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GENERALIZED LOCAL TB THEOREM AND APPLICATIONS .

Ana Grau de la Herrán

Dr. Steve Hofmann, Dissertation Supervisor

ABSTRACT

The Tb theorem, like its predecessor, the T1 Theorem, is an L2 boundedness criterion, originally estab-

lished by McIntosh and Meyer, and by David, Journé and Semmes in the context of singular integrals, but

later extended by Semmes to the setting of “square functions”. The latter arise in many applications in com-

plex function theory and in PDE, and may be viewed as singular integrals taking values in a Hilbert space.

The essential idea of Tb and T1 type theorems, is that they reduce the question of L2 boundedness to verify-

ing the behavior of an operator on a single test function b (or even the constant function 1). The point is that

sometimes particular properties of the operator may be exploited to verify the appropriate testing criterion.

In particular, it would be presented some results for “square functions” with non-pointwise bounded kernels

as well as the motivation that leads us to study such case.

We apply such result to give a proof of the Kato problem and also to prove that the single layer po-

tential associated to a divergence form, t-independent elliptic operator or system in the half-space Rn+1
+ is

an L2 bounded operator, more precisely that t∂2
t S t : L2(Rn) → L2(Rn+1

+ , dxdt
t ), assuming some appropriate

solvability result for the Dirichlet problem (D)q and the Regularity problem (R)p.

vi



Chapter 1

Introduction

1.1 Introduction, statement of results, history

The Tb theorem, like its predecessor, the T1 Theorem, is an L2 boundedness criterion, originally established

by McIntosh and Meyer [McM], and by David, Journé and Semmes [DJS] in the context of singular integrals,

but later extended by Semmes to the setting of “square functions”. The latter arise in many applications in

complex function theory and in PDE, and may be viewed as singular integrals taking values in a Hilbert

space.

The “local” versions that we have obtained are related to previous work of M. Christ [Ch](who proved

the first local Tb theorem in the singular integral setting.) The term “local” in this context, refers to the fact

that, instead of one globally defined testing function b, one is allowed to test the operator locally, say on each

dyadic cube, with a local testing function that is adapted to that cube. The advantage here, in applications,

is the additional flexibility that one gains: it may be easier to verify “good” behavior of the operator locally,

when the testing functions are allowed to vary.

An extension of Christ result to the non-doubling setting is due to Nazarov, Treil and Volberg [NTV]

and Hytönen and Martikainen [HyM]. For doubling measures, one can also consider more general Lp type

testing conditions introduced by Aucher, Hofmann, Muscalu, Tao and Thiele [AHMTT], and further studied

by Hofmann [H3], Auscher and Yan [AY], Aucher and Routin [AR], Hytönen and Martikainen [HyM] and

Tan and Yan [TY].
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In fact, this sort of “local Tb” criterion lies at the heart of the solution of the Kato square root problem. The

essential idea of Tb and T1 type theorems, is that they reduce the question of L2 boundedness to verifying

the behavior of an operator on a single test function b (or even the constant function 1). The point is that

sometimes particular properties of the operator may be exploited to verify the appropriate testing criterion.

With this aim we consider the local Tb Theorems for Square functions. In the Euclidean setting the result

was presented in [H2], but was already implicit in the solution of the Kato problem [HMc],[HLMc],[AHLMcT],

(see also [AT] and [Se] for related results). For domains with Ahlfors-David regular boundaries the result

is presented by A. Grau de la Herrán and M. Mourgoglou [GM] with applications to problems that connect

the behavior of the harmonic measure for domains with uniformly rectifiable boundaries (see [HMar] and

[HMarUT]).

1.2 Notation

• We shall use the letters c, C to denote positive constants, not necessarily the same at each occurrence,

which depend only on dimension and the constants appearing in the hypotheses of the theorems. We shall

also write A . B and A ≈ B to mean, respectively, that A ≤ CB and 0 < c ≤ A/B ≤ C, where the constants

c and C are as above, unless explicitly noted. Moreover if we want to specify any particular dependency

of the constant we will denote it by C(n) or Cn which means that the constant depends on n.

• We are going to work in Rn+1 = Rn × R and we are going to denote the points belonging to such a set as

(x, t) ∈ Rn × R = Rn+1 (we use the notational convention that xn+1 = t), or X ∈ Rn+1 to convenience where

(x, t) = X.

• We denote Rn+1
+ := Rn × (0,+∞) and ∂Rn+1

+ := Rn × {0}.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e. 1A(x) = 1 if x ∈ A, and

1A(x) = 0 if x < A.
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• Let A = QR \ Qr, where Qr and QR are centred at the same point,0 < r,R < ∞ and the side length of Qr

(respect. QR) is r (respect. R).Then ρ(A) := R − r.

• We decompose Rn+1 in a Dyadic grid of open cubes. We denote Q(x, t) the cube of side length 2k on the

Dyadic grid such that x ∈ Q(x, t) and 2k < t < 2k+1, for some k ∈ Z.

• For a Borel set A ⊂ Rn, we define
>

A dx = 1
|A|

∫
A dx, and for a Borel set B ⊂ Rn+1, we define

>>
B dX =

1
|B|

!
B dxdt.

• Let q ∈ (1,∞), we denote by q′ ∈ (1,∞) the number such that we have 1
q + 1

q′ = 1.

1.3 Definitions

Definition 1.3.1. We say that Pt is a nice approximate identity, if Pt is an operator of convolution type, with

a smooth, compactly supported kernel Φ. That means that for a function f : Rn → C

Pt f = Φt ∗ f with Φt = t−nΦ
( x

t

)
,

∫
Φ(x)dx = 1 Φt ∈ C

∞
0 (Rn),

(Pt f )(x) ≤ CM f (x),

Pt1 = 1.

Definition 1.3.2. Let f ∈ L1
loc(Rn) we define the Hardy Littlewood Maximal operator of and denote it byM

by

M( f )(x) := sup
r>0

1
|Br(x)|

∫
Br(x)

f (y)dy

where Br(x) is the ball centered at x and radius r.

Definition 1.3.3. Let s ∈ R, the homogeneous Sobolev space L̇2
s is the completion of C∞0 with respect to the

norm ‖ f ‖L̇2
s

:= ‖(−∆)s/2) f ‖L2 , where ∆ is the usual Laplacian.
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Definition 1.3.4. [St2] If 0 < α < n, then the Riesz potential Iα f of a locally integrable function f on Rn is

the function defined by

Iα f (x) =
1

Cα,n

∫
Rn

f (y)
|x − y|n−α

dy

where the constant is given by Cα,n = πn/22α Γ(α/2)
Γ((n−α)/2) .

This singular integral is well-defined provided f decays sufficiently rapidly at infinity, specifically if f ∈

Lp(Rn) with 1 ≤ p < n
α

.

1.4 Auxiliary Results

Remark 1.4.1. ([CR],[GR])

Since we are going to be working with weights let’s remind ourselves of some useful facts.

(1) µ = (Mg)λ, 0 ≤ λ ≤ 1⇒ µ ∈ A1−weight, provided thatMg is finite a.e.

(2) µ ∈ A1 ⇒ η := 1
µ
∈ A2.

(3) η ∈ A2 ⇒
∫
Rn ((Mg)(x))2 η(x)dx ≤ C

∫
Rn (g(x))2 η(x)dx.

(4) 1 < p < 2⇒ 0 < 2 − p < 1 so ω ∈ A1−weight, v ∈ A2−weight.

(5) If 1 < r < 2, v ∈ A 2
r
⇒
∫
Rn (M(gr)(x))

2
r v(x)dx ≤

∫
Rn (g(x))2 dx.

Proposition 1.4.2. (Caccioppoli on horizontal slices [AAAHK])

Suppose that the matrix A is t-independent, i.e, A = A(x). Then there is a uniform constant ε > 0

depending only on n and ellipticity, and for every p ∈ [2, 2 + ε), a uniform constant C = C(p, δ) such that,

for each fixed cube Q ⊂ Rn, and t ∈ R, if Lu = 0 in the box IQ := 4Q × (t − `(Q), t + `(Q)), then we have the

following estimates

(
1
|Q|

∫
Q
|∇u(x, t)|pdx

) 1
p

≤ Cp

(
1
|Q∗|

"
Q∗
|∇u(x, τ)|2dxdτ

) 1
2

,

4



(
1
|Q|

∫
Q
|∇u(x, t)|pdx

) 1
p

≤ Cp

(
1

`(Q)2

1
|Q∗∗|

"
Q∗∗
|u(x, τ)|2dxdτ

) 1
2

,

(
1
|TR|

∫
2Q\Q
|∇u(x, t)|2dx

) 1
2

≤ C

(
1
|T ∗R|

"
T ∗R

|∇u(x, τ)|2dxdτ

) 1
2

,

(
1
|TR|

∫
TR

|∇u(x, t)|2dx
) 1

2

≤ C

(
1

ρ(TR)2

1
|T ∗∗R |

"
T ∗∗R

|u(x, τ)|2dxdτ

) 1
2

,

where Q∗ := (1 + δ)Q × (t − δ`(Q), t + δ`(Q)) for any fixed δ > 0. We also define:

Ql)∗ = (1 + l · δ)Q × (t − l · δ`(Q), t + l · δ`(Q));

TR = 2Q \ Q;

T ∗R = ((1 + δ)Q \ (1 − δ)Q) × (t − `(Q)
m , t + `(Q)

m );

T l)∗
R = ((1 + lδ)2Q \ (1 − lδ)Q) × (t − l · δ`(Q), t + l · δ`(Q)).

Remark 1.4.3. We are going to consider δ = 1
m and t = R = `(Q) which will be more convenient for our

application in chapter 5. We are going to iterate the Caccioppoli estimates m-times, but by our choice of δ

we are not leaving the box IQ. Also Q∗∗ := Q2)∗,T ∗∗R := T 2)∗
R . Note that the constants in the inequalities also

depend upon δ.

Lemma 1.4.4. Let’s consider

L = −∇ · (A∇u) ≡ −
n+1∑
i, j=1

∂

∂xi

(
Ai, j

∂

∂x j

)
(1.4.1)

is defined in Rn+1 = {(x, t) ∈ Rn ×R}, n ≥ 2, and where A = A(x) is an (n + 1)× (n + 1) matrix of L∞ complex-

valued coefficients, defined on Rn (i.e. independent of the t variable) and satisfying the uniform ellipticity

condition

λ|ξ|2 ≤ <e 〈A(x)ξ, ξ〉 ≡ <e
n+1∑
i, j=1

Ai j(x)ξ jξ̄i, ||A||L∞(Rn) ≤ Λ (1.4.2)

5



for some λ > 0, Λ < ∞, and for all ξ ∈ Cn+1, x ∈ Rn (the divergence form equation is interpreted in the weak

sense).

More generally, we may consider elliptic systems defined as follows:

L~u := −Dα · (AαβDβ~u) (1.4.3)

is defined on Rn+1 = {(x, t) ∈ Rn × R}, n ≥ 2, ~u are N-dimensional vector valued functions, where Dα = ∂
∂xα

is

the partial derivative with respect the variable xα, 1 ≤ α ≤ n + 1, and where Aαβ = Aαβ(x), 1 ≤ α, β ≤ n + 1,

are N × N matrices of L∞ complex-valued coefficients, defined on Rn (i.e. independent of the t variable) and

satisfying the uniform ellipticity condition

λ

N∑
i=1

n+1∑
α=1

|ξi
α|

2 ≤ Ai j
αβξ

j
βξ̄

i
α, ||A||L∞(Rn) ≤ Λ (1.4.4)

for some λ > 0, Λ < ∞, and for all ξ ∈ CN , x ∈ Rn (the divergence form operator L is interpreted in the weak

sense via a sesquilinear form).

Let’s define the operator Dα =

n+1∑
i=1

∂αi

∂xi
, αi ∈ {0, 1} ∀i.

We define D as the operator Dα where αi = 1∀i.

Then we have

DL−1D : L2(Rn+1)→ L2(Rn+1),

L−1D : L2(Rn+1)→ L̇2
1(Rn+1),

L−1D : L2(Rn+1)→ L̇2
1
2
(Rn) ↪→ Lq(Rn) where q = 2

(
n

n−1

)
.

sketch of proof. The first two facts are standard: the first follows by ellipticity of L and integration by parts,

while the second follows from the first by definition. The third follows from the second, by trace theory. �
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Lemma 1.4.5. (Lemma 3.11 on [AAAHK]) Suppose that θt is an operator satisfying

‖θ( f12k+1Q\2k Q)‖2L2(Q) ≤ C2−(n+2)k
(
|t|

2k`(Q)

)β
‖ f ‖L2(2k+1Q\2k Q)

for some β > 0, whenever 0 < t ≤ C`(Q) and that ‖θt‖2−>2 ≤ C. Let b ∈ L∞(Rn), and let At denote a

self-adjoint averaging whose kernel ϕt(x) satisfies |ϕt(x)| ≤ Ct−n
1{|x|<Ct}, ϕt ≥ 0,

∫
ϕt(x)dx = 1. Then

sup
t>0
‖(θtb)At f ‖L2(Rn) ≤ C‖b‖L∞(Rn)‖ f ‖L2(Rn).

7



Chapter 2

Theorem 1

Definition 2.0.1. LetMN denote the N ×N matrices with complex entries. Suppose that Ψt : Rn ×Rn → MN

satisfies the following properties for some exponent α > 0

|Ψt(x, y)| ≤ C
tα

(t + |x − y|)n+α
, (2.0.2)

|Ψt(x, y + h) − Ψt(x, y)| + |Ψt(x + h, y) − Ψt(x, y)| ≤ C
|h|α

(t + |x − y|)n+α
, (2.0.3)

whenever |h| ≤ 1
2 |x − y| or |h| ≤ |t|2 .

Then we define for f : Rn → CN the operator

Θt · f (x) =

∫
Rn

Ψt(x, y) · f (y)dy :=

 N∑
j=1

∫
Rn

(Ψt)i j (x, y) f j(y) dy


1≤i≤N

. (2.0.4)

Theorem 2.0.6. We define Θt as above and suppose that there exists a constant C0 < ∞, and exponent p > 1,

δ > 0 and a system {bQ} of functions indexed by dyadic cubes Q ⊂ Rn, such that for each cube Q.

∫
Rn
|bQ(x)|pdx ≤ C0|Q|, (2.0.5)

∫
Q

(∫ `(Q)

0
|ΘtbQ(x)|2

dt
t

) p
2

dx ≤ C0|Q|, (2.0.6)
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δ|ξ|2 ≤ Re
(
ξ ·

?
Q

bQ(x)dx · ξ̄
)
, ∀ξ ∈ CN (2.0.7)

where the action of Θt on the matrix valued function bQ is defined in the obvious way as in (2.0.4) by viewing

the kernel Ψt(x, y) as a 1 × N matrix which multiplies the N × N matrix bQ and by
>

Q bQ(x)dx we mean the

average integral 1
|Q|

∫
Q bQ(x)dx.

Then "
Rn+1

+

|Θt · f (x)|2
dxdt

t
≤ C|| f ||22. (2.0.8)

The outline of the proof goes as follows, by T1 Theorem 2.0.7, we are reduced to prove that our operator

satisfies the Carleson measure estimate 2.0.9. Then the proof has three steps: 1) the conditions of the theorem

2.0.6 imply the conditions of the lemma 2.0.8; 2) the conditions of the lemma 2.0.8 imply the conditions of

the sublemma 2.0.9. Finally the sublemma 2.0.9 would prove the Carleson measure estimate 2.0.9, which by

the T1 theorem would lead to our conclusion.

Let’s introduce them and then we would start with the proofs.

Theorem 2.0.7. T1 Theorem [CJ]

Let Θt f (x) ≡
∫
Rn Ψt(x, y) f (y)dy be an square function where it’s kernel Ψt(x, y) satisfies conditions (2.0.2)

and (2.0.3) as above.

Suppose that we have the Carleson measure estimate

sup
Q

1
|Q|

∫ `(Q)

0

∫
Q
|Θt1(x)|2

dxdt
t
≤ C. (2.0.9)

Then we have the square function estimate

"
Rn+1

+

|Θt · f (x)|2
dxdt

t
≤ C|| f ||22 (2.0.10)

9



Lemma 2.0.8. Suppose that there exists η ∈ (0, 1), ε > 0 small and C1 < +∞ such that for every dyadic cube

Q ∈ Rn, there is a family {Q j} of non-overlapping dyadic sub-cubes of Q, satisfying

∑
j

|Q j| ≤ (1 − η)|Q| (2.0.11)

and

∫
Q

(∫ `(Q)

τQ(x)
|Θt1(x)|21Γ2ε

k
(Θt1(x))

dt
t

) p
2

dx ≤ C1|Q| , (2.0.12)

where τQ(x) =
∑

j `(Q j)1Q j (x). Then we have the Carleson Measure estimate (2.0.9). Here, ε is small, but

fixed (to be made precise in 2.1.1 below). We cover Cn by cones of aperture ε, enumerating these cones as

Γε1, ...,Γ
ε
k, where k = k(ε,N). For the previous estimate we are doubling the cones, the doubled cone has the

same vector direction as the original ones but we double its aperture.

Sublemma 2.0.9. Suppose that ∃N < +∞ and β ∈ (0, 1) such that for all dyadic cube Q, and for all cones

Γε we have

|{x ∈ Q : gQ(x) > N}| ≤ (1 − β)|Q|, (2.0.13)

where

gQ(x) :=
(∫ `(Q)

0
|Θt1(x)|21Γ2ε (Θt1(x))

dt
t

) 1
2

. (2.0.14)

Then we have the Carleson Measure estimate (2.0.9).

Remark 2.0.10. Every gQ also depends on the cone of definition but since we are choosing a generic cone

we avoid complicating the notation by adding more indices.
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2.1 Conditions of Theorem 2.0.6 imply conditions of Lemma 2.0.8

We may assume without loss of generality that 1 < p < 2, as the case p > 2 may be reduced to the known

case p = 2 by Hölder’s inequality which is proven in [H1].

Proof. First of all let’s construct such a family of non-overlapping dyadic subcubes. To do that we are going

to use a stopping time argument.

Without loss of generality (by renormalizing), we may assume δ ≡ 1 on (2.0.7). Fix a cube Q, and then

fix a cone Γ2ε . Now we subdivide Q dyadically and select a family {Q j},Q j ⊂ Q which are maximal with

respect to the condition that at least one of the following conditions hold:

1
|Q j|

∫
Q j

|bQ(x)|dx ≥
1
8ε

(type I)

Re

(
ν ·

?
Q j

bQ(x)dx · ν̄

)
≤

3
4

(type II)

where ν is the unit normal in the direction of the central axis of the cone Γ2ε and ε is half the aperture of the

cone.

Once that we constructed the family we need to verify it satisfies the required conditions (2.0.11) and

(2.0.12).

Let’s start with condition (2.0.11).

