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ABSTRACT 

 

Traversable wormholes have become a subject of intensive studies since 1988 

when Morris and Thorne published their paper which put forward the energy conditions 

for traversable wormholes. A number of researchers have calculated the stress-energy 

tensors of different fields but failed to find one that meets the requirement of the 

wormhole geometry. Some others find different schemes to sustain traversable 

wormholes but either on the Planck scale or hypothetically on a macroscopic scale.  

Groves has developed a method to compute the renormalized stress-energy tensor 

for a quantized massive spin ½ field in a general static spherically symmetric spacetime. 

Using this method, I have computed the renormalized stress-energy tensors of two 

quantized massive spin ½ fields in four static spherically symmetric wormhole 

spacetimes. The results of my calculation suggest that these two fields can be considered 

exotic. However, due to the technical difficulties in implementing this method, a series of 

approximations are used in the computation in order to make the problem mathematically 

tractable; but it is not clear under what physical circumstances these approximations 

could hold. Besides, the cases that I investigated turned out to involve unphysically large 

energy densities. Because of these reasons, no firm physical conclusions can be drawn.  
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Chapter 1. Introduction

The name wormhole was coined by John A. Wheeler in 1957. It refers to

a hypothetical topological feature of spacetime that would be a ”shortcut”

through spacetime. It is like a tunnel with two ends each in separate points in

spacetime. A wormhole has the property of traversing a very large distance

in an otherwise impossibly small amount of local time as measured by the

traveler.

There is no observational evidence of wormhole. It is a theoretical solution

to Einstein’s field equations. Although it is speculative, a large number of

serious research has been done on this subject. This started with Einstein

and Rosen’s paper in 1935 on the Einstein-Rosen bridge [1] that consists of

a Schwarzschild black hole connected to a white hole. The hypothesis was

that one-way travel could occur into the black hole and then out of the white

hole. However, Wheeler and Fuller [2] showed later that this configuration

was unstable, with the bridge connecting the two spacetimes collapsing before

any signal could pass through.

In the 1950s Wheeler utilized a wormhole as the framework for a new

1



elementary entity called a geon that was a bundle of electromagnetic waves

held together by gravity [3]. He considered wormholes as objects of the

quantum foam connecting different regions of spacetime and operating on

the Planck scale. However, these wormholes were not traversable, and fur-

thermore would develop some type of singularity [4].

After the work of Wheeler, the field of wormhole lay dormant until 1988

when Morris and Thorne published a paper [5] that reinvigorated the study

on this subject. They explored what kind of energy and matter would be

required to hold open a wormhole metric satisfying Einstein’s field equations

and if such a wormhole could be made safely traversable by people in a finite

amount of time.

The metric of a general spherically symmetric spacetime can be written

as

ds2 = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin2θdφ2). (1.1)

In their paper [5], Morris and Thorne parameterized the metric for a static

spherically symmetric wormhole spacetime in the form

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)/r
+ r2(dθ2 + sin2θdφ2). (1.2)

These two metric equations are connected by

f(r) = e2Φ(r), (1.3)

2



h(r) = [1− b(r)

r
]−1. (1.4)

In Eq. (1.2), Φ(r) is called the redshift function because it determines

the gravitational redshift of an observer traveling through the wormhole; and

b(r) is called the shape function, since it is related to the spatial shape of the

wormhole. The coordinate r lies in the range r0 ≤ r < ∞, with 2πr0 being

the circumference of a circle centered on the wormhole’s throat at r = r0.

However, Eq. (1.2) does not represent the metric of a wormhole space-

time unless we put some restrictions on the functions Φ(r) and b(r). One

restriction is that the spatial geometry must become flat as r approaches

infinity. Therefore, the following limits must hold [9]:

lim
r→∞

Φ(r) = 0, (1.5)

lim
r→∞

b(r)

r
= 0. (1.6)

Besides, a wormhole does not have an event horizon or a singularity. To

ensure there is no event horizon at r = r0, we must demand that

lim
r→r0

Φ(r) > −∞. (1.7)

The function b(r) must be chosen so that

lim
r→r0

h(r) =∞. (1.8)

3



Eq. (1.8) implies that

b(r0) = r0. (1.9)

Moreover, we want h(r) to be positive and finite as r increases above r0.

