

here a, b ∈ Rn\{0}, and c > 0 is a positive constant depending on p. Now, use the

properties of E, along with the two inequalities above, to deduce that for all x ∈ E:

c(δ, A) ≤
(
|∇vj|p−2∇vj − |∇vk|p−2∇vk

)
·∇(vj − vk)(x)

Let h ≡ 1 on Br such that h ∈ C∞0 (B2r). It follows from the above inequality,

and since uj < A and uk < A in E, that:

IV ≤ c(δ, A)

A

∫
E

(
(|∇vj|p−2∇vj −|∇vk|p−2∇vk) ·∇(vj − vk)

)
(2A−max(uj, uk))+h

pdx

Next, let E1 = E ∩ {vj ≥ vk}, and E2 = E\E1. We will concentrate on the previous

integral with E replaced by E1, and the estimate for E2 will follow by the same
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method. Let us define:

f = (µ− (vj − vk)+)+, and g = (2A−max(vk, vj))+. (2.2.40)

Notice the following properties of f and g:

0 ≤ f ≤µ, supp(∇f) ⊂ {0 ≤ vk ≤ vj; vj − vk ≤ µ}, and:

∇f = −∇vj +∇vk, on supp(∇f).

(2.2.41)

supp(∇g) ⊂ {vj, vk ≤ 2A}, and g ≤ 2A. (2.2.42)

Also, it is immediate that the product fghp ∈ L∞(B2r) ∩ L1,p
0 (B2r) (recall h ∈

C∞0 (B2r)), and hence is a valid test function for (2.2.1). In what follows we will

often make use of estimates (2.2.2) and (2.2.3) from Lemma 2.2.1.

It suffices to estimate:

V = −
∫

Ω

(
(|∇vj|p−2∇vj − |∇vk|p−2∇vk) · ∇f

)
ghpdx,

since IV ≤ (c(δ, A)/A) · V . Here we are using that: (|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ 0

for all ξ, η ∈ Rn (see (2.2.38) and (2.2.39)).

By using the test function fghp in (2.2.1), we deduce:

V = −V I − V II + V III, with:

V I =

∫
Ω

(
(|∇vj|p−2∇vj − |∇vk|p−2∇vk) · ∇g

)
fhpdx,

V II = p

∫
Ω

(
(|∇vj|p−2∇vj − |∇vk|p−2∇vk) · ∇h

)
fghp−1dx,

V III =

∫
Ω

fghp(vp−1
j σj − vp−1

k σk)dx,

where the equation (2.2.1) has been used in V III. It is now the term V III which
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requires care. Indeed, from (2.2.2), Hölder’s inequality and the properties of f and g

in (2.2.41) and (2.2.42), it follows:

|V I| ≤ Cµ
(∫

Ω

|∇vj|phpdx+

∫
Ω

|∇vk|phpdx
)
≤ Cµ, and :

|V II| ≤ CµA
(∫

Ω

|∇vj|phpdx+

∫
Ω

|∇vk|phpdx
)
≤ CAµ.

Both these estimates are good, when compared to (2.2.37).

Now, to handle the remaining term we need to make use of the local dual Sobolev

property of σ. Indeed, there exists ~T ∈ Lp′(B2r)
n so that: σ = div ~T in D′(B2r). It

follows that: σj = div(~Tj) with ~Tj = φεj ∗ T . Note that from Minkowski’s integral

inequality:

||Tj||Lp′ (B2r)
≤ ||T ||Lp′ (B2r)

.

Let us proceed by writing V I as:

V III = IX +X +XI,

with:

IX =

∫
Ω

(∇(vp−1
j ) · ~Tj −∇(vp−1

k ) · ~Tk)fghpdx;

X =

∫
Ω

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇g)fhpdx

+ p

∫
Ω

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇h)hp−1fgdx;

and:

XI =

∫
Ω

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇f)ghpdx.

The estimate for XI will be the most delicate (when the gradient falls on f). For

IX and X, note that f ≤ µ, and if both ∇g 6= 0 and f 6= 0, then max(vj, vk) < 2A.
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Therefore, from (2.2.3) and (2.2.2), it follows:

|IX|+ |X| ≤ C||~T ||Lp′ (B2r)
(Aµ+ Ap−1µ).

It remains to estimate XI. To this end, let:

F = {x ∈ B2r : 0 ≤ vj − vk ≤ µ, vj ≤ 2A} ⊃ supp(∇f) ∩ supp(g) ∩B2r,

and note that, by definitions and the triangle inequality:

|XI| ≤
∣∣∣∫
F

∇(vj − vk) · ~Tj(vp−1
j − vp−1

k )(2A− vj)hpdx
∣∣∣

+
∣∣∣∫
F

∇(vj − vk) · (~Tj − ~Tk)v
p−1
k (2A− vj)hpdx

∣∣∣. (2.2.43)

Now, estimate:

∣∣∣∫
F

∇(uj − uk) · (~Tj − ~Tk)v
p−1
k (2A− vj)hpdx

∣∣∣
≤ CAp(||∇(vjh

p)||p + ||∇(vkh
p)||p)||(~Tj − ~Tk)h

p||p′

≤ C(supp(h))||(~Tj − ~Tk)h
p||p′

(2.2.44)

where the third inequality follows from (2.2.2). From standard properties of the

mollification, we therefore deduce that:

∣∣∣∫
F

∇(uj − uk) · (~Tj − ~Tk)v
p−1
k (2A− vj)hpdx

∣∣∣≤ C(A)o(1).

We have reduced matters to estimating:

XII =
∣∣∣∫
F

∇(vj − vk) · ~Tj(vp−1
j − vp−1

k )(2A− vj)hpdx
∣∣∣.
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To this end, note that for x ∈ F , it follows for 1 < p < 2:

vp−1
j − vp−1

k ≤ (vj − vk)p−1 ≤ µp−1,

and, if p ≥ 2, it follows:

vp−1
j − vp−1

k ≤ (p− 1)(vj − vk) · (vp−2
j + vp−2

k ) ≤ C(p− 1)Ap−2µ.

It therefore follows that:

XII ≤CA1+max(p−2,0)µmin(p−1,1)

∫
F

|∇(vj − vk)|~Tj||hp|dx

≤ CA1+max(p−2,0)µmin(p−1,1),

(2.2.45)

here the second inequality follows from (2.2.2). Putting our estimates together,

(2.2.37) follows.

2.2.6 Proof of Theorem 2.0.2, statement (ii)

Let us move onto to the straightforward task of proving statement (ii) of Theorem

2.0.2.

Proof of Theorem 2.0.2, statement (ii). This part of the proof is completed by an

application of Young’s inequality. Indeed, it there exists a solution v ∈ L1,p
loc(Ω) of

(2.0.3), then testing the weak formulation of (2.0.3) with |h|p for h ∈ C∞0 (Ω),

〈σ, |h|p〉 ≤ p

∫
Ω

|∇v|p−1|∇h||h|p−1dx−
∫

Ω

|∇v|p|h|pdx. (2.2.46)

From the inequality:

ab ≤ 1

p
ap +

1

p′
bpl. (2.2.47)
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with a = |∇h| and b = p|∇v|p−1|h|p−2, it follows:

〈σ, |h|p〉 ≤
∫

Ω

|∇h|pdx,

i.e. (2.0.4) holds with λ = 1.

Now, let us in addition suppose that v satisfies (2.0.7) with a constant C0 > 0.

Then, by testing (2.0.3) again with |h|p for h ∈ C∞0 (Ω), we can estimate:

〈σ, |h|p〉 ≥ −p
∫

Ω

|∇v|p−1|∇h||h|p−1dx−
∫

Ω

|∇v|p|h|pdx

≥ −2

∫
Ω

|∇v|phpdx−
∫

Ω

|∇h|pdx.
(2.2.48)

Where in the second inequality we have used (2.2.47) as above. Now, applying (2.0.7)

we conclude:

〈σ, |h|p〉 ≥ −(2C0 + 1)

∫
Ω

|∇h|pdx.

Hence (2.0.5) holds with Λ = 2C0 + 1.

2.3 A remark on higher integrability

In this section we remark on higher integrability of positive solutions of (2.0.2). This

observation is essentially due to Brézis and Kato [BK79], and is a restricted variant

of the iterative technique of Moser [Mos60].

Theorem 2.3.1. Suppose that Ω ⊂ Rn is an open set, and suppose 1 < p < ∞.

In addition suppose that σ ∈ L−1,p
loc (Ω) satisfies the upper bound (2.0.4) with constant

λ > 0 and the lower bound (2.0.4) for Λ > 0. Then, for each q < ∞, there exists

λ(q) > 0 so that if λ < λ(q), then there exists a positive solution u ∈ L1,p
loc(Ω)∩Lqloc(Ω)

of (2.0.2).

We will prove Theorem 2.3.1 in the case n ≥ 3, since the result follows from
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standard Sobolev inequalities in dimensions n = 1, 2. We will continue to use the

notation from the proof of Theorem 2.0.2 from Section 2.2. In particular, we will

assume without loss of generality that Ω is connected, and we will use the approximate

sequence of solutions constructed from (2.2.1). The result is based on an iterative use

of the following lemma:

Lemma 2.3.2. Let s > p, and suppose that:

λ < λ(s) = (s− p+ 1)
(p
s

)p
. (2.3.1)

Then, for all k > j, it follows:

∫
Ωj

|∇(uk)
s/p|p|h|pdx ≤ C(λ, p, s)

∫
Ωj

usk|∇h|pdx, for all h ∈ C∞0 (Ωj). (2.3.2)

Proof. The proof follows exactly as in Lemma 2.2.4, so we leave the details to the

reader.

Proof of Theorem 2.3.1. Let us fix q > 0, and choose

sj =
(n− p

n

)j
q,

for j = 0, . . . , N . Here N is chosen to be the largest integer so that sN > p. Note

sN ≤ np/(n − p). Let us suppose that λ < λ(s1) as defined in (2.3.1). Since (2.3.1)

is monotone decreasing for q > p, if λ < λ(s1), then λ < λ(sj) for all 1 ≤ j ≤ N .

Notice that using the Sobolev inequality in (2.3.2), we obtain for for all k > j and

for each ` = 0, . . . N − 1:

(∫
Ωj

us`k |h|
pdx
)n−p

n ≤
∫

Ωj

u
s`+1

k |∇h|pdx, for any h ∈ C∞0 (Ω). (2.3.3)

Let us now fix a ball B(x, 8r) ⊂ Ωj, and define N functions h`, for ` = 0 . . . N − 1, so
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that:

h` ∈ C∞0 (B(x, (1 +
`+ 1

N
)r)), h` ≡ 1 on B(x, (1 +

`

N
)r), |∇h`| ≤

CN

r
.

Applying these test functions in (2.3.3), we obtain, for ` = 0, . . . N − 1.:

(∫
B(x,(1+`/N)r)

us`k dx
)n−p

n ≤ C
(N
r

)p∫
B(x,(1+(`+1)/N)r)

u
s`+1

k dx.

After an N -fold application of the preceeding display, we conclude:

∫
B(x,r)

us0k dx ≤ C(N, q, λ, r)
(∫

B(x,2r)

usNk dx
) nN
n−p

.

Combining this with the estimate (2.2.2) (by way of Sobolev’s inequality, recalling

that N < np/(n− p)), we arrive at:

∫
B(x,r)

uqkdx ≤ C(N, q, p, B(x, r), λ), for all k > j. (2.3.4)

Now, when we pass to the limit as in Section 2.2.4, we achieve from (2.3.4) a positive

solution u of (2.0.2) with the additional property that u ∈ Lqloc(Ω). The theorem is

proved.

One can show that the restriction on λ used in the proof of Theorem 2.3.1 is sharp

to obtain the integrability u ∈ Lqloc(Ω). This follows by examining the same example

as in Remark 2.0.3.

2.4 The proof of Theorem 2.0.4

Before the proof of Theorem 2.0.4, it will be useful to introduce a couple of integral

operators. We denote by Iα(µ) the Riesz potental of order α of a positive measure µ,
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defined by:

Iα(µ)(x) = cn

∫
Rn

dµ(y)

|x− y|n−α
.

For n ≥ 3, the constant cn > 0 has been chosen so that:

−∆xcn|x− y|2−n = δy in D′(Rn),

where ∆x is the Laplace operator in the x-variables, and δy is the Dirac delta measure

concentrated at the point y. If n = 2 we let cn = 1/(2π). Let us denote by (−∆)−1

the Green’s operator in Rn i.e.:

(−∆)−1(µ)(x) =


1

2π

∫
Rn

log |x− y|dµ(y), if n = 2,

I2(µ)(x), if n ≥ 3.

(2.4.1)

Proof of Theorem 2.0.4. Let us first prove statement (i). The sufficiency of conditions

(2.0.9) and (2.0.10) for the inequality (2.0.8) follows from Hölder’s inequality. On the

other hand, let σ satisfy (2.0.1) with a constant C > 0. Then, note that:

σ̃ =
(p− 1)2−p

2C
σ

satisfies the hypothesis of Theorem 2.0.2. Therefore there exists v ∈ L1,p
loc(Ω) such

that:

−div(|∇v|p−2∇v) = |∇v|p + σ̃,

with: ∫
Rn

|∇v|phpdx ≤ C1

∫
Ω

|∇h|p, (2.4.2)

for a constant C1 depending on C, p. Now denote dµ = |∇v|pdx, then µ is a nonneg-
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ative measure, and satisfies the property:

∫
Rn

|h|pdµ ≤ C1

∫
Rn

|∇h|pdx, for all h ∈ C∞0 (Rn).

It follows by [MV95] (see also Theorem 1.7 of [Ver99]), that there exists a constant

C2 = C2(C1, p) such that:

∫
E

(I1(µ))p
′
dx ≤ C2capp(E), for all compact sets E ⊂ Rn. (2.4.3)

We claim that there exists a solution w of:

−∆w =
( 2C

(p− 1)2−p

)
µ =

( 2C

(p− 1)2−p

)
|∇v|p in Rn, (2.4.4)

so that furthermore there exists a constant C3 = C3(C,C2, n, p) with:

∫
E

|∇w|p′dx ≤ C3capp(E), for all compact sets E ⊂ Rn. (2.4.5)

Indeed, let µN = |∇v|pχB(0,2N )dx. Then (2.4.3) is satisfied with µ replaced by µN .

Let:

wN = ∆−1µN − cN .

Where cN is chosen so that:

|
∫
B(0,1)

wNdx| = 1. (2.4.6)

Using the identity that |∇∆−1µN | ≤ c(n)I1(µN), we see that:

∫
E

|∇wN |p
′
dx ≤ C3capp(E), for all compact sets E ⊂ Rn. (2.4.7)

Therefore {wN}N are uniformly bounded in L1,p′

loc (Rn). By weak compactness and

a diagonal argument, there is a subsequence of wN (still denoted by wN), so that
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wN → w in L1,p′

loc (Rn), for some w ∈ L1,p
loc(R

n). From (2.4.6), w is not infinite. This

limit function w is easily seen to be our desired solution of (2.4.4).

Now, from the capacitary strong type inequality (see e.g. [Maz85, AH96]), the

display (2.4.5) is equivalent to:

∫
Rn

|∇w|p′ |h|p ≤ C4

∫
Rn

|∇h|pdx. (2.4.8)

With C4 = (p′)pC3. Let:

~Γ = −
( 2C

(p− 1)2−p

)
|∇v|p−2∇v +∇w.

From displays (2.4.2) and (2.4.8), we see that ~Γ satisfies the conclusion of the theorem.

Let us now turn to statement (ii), which is more straightforward. We suppose

p ≥ n. As in statement (i), we can reduce matters to when C < (p− 1)2−p in (2.0.8).

Then, applying Theorem 2.0.2, we deduce the exists of v ∈ L1,p
loc(R

n), so that:

−div(|∇v|p−2∇v) = |∇v|p + σ in Rn, (2.4.9)

with (2.4.2) holding. It is immediate from (2.4.2) and from the definition of capacity

(2.0.12) that:

∫
E

|∇v|pdx ≤ Ccapp(E), for all compact sets E ⊂ Rn.

However, with p ≥ n, it is well known (see [AH96, Maz85]) that:

capp(E) = 0 for all compact sets E ⊂ Rn.

Therefore |∇v| ≡ 0, and so it clearly follows from (2.4.9) that σ ≡ 0.
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Chapter 3

The fundamental solution

In this chapter we study the fundamental solution associated with certain nonlinear

operators perturbed by natural growth terms. Recall the operator L:

L(u) = L(p)(u) = −∆pu− σ |u|p−2 u, (3.0.1)

where ∆pu = div(∇u |∇u|p−2) is the p-Laplacian operator. Throughout this chapter

the potential σ is a nonnegative Borel measure on Rn.

Our main goal is to investigate the interaction between the differential operator

−∆pu, and the lower order term σ |u|p−2 u pointwise, under necessary conditions on

σ. This interaction between the differential operator and the lower order term turns

out to be highly nontrivial. We will also study the corresponding problem when the

p-Laplacian is replaced by a more general quasilinear operator, or a fully nonlinear

operator of Hessian type.

As described in the introduction, our primary concern will be the equation:

L(u) = δx0 in Rn, inf
x∈Rn

u(x) = 0, (3.0.2)
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where δx0 is the Dirac delta measure concentrated at x0. A solution u(x, x0) of

(3.0.2) understood in a suitable weak, or potential theoretic sense (e.g. renormalized,

viscosity, or approximate solutions), is called a fundamental solution of the operator

L, with pole at x0.