Define E := Q \ {
⋃

j Q j}. Then from condition (2.0.7) since δ ≡ 1 and taking ξ = ν where ν is the unit

normal in the direction of the central axis of Γ2ε we get

11



|Q| ≤Re
∑

i, j

∫
Q

(bQ)i j(x)ν jν̄idx

= Re
∑

i, j

∫
E

(bQ)i j(x)ν jν̄idx + Re
∑

k

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

:= I + II.

For the first part using condition (2.0.5) and Hölder’s inequality we get

I :=Re
∑

i, j

∫
E

(bQ)i j(x)ν jν̄idx

≤

∣∣∣∣ν · ∫
E

bQ(x)dx · ν̄
∣∣∣∣

=

∣∣∣∣∫
E

bQ(x)dx
∣∣∣∣

≤ |E|
1
p′

(∫
Q
|bQ(x)|pdx

) 1
p

≤ C|E|
1
p′ |Q|

1
p .

For the second part we are working with the family of subcubes and to be able to use their properties we need

to separate them in two cases: the ones that satisfy the type I condition and the ones that satisfy the type II

condition (the same subcube can satisfy both conditions at the same time; in this case we arbitrarily assign

them to be of type I).

II ≤

∣∣∣∣∣∣Re
∑

k,type I

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

∣∣∣∣∣∣ +

∣∣∣∣∣∣Re
∑

k,type II

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

∣∣∣∣∣∣
:= II1 + II2.
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For the part of type I subcubes we are going to apply Hölder’s inequality, the property of being type I, and

condition (2.0.5).

II1 :=

∣∣∣∣∣∣Re
∑

k,typeI

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

∣∣∣∣∣∣
≤
∑

k,typeI

∫
Qk

|bQ(x)|dx

=

∫ ⋃
k,typeI

Qk
|bQ(x)|dx

≤

(∫
Q
|bQ(x)|pdx

) 1
p

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣
1
p′

.

For the measure of the set just note that

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣ ≤ 8ε
∫ ⋃

k,typeI

Qk
|bQ(x)|dx

≤ 8ε

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣
1
p′ (∫

Q
|bQ(x)|pdx

) 1
p

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣
1
p

≤ 8ε
(∫

Q
|bQ(x)|pdx

) 1
p

≤ Cε|Q|
1
p

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣
1
p′

≤ Cε
p
p′ |Q|

1
p′ .

Adding this to the previous computation we get

II1 ≤

∣∣∣∣∣∣Re
∑

k,type I

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

∣∣∣∣∣∣ ≤
(∫

Q |bQ(x)|pdx
) 1

p

∣∣∣∣∣∣
⋃

k,typeI

Qk

∣∣∣∣∣∣
1
p′

≤ Cε
p
p′ |Q|

1
p′ |Q|

1
p = Cε

p
p′ |Q|.
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We choose ε small enough so

Cε
q
p ≤

1
8
. (2.1.1)

For the type II subcubes just using the property of being type II we get

II2 :=

∣∣∣∣∣∣Re
∑

k,typeII

∑
i, j

∫
Qk

(bQ)i j(x)ν jν̄idx

∣∣∣∣∣∣ ≤ 3
4

∣∣∣∣∣∣
⋃

k,typeII

Qk

∣∣∣∣∣∣ ≤ 3
4 |Q|.

Finally we can conclude that

|Q| ≤ I + II ≤ C|E|
1
p′ |Q|

1
p +

1
8
|Q| +

3
4
|Q|

≤ 8C|E|
1
p′ |Q|

1
p

≤ C|E|.

We take 0 < η ≤ 1
C ≤ 1 if C > 1 so

∑
k

|Qk | = |Q \ E| = |Q| − |E| ≤ |Q| − η|Q| = (1 − η)|Q|.

This concludes that the family that we have constructed satisfy the measure condition. Now let’s proceed

to verify the condition (2.0.12)

Claim 2.1.1.

∫
Q

(∫ `(Q)

τQ(x)
|Θt1(x)|21Γ2ε (Θ1(x))

dxdt
t

) p
2

≤ C
∫

Q

(∫ `(Q)

0
|Θt1(x) · AtbQ(x)ν̄|2

dt
t

) p
2

dx (2.1.2)

where ν ∈ Cn is the unit normal in the direction of the central axis of Γ2ε := {z ∈ CN : | z
|z| − ν| < 2ε}, and

At f (x) := |Q(x, t)|−1
∫

Q(x,t) f (y)dy with Q(x, t) the minimal dyadic cube containing x with side length at least

t.
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proof of claim 2.1.2. Let’s first introduce some notation as follows:

(x, t) ∈ E∗Q ≡ RQ \

⋃
j

RQ j

 where RQ ≡ Q × (0, `(Q)) and

Γ2ε = {z ∈ CN : |
z
|z|
− ν| < 2ε}.

We are going to prove that if z ∈ Γ2ε and (x, t) ∈ E∗Q then |z · AtbQ(x)ν̄| ≥ 1
2 |z|.

Since (x, t) ∈ E∗Q we have that Q(x, t) is not of type I neither type II, therefore by the triangle inequality

|ω · AtbQ(x)ν̄| ≥ |ν · AtbQ(x)ν̄| − |(ω − ν)AtbQ(x)ν̄| ≥
3
4
− |(ω − ν)|

1
8ε

, ∀ω ∈ CN .

If we choose ω = z
|z| then |ω − ν| < 2ε so we get that

∣∣∣∣ z
|z|
· AtbQ(x)ν̄

∣∣∣∣ ≥ 3
4
−

2ε
8ε

=
1
2
,

which implies |z · AtbQ(x)ν̄| ≥ 1
2 |z|.

We are integrating where Θt1(x) ∈ Γ2ε ; moreover, x ∈ Q, τQ(x) ≤ t ≤ `(Q) ⇒ (x, t) ∈ E∗Q; thus

|Θt1(x)|2 ≤ 4|Θt1(x) · AtbQ(x)ν̄|2 in our domain of integration and the claim is true.

�

We are reduced to proving that,

∫
Q

(∫ `(Q)

τQ(x)
|Θt1(x) · AtbQ(x)ν̄|2

dt
t

) p
2

dx ≤ C|Q|.

To finish the proof of condition (2.0.12) we use the Coifman-Meyer method as follows

Θt1At = (Θt1)(At − Pt) + (Θt1Pt − Θt) + Θt := R(1)
t + R(2)

t + Θt

where Pt is a nice approximate identity as in definition 1.3.1.
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By (2.0.6), the contribution of ΘtbQ is controlled by C|Q| as desired. Moreover R(2)
t 1 = 0, and its kernel

satisfies (2.0.2) and (2.0.3). Thus, by standard Littlewood-Paley/Vector-valued Calderón-Zygmund Theory,

we have that ∫
Q

(∫ `(Q)

0
|R(2)

t bQ(x)|2
dt
t

) p
2

dx ≤ Cp||bQ||
p
p ≤ C|Q|.

Furthermore, the same Lp bound holds for R(1)
t by interpolation arguments and that finishes the proof. �

2.2 Conditions of the Lemma 2.0.8 imply conditions of the Sublemma
2.0.9

Proof. For a large, but fixed N to be chosen momentarily, let

ΩN := {x ∈ Q : gQ(x) > N}.

If conditions of lemma hold and we define E := Q \

⋃
j

Q j

 then by Chebyshev’s inequality we have

|ΩN | ≤
∑

j

|Q j| + |{x ∈ E : gQ(x) > N}|

≤ (1 − η)|Q| +

∣∣∣∣∣∣{x ∈ Q :

(∫ `(Q)

τQ(x)
|Θt1(x)|21Γ2ε (Θt1(x))|

dt
t

) 1
2

> N}

∣∣∣∣∣∣
≤ (1 − η)|Q| +

∣∣∣∣∣∣{x ∈ Q :

(∫ `(Q)

τQ(x)
|Θt1(x)|21Γ2ε (Θt1(x))|

dt
t

) p
2

> N p}

∣∣∣∣∣∣
≤ (1 − η)|Q| +

1
N p

∫
Q

(∫ `(Q)

τQ(x)
|Θt1(x)|21Γ2ε (Θt1(x))|

dt
t

) p
2

dx

≤ (1 − η)|Q| +
C1

N p |Q|.

Choose N large enough so C1
N p ≤

η
2 ≡ β⇒ |ΩN | ≤ (1 − β)|Q|. �

2.3 Proof of Sublemma 2.0.9

Proof. Let N, β be as in the hypothesis. Fix γ ∈ (0, 1) a dyadic cube Q, and a cone Γε . First of all let’s add

some notation by setting:
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gQ,γ(x) :=

(∫ min(`(Q), 1
γ )

γ

|Θt1(x)|2χε(Θt1(x))
dt
t

) 1
2

, (2.3.1)

where we set this term to be 0 if `(Q) ≤ γ, and where χ is a smooth function such that

χε(Θt1(x)) =


1 i f 1

Γ
3
2 ε

(Θt1(x)) = 1
0 i f 1Γ2ε (Θt1(x)) = 0
(0, 1) otherwise

We also define k(γ) := sup
Q

1
|Q|

∫
Q

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t

where the supremum runs over all dyadic cubes Q.

Finally let’s define the set ΩN,γ := {x ∈ Q : gQ,γ(x) > N} which is open.

By the truncation k(γ) is finite for each fixed γ, and our goal is to show that sup
0<γ<1

k(γ) < ∞.

Once that all the notation is introduced let’s start with the proof.

ΩN,γ is open so we can make a Whitney decomposition of it such that ΩN,γ =
⋃

j

Q j and FN,γ = Q \ΩN,γ.

∫
Q

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t

=

∫
FN,γ

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t

+
∑

j

∫
Q j

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t

≤

∫
FN,γ

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|2χε(Θt1(x))
dtdx

t

+
∑

j

∫
Q j

∫ min(`(Q j), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t

+
∑

j

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))
|Θt1(x)|21Γε (Θt1(x))

dtdx
t

≤ N2|Q| + k(γ)
∑

j

|Q j| +
∑

j

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))
|Θt1(x)|21Γε (Θt1(x))

dtdx
t

≤ N2|Q| + k(γ)(1 − β)|Q| +
∑

j

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))
|Θt1(x)|21Γε (Θt1(x))

dtdx
t
.
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Claim 2.3.1.

L :=
∫

Q j

∫ min(`(Q), 1
γ )

max(`(Q j),γ)
|Θt1(x)|21Γε (Θt1(x))

dtdx
t
≤ C|Q j|. (2.3.2)

If the claim is true then k(γ) is bounded uniformly in γ since

1
|Q|

∫
Q

∫ min(`(Q), 1
γ )

γ

|Θt1(x)|21Γε (Θt1(x))
dtdx

t
≤ C + k(γ)(1 − β) ⇒ k(γ) ≤

C
β
.

Therefore letting γ approach zero we obtain that

∫
Q

∫ `(Q)

0
|Θ1(x)|21Γε (Θt1(x))

dtdx
t
≤ C|Q|.

Summarizing we can conclude that

∫
Q

∫ `(Q)

0
|Θt1(x)|2

dt
t

dx =

∫
Q

∫ `(Q)

0

∑
j

|Θt1(x)|21Γεj
(Θt1(x))

dt
t

dx

≤
∑

j

∫
Q

∫ `(Q)

0
|Θt1(x)|21Γεj

(Θt1(x))
dt
t

dx

≤ k(ε,N) ·C1|Q|,

where k(ε,N) is the number of cones in which we have subdivide Cn. �

Proof of Claim 2.3.1. Let’s have 0 < β < α where α is the exponent of the pointwise estimates of our kernel

in (2.0.2) and (2.0.3) and define the following sets

Q(1)
j :=

{
x ∈ Q j : |Θt1(x)| ≤

(
`(Q j)

t

)β 1
ε

}
;

Q(2)
j := {x ∈ Q j : 1Γε (Θt1(x)) = 0};

Q(3)
j := Q j \ (Q(1)

j ∪ Q(2)
j ).
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Then L ≤ L1 + L2 + L3 where Li =
∫

Q(i)
j

∫ min(`(Q), 1
γ )

max(`(Q j),γ) |Θt1(x)|21Γε (Θt1(x)) dtdx
t , i = 1, 2, 3.

Trivially L2 = 0 and L1 ≤ C|Q j| since

L1 :=
∫

Q(1)
j

∫ min(`(Q), 1
γ )

max(`(Q j),γ)
|Θt1(x)|21Γε (Θt1(x))

dtdx
t

≤

∫
Q j

∫ `(Q)

`(Q j)

(
`(Q j)

t

)β 1
ε

dxdt
t

≤C(n, β, ε)|Q j|.

For L3 let’s note that since we have done a Whitney decomposition ∃x j ∈ FN,γ such that dist(x j,Q j) ≤

C`(Q j). Take such x j and decompose L3 as follows

L3 .

∫
Q(3)

j

∫ Cn`(Q j)

`(Q j)
|Θt1(x)|21Γε (Θt1(x))

dtdx
t

+

∫
Q(3)

j

∫ `(Q)

Cnl(Q j)
|Θt1(x)1Γε (Θt1(x)) − Θt1(x j)χε(Θt1(x j))|2

dtdx
t

+

∫
Q(3)

j

∫ min(`(Q), 1
γ )

γ

|Θt1(x j)|2χεΘt1(x j))
dtdx

t

:= I + II + III.

For I we use that ‖Θt1‖∞ < ∞, and for III that x j ∈ FN,γ, so I + III ≤ C(n,N)|Q j|.

For II we have two cases

Case 1 : 1Γε (Θt1(x j)) = 1. Then for Cn large enough we have

|Θt1(x) − Θt1(x j)| ≤ C
(
`(Q j)

t

)α

for every x ∈ Q j ⇒ II ≤
∫

Q j

∫ ∞
Cn`(Q j)

(
`(Q j)

t

)2α
dtdx

t ≤ C|Q j|

Case 2 : 1Γε (Θt1(x j)) = 0. Then |ν − Θt1(x j)
|Θt1(x j)|

| > ε. We also have |ν − Θt1(x)
|Θt1(x)| | ≤ ε, and that x ∈ Q(3)

j , which

implies that |Θt1(x)| >
(
`(Q j)

t

)β
1
ε
⇒ 1

|Θt1(x)| <
(

t
`(Q j)

)β
ε. Thus (using the elementary inequality in Remark
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2.3.2 below),

∣∣∣∣ Θt1(x)
|Θt1(x)|

−
Θt1(x j)
|Θt1(x j)|

∣∣∣∣ ≤ 2|Θt1(x) − Θt1(x j)| ·
1

|Θt1(x)|

≤ (2C)
(
`(Q j)

t

)α−β
ε ≤ C

(
1

Cn

)α−β
ε ≤

ε

2
,

if Cn is large enough, so that

∣∣∣∣ν − Θt1(x j)
|Θt1(x j)|

∣∣∣∣ ≤ ∣∣∣∣ Θt1(x)
|Θt1(x)|

−
Θt1(x j)
|Θt1(x j)|

∣∣∣∣ +

∣∣∣∣ν − Θt1(x)
|Θt1(x)|

∣∣∣∣ ≤ ε

2
+ ε ≤

3
2
ε

⇒ II ≤
∫

Q j

∫ `(Q)

Cn`(Q j)
|Θt1(x) − Θt1(x j)|1Γε (Θt1(x))

dtdx
t
≤ C|Q j| ,

as in case 1.

�

Remark 2.3.2. Observe that

|(x|y|) − (y|x|)| ≤ |(x|y|) − (y|y|)| + |(y|y|) − (y|x|)| ≤ 2|y| · |x − y|,

so that

|x|y| − y|x||
|x||y|

≤ 2
|x − y|
|x|

⇒

∣∣∣∣ x
|x|
−

y
|y|

∣∣∣∣ ≤ 2
|x − y|
|x|

.
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Chapter 3

Theorem 2

Definition 3.0.1. We define for f : Rn → C, f ∈ L2(Rn) an operator θt f (x) satisfying the following properties

(a) (Uniform L2 bounds and off-diagonal decay in L2.)

sup
t>0
||θt f ||L2(Rn) ≤ C|| f ||L2(Rn), (3.0.2)

||θt f j||L2(Q) ≤ C2−
n+2+β

2 j|| f j||L2(2 j+1Q\2 jQ) , `(Q) ≤ t ≤ 2`(Q) , (3.0.3)

for some β > 0, where f j := f12 j+1Q\2 jQ.

(b) (Quasi-orthogonality in L2.) There is some β > 0 such that for s < t,

||θtQs f ||L2(Rn) ≤ C
( s

t

)β
|| f ||L2(Rn) , (3.0.4)

where {Qs}0≤s≤∞ is some family of operators with
∫
Rn

∫ ∞
0 |Qs f (x)|2 dsdx

s ≤ C|| f ||2L2(Rn), ||∇Qs f ||L2(Rn) ≤ C 1
s || f ||L2(Rn),

and
∫ ∞

0 Q2
s

ds
s = I.

(c) (“Hypercontractive” off-diagonal decay.) There is some 1 < r < 2, and some ν > n
r (ν = n

r + ε, ε > 0),

such that

(∫
Q∗
|θt( f1S j (Q))(y)|2dy

) 1
2

≤ C2− jνt−n( 1
r −

1
2 )

(∫
S j(Q)
| f (y)|rdy

) 1
r

,

∀ j ≥ 0 , `(Q) < t ≤ 2`(Q) , (3.0.5)

where S 0(Q) = 16Q, S j(Q) = 2 j+4Q \ 2 j+3Q, j ≥ 1, and Q∗ ≡ 8Q.
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(d) (Improved integrability.)

sup
t>0
||θt f ||Lq(Rn) ≤ C|| f ||Lq(Rn), f or some q > 2. (3.0.6)

Remark 3.0.3. We observe that, for example, (b), (c), and (d) hold, with θt = t∂tPt, where Pt = e−t
√
−∆ is

the usual Poisson semigroup, and that (a) holds with β = 0, for the same operator. We may obtain a positive

value of β in (a), by considering higher order derivatives of Pt. As a practical matter, when considering square

functions arising in PDE applications, it is often a fairly routine matter to pass to higher order derivatives (cf.

Chapter 5 below). The advantage of the present formulations of our conditions, is that they continue to hold

in the absence of pointwise kernel bounds. In PDE applications, (d) is typically obtained as a consequence of

higher integrability estimates of “N. Meyers” type (cf. [Me2]).

Theorem 3.0.4. Let’s define the square function operator θt as above and suppose that there exists a constant

0 < C0 < ∞, 0 < C1 < 1, an exponent p > r, δ > 0, η > 0 a system {bQ} of functions indexed by cubes

Q ⊂ Rn and a system of Lipschitz functions {ΦQ} also indexed by cubes, such that for each cube Q,

∫
Rn
|bQ(x)|pdx ≤ C0|Q|, (3.0.7)

∫
Q

("
|x−y|<t<`(Q)

|θtbQ(y)|2
dydt
tn+1

) p
2

dx ≤ C0|Q|, (3.0.8)

‖∇ΦQ‖∞ ≤ C0 `(Q)−1, C1 ≤ ΦQ(x) ≤ 1 on Q (3.0.9)

δmQ(Q) ≤
∣∣∣∣∫

Q
bQ(x)dmQ(x)

∣∣∣∣ , where dmQ(x) = ΦQ(x)dx. (3.0.10)

Then "
Rn+1

+

|θt f (x)|2
dxdt

t
≤ C|| f ||2L2(Rn). (3.0.11)
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Remark 3.0.5. Frequently, one may simply take ΦQ ≡ 1, but in some applications, it is useful to have the

extra flexibility inherent in (3.0.10) (cf. Chapter 5).