This requires

d

dr
[

1

h(r)
]|r=r0 > 0. (1.10)

Substituting the metric function for h(r) from Eq. (1.4) into Eq. (1.10)

and making use of Eq. (1.9), we have the inequality

1

r2
0

− b′(r0)

r2
0

> 0, (1.11)

where a prime denotes a derivative with respect to r. Utilizing the Einstein

field equations, the energy density at the wormhole’s throat is expressed as

ρ0 = −G
t
t

8π
= −T tt =

b′(r0)

8πr2
0

; (1.12)

and the radial tension at the throat is written as

τ0 = −G
r
r

8π
= −T rr =

1

8πr2
0

. (1.13)

Substituting these results into Eq. (1.11) yields the inequality for the energy

condition of a traversable wormhole derived by Morris and Thorne [5]:

τ0 − ρ0 > 0. (1.14)

4



Besides, Eq. (1.13) requires

τ0 > 0. (1.15)

Normally, a matter satisfies Eq. (1.15) but does not satisfy Eq. (1.14).

A matter that satisfies Eq. (1.14) would violate the weak energy condition,

which states that the local energy density as viewed by any observer is non-

negative so that [6]

TµνU
µU ν ≥ 0 (1.16)

for all time-like vector Uµ. However, Eq. (1.14) implies that an observer

traveling through the wormhole’s throat with a radial velocity close to the

speed of light (γ � 1) will observe negative energy density. In this observer’s

reference frame, the energy density is [5, 9]:

ρ′ = γ2(ρ0 − τ0) + τ0. (1.17)

As γ increases, the first term on the right-hand side, which is negative, takes

over the second term on the right-hand side, which is positive. So ρ′ becomes

negative. Such a stress-energy tensor required by a wormhole violates the

weak energy condition. Therefore, a matter with such a stress-energy tensor

is called ”exotic matter”.

In nature, a matter usually satisfies the weak energy condition. The

closest known candidate of exotic matter is the negative pressure density

5



reflected by a small attractive force between two close parallel metalic plates.

This phenomenon was predicted by the Dutch physicist Hendrick Casimir

in 1948 and is called Casimir effect. The origin of the Casimir effect is

attributed to quantum fluctuations. Due to the quantum fluctuation, the

mean value of the square of the dipole moment is not equal to zero. This

leads to what is referred to as dispersion forces. For atomic separations

of the orders of angstrom and nanometer, which are much less than the

characteristic absorption wavelength of the virtual photon emitted by the

atom, the dispersion force is usually called the Van der Waals force. At

relatively large atomic separations, of order or larger than the characteristic

absorption wavelength of the virtual photon, the dispersion force is usually

called Casimir force for interaction between two macroscopic bodies [7].

Casimir developed a theoretical approach to the atom-wall interaction.

The finite energy and pressure per unit area between two infinitely large par-

allel ideal metal walls separated by a distance a were found as the difference

between the energies and pressures of zero-point (vacuum) oscillations of the

electromagnetic field in the presence and in the absence of walls as [7]

E = − π2h̄c

720a3
, P = − π2h̄c

240a4
(1.18)

A more general theory about the Casimir effect was developed by Lifshitz,

who unified the Van der Waals force and the Casimir force as two limiting

cases of the single dispersion force. Lifshitz’s theory describes dispersion
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forces as a physical phenomenon caused by the fluctuating electromagnetic

field. Using the fluctuation-dissipation theorem, Lifshitz derived the general

formulas for the free energy and force of the dispersion interaction.