In this paper we will assume that σ is a positive Borel measure satisfying the

following capacity condition:

σ(E) ≤ C capp(E) for any compact set E ⊂ Rn, (3.0.3)

where capp is the standard p-capacity:

capp(E) = inf{ ‖∇f‖pLp : f ≥ 1 on E, f ∈ C∞0 (Rn) }. (3.0.4)

This intrinsic condition, which originated in the work of Maz’ya in the context of

linear problems (see [Maz85]), is less stringent than the quasilinear Kato condition

(1.0.4). However, when working in this generality, we cannot expect solutions to be

continuous or satisfy a Harnack inequality. In particular, our theorems are applicable

to the ‘Hardy potential’ σ(x) = c|x|−p, see Example 3.1.10 below.

It is easy to see that (3.0.3) with constant C = 1 is necessary in order that u(·, x0)

be finite a.e., which is an immediate consequence of the inequality

∫
Rn

|h|p dσ ≤
∫

Rn

|∇h|p dx, h ∈ C∞0 (Rn). (3.0.5)

The preceding inequality holds whenever there exists a positive supersolution u so

that −∆pu ≥ σup−1 (see Section 3.3). We observe that, in its turn, (3.0.3) with

C = (p− 1)p/pp yields (3.0.5) (see [Maz85]).

Recall that the fundamental solution of the Laplacian operator plays an important

role in the theory of harmonic functions not only because of the principle of super-
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position, but also because of its importance in understanding how solutions near an

isolated singularity can behave, see e.g. Theorem 1.3.7 of [AG01]. The latter theory

carries over to the theory of the quasilinear and fully nonlinear operators considered

here (see Section 3.2.5), and hence from the bounds for the fundamental solution

we deduce a rather complete analysis of the behavior of solutions of L(u) = 0, and

the analogue for the k-Hessian operator, in the punctured space. For the quasi-

linear operator, this has been considered under a variety of assumptions on σ in

[LS08, NSS03, Ser65, Ser64, Veron96]. Isolated singularities of nonlinear operators

have been studied recently in [Lab01, Li06].

3.0.1 Structure of the chapter

The content of this chapter will be as follows. In Section 3.1 we precisely state our

main results regarding the fundamental solution of (3.0.1) and its fully nonlinear

analogue.

In Section 3.2, we rapidly review some elements of the theory of nonlinear PDE

from a potential theoretic perspective. We are essentially interested in two aspects

of this theory: potential estimates for solutions, and weak continuity of the elliptic

operators. In this section we also collect a few facts about capacities, and discuss

minimal fundamental solutions. After this, in Section 3.3, we discuss how the poten-

tial estimates reduce matters to the study of certain nonlinear integral inequalities.

In this section we also discuss the necessary capacity conditions on the measure σ in

order for positive solutions of the differential inequalities Lu ≥ 0 or Gu ≥ 0 to exist.

Section 3.4 is concerned with finding a lower bound for any positive solution of a

certain nonlinear integral inequality. This bound is proved by estimating successive

iterations of the inequality by induction. From this bound Theorems 3.1.2 and 3.1.12

are deduced, and their proofs conclude Section 3.4.

In Section 3.5, we consider the problem of constructing a positive solution to the
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integral inequality of Section 3.4. This construction forms the main technical step in

the arguments asserting Theorems 3.1.5 and 3.1.13, which we prove in Section 3.6.

In this section we also discuss criteria for the fundamental solutions of L and G to

be pointwise equivalent to the fundamental solutions of the unperturbed differential

operators.

Finally, in Section 3.7, we consider the Sobolev regularity of the fundamental

solution away from its pole. This is the content of Theorem 3.1.8 below.

3.1 Main results

We need to introduce some notation before we can state our results. The global

bounds will involve two local potentials, a nonlinear Wolff potential, and a linear

Riesz potential. If s > 1, α > 0 with 0 < αs < n, we define the local Wolff potential

of a measure σ, for ρ > 0, by:

Wρ
α,sσ(x) =

∫ ρ

0

(
σ(B(x, r))

rn−αs

)1/(s−1)
dr

r
. (3.1.1)

For 0 < α < n the local Riesz potential of σ is defined by:

Iρασ(x) =

∫ ρ

0

σ(B(x, r))

rn−α
dr

r
. (3.1.2)

We make the convention that when ρ = +∞, then we write Wα,sσ and Iασ for

W∞
α,sσ and I∞α σ respectively. In particular,

Iασ(x) =

∫ +∞

0

σ(B(x, r))

rn−α
dr

r
= (n− α)−1

∫
Rn

dσ(y)

|x− y|n−α
. (3.1.3)

When dσ = f(x) dx where f ∈ L1
loc(dx), we will denote the corresponding potentials

by Wα,sf and Iαf respectively.
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3.1.1 Global bounds for the quasilinear operator

Let us first state our main result for the quasilinear operator L defined by (3.0.1). We

choose to work with solutions in the potential theoretic sense, see Section 3.2 below.

The reader should note that these solutions are by definition lower semicontinuous,

and hence defined everywhere, and so it makes sense to talk about pointwise bounds.

We could have alternatively worked with solutions in the renormalized sense, see

[DMMOP] for a thorough introduction.

Definition 3.1.1. A fundamental solution (with pole at x0) of the operator L defined

by (3.0.1), is a positive p-superharmonic function u( · , x0), such that u ∈ Lp−1
loc (σ), sat-

isfying equation (3.0.2). The equality in (3.0.2) is understood in the p-superharmonic

sense. See Section 3.2 below for more details.

When we write u(x, x0) is a fundamental solution of L, with no mention of the

pole, we tacitly assume that it has pole at x0.

The first theorem concerns the lower bound for fundamental solutions. Through-

out this paper, unless stated otherwise, we will make the assumption that the measure

σ is not identically 0.

Theorem 3.1.2. a) Let 1 < p < n, x0 ∈ Rn, and suppose u( · , x0) is a fundamental

solution of L with pole at x0. Then (3.0.3) holds with C = 1. In addition, there is a

constant c > 0, depending on n, p such that the bound (1.0.11) holds. In other words,

for all x ∈ Rn

u(x, x0) ≥ c |x− x0|
p−n
p−1 exp

(
cW

|x−x0|
1,p (σ)(x) + cI|x−x0|

p (σ)(x0)
)
.

b) If p ≥ n, and u is a nonnegative p-superharmonic function satisfying the differential

inequality:

Lu ≥ 0, in Rn
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then u ≡ 0.

Remark 3.1.3. Part b) of Theorem 3.1.2 is a Liouville theorem, and when p > n it

is related to the important recent works of Serrin and Zou (see [SZ02], Theorem II’),

and Bidaut-Véron and Pohozaev [BVP01]. When p = n the result is a straightforward

consequence of well known local estimates of the Riesz measure of a p-superharmonic

function, for instance one may use Lemma 3.5 in [KM92]. For several special cases

the result follows from those in [BVP01].

Remark 3.1.4. As we shall see below (in Lemma 3.3.3), the condition (3.0.3) is in

fact necessary for the existence of a positive p-superharmonic function satisfying the

inequality Lu ≥ 0 in the p-superharmonic sense.

In the case when 1 < p ≤ n, it is a nontrivial fact that when σ ≡ 0 that the

fundamental solution is in fact unique; this was proved in [KV86]. An alternative

method is outlined in [TW02a], where uniqueness of the fundamental solution to the

fully nonlinear k-Hessian operators when 1 ≤ k ≤ n/2 is treated. However, when σ is

not trivial, it is known even in the linear case (p = 2, or k = 1) that solutions of L are

not necessarily unique for a general measure σ (see [Mur86]). It is therefore desirable

to single out a distinguished class of fundamental solutions. We are interested in

fundamental solutions of L which behave like the lower bound (1.0.11). The existence

of such fundamental solutions, called minimal fundamental solutions, is the content

of the next theorem.

Theorem 3.1.5. Let 1 < p < n, x0 ∈ Rn and suppose σ is a nonnegative Borel

measure so that (3.0.3) holds. There is a constant C0 = C0(n, p) > 0 such that if

(3.0.3) holds with constant C < C0, then there exists a fundamental solution u( ·, x0)

of L with pole at x0, together with a constant c = c(n, p, C) > 0, so that the upper

bound (1.0.12) holds for all x ∈ Rn, i.e.

u(x, x0) ≤ c |x− x0|
p−n
p−1 exp

(
cW

|x−x0|
1,p (σ)(x) + cI|x−x0|

p (σ)(x0)
)
.
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Remark 3.1.6. As a corollary of Proposition 3.2.7 - which states that whenever

there exists a fundamental solution of L with pole at x0, then there exists a unique

minimal fundamental solution of L with pole at x0 - we assert the existence of a unique

minimal fundamental solution of (3.0.1) obeying the bounds (1.0.11) and (1.0.12). See

Corollary 3.2.9 below.

When p = 2, the p-Laplacian reduces to the Laplacian operator and Theorems

3.1.2 and 3.1.5 are contained in some very recent work of M. Frazier and I. E. Verbitsky

[FV10]. In fact when p = 2 the lower bound, Theorem 3.1.2, has been known for some

time, under various restrictions on σ (see [GH08]). The corresponding upper bound

seems to be much deeper. In [FV10], [FNV10] such bounds for the Green function of

Schrödinger type equations with the fractional Laplacian operator are discussed.

Remark 3.1.7. From our method it is clear that Theorems 3.1.2 and 3.1.5 continue

to hold if we replace the p-Laplacian operator by the general quasilinear A-Laplacian

operator divA(x,∇u) (see, e.g., [HKM06], and Section 3.2 below). The constants

appearing in the theorems will then in addition depend on the structural constants

of A.

Having constructed a fundamental solution, we now turn to considering how reg-

ular it is away from the pole x0. This is the content of the next theorem.

Theorem 3.1.8. Suppose the hypothesis of Theorem 3.1.5 are satisfied, and that

u(x, x0) 6≡ ∞, with u(x, x0) the fundamental solution constructed in Theorem 3.1.5.

Then, there exists C0 = C0(n, p) > 0 so that if (3.0.3) holds with C < C0, then:

u( ·, x0) ∈ L1,p
loc(Rn\{x0}).

Remark 3.1.9. The local Sobolev regularity L1,p
loc(R

n\{x0}) is optimal for solutions

of L(u) = 0 under the assumption (3.0.3) on σ, see [JMV11]. Theorem 3.1.8 seems to
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be new in the linear case p = 2. In this case the proof, given in Section 3.7, can clearly

be easily adapted to deduce the local regularity of the minimal Green’s function of

the Schrödinger operator in a bounded domain Ω, as was constructed recently in

[FV10, FNV10].

Let us now state an example in the case of the ‘Hardy’ potential σ(x) =
c

|x|p
, for

c > 0.

Example 3.1.10. Let σ(x) =
c

|x|p
. Then, there exists c0 = c0(n, p) > 0 so that if

c < c0, and x0 6= 0, there exists positive constants a0, a1 and a2, depending on n and

p, together with a unique minimal solution of:

−∆pu =
c

|x|p
up−1 + δx0

such that:

1

a0

(
max

{ |x|
|x0|

,
|x0|
|x|

})a1c

|x− x0|
p−n
p−1

≤ u(x) ≤ a0

(
max

{ |x|
|x0|

,
|x0|
|x|

})a2c

|x− x0|
p−n
p−1

The simple calculations required to verify this example are analogous to those

carried out in [FV10], and so we omit the details here.

3.1.2 Global bounds for the fully nonlinear operator

We now move onto a fully nonlinear analogue of Theorems 3.1.2 and 3.1.5. Let

1 ≤ k ≤ n be an integer. Then the second operator we consider, denoted by G, is the

fully nonlinear operator defined by:

G(u) = Fk(−u)− σ |u|k−1 u. (3.1.4)
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Here σ is again a nonnegative Borel measure, and Fk is the k-Hessian operator,

introduced by Caffarelli, Nirenberg and Spruck [CNS85], and defined for smooth

functions u by:

Fk(u) =
∑

1≤i1<···<ik≤n

λi1 . . . λik

with λ1, . . . λn denoting the eigenvalues of the Hessian matrix D2u. We will use the

notion of k-convex functions, introduced by Trudinger and Wang [TW99], to state

our results. See Section 3.2 for a brief discussion and definitions.

Definition 3.1.11. A fundamental solution (with pole at x0) u( · , x0) of G is a func-

tion such that −u( ·, x0) is a k-convex function so that u( ·, x0) ∈ Lkloc(σ) satisfying

Gu( ·, x0) = δx0 in the viscosity sense, and inf
x∈Rn

u(x, x0) = 0.

The necessary condition on σ is now considered in terms of the k-Hessian capacity,

introduced in [TW02b];

capk(E) = sup{ µk[u](E) : u is k-convex in Rn, −1 < u < 0 }, (3.1.5)

for a compact set E. Here µk[u] is the k-Hessian measure of u; see Theorem 3.2.5

below.

Theorem 3.1.12. a) Let 1 ≤ k < n/2, and let x0 ∈ Rn. If u( ·, x0) is a fundamental

solution of G, then there is a constant C > 0, C = C(n, k), such that

σ(E) ≤ C capk(E) for all compact sets E ⊂ Rn. (3.1.6)

In addition, there is a constant c > 0, c = c(n, k, C), such that

u(x, x0) ≥ c |x− x0|2−
n
k exp

(
c

∫ |x−x0|

0

(σ(B(x, r)

rn−2k

)1/k dr

r

)
· exp

(
c

∫ |x−x0|

0

σ(B(x0, r))

rn−2k

dr

r

)
.

(3.1.7)
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b) Let k ≥ n/2. Then if u is a nonnegative function so that −u is a k-convex function

satisfying the inequality:

G(u) ≥ 0 in Rn

then u ≡ 0.

Theorem 3.1.13. Let 1 ≤ k < n/2, and suppose σ is a nonnegative Borel measure

satisfying (3.1.6). There is a constant C0 = C0(n, k), such that if C < C0 and (3.1.6)

holds with constant C, then there exists a fundamental solution u( ·, x0) of G, together

with a constant c = c(n, k, C) so that

u(x, x0) ≤ c |x− x0|2−
n
k exp

(
c

∫ |x−x0|

0

(σ(B(x, r)

rn−2k

)1/k dr

r

)
· exp

(
c

∫ |x−x0|

0

σ(B(x0, r))

rn−2k

dr

r

)
.

(3.1.8)

Remark 3.1.14. Part b) of Theorem 3.1.12 is easy to see using well known local

estimates. For instance, one can readily deduce the result from [TW99], Theorem

3.1, along with a routine approximation argument using weak convergence of Hessian

measures.

3.2 Preliminaries

3.2.1 Nonlinear potential theory for quasilinear operators

In this section we will introduce some fundamental results from the potential theory

of nonlinear elliptic equations. Two results will be key to our study: a potential

estimate; and a weak continuity result. The potential which the estimates will involve

is called the Wolff potential [HW83]. For s > 1 and 0 < αs < n, we define the Wolff
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potential of a nonnegative Borel measure µ by:

Wα,sµ(x) =

∫ ∞
0

(µ(B(x, r))

rn−αs

)1/(s−1)dr

r
(3.2.1)

We first will discuss quasilinear equations. The material regarding these equations

is drawn from [HKM06, KM92, KM94, PV08, PV09, TW02b, MZ97].

Let us assume that A : Rn x Rn → Rn satisfies:

x→ A(x, ξ) is measurable for all ξ ∈ Rn, and

ξ → A(x, ξ) is continuous for a.e. x ∈ Rn.

In addition suppose that there are constants 0 < α ≤ β <∞ so that for a.e. x ∈ Rn:

α |ξ|p ≤ A(x, ξ) · ξ, and |A(x, ξ)| ≤ β |ξ|p−1 .

We will also assume that:

(A(x, ξ1)−A(x, ξ2)) · (ξ1 − ξ2) > 0

whenever ξ1 6= ξ2.

Now, let Ω be an open subset of Rn, (we will be most interested in the case

Ω = Rn). Whenever u ∈ W1,p
loc(Ω), we define the divergence of A(x,∇u) in the

distributional sense. As follows from the classical regularity theory of De Giorgi, Nash

and Moser, any u ∈ L1,p
loc(Ω) solution of −divA(x,∇u) = 0 in the distributional sense

has a locally Hölder continuous representative, and we call these representatives A-

harmonic functions. Here and in the following the p-Laplacian operator corresponds

to the choice of A(x, ξ) = |ξ|p−2 ξ, in this case A-harmonic functions are called p-

harmonic functions, and similarly p-superharmonic functions are A-superharmonic
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functions (as defined below) in this special case.

In analogy with classical superharmonic functions, we define the A-superharmonic

functions via a comparison principle. We say that u : Ω→ (−∞,∞] isA-superharmonic

if u is lower semicontinuous, is not identically infinite in any component of Ω, and

satisfies the following comparison principle: Whenever D ⊂⊂ Ω and h ∈ C(D̄) is

A-harmonic in D, with h ≤ u on ∂D, then h ≤ u in D.

An A-superharmonic function u does not necessarily have to belong to W1,p
loc(Ω),

but its truncates Tk(u) = min(u, k) ∈ W1,p
loc(Ω) for all k > 0. In addition Tk(u) are

supersolutions, i.e. −divA( ·,∇Tk(u)) ≥ 0, in the distributional sense (see [HKM06]).

The above paragraph leads us to the definition of the generalized gradient of an

A-superharmonic function u as:

Du = lim
k→∞
∇(Tk(u)).

Remark 3.2.1. There are alternative notions of solutions which we could have in-

troduced to obtain our results, for instance either renormalized solutions or super-

solutions up to all levels, see [DMMOP] and [MZ97] respectively. We chose to use

the language of A-superharmonic functions because Theorems 3.2.3 and 3.2.4 were

developed in this framework.