Once the point-wise estimates are dropped from the Square function, we need to redo all the previous

techniques that we had before. We can not use standard Littlewood Paley Theory or Vector-valued Calderón-

Zygmund Theory, so we needed to look for new techniques to approach this problem.

The previous results’ proofs are based on proving that our conditions lead to the T1 Theorem for Square

functions of Christ-Journé [CJ], which means that we are reduced to prove that dµ = |θt1(x)|2dxdt/t is a

Carleson measure. This new result scheme is not going to be different so lets redefine the T1 Theorem,

Lemma and Sublemma in this new context.

Theorem 3.0.6. (T1 Theorem) Let θt f satisfying conditions (3.0.2), (3.0.3) and (3.0.4) and the Carleson

measure estimate

sup
Q

1
|Q|

∫ `(Q)

0

∫
Q
|θt1(x)|2

dxdt
t
≤ C. (3.0.12)

Then we have the Square function estimate (3.0.11).

Lemma 3.0.7. Suppose that ∃α ∈ (0, 1
2 ], η ∈ (0, 1) and C < ∞ such that for every cube Q ∈ Rn, there exists

a family {Q̃ j} j of non-overlapping subcubes of Q, dyadic with respect to the grid induced by Q, with the

properties ∑
j

(1 + α)n|Q̃ j| ≤ (1 − η)|Q| , (3.0.13)

and ∫
E

("
|x−y|< α

100 t< α
100 `(Q)

|θt1(y)|2
dydt
tn+1

) p
2

dx ≤ C|Q| , (3.0.14)

where E = (1 − α)Q \ {
⋃

j Q j}, and Q j := (1 + α)Q̃ j.

Then the Carleson measure estimate (3.0.12) holds.
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Sublemma 3.0.8. Suppose that ∃N < ∞ and α ∈ (0, 1
2 ], β ∈ (0, 1) such that for every cube Q

|{x ∈ Q : GQ(x) > N}| ≤ (1 − β)|Q| ,

where GQ(x) :=
(!
|x−y|< α

100 t< α
100 `(Q) |θt1(y)|2 dtdy

tn+1

) 1
2

Then the Carleson measure estimate (3.0.12) holds.

3.1 Proof of T1 Theorem

To prove this new version of the T1 Theorem for Square functions, we have used a convenient modification

of a similar lemma that appears in [AAAHK] (Lemma 3.5). The modified lemma reads as follows.

Lemma 3.1.1. (i) Suppose that {θt}t∈R is a family of operators satisfying

(a) For some β > 0, and for all |t| ≈ `(Q),

||θt( f12k+1Q\2k Q)||2L2(Q) ≤ C2−(n+2)k
(
|t|

2k`(Q)

)β
|| f ||L2(2k+1Q\2k Q), (3.1.1)

(b)

sup
t≥0
||θt f ||L2(Rn) ≤ C|| f ||L2(Rn) (3.1.2)

(c)

θt1 = 0,∀t ∈ R (3.1.3)

Then for h ∈ L̇2
1(Rn) ∫

Rn
|θth(x)|2dx ≤ Ct2

∫
Rn
|∇xh(x)|2dx

(ii) If in addition, there exists a family {Qs}s>0 such that for all f ∈ L2(Rn)

(ã)

||θtQs f ||L2(Rn) ≤ c
( s

t

)β
|| f ||L2(Rn) , ∀s ≤ t , (3.1.4)

for some family {Qs}0<s<∞ satisfying
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(b̃)

||∇Qs f ||L2(Rn) = ||Qs f ||L̇2
1(Rn) ≤ C

1
s
|| f ||L2(Rn) ,

||Qs f ||L2(Rn) ≤ C|| f ||L2(Rn) ,∫ ∞
0

Q2
s
ds
s

= I .

(3.1.5)

Then "
Rn+1

+

|θt f (x)|2
dxdt

t
≤ C|| f ||2L2(Rn) , ∀ f ∈ L2(Rn).

Proof. First, let’s prove (ii), assuming that (i) holds. Take f ∈ L2(Rn), and {Qs} the family of operators

assumed in (ii). For s ≤ t we have (3.1.4). For t < s we apply (i) to h(x) = Qs f (x) so that

||θtQs f ||2L2(Rn) =

∫
Rn
|θtQs f (x)|2dx ≤ Ct2

∫
Rn
|∇xQs f (x)|2dx ≤

t2

s2 || f ||
2
L2(Rn) ,

by the first condition in (3.1.5). Consequently,

||ΘtQs f ||L2(Rn) ≤ C min
( s

t
,

t
s

)β̃
|| f ||L2(Rn),

for some β̃ > 0. The result follows from the last inequality by a standard orthogonality argument.

So let’s prove (i). Let D(t) denote the grid of dyadic cubes with `(Q) ≤ |t| ≤ 2`(Q). For convenience of

notation we set mQh ≡
>

Q h(x)dx then

(∫
Rn
|θth(x)|2dx

) 1
2

=

(∑
Q∈D(t)

∫
Q
|θth(x)|2dx

) 1
2

=

(∑
Q∈D(t)

∫
Q
|θt(h − m2Qh)(x)|2dx

) 1
2

≤

(∑
Q∈D(t)

∫
Q
|θt(h − m2Qh)(x)12Q(x)|2dx

) 1
2

+

(∑
Q∈D(t)

|θt(h − m2Qh)(x)1(2Q)c (x)|2dx

) 1
2

:= I + II ,
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where we have used that θt1 = 0 and it’s a linear operator⇒ θt(m2Qh) = 0.

Since θt : L2(Rn)→ L2(Rn), we have by Poincaré’s inequality that

I ≤ C

(∑
Q∈D(t)

∫
2Q
|(h − m2Qh)(x)|2dx

) 1
2

≤ C|t|

(∑
Q∈D(t)

∫
2Q
|∇xh(x)|2dx

) 1
2

≤ C|t| ||∇xh||L2(Rn) .

For the second part by condition (3.1.1)

II ≤
∞∑

k=1

(∑
Q∈D(t)

∫
Q

∣∣θt[(h − m2Qh)(x)12k+1Q\2k Q(x)]
∣∣2 dx

) 1
2

≤ C
∞∑

k=1

(∑
Q∈D(t)

2−(n+2+β)k
∫

Q
|(h − m2Qh)(x)|212k+1Q\2k Q(x)dx

) 1
2

≤ C
∞∑

k=1

(∑
QD(t)

2−(n+2+β)k
∫

2k+1Q
|(h − m2Qh)(x)|2dx

) 1
2

≤ C
∞∑

k=1

k∑
j=1

(∑
Q∈D(t)

2−k(β+2)2− jn
∫

2 j+1Q
|(h − m2 j+1Qh)(x)|2dx

) 1
2

,

where in the last step we have used a telescoping argument.

By Poincaré’s inequality, since j ≤ k we obtain in turn the bound

II ≤ C
∞∑

k=1

k∑
j=1

(∑
Q∈D(t)

2−k(β+2)2− jn (diam(2 j+1Q)
)2
∫

2 j+1Q
|∇xh(x)|2dx

) 1
2

≤ C|t|
∞∑

k=1

2−
β
2 k

k∑
j=1

(∑
Q∈D(t)

2− jn
∫

2 j+1Q
|∇xh(x)|2dx

) 1
2

≤ C|t|
∞∑

k=1

2−
β
2 k

k∑
j=1

(∑
Q∈D(t)

∫
Q

?
2 j+1Q
|∇xh(x)|2dxdy

) 1
2

≤ C|t|
∞∑

k=1

2−
β
2 k

k∑
j=1

(∫
Rn

?
|x−y|≤C2 j |t|

|∇xh(x)|2dxdy
) 1

2

≤ C|t| · ||∇xh||L2(Rn)

�

In order to be able to use this lemma to prove our T1 Theorem, as in the regular T1 Theorem, we want to

reduce the problem to θ̃t1 = 0.
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Proof. By the Coifman-Meyer method we can rewrite our operator as follows:

θt = θt − (θt1)Pt + (θ1)Pt =: θ̃t + (θt1)Pt ,

where Pt is a nice approximate identity as in Definition 1.3.1. Observe that with this definition θ̃t1 = 0 but we

need to verify that θ̃t also satisfies(3.0.2), (3.0.3) and (3.0.4). This is not immediate, because, in the absence

of pointwise kernel bounds, it may be that θt1 is not uniformly bounded. We proceed as follows.

(1) sup
t>0
||θ̃t f ||L2(Rn) ≤ C|| f ||L2(Rn)

By Lemma 1.4.5, choosing b(x) = 1 andAt = Pt we get that

‖(θt1)Pt f ‖L2(Rn) ≤ C‖ f ‖L2(Rn) ⇒ ||θ̃t ||L2(Rn) ≤ ||θt f ||L2(Rn) + ||(θt1)Pt f ||L2(Rn)

≤ C|| f ||L2(Rn).

(2) ||θ̃t f j||L2(Q) ≤ C2−
n+2+β

2 j|| f j||L2(2 j+1Q\2 jQ) , for f j = f12 j+1Q\2 jQ, `(Q) ≤ |t| ≤ 2`(Q).

For j > 2, there is no contribution from (θt1)Pt, because the kernel of Pt has compact support. Therefore,

(2) follows from the analogous bound for θt, namely, (3.0.3). The case j = 1, 2 reduces to (1) above.

(3) ||θ̃tQs f ||L2(Rn) ≤ C( s
t )β|| f ||L2(Rn),∀ f ∈ H, and s < t.

We may choose our approximate identity Pt to be of the form Pt = (P̃t)2, where P̃t is of the same type.

We then have

||θ̃tQs f ||L2(Rn) ≤ ||θtQs f ||L2(Rn) + ||(θt1(x))P̃tP̃tQs f ||L2(Rn)

≤ C
( s

t

)β
|| f ||L2(Rn) + C||P̃tQs f ||L2(Rn) ≤ C

( s
t

)β
|| f ||L2(Rn) ,

where in the second inequality, we have applied Lemma 1.4.5 to (θt1)P̃t.

Then by the previous lemma, θ̃t satisfies (3.0.11).

To finish reducing our problem we need that if we have the Square function estimate (3.0.11) for θ̃t, then

it also holds for the original operator θt:
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"
Rn+1

+

|θt f (x)|2
dxdt

t
≤

"
Rn+1

+

|θ̃t f |2
dxdt

t
+

"
Rn+1

+

|θt1(x)|2|Pt f (x)|2
dxdt

t

≤ C|| f ||2L2(Rn) +

∫ ∞
0

∫
Rn
|Pt f (x)|2|θt1(x)|2

dxdt
t

≤ C|| f ||2L2(Rn) + C||µ||C||N∗(Pt f )||2L2(Rn+1)

≤ C|| f ||2L2(Rn).

where dµ = |θt1(x)|2dx which is a Carleson measure by hypothesis and N∗ is the nontangential maximal

function.

�

3.2 Conditions of Theorem 3.0.4 imply conditions of the Lemma 3.0.7

Proof. As in the similar proof on the previous section, condition (3.0.13) is a consequence of the choice of the

family of subcubes of Q . We choose the family in similar way as in [H2], that means that WLOG (by renor-

malizing) we may suppose that 1
mQ(Q)

∫
Q bQ(x)dmQ(x) = 1 and we sub-divide Q dyadically and select a family

of non-overlapping cubes {Q̃ j}which are maximal with respect to the property thatRe 1
mQ(Q̃ j)

∫
Q̃ j

bQ(x)dmQ(x) ≤

C1
2 .

First, from the definition of the measure mQ(x) we have that for every subset A of Q, C1|A| ≤ mQ(A) ≤ |A|.

Define Ẽ := Q \ {
⋃

j

Q̃ j}, Q j := (1 + α)Q̃ j and E := (1 − α)Q \ {
⋃

j

Q j}, α ∈ (0, 1
2 ] to be determined later.

Then to prove the first condition (3.0.13), by Hölder and condition (3.0.7) we have
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|Q| ≤
1

C1
mQ(Q) =

1
C1

∫
Q

bQ(x)dmQ(x)

=
1

C1

Re
∫

Ẽ
bQ(x)dx + Re

∑
j

∫
Q̃ j

bQ(x)dmQ(x)


≤

1
C1

|Ẽ| 1
p′

(∫
Q
|bQ(x)|pdx

) 1
p

+
C1

2

∑
j

mQ(Q̃ j)


≤ C|Ẽ|

1
p′ |Q|

1
p +

1
2
|Q|

≤ C|Ẽ|
1
p′ |Q|

1
p +

1
2
|Q|

⇒|Ẽ| > η̃|Q|, with 0 < η̃ =

(
1

2C

)p′

< 1 .

Therefore,

∑
j

|Q̃ j| ≤ (1 − η̃)|Q| .

Thus,

∑
j

|Q j| ≤
∑

j

(1 + α)n|Q̃ j| ≤ (1 + α)n(1 − η̃) |Q| ≤ (1 − η) |Q|

provided that we choose η and α sufficiently small, depending upon η̃.

Finally we need to prove the second condition (3.0.14) and we want to reduce ourselves to

∫
Rn

("
ΓQ(x)
|θt1(y)Am,tbQ(y)|2

dydt
tn+1

) p
2

dx ≤ Cp‖bQ‖
p
Lp(Rn) + C|Q| . |Q| ,

where in the last step we have used hypothesis (3.0.7). As above, Am,t f (x) := 1
mQ(Q(x,t))

∫
Q(x,t) bQ(y)dmQ(y)

and Q(x, t) is the minimal dyadic cube (with respect to the grid induced by Q), that contains x, with length at

least t. Here, ΓQ is the truncated cone with height `(Q).

To reduce ourselves to the previous inequality let’s note that if

(y, t) ∈ RQ \
⋃

j

RQ̃ j
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where RQ = Q × (0, `(Q)), then by the maximality of the family choice

Re Am,tbQ(y) := Re
1

mQ(Q(y, t))

∫
Q(y,t)

bQ(z)dmQ(z) ≥
C1

2

Moreover, if x ∈ E, 0 < t < `(Q), |x − y| < α
100 t ⇒ (y, t) ∈ RQ \

⋃
j

RQ̃ j
which can be seen clearly by

contradiction:

(y, t) ∈ RQ̃ j
⇒ |x − y| ≤

α

100
`(Q j)⇒ x ∈ Q j

y ∈ Rn \ Q and |x − y| ≤
α

100
`(Q)⇒ x ∈ Rn \ (1 − α)Q .

We therefore have

∫
E

("
|x−y|< α

100 t≤ α
100 `(Q)

|θt1(y)|2
dydt
tn+1

) p
2

dx

.

∫
E

("
|x−y|< α

100 t≤ α
100 `(Q)

|θt1(y)Am,tbQ(y)|2
dydt
tn+1

) p
2

dx

.

∫
E

("
|x−y|< α

100 t< α
100 `(Q)

|θt1(y)Am,tbQ(y) − θtbQ(y)|2
dydt
tn+1

) p
2

dx

+

∫
E

("
|x−y|< α

100 t≤ α
100 `(Q)

|θtbQ(y)|2
dydt
tn+1

) p
2

dx

≤

∫
Rn
|S (bQ)(x)|pdx +

∫
Q

("
|x−y|<t<`(Q)

|θtbQ(y)|2
dydt
tn+1

) p
2

dx

≤

∫
Rn
|S (bQ)(x)|pdx + C0|Q|.

where in the last step we have used hypothesis (3.0.8), and where we define

S ( f )(x) :=
("

ΓQ(x)
|RtbQ(y)|2

dydt
tn+1

) 1
2

,

with ΓQ(x) := {(y, t) ∈ Rn+1 : |x − y| < t < `(Q)} ,

and

Rt f (x) := θt1(x)Am,t f (x) − θt f (x) .
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Let us recall that by definition, the measure m = mQ, and the “dyadic grid”, and thus also Am,t, Rt and S ,

depend implicitly on Q.

Our goal at this point is to show that, with Q (and hence the truncation of the cones, and the definition of

Am,t) fixed, we have

‖S ( f )‖Lp(Rn) . ‖ f ‖Lp(Rn) , (3.2.1)

but with bounds that are uniform in Q. Once we have established the latter estimate, we may apply it with

f = bQ, and then invoke hypothesis (3.0.7), to obtain (3.0.14).

To prove (3.2.1), we first recall the following.

Proposition 3.2.1. [C-UMP] Let T be a sublinear operator satisfying

T : L2(Rn, ω)→ L2(Rn, ω) , ∀ω ∈ A 2
r
.

Then T : Lp(Rn)→ Lp(Rn), f or p > r.

By the Proposition, we are left to prove that

∫
Rn
|S ( f )(x)|2v(x)dx ≤ C

∫
Rn
| f (x)|2v(x)dx, where v(x) ∈ A 2

r
.

This follows by a standard orthogonality argument, once we show that

∫
Rn

?
|x−y|<t<`(Q)

|RtQsh(y)|2dy v(x)dx ≤ C min
( s

t
,

t
s

)β ∫
Rn
|h(x)|2v(x)dx , (3.2.2)

for some β > 0, with h(x) = Qs f (x).

To establish (3.2.2), we begin by observing that, by the same arguments used to prove Lemma 3.1.1, with

Rt in place of θt, we have

∫
Rn

?
|x−y|<t<`(Q)

|RtQsh(y)|2dydx ≤ Cmin
( s

t
,

t
s

)β̃ ∫
Rn
|h(x)|2dx .
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Indeed, checking the conditions of Lemma 3.1.1, (a) is immediate by our hypotheses on θt, and the compact

support of the kernel of Am,t; (b) follows immediately by hypothesis, and [AAAHK, Lemma 3.11]; (c) holds

for Rt by definition; and (ã) holds for the present θt by hypothesis. Finally, we may verify (ã) for (θt1)Am,t by

observing that Am,t is a projection, so that (θt1)Am,t = (θt1)Am,tAm,t, whence it follows that

‖(θt1)Am,tAm,tQs f ‖2 . ‖Am,tQs f ‖2 .
( s

t

)β
‖ f ‖2 , ∀s ≤ t ≤ `(Q) ,

by (b), and the construction of Am,t (in the last step, we have used that t ≤ `(Q)).