A lot of experiments on the Casimir effect have been carried out. Be-

fore 1990 many experiments were done to demonstrate the existence of the

Casimir force. However, the experiment by van Blockland and Overbeek in

1978 with metallic surfaces was considered as the only unambiguous demon-

stration. In more recent experiments, more precise laboratory techniques

were used to measure small forces and short distances. The first of these

experiments was done in 1997 by Lamoreaux who used a torsion balance to

measure the Casimir force between a gold coated spherical lens and a plate.

The most precise measurements of the Casimir force between metallic sur-

faces were performed in a series of experiments by Decca et al. between 2003

and 2007. Using the new technique of a micromechanical torsional oscillator,

they could determine the Casimir pressure between two parallel plates. In

the last of this series of experiments, they reported a 0.2 % total experimental

error at a separation of 160nm [7].

In spite of these fruitful experiments, a problem lies in the disparity be-

tween the experimental results and the theory, and this disparity is caused

by the difficulty in modeling real materials. Both Casimir’s and Lifshiftz’s

theories consider dispersion forces between two parallel plates. However, real

bodies may have different geometric configurations, and a distinctive feature

of the Casimir force is its geometry dependence. For example, the Casimir
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force can be repulsive for an ideal spherical shell. Another example is that,

in ideal metal rectangular boxes, the Casimir force may either be repulsive

or attractive depending on the ratio of the size of the sides [7].

Another feature of real material bodies differentiating them from ideal

metal plates are connected with the realistic material properties and ther-

mal effects. In the Lifshitz theory of dispersion forces, the free energy

and other thermodynamic quantities are expressed as functionals of the

frequency-dependent dielectric permittivity, and the calculational results de-

pend strongly on the model of dielectric permittivity used to describe real

material. However, different physical processes contribute to the value of the

dielectric permittivity, which are not distinguished in the Lifshitz theory [7].

Due to these difficulties in modeling real materials, it is still not known

how to properly compare the experimental results on the Casimir effect with

theories. In addition, it should be noted that all the above-mentioned exper-

iments are to test the Casimir force, while the Casimir energy density has

not been measured.

Apart from the Casimir effect, there seems no sign of evidence of exotic

matter in nature. However, a number of people have made efforts to theoreti-

cally explore the existence of the exotic matter that could support wormhole

spacetimes. Using the DeWitt-Schwinger approximation, Taylor, Hiscock,

and Anderson [8] analytically computed the stress-energy of a quantized

massive scalar field in five static spherically symmetric Lorentzian wormhole

spacetimes. They found that in all five cases, for both minimally and con-
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formally coupled scalar fields, the stress-energy does not even qualitatively

have the properties needed to support the wormhole geometry.

W. H. Hirsch [9] numerically computed the fully renormalized stress-

energy tensor for a massless spin 1/2 field on and outside the throat of

three static spherically symmetric Lorentzian wormhole spactimes. The full

stress-energy tensors are analyzed in terms of an arbitrary renormalization

parameter µ to see if the exotic energy condition needed to keep such an

object from collapsing is met. The results show that no wormhole geometry

studied is found to be a self-consistent solution when quantum fluctuations

of the spin 1/2 field are considered.

On the other hand, some other researchers claimed that certain materials

can sustain wormhole geometries. Barcelo and Visser [10] reported that

the energy-momentum tensor of a massless scalar field conformally coupled

to gravity can violate the weak energy condition (i.e., has negative energy

density) and thus can support wormhole geometries, even at the classical

level and even in flat Minkowski spacetime. They found a three-parameter

class of exact solutions to the Einstein equation for such a field. These exact

solutions include the Schwarzschild geometry, assorted naked singularities,

and a large class of traversable wormholes. However, their results have a

drawback that the effective Newtonian constant has opposite signs in the

two asymptotic regions connected by the wormhole.

Hochberg, Popov and Sushkov [11] reported that quantum effects of a

scalar field can maintain a wormhole. They presented the results of a self-
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consistent solution of the semi-classical Einstein field equations corresponding

to a Lorentzian wormhole coupled to a quantum scalar field. The solution

represents a wormhole connecting two asymptotically spatially flat regions.