Let u be A-superharmonic and let 1 ≤ q < n/(n−1). Then it is proved in [KM92]

that |Du|p−1 and A(·, Du) belong to Lqloc(Ω). This allows us to define a nonnegative

distribution for each A-superharmonic function u by:

−divA(x,∇u)(ψ) =

∫
Ω

A(x,Du) · ∇ψ dx (3.2.2)

for ψ ∈ C∞0 (Ω). So, the Riesz representation theorem yields the existence of a unique

nonnegative Borel measure µ[u] so that −divA(x,∇u) = µ[u]. Furthermore, by the
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integrability of the gradient, it follows that for any r > n:

∫
Ω

A( ·, Du) · ∇φdx =

∫
Ω

φdµ, for all φ ∈ W 1,r(Ω) with compact support. (3.2.3)

For a nonnegative measure ω we will say that−divA(·,∇u) = ω in the p-superharmonic

sense if u is p-superharmonic, and µ[u] = ω. Thus L(u) = ω in the p-superharmonic

sense if µ[u] = σup−1 + ω.

We now state a very useful convergence result, contained in Kileplainen and Maly

[KM92], Theorem 1.17.

Theorem 3.2.2. [KM92] Suppose {uj}j is a sequence of nonnegative A-superharmonic

functions in an open set Ω. Then there is a subsequence {ujk}k which converges almost

everywhere to a nonnegative function u which is either p-superharmonic or identically

infinite in each component of Ω.

The next result, first stated explicitly in [TW02b], shows that A-Laplace operator

is weakly continuous.

Theorem 3.2.3. [TW02b] Suppose {uj}j is a sequence of nonnegative A-superharmonic

functions which converge almost everywhere to an A-superharmonic function u. Then

µ[uj] converges weakly to µ[u].

The second major result we need is the Wolff’s potential estimates of Kilpeläinen

and Maly [KM94] (see also [MZ97], [PV08]).

Theorem 3.2.4. [KM94] Let u be a nonnegative A-superharmonic function in Rn

so that infx∈Rn u(x) = 0. If µ = −divA(· ,∇u), then there is a constant K =

K(n, p, α, β), so that for all x ∈ Rn,

1

K
W1,pµ(x) ≤ u(x) ≤ K W1,pµ(x). (3.2.4)
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3.2.2 Nonlinear potential theory for fully nonlinear opera-
tors

We now turn to the fully nonlinear counterpart of these results. A very recent and

comprehensive account of the k-Hessian equation is [Wan09]. Here k-convex functions

associated to the k-Hessian operator, introduced by Trudinger and Wang [TW99],

will play the role of A-superharmonic functions in the quasilinear theory above. Let

Ω ⊂ Rn be an open set, let k = 1, . . . , n and u ∈ C2(Ω), then the k-Hessian operator

is:

Fk(u) =
∑

1≤i1<···<ik≤n

λi1 . . . λik

where λ1, . . . , λn are the eigenvalues of the matrix D2u. We will then say that u is

k-convex in Ω if u : Ω → [−∞,∞) is upper semicontinuous and satisfies Fk(u) ≥ 0

in the viscosity sense, i.e. for any x ∈ Ω, Fk(q)(x) ≥ 0 for any quadratic polynomial

q so that u − q has a local finite maximum at x. Equivalently (see [TW99]), we

may define k-convex functions by a comparison principle: an upper semicontinuous

function u : Ω → [−∞,∞) is k-convex in Ω if for every open set D ⊂⊂ Ω, and

v ∈ C2
loc(D) ∩ C(D̄) with Fk(v) ≥ 0 in D, then

u ≤ v on ∂D =⇒ u ≤ v in D.

Let Φk(Ω) be the set of k-convex functions such that u is not identically infinite in

each component of Ω. The following weak continuity result is key to us.

Theorem 3.2.5. [TW99] Let u ∈ Φk(Ω). Then there is a nonnegative Borel measure

µk[u] in Ω such that

• µk[u] = Fk(u) whenever u ∈ C2(Ω), and

• If {um}m is a sequence in Φk(Ω) converging in L1
loc(Ω) to a function u, then the

sequence of measures {µk[um]}m converges weakly to µk[u].
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The measure µk[u] associated to u ∈ Φk(Ω) is called the Hessian measure of u.

Hessian measures were used by Labutin [Lab02] to deduce Wolff’s potential estimates

for a k-convex function in terms of its Hessian measure. The following global version

of Labutin’s estimate is deduced from his result in [PV08]:

Theorem 3.2.6. [PV08] Let 1 ≤ k ≤ n, and suppose that u ≥ 0 is such that

−u ∈ Φk(Ω) and infx∈Rn u(x) = 0. Then, if µ = µk[u], there is a positive constant

K, depending on n and k, such that:

c1W 2k
k+1

,k+1µ(x) ≤ u(x) ≤ c2W 2k
k+1

,k+1µ(x), x ∈ Rn.

3.2.3 Minimal fundamental solutions

This subsection is concerned with minimality of fundamental solutions. A minimal

fundamental solution u(x, x0) of L defined by (3.0.1), is a fundamental solution of L

as in Definition 3.1.1, so that u(x, x0) ≤ v(x, x0) whenever v(x, x0) is a fundamental

solution of L. Our aim is to prove the following proposition.

Proposition 3.2.7. Let 1 < p < n and σ be a nonnegative measure. Suppose that

there exists a fundamental solution v(x, x0) of L with pole at x0. Then there exists a

unique minimal fundamental solution u(x, x0) of L.

We will need the following simple lemma, and as we could not locate a reference

we will provide a proof.

Lemma 3.2.8. Let Ω ⊂ Rn be a bounded Lipschitz domain, and suppose that v is a

positive p-superharmonic in Ω so that Tk(u) ∈ L1,p(Ω) for all k > 0, and −∆pv = ν.

Let µ ≤ ν, be a compactly supported measure in Ω, then there is a nonnegative p-

superharmonc fuction w, such that w ≤ v and:

−∆pw = µ in Ω, w = 0 continuously on ∂Ω. (3.2.5)
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Proof. Let Tk(v) = min(v, k), and let νk be the Riesz measure of Tk(v). Then νk ∈

W−1,p′(Ω), and νk → ν weakly. Let µk be a sequence in W−1,p′(Ω) so that µk ≤ νk

and µk → µ weakly. By the compact support of µ we may also assume that there

is a compactly supported set K ⊂ Ω, which contains the support of µk, for each k

(otherwise we just multiply µk by a smooth bump function φ ∈ C∞0 (K) such that

φ ≡ 1 on the support of µ). Let wk ∈ L1,p(Ω) be the solution of:

−∆pwk = µk in Ω, wk = 0 on ∂Ω.

Such a unique solution exists by the theory of monotone operators, see e.g. [Li69].

In addition, wk ≤ vk ≤ v in Ω by the classical comparison principle. Therefore, by

[KM92], Theorem 1.17, we see that by a relabeling of the sequence, we may assert

that there is a p-superharmonic function w = limk→∞wk almost everywhere, with

w ≤ v and −∆pw = µ.

It remains to prove that w is zero at the boundary and attains its boundary

value continuously. First note that each wk is p-harmonic in Ω\K. Since Ω is Lip-

schitz, there exists M ≥ 2, c > 0 and 0 < r0 < d(K, ∂Ω)/4, such that for all

z ∈ ∂Ω and 0 < r < r0: supB(z,r/c)∩Ω wk ≤ cwk(a(z)), here a(z) is a point such

that M−1r ≤ |a(z)− z| ≤ Mr. This is a well known boundary estimate, see e.g.

[BVBV06, LN07]. Combined with the boundary regularity of p-harmonic functions,

[Maz70] (see also [MZ97, HKM06]), we see that each wk is locally Hölder continuous

in a neighbourhood of each boundary point with constants independent of k. Indeed,

there exists constants c, θ > 0 depending on n and p, such that if 0 < r < r0, then

for each z ∈ ∂Ω and x, y ∈ B(z, r/c) ∩ Ω:

|wk(x)− wk(y)| ≤ c max
B(w,r/c)∩Ω

wk · |x− y|θ ≤ cwk(a(z)) · |x− y|θ

≤ c inf
B(a(z),r/2M)

wk · |x− y|θ ≤ c inf
B(a(z),r/2M)

v · |x− y|θ .
(3.2.6)
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The third inequality in display (3.2.6) follows from the second by Harnack’s inequality.

That w = 0 continuously on ∂Ω follows from (3.2.6).

By Theorem 3.1.2, we may assume that σ satisfies (3.0.3) (see Lemma 3.3.3 below),

in proving Proposition 3.2.7. This assumption is the key for the construction, as we

will apply uniqueness results. For general measure data, the uniqueness of solutions

in a suitable sense is an open problem for the p-Laplacian.

Proof of Proposition 3.2.7. Let w be any fundamental solution of the operator L de-

fined by (3.0.1) with pole at x0. We will construct a fundamental solution u so that

u ≤ w. This construction will be independent of choice of w and hence will prove

the proposition. Our first goal is to show w ≥ u0 := G(·, x0), with G(x, x0) defined

as in (1.0.10). By using Lemma 3.2.8 repeatedly in a sequence of concentric balls,

along with Theorems 3.2.2 and 3.2.3, we assert the existence of a solution w0 of

−∆pw0 = δx0 in Rn, with w0 ≤ w, and hence infx∈Rn w0(x) = 0. Since G(x, x0) is

unique (see [KV86]), it follows that w0 = u0. Thus w ≥ u0.

Now suppose that w ≥ um−1. Then, for each j and k > j, we see by Lemma 3.2.8

there is a positive p-superharmonic function uj,km solving:

−∆pu
j,k
m = (σup−1

m−1)χB(x0,2j) + δx0 in B(x0, 2
k), uj,km = 0 on ∂B(x0, 2

k)

with uj,km ≤ w. But using Theorem 4.2 of [TW09] (which applies as a simple conse-

quence of (3.0.3), and that uk,jm being p-harmonic near ∂B(x0, 2
k)), we see that uj,km

is unique (and hence independent of w). By combining Theorems 3.2.2 and 3.2.3,

we conclude that there exists a p-superharmonic function ujm such that −∆pu
j
m =

(σup−1
m−1)χB(x0,2j) + δx0 in Rn. Furthermore ujm ≤ w, and hence infx∈Rn ujm(x) = 0.

We remark here that there are other uniqueness results, (for instance see [DMMOP])

which could very probably be used, but the cited theorem above is quickest to verify

with our notion of solution.
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Again by Theorem 3.2.2, and weak continuity (Theorem 3.2.3), there exists a p-

superharmonic function um such that: −∆pum = σup−1
m−1 + δx0 in Rn and um ≤ w.

Therefore infx∈Rn um(x) = 0. Appealing to Theorem 3.2.2 and weak continuity a final

time, we find a p- superharmonic function u such that −∆pu = σup−1 + δx0 in Rn

and u ≤ w, thus infx∈Rn u(x) = 0 and u is a fundamental solution of L.

The proposition is proved, since whenever w is a fundamental solution of L, then

iteratively we see that w ≥ um for all m and hence w ≥ u.

With this proposition the following Corollary is an immediate consequence of

Theorems 3.1.2 and 3.1.5.

Corollary 3.2.9. Suppose that σ is a nonnegative measure satisfying (3.0.3) with

constant C > 0. Then there exists a positive constant C0 depending on n and p, so

that if C < C0, there exists a unique minimal fundamental solution u(x, x0) of L

defined by (3.0.1). Furthermore u(x, x0) satisfies global bilateral bounds (1.0.11) and

(1.0.12), with a different constant c = c(n, p) > 0 in each direction.

The existence of a minimal fundamental solution for the k-Hessian operators can

be shown in a similar way to the quasilinear case presented above, adapting techniques

in [TW02a].

3.2.4 Capacity

We finish this section with a brief discussion of capacity. In the range of exponents

we are interested in, both the p-capacity and the k-Hessian capacities are equivalent,

for compact sets, with certain Riesz capacities.

Let s > 1 and 0 < α < n. For E ⊂ Rn, we define the Riesz capacity of E by the

following:

capα,s(E) = inf{ ‖f‖sLs : f ∈ Ls(Rn), f ≥ 0, Iαf ≥ 1 on E }. (3.2.7)
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See (3.1.3) for the definition of the Riesz potential Iα.

Recall the p-capacity defined in (3.0.4). Then we have the following equivalence.

Lemma 3.2.10. Let 1 < p < n. Then there is a positive constant C = C(n, p) so

that, for all compact sets E ⊂ Rn:

1

C
cap1,p(E) ≤ capp(E) ≤ C cap1,p(E).

For a proof of this Lemma, see, e.g., [Maz85] or [MZ97].

Now, recall the k-Hessian capacity (3.1.5). Then the following equivalence holds

(see Theorem 2.20 in [PV08]).

Lemma 3.2.11. Let 1 ≤ k < n/2. Then there is a positive constant C = C(n, k) > 0

so that for all compact sets E ⊂ Rn:

1

C
cap 2k

k+1
,k+1(E) ≤ capk(E) ≤ C cap 2k

k+1
,k+1(E).

3.2.5 Fundamental solutions and isolated singularities

The purpose of this section is to show that positive A-superharmonic solutions of

L(u) = 0 in Rn\{x0} with a non-removable singularity at {x0} are (up to constants)

fundamental solutions of L. Such a principle goes back to Bôcher in the case that L is

the Laplacian operator. For nonlinear equations, similar statements are often referred

to as a Brezis–Lions type Lemma, or a Bidaut-Veron type Lemma (see [Veron96]).

Similar statements are available for the k-Hessian operator, but we omit the details

here.

Lemma 3.2.12. Suppose that σ is a Borel measure so σ({x0}) = 0, and suppose u

is an p-superharmonic function in Rn\{x0} so that L(u) = 0 in Rn\{x0}. Then u

can be extended to an A-superharmonic in Rn, and there is a constant c ≥ 0 so that
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L(u) = cδ0.

Proof. We will follow [PV08]. For A-superharmonic functions since single points

are removable (see [HKM06]), so we may conclude that u is p-superharmonic in the

whole space. Hence u has a Riesz measure µ in Rn. Let ψ ∈ C∞0 (Rn) and let φj be

a sequence of smooth functions so that 0 ≤ φj ≤ 1, φj(x0) = 1, and φj(x)→ 0 for all

x ∈ Rn\{x0}. Then, by Fatou’s lemma,

∫
Rn
up−1ψ dσ ≤ lim inf

j→∞

∫
Rn
up−1ψ(1− φj) dσ

= lim inf
j→∞

∫
Rn
ψ(1− φj) dµ

≤
∫
Rn
ψ dµ.

Thus, Lu ≥ 0, and so there is a measure ω so that Lu = ω. But, ω is clearly supported

in {x0}, and so µ = cδx0 for some c ≥ 0.

3.3 Reduction to integral inequalities and neces-

sary conditions on σ

3.3.1

In this section we will show how our study of the fundamental solutions of L and G

can be rephrased into a question of nonlinear integral operators. The Wolff potential

estimate will be the key to this idea, recall the definition from (3.2.1).

Let us introduce two nonlinear integral operators, N1 and N2, acting on non-

negative functions f ≥ 0 by:

N1(f)(x) := W1,p(f
p−1dσ)(x), and: (3.3.1)
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N2(f)(x) := W 2k
k+1

,k+1(fkdσ)(x) (3.3.2)

see also (3.3.5) below. These operators appear naturally in studying the equations

L(u) = ω and G(u) = ω for a nonnegative Borel measure ω. Indeed, if 1 < p < n and

u is a nonnegative p-superharmonic function such that L(u) = ω, then by the Wolff

potential estimate, Theorem 3.2.4, there is a constant C = C(n, p) > 0 such that

u(x) ≥ CW1,p(u
p−1dσ)(x) + CW1,p(ω)(x).

Note that from this it follows that u ∈ Lp−1
loc (σ). Hence, if u is a fundamental solution

of L, then it follows:

u(x) ≥ CN1(u)(x) + C |x− x0|
p−n
p−1 (3.3.3)

since W1,p(δx0)(x) = c(n, p) |x− x0|
p−n
p−1 when 1 < p < n. Here C is a positive constant

depending on n, p.

In much the same way, if 1 ≤ k < n/2 and u is a nonnegative function so that −u

is a k-convex solution of G(u) = ω in the sense of k-Hessian measures, then by the

Wolff potential estimate, Theorem 3.2.6, there is a constant C = C(n, k) > 0 such

that

u(x) ≥ CN2(u)(x) + CW 2k
k+1

,k+1(ω)(x).

Thus u ∈ Lkloc(σ), and hence if u is a fundamental solution of G, then there is a

constant C = C(n, k) so that

u(x) ≥ CN2(u)(x) + C |x− x0|2−n/k . (3.3.4)

With the aid of the Wolff potential, by introducing the N1 and N2, we have

rephrased the problem of finding lower bounds for the fundamental solutions to finding
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lower bounds of solutions of the nonlinear integral inequalities (3.3.3) and (3.3.4).

In addition, we will see in Section 3.5 that explicitly constructing solutions of

(3.3.3) and (3.3.4) will be the main technical step in proving existence of minimal

fundamental solutions of the differential operators L and G.

As a result of this discussion it makes sense to introduce a more general nonlin-

ear operator which generalizes both N1 and N2. To this end, recall that the Wolff

potential acting on a measure ω is given by (3.2.1).

Let s > 1, α > 0 so that 0 < αs < n, then we define the nonlinear operator N ,

for a Borel measurable function f ≥ 0, by:

N (f)(x) = Wα,s(f
s−1dσ)(x)

=

∫ ∞
0

( 1

rn−αs

∫
B(x,r)

f s−1(z)dσ(z)
)1/(s−1)dr

r

(3.3.5)

The operators N1 and N2 are clearly special cases of N for certain choices of α and

s.

3.3.2

Fix s > 1 and α so that, 0 < αs < n. For the remainder of this section we will be

concerned with positive solutions u of the integral inequality:

u(x) ≥ C0Nu(x) (3.3.6)

where C0 is a positive constant. Our first goal will be to prove some necessary condi-

tions on the measure σ for there to exist positive solutions of (3.3.6). In particular,

we will prove the following theorem. Recall the definition of the capacity in (3.2.7).