Next, we need the following claim:

Claim 3.2.2. ∫
Rn

?
|x−y|<t<`(Q)

|RtQsh(y)|2dy ṽ(x)dx ≤ C
∫
Rn
|h(x)|2ṽ(x)dx,∀ṽ ∈ A 2

r
(3.2.3)

Interpolating with change of measure ([SW]) we get (3.2.2). Indeed, for each v ∈ A 2
r
, there exist λ0 > 0

such that v1+λ0 ∈ A 2
r

so we choose ṽ(x) = v1+λ0 (x).

The idea of using the interpolation with change of measure in this way first appeared in the paper [DRdeF].

�

Proof of Claim 3.2.2. Define h̃(x) = Qsh(x). By the properties of Qs (it is controlled by the maximal opera-

tor), ||h̃||L2
ṽ (Rn) ≤ C||h||L2

ṽ (Rn). So it’s enough to show

(∫
Rn

?
|x−y|<t<`(Q)

|Rth̃(y)|2dy ṽ(x)dx
) 1

2

≤ C
(∫
Rn

h̃(x)2ṽ(x)dx
) 1

2

.

By hypothesis (3.0.5), and since ṽ ∈ A 2
r

(which gives us an L2/r
ṽ bound for the maximal function), we have
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(∫
Rn

?
|x−y|<t<`(Q)

|Rth̃(y)|2dy ṽ(x)dx
) 1

2

=

(∑
P∈D(t)

∫
P

?
|x−y|<t<`(Q)

|Rth̃(y)|2dy ṽ(x)dx

) 1
2

≤ C

(∑
P∈D(t)

∫
P

?
P∗
|Rth̃(y)|2dy ṽ(x)dx

) 1
2

≤ C
∞∑
j=0

(∑
P∈D(t)

∫
P

?
P∗
|Rt(h̃1S j(P))(y)|2dyṽ(x)dx

) 1
2

≤ C
∞∑
j=0

∑
P∈D(t)

∫
P

1
|P∗|

2−2 jυt−n( 2
r −1)

(∫
S j(P)
|h̃(y)|rdy

) 2
r

ṽ(x)dx


1
2

. (3.2.4)

In the last step, we have used that we may apply (3.0.5) to (θt1)Am,t, since Am,t is a projection, with a compactly

supported kernel. Thus, for t ≈ `(P), we have

‖(θt1)Am,t f ‖L2(P∗) = ‖(θt1)Am,tAm,t( f 15P∗ )‖L2(P∗)

. ‖Am,t( f 15P∗ )‖L2(Rn) . t−n(1/r−1/2)‖ f ‖L2(5P∗) ,

for every r ∈ [1, 2], where in the first inequality we have used [AAAHK, Lemma 3.11]. In turn, the last

expression in (3.2.4) is comparable to

∞∑
j=0

∑
P∈D(t)

∫
P

2−2 jυt−
2n
r ṽ(x)

(∫
S j(P)
|h̃(y)|rdy

) 2
r

dx


1
2

≈

∞∑
j=0

∑
P∈D(t)

∫
P

2−2 jε2− j 2
r nt−

2
r nṽ(x)

(∫
S j(P)
|h̃(y)|rdy

) 2
r

dx


1
2

≈

∞∑
j=0

∑
P∈D(t)

∫
P

2−2 jε ṽ(x)

(?
S j(P)
|h̃(y)|rdy

) 2
r

dx


1
2

≤ C
∞∑
j=0

(∑
P∈D(t)

2−2 jε
∫

P
(M(|h̃(x)|r))

2
r ṽ(x)dx

) 1
2

≤ C
∞∑
j=0

2− jε
(∫
Rn
|h̃(x)|2ṽ(x)dx

) 1
2

≤ C
(∫
Rn
|h̃(x)|2ṽ(x)dx

) 1
2

.

The proof of Claim 3.2.2 is now complete, and as noted above, (3.0.14) follows. We have therefore established
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that the hypotheses of Lemma 3.0.7 hold, given the conditions of Theorem 3.0.4, so our next step is to prove

Lemma 3.0.7.

�

3.3 Conditions of Lemma 3.0.7 imply conditions of Sublemma 3.0.8

Define

gQ(x) :=
(∫ `(Q)

0
|θt1(x)|2

dt
t

) 1
2

GQ(x) =

("
|x−y|< α

100 t< α
100 `(Q)

|θt1(y)|2
dtdy
tn+1

) 1
2

Our goal is to prove (3.0.12) which with this notation is equal to prove that sup
Q

1
|Q|

∫
Q

(
gQ(x)

)2 dx < C.

Claim 3.3.1. sup
Q

1
|Q|

∫
Q

(
gQ(x)

)2 dx ≈ sup
Q

1
|Q|

∫
Q

(
GQ(x)

)2 dx

Proof. of Claim

sup
Q

1
|Q|

∫
Q

(
GQ(x)

)2 dx ≤ C sup
Q

1
|Q|

∫
Q

∫ `(Q)

0

?
|x−y|< α

100 t
|θt1(y)|2dy

dt
t

dx

≤ C sup
Q

∫
kQ

∫ `(Q)

0
|θt1(y)|2dy

dt
t

≤ Ck sup
Q

∫
Q

g2
Q(x)dx

∫
Q

g2
Q(y)dy =

∫
Q

∫ `(Q)

0
|θt1(y)|2

dt
t

dy

=

∫
Q

∫ `(Q)

0
|θt1(y)|2

?
|x−y|< α

100 t
dx

dt
t

dy

≤ C
∫

kQ

∫ `(Q)

0

∫
|x−y|< α

100 t
|θt1(y)|2

dt
tn+1 dydx

≤ C
∫

kQ

∫ k`(Q)

0

∫
|x−y|< α

100 t
|θt1(y)|2

dt
tn+1 dydx
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By taking supremum on both sides the proof is finished.

�

This claim allows us to work in a conical setting instead of the vertical setting.

Proof. For a large but fixed N (to be chosen momentarily) let

ΩN := {x ∈ Q : GQ(x) > N} .

If the conditions of the lemma hold with E = (1 − α)Q \
⋃

j

Q j we have

|ΩN | ≤ |Q \ (1 − α)Q| +
∑

j

|Q j| + |{x ∈ E : GQ(x) > N}|

≤ Cα|Q| + (1 − η) |Q| +

∣∣∣∣∣∣{x ∈ E :

("
|x−y|< α

100 t< α
100 `(Q)

|θt1(y)|2
dtdy
tn+1

) p
2

> N p}

∣∣∣∣∣∣
≤ Cα|Q| + (1 − η) |Q| +

1
N p

∫
E

("
|x−y|< α

100 t< α
100 `(Q)

|θt1(y)|2
dtdy
tn+1

) p
2

dx

≤ Cα|Q| + (1 − η) |Q| +
C
N p |Q| ≤ (1 − β) |Q| ,

for some β > 0, where we obtain the last estimate by choosing α sufficiently small, depending on η, and then

N large enough, depending on α and η. �

3.4 Proof of Sublemma 3.0.8

Proof. Fix γ ∈ (0, 1) and let N, α, β be as in the hypothesis. For a dyadic cube Q set

GQ,γ(x) :=

(∫ min(`(Q), 1
γ )

γ

∫
|x−y|< α

100 t
|θt1(y)|2

dydt
tn+1

) 1
2

(term to be 0 if `(Q) < γ), and

K(γ) = sup
Q

1
|Q|

∫
Q

(
GQ,γ(x)

)2 dx .
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By the truncation, K(γ) is finite and our goal is to show that sup
0≤γ≤1

K(γ) < ∞ since

sup
Q

1
|Q|

∫
Q

∫ `(Q)

0
|θt1(x)|2dx

dt
t
≤ C sup

Q

1
|Q|

∫
Q
|GQ(x)|2dx ≤ C sup

0≤γ≤1
K(γ)

Now we fix a cube Q and define

ΩN,γ := {x ∈ Q : GQ,γ(x) > N}. This set is open so we can make a Whitney decomposition for it

ΩN,γ =
⋃

j

Q j. We also define

FN,γ := Q \ΩN,γ.

∫
Q

(
GQ,γ(x)

)2 dx ≤
∫

FN,γ

(
GQ,γ(x)

)2
+
∑

j

∫
Q j

(
GQ,γ(x)

)2 dx

≤ N2|Q| +
∑

j

|Q j|
1
|Q j|

∫
Q j

∫ min(`(Q j), 1
γ ))

γ

∫
|x−y|< α

100 t
|θt1(y)|2

dydtdx
tn+1

+
∑

j

|Q j|
1
|Q j|

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|θt1(y)|2

dydtdx
tn+1

≤ N2 |Q| + K(γ)(1 − β) |Q| + III .

Claim 3.4.1.

L :=
∫

Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|θt1(y)|2

dydt
tn+1 dx < C|Q j|. (3.4.1)

Assuming the claim, we have

K(γ) ≤ N2 + K(γ)(1 − β) + C

⇒ K(γ) ≤
N2 + C
β

uniformly in γ ⇒ sup
0<γ<1

K(γ) ≤ C

⇒

∫
Q

∫ `(Q)

0

∫
|x−y|< α

100 t
|θt1(y)|2

dydt
tn+1 dx ≤ C|Q|

⇒

∫
Q

∫ `(Q)

0
|θt1(x)|2

dt
t

dx ≤ C|Q|.
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Proof. of Claim 3.4.1

Since we have done a Whitney decomposition, for every cube Q, there exists x j ∈ FN,γ satisfying:

(a) |x − x j| ∼ `(Q j) ∀x ∈ Q j.

(b) ∃Cn < ∞ such that {y ∈ Rn : |x − y| < C`(Q j)} ∩ {y ∈ Rn : |x j − y| < Cn`(Q j)} , ∅ ∀x ∈ Q j.

(c) For t < Cn`(Q j), {y ∈ Rn : |x − y| < t} ⊂ {y ∈ Rn : |x j − y| < t + C`(Q j) and |x j − y| > t}.

Define

ρ := Cn`(Q j).

δ :=
q − 2

2
, q f rom condition (3.0.6).

∆(x, t) := cube o f center x and radius t.

S 0(t) := ∆(x j, t + 2ρ) \ ∆(x j, t).

S k(t) := ∆(x j, t + 2k+1ρ) \ ∆(x j, t + 2kρ), f or k ≥ 1.

D1 := {y ∈ Rn : |x − y| < t} ⊂ {y ∈ Rn : |x j − y| < t + C`(Q j) and |x j − y| > t}.

D2 := ∆(x j, t + Cn`(Q j)) \ ∆(x j, t).

L :=
∫

Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|θt1(y)|2

dydt
tn+1 dx

≤

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|<t

|θt1(y)|2
dydt
tn+1 dx

≤

∫
Q j

∫ Cn`(Q j)

`(Q j)

∫
D1

|θt12Q j (y)|2
dydt
tn+1 dx +

∞∑
k=0

∫
Q j

∫ ∞
Cn`(Q j)

∫
|x−y|<t

|θt1S k(t)(y)|2
dydt
tn+1 dx

:= L−1 +

∞∑
k=0

Lk.
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From condition (3.0.2)
∫

D1
|θt12Q j (y)|2 dy

tn+1 ≤
C`(Qk)

t2 which implies that L−1 ≤ C|Q j| ≤ C|Q j|.

Take 1 > ε = 1
2 (1 − n

n+δ
) > 0 then for each k ≥ 0 we are going to subdivide Lk them in two as follows

Lk =

∫
Q j

∫ 2(1−ε)kρ

Cn`(Q j)

∫
|x−y|<t

|θt(1S k(t)(y))|2dy
dt

tn+1 dx +

∫
Q j

∫ ∞
2(1−ε)kρ

∫
|x−y|<t

|θt(1S k(t))|2dy
dt

tn+1 dx

:= L1
k + L2

k .

Case 1:

∃l ∈ (0, (1 − ε)k), such that 2l = t
ρ
, which implies that |∆(x j, 2t)| ≈ |Q|.

∫
D2

|θt1S k(t)(y)|2dy ≤
∫

∆(x j,2t)
|θt1S k(t)(y)|2dy

≤ C|S k(t)|2−(n+2+β)(k−l)

≤ C2−(n+2+β)k
(

t
ρ

)n+2+β

(2kρ)n

≤ C2−(2+β)ktn
(

t
ρ

)2+β

.

∫ 2(1−ε)k

Cn`(Q j)

∫
|x−y|<t

|θt(1S k(t)(y))|2dy
dt

tn+1 dx ≤
∫ 2(1−ε)kρ

0

∫
D2

|θt1S k(t)(y)|2dy
dt

tn+1

≤ C2−(2+β)k
∫ 2(1−ε)kρ

0

(
t
ρ

)2+β dt
t

= C2−(2+β)k
(

2(1−ε)kρ

ρ

)2+β

= C2−εk(2+β).

∑
k

∫ 2(1−ε)k

Cn`(Q j)

∫
|x−y|<t

|θt(1S k(t)(y))|2dy
dt

tn+1 dx ≤ C ⇒
∑

k

L1
k ≤ C|Q j|.

Case 2

By (3.0.6) θt : Lq → L2 for q > 2,
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∫
D2

|θt(1S k(t))(y)|2dy ≤ |D2(t)|δ
(∫
Rn
|θt1S k(t)|

q
) 2

q

≤
(
ρtn−1)δ |S k(t)|

2
q

≤

(ρ
t

)δ
(tn)δmax

(
tn, (2kρ)n) 2

q

≤ C
(ρ

t

)δ
max

(
tn, (2kρ)n) .

∫ ∞
2(1−ε)kρ

∫
D2

|θt(1S k(t))(y)|2dy ≤ C
∫ ∞

2(1−ε)kρ

(ρ
t

)δ
max(tn, (2kρ)n)

dt
tn+1

≤

∫ 2kρ

2(1−ε)kρ

(ρ
t

)δ (2kρ)n

tn+1 dt +

∫ ∞
2kρ

(ρ
t

)δ dt
t

≤ ρδ(2kρ)n
∫ 2kρ

2(1−ε)k

dt
tn+1+δ

+ 2−kδ

= ρδ(2kρ)n[2−k(n+δ) − 2−k(1−ε)(n+δ)]ρ−n−δ + 2−kδ

= 2n−n−δ − 2k(n−n−δ+εn+εδ) + 2−kδ

≤ 2−kδ + 2−k[(1−ε)(n+δ)−n] + 2−kδ.

By our choice of ε one can easily see that (1 − ε)(n + δ) − n > 0

∑
k

∫ ∞
2(1−ε)kρ

∫
D2

|θt(1S k(t))(y)|2dy <
∑

k

2−kδ + 2−k[(1−ε)(n+δ)−n] + 2−kδ < C

⇒
∑

k

L2
k ≤ C|Q j|.

�
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Chapter 4

Theorem 3

Definition 4.0.1. We define for f : Rn → CN , f ∈ L2(Rn), an N × N matrix valued operator f → Θt · f

satisfying the following properties:

(a) (Uniform L2 bounds and off-diagonal decay in L2.)

sup
t>0
||Θt · f ||L2(Rn) ≤ C|| f ||L2(Rn), (4.0.2)

||Θt · f j||L2(Q) ≤ C2−
n+2+β

2 j|| f j||L2(2 j+1Q\2 jQ), `(Q) ≤ t ≤ 2`(Q), (4.0.3)

for some β > 0, where f j := f12 j+1Q\2 jQ.

(b) (Quasi-orthogonality in L2.)There exists β > 0 and H a subspace of L2(Rn) such that

||Θt · Qsh||L2(Rn) ≤ C
( s

t

)β
||h||L2(Rn), where h ∈ H, (4.0.4)

where {Qs}0≤s≤∞ is some family of operators with
∫
Rn

∫ ∞
0 |Qs f (x)|2 dsdx

s ≤ C|| f ||2L2(Rn), ||∇Qs f ||L2(Rn) ≤
1
s || f ||L2(Rn),∫ ∞

0 Q2
s

ds
s = I.

(c) (“Hypercontractive” off-diagonal decay.) There is some 1 < r < 2, and some ν > n
r (ν = n

r + ε, ε > 0),

such that

(∫
Q∗
|Θt · ( f1S j (Q))(y)|2dy

) 1
2

≤ C2− jνt−n( 1
r −

1
2 )

(∫
S j(Q)
| f (y)|rdy

) 1
r

, ∀ j ≥ 0 , `(Q) < t ≤ 2`(Q) ,

(4.0.5)
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where S 0(Q) = 16Q and S j(Q) = 2 j+4Q \ 2 j+3Q, j ≥ 1. Q∗ ≡ 8Q.

(d) (Improved integrability)

sup
t>0
||Θt · f ||Lq(Rn) ≤ C|| f ||Lq(Rn), f or some q > 2. (4.0.6)

Theorem 4.0.2. Let’s define the square function operator Θ as above and suppose that there exists some

constants 0 < C0 < ∞, 0 < C1 < 1 and exponent p > r, δ > 0 and a system {bQ} of functions indexed by

cubes Q ⊂ Rn, and a system of Lipschitz functions {ΦQ} also indexed by cubes, such that for each cube Q:

∫
Rn
|bQ(x)|pdx ≤ C0|Q|, (4.0.7)

∫
Q

(∫ `(Q)

0

∫
|x−y|<t

|Θt · bQ(y)|2
dydt
tn+1

) p
2

dx ≤ C0|Q|, (4.0.8)

‖∇ΦQ‖∞ ≤ C0 `(Q)−1, C1 ≤ ΦQ(x) ≤ 1 on Q, (4.0.9)

δ|ξ|2mQ(Q) ≤ Re
(
ξ ·

∫
Q

bQ(x)dmQ(x) · ξ̄
)
, ∀ξ ∈ Cn where dmQ(x) = ΦQ(x)dx, (4.0.10)

where the action of Θt on the matrix valued function bQ is defined in the obvious way as in definition 4.0.1.

Then "
Rn+1

+

|Θt · f (x)|2
dxdt

t
≤ C|| f ||2L2(Rn),∀ f ∈ H. (4.0.11)

Remark 4.0.3. In Theorem 4.0.2, H may be all of L2(Rn), or it may be a proper subspace. For example, the

case that H is the space of L2 gradient fields, arises naturally in some applications (as in the case of the Kato

“square root” problem for divergence form elliptic operators).

Theorem 4.0.4. (T1 Theorem)
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If Θt f (x) satisfies conditions (4.0.2), (4.0.3) and (4.0.4) as above and the Carleson measure estimate

sup
Q

1
|Q|

∫
Q

∫ `(Q)

0
|Θt1(x)|2

dxdt
t
≤ C. (4.0.12)

Then we have the square function estimate

"
Rn+1

+

|Θt f (x)|2
dxdt

t
≤ C|| f ||2L2(Rn),∀ f ∈ H. (4.0.13)

Remark 4.0.5. Here, the constant function 1 should be interpreted in the matrix-valued sense, i.e., as the

N × N identity matrix.

Remark 4.0.6. The proof of this T1 Theorem is the same as the proof of the T1 Theorem in the previous

section since same properties apply and we can replicate the proof the lemma 3.0.7 by restricting it to the

subspace H.