However, the throat of the wormhole turned out to be on the order of the

Planck scale, i.e., nontraversable.

Garattini [12] considered the graviton quantum fluctuations around a

traversable wormhole background. The fluctuations, contained in the per-

turbed Einstein tensor, play the role of the exotic matter. He computed

the graviton one-loop contribution to the classical energy in the background.

Such a contribution is evaluated by means of a variational approach with

Gaussian trial wavefunctionals. A zeta function regularization is involved to

handle divergences. The results suggest that the finite one-loop energy can

sustain a wormhole smaller than a Planck length.

It is worth mentioning that Ford, Roman and Pfenning studied the con-

straints on negative energy fluxes and introduced Quantum Inequality (QI)

applied to energy densities [13, 14]. The QI was proven directly from quan-

tum field theory in four-dimensional Minkowski spacetime. The inequality

limits the magnitude of the negative energy violations and the time for which

they are allowed to exist. When QI is applied to wormhole geometries, a

small spacetime volume around the throat of the wormhole is considered so

that all the dimensions of this volume are much smaller than the minimum

proper radius of curvature in the region. Thus the spacetime can be consid-

ered approximately flat in this region. The result of the analysis is that the
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wormhole possesses a throat size only slightly larger than the Planck length.

Ford and Roman concluded that the existence of macroscopic traversable

wormholes is very improbable [15].

Krasnikov [16, 17] circumvented the ”exotic matter” and constructed a

class of static traversable Lorentzian wormholes by using a two-component

matter field, one of which satisfies the weak energy condition (having positive

energy density), while the other is produced by vacuum fluctuations of the

neutrino, electromagnetic or massless scalar (conformally coupled) fields that

constitute the source of the weak energy condition violation. He claimed that

static macroscopic wormholes are possible as long as Ω and K, two smooth

positive even functions in the metric equation, behave properly as the radial

distance ξ → ∞. However, Krasnikov did not find out a physical substance

that could enable Ω and K to behave properly.

Some authors propose that the phantom energy, a kind of dark energy

with the property ω(r) = p(r)/ρ(r) < −1 [where p(r) is the pressure and

ρ(r) is the density of the dark energy], may be the source of supporting

traversable wormholes. Zaslavskii [18] finds a simple exact solution of spher-

ically symmetric Einstein equations describing a wormhole for an inhomoge-

neous distribution of the phantom energy. The equation of state is linear but

highly anisotropic: while the radial pressure is negative, the transversal one

is positive.

Sushkov [19] also finds an exact solution describing a static spherically

symmetric wormhole with phantom energy and shows that a spatial distri-
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bution of the phantom energy is mainly restricted by the vicinity of the

wormhole’s throat. The maximum size of the spherical region, surround-

ing the throat and containing most of the phantom energy, depends on the

equation-of-state parameter ω(r) and cannot exceed some upper limit.

Some researchers, while confirming phantom energy to be the source of

traversable wormholes, expect that the expansion of the universe will increase

the size of the wormhole. Lobo [20] investigates the physical properties of

traversable wormholes using the equation of state p(r) = ω(r)ρ(r), with

ω(r) < −1, and verifies that it is theoretically possible to construct worm-

hole geometries with vanishing amounts of averaged weak energy condition

violating phantom energy. He argues that, because of the accelerating expan-

sion of the universe, macroscopic wormholes could naturally grow from the

submicroscopic constructions that originally pervaded the quantum foam.

Gonzalez-Diaz [21] reports that, relative to the initial embedding-space coor-

dinate system, whereas the shape of the wormholes is always preserved with

time, their size is driven by the expansion of the universe to increase by a

factor proportional to the scale factor of the universe.