Theorem 3.3.1. Suppose that u is a positive solution of the inequality (3.3.6) with

constant C0 > 0. Then, there is a positive constant C, depending on α, s, n and C0,
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so that for every compact set E ⊂ Rn

σ(E) ≤ C capα,s(E). (3.3.7)

Remark 3.3.2. Theorem 3.3.1 implies the capacity estimates which appear in The-

orems 3.1.2 and 3.1.12.

Proof of Remark 3.3.2. Suppose first that u is a fundamental solution of L. Then

u satisfies (3.3.3), and hence u satisfies (3.3.6) with N = N1. This corresponds to

taking α = 1 and s = p in the definition of N . Hence Theorem 3.3.1 implies that

there is a constant C > 0 so that σ(E) ≤ C cap1,p(E) for all compact sets E. By

Lemma 3.2.10, this is equivalent to the required capacity estimate in Theorem 3.1.2.

Similarly, if u is a fundamental solution of G, then u satisfies (3.3.4), which is

the same as (3.3.6) with α = 2k
k+1

and s = k + 1. Hence Theorem 3.3.1 asserts the

existence of a constant C > 0 so that σ(E) ≤ C cap 2k
k+1

,k+1(E) for all compact sets E.

Appealing to Lemma 3.2.11, we see that this is equivalent to the capacity condition

appearing in Theorem 3.1.12.

The same proof shows that Theorem 3.3.1 in fact implies the same capacity esti-

mates for any positive solutions of the differential inequalities Lu ≥ 0 and G(u) ≥ 0.

3.3.3

We will now briefly discuss an alternative approach to the capacity estimate (3.0.3)

in the case of the p-Laplacian operator.

Lemma 3.3.3. Let Ω be an open set in Rn, and let σ be a nonnegative Borel mea-

sure absolutely continuous with respect to p-capacity. Suppose that u is a positive

p-superharmonic function such that −∆pu ≥ σup−1 in Ω. Then then following em-
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bedding inequality holds:

∫
Ω

hp dσ ≤
∫

Ω

|∇h|p dx, for all h ∈ C∞0 (Ω), h ≥ 0, (3.3.8)

Proof. Let h ≥ 0, h ∈ C∞0 (Ω), Let µ[u] be the Riesz measure of u (see Section

3.2), and µk be the Riesz measure of Tk(u) = min(u, k) ∈ L1,p
loc(Ω). It follows that

µk ∈ L−1,p′

loc (Ω). Let us decompose µk as:

dµk = up−1dνk + dωk,

with dνk = u1−pχ{u<k}dµk, and dωk = χ{u≥k}dµk. This decomposition follows from

the minimum principle, since for any compact set K ⊂⊂ Ω, there exists a constant c >

0 such that u ≥ c > 0 on K. Since µk lies locally in the dual Sobolev space L−1,p′

loc (Ω),

and hpTk(u)1−p ∈ L1,p(Ω) has compact support, the following manipulations are valid:

∫
hp dνk ≤

∫
hpTk(u)1−pdµk =

∫
∇Tk(u)p−2∇Tk(u) · ∇

( hp

Tk(u)p−1

)
dx

≤
(
p

∫
hp−1

Tk(u)p−1
∇Tk(u)p−2∇Tk(u) · ∇h

− (p− 1)

∫
hp
|∇Tk(u)|p

Tk(u)p
dx
)
≤
∫
|∇h|p dx,

(3.3.9)

where we have used Young’s inequality in the last line. To prove the Lemma, we

claim that:

up−1χ{u<k}dσ ≤ up−1dνk on supp(h). (3.3.10)

This will follow by an adaptation of a similar argument in [DMM97]. Indeed, since

T2k(u) ∈ L1,p
loc(Ω), it follows that the set {u < k} is quasi-open, see e.g. [MZ97,

DMM97]. Therefore, there exists an increasing sequence φj ∈ W 1,∞(Ω), so that φj

converges to χ{u<k} q.e.. This is a simple adaptation of the proof of Lemma 2.1 in

[DMG94], since the functions uk considered in the proof of Lemma 2.1 of [DMG94]
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can be chosen to be smooth. It follows (see (3.2.3)) that for any ψ ∈ C∞0 (supp(h)),

that: ∫
{u<k}

ψφju
p−1dνk =

∫
|∇Tk(u)|p−2∇Tk(u) · ∇(ψφj)dx

=

∫
|∇u|p−2|∇u · ∇(ψφj)dx ≥

∫
φjψu

p−1dσ,

the second equality here follows since φj is supported in {u < k}, and last inequality

is by hypothesis. Allowing j →∞, (3.3.10) follows. Combining (3.3.10) with (3.3.9)

we conclude: ∫
{u<k}

hpdσ ≤
∫
|∇h|pdx.

Letting k →∞ with the aid of the monotone convergence theorem proves the lemma.

Remark 3.3.4. The reader may find it constructive to compare the proof of Lemma

3.3.3 with statement (ii) of Theorem 2.0.2 of Chapter 2. Note in particular that

the above lemma is somewhat more difficult to prove than the result of the previous

chapter since we are only assuming superharmonicity in the supersolution.

It is easy to see by the definition of p-capacity that inequality (3.3.8) implies the

capacity inequality (3.0.3) with constant C = 1. As was mentioned in the introduc-

tion, the converse is also true: if (3.0.3) holds with constant C = ((p − 1)/p)p, then

(3.3.8) holds (see [Maz85]). Under the assumption that σ ∈ L∞loc, (3.3.8) is known to

be equivalent to the existence of a solution to the inequality L(u) ≥ 0; see Theorem

2.3 in [PT07].

3.3.4

Let us now prove Theorem 3.3.1, we will do so by verifying an equivalent characteri-

zation of (3.3.7).
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Lemma 3.3.5. There is a constant C so that (3.3.7) holds for all compact sets E if

and only if there is a constant C1 > 0 so that:

∫
E

Wα,s(χEdσ) dσ ≤ C1 σ(E) (3.3.11)

for all compact sets E ⊂ Rn. Furthermore, if (3.3.11) holds, then there is a positive

constant A > 0, depending on α, s and n, such that

A−1C1 ≤ C ≤ AC1.

Lemma 3.3.5 is well known, for instance a proof can be found in [AH96], Theorem

7.2.1.

We will verify that the equivalent statement in Lemma 3.3.5 holds by first showing

it holds for a dyadic analogue of the Wolff potential, and then using a standard shifting

argument which goes back at least to Fefferman and Stein [FS71]; see also Garnett

and Jones [GJ82].

To this end, we define the dyadic mesh at level k for k ∈ Z, denoted by Dk, as the

collection of cubes in Rn which are the translations by 2kλ for λ = (λ1, ..., λn) ∈ Zn

of the cube [0, 2k)n. Then the dyadic lattice D is the collection of dyadic meshes Dk,

k ∈ Z.

With this notation, we define the discrete Wolff potentials W t
α,s (see [COV04] for

an in depth discussion) by

W t
α,s(fdσ)(x) =

∑
Q∈D:x∈Q+t

cQ

(∫
Q+t

f(z)dσ(z)
)1/(s−1)

(3.3.12)

where cQ = `(Q)
αs−n
s−1 and t ∈ Rn. Note that there is a constant C, depending only
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on n, α and s (but not the shift t) so that for any nonnegative function f

W t
α,s(fdσ) ≤ CWα,s(fdσ). (3.3.13)

We will use the following definition of the discrete Carleson measure.

Definition 3.3.6. Let 1 < s < ∞, and let σ be a Borel measure on Rn. Then σ

is said to be a discrete Carleson measure if there is a positive constant C = C(n, s)

such that for each dyadic cube P ∈ D and every t ∈ Rn

∑
Q⊂P, Q∈D

cQ |Q+ t|s
′

σ ≤ C |P + t|σ . (3.3.14)

Remark 3.3.7. It is well known that the inequality

∑
Q∈D

cQ

∣∣∣∣∫
Q+t

fdσ

∣∣∣∣s′ ≤ C ||f ||s′
Ls′ (dσ)

(3.3.15)

holds for every f ∈ Ls′(dσ) if and only if σ is a discrete Carleson measure, and the

constants in (3.3.14) and (3.3.15) are equivalent. For completeness we provide a proof

of this inequality in Appendix C. From this it is immediate that if σ is a Carleson

measure then χE dσ is also a Carleson measure, for every measurable E ⊂ Rn.

We now formulate a discrete analogue of the characterization in Lemma 3.3.5

which will be sufficient for our purposes, where we make use of Definition 3.3.6 and

Remark 3.3.7.

Lemma 3.3.8. Suppose there is a positive solution u to the integral inequality (3.3.6).

Then the measure σ is a discrete Carleson measure, that is there is a positive constant

C = C(n, s, C0) such that for each dyadic cube P ∈ D and every compact set E ⊂ Rn,

∑
Q⊂P
Q∈D

cQ |(Q+ t) ∩ E|s
′

σ ≤ C |(P + t) ∩ E|σ . (3.3.16)
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Furthermore, we have that

∑
Q∈D

cQ |(Q+ t) ∩ E|s
′

σ ≤ C |E|σ . (3.3.17)

Proof. We will prove (3.3.16). The proof of (3.3.17) follows by the same reasoning.

The proof is rather reminiscent of the classical Schur’s Lemma. First note that by

hypothesis and (3.3.13) there is a positive function u together with a constant C > 0

so that

u(x) ≥ CW t
α,s(u

s−1dσ)(x)

and hence, using Hölder’s inequality, we see that:

∑
Q⊂P
Q∈D

cQ |(Q+ t) ∩ E|s
′

σ =
∑
Q⊂P

cQ

{∫
(Q+t)∩E

u−
s−1
s · u

s−1
s dσ

}s′

≤
∑
Q⊂P

cQ

∫
(Q+t)∩E

u−1 dσ ·
{∫

(Q+t)∩E)

us−1dσ
} 1
s−1
.

By interchanging summation and integration, which is permitted by the monotone

convergence theorem, we see that the last line is equal to:

∫
(P+t)∩E

u−1
∑
Q⊂P

cQ

{∫
(Q+t)∩E

us−1dσ
} 1
s−1
χQ+t(x)dσ

≤
∫

(P+t)∩E
u−1 · W t

α,s(u
s−1dσ)dσ

≤ C

∫
(P+t)∩E

u−1 · u dσ = C |(P + t) ∩ E|σ .

We now state a suitable version of the dyadic averaging result which will be

sufficient for our purposes.

Lemma 3.3.9. There is a positive integer j0 ∈ N so that for any j ∈ Z there is a
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constant C = C(n, α, s), not depending on j, so that

W2j

α,s(fdσ)(x) ≤ C−
∫
B(0,2j+j0 )

W t
α,s(fdσ)(x) dt

where W2j

α,s is the local Wolff potential defined in (3.1.1).

A proof of this lemma can be found, for instance, in [COV04].

We will next use the dyadic shifting argument to prove the following lemma:

Lemma 3.3.10. Suppose u is a positive solution of (3.3.6) with constant C0. Then

there is a constant C = C(n, α, s) so that for any compact set E ⊂ Rn, and each

m ∈ N the measure σ satisfies:

∫
E

(
Wα,s(χEdσ)

)m
dσ ≤ Cmm!σ(E).

Remark 3.3.11. This Lemma in the case m = 1 shows that Lemma 3.3.5 is satisfied,

and hence proves Theorem 3.3.1. We prove the Lemma in the form stated as it gives

us an exponential integrability result, which will be very useful in the sequel (see

Corollary 3.3.12 below).

Proof. Let E be a compact set. Then first we note that by Fatou’s lemma,

∫
E

(
Wα,s(χEdσ)

)m
dσ ≤ lim inf

k→∞

∫
E

(
W2k

α,s(χEdσ)
)m

dσ

where W2k

α,s(χEdσ)(x) =

∫ 2k

0

(σ(B(x, r) ∩ E)

rn−αs

)1/(s−1)dr

r
.

It therefore suffices to find a bound on the right hand side of the preceding in-
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equality which is independent of k. Lemma 3.3.9 yields:

∫
E

(
W2k

α,s(χEdσ)
)m

dσ

≤ Cm

∫
E

(
−
∫
B(0,2k+j0 )

W t
α,s(χEdσ)dt

)m
dσ

≤ Cm
(
−
∫
B(0,2k+j0 )

(∫
E

(
W t

α,s(χEdσ)
)m

dσ
) 1
m
dt
)m
,

where the second inequality follows from Minkowski’s integral inequality.

We will need the elementary summation by parts inequality:

( ∞∑
j=1

λj

)m
≤ m

∞∑
j=1

λj

( j∑
k=1

λk

)m−1

(3.3.18)

which holds for any nonnegative sequence {λj}j and m ≥ 1. We apply Lemma 3.3.8 to

the dyadic Wolff potential, after an m fold application of (3.3.18). Indeed, considering

the inner integral in the right hand side of the last line above, we obtain:

∫
E

(
W t

α,s(χEdσ)
)m
dσ

=

∫
E

(∑
Q∈D

cQ |Q+ t ∩ E|
1
s−1
σ χQ+t

)m
dσ

≤ m!

∫
E

∑
Q1∈D

cQ1 |Q1 + t ∩ E|
1
s−1
σ . . .

∑
Qm⊂Qm−1

cQm |Qm + t ∩ E|
1
s−1
σ χQm+t dσ

= m!
∑
Q1∈D

cQ1 |Q1 + t ∩ E|
1
s−1
σ . . .

∑
Qm⊂Qm−1

cQm |Qm + t ∩ E|
s
s−1
σ

≤ m!Cmσ(E).

(3.3.19)

In the last line we have used (3.3.16) m − 1 times and then (3.3.17) once. Bringing

together our estimates proves the lemma.

The following exponential integrability result easily follows from Lemma 3.3.10,

the power series representation of the exponential, and the monotone convergence
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theorem.

Corollary 3.3.12. Suppose u is a positive solution of (3.3.6). If we let β > 0 so

that Cβ < 1, where C is the constant appearing in Lemma 3.3.10, then we have the

following: ∫
E

e βWα,s(χEdσ)(y)dσ(y) ≤ 1

1− Cβ
σ(E) (3.3.20)

whenever E is a compact set.

In our next result, we specialize (3.3.7) to when the set E is a ball. By a standard

formula for the capacity of a ball (see [AH96], Chapter 5),

σ(B(x, r)) ≤ C1 capα,s(B(x, r)) = C2r
n−αs (3.3.21)

for all balls B(x, r), where C2 = AC1, and A depends only on n, α and s. However,

as is well known, (3.3.21) does not imply (3.3.7) for all compact sets E.

Our next lemma shows that the tail of the Wolff potential is nearly constant,

which is a key estimate to our construction of the supersolution.

Lemma 3.3.13. Let σ be a Borel measure satisfying (3.3.21). Then there is a positive

constant C = C(n, α, s, C2) > 0, so that for all x ∈ Rn and y ∈ B(x, t), t > 0, it

follows: ∣∣∣∣∫ ∞
t

[(σ(B(x, r))

rn−αs

) 1
s−1 −

(σ(B(y, r))

rn−αs

) 1
s−1

]
dr

r

∣∣∣∣ ≤ C. (3.3.22)

We defer the proof of Lemma 3.3.13 to Appendix B.
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3.4 Lower bounds for nonlinear integral equations,

the proof of Theorems 3.1.2 and 3.1.12

In this section, we will prove Theorems 3.1.2 and 3.1.12. Recall the operator

N (f)(x) = Wα,s(f
s−1dσ)(x).

We will begin this section by proving a lower bound for solutions of the inequality:

u(x) ≥ C0N (u)(x) + C0 |x− x0|
αs−n
s−1 . (3.4.1)

We will show the following theorem:

Theorem 3.4.1. Suppose that u satisfies (3.4.1) with constant C0. Then there is a

constant c = c(n, α, s, C0) > 0 such that:

u(x) ≥ c |x− x0|
αs−n
s−1 exp

(
c

∫ |x−x0|

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r

)
· exp

(
c

∫ |x−x0|

0

σ(B(x0, r))

rn−αs
dr

r

)
.

(3.4.2)

Theorems 3.1.2 and 3.1.12 will follow quickly from this theorem, as we shall show

once it is proved.

We shall prove Theorem 3.4.1 by iterating (3.4.1). To illustrate the iteration, sup-

pose that T is a homogeneous superlinear operator acting on nonnegative functions,

i.e. that T (cf) = cT (f) for c > 0 and T (f + g) ≥ T (f) + T (g) whenever f and g are

nonnegative measurable functions. In addition suppose that u satisfies the inequality:

u ≥ T (u) + f (3.4.3)

where f ≥ 0. Now we define the j-th iterate of T by T j(f) = T (T j−1(f)), for all
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j ≥ 2. Iterating (3.4.3) m times yields:

u ≥ T (T (. . . T (T (u) + f) + f · · · ) + f) + f

≥ Tm(f) + Tm−1(f) + · · ·+ T (f) + f,

and since m here was arbitrary,

u ≥
∞∑
j=1

T j(f) + f.

Now, if 1 < s ≤ 2, it is clear from Minkowski’s inequality that N is a superlinear

homogeneous operator and hence if u is a solution of (3.4.1), then:

u ≥
∞∑
j=1

Cj
0N j(|· − x0|

αs−n
s−1 ) + C0 |x− x0|

αs−n
s−1 .