Lemma 4.0.7. Suppose that there exists η ∈ (0, 1), α ∈ (0, 1
2 ], ε > 0 small and C < ∞ such that for every

cube Q ∈ Rn, there is a family {Q̃ j} j of non-overlapping sub-cubes of Q, dyadic with respect to the grid

induced by Q, with ∑
j

(1 + α)n|Q̃ j| ≤ (1 − η) |Q| (4.0.14)

and

∫
E

(∫ `(Q)

0

∫
|x−y|< α

100 t
|Θt1(y)|21Γ2ε

k
(Θt1(y))

dydt
tn+1

) p
2

dx ≤ C|Q| (4.0.15)

where E := (1 − α)Q \ {
⋃

j Q j} for every cone of aperture 2ε, and Q j := (1 + α)Q̃ j.

Then

sup
Q

1
|Q|

∫ `(Q)

0

∫
Q
|Θt1(x)|2

dxdt
t
≤ C
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Remark 4.0.8. ε small but fixed, we cover CN by cones of aperture ε. The constant then depend on k =

k(ε,N) the number of cones.

Sublemma 4.0.9. Suppose that ∃N < +∞,α ∈ (0, 1
2 ] and β ∈ (0, 1) such that for every cube Q and for all Γ2ε

|{x ∈ Q : G j
Q(x) > N}| ≤ (1 − β) |Q| (4.0.16)

for all k, where

GQ(x) =

("
|x−y|< α

100 t< α
100 `(Q)

|Θt1(y)|21Γ2ε (Θt1(y))
dtdy
tn+1

) 1
2

(4.0.17)

Then

sup
Q

1
|Q|

∫
Q

(
GQ(x)

)2 dx ≤ C. (4.0.18)

Remark 4.0.10. In the previous section we have seen that (4.0.18) implies (4.0.12).

4.1 Conditions of Theorem 4.0.2 imply conditions of the Lemma 4.0.7

Proof. Let υ ∈ CN be the unit normal in the direction of the central axis of a cone of aperture 2ε

Γ2ε = {z ∈ CN : | z
|z| − υ| < 2ε} and let Am,t f (x) :=

(
mQ(x, t)

)−1 ∫
Q(x,t) f (y)dmQ(y) with Q(x, t) = minimal

dyadic cube containing x with side length at least t.

Let’s first construct such a family using a stopping time argument as we did in Section 2, Theorem 1, such

that the first condition of the lemma is satisfied as well as |Θt1(x)|2 ≤ 4|Θt1(x)Am,tbQ(x)ῡ|2.

Without loss of generality (by renormalizing), assume δ ≡ 1 on (4.0.10). Fix a cube Q, and then fix a cone

Γ2ε . Now we subdivide Q dyadically and select a family {Q̃ j}, Q̃ j ⊂ Q which are maximal with respect to the

condition that at least one of the following conditions hold:

1
mQ(Q̃ j)

∫
Q̃ j

|bQ(x)|dmQ(x) ≥
C1

8ε
(type I)
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Re

(
ν ·

∫
Q̃ j

bQ(x)dmQ(x) · ν̄

)
≤

3C1

4
mQ(Q̃ j) (type II)

where ν is the unit normal vector in the direction of the central axis of the cone Γ2ε and ε is half the aperture

of the cone.

Define Ẽ := Q \ {
⋃

j

Q̃ j}. Then from condition (4.0.10) since δ ≡ 1 and taking ξ = ν where ν is the unit

normal in the direction of the central axis of Γ2ε we get

|Q| ≤
1

C1
mQ(Q) ≤Re

∑
i, j

∫
Q

(bQ)i j(x)ν jν̄idmQ(x)

=
1

C1

Re
∑

i, j

∫
Ẽ

(bQ)i j(x)ν jν̄idmQ(x) + Re
∑

k

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)


:=

1
C1

(I + II).

For the first part using condition (4.0.7) and Hölder we get

I :=Re
∑

i, j

∫
Ẽ

(bQ)i j(x)ν jν̄idmQ(x)

≤ |ν ·

∫
Ẽ

bQ(x)dmQ(x) · ν̄|

=

∣∣∣∣∫
Ẽ

bQ(x)dmQ(x)
∣∣∣∣

≤
∣∣mQ(Ẽ)

∣∣ 1
p′

(∫
Q
|bQ(x)|pdmQ(x)

) 1
p

≤
∣∣Ẽ∣∣ 1

p′

(∫
Q
|bQ(x)|pdx

) 1
p

≤ C|Ẽ|
1
p′ |Q|

1
p .
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For the second part we are working with the family of subcubes and to be able to use their properties we need

to separate them in two cases: the ones that satisfy the type I condition and the ones that satisfy the type II

condition (the same subcube can satisfy both conditions at the same time; in this case we arbitrarily assign

them to be of type I).

II ≤

∣∣∣∣∣∣Re
∑

k,type I

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣Re
∑

k,type II

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)

∣∣∣∣∣∣ := II1 + II2.

For the part of type I subcubes we are going to apply Hölder, the property of being type I, and condition

(4.0.7).

II1 :=

∣∣∣∣∣∣Re
∑

k,typeI

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)

∣∣∣∣∣∣
≤
∑

k,typeI

∫
Q̃k

|bQ(x)|dmQ(x)

=

∫ ⋃
k,typeI

Q̃k
|bQ(x)|dmQ(x)

≤

(∫
Q
|bQ(x)|pdmQ(x)

) 1
p

mQ

 ⋃
k,typeI

Q̃k

 1
p′

.

For the measure of the set just note that
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mQ

 ⋃
k,typeI

Q̃k

 ≤ 8ε
C1

∫ ⋃
k,typeI

Q̃k
|bQ(x)|dmQ(x)

≤
8ε
C1

mQ

 ⋃
k,typeI

Q̃k

 1
p′ (∫

Q
|bQ(x)|pdmQ(x)

) 1
p

mQ

 ⋃
k,typeI

Q̃k

 1
p

≤
8ε
C1

(∫
Q
|bQ(x)|pdx

) 1
p

≤ Cε|Q|
1
p

mQ

 ⋃
k,typeI

Q̃k

 1
p′

≤ C
(
ε

C1

) p
p′

|Q|
1
p′ .

Adding this to the previous computation we get

II1 ≤

∣∣∣∣∣∣Re
∑

k,type I

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)

∣∣∣∣∣∣ ≤
(∫

Q
|bQ(x)|pdmQ(x)

) 1
p

mQ

 ⋃
k,typeI

Q̃k

 1
p′

≤ C
(
ε

C1

) p
p′

|Q|
1
p′ |Q|

1
p = C

(
ε

C1

) p
p′

|Q|.

We choose ε small enough so

Cε
p
p′

Cp
1
≤

1
8
. (4.1.1)

For the type II subcubes just using the property of being type II and 0 < C1 ≤ 1 we get

II2 :=

∣∣∣∣∣∣Re
∑

k,typeII

∑
i, j

∫
Q̃k

(bQ)i j(x)ν jν̄idmQ(x)

∣∣∣∣∣∣ ≤ 3
4C1

mQ

 ⋃
k,typeII

Q̃k

 ≤ 3C1
4 |Q| ≤

3
4 |Q|.

Finally we can conclude that
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|Q| ≤
1

C1
(I + II) ≤ C|Ẽ|

1
p′ |Q|

1
p +

1
8
|Q| +

3
4
|Q|

≤ 8C|Ẽ|
1
p′ |Q|

1
p

≤ C|Ẽ|

⇒ |Ẽ| > η̃|Q|, with 0 < η̃ =
1
C
< 1

Therefore,

∑
j

|Q̃ j| ≤ (1 − η̃)|Q|.

Thus,∑
j

|Q̃ j| ≤
∑

j

(1 + α)n|Q̃ j| ≤ (1 + α)n(1 − η̃)|Q| ≤ (1 − η)|Q|,

provided that we choose η and α sufficiently small.

We define Q j := (1 + α)Q̃ j and E := (1 − α)Q \
⋃

j

Q j.

Then as in the previous section we can choose α ∈ (0, 1
2 ] and η ∈ (0, 1) such that∑

j

|Q j| ≤
∑

j

(1 + α)n|Q̃ j| ≤ (1 + α)n(1 − η̄)
∣∣∣∣12 Q

∣∣∣∣ ≤ (1 − η)
∣∣∣∣12 Q

∣∣∣∣ .
This concludes that the family that we have constructed satisfy the measure condition. Now let’s proceed

to verify the condition (4.0.15).

Claim 4.1.1. If x ∈ E, |x − y| < α
100 t and 0 < t < `(Q) then

|Θt1(y)|1Γ2ε (Θt1(y)) ≤ C|Θt1(y) · Am,tbQ(y)ν̄| (4.1.2)

where ν ∈ Cn is the unit normal vector in the direction of the central axis of Γ2ε := {z ∈ CN : | z
|z| − ν| < 2ε},

and Am,t f (y) := (mQ(y, t))−1
∫

Q(y,t) f (w)dmQ(w) with Q(y, t) the minimal dyadic cube containing y with side

length at least t.

Proof. of claim 4.1.1
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Let’s introduce some notation first

(y, t) ∈ E∗Q ≡ RQ \ (
⋃

j

RQ j ) where RQ ≡ Q × (0, `(Q)) and Γ2ε = {z ∈ CN : | z
|z| − ν| < 2ε}.

We are going to prove that if z ∈ Γ2ε and (y, t) ∈ E∗Q then |z · Am,tbQ(y)ν̄| ≥ C2
1

2 |z| since, as in the previous

section, if x ∈ E, |x − y| < α
100 t and 0 < t < `(Q) then (y, t) ∈ E∗Q.

Since (y, t) ∈ E∗Q we have that Q(y, t) is not of type I neither type II, therefore by the triangle inequality

|ω · Am,tbQ(y)ν̄| ≥ |ν · Am,tbQ(y)ν̄| − |(ω − ν)Am,tbQ(y)ν̄| ≥ 3C2
1

4 − |(ω − ν)|
C2

1
8ε ∀ω ∈ C

N .

If we choose ω = z
|z| then |ω − ν| < 2ε so we get that | z

|z| · Am,tbQ(y)ν̄| ≥ 3C2
1

4 −
C2

12ε
8ε =

C2
1

2

⇒ |z · AtbQ(y)ν̄| ≥ C2
1

2 |z|.

Since we are integrating when Θt1(y) ∈ Γ2ε and (y, t) ∈ E∗Q then |Θt1(y)|2 ≤ 4
C4

1
|Θt1(y) · Am,tbQ(y)ν̄|2 in our

domain of integration and the claim is true.

�

Let’s prove now the second condition of the lemma (4.0.15)

∫
E

(∫ `(Q)

0

∫
|x−y|< α

100 t
|Θt1(y)|21Γ2ε (Θt1(y))

dydt
tn+1

) p
2

dx

≤ C
∫

E

(∫ `(Q)

0

∫
|x−y|< α

100 t
|Θt1(y) · Am,tbQ(y)ῡ|2

dydt
tn+1

) p
2

dx

≤ C(p)
∫

Q

(∫ `(Q)

0

∫
|x−y|<t

|Θt1(y) · Am,tbQ(y)ῡ|2
dydt
tn+1

) p
2

dx.

Then the proof goes as in section 3. �

4.2 Conditions lemma 4.0.7 imply conditions sublemma 4.0.9

Proof. For a large, but fixed N (to be chosen momentarily) let ΩN := {x ∈ Q : GQ(x) > N}.

If conditions of lemma hold with E = Q \
⋃

j

Q j.

We have
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|ΩN | ≤ |Q \ (1 − α)Q| +
∑

j

|Q j| + |{x ∈ E : GQ(x) > N}|

≤ Cα|Q| + (1 − η) |Q| +

∣∣∣∣∣∣{x ∈ E :

("
|x−y|< α

100 t<`(Q)
|Θt1(y)|21Γ2ε (Θt1(y))

dtdy
tn+1

) p
2

> N p}

∣∣∣∣∣∣
≤ Cα|Q| + (1 − η) |Q| +

1
N p

∫
E

("
|x−y|< α

100 t<`(Q)
|Θt1(y)|21Γ2ε (Θt1(y))

dtdy
tn+1

) p
2

dx

≤

[
Cα + (1 − η) +

C
N p

]
|Q|

for some β > 0, where we obtain the last estimate by choosing α sufficiently small, depending on η, and then

N large enough, depending on α and η.

�

4.3 Proof of Sublemma 4.0.9

Proof. Fix γ ∈ (0, 1) and let N, β be as in the hypothesis. For a cube Q set

GQ,γ(x) :=

(∫ min(`(Q), 1
γ )

γ

∫
|x−y|< α

100 t
|Θt(y)|2χ(ε,γ)(Θt1(y))

dtdy
tn+1

) 1
2

term to be 0 if `(Q) < γ and where

χ(ε,γ)(y) =


1 if 1

Γ
3
2 ε

(Θt1)(y) = 1
0 if 1Γ2ε (Θt1)(y) = 0
(0, 1) otherwise

K(γ) := sup
Q

1
|Q|

∫
Q

∫ min(`(Q), 1
γ )

γ

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx.

By the truncation K(γ) is finite, and our goal is to show that sup
0<γ<1

K(γ) < C < ∞ since

sup
Q

1
|Q|

∫
Q

∫ `(Q)

0

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx ≤ sup

0<γ<1
K(γ).
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Fix a cube Q and define ΩN,γ := {x ∈ Q : Gγ(x) > N}. This set is open so we can make a Whitney

decomposition for it ΩN,γ =
⋃

j

Q j =. We also define

FN,γ := Q \ΩN,γ.

∫
Q

∫ min(`(Q), 1
γ )

γ

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 ≤

∫
FN,γ

∫ min(`(Q), 1
γ )

γ

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx

+
∑

j

|Q j|

|Q j|

∫
Q j

∫ min(`(Q j), 1
γ )

γ

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx

+
∑

j

|Q j|

|Q j|

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx

≤ N2|Q| + K(γ)(1 − β) |Q|

+
∑

j

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx.

Claim 4.3.1. ∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx < C|Q j|. (4.3.1)

Assuming the claim, we have

K(γ) ≤ N2+K(γ)(1 − β) + C

⇒ K(γ) ≤
N2 + C
β

uni f ormly in γ ⇒ sup
0<γ<1

K(γ) ≤ C

⇒

∫
Q

∫ `(Q)

0

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx ≤ C|Q|

⇒

∫
Q

∫ `(Q)

0
|Θt1(x)|21Γε (Θt1(x))

dt
t

dx ≤ C|Q|

⇒

∫
Q

∫ `(Q)

0
|Θt1(x)|2

dt
t

dx ≤ C|Q|.

�
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Proof. of Claim 4.3.1

Take x j ∈ FN,γ,

|x− x j| ∼ `(Q j) ∀x ∈ Q j ⇒ ∃Cn < ∞ such that {y ∈ Rn : |x− y| < C`(Q j)} ∩ {y ∈ Rn : |x j − y| < Cn`(Q j)} , ∅

∀x ∈ Q j.

For t < Cn`(Q j) ,

{y ∈ Rn : |x − y| < t} ⊂ {y ∈ Rn : |x j − y| < t + C`(Q j) and |x j − y| > t} ≡ D1.

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|< α

100 t
|Θt1(y)|21Γε (Θt1(y))

dydt
tn+1 dx ≤

∫
Q j

∫ min(`(Q), 1
γ )

max(γ,`(Q j))

∫
|x−y|<t

|Θt1(y)|21Γε (Θt1(y))
dydt
tn+1 dx

≤

∫
Q j

∫ Cn`(Q j)

`(Q j)

∫
D1

|Θt1(y)|21Γε (Θt1(y))
dydt
tn+1 dx

+

∫
Q j

∫ ∞
Cn`(Q j)

∫
|x−y|<t

|Θt1(y)|21Γε (Θt1(y))
dydt
tn+1 dx

:= I + II.

[I ]

sup
t>0
||Θt f ||2 ≤ C|| f ||2 ⇒

∫
D1

|Θt12Q j (y)|21Γ2ε (Θt12Q j (y))
dy

tn+1 ≤
C`(Qk)

t2

⇒ I ≤ C|Q j|.

[II ]Define S k(t) = ∆(x j, t+2k+1ρ)\∆(x j, t+2kρ), where ρ = Cn`(Q j), for k ≥ 1, S 0(t) = ∆(x j, t+2ρ)\∆(x j, t).

Take 1 > ε = 1
2 (1 − n

n+δ
) > 0.

Then

II1 :=
∑

k

∫
Q j

∫ ∞
2(1−ε)kρ

∫
|x−y|<t

|Θt(1S k(t)(y))|2dy
dt

tn+1 dx,

II2 :=
∑

k

∫
Q j

∫ 2(1−ε)k

Cn`(Q j)

∫
|x−y|<t

|Θt(1S k(t)(y))|2dy
dt

tn+1 dx,

D2 = ∆(x j, t + C`(Q j)) \ ∆(x j, t) and II ≤ II1 + II2.

From here the proof goes exactly as the one in Section 3. �
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Chapter 5

Application 1

Let’s consider

L~u := −Dα · (AαβDβ~u) (5.0.1)

is defined on Rn+1 = {(x, t) ∈ Rn × R}, n ≥ 2, ~u are N-dimensional vector valued functions,where Dα = ∂
∂xα

is

the partial derivative with respect the variable xα, 1 ≤ α ≤ n + 1, and where Aαβ = Aαβ(x), 1 ≤ α, β ≤ n + 1,

are N × N matrices of L∞ complex-valued coefficients, defined on Rn (i.e. independent of the t variable) and

satisfying the uniform ellipticity condition

λ

N∑
i=1

n+1∑
α=1

|ξi
α|

2 ≤ Ai j
αβξ

j
βξ̄

i
α, ||A||L∞(Rn) ≤ Λ (5.0.2)

for some λ > 0, Λ < ∞, and for all ξ ∈ CN , x ∈ Rn (the divergence form operator L is interpreted in the weak

sense via a sesquilinear form).

Let’s note that ∇~u is a (n + 1)-dimensional vector of N dimensional vectors (i.e. an (n + 1) × N matrix).

We say that L~u = 0 in a domain Ω if ~u ∈ W1,2
loc (Ω) and

∫
Ω

A(X)∇~u(X) · ∇~ψ(X)dX :=
∫

Ω

Ai j
αβDβu jDαψi = 0 ,

for every CN-valued ~ψ ∈ C∞0 (Ω).

We define the Dirichlet problem in the upper half-space
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L~u = 0 in Rn+1
+ , ~u(x, t)

t→0
−−−→ ~f (x) ∈ Lp(Rn), sup

t>0

∥∥~u(·, t)
∥∥

Lp(Rn) ≤ C‖ ~f ‖Lp(Rn),

and we denote it by (D)p.

We define the Regularity problem in the upper half-space

L~u = 0 in Rn+1
+ , ~u(x, t)

t→0
−−−→ ~f (x) ∈ L̇p

1 (Rn), sup
t>0

∥∥∇~u(·, t)
∥∥

Lp(Rn) ≤ C‖∇ ~f ‖Lp(Rn),

and we denote it by (R)p.