In this thesis, I calculate the stress-energy tensors of two quantized mas-

sive spin 1/2 fields to investigate whether they satisfy Eqs. (1.14) and (1.15)

so that they can be considered exotic matter. A further aim is to explore

whether the stress-energy tensors of these fields satisfy the semiclassical Ein-

stein equation

Gµν = 8π < Tµν > (1.19)
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whose solution is a wormhole spacetime, so that these fields could be semi-

classically support the wormhole geometry.

Due to technical difficulties in calculation, some approximations are used.

In the range of these approximations, the results of my calculation show that

these two fields satisfy Eqs. (1.14) and (1.15) but do not satisfy Eq. (1.19).

Thus, these two fields can be qualitatively considered to be exotic matter,

but are not enough to produce wormholes by themselves. However, it is not

clear under what physical circumstances these approximations could hold.

Moreover, for the parameter values used in my calculation, some resulting

energy densities are unphysically high. Because of these reasons, no firm

physical conclusions can be drawn.

Chapter 2 introduces the method to compute the renormalized stress-

energy tensor of a quantized massive spin 1/2 field in a general static spheri-

cally symmetric spacetime developed by P. Groves. Chapter 3 introduces the

calculation of the stress-energy tensor of quantized massive spin 1/2 fields in

a static spherically symmetric spacetime carried out in this thesis. Chapter

4 presents the results of the calculation in a zero-temperature vacuum state.

Chapter 5 presents the results of the calculation in thermal states. Chapter

6 summarizes the findings in the previous chapters.
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Chapter 2. Method to Compute the

Stress-Energy Tensor of A Quantized Massive

Spin 1/2 Field in A Static Spherically

Symmetric Spacetime

2.1 Quantum field theory in curved spacetime

A key idea of general relativity is that matter influences the spacetime

curvature, which is expressed by Einstein’s field equation:

Gµν = 8πTµν , (2.1)

where the left-hand side is the Einstein tensor that describes the geometry

of the spacetime, and the right-hand side is the stress-energy tensor for any

matter present in the spacetime. An exact treatment of this equation requires

that the gravitational field be quantized, i.e., a theory of quantum gravity

is needed. However, a major difficulty in developing quantum gravity is
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that, higher order terms in the expansion of the gravitational action produce

graviton Feynman diagrams with multiple loops, and with increasing number

of loops one encounters more and more virulent divergences. This fact renders

quantum gravity unrenormalizable – with each new order more new physical

quantities are needed to absorb the infinities. It is for this reason that a

satisfactory theory of quantum gravity has not been developed.

An alternative approach is to assume the quantum nature of gravity does

not play a crucial role, so that gravitation can be described by a classical

curved spacetime as in the framework of general relativity, while other fields

are treated as quantum fields propagating in the classical curved background

of spacetime. Such an approach is called quantum field theory in curved

spacetime (QFTCS).

In quantum field theory in flat spacetime, the Poincare group plays a

key role in picking out a preferred vacuum state and defining the notion of

particle. However, in a general curved spacetime, there does not appear to

be any preferred notion of particles [22]. For a noncompact space, in cases

where natural notions of particles are available in both the asymptotic past

and future, the representations of the canonical commutation relations cor-

responding to these two notions are in general unitarily inequivalent. This

difficulty in formulating QFTCS is cured by an algebraic approach, which

allows one to consider all states arising in all the different (i.e. unitarily

inequivalent) Hilbert space constructions of the theory on an equal footing.

The mathematical formulation of QFTCS is based mainly on such an alge-
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braic approach to field theory initiated by Haag and Kastler, as well as on the

work of Segal and others on the general theory of linear dynamical system.

The theory thereby obtained directly describes the expectation values of all

observables.

Due to the weakness of gravity, as Birrell and Davies point out [23], any

possibility of direct observational verification of quantum effects of gravity is

precluded. Therefore, QFTCS must rely entirely on theoretical consideration.

This is the case at least for the time being and foreseeable future.