However, if 2 < s < n, the operator N does not fall within this framework. In

this case we consider an operator T (f) = N (f 1/(s−1))s−1 = (Wα,s(f))s−1. Then by

Minkowski’s inequality, T is superlinear, and it is homogenous, and so we may apply

the above discussion. If u satisfies (3.4.1), then we have that:

us−1(x) ≥ CT j(us−1)(x) + C |x− x0|αs−n

where C is a positive constant depending on n, α, s and C0. Hence, we see that

us−1(x) ≥
∞∑
j=1

CjT j(|· − x0|αs−n)(x) + C |x− x0|αs−n .

By comparing iterates of T with the iterates of N , we obtain

u(x) ≥
( ∞∑
j=1

CjN j(|· − x0|
αs−n
s−1 )(x)s−1

)1/(s−1)

+C |x− x0|
αs−n
s−1 .
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Thus, by Jensen’s (or Hölder’s) inequality, we have that for any q > 1,

u ≥ C
∞∑
j=1

j(q 2−s
s−1

)CjN j
1 (|· − x0|

αs−n
s−1 )(x) + C |x− x0|

αs−n
s−1

where C is a positive constant depending on q, n, s, α and C0.

We summarize this discussion as follows:

Lemma 3.4.2. Suppose u is a solution of (3.4.1) with constant C0. Then there is a

constant C = C(n, s, α, C0) > 0 so that if 1 < s ≤ 2, it follows:

u ≥
∞∑
j=1

CjN j(|· − x0|
αs−n
s−1 ) + C |x− x0|

αs−n
s−1 . (3.4.4)

If 2 < s < n, then for any q > 1,

u ≥ C(q)
∞∑
j=1

j(q 2−s
s−1

)CjN j
1 (|· − x0|

αs−n
s−1 )(x) + C |x− x0|

αs−n
s−1 (3.4.5)

where C(s) = C(q, n, α, s, C0) > 0.

3.4.1 Proof of Theorem 3.4.1

Suppose that u is a solution of (3.4.1). Then clearly u also satisfies (3.3.6), and hence

by Theorem 3.3.1, (3.3.7) holds for all balls compact sets E. Hence there is a constant

C(σ) > 0 so that:

C(σ) = sup
E

σ(E)

capα,s(E)
<∞.

where the supremum is taken over compact sets E so that capα,s(E) > 0. Note

that this implies σ(B(x, r)) ≤ AC(σ)rn−αs for all balls B(x, r), where A is a positive

constant depending on n, α and s. To prove Theorem 3.4.1, we estimate the iterates

N j(|· − x0|
αs−n
s−1 ). We will do this in two lemmas, giving us two bounds. We then

average the two bounds to conclude the theorem.
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Lemma 3.4.3. For a given x ∈ Rn, define jx to be the integer so that

2jx ≤ |x− x0| < 2jx+1.

Then, with Bk = B(x0, 2
k), for any m ≥ 1,

Nm(|· − x0|
αs−n
s−1 )(x) ≥

( s− 1

n− αs
8
αs−n
s−1

)m
|x− x0|

αs−n
s−1

·
( 1

m!

{ jx∑
k=−∞

2k(αs−n)σ(Bk+1\Bk)
}m)1/(s−1)

.
(3.4.6)

Proof. We will prove this lemma by induction. Let us recall the definition of the

operator N :

N (|· − x0|
αs−n
s−1 )(x) =

∫ ∞
0

( 1

rn−αs

∫
B(x,r)

|y − x0|αs−n dσ(y)
)1/(s−1)dr

r
.

First, restrict the integration in the variable r to r > 4 |x− x0|. Then, observe that

as r > 4 |x− x0|: B(x0, 2 |x− x0|) ⊂ B(x, r). This results in the bound:

N (|· − x0|
αs−n
s−1 )(x) ≥

∫ ∞
4|x−x0|

r
αs−n
s−1

dr

r

·
(∫

B(x0,2|x−x0|)
|y − x0|αs−n dσ(y)

)1/(s−1)

.

(3.4.7)

Now, recalling the definition of jx, we have:

∫
B(x0,2|x−x0|)

|y − x0|αs−n dσ(y) ≥
jx∑

k=−∞

2(k+1)(αs−n)σ(Bk+1\Bk).

Using this and evaluating the integral in (3.4.7) yields the case where k = 1.

Now suppose (3.4.6) holds for some m. Then by the induction hypothesis, and
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the observation above:

Nm+1(|· − x0|
αs−n
s−1 )(x) ≥

( s− 1

n− αs
8
αs−n
s−1

)m s− 1

n− αs
4
αs−n
s−1 |x− x0|

αs−n
s−1

·
( 1

m!

∫
B(x0,2|x−x0|)

|z − x0|αs−n
( jy∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)m
dσ(y)

)1/(s−1)

.

We now consider the integral

∫
B(x0,2|x−x0|)

|z − x0|αs−n
( jy∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)m
dσ(y). (3.4.8)

To complete the inductive step and hence prove the lemma it suffices to show that

(3.4.8) is greater than

2αs−n

m+ 1

( jx∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)m+1

. (3.4.9)

To this end, note that by the definition of jx, (3.4.8) is greater than

jx∑
k=−∞

2(k+1)(αs−n)

∫
Bk+1\Bk

( jy∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)m
dσ(y). (3.4.10)

We next remark that for all y ∈ Bk+1\Bk, we have by definition jy = k, and so

(3.4.10) equals:

2αs−n
jx∑

k=−∞

2k(αs−n)σ(Bk+1\Bk)
( k∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)m
. (3.4.11)

But an application of the elementary summation by parts inequality (3.3.18) now gives

that (3.4.11) is greater than (3.4.9). This concludes the proof of the Lemma.

By using Jensen’s (or Hölder’s) inequality, inserting Lemma 3.4.3 into the bounds

(3.4.4) and (3.4.5) in Lemma 3.4.2 yields the existence of positive constants c1 and
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c2, depending on n, α, s and C0, so that:

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

jx∑
`=−∞

2`(αs−n)σ(B`+1\B`)
)
.

But, since σ satisfies (3.3.21), we may further estimate the sum. Indeed,

jx∑
`=−∞

2`(αs−n)σ(B`+1\B`) ≥ C

∫ |x−x0|

0

σ(B(x, r))

rn−αs
dr

r
,

where C = C(n, α, s) > 0. Hence we may conclude that there are positive constants

c1 and c2, depending on n, α, s, C0 and C(σ), so that:

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

∫ |x−x0|

0

σ(B(x, r))

rn−αs
dr

r

)
.

The second part of the exponential build up in Theorem 3.4.1 is accounted for in the

following lemma:

Lemma 3.4.4. For any m ≥ 1,

Nm(|· − x0|
αs−n
s−1 )(x) ≥(3/2)

αs−n
s−1

1

m!
|x− x0|

αs−n
s−1

·
(∫ |x−x0|

0

(σ(B(x, r/2))

rn−αs

)1/(s−1)dr

r

)m
.

(3.4.12)

Proof. We will prove Lemma 3.4.4 when m = 3, as the case of general m is completely

similar. The proof is based on the following claim:

For any locally finite Borel measures σ and ω, and x, x0 ∈ Rn:

∫ |x−x0|

0

( 1

rn−αs

∫
B(x,r/2)

{∫ ∞
r

( 1

un−αs
ω(B(y, u))

)1/(s−1)du

u

}s−1

dσ(y)
)1/(s−1)dr

r

≥
∫ |x−x0|

0

(σ(B(x, r/2)

rn−αs

)1/(s−1)
∫ ∞
r

( 1

un−αs
ω(B(x, u/2))

)1/(s−1)du

u

dr

r
.

(3.4.13)
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The claim is just the triangle inequality. Suppose that |y − x| < r/2 and r <

u, then whenever z ∈ B(x, u/2): B(x, u/2) ⊂ B(y, u). Thus, ω(B(x, u/2)) ≤

ω(B(y, u)). The claim (3.4.13) then follows by using this estimate in the left hand

side and noting that the inner integrand no longer depends on y.

The Lemma will follow from repeated use of the claim. First, by using definition

and restricting domains of integration:

N 3(|· − x0|
αs−n
s−1 )(x) ≥

∫ |x−x0|

0

( 1

rαs−n

∫
B(x,r/2)

·
{∫ ∞

r

( 1

un−αs
ω(B(y, u))

)1/(s−1)du

u

}s−1

dσ(y)
)1/(s−1)dr

r

(3.4.14)

where:

ω(B(y, u)) =

∫
B(y,u)

{∫ ∞
0

( 1

tn−αs

∫
B(z,t)

|w − x0|αs−n dσ(w)
)1/(s−1)dt

t

}s−1

dσ(z).

Applying the claim (3.4.13) to (3.4.14), we have that (3.4.14) is greater than:

∫ |x−x0|

0

(σ(B(x, r/2)

rn−αs

)1/(s−1)
∫ ∞
r

( 1

un−αs
ω(B(x, u/2))

)1/(s−1)du

u

dr

r
.

Let’s now consider the integral:

∫ ∞
r

( 1

sn−αs
ω(B(x, u/2))

)1/(s−1)du

u
≥
∫ |x−x0|

r

( 1

un−αs
ω(B(x, u/2))

)1/(s−1)du

u
.

Then we may rewrite the right hand side of this last line as:

∫ |x−x0|

r

( 1

un−αs

∫
B(x,u/2)

{∫ ∞
0

( 1

tn−αs
µ(B(z, t))

)1/(s−1)dt

t

}s−1

dσ(z)
)1/(s−1)du

u

(3.4.15)
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where

µ(B(z, t)) =

∫
B(z,t)

|w − x0|αs−n dσ(w).

Now, restricting the integral over t to t > u, and applying the claim (3.4.13) with

ω = µ, we see that (3.4.15) is greater than

∫ |x−x0|

r

( 1

un−αs
σ(B(x, u/2))

)1/(s−1)
∫ |x−x0|

u

( 1

tn−αs
µ(B(x, t/2))

)1/(s−1)dt

t

du

u

where we have also restricted the integration over t to t < |x− x0|. Now, let us

consider:

∫ |x−x0|

u

( 1

tn−αs
µ(B(x, t))

)1/(s−1)dt

t

=

∫ |x−x0|

u

( 1

tn−αs

∫
B(x,t/2)

|w − x0|αs−n dσ(w)
)1/(s−1)dt

t
.

But, for w ∈ B(x, t/2), note that: |w − x0| < 3/2 |x− x0|. Thus,

∫ |x−x0|

u

( 1

tn−αs
µ(B(x, t/2))

)1/(s−1)dt

t

≥ (3/2)
αs−n
s−1 |x− x0|

αs−n
s−1

∫ |x−x0|

u

( 1

tn−αs
σ(B(x, t/2))

)1/(s−1)dt

t
.

Putting together what we have so far,

N 3( |· − x0|
αs−n
s−1 )(x) ≥ (3/2)

αs−n
s−1 |x− x0|

αs−n
s−1

∫ |x−x0|

r=0

(σ(B(x, r/2))

rn−αs

)1/(s−1)

·
∫ |x−x0|

u=r

(σ(B(x, u/2))

un−αs

)1/(s−1)
∫ |x−x0|

t=u

(σ(B(x, t/2))

tn−αs

)1/(s−1)dt

t

du

u

dr

r
.

Integration by parts now yields the Lemma in the case m = 3. It is easy to see that

a completely similar argument works for general m, using the claim (3.4.13) m − 1

times as we have done twice in the above argument. Thus the Lemma is proved.

As with Lemma 3.4.3, we readily see that applying Lemma 3.4.4 to the iterates
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in the bounds (3.4.4) and (3.4.5) of Lemma 3.4.2 yields the existence of positive

constants c1 and c2, depending on n, α, s and C0, so that

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

∫ |x−x0|

0

(σ(B(x, r/2))

rn−αs

)1/(s−1)dr

r

)
. (3.4.16)

But, since C(σ) < ∞, we can replace σ(B(x, r/2)) by σ(B(x, r)) in the integral

in (3.4.16). Indeed, by change of variables:

∫ |x−x0|

0

(σ(B(x, r/2))

rn−αs

)1/(s−1)dr

r
= 2

αs−n
s−1

∫ |x−x0|/2

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r
,

and by (3.3.21):

∫ |x−x0|

|x−x0|/2

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r
≤ C(n, α, s, C(σ)).

Thus we conclude that there are positive constants c1 and c2 depending on n, α, s, C(σ)

and C0 so that

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

∫ |x−x0|

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r

)
.

Proof of Theorem 3.4.1. We have showed that if u is a solution of (3.4.1) with con-

stant C0, then there are constants c1 and c2, depending on n, α, s, C0 and C(σ), so

that the following two inequalities hold:

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

∫ |x−x0|

0

σ(B(x, r))

rn−αs
dr

r

)
, (3.4.17)

u(x) ≥ c1 |x− x0|
αs−n
s−1 exp

(
c2

∫ |x−x0|

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r

)
. (3.4.18)

Averaging (3.4.17) and (3.4.18) with the inequality of the arithmetic mean and ge-

ometric mean, a/2 + b/2 ≥
√
ab, yields the required lower bound for solutions of
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(3.4.1), and hence completes the proof of Theorem 3.4.1.

Proof of Theorems 3.1.2 and 3.1.12. The capacity estimates have been proven in Re-

mark 3.3.2 so it remains to prove the bounds on the fundamental solutions. Suppose

first that u is a fundamental solution of L. Then, as a result of the Wolff potential

estimate, u satisfies the inequality (3.3.3), which is (3.4.1) in the case when α = 1 and

s = p. Applying Theorem 3.4.1 when specialized to this case is precisely the bound

(1.0.11) of Theorem 3.1.2.

Similarly, if u is a fundamental solution of G, then u satisfies (3.3.4), which is just

(3.4.1) when α = 2k
k+1

and s = k + 1 and so we may apply Theorem 3.4.1. We again

see that the bound (3.4.2) in Theorem 3.4.1 with this choice of α and s is exactly the

required bound (3.1.7) in Theorem 3.1.12.

3.5 Construction of a supersolution

In this section we will construct a solution corresponding to the integral inequality

(3.5.1) below, which as we have already seen is closely related to the fundamental

solutions of L and G. Suppose that v is a solution of the integral inequality:

v(x) ≥ C0N (v)(x) + |x− x0|
αs−n
s−1 (3.5.1)

where

N (f)(x) = Wα,s(f
s−1dσ)(x)

for any positive constant C0 > 0. Then by Theorem 3.3.1 there is a constant C(σ) > 0

such that σ satisfies:

σ(E) ≤ C(σ)capα,s(E) (3.5.2)
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for all compact sets E ⊂ Rn. By Corollary 3.3.12, a consequence of this is that there

is a positive constant A = A(s, α, n) so that:

∫
B(x,r)

e βWα,s(χB(x,r)dσ) dσ ≤ 1

1− βAC(σ)
σ(B(x, r)), (3.5.3)

provided βAC(σ) < 1. In addition note that by standard capacity estimates we may

also assume that

AC(σ) ≥ sup
x∈Rn, r>0

σ(B(x, r))

rn−αs

and hence the hypothesis of Lemma 3.3.13 are satisfied.

To solve the inequality (3.5.1) it suffices to find a function u so that v ≥ |x− x0|
αs−n
s−1

and v ≥ CN (v). With this in mind the following theorem will be enough for our

purposes. Recall that Bk = B(x0, 2
k) and jx is defined to be the integer so that

2jx ≤ |x− x0| < 2jx+1.

Theorem 3.5.1. Let σ be a measure satisfying (3.5.2) (and hence (3.5.3)). In addi-

tion suppose that ∫ 1

0

σ(B(x0, r))

rn−αs
dr

r
<∞. (3.5.4)

Define a function v by the following:

v(x) = |x− x0|
αs−n
s−1 exp

(
β

jx∑
`=−∞

2`(αs−n)σ(B`+1)
)

· exp
(
β

∫ |x−x0|

0

(σ(B(x, r)

rn−αs

)1/(s−1)dr

r

)
.

(3.5.5)

Then, if C(σ) is sufficiently small, there exists a positive β = β(C(σ), n, α, s), along

with a positive constant C0 = C0(β, n, α, s, σ) so that

v ≥ C0N (v), and in addition inf
x∈Rn

v(x) = 0.

Remark 3.5.2. The condition (3.5.4) is only used to ensure that v is not identically
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infinite. By inspection of the bound in Theorem 3.4.1 it is clear that if it is not

satisfied then any fundamental solution is identically infinite.

Proof. We let N (v) = I + II, where I is defined by

I =

∫ |x−x0|/2

0

( 1

rn−αs

∫
B(x,r)

vs−1(y) dσ(y)
)1/(s−1)dr

r
. (3.5.6)

First note that for any y ∈ B(x, r) with r ≤ |x− x0| /2, we have that |y − x0| ≤

(3/2) |x− x0| and jy ≤ jx + 1. In addition note that for such y,

|y − x0| ≥ |x− x0| − |x− y| ≥ |x− x0| /2.

These two observations, when plugged into I, yield:

I ≤ 2
n−αs
s−1 |x− x0|

αs−n
s−1 exp

(
β

jx+1∑
`=−∞

2`(αs−n)σ(B`+1)
)∫ 1

2
|x−x0|

0

( 1

rn−αs

·
∫
B(x,r)

exp
(

(s− 1)β

∫ 3
2
|x−x0|

0

(σ(B(y, t))

tn−αs

) 1
s−1 dt

t

)
dσ(y)

) 1
s−1 dr

r
.

We now pay attention to the integral

∫
B(x,r)

exp
(

(s− 1)β

∫ 3
2
|x−x0|

0

(tαs−nσ(B(y, t))1/(s−1)dt

t

)
dσ(y). (3.5.7)

Note that we may rewrite (3.5.7) as

∫
B(x,r)

exp
(

(s− 1)β

∫ r

0

(σ(B(y, t)

tn−αs

)1/(s−1)dt

t

)
· exp

(
(s− 1)β

∫ 3
2
|x−x0|

r

[(σ(B(y, t)

tn−αs

)1/(s−1)

−
(σ(B(x, t)

tn−αs

)1/(s−1)
]
dt

t

)
dσ(y)

· exp
(

(s− 1)β

∫ 3
2
|x−x0|

r

(σ(B(x, t)

tn−αs

)1/(s−1)dt

t

)
.