For L as above, there exist the fundamental solutions E, E∗ associated with L and L∗, respectively, in

Rn+1, so that Lx,t E(x, t, y, s) = δ(y,s), and L∗y,s E∗(y, s, x, t) ≡ L∗y,s E(x, t, y, s) = δ(x,t), where δX denotes the

Dirac mass at the point X, and L∗ is the hermitian adjoint of L (cf. [HK]). We define the Single layer potential

operator, by

St ~f (x) ≡
∫
Rn

E(x, t, y, 0) ~f (y) dy, t ∈ R.

Remark 5.0.2. For simplicity of notation we won’t carry the vectorial notation through the remainder of the

section.

Theorem 5.0.3. If (R)q and (D)p′ are uniquely solvable boundary problems, for L∗, in the lower half-space

Rn+1
− , with 2n

n+2 < p < 2n
n−2 , and some q > 1, then

∫ ∞
−∞

∫
Rn
|t∂2

t S t f (x)|2
dxdt

t
≤ C|| f ||2L2(Rn), (5.0.3)

or

∫
Rn

∫ ∞
0
|t∂2

t S t f (x)|2
dtdx

t
≤ C|| f ||2L2(Rn), (5.0.4)

where S t is the Single layer potential for L.
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5.1 Reduction of Problem

Claim 5.1.1. In order to prove the Theorem 5.0.3 it’s enough to prove that

∫
Rn

∫ ∞
0
|tm∂m+1

t S t f (x)|2
dt
t

dx ≤ Cm|| f ||2L2(Rn) f or some m ≥ 1. (5.1.1)

Proof. Let’s prove that (5.1.1)⇒ (5.0.4).

Fix ε > 0, R >> ε, m ≥ 2, 0 < η � R. Define S η
t =

∫ ∞
0 ϕη(t− s)S sds, where ϕ ∈ C∞c (R), ϕη(t) = η−1ϕ

(
t
η

)
.

It is enough to verify that that (5.1.1)⇒ (5.0.4), for f ∈ C∞0 , and with S t replaced by S η
t , as long as we obtain

bounds that are independent of η. To simplify the notation, we suppress the dependence on η, and just write

S t, except when the dependence on η is relevant. Consider now

∫
|x|<R

∫ R

ε

|tm−1∂m
t S t f (x)|2

dt
t

dx =

∫
|x|<R

∫ R

ε

(∂m
t S t f (x)) · (∂m

t S t f (x)) · t2m−3dtdx

= Cm

∫
|x|<R

(
|tm−1∂m

t S t f (x)|2dx
]t=R

t=ε −
1

2m − 2

∫
|x|<R

∫ R

ε

∂

∂t

(
∂m

t S t f (x) · ∂m
t S t f (x)

)
t2m−2dtdx

≤ (Boundary Term) +
1

2m − 2

∫
Rn

∫ R

ε

|∂m+1
t S t f (x)| · |∂m

t S t f (x)|t2m−2dtdx

≤ (BT ) +
1

2m − 2

[
1
2

(∫
|x|<R

∫ R

ε

|tm∂m+1
t S t f (x)|2

dtdx
t

)
+

1
2

(∫
|x|<R

∫ R

ε

|tm−1∂m
t S t f (x)|2

dtdx
t

)]
,

and therefore, hiding the last term, we have

∫
|x|<R

∫ R

ε

|tm−1∂m
t S t f (x)|2

dt
t

dx ≤ C(BT ) + Cm

∫
|x|<R

∫ R

ε

|tm∂m+1
t S t f (x)|2

dtdx
t
.

Claim 5.1.2.

(a)

lim
ε→0

∫
|x|<R

(
|tm−1∂m

t S η
t f (x)|2

]
t=ε dx = 0.

(b)

lim sup
R→∞

∫
|x|<R
|tm−1∂m

t S t f (x)|2
]

t=R
dx ≤ C|| f ||2L2(Rn).
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Assuming this claim means that if it’s true for case m, is also true for the previous case m-1, and by

induction would be true for m = 2 that it’s (5.0.4).

�

Proof. of Claim 5.1.2

(a) lim
ε→0

∫
|x|<R

(
|tm−1∂m

t S η
t f (x)|2

]
t=ε dx = 0.

Recall that S η
t =

∫ ∞
0 ϕη(t − s)S sds, where ϕ ∈ C∞c (R), ϕη(t) = η−1ϕ

(
t
η

)
. Note that if for every R � η > 0

fixed, we have limε→0
∫
|x|<R

(
|tm−1∂m

t S η
t f (x)|2

]
t=ε dx = 0 (note also that R and η don’t depend on ε), then we

get (5.1.2) (a). We write

∂t(∂m−1
t S η

t ) = ∂t

∫ ∞
0

∂m−1
t ϕηS sds

= ∂t

∫ ∞
0

(
1
η

)m−1

ψη(t − s)S sds

=
∂

∂t

(
1
η

)m−1 ∫ ∞
0

S t−sψη(s)ds,

for some ψ ∈ C∞c (R).

(∂m
t S η

t f ) = ∂t(∂m−1
t S η

t f )

=

(
1
η

)m−1
∂

∂t
L−1( fψη)

=

(
1
η

)m−1

L−1D( fψη).

So

∫
|x|<R
|tm−1∂m

t S η
t f (x)|2dx|t=ε =

(
ε

η

)2(m−1) ∫
|x|<R
|L−1D( fψη)|2dx

≤

(
ε

η

)2(m−1)

(Rn)
1
n

(∫
|x|<R
|L−1D( fψη)(x)|2( n

n−1 )dx
) n−1

n

≤ C
(
ε

η

)2m−2

· R ·
"
Rn+1
| f (x)|2|ψη(s)|2dxds −→ 0 as ε → 0.

Then
∫
|x|<R |t

m∂m+1
t S η

t f (x)|2dx]t=ε −→ 0.
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(b)
(∫
|x|<R

(
|tm∂m+1

t S t f (x)|2dx
]

t=R

) 1
2
≤ C|| f ||L2(Rn) (uniformly in R). Set

Q := ∆R = {x : |x| < R}, IR = {(x, t) : |x| <
3
2

R,
R
2
< t <

3R
2
}. (5.1.2)

Claim 5.1.3. It’s enough to prove that

sup
R<∞

R ·
"

IR

|∂2
t S t f (x)|2dxdt ≤ C|| f ||2L2(Rn). (5.1.3)

Proof. Claim 5.1.3 Let’s prove it by induction using Caccioppoli in slices (proposition 1.4.2) to reduce the

derivatives in each step, bearing in mind that t = R.

m 7→ m + 1, m > 1,

1
|Q|

∫
Q
|tm∂m+1

t S t f (x)|2dx ≤ CR2m 1
|Q|

∫
Q
|∂m+1

t S t f (x)|2dx

≤ C
R2m

(`(Q))2

1
|Q∗|

"
Q∗
|∂m

t S t f (x)|2dxdt

≤ C
R2m

(`(Q))4

1
|Q|∗∗

"
Q∗∗
|∂m−1

t S t f |2dxdt

≤ (applying Caccioppoli (m − 3) times)

≤ C
R2m

(`(Q))2(m−1)

1
|Qm−1 ∗ |

"
Qm−1∗

|∂2
t S t f (x)|2dxdt

≤ CR
1
|Q|

"
IR

|∂2
t S t f (x)|2dxdt

⇒

∫
∆R

|tm∂m+1
t S t f (x)|2dx

≤ C · R
"

IR

|∂2
t S t f (x)|2dxdt.

For m = 1,

∫
∆R
|t∂2

t S t f (x)|2dx ≤ C
(

1
|Q∗ |

!
Q∗ |t∂

2
t S t f (x)|2dxdt

)
≤ C · R

!
IR
|∂2

t S t f (x)|2dxdt. �

To bound
(

R
!

IR
|∂2

t S t f (x)|2dxdt
) 1

2
we dualize with h ∈ L2(IR) such that ||h||L2(IR) ≤ 1.
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(
R
"

IR

|∂2
t S t f (x)|2dxdt

) 1
2

≤ CR
1
2

"
IR

h · ∂2
t S t f dxdt

= −CR
1
2

∫
∆R

f∂n+1(L∗)−1∂n+1hdx

≤ CR
1
2 || f ||L2(Rn)

(∫
∆R

|∂n+1(L∗)−1∂n+1h|2dx
) 1

2

≤ C|| f ||L2(Rn).

For the last inequality we have used the following claim.

Claim 5.1.4. (∫
∆R

|∂n+1(L∗)−1∂n+1h|2dx
) 1

2

≤ C · R
−1
2 . (5.1.4)

�

Proof. of Claim 5.1.4

∂n+1(L∗)−1∂n+1h(x, s) =

"
∂

∂t
∂

∂s
E∗(x, s, y, t)h(y, t)dydt

=

"
∂

∂t
∂

∂s
E∗(x, s − t, y, 0)h(y, t)dydt.

We know ∇(L∗)−1div : L2(Rn+1) → L2(Rn+1). In our case, s = 0 (or more precisely, |s| < η � R, when

working with S η
t ), so we are away from the pole. Therefore, as in the proof of Cacciopoli on slices, we have

(∫
∆R

|∂n+1(L∗)−1∂n+1h(x)|2dx
) 1

2

≤ C

(
1
R

"
{(x,t):|x|<R, −R

4 <t< R
4 }

|∂n+1(L∗)−1∂n+1h(x)|2dxdt

) 1
2

≤ C
(

1
R

"
IR

|h(x)|2dxdt
) 1

2

≤ CR
−1
2 .

�

.
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5.2 tm∂m+1
t S t satisfies the Square function conditions as in 4.0.1 for

some m big enough (m > n+2
2 ).

(a)(i) sup
t>0
||tm∂m+1

t S t f ||L2(Rn) ≤ Cm|| f ||L2(Rn+1), ∀m ≥ 1. We may assume f ∈ C∞0 . We fix t > 0, and set t = R.

Let D(t) denote the dyadic grid of cubes such that t/2 < `(Q) < t, for Q ∈ D(t). Given Q ∈ D(t) = D(R), let

IR := Q× (R/2, 3R/2) denote the “Whitney box” above Q, and set S 0(Q) := 2Q, S j(Q) := 2 j+1Q\2 jQ, j ≥ 1.

Finally, set f j := f 1S j(Q), j ≥ 0. Then, as in the proofs of Claim 5.1.3, and of estimate (5.1.3), we have

(∫
Rn
|tm∂m+1

t S t f (x)|2dx
)1/2

=

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f (x)|2dx

)1/2

.
∞∑
j=0

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f j(x)|2dx

)1/2

.

(∑
Q∈D(t)

R
"

IR

|∂2
t S t f0(x)|2dxdt

)1/2

+

∞∑
j=1

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f j(x)|2dx

)1/2

.

(∑
Q∈D(t)

∫
∆2R

| f (x)|2dx

)1/2

+

∞∑
j=1

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f j(x)|2dx

)1/2

≤ C|| f ||L2(Rn) +

∞∑
j=1

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f j(x)|2dx

)1/2

.

In turn, by the case j ≥ 1 of (5.2.3) below (whose proof does not depend upon the present estimate (a)(i)),

we have ∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f j(x)|2dx . 2−ε j
∫
Rn

(
M (| f |r) (x)

)2/r
dx ,

for some r < 2, and some ε > 0, whence the desired bound follows.

(a)(ii) ||tm∂m+1
t S t( f · 12 j+1Q\2 jQ)||L2(Q) ≤ C · 2−

(n+2+β)
2 j|| f j||L2(2 j+1Q\2 jQ).

Remember that since ad j(S L
t ) = (S L∗

−t ) (and both are of same type) so it’s equivalent to prove (by duality)

||tm∂m+1
t S t( f · 1Q)||L2(2 j+1Q\2 jQ) ≤ C2− j(m−1)|| f ||L2(Q). (5.2.1)

Set f̃ = f · 1Q, R j = 2 jQ and R = `(Q) (note that R ≤ t ≤ 2R by (4.0.3)). By induction, for m ≥ 1,
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1
|TR j |

∫
TR j

|tm∂m+1S t f̃ (x)|2dx ≤ CR2m 1
|TR j |

∫
TR j

|∂m+1
t ∂m+1

t S t f̃ (x)|2dx

≤ C
R2m

`(R j)2

1
|T ∗R j
|

"
T ∗R j

|∂m
t S t f̃ (x)|2dxdt

≤ C
R2m

`(R j)2(m−1)

1

|T m−1)∗|
R j

"
T m−1)∗

R j

|∂2
t S t f̃ (x)|2dxdt

≤ CR22− j(m−1)2 1
|T m−1)∗

R j
|

"
IR j

|∂2
t S t f̃ (x)|2dxdt

≤ C
R2− j[2(m−1)+1]

|TR j |

"
IR j

|∂2
t S t f̃ (x)|2dxdt

where IR j := 4R j × (t − `(R j), t + `(R j)) and TR j := 2R j \ R j as defined in Proposition 1.4.2.

So ∫
TR j

|tm∂m+1
t S t f̃ (x)|2dx ≤ C · R · 2− j[2(m−1)+1]

"
IR j

|∂2
t S t f̃ (x)|2dxdt.

For m = 1,

1
|TR j |

∫
TR j

|t∂2
t S t f̃ (x)|2dx ≤ C

R2

|IR j |

"
IR j

|∂2
t S t f̃ (x)|2dxdt

≤
C · R · 2− j

|TR j |

"
IR j

|∂2
t S t f̃ (x)|2dxdt.

From a variant of (5.1.3) (which is proved in the same way), and using that f̃ = f · 1Q,

2− jR
"

IR j

|∂2
t S t f̃ (x)|2dxdt ≤ C

∫
| f̃ (x)|2dx ≤ C

∫
Q
| f (x)|2dx .

We choose m such that 2(m − 1) = n + β→ 2m = n + β + 2 so m > n+2
2 .

(b)

For s ≤ t,

||tm∂m+1
t S tQs f ||L2(Rn) ≤ C||Qs f ||L2(Rn) ≤ C|| f ||L2(Rn) ≤

( s
t

)
|| f ||L2(Rn) .

Claim 5.2.1.

||tm∂m+1
t (S t∇) f ||L2(Rn) ≤ C

1
t
|| f ||L2(Rn). (5.2.2)

Remark 5.2.2. S L
t ∼ S L∗

−t so we have the claim for L∗ in order to move ∇ to the front.
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Proof. Let D(t) denote the dyadic grid of cubes such that t/2 < `(Q) < t, then for Q ∈ D(t)

||∇tm∂m+1
t S t f ||2L2(Rn) =

∑
Q∈D(t)

|Q|
1
|Q|

∫
Q
|∇tm∂m+1

t S t f |2dx

≤ C
∑

Q∈D(t)

|Q|
t2

1
|Q∗∗|

"
Q∗∗
|sm∂m+1

s S s f |2dxds

≤ C
∑

Q∈D(t)

1
t2 · sup

t>0
||tm∂m+1

t S t f ||2L2(2Q)

≤ C
∑

Q∈D(t)

1
t2 || f ||

2
L2(2Q)

≤ C
1
t2 || f ||

2
L2(Rn)

⇒ ||∇tm∂m+1
t S t f ||L2(Rn) ≤ C 1

t || f ||L2(Rn).

In the proof we have used Caccioppoli in slices to get the second inequality on the previous reasoning and

denoted Q∗∗ := 2Q × (t/2, 2t) so that the constant is independent of m. �

If we choose Qs = s2div∇es2∆ (= s2∆es2∆) and substitute ∇ f by Qs f in the claim we obtain the desired

inequality for the case s ≤ t. In the appendix, proposition .1.4 we have that Qs satisfy L2 off-diagonal esti-

mates, this is due to be able to pull out one of the ”s” and the fact that s∇es2∆ : L2 → L2. In [A] is proven that

this operator Qs satisfy the required conditions which proves (b) with β = 1.

(c) For j = 0, 1, 2, ..., and t ≈ `(Q), we have

(∫
8Q
|tm∂m+1

t S t(g · 1S j(Q))(y)|2dy
) 1

2

≤ C · 2− jν · t−n( 1
r −

1
2 )

(∫
S j(Q)
|g(y)|rdy

) 1
r

, (5.2.3)

1 < r < 2, ν > n
r , S 0(Q) = 16Q, S j(Q) = 2 j+4Q \ 2 j+3Q.

Note that by duality, it’s equivalent to proving Lr → L2 ↔ L2 → Lr′ .

So we are going to prove

(∫
S j(Q)
|tm∂m+1

t S L∗
t ( f (x) · 18Q(x))|r

′

dx

) 1
r′

≤ C · 2− jν|t|−n( 1
r −

1
2 )
(∫

8Q
| f (x)|2dx

) 1
2
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with r′ = 2n
n−2 , r = 2n

n+2 , t < 0.

Define um(x, t) := tm∂m+1
t S L∗

t ( f · 18Q(x)).

(∫
S j(Q)
|um(x, t)|r

′

dx

) 1
r′

≤

(
M∑

k=1

∫
Q j

k

|um(x, t) −
?

Q j
k

um(y, t)dy|r
′

dx

) 1
r′

+

M∑
k=1

∫
Q j

k

(?
Q j

k

um(y, t)dy

)r′

dx

 1
r′

:= I + II ,

where we have decomposed the annuli S j(Q) into cubes of length 2 j+3`(Q), so that ∪M
k=1Q j

k ⊇ S j(Q), with

M ≤ Cn.

Term II. By the Cauchy-Schwartz inequality and the dual version of part (a)(ii) above,

II =
∑

k

∫
Q j

k

(?
Q j

k

um(y, t)dy

)r′

dx

 1
r′

≤
∑

k

|Q j
k |

1
r′ ·

(?
Q j

k

um(y, t)2dy

) 1
2

≤ C
(
2 jn|Q|

) 1
r′ −

1
2

(∫
S j(Q)
|um(y, t)|2dy

) 1
2

≤ C
(
2 jn|Q|

) 1
r′ −

1
2 · 2− j( n+2+β

2 ) · || f ||L2(8Q)

≤ Ct−n( 1
r −

1
2 ) · 2 jn( 1

r′ −
1
2 )2− j( n+2+β

2 ) · || f ||L2(8Q)

= Ct−n( 1
r −

1
2 ) · 2− jν · || f ||L2(8Q) ,

in this case with ν = n
r + 1 +

β
2 >

n
r .

Term I. By Sobolev’s inequality,

(?
Q j

k

|um(x, t) −
?

Q j
k

um(y, t)dy|r
′

dx

) 1
r′

. 2 j`(Q)

(?
Q j

k

|∇um(x, t)|2dx

) 1
2

.

By Caccioppoli on horizontal slices, and the dual version of part (a)(ii) above,

1

|Q j
k |

∫
Q j

k

|∇um(x, t)|2dx .
(
2 j`(Q)

)−2 1

|(Q j
k)∗|

"
(Q j

k)∗
|um(y, s)|2dyds

.
(
2 j`(Q)

)−2 1

|Q j
k |

2−(n+2+β) j
∫

8Q
| f (x)|2dx.
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Hence, (?
Q j

k

|∇um(x, t)|2dx

) 1
2

.
(
2 j`(Q)

)−1−n/2 2−( n+2+β
2 ) j

(∫
8Q
| f (x)|2dx

) 1
2

.