One expects that QFTCS should have limited range of validity. In partic-

ular, it should certainly break down and be replaced by a quantum theory of

gravity coupled to matter when the spacetime curvature approaches Planck

scales. However, as Wald notes, the precise criteria for the validity of QFTCS

will be known only when the ultimate theory of quantum gravity is available

[22]. On the other hand, QFTCS is considered valid for describing elementary

particles and gravitation at energies below the Planck scales [24]. Birrell and

Davies argues that, in the early days of quantum theory, many calculations

were undertaken in which the electromagnetic field was considered as a classi-

cal background field interacting with quantized matter. Such a semiclassical

approximation readily yields some results that are in complete accordance

with the full theory of quantum electrodynamics. One may therefore hope

that a similar regime exists for quantum aspects of gravity, which validates

QFTCS [23].

Many studies in QFTCS have produced fruitful results. It has been shown
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how gravitation and quantum field theory are intimately connected to give a

consistent description of black holes having entropy and satisfying the second

law of thermodynamics; and it has been explained how the inhomogeneities

and anisotropies observed today in the cosmic microwave background and in

the large-scale structure of the universe were created in a brief stage of in-

flation [24]. Specifically, an important result is Hawking’s study of quantum

black holes and the discovery of their thermal emission. This is important

in that it establishes a strong connection between black holes and thermo-

dynamics that was thought to be purely formal before the application of

quantum theory to black holes. However, both Hawking’s prediction of the

blackhole’s thermal radiation and the application of QFTCS to inflation are

afflicted with the trans-Planckian problem, and thus are questionable for

their validity.

As mentioned above, all observables are described by their expectation

values in QFTCS. By taking the expection value of the stress-energy tensor

and treating the Einstein tensor as a c-number, Eq. (2.1) takes the form

Gµν = 8π < Tµν >, (2.2)

where both sides are c-numbers instead of operators as in the context of

quantum field theory.

This thesis is concerned with whether two quantized massive spin 1/2

fields can be considered exotic matter, and whether they can semiclassically
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support wormhole geometry. Passing from QFTCS to semiclassical approxi-

mation amounts to imposing the constraint of Eq. (2.2). Finding whether a

quantum field can semiclassically support a wormhole means finding a solu-

tion to Eq. (2.2) that represents a wormhole gemoetry.

2.2 Method to compute the stress-energy tensor of a

quantized massive spin 1/2 field in a curved space-

time

Because of the difficulty in solving quantum field equations in curved

spacetime and summing over the modes for quantized fields, the expectation

value of the stress-energy tensor in four dimensions is a quantity that has

been historically and continues to be very difficult to calculate. As a result,

most calculations are approximations, with rare exact calculations.

There are four approaches to calculating the stress-energy tensor of a

quantized field in a static spherically symmetric spacetime [25]. One is to

constrain the form of the stress-energy tensor by integrating the conservation

equation and using the symmetry properties of the state that the field is in.

This approach has been used in Schwarzschild spacetime for fields that are

static and spherically symmetric [26, 27].

A second approach is to derive an analytic approximation for the stress-

energy tensor. This approach has been used for conformally invariant fields

of spin 0, 1/2, and 1 in Schwarzschild spacetime [28, 29]. For massive fields
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the DeWitt-Schwinger expansion [30] can often be used to obtain a good

approximation for the stress-energy tensor. This approximation has been

derived for massive scalar fields in Schwarzschild spacetime [31] and in a

general static spherically symmetric spacetime [32]. It has also been derived

for massive spin 1/2 and spin 1 fields in Reissner-Nordstrom spacetimes [33].

A third approach is to numerically compute the stress-energy tensor.

This has been done for conformally invariant spin 0 and spin 1 fields in

Schwarzschild spacetime [34, 35]. Numerical calculations of the stress-energy

tensor for both massive and massless scalar fields with arbitrary curvature

couplings in Schwarzschild and Reissner-Nordstrom spacetimes have also

been done [32].