(3.5.8)

90



By the Wolff potential tail estimate, Lemma 3.3.13, it follows:

∣∣∣∣∣
∫ 3

2
|x−x0|

r

[(σ(B(y, t)

tn−αs

)1/(s−1)

−
(σ(B(x, t)

tn−αs

)1/(s−1)
]
dt

t

∣∣∣∣∣ ≤ C(n, α, s, C(σ)).

Thus (3.5.8) is less than a constant multiple of:

∫
B(x,r)

exp
(

(s− 1)β

∫ r

0

(σ(B(y, t)

tn−αs

)1/(s−1)dt

t

)
dσ(y)

· exp
(

(s− 1)β

∫ 3
2
|x−x0|

r

(σ(B(x, t)

tn−αs

)1/(s−1)dt

t

)
.

(3.5.9)

Now, provided βC(σ) is small enough we may apply (3.5.3), and hence we may

estimate the integral in (3.5.9) by:

∫
B(x,r)

exp
(

(s− 1)β

∫ r

0

(σ(B(y, t)

tn−αs

)1/(s−1)dt

t

)
dσ(y)

≤
∫
B(x,2r)

exp
(

(p− 1)βW σ
α,s(χB(x,2r))(y)

)
dσ(y) ≤ Cσ(B(x, 2r)).

Putting these estimates together, there is a constant C = C(n, α, s, C(σ)) so that:

I ≤ C |x− x0|
αs−n
s−1 exp

(
β

jx+1∑
`=−∞

2`(αs−n)σ(B`+1)
)

·
∫ |x−x0|

0

(σ(B(x, 2r))

rn−αs

)1/(p−1)

· exp
(
β

∫ 3
2
|x−x0|

r

(σ(B(x, t)

tn−αs

)1/(s−1)dt

t

) dr
r
.

But now note since σ satisfies (3.5.2), we have, for any ρ > 0:

∫ 2ρ

ρ

(σ(B(x, t)

tn−αs

)1/(s−1)dt

t
≤ C, and 2(jx+1)(αs−n)σ(Bjx+2) ≤ C, (3.5.10)

where in this last display the constant depends on n, α, s and C(σ), but is independent

of ρ. By a change of variables and (3.5.10), we see there is a positive constant
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C = C(n, α, s, C(σ)), so that:

I ≤ C |x− x0|
αs−n
s−1 exp

(
β

jx∑
`=−∞

2`(αs−n)σ(B`+1)
)

·
∫ |x−x0|

0

(σ(B(x, r))

rn−αs

)1/(s−1)

· exp
(
β

∫ |x−x0|

r

(σ(B(x, t)

tn−αs

)1/(s−1)dt

t

) dr
r
.

An application of integration by parts now yields I ≤ C v for a positive constant

C = C(n, α, s, C(σ)).

We next consider the remainder of the Wolff potential II. By writing the integral

as a sum over dyadic annuli, it is not difficult to see that there exists a constant

C > 0, depending on n, s and α, so that:

II ≤ C
∞∑
k=jx

2k
αs−n
s−1

(∫
B(x,2k)

vs−1 dσ
)1/(s−1)

. (3.5.11)

Let us first consider a single integral in the sum. Since k ≥ jx, it follows that

B(x, 2k) ⊂ B(x0, 2
k+2). Thus,

∫
B(x,2k)

vs−1 dσ ≤
∫
B(x0,2k+2)

vs−1 dσ =
k+2∑
`=−∞

∫
B`\B`−1

vs−1 dσ. (3.5.12)

We now concentrate on one term in the sum on the right hand side of (3.5.12).

Observe that for z ∈ B`\B`−1, we have 2` ≥ |z − x0| ≥ 2`−1 and jz = ` − 1. This

yields:

∫
B`\B`−1

vs−1(z)dσ(z) ≤2(`−1)(p−n) exp
(
β(s− 1)

`−1∑
m=−∞

2m(αs−n)σ(Bm+1)
)

·
∫
B`

exp
(

(s− 1)β

∫ 2`

0

(σ(B(y, t))

tn−αs

)1/(s−1)dt

t

)
dσ(y).

But, again, if we suppose that βC(σ) is small, then by the exponential integration
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result (3.5.3), there is a constant C = C(n, p, s, C(σ)) > 0 so that:

∫
B`

exp
(

(s− 1)β

∫ 2`

0

(σ(B(y, t))

tn−αs

)1/(s−1)dt

t

)
dσ(y) ≤ Cσ(B(x, 2`+1)).

Thus, plugging this into (3.5.12), we find that there is a constant C = C(n, p, s, C(σ)) >

0 so that:

∫
B(x,2k)

vs−1dσ(z) ≤ C

k+2∑
`=−∞

2`(αs−n)σ(B(x, 2`+1))

· exp
(
β(s− 1)

`−1∑
m=−∞

2m(αs−n)σ(Bm+1)
)
.

(3.5.13)

Next, consider the following summation by parts estimate (see [FV09]). Suppose that

{λj}j is a nonnegative sequence such that 0 ≤ λj ≤ 1. Then:

∞∑
j=0

λje
P∞
k=j λk ≤ 2 e

P∞
j=0 λj . (3.5.14)

Provided C(σ) ≤ 1, we may apply (3.5.14) to see that the right hand side of

(3.5.13) is less than a constant (depending on n, α, s, C(σ)) multiple of:

exp
(

(s− 1)β
k+2∑
`=−∞

2`(αs−n)σ(B`+1)
)
.

Hence (as we may bound two top terms in the above sum using the C(σ) condition),

II ≤ C
∞∑
k=jx

2k
αs−n
s−1 exp

(
β

k∑
`=−∞

2`(αs−n)σ(B`+1)
)
. (3.5.15)

This is less than a constant multiple of u provided C(σ) is small enough. Indeed,
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note that the right hand side of (3.5.15) is a constant multiple of:

2jx
αs−n
s−1 exp

(
β

jx∑
`=−∞

2`(αs−n)σ(B`+1)
)
·
∞∑
k=0

2k
αs−n
s−1 exp(β

k∑
`=1

2`(αs−n)σ(B`+1)
)
. (3.5.16)

Now, using the definitions of jx, v and also (3.5.2), it is immediate that (3.5.16) is

less than

C v(x)
∞∑
k=0

2k
αs−n
s−1 exp

(
βAC(σ)s−1k

)
(3.5.17)

where C = C(n, α, s, C(σ)) and A = A(n, s, α). Now, with C(σ) small enough,

this series converges and so v ≥ CII for a positive constant C > 0 depending on

n, s, α, C(σ).

It is left to see that infx∈Rn v(x) = 0. To this end, first note that we can chose

C(σ) sufficiently small so that:

|x− x0|
αs−n
s−1 exp

(
β

jx∑
`=−∞

2`(αs−n)σ(B`+1)
)

· exp
(
β

∫ |x−x0|

1

(σ(B(x, r)

rn−αs

)1/(s−1)dr

r

)
→ 0, as |x| → ∞.

(3.5.18)

Indeed, this follows from the argument in (3.5.17), using the condition (3.5.2), along

with noting that:

1∑
`=−∞

2`(αs−n)σ(B`+1) ≤ C

∫ 1

0

σ(B(x0, r))

rn−αs
dr

r
<∞.

Let us define a sequence aj by:

aj = inf
x∈B(0,2j)\B(0,2j−1)

∫ 1

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r
.

To finish the proof it therefore suffices to show that aj tends to zero as j →∞. First
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suppose s ≥ 2, then consider:

bR =
1

Rn

∫
B(0,R)

∫ 1

0

(σ(B(x, r))

rn−αs

)1/(s−1)dr

r
dx.

By Fubini and Hölder’s inequality,

bR ≤ C

∫ 1

0

1

r
n−αs
s−1

+1

( 1

Rn

∫
B(0,R)

σ(B(x, r))dx
)1/(s−1)

dr. (3.5.19)

Then by Fubini once again,

∫
B(0,R)

σ(B(x, r))dx ≤ Crnσ(B(0, 2R)) ≤ CrnRn−p,

where we have used (3.5.2) in this last line. Plugging this estimate into (3.5.19)

we find that bR → 0 as R→∞. This clearly implies that aj is a null sequence, since

aj ≤ Cb2j for a positive constant independent of j.

Now let 1 < s < 2 and note that for any integer k:

(∫ 2k

0

(σ(B(x, r))

rn−αs
)1/(s−1)dr

r

)s−1

≤ C
( k∑
j=−∞

(σ(B(x, 2j))

2j(n−αs)

)1/(s−1))s−1

≤ C
k∑

j=−∞

σ(B(x, 2j))

2j(n−αs)
≤ C

∫ 2k

0

σ(B(x, r))

rn−αs
dr

r
.

(3.5.20)

Since the previous argument shows that:

1

Rn

∫
B(0,R)

∫ 1

0

σ(B(x0, r))

rn−αs
dr

r
dx → 0, as R→∞,

we conclude that aj → 0 as j →∞ when 1 < s < 2. Thus infx∈Rn v(x) = 0.
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3.6 Proofs of Theorems 3.1.5 and 3.1.13

3.6.1 The quasilinear existence theorem

In this section we will prove Theorems 3.1.5 and 3.1.13. We make use of the con-

struction in Section 3.5. Combined with a simple iteration scheme based on weak

continuity, which is similar to those in [PV08, PV09]. Let us first consider the quasi-

linear case.

Proof of Theorem 3.1.5. Recall that we denote by C(σ) the positive (and by assump-

tion finite) constant:

C(σ) = sup
E

σ(E)

cap1,p(E)
,

where the supremum is taken over all compact sets E ⊂ Rn of positive capacity. Note

that by Lemma 3.2.10;

C(σ) ≥ C sup
E

σ(E)

capp(E)

where capp is the p-capacity, and C = C(n, p) > 0. Suppose first that:

∫ 1

0

σ(B(x0, r))

rn−p
dr

r
=∞. (3.6.1)

Then, we see that by Theorem 3.1.2 any fundamental solution u(x, x0) ≡ ∞, and

there is nothing to prove. Hence we may assume that the integral in (3.6.1) is finite,

and so we may apply Theorem 3.5.1. This implies that if C(σ) is sufficiently small,

in terms of n and p, then there is a function v ∈ Lp−1
loc (σ) and a constant C0 > 0,

depending on n and p such that:

v(x) ≥ C0W
σ
1,p(v

p−1)(x) + K̃ |x− x0|
p−n
p−1 , (3.6.2)

and infx∈Rn v(x) = 0. Here K̃ = p−1
n−pK, with K = K(n, p) > 0 the same constant
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that appears in the Wolff potential estimate, Theorem 3.2.4. Indeed, recalling that

jx is the integer such that 2jx ≤ |x− x0| ≤ 2jx+1, we can let

v(x) = 2K̃ |x− x0|
p−n
p−1 exp

(
β

jx∑
`=−∞

2`(p−n)σ(B(x0, 2
`+1))

)
· exp

(
β

∫ |x−x0|

r=0

(σ(B(x, r))

rn−p

)1/(p−1)dr

r

)
for a suitable choice of β = β(n, p) > 0. Let u0 = G( ·, x0) where G(x, x0) is defined

in (1.0.10). Then u0 is p-superharmonic in Rn and −∆pu0(x) = δx0 (in fact u0 is the

unique such solution, see, e.g. [KV86]). By choice of K̃ (assuming K > 1) we have

that u0 ≤ v, and hence u0 ∈ Lp−1
loc (σ). Let ε > 0 be such that εK ≤ C0, then we claim

that there exists a sequence {um}m≥0 of functions which are p-superharmonic in Rn,

um ∈ Lp−1
loc (σ):

−∆pum = εσ(um−1)p−1 + δx0 , and inf
x∈Rn

um(x) = 0, (3.6.3)

and in addition um(x) ≤ v(x). The existence of this sequence can be shown by the

techniques of [PV09], using the notion of renormalized solutions. However, as we are

dealing exclusively with p-superharmonic functions this detour would be somewhat

artificial and so we prove the claim directly. Indeed, suppose that u1, . . . , um−1 have

been constructed. Then, εσ(um−1)p−1 + δx0 is a locally finite Borel measure. For each

j ∈ N, let ujm be a positive p-superharmonic function such that

−∆pu
j
m = εσ(um−1)p−1χB(x0,2j) + δx0 in Rn.

The existence of such a p-superharmonic function is guaranteed by [Kil99], Theorem

2.10. By subtracting a positive constant, we may assume that infx∈Rn ujm = 0.

Now, by the global Wolff potential estimate and since W1,p(δx0) = p−1
n−p |x− x0|

p−n
p−1 ,
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we find that

ujm(x) ≤ KεWσ
1,pu

p−1
m−1(x) + K̃ |x− x0|

p−n
p−1 .

But since um−1 ≤ v,

ujm(x) ≤ KεWσ
1,pv

p−1(x) + K̃ |x− x0|
p−n
p−1 .

By choice of ε > 0 so that Kε ≤ C0, we conclude that ujm(x) ≤ v(x).

Appealing now to Theorem 3.2.2 ([KM92], Theorem 1.17), we find a subsequence

ujkm and an p-superharmonic function um such that ujkm(x) → um(x) for almost every

x ∈ Rn. Thus um(x) ≤ v(x) and hence infx∈Rn um(x) = 0. The claim is then

completed by appealing to Theorem 3.2.3 to see that

−∆pum = εσ(um−1)p−1 + δx0 in Rn.

Now, since um(x) ≤ v(x), for all m, we may again find a subsequence {umk}k and

a positive p-superharmonic function u so that umk(x) → u(x) almost everywhere.

Since it follows that u(x) ≤ v(x), we have that infx∈R u(x) = 0. Finally, by Theorem

3.2.3, we may conclude that:

−∆pu = εσup−1 + δx0 in Rn.

This completes the proof of Theorem 3.1.5 with the potential σ̃ = εσ, once we notice

that:
jx∑

`=−∞

2`(p−n)σ(B(x0, 2
`+1)) ≤ C

∫ |x−x0|

0

σ(B(x0, r))

rn−p
dr

r
+ C

for a positive constant C depending on n and p.
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3.6.2 The k-Hessian existence theorem

For the Hessian existence theorem, we may state the following Lemma, contained in

[PV09], Lemma 4.7.

Lemma 3.6.1. [PV09] Let µ and ν be nonnegative locally finite Borel measures in

Rn, so that µ ≤ ν and W 2k
k+1

,k+1ν < ∞ almost everywhere. Suppose that u ≥ 0

satisfies −u ∈ Φk(Rn), µk[−u] = µ, and u is a pointwise a.e. limit of a subsequence

of the sequence {um}m, with −um ∈ Φk(B(x0, 2
m+1)) and


µk[−um] = µχB(x0,2m) in B(x0, 2

m+1)

um = 0 on ∂B(x0, 2
m+1).

Then there is a nonnegative function so that −w ∈ Φk(Rn), w ≥ u, and

µk[−w] = ν and inf
x∈Rn

v(x) = 0.

Moreover, w is a pointwise a.e. limit of a sequence {wm}m, so that −wm ∈ Φk(B(x0, 2
m+1))

and 
µk[−wm] = νχB(x0,2m) in B(x0, 2

m+1)

wm = 0 on ∂B(x0, 2
m+1).

Proof of Theorem 3.1.13. This is very similar to the previous proof so we will be

slightly brief to avoid repetition. As in the previous proof, the theorem is only

nontrivial in the case when,

∫ 1

0

σ(B(x0, r))

rn−2k

dr

r
<∞.
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Hence if C(σ) small enough, where now

C(σ) = sup
E compact

σ(E)

cap2k/(k+1),k+1(E)
,

then we may apply Theorem 3.5.1 to find a positive function v such that infx∈Rn v(x) =

0 and

v(x) ≥ C0W
σ
2k
k+1

,k+1
(vk)(x) + K̃ |x− x0|2/k−n

with K̃ = k
n−2k

K. Here K is a constant appearing in the global Wolff potential bound

Theorem 3.2.6.

Let ε > 0 be such that εK ≤ C0. Let u0 = c(n, k) |x− x0|2/k−n, where c(n, k) =

( k
n−2k

) · (
(
n
k

)
ωn−1)−1/k. Then u0 is the (unique) fundamental solution of the k-Hessian

operator in Rn, see [TW02a]. By a repeated application of Lemma 3.6.1, we find a

sequence {um}m of nonnegative functions so that −um ∈ Φk(Rn), infx∈Rn um(x) = 0,

um ∈ Lkloc(σ) and

µk[−um] = εσ(um−1)p−1 + δx0 .

Furthermore, as in the previous proof, we see that by choice of K̃ that um ≤ v. Now,

appealing to the weak continuity of the k-Hessian operator (Theorem 3.2.5), we assert

the existence of a nonnegative u such that −u ∈ Φk(Rn),

µk[−u] = εσuk + δx0 ,

and u ≤ v. Hence infx∈Rn u(x) = 0. Thus, noting Lemma 3.2.11, we see that Theorem

3.1.13 is proved with potential σ̃ = εσ, once we make the easy observations that v is

comparable to the right hand side of the bound (3.1.8).
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3.6.3 Criteria for equivalence of perturbed and unperturbed
fundamental solutions

In this short section we consider necessary and sufficient conditions for fundamental

solutions of L, defined by (3.0.1), to be equivalent to the fundamental solutions of

the p-Laplacian. Similar results also holds for the k-Hessian operator. Recall the

fundamental solution of −∆p, which we denoted by G(x, x0) in (1.0.10), and the

Wolff and Riesz potentials from (3.1.1) and (3.1.2) respectively.