Since r−1 = (n + 2)/2n, setting ν = n+2
2 + 1 +

β
2 = n

r + 1 +
β
2 >

n
r , we conclude that

(∫
S j(Q)
|tm∂m+1

t S L∗
t ( f (x) · 18Q(x))|r

′

dx

) 1
r′

.
(
2 j`(Q)

) n
r′ −

n
2 2− j( n+2+β

2 )
(∫

8Q
| f (x)|2dx

) 1
2

. 2− jν|t|−n( 1
r −

1
2 )
(∫

8Q
| f (x)|2dx

) 1
2

.

(d)

sup
t>0
||tm∂m+1

t S t f ||Ls(Rn) ≤ C|| f ||Ls(Rn) , for 2n/(n + 2) ≤ s ≤ 2n/(n − 2). (5.2.4)

Remark 5.2.3. For n = 2, we have that (5.2.4) holds for 1 ≤ s ≤ ∞, because in that case the kernel of

tm∂m+1
t S t, m ≥ 1, enjoys appropriate pointwise bounds; see [AAAHK]. Therefore, we shall assume that

n ≥ 3.

By interpolation with (a)(i) above, and duality, it is enough to treat the case s = 2n
n−2 >

2n−4
n−2 = 2. We fix

t > 0, proving the inequality with a constant independent of t. We claim that, for `(Q) ≈ t,

(?
Q
|tm∂m+1

t S t( f · 1S j(Q))(x)|sdx
) 1

s

. 2− jε

(?
S j(Q)
| f (x)|2dx

) 1
2

, (5.2.5)

for some uniform ε > 0. Taking the claim for granted momentarily, we write

(∫
Rn
|tm∂m+1

t S t f (x)|sdx
)1/s

=

(∑
Q∈D(t)

∫
Q
|tm∂m+1

t S t f (x))|sdx

)1/s

≤

∞∑
j=0

(∑
Q∈D(t)

|Q|
?

Q
|tm∂m+1

t S t( f · 1S j(Q))(x)|sdx

)1/s

.
∞∑
j=0

2− jε

(∑
Q∈D(t)

|Q| essinfQ

(
M
(
| f |2
) )s/2

)1/s

.

(∫
Rn

(
M
(
| f |2
) )s/2

)1/s

,

where in the next to last inequality, we have used (5.2.5); (d) now follows.
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It remains to prove (5.2.5). To this end, fix j ≥ 0 and set u j
m(x, t) := tm∂m+1

t S t( f · 1S j(Q)(x)). Then

(?
Q
|u j

m(x, t)|sdx
) 1

s

≤

(?
Q
|u j

m(x, t) −
?

Q
u j

m(y, t)dy|sdx
) 1

s

+

?
Q
|u j

m(y, t)|dy := I + II .

Term II. By the Cauchy-Schwartz inequality and (a)(ii) above,

II ≤
(?

Q
u j

m(y, t)2dy
) 1

2

= |Q|−
1
2

(∫
Q
|u j

m(y, t)|2dy
) 1

2

. |Q|−
1
2 · 2− j( n+2+β

2 ) || f ||L2(S j(Q))

≈ 2− j(1+
β
2 )

(?
S j(Q)
| f |2
)1/2

which yields (5.2.5) for term II with ε = 1 +
β
2 > 0.

Term I. By Sobolev’s inequality,

(?
Q
|u j

m(x, t) −
?

Q
u j

m(y, t)dy|sdx
) 1

s

. `(Q)
(?

Q
|∇u j

m(x, t)|2dx
) 1

2

.

By Caccioppoli on horizontal slices, and (a)(ii) above,

?
Q
|∇u j

m(x, t)|2dx . (`(Q))−2 1
|Q∗|

"
Q∗
|u j

m(y, s)|2dyds

. (`(Q))−2 1
|Q|

2−(n+2+β) j
∫

S j(Q)
| f (x)|2dx.

Hence,

`(Q)
(∫

Q
|∇um(x, t)|2dx

) 1
2

. |Q|−12−( n+2+β
2 ) j

(∫
S j(Q)
| f (x)|2dx

) 1
2

,

so that

I . 2−(1+
β
2 ) j

(?
S j(Q)
| f (x)|2dx

) 1
2

,

as desired.

5.3 Construction of bQ

In order to construct the family {bQ} we need to construct a Poisson kernel type of function.
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Claim 5.3.1. If (D)p′ is solvable for L∗ in the lower half-space then there exists a function kQ such that

??
RQ

u(y, s)dyds =

∫
Rn

kQ(z) f (z) dz,

where RQ = 1
2 Q ×

[
−γ`(Q), −γ`(Q)

2

]
, and u(x, t) is the solution of the Dirichlet problem (D)p′ for L∗ with data

f (and where γ > 0 small to be fixed later in 5.3.2). Moreover kQ is an Lp function and

∫
Rn
|kQ(z)|pdz ≤ C|Q|1−p

Proof. of claim 5.3.1 Applying Hölder and that u(x,t) solves the Dirichlet problem we get∣∣∣∣∣∣∣
??

RQ

u(y, s)dyds

∣∣∣∣∣∣∣ ≤
??

RQ

|u(y, s)|p
′

dyds


1
p′

=

(
1
|RQ|

∫ −γ`(Q)
2

−γ`(Q)

∫
1
2 Q
|u(y, s)|p

′

dyds

) 1
p′

≤ C
1

`(Q)
n
p′

(? −γ`(Q)
2

−γ`(Q)

∫
Rn
|u(y, s)|p

′

dyds

) 1
p′

≤ C
1

|Q|
1
p′

(? −γ`(Q)
2

−γ`(Q)
sup
t<0
‖u(y, s)‖p

′

Lp′ (Rn)ds

) 1
p′

≤ |Q|
−1
p′ ‖ f ‖Lp′ (Rn).

Taking the supremum over all functions in Lp′ (Rn) with unit norm and applying the Riesz Representation

theorem to the linear functional T : f →
>>

RQ
u(y, s)dyds. �

For every cube Q we define bQ(x) := |Q|kQ(x). So let’s verify that such a family satisfy all the required

conditions.

(i) ∫
Q
|bQ(x)|pdx ≤ C|Q|
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∫
Q
|bQ(x)|pdx = |Q|p

∫
Q
|kQ(x)|pdx ≤ C|Q|p|Q|

−p
p′

≤ C|Q|p(1− 1
p′ )
≤ C|Q|

(ii) ∫
Q

(∫ `(Q)

0

∫
|x−y|<t

|tm∂m+1
t S tbQ(y)|2

dydt
tn+1

) p
2

dx ≤ C|Q|

By (5.2.4), the unique solvability of Dp′ , the fact that V(y, s) := E(x, t, y, s) is an adjoint solution in the

lower half-space, with (x, t) fixed in Rn+1
+ , and the fact that kQ ∈ Lp with 2n/(n + 2) < p < 2n/(n − 2), we get

|tm∂m+1
t S tbQ(x)| = |Q|tm∂m+1

t

∫
Rn

E(x, t, y, 0)kQ(y)dy

= |Q|tm∂m+1
t

??
RQ

E(x, t, y, s)dyds

Then,

∫
Q

(∫ `(Q)

0

∫
|x−y|<t

|tm∂m+1
t S tbQ(y)|2

dydt
t

) p
2

dx

=

∫
Q

∫ `(Q)

0

∫
|x−y|<t

∣∣∣∣∣∣∣
??

RQ

|Q|tm∂m+1
t E(y, t, z, r)dzdr

∣∣∣∣∣∣∣
2

dydt
t


p
2

dx

≤ C
∫

Q

(∫ `(Q)

0

∫
|x−y|<t

∣∣∣∣ 1
`Q

tm
"

RQ

∂m+1
t E(y, t, z, r)1RQ (z, r)dxdr

∣∣∣∣2 dydt
t

) p
2

dx

≤ C|Q|

(?
Q

∫ `(Q)

0

∫
|x−y|<t

∣∣∣∣ 1
`Q

tm
"

RQ

∂m+1
t E(y, t, z, r)1RQ (z, r)dxdr

∣∣∣∣2 dydt
t

dx

) p
2

≤ C|Q|
(

t2m−3
Q

?
Q

∫ `(Q)

0

∫
|x−y|<t

|∂m+1
t u(y, t)|2dydtdx

) p
2

≤ C|Q|
(
`(Q)−1−n

∫
Q

∫ `(Q)

0

∫
|x−y|<t

|∂2
t L−1

1RQ (y, t)|2dydtdx
) p

2

≤ C|Q|
(

t−1−n
Q

∫
5Q

∫ `(Q)

0
|∂2

t L−1
1RQ (x, t)|2dtdx

) p
2

≤ C|Q|
(
`(Q)−1−n

"
Rn+1
|1RQ (x)|2dxdt

) p
2

≤ C|Q|
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Let’s note that the constant depends on γ.

(iii)

‖∇ΦQ‖L∞(Rn) ≤ C0 `(Q)−1, 0 < C1 ≤ ΦQ(x) ≤ 1 on Q

Let ΦQ(x) be the constant function 1.

(iv)

δ|ξ|2 ≤ Re
(
ξ · (|Q|)−1

∫
Q

bQ(x)dx
)
· ξ̄

To help us with this last condition let’s define some auxiliary functions. Fix a cube Q and an unit vector ξ.

Φ̃Q(x) :=

 1 if x ∈ Q
0 ifx < (1 + ε)Q
(0, 1) otherwise

ε > 0 small to be determined later in 5.3.3. Φ̃Q is a Lipschitz function with ‖∇Φ̃Q‖L∞(Rn) ≤
1

ε`(Q) .

Also define WQ as the solution of

(R)L∗
q :=


L∗WQ = 0 in Rn+1

−

WQ(·, 0) = Φ̃Q · ξ̄

supt<0 ‖∇WQ(·, s)‖Lq(Rn) ≤ C‖∇Φ̃Q‖Lq(Rn) ≤ C 1
ε`(Q) |Q|

1
q

Claim 5.3.2.

1
|Q|

ξ

∫
Rn

bQ(z)Φ̃Q(z)ξ̄dx = |ξ|2(1 + O(ε)).

Proof. of claim 5.3.2 Let’s note two facts. By construction we have

??
RQ

WQ(y, s)dyds =

∫
Rn

kQ(z)Φ̃Q(z)dz, (5.3.1)

and by the Fundamental Theorem of Calculus

−

∫ 0

s

∂

∂τ
WQ(y, τ)dτ = WQ(y, s) −WQ(y, 0) = WQ(y, s) − Φ̃Q(y)ξ̄.
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Therefore,

ξ

∫
Rn

bQ(x)Φ̃Q(x)ξ̄dx = |Q|ξ
??

RQ

WQ(y, s)dyds

= |Q|

[(
ξ

? −γ`(Q)
2

−γ`(Q)

?
1
2 Q

WQ(y, s) − Φ̃Q(y)ξ̄dyds

)
+

(
ξ

? −γ`(Q)
2

−γ`(Q)

?
1
2 Q

ΦQ(y)ξ̄dyds

)]

= |Q|(I + II).

Using Hölder’s inequality and the fact that WQ is a solution of (R)q we bound the part I as follows

ReI ≤ |I| ≤

∣∣∣∣∣ξ
? −γ`(Q)

2

−γ`(Q)

?
1
2 Q

WQ(y, s) − Φ̃Q(y)ξ̄dyds

∣∣∣∣∣
≤

? −γ`(Q)
2

−γ`(Q)

?
1
2 Q

∫ 0

s

∣∣∣∣ ∂∂τWQ(y, τ)
∣∣∣∣ dτdyds

≤ γ`(Q)
?

1
2 Q

? 0

−γ`(Q)

∣∣∣∣ ∂∂τWQ(y, τ)
∣∣∣∣ dτdy

≤ γ`(Q)

(?
1
2 Q

? 0

−γ`(Q)

∣∣∣∣ ∂∂τWQ(y, τ)
∣∣∣∣q dτdy

) 1
q

≤ Cγ`(Q)
1
|Q|q
‖∇Φ̃Q‖Lq(Rn)

≤ C
γ`(Q)
ε`(Q)

≤ C
γ

ε

= O(ε) ,

where in the last step we have fixed

γ ≈ ε2. (5.3.2)

Also, we get that II = |ξ|2 = 1 from Φ̃Q = 1 in 1
2 Q.

�

By Hölder’s inequality
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Re
(
ξ

∫
Rn

bQ(x)(1Q(x) − Φ̃Q(x))ξ̄dx
)
≤ |Q| ‖bQ‖Lp(Rn) |(1 + ε)Q \ Q|

1
p′

≤ C|Q| |Q|
1
p (ε |Q|)

1
p′

≤ ε
1
p′ |Q|

Finally putting all the computations together and choosing epsilon small so that

Cε −Cε
1
p′ ≤

1
2

(5.3.3)

Reξ
?

Q
bQ(x)ξ̄dx =

1
|Q|
Re
(
ξ

∫
Rn

bQ(x)Φ̃Q(x)dx + ξ

∫
Rn

bQ(x)(1Q(x) − Φ̃Q(x))ξ̄dx
)

≥ 1 −Cε −Cε
1
p′ ≥

1
2
.
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Chapter 6

Application 2

Let A be an n × n matrix of complex, L∞ coefficients, defined on Rn, and satisfying the ellipticity (or “accre-

tivity”) condition

λ|ξ|2 ≤ Re < Aξ, ξ >≡
∑

i, j

Ai j(x)ξ jξ̄i, ‖A‖∞ ≤ Λ,

for ξ ∈ Cn and for some λ,Λ such that 0 < λ ≤ Λ < ∞. We define the divergence form operator

Lu ≡ −div (A(x)∇u) ,

which we interpret in the usual weak sense via a sesquilinear form.

The accretivity condition above enables one to define an accretive square root
√

L ≡ L
1
2 .

Theorem 6.0.3. [AHLMcT]

Let L be a divergence form operator defined as above. Then for all h ∈ L̇2
1(Rn), we have

‖
√

Lh‖L2(Rn) ≤ C‖∇h‖L2(Rn),

with C depending only on n, λ and Λ.

Proof.

Proposition 6.0.4. ([A], [D])

L
1
2 f (x) = c

∫ ∞
0

e−t2LL f (x)dt.
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In [AT], it is shown that the conclusion of Theorem 6.0.3 is equivalent to the square function estimate

"
Rn+1

+

|Θt∇h|2
dxdt

t
≤ Cn,λ,Λ

∫
Rn
|∇h|2dx ,

where Θt ≡ te−t2LdivA. Thus, to prove this theorem, it is enough to verify the conditions of the Local Tb

Theorem (Theorem 4.0.2), for the operator Θt ≡ te−t2LdivA, with N = n, and with H := {∇h : h ∈ L̇2
1(Rn,Cn)},

a subspace of L2(Rn,Cn).

(a) Since the family of operators {
√

t∇e−tL}t>0 satisfy L2 off-diagonal estimates (Proposition .1.6) and the fact

that A ∈ L∞(Rn) we get condition (a).

(b) If we choose {Qs}s>0 of convolution type satisfying the required conditions.

Qs∇F = ∇QsF since Qs of convolution type.

Let ∇F ∈ H, then (by definition) F ∈ L̇2
1(Rn,CN) ⇐⇒ F = I1 f where f ∈ L2(Rn,CN) and I1 is the Riesz

potential for α = 1 as defined in 1.3.4.

te−t2LdivAQs∇F = te−t2LdivA∇QsF

= −tLe−t2LQsF

= −
1
t

t2Le−t2LQsI1 f

=
−s
t

t2Le−t2L
(

1
s

QsI1

)
f .

Using the fact that t2Le−t2L : L2 → L2 and 1
s QsI1 : L2 → L2 we finish condition (b).

(c),(d) As in (a) in [A] we have that the family of operators {
√

t∇e−tL}t>0 satisfy such conditions joint with the

fact that A ∈ L∞(Rn) we get conditions (c) and (d).

Finally, we need to find a the family of bQ indexed by cubes Q satisfying the required conditions. In

[HMc], [HLMc] and [AHLMcT] is proven that such a family exists and satisfy such conditions.

�

70



.1 Appendix A

Definition .1.1. Let T = (Tt)t>0 be a family of uniformly bounded operators on L2(Rd). We say that T

is Lp − Lq bounded for some p, q ∈ [1,∞] with p ≤ q if for some constant C, for all t > 0 and all h ∈

Lp(Rd) ∩ L2(Rd)

‖Tth‖Lq(Rd) ≤ Ct−
d
2 ( 1

p−
1
q )
‖h‖Lp(Rd).

We say that T satisfies Lp − Lq off-diagonal estimates for some p,q∈ [1,∞] with p ≤ q if for some constants

C, c > 0, for all closed sets E and F, all h ∈ Lp(Rd) ∩ L2(Rd) with support in E and all t > 0 we have

‖Tth‖Lq(F) ≤ Ct−
d
2 ( 1

p−
1
q )e−

dist2(E,F)
C·t ‖h‖Lp(Rd).

We say that T satisfies L2 off-diagonal estimates if for some constant C ≥ 0 and for all closed sets E and F,

all h ∈ L2(Rd) and all t > 0 we have

‖Tth‖L2(F) ≤ Ce−
dist2(E,F)

C·t ‖h‖L2(Rd).

Proposition .1.1. If (Tt)t>0 is a family of operators that satisfies Lp − Lq boundedness (resp. off-diagonal

estimates) and (S t)t>0 is a family of operators that satisfies Lq−Lr boundedness (resp. off-diagonal estimates)

then (S tTt)t>0 satisfies Lp − Lr boundedness (resp. off-diagonal estimates).

Proposition .1.2. Let p ∈ [1, 2) and n ≥ 1. Let S = (e−tL)t>0 where L is an elliptic operator of divergence

form.

(1) If S is Lp(Rd) bounded then it is Lp − L2 bounded.

(2) If S is Lp − L2 bounded, then for all q ∈ (p, 2) it satisfies Lq − L2 off-diagonal estimates.

(3) If S satisfies Lp − L2 off-diagonal estimates then it is Lp(Rd) bounded.

Remark .1.3. The result applies when 2 < p ≤ ∞ by duality: replace Lp − L2 by L2 − Lp everywhere. L2(Rd)

could be replaced by Lq(Rd) for q larger than 2 if necessary.
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Proposition .1.4. The families (e−tL)t>0, (tLe−tL)t>0 and (
√

t∇e−tL)t>0 satisfy L2 off-diagonal estimates.

Corollary .1.5. Let I be a cube in Rn+1, fk(X) = f (X)1S k(I)(X) and S k(I) = 2k+1I \2kI then for some constant

C > 0, ??
I

|e−τL fk(X)|2dX

 1
2

≤ Ce−
dist2(I,S k (I))

C·τ

??
S k(I)

| f (X)|2dX

 1
2

;

??
I

|
√
τ∇xe−τL fk(X)|2dX

 1
2

≤ Ce−
dist2(I,S k (I))

C·τ

??
S k(I)

| f (X)|2dX

 1
2

;

??
I

|τ∂te−τL fk(X)|2dX

 1
2

≤ Ce−
dist2(I,S k (I))

C·τ

??
S k(I)

| f (X)|2dX

 1
2

.

Proposition .1.6. (Gaffney estimates [A],[D],[AMcT],[BLP],[IS]) Set d = n + 1,L be t-independent as de-

scribed in section 5, then ∃ε0 > 0 such that ∀q, 2 ≤ q < 2n
n−2 + ε0, we have

‖e−τL f ‖Lq(A) ≤ Cτ
−d
2 ( 1

q′ −
1
q )e{

−dist(A,B)2
Cτ }‖ f ‖Lq′ (B),

where supp( f ) ⊆ B, C := C(d, q, λ,Λ), ε0 := ε0(d, λ,Λ).

Corollary .1.7. If we consider A = B = Rd

‖e−τL f ‖Lq(Rd) ≤ Cτ−
d
2 ( 1

q′ −
1
q )
‖ f ‖Lq′ (Rd).

Remark .1.8. As stated in [A], if we prove that our operator is Ls bounded, then ∀q′ ∈ (s′, 2) our operator

satisfies Lq′ → Lq off-diagonal estimates, which is exactly the previous proposition.

Proof. Proposition .1.6

Let’s define Dτ(Rn+1) the dyadic grid such that for I ∈ Dτ(Rn+1), τ ≈ `2(I),

fk = f · 1S k(I), with S 0(I) = 2I, and S k(I) = 2k+1I \ 2kI.

Claim .1.9. ??
I

|e−τL fk |q(X)dX

 1
q

≤ Ce−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

.
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Claim .1.10. If previous claim is true, then??
I

|e−τL f |q(X)dX

 1
q

≤ C inf
X3I

(
M(| f |2)

) 1
2 (X).

Assume both claims .1.9 and .1.10 are true.

"
Rn+1
|e−τL f (X)|qdX =

∑
I∈Dτ

??
I

|e−τL f (X)|qdX · |I|

≤ C
∑
I∈Dτ

inf
X3I

(
M(| f |2)(X)

) q
2 · |I|

≤ C
∑
I∈Dτ

"
I

(
M(| f |2)(X)

) q
2 dX

≤ C
"
Rn+1

(
M(| f |2)(X)

) q
2 dX

≤ C
"
Rn+1
| f |q(X)dX.

�

Proof. Claim .1.10 ??
I

|e−τL f (X)|qdX

 1
q

≤
∑

K

??
I

|e−τL fk(X)|qdX

 1
q

≤ C
∑

k

e−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

≤ C inf
X∈I

(
M(| f |2

) 1
2 (X),

in the last inequality we have used that

dist(I, S k(I)) ≈ (2k`(I))⇒ dist2(I, S k(I)) ≈ (2k`(I))2, τ ≈ `(I)2 ⇒
dist2(I,S k(I))

C·τ ≈ 22k

∑
k e−22k

≤ C>>
S k(I) | f |

2(X)dX ≤ C
>>

2k+1I | f |
2(X)dX ≤ C supJ3X

>>
J | f |

2(X)dX, ∀X ∈ I. �

Proof. Claim .1.9 We are going to prove it with exponent s = 2∗ = 2n
n−2 .

We know that the following results are true:
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??
I

|e−τL fk(X)|2dX

 1
2

≤ e−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

;

??
I

|
√
τ∇xe−τL fk(X)|2dX

 1
2

≤ e−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

;

??
I

|τ∂te−τL fk(X)|2dX

 1
2

≤ e−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

.

�

Define h := `(I) = `(Q).

??
I

|e−τL fk(x, t)|2
∗

dxdt

 1
2∗

≤

??
I

|e−τL fk(x, t) −Ct |
2∗dxdt

 1
2∗

+

(? a+h

a
|Ct |

2∗dt
) 1

2∗

=

(? a+h

a

?
Q
|e−τL fk(x, t) −Ct |

2∗dxdt
) 1

2∗

+

(? a+h

a
|Ct |

2∗dt
) 1

2∗

≤ C sup
t∈[a,a+h]

(?
Q
|e−τL fk(x, t) −Ct |

2∗dx
) 1

2∗

+ sup
t∈[a,a+h]

|Ct |

:= I + II.

Choose Ct =
(>

Q |2
τL fk(x, t)|2dx

) 1
2
.

|I| = sup
t∈[a,a+h]

(?
Q
|e−τL fk(x, t) −Ct |

2∗dx
) 1

2∗

≤ C sup
t∈[a,a+h]

(?
Q
|
√
τ∇xeτL fk(x, t)|2dx

) 1
2

≤ C sup
t∈[a,a+h]

(?
Q
τ|∇xe−τL fk(x, t) −

? a+h

a
∇xe−τL fk(x, t′)dt′|2dx

) 1
2

+ C
(?

Q
τ|

? a+h

a
∇xe−τL fk(x, t′)dt′|2dx

) 1
2

:= I1 + I2

by Poincaré.
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|I2| =

(?
Q
τ

∣∣∣∣? a+h

a
∇xe−τL fk(x, t′)dt′

∣∣∣∣2 dx

) 1
2

≤ C
(
τ

?
Q

? a+h

a
|∇e−τL fk(x, t′)|2dt′dx

) 1
2

≤ Ce−
dist2(I,dist(S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

.

By Gaffney,

|I1| = sup
t∈[a,a+h]

(?
Q
τ

∣∣∣∣∇xe−τL fk(x, t) −
? a+h

a
∇xe−τL fk(x, t′)dt′

∣∣∣∣2 dx

) 1
2

≤ sup
t∈[a,a+h]

(?
Q
τ

∣∣∣∣? a+h

a
(∇xe−τL fk(x, t) − ∇xe−τL fk(x, t′))dt′

∣∣∣∣2 dx

) 1
2

≤ sup
t∈[a,a+h]

(?
Q
τ

∣∣∣∣? a+h

a

∫ t

t′
∇x∂t′′e−τL fk(x, t′′)dt′′dt′

∣∣∣∣2 dx

) 1
2

≤ C
(?

Q
τ2
? a+h

a
|∇x∂t′′e−τL fk(x, t′′)|2dt′′dx

) 1
2

≤ C
(
τ2

|I|

"
I
|∇xu(X)|2dX

) 1
2

≤ C
(
τ2

|I|

"
Rn+1
|∇xu|2(x)η2

I (X)dX
) 1

2

.

u(X) := u(x, t′′) = ∂t′′e−τL fk(x, t′′).

ηI ∈ C
∞
0 , ηI ≡ 1 on I, supp(ηI) ⊆ 2I, ‖∇ηI‖∞ ≤

C
`(I) .

Also note that Lu = −∂t′′u since L is t′′-independent. For simplification we make a change of variable

t = t′′.

(
τ2

|I|

"
Rn+1
|∇xu|2(x)η2

I (X)dX
) 1

2

≈

(
Re
τ2

|I|

"
Rn+1

A∇xu(X) · ∇xu(X)η2
I (X)dX

) 1
2

≤ C
(
τ2

|I|

"
Rn+1
|∂tu(X)| · |u(X)|η2

I (X)dX
) 1

2

+ C
(
τ2

|I|

"
Rn+1
|∇xu(X)| · |u(X)| · |∇ηI(X)|ηI(X)dX

) 1
2

:= I′1 + I′′1 .
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Above we have used integration by parts.

|I′′1 | =
(
τ2

|I|

"
Rn+1
|∇xu(X)| · |u(X)| · |∇ηI(X)|ηI(X)dX

) 1
2

≤ ε

(
τ2

|I|

"
Rn+1
|∇x(u)(X)|2η2

I (X)dX
) 1

2

+
1
ε

(
τ

|I|

"
2I
|u(X)|2dX

) 1
2

≤ ε|I1| +
1
ε

e−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

.

|I′1| =
(
τ2

|I|

"
Rn+1
|∂tu(X)| · |u(X)|η2

I (X)dX
) 1

2

≤ C
(
τ3

|I|

"
2I
|∂tu(X)|2η2

I (X)dX
) 1

2

+

(
τ

|I|

"
2I
|u(X)|2dX

) 1
2

.

(
τ
|I|

!
2I |u(X)|2dX

) 1
2

is resolved as before by Gaffney.

(
τ3

|I|

"
2I
|∂tu(X)|2η2

I (X)dX
) 1

2

=

(
τ3

|I|

"
2I
|∂t∂te−τL fk(x, t)|2dxdt

) 1
2

=

(
τ3

|I|

"
2I
|∂tLe−τL fk(x, t)|2dxdt

) 1
2

=

(
1
|I|

"
2I
|
√
τ∂te−

τ
2 LτLe−

τ
2 L fk(x, t)|2dxdt

) 1
2

.

The composition of 2 operators that satisfy the Gaffney estimates, also satisfy the Gaffney estimates so

this finishes the part I.

|II| = sup
t∈[a,a+h]

(?
Q
|e−τL fk(x, t)|2dx

) 1
2

≤ sup
t∈[a,a+h]

(?
Q
|e−τL fk(x, t) −

? a+h

a
e−τL fk(x, t′)dt′|2dx

) 1
2

+

(?
Q
|

? a+h

a
e−τL fk(x, t′)dt′|2dx

) 1
2

:= II1 + II2.
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|II2| =

(?
Q
|

? a+h

a
e−τL fk(x, t′)dt′|2dx

) 1
2

≤

??
I

|e−τL fk(x, t′)dt′|2dx

 1
2

≤ Ce−
dist2(I,S k (I))

C·τ

??
S k(I)

| f |2(X)dX

 1
2

.

|II1| = sup
t∈[a,a+h]

(?
Q
|e−τL fk(x, t) −

? a+h

a
e−τL fk(x, t′)dt′|2dx

) 1
2

≤ sup
t∈[a,a+h]

(?
Q
|

? a+h

a

∫ t

t′
∂t′′e−τL fk(x, t′′)dt′′dt′|2dx

) 1
2

≤

(?
Q
τ

? a+h

a
|∂t′′e−τL fk(x, t′′)|2dt′′dx

) 1
2

≤ Ce−
dist2(I,S k (I))

C·τ

("
S k(I)
| f |2(X)dX

) 1
2

.
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.2 Appendix B

In theorem 2 we needed to find a family of functions indexed over all the cubes Q. With a little modification

we can be reduced to work only with dyadic cubes. In order to do so let’s introduce some notation first.

Definition .2.1. Fix x ∈ ∂Rn+1
+ . Then we define the dyadic cone Γ̃(x) with vertex x to be

Γ̃(x) :=
⋃
Q3x

UQ

where

UQ := Q ×
(
`(Q)

2
, `(Q)

)
.

The Q-truncated dyadic cone will be denoted by

Γ̃Q(x) :=
⋃
Q′3x
Q′⊆Q

UQ′ .

Then Theorem 3.0.4 is also satisfied if the system of {bQ} functions are reduced to a family of functions

indexed by dyadic cubes satisfying the same conditions as before by changing condition 3.0.8 by

∫
Q

("
Γ̃Q(x)
|θtbQ(y)|2

dydt
tn+1

) p
2

dx ≤ C0|Q|. (.2.2)

Let’s detail how this modify the proof of the Theorem starting for the modifications on the lemma and

sublemma.

Lemma .2.1. Suppose that ∃η ∈ (0, 1) and C < ∞ such that for every dyadic cube Q ∈ Rn, there exists a

family {Q j} of non-overlapping dyadic subcubes of Q, with the properties

∑
j

|Q j| ≤ (1 − η)|Q| (.2.3)
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and

∫
Q

("
γ̃Q(x)
|θt1(y)|2

dydt
tn+1

) p
2

dx ≤ C|Q| (.2.4)

where

γ̃Q(x) :=
⋃
Q′3x

Q′∈Good(Q)

UQ′

and

Good(Q) := {Q′ ⊆ Q : either Q′ ∩ Qk = ∅, f or every k,

or i f Qk ∩ Q′ , ∅, f or some k, `(Q′) > `(Qk)}

Then the Carleson measure estimate (3.0.12) holds.

Sublemma .2.2. Suppose that ∃N < ∞ and α ∈ (0, 1
2 ], β ∈ (0, 1) such that for every cube Q

|{x ∈ Q : GQ(x) > N}| ≤ (1 − β)|Q|,

where GQ(x) :=
(!

Γ̃Q(x) |θt1(y)|2 dydt
tn+1

) 1
2
.

Then the Carleson measure estimate (3.0.12) holds.

Regarding the proofs, first we have that the conditions of the theorem implies the conditions of the

lemma. Our family {Q j} is going to be equal the family {Q̃ j} on the original proof and the function Am,t

identical to the one in the original proof.

First part of this proof was reducing ourselves from

∫
Q

("
γ̃Q(x)
|θt1(y)|2

dydt
tn+1

) p
2

dx
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to work with

∫
Q

("
Γ̃Q(x)
|RtbQ(y)|2

dydt
tn+1

) p
2

dx

where RtbQ(y) = θ1(y)Am,tbQ(y) − θtbQ(y).

The proof continues identical to the original just substituting the projection of the cone |x − y| < t < `(Q)

by Q(x, t) where Q(x, t) as before is the minimal dyadic cube that contains x and have side length at least t.

Regarding Conditions of the lemma implies the conditions of the sublemma is standard by Chebychev

as before just noting that if x ∈ Q \
⋃

Q j then Γ̃Q(x) = γ̃Q(x).

Finally we are concerned about the proof of the sublemma. In order to proof this we need to add some

definitions in order to “truncate” the dyadic cones by below. We define

K(ε) := sup
Q

1
|Q|

∫
Q

"
Γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx

where

Γ̃Q,ε :=
⋃
Q′3x
Q′⊆Q

ε<`(Q′)< 1
ε

UQ′ and γ̃Q,ε(x) :=
⋃
Q′3x

Q′∈Good(Q)
ε<`(Q′)< 1

ε

UQ′

With this definition ΩN,ε is not an open set any more but by outer regularity, we may choose ON,ε , open

subset of Q, such that ON,ε ⊇ ΩN,ε , with |ON,ε < (1 − β
2 )|Q|. Since ON,ε is open we can make a Whitney

decomposition of such set such that ON,ε =
⋃

j Q j and we set FN,ε := Q \ ON,ε .

The end of the proof is identical to the proof of lemma 4.1 on [GM] which use the following facts:
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∫
Q

"
Γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx =

∫
FN,ε

"
Γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx +

∫
ON,ε

"
Γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx

=

∫
FN,ε

"
Γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx +

∑
j

∫
Q j

"
Γ̃Q j ,ε (x)

|θt1(y)|2
dydt
tn+1 dx +

∑
j

∫
Q j

"
γ̃Q,ε (x)

|θt1(y)|2
dydt
tn+1 dx

= I + II + III.

By the Whitney decomposition I ≤ CN,p|Q| and II ≤ (1 − β
2 )K(ε)|Q|. Regarding III we fix a cube Q j and

x ∈ Q j then by the definition of our cones and by the maximality of Q′js, there exists a point x j in the dyadic

father of Q j, say Q∗j such that x j ∈ FN,ε . Therefore, since γ̃Q,ε(x) ⊆ γ̃Q,ε(x j) we obtain III ≤ CN,p(1 − β
2 )|Q|.

Our conclusion follows from the fact that K(ε) ≤ CN,p,β ∀ε ∈ (0, 1) and letting ε ↘ 0.
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.3 Appendix C

For theorem 3 we can make modifications as in the previous appendix in order to work only with dyadic

cubes instead of working with all cubes, i.e. theorem 4.0.2 is also satisfied if the family of functions {bQ}

are reduced to a family of functions indexed by the dyadic cubes Q satisfying the same conditions as before

changing condition 4.0.8 by

∫
Q

("
Γ̃Q(x)
|Θt · bQ(y)|2

dydt
tn+1

) p
2

dx ≤ C0|Q|. (.3.1)

Let’s state now the new Lemma and Sublemma used to prove this modified version of the theorem.

Lemma .3.1. Suppose that there exists η ∈ (0, 1), ε > 0 small and C < ∞ such that for every dyadic cube

Q ∈ Rn, there is a family Q j of non-overlapping dyadic subcubes of Q verifying:

∑
j

|Q j| ≤ (1 − η)|Q|,

and

∫
Q

("
γ̃Q(x)
|Θt1(y)|21Γ2ε

k
(Θt1(y))

dydt
tn+1

) p
2

dx ≤ C|Q|,

for every cone of aperture 2ε.

Then the Carlesson measure estimate 4.0.12 holds.

Sublemma .3.2. Suppose that ∃N < ∞ and β ∈ (0, 1) such that for every cube Q and

|{x ∈ Q : Gk
Q(x) > N}| ≤ (1 − β)|Q|,

for all k, where
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Gk
Q(x) =

("
Γ̃Q(x)
|Θt1(y)|21Γ2ε

k
(Θt1(y))

dtdy
tn+1

) 1
2

.

Then the Carleson measure estimate 4.0.12 holds.

Once that we have all the “ingredients” we start making the comments on the proofs starting with the

conditions of the theorem implies the conditions of the lemma

Our family {Q j} is going to be equal the family {Q̃ j} on the original proof.

Note that
∑
Q′⊆Q

UQ′ = RQ and
∑
Q′⊆Q

Q′∈Good(Q)

UQ′ = RQ \
⋃

j

RQ j where RQ := Q × (0, `(Q)). This implies that

for every x ∈ Q if (y, t) ∈ γ̃Q(x) then (y, t) ∈ RQ \
⋃

j RQ j .

Then

∫
Q

(!
γ̃Q(x) |Θt1(y)|21Γ2ε

k
(Θt1(y)) dydt

tn+1

) p
2

dx ≤
∫

Q

(!
Γ̃Q(x) |Θt1(y) · Am,tbQ(y)ν̄|2 dydt

tn+1

) p
2

And then as in the previous appendix the proof follows from the original changing the projection of the

cone |x − y| < t < `(Q) for Q(x, t).

Conditions of the lemma imply the conditions of the sublemma and the proof of the sublemma are

as in the previous appendix with

K(λ) := sup
Q

1
|Q|

∫
Q

"
Γ̃Q,λ

|Θt1(y)|21Γε (Θt1(y))
dydt
tn+1 dx.
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[AY] P. Auscher, Qi Xiang Yang, BCR algorithm and th T(b) theorem, Publ. Math.53 (2009), no. 1, 179196.

[BLP] A. Bensoussan, J.-.L. Lions, and G. Papanicolaou,Asymptotic Analysis for periodic structures, Studies

in Math. & its Applications. North Holland,1978.

[Ch] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloquium

Mathematicum LX/LXI (1990) 601-628.
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