Corollary 3.6.2. Suppose that there is a positive constant c > 0 such that for all

x0 ∈ Rn (1.0.9) holds whenever u(x, x0) is a fundamental solution of L. Then σ(E) ≤

capp(E) for all compact sets E, and furthermore (1.0.13) and (1.0.14) hold.

Conversely, suppose that (1.0.13) holds if 1 < p ≤ 2, or (1.0.14) holds if p ≥ 2.

Then there exists a positive constant C, depending on n and p, such that if σ(E) ≤

Ccapp(E) for all compact sets E, then for any x0 ∈ Rn there is a fundamental solution

u(x, x0) of L with pole at x0 satisfying (1.0.9) for a constant c = c(n, p) > 0.

The Corollary is an immediate consequence of Theorems 3.1.2 and 3.1.5 once we

notice that if 1 < p < 2 then there is a constant C = C(n, p) > 0 such that:

(
W1,p(σ)(x)

)p−1≤ CIp(σ)(x)

for all x ∈ Rn. This inequality has been proved in (3.5.20). The opposite inequality

holds if p > 2, this is clear from (3.5.20), as the sequence space imbeddings are

reversed.
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3.7 Regularity away from the pole: the proof of

Theorem 3.1.8

In this section we will turn to considering the regularity of fundamental solutions, and

in particular we will prove Theorem 3.1.8. Throughout this section we will assume the

hypothesis of Theorem 3.1.5 hold, and that the fundamental solution u constructed

there is not identically infinite. It therefore follows from Theorem 3.1.2 that:

∫ 1

0

σ(B(x0, r))

rn−p
dr

r
= B <∞. (3.7.1)

By hypothesis, the constant C(σ), defined by:

C(σ) = sup
E compact

σ(E)

cap1,p(E)
, (3.7.2)

is finite, this is nothing more than a restatement of the condition (3.0.3). Thus we

will assume that C(σ) < C0, for a constant C0 = C0(n, p) > 0. The first step will be

to perform some auxiliary calculations for the function v(x), defined by:

v(x) = B(n, p) |x− x0|
p−n
p−1 exp

(
cW

|x−x0|
1,p (σ)(x) + cI|x−x0|

p (σ)(x0)
)
, (3.7.3)

for a positive constant B(n, p) > 0 to be chosen later. In particular, we will need to

show that v ∈ Lploc(R
n\{x0}). We will see that this is true assuming only that:

σ(B(x, r)) . C(σ)rn−p for all balls B(x, r) ⊂ Rn, (3.7.4)

with the implicit constant depending on n and p. Display (3.7.4) is a special case of

(3.7.2), using (3.3.21).

Lemma 3.7.1. There exists a constant so that if σ(B(x, r)) ≤ C1r
n−p for all balls
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B(x, r) ⊂ Rn. Then for any ball B(x, r) ⊂ Rn, it follows:

∫
B(x,r)

eaW1,p(χB(x,r)dσ)dx ≤ C(r, p, C1), (3.7.5)

for a constant a ≤ A/(C1)1/(p−1) with A > 0 depending on n and p.

There are several ways one can prove this lemma, for instance one can adopt

the proof of Lemma 3.3.10, leading to Corollary 3.3.12, which requires some lengthy

estimates of sums of dyadic cubes. We shall avoid this by instead offering a more

elegant proof, employing a regularity result from [Min07].

Proof. Fix a ball B(x, r). Then under the present assumption on σ, we may apply

Theorem 1.12 of [Min07], to find a p-superharmonic solution w of:


−∆pu = σ in B(x, 10r),

u = 0 on ∂B(x, 10r).

(3.7.6)

so that w ∈ BMO(B(x, 5r)), and furthermore:

sup
B(z,s)⊂B(x,5r)

−
∫
B(z,s)

∣∣∣w(y)−−
∫
B(z,s)

w(y)dy
∣∣∣dy . C

1/(p−1)
1 .

Therefore, by the John Nirenberg lemma, it follows that there exists a constant c .

C
−1/(p−1)
1 so that:

−
∫
B(x,r)

ecw(y)dy ≤ exp
(
c−
∫
B(x,r)

w(y)dy
)
<∞ (3.7.7)

Employing the local Wolff potential estimate, Theorem 3.1 in [KM92], it follows, for

103



y ∈ B(x, r) that:

w(y) ≥ C

∫ 4r

0

(σ(B(y, s))

sn−p

)1/(p−1)ds

s

≥ CW1,p(χB(x,r)dσ)(y).

(3.7.8)

Substituting (3.7.8) into (3.7.7), the lemma follows.

With this lemma proved, we may now prove that v ∈ Lploc(R
n)\{x0}.

Lemma 3.7.2. There exists C0 so that if C(σ) < C0, then:

v ∈ Lploc(R
n)\{x0}.

Proof. Let K ⊂ Rn\{x0} be a compact set, and let B(xj, rj) be a finite cover of K.

Then, note that by crude estimates:

∫
K

vpdx . d(K, x0)p(n−p)/(p−1) exp
(
cp

∫ |x0|+diam(K)

0

σ(B(x0, r)

rn−p
dr

r

)
·
∑
j

∫
B(xj ,rj)

exp
(
pc

∫ x−x0

0

(σ(B(z, r)\B(xj, 2rj))

rn−p

)1/(p−1)dr

r

)
· epcW1,p(χB(xj,2rj)

dσ)
dx.

(3.7.9)

Employing the estimate (3.7.4), and recalling the definition of the constant B from

(3.7.1), we readily derive:

∫ |x0|+diam(K)

0

σ(B(x0, r)

rn−p
dr

r
. B + C(σ)(log(|x0|+ diam(K))),
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and using the same estimate on σ, we similarly see for all z ∈ B(xj, rj), that:

∫ x−x0

0

(σ(B(z, r)\B(xj, 2rj))

rn−p

)1/(p−1)dr

r

≤
∫ diam(K)+|x0|

rj

(σ(B(xj, r))

rn−p

)1/(p−1)dr

r

. C(σ)1/(p−1) log
(diam(K) + |x0|

rj

)
.

Substituting these two displays into (3.7.9), it follows:

∫
K

vpdx ≤
∑
j

C(n, p, C(σ), rj, K)

∫
B(xj ,rj)

e
pcW1,p(χB(xj,2rj)

dσ)
dx. (3.7.10)

Note that under the current assumptions, we may choose C1 . C(σ), with C1 as in

Lemma 3.7.1. This is just a restatement of (3.7.4). It follows that if C0 is chosen

small enough in terms on n and p, then (3.7.5) will be valid, and therefore:

∫
B(xj ,2rj)

e
pcW1,p(χB(xj,2rj)

dσ)
dx <∞, for each j.

This completes the proof of the lemma.

Note that in a similar way, using Corollary 3.3.12 instead of Lemma 3.7.1, we

deduce the following lemma:

Lemma 3.7.3. There exists C0 so that if C(σ) < C0, then:

v ∈ Lploc(R
n\{x0}, dσ).

We are now in a position to prove Theorem 3.1.8.

Proof of Theorem 3.1.8. Let us assume that C0 has been chosen so that Lemmas 3.7.2

and 3.7.3 are both valid. To prove the theorem, we will aim to construct the sequence

{um}m as in (3.6.3) from the proof of Theorem 3.1.5 with the additional property that
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um ∈ L1,p
loc(R

n\{x0}), with constants independent on m. We will do this inductively,

as in the proof of Theorem 3.1.5. Let u0 = G( ·, x0), with G(x, x0) as in (1.0.10). Note

G(·, x0) ∈ C∞loc(R
n\{x0}). Suppose that we have constructed u1, . . . , um−1 so that:

−∆puj = εσup−1
j−1 + δx0 ,

with uj ≤ v, and uj−1 ∈ L1,p
loc(R

n\{x0}). Let K be a compact subset of Rn\{0},

then we claim that up−1
m−1dσ ∈ W−1,p′(K). This will follow from the capacity strong

type inequality. Indeed, since σ satisfies (3.0.3) with constant C(σ) < C0, it follows

[Maz85], that:

∫
|h|pdσ ≤ C(σ)

( p

p− 1

)p∫
|∇h|pdx, for all h ∈ C∞0 (Rn),

and this can be extended by continuity to functions h ∈ L1,p
0 (Rn). Now, let h ∈

C∞0 (K), and K ′ be a subset K ⊂⊂ K ′ ⊂⊂ Rn\{x0} along with a function g ∈

C∞0 (K ′), g ≡ 1 on K, g ≥ 0. Then:

∫
hup−1

m−1dσ =

∫
hup−1

m−1g
p−1dσ ≤

(∫
|h|pdσ

)1/p(∫
upm−1g

pdσ
) p−1

p

. ||∇h||p||∇(um−1g)||p−1
p ≤ CK ||∇h||p,

and hence up−1
m−1dσ ∈ W−1,p′(K), as claimed. Now let νj be the measure:

νj =
χB(x0,2−j)

|B(x0, 2−j)|
,

from Poincaré’s inequality it follows that νj ∈ L−1,p′(B(x0, 2
j)). Note in addition that

νj → δx0 weakly as measures. Invoking the theory of monotone operators, see e.g.
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[Li69], we assert the existence of a unique solution wjm ∈ L
1,p
0 (B(x0, 2

j)) of:


−∆pw

j
m = εσup−1

m−1χB(x0,2j)\B(x0,2−j) + νj in B(x0, 2
j),

wjm ∈ L
1,p
0 (B(x0, 2

j)).

(3.7.11)

Furthermore, by the global potential estimate for renormalized solutions, Theorem

2.1 of [PV08], it follows:

wjm(x) ≤ KεW1,p(u
p−1
m−1dσ)(x) +KW1,p(νk)(x),

where the constant K > 0 can be assumed to be the same as the constant appearing

in Theorem 3.2.4. But, for x 6∈ B(x0, 2 · 2−j), a simple computation yields:

W1,p(νk)(x) ≤ n− p
p− 1

2
n−p
p−1 |x− x0|

p−n
p−1 . (3.7.12)

Using the hypothesis um−1 ≤ v, it follows for x ∈ B(x0, 2
j)\B(x0, 2

1−j) that:

wjm(x) ≤ KεW1,p(v
p−1dσ)(x) +K

n− p
p− 1

2
n−p
p−1 |x− x0|

p−n
p−1 .

Let us now choose the constant B(n, p) appearing in (3.7.3) as B(n, p) = 2K(n −

p)/(p − 1)2
n−p
p−1 . Then, by construction of v, it follows as in the argument around

display (3.6.2), that we can choose ε > 0 and C0 > 0 so that if C(σ) < C0, then:

KεW1,p(v
p−1dσ)(x) +K

n− p
p− 1

2
n−p
p−1 |x− x0|

p−n
p−1 ≤ v(x),

and hence,

wjm(x) ≤ v(x), for all x ∈ B(x0, 2
j)\B(x0, 2 · 2−j). (3.7.13)

We are now in a position to derive the uniform gradient estimate. Let φ ∈ C∞0 (B(x0, 2
j)\B(x0, 2·
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2−j). Then test the weak formulation of wjm with the valid test function function

φp · wjm ∈ L
1,p
0 (B(x0, 2

j)). It follows:

∫
|∇wjm|pφpdx = −p

∫
|∇wjm|p−2∇wjm · ∇φwjmφp−1 +

∫
φpwjmu

p−1
m−1dσ

Using Young’s inequality in the first term, and utilizing the bounds (3.7.13) and

um−1 ≤ v, we find that:

1

p

∫
|∇wjm|pdx ≤

∫
vpφpdσ +

1

p

∫
vp|∇φ|pdx = C(n, p, C(σ), supp(φ)) <∞,

where Lemmas 3.7.2 and 3.7.3 have been used. Using Theorems 3.2.2 and 3.2.3, we let

j →∞ to find a solution um of (3.6.3). Furthermore, by weak compactness in L1,p, we

deduce that um ∈ L1,p
loc(R

n\{x0}) with the local bound on the gradient independent

of m. We now follow the rest of the proof of Theorem 3.1.5 from display (3.6.3),

using weak compactness again to deduce a fundamental solution u ∈ L1,p
loc(R

n\{x0}),

so that u ≤ v.
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Appendix A

On the weak reverse Hölder
inequality

In this first appendix, we prove Proposition 2.1.4 from Chapter 2, which is a charac-

terization of when a nonnegative function satisfying a weak reverse Hölder inequality

is doubling. First let us recall some notation:

For an open set U , we say u ∈ BMO(U) if there is a positive constant DU so that:

−
∫
B(x,r)

|u(y)−−
∫
B(x,r)

u(z) dz|dy ≤ DU , for any ball B(x, 2r) ⊂ U. (A.0.1)

In addition, u ∈ BMOloc(Ω) if for each compactly supported open set U ⊂⊂ Ω, there

is a positive constant DU > 0 so that (A.0.1) holds.

Here we have adopted a slightly different definition of BMO in (A.0.1) than in

display (2.1.4) of Chapter 2. However, the definition above is well known to be

equivalent to our previous definition in (2.1.4). This follows as a standard consequence

of the John-Nirenberg inequality (see e.g. [St93]).

Definition A.0.4. Let U ⊂ Rn be an open set, and let w be a nonnegative measurable

function. Then w is said to be doubling in U if there exists a constant AU > 0 so
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that,

−
∫
B(x,2r)

w dx ≤ AU−
∫
B(x,r)

w dx, for all balls B(x, 4r) ⊂ U. (A.0.2)

Let w be a nonnegative measurable function. Then w is said to satisfy a weak reverse

Hölder inequality in U if there exists constants q > 1 and BU > 0 so that:

(
−
∫
B(x,r)

wqdx
)1/q

≤ BU−
∫
B(x,2r)

w dx, for all balls B(x, 2r) ⊂ U. (A.0.3)

Proposition A.0.5. Let U be an open set, and suppose w satisfies the weak reverse

Hölder inequality (2.1.6) in U . Then w is doubling in U , i.e. (2.1.5) holds, if and

only if log(w) ∈ BMO(U) (see (2.1.4)).

In particular, if w satisfies (A.0.3) and

−
∫
B(x,s)

| logw(y)−−
∫
B(x,s)

logw(z)dz|dy ≤ DU , for all balls B(x, 2s) ⊂ U. (A.0.4)

Then there is a constant C(AU , DU) > 0, so that for any ball B(x, 4r) ⊂ U :

−
∫
B(x,2r)

w dx ≤ C(AU , DU)−
∫
B(x,r)

w dx (A.0.5)

To prove Proposition A.0.5, we use the following lemma:

Lemma A.0.6. Let U ⊂ Rn be an open set. Suppose that there exist q > 1 and

w ≥ 0, so that u satisfies (A.0.3). Then, for any t > 0, there exists a constant

Ct = C(t, BU) > 0 so that:

(
−
∫
B(x,r)

wq dx
)1/q

≤ BU

(
−
∫
B(x,2r)

wt dx
)1/t

, whenever B(x, 2r) ⊂ U.

This well known lemma had been used in proving estimates for quasilinear equa-

tions by G. Mingione [Min07]. For the benefit of the reader we provide a proof based

on Remark 6.12 of [Giu03].
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Proof. Let τ > 1. The first step will be to prove that, for each ball B(x, r) so that

B(x, τr) ⊂ U , then there is a constant C = C(n, q, BU) > 0 (independent of τ) so

that: ∫
B(x,r)

wqdx ≤ C
1

[(τ − 1)r]n(q−1)

(∫
B(x,τr)

wdx
)q

(A.0.6)

The proof of (A.0.6) is a consequence of a rather standard covering argument. Indeed,

note that for each ball B(z, (τ − 1)r) ⊂ U , from (A.0.3):

∫
B(z,(τ−1)r/2)

wqdx ≤ C(n, q, BU)

[(τ − 1)r]n(q−1)

(∫
B(z,(τ−1)r)

wdx
)q
. (A.0.7)

We now note that B(x, r) can be covered by balls B(zj, (τ − 1)r/2) so that, for a

dimensional constant C(n):

∑
j

χB(zj ,(τ−1)r) ≤ C(n). (A.0.8)

As a consequence of these observations we derive:

∫
B(x,r)

wqdx ≤
∑
j

∫
B(zj ,(τ−1)r/2)

wqdx ≤ C(n, qBU)

[(τ − 1)r]n(q−1)

∑
j

(∫
B(zj ,(τ−1)r)

wdx
)q
.

However, since || · ||`q ≤ || · ||`1 , we have that:

∫
B(x,r)

wqdx ≤ C(n, qBU)

[(τ − 1)r]n(q−1)

(∑
j

∫
B(zj ,(τ−1)r)

wdx
)q
.

Finally, as a consequence of (A.0.8) and elementary geometry, we obtain (A.0.6).

Next, let us note that by Hölder’s inequality:

(∫
B(x,τr)

wdx
)q
≤
(∫

B(x,τr)

wqdx
)q 1−t

q−t
(∫

B(x,τr)

wtdx
)q q−1

q−t
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Hence by Young’s inequality (2.2.6) with suitable exponents:

C(n, qBU)

[(τ − 1)r]n(q−1)

(∫
B(x,τr)

wdx
)q
≤ 1

2

(∫
B(x,τr)

wqdx
)

+
C(q, t, BU , n)

[(τ − 1)r]α

(∫
B(x,τr)

wtdx
)q/t

,

(A.0.9)

here

α =
n

t
(q − t) > 0.

Let us denote:

Φ(s) =

∫
B(x,s)

wqdx.

Then, as a result of (A.0.9) and (A.0.6), it follows, for any r < s1 < s2 < 2r:

Φ(s1) ≤ 1

2
Φ(s2) +

C

(s2 − s1)α

(∫
B(x,2r)

wtdx
)q/t

. (A.0.10)

Let us now pick 0 < λ < 1 so that λα > 1/2. In addition, define sj so that s0 = r

and sj+1 − sj = (1− λ)λjr. Then, by using (A.0.10) inductively:

Φ(r) ≤ 1

2j
Φ(sj) +

[ j∑
k=0

1

(2λα)j

]
C

1

rα

(∫
B(x,2r)

wtdx
)q/t

.

By choice of λ the geometric series converges. Recalling the definition of α, the lemma

is proved by letting j →∞.

Let us now turn to proving the proposition.

Proof of Proposition A.0.5. Let us first prove the necessity, suppose that w satisfies

the weak reverse Hölder inequality (A.0.3), and in addition that w is doubling in U .

Then, for each ball B(x, 4r) ⊂ U :

(
−
∫
B(x,r)

wqdx
)1/q

≤ BU−
∫
B(x,2r)

w dx ≤ AUBU−
∫
B(x,r)

w dx.
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It follows that w satisfies a reverse Hölder inequality in U , and is therefore a Muck-

enhoupt A∞-weight. It follows (see Chapter 5 of [St93]) that log(u) ∈ BMO(U).

Let us now turn to the converse statement. Suppose w satisfies (A.0.4) and (A.0.3).

From (A.0.4), it is a well known consequence of the John-Nirenberg inequality that

there exists a constant 0 < t ≤ 1 so that wt is an A2-weight in U , i.e. there exists a

positive constant A > 0 (depending on DU in (A.0.4)) so that for all balls B(z, 2s) ⊂

U :

−
∫
B(z,s)

wt dx ≤ A
(
−
∫
B(z,s)

w−t dx
)−1

. (A.0.11)

Indeed, from the John-Nirenberg inequality (see [St93]), there exists a constant t =

t(DU) so that for any ball so that B(z, 2s) ⊂ U :

−
∫
B(z,s)

exp
(
t
∣∣∣log(w)(y′)−−

∫
B(z,s)

log(w(y))dy
∣∣∣)dy′ ≤ C(DU). (A.0.12)

Inequality (A.0.12) clearly implies the two inequalities:

−
∫
B(z,s)

exp
(

log(wt(y′))−−
∫
B(z,s)

log(wt(y))dy
)
dy′ ≤ C(DU), and:

−
∫
B(z,s)

exp
(

log(w−t(y′)) +−
∫
B(z,s)

log(wt(y))dy
)
dy′ ≤ C(DU).

Multiplying these two inequalities together, one obtains (A.0.11).

It follows from (A.0.11) and Jensen’s inequality that, if B(z, 4s) ⊂ U :

−
∫
B(z,2s)

wt dx ≤ A2n(−
∫
B(z,s)

w−t dx
)−1

≤ A2n−
∫
B(z,s)

wt dx. (A.0.13)

Let B(z, 8s) ⊂ U , then, applying Lemma A.0.6 with this choice of t:

−
∫
B(z,2s)

w dx ≤ CU,t

(
−
∫
B(z,4s)

wt dx
)1/t

≤ C̃U,t

(
−
∫
B(z,s)

wt dx
)1/t

≤ C̃U,t−
∫
B(z,s)

w dx.
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The second inequality in the chain follows from the doubling of wt, and the last

inequality follows from Hölder’s inequality. By a standard covering argument (as in

the proof of Lemma A.0.6), the factor of 8 in the enlargement of the ball can be

replaced by 4, which yields (A.0.5). This completes the proposition.
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Appendix B

A tail estimate for nonlinear
potentials

In this appendix we include a proof of Lemma 3.3.13.

Lemma B.0.7. Let σ be a Borel measure satisfying:

σ(B(x, r)) ≤ Crn−αs, for all balls B(x, r). (B.0.1)

Then there is a positive constant C = C(n, α, s, σ) > 0 so that for all x ∈ Rn and

y ∈ B(x, t), t > 0, it follows:

∣∣∣∣∫ ∞
t

[(σ(B(x, r))

rn−αs

) 1
s−1 −

(σ(B(y, r))

rn−αs

) 1
s−1

]
dr

r

∣∣∣∣ ≤ C. (B.0.2)

Proof. Without loss of generality, suppose that:

∫ ∞
t

[(σ(B(x, r))

rn−αs

) 1
s−1 −

(σ(B(y, r))

rn−αs

) 1
s−1

]
dr

r
> 0.

We want to rearrange the integrand so it is nonnegative. To this end, we define two
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sets:

A = {z ∈ Rn : |x− z| ≤ |y − z|}, and B = {z ∈ Rn : |y − z| < |x− z|}.

Then if z ∈ B and |z − x| < r, we have that |y − z| < r, and thus B(x, r) ∩ B ⊂

B(y, r) ∩B so that:

σ(B(x, r) ∩B) ≤ σ(B(y, r) ∩B), and: (B.0.3)

σ(B(y, r) ∩ A) ≤ σ(B(x, r) ∩ A). (B.0.4)

Using (B.0.3) gives:

∫ ∞
t

[(σ(B(x, r))

rn−αs

) 1
s−1 −

(σ(B(y, r))

rn−αs

) 1
s−1

]
dr

r

≤
∫ ∞
t

(σ(B(x, r) ∩ A) + σ(B(y, r) ∩B)

rn−αs

) 1
s−1

−
(σ(B(y, r) ∩ A) + σ(B(x, r) ∩B)

rn−αs

) 1
s−1 dr

r
=

∫ ∞
t

[
I

1
s−1 − II

1
s−1

] dr
r
.

From (B.0.3) and (B.0.4) it immediately follows that the integrand in nonnegative,

i.e. that I ≥ II.

The proof now splits into two cases, when 1 < s < 2 and when s ≥ 2. First

suppose 1 < s < 2, then note the following elementary inequality; for a, b ∈ (0,∞)

with a > b, and γ ≥ 1:

aγ − bγ ≤ γaγ−1(a− b) (B.0.5)

Plugging I and II into (B.0.5) yields: I
1
s−1 − II

1
s−1 ≤ 1

s−1
(I − II)I

2−s
s−1 ≤ C(I − II).

Here we have used the estimate (B.0.1) in the last inequality, noting that 2− s > 0.
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Thus, if 1 < s < 2, the Lemma will follow from the following inequality:

∫ ∞
t

σ(B(x, r) ∩ A) + σ(B(y, r) ∩B)

rn−αs

− σ(B(y, r) ∩ A) + σ(B(x, r) ∩B)

rn−αs
dr

r
≤ C.

(B.0.6)

Let us now split σ into σ1 = σ · χRn\B(x,2t) and σ2 = σ · χB(x,2t) and if we can control

the left hand side of (B.0.6) with either σ1 or σ2 in place of σ then we are done.

The estimate for σ2 is a straightforward application of (B.0.1):

∫ ∞
t

σ2(B(x, r) ∩ A) + σ2(B(y, r) ∩B)

rn−αs
− σ2(B(y, r) ∩ A) + σ2(B(x, r) ∩B)

rn−αs
dr

r

≤ Cσ(B(x, 2t))

∫ ∞
t

1

rn−αs
dr

r
≤ C

σ(B(x, 2t))

(2t)n−αs
≤ C

where (B.0.1) has been used in this last inequality.

We now move onto the estimate for σ1. First note that if r < t and y ∈ B(x, t),

then B(y, r) ⊂ B(x, 2t) and so σ1(B(y, r)) = 0. This allows us to extend the integra-

tion to over the half line:∫ ∞
t

σ1(B(x, r) ∩ A) + σ1(B(y, r) ∩B)

rn−αs
− σ1(B(y, r) ∩ A) + σ1(B(x, r) ∩B)

rn−αs
dr

r

=
1

n− αs

∫
Rn

[
χA(z)

|x− z|n−αs
− χA(z)

|y − z|n−αs
+

χB(z)

|y − z|n−p
− χB(z)

|x− z|n−αs
]
dσ1(z)

=
1

n− αs

∫
Rn\B(x,2t)

∣∣∣∣ 1

|x− z|n−αs
− 1

|y − z|n−αs

∣∣∣∣ dσ(z)

Let z /∈ B(x, 2t), then whenever y ∈ B(x, t), it is easy to see that:

1

2
|y − z| ≤ |x− z| ≤ 2 |y − z| . (B.0.7)

Note the following elementary inequality. For a, b ∈ (0,∞) with a > b, and γ ≥ 0:

aγ − bγ ≤ γ(aγ−1 + bγ−1)(a− b). (B.0.8)
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Due to (B.0.7) and (B.0.8), and that y ∈ B(x, t), it follows:

∣∣∣∣ 1

|x− z|n−αs
− 1

|y − z|n−αs

∣∣∣∣ ≤ C

∣∣|x− z|n−αs − |y − z|n−αs∣∣
|x− z|2(n−αs)

≤ C
|x− y|

|x− z|n−αs+1 ≤ C
t

|x− z|n−αs+1 .

Plugging this in we get:

∫
Rn\B(x,2t)

∣∣∣∣ 1

|x− z|n−αs
− 1

|y − z|n−αs

∣∣∣∣ dσ(z) ≤ C

∫
Rn\B(x,2t)

t

|x− z|n−αs+1dσ(z)

≤ Ct

∫ ∞
2t

σ(Br(x))

rn−αs
dr

r2
≤ Ct

∫ ∞
2t

dr

r2
≤ C.

Combining our two estimates prove the lemma in the case 1 < s ≤ 2.

We now move onto the s ≥ 2 case. First recall that with I and II as before, we

have I ≥ II, and hence I
1
s−1 − II

1
s−1 ≤ (I − II)

1
s−1 . This implies that:

∫ ∞
t

[(σ(B(x, r))

rn−αs

) 1
s−1 −

(σ(B(y, r))

rn−αs

) 1
s−1

]
dr

r

≤
∫ ∞
t

(σ(B(x, r) ∩ A) + σ(B(y, r) ∩B)

rn−αs
− σ(B(y, r) ∩ A) + σ(B(x, r) ∩B)

rn−αs

) 1
s−1 dr

r
.

Let ε > 0 small enough so that ε(s − 2) < min(n − αs, 1) . Then, by Hölder’s

inequality:

∫ ∞
t

(I − II)
1
s−1

dr

r
≤ Ctε(

1
s−1
−1)
(∫ ∞

t

(I − II)rε(s−1) dr

r1+ε

) 1
s−1

= Ctε(
1
s−1
−1)
(∫ ∞

t

(σ(B(x, r) ∩ A) + σ(B(y, r) ∩B)

rn−αs

− σ(B(y, r) ∩ A) + σ(B(x, r) ∩B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1
.

We wish to bound the right hand side by a constant. To this end we will split the

measure σ as before into σ1 and σ2. The following estimate for σ2 follows easily using
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(B.0.1):

tε(
1
s−1
−1)
(∫ ∞

t

(σ2(B(x, r) ∩ A) + σ2(B(y, r) ∩B)

rn−αs

− σ2(B(y, r) ∩ A) + σ2(B(x, r) ∩B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1 ≤ C,

We now concentrate on the σ1 estimate. First we note that we may extend the

domain of integration over the whole half line and use Fubini’s theorem as in the

1 < s ≤ 2 case to find that

tε(
1
s−1
−1)
(∫ ∞

t

(σ(B(x, r) ∩ A) + σ(B(y, r) ∩B)

rn−αs

− σ(B(y, r) ∩ A) + σ(B(x, r) ∩B)

rn−αs

)
rε(s−1) dr

r1+ε

) 1
s−1

≤ Ctε(
1
s−1
−1)
(∫

Rn\B(x,2t)

∣∣∣∣∣ 1

|x− z|n−αs−ε(s−1)+ε
− 1

|y − z|n−αs−ε(s−1)+ε

∣∣∣∣∣ dσ(z)
) 1
s−1

= III.

Now by adapting the previous argument in the s ≤ 2 case, we have:

∣∣∣∣∣ 1

|x− z|n−αs−ε(s−1)+ε
− 1

|y − z|n−αs−ε(s−1)+ε

∣∣∣∣∣ ≤ C
t

|x− z|n−αs−ε(s−1)+ε+1
.

Hence

III ≤ Ctε(
1
s−1
−1)
(∫

Rn\B(x,2t)

t

|x− z|n−αs−ε(s−1)+ε+1
dσ(z)

) 1
s−1

≤ Ctε(
1
s−1
−1)
(∫ ∞

2t

t σ(B(x, r))

rn−αs−ε(s−1)+ε+1

dr

r

) 1
s−1 ≤ C,

where in the last inequality we have used (B.0.1), then we are left with a convergent

integral by choice of ε. This completes the proof in the case s ≥ 2.
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Appendix C

The dyadic Carleson measure
theorem

In this chapter we prove the following dyadic Carleson measure theorem, which we

made use of in Chapter 3. Recall that D is the lattice of dyadic cubes in Rn.

Theorem C.0.8. Suppose σ is a nonnegative measure, and {aQ}Q∈D is a nonnegative

sequence such that there is a constant C(σ) > 0 so that:

∑
Q⊂P

aQ ≤ C(σ)|P |σ, for all dyadic cubes P ∈ D. (C.0.1)

Then, for all f ∈ Lp(σ), it follows:

∑
Q∈D

aQ

( 1

|Q|σ

∫
Q

fdσ
)p
≤ C(σ)

( p

p− 1

)p∫
Rn

fpdσ (C.0.2)

This coincides with the sharp bound of 4 found in [NTV02] when p = 2, and a

deep result of Melas [Me05] shows that this constant cannot be improved.

We will see that Theorem C.0.8 can be deduced from a recent paper of Cascante

and Ortega [CO09]. Indeed, from Doob’s estimate of the norm of the dyadic maximal
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operator:

∫
Rn

(
sup

x∈Q∈D

1

|Q|

∫
Q

|f(z)|dz
)p
dx ≤

( p

p− 1

)p∫
Rn

|f(x)|pdx,

we see that Theorem C.0.8 follows immediately from the following proposition:

Proposition C.0.9. Let σ be a locally finite Borel measure, and let {aQ}Q be a

sequence such that there is a constant C(σ) > 0 with:

∑
Q⊂P

aQ ≤ C(σ)|P |σ, for all dyadic cubes P ∈ D. (C.0.3)

Then for every nonnegative sequence {λQ}Q, so that λQ = 0 whenever |Q|σ = 0, it

follows: ∑
Q⊂P

aQλQ ≤ C(σ)

∫
P

sup
Q⊂P

λQχQ(x)dσ(x) (C.0.4)

for all cubes P .

Proof. This proposition is a special case of Theorem 2.5 of [CO09], but let us repeat

the elegant proof. Fix P , and first, suppose that the sequence λQ has a finite number a

non-zero terms in P , say in the first m levels of dyadic cubes contained in P. Consider

an enumeration of these cubes:

Let P0 = P , and we write Pj1,...,jk−1,jk , for k ≤ m and jk ∈ {1, . . . , 2n}, to be the 2n

cubes at level k contained in Pj1,...,jk−1
. I.e. we have that Pj1,...,jk−1,`1 ∩Pj1,...,jk−1,`2 = ∅

and Pj1,...,jk−1,` ⊂ Pj1,...,jk−1
for any `, `1, `2 ∈ {1, . . . , 2n}.

In addition we suppose the sequence {λQ} has a monotonicity property:

λPj1,...,jk−1,`
≥ λPj1,...,jk−1

, (C.0.5)

whenever k = 0, . . .m, ` = 1, . . . 2n. In other words, λQ′ ≥ λQ whenever Q′ ⊂ Q ⊂ P ,

and Q′ is one of the dyadic cubes in the first m generations of P . We now prove the
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theorem in this special case. The left hand side of (C.0.4) is:

∑
j1,...,jk−1,jk

aPj1,...,jk−1,jk
λPj1,...,jk−1,jk

+ · · ·+ aP0λP0 . (C.0.6)

By a simple telescoping sum argument the previous display is equal to:

∑
j1,...,jm−1,jm

aPj1,...,jm−1,jm
(λPj1,...,jm−1,jm

− λPj1,...,jm−1
)

+
∑

j1,...,jm−1

(λPj1,...,jm−1
− λPj1,...,jm−2

)(aPj1,...,jm−1
+
∑
jm

aPj1,...,jm−1,jm
)

· · ·+ λP0

(
aP0 +

∑
j1

aPj1 + · · ·
∑

j1,...,jm−1,jm

aPj1,...,jm−1,jm

)
.

(C.0.7)

Now, by the monotonicity condition, each difference in the λQ in the above display is

nonnegative. Applying the Carleson condition to each sum over the aQ we get that

(C.0.7) is bounded by:

C(σ)
{ ∑
j1,...,jm−1,jm

σ(Pj1,...,jm−1,jm)(λPj1,...,jm−1,jm
− λPj1,...,jm−1

)

+
∑

j1,...,jm−1

(λPj1,...,jm−1
− λPj1,...,jm−2

)(σ(Pj1,...,jm−1))

· · ·+ λP0σ(P0)
}
.

(C.0.8)

But note that

∑
j1,...,jm−1,jm

σ(Pj1,...,jm−1,jm)λPj1,...,jm−1
=

∑
j1,...,jm−1

σ(Pj1,...,jm−1)λPj1,...,jm−1
,

and hence (C.0.8) is equal to:

C(σ)
∑
j1,···jm

σ(Pj1,...,jm−1,jm)λPj1,...,jm−1,jm
, (C.0.9)
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which is precisely the right hand side of (C.0.4) in this special case.

It remains to remove the monotonicity condition. Note that if λQ > λQ′ for

Q′ ⊂ Q ⊂ P , and Q′, Q in the enumeration of cubes above, then by replacing λQ′ by

λQ we see that the supremum on the right hand side of (C.0.4) is left unchanged as

Q′ ⊂ Q, but the left hand side is increased. Thus the monotonicity assumption is

removed and by appealing to monotone convergence the proposition follows.
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