The fourth approach is the most accurate and the most difficult. It is

to analytically compute the full renormalized stress-energy tensor. This has

been done for scalar fields with arbitrary mass and curvature coupling in de

Sitter space [36, 37]. The stress-energy tensor for the massless spin 1 field

has also been computed analytically on the event herizon of a Schwarzschild

black hole. Finally a computation of the stress-energy tensor for the massless

spin 1/2 field has been done in a global monopole spacetime [38].

Adopting QFTCS, Groves, Anderson, and Carlson [25] have developed

a method that can be used to analytically (and partially numerically) com-

pute the expectation value of full renormalized stress-energy tensor for the

massless spin 1/2 field in a general static spherically symmetric spacetime.

They proceed from the Dirac equation for massless spin 1/2 field, writing it
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in terms of the Euclidean Green’s function. Then they derived an expression

of the unrenormalized stress-energy tensor in terms of the Euclidean Green’s

function for the field. They use the method of point splitting to renormalize

the stress-energy tensor, with the point-splitting counter-terms for the spin

1/2 field computed by Christensen [39]. In the process of renormalization,

the WKB approximation is used to isolate the divergences. Their result is an

expression for the renormalized stress-energy tensor of a massless spin 1/2

field in a general static spherically symmetric spacetime. The field can either

be in a vacuum state or in a thermal state at an arbitrary temperature. In

the derivation the stress-energy tensor is divided into two parts. One part

depends on sums and integrals over radial mode functions. This part usually

needs to be computed numerically. The other part consists of an analytic

tensor with a trace equal to the trace anomaly for the spin 1/2 field.

Groves, leading author of [25], has generalized this method into one that

includes both the massive case and massless case in his Ph.D. dissertation

[40], namely, a general method to compute the renormalized stress-energy

tensors of both massive and massless spin 1/2 fields in a static spherically

symmetric spacetime. The derivation of this general method is similar to

that in [25], except that he uses the Dirac equation for massive spin 1/2 field

instead of the Dirac equation for massless spin 1/2 field. The resulting ex-

pressions for the renormalized stress-energy tensor components include mass

terms as well as massless terms. If one sets the mass terms to zero, the

expressions for the renormalized stress-energy tensor components reduce to
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those for massless case.

The following sections are a brief review of the derivation of the renormal-

ized stress-energy tensor for a quantized massive spin 1/2 field in a curved

spacetime in [40].

2.2.1 The Dirac equation in Minkowski space

The action for a massive spin 1/2 field in Minkowski space is [41]

S =
∫
d4x

i

2
[Ψ(x)γa(∂aΨ(x))− (∂aΨ(x))γaΨ(x)]−mΨ(x)Ψ(x) (2.3)

with

Ψ ≡ Ψ†γ0 (2.4)

The variation of Eq. (2.3) with respect to Ψ yields the Dirac equation in

Minkowski space [42, 43]

(iγa∂a −m)Ψ(x) = 0, (2.5)

where γa are the Dirac matrices. Upon second quantization, the Dirac equa-

tion becomes an equation for a spin 1/2 field rather than a single particle [41,

44], and the parameter m is interpreted as the mass of the field quantum.

Similarly, the variation of Eq. (2.3) with respect to Ψ gives

Ψ(iγa
←−
∂a +m) = 0 (2.6)
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2.2.2 The vierbein formalism

Spinors in curved space may be dealt with through the use of the vier-

bein or tetrad formalism. In general relativity, it is always possible to find

coordinates ξaX such that the curved space metric at the point X is equal

to the flat space metric ηab. The coordinates ξaX are called locally inertial

coordinates. The vierbein or tetrad function is defined as

eaµ(X) ≡ ∂ξaX
∂xµ
|x=X (2.7)

It plays the role to connect the contravariant components of a vector V µ in

the general coordinate system at point X and its contravariant components

V a in the locally inertial coordinate system ξaX :

V a = eaµ(X)V µ. (2.8)

The components of a tensor Sαβγ...δσρ... with respect to the locally inertial

coordinate system at the point X are

Sabc...def... = (eaαe
b
βe

c
γ...)(e

δ
de
σ
e e
ρ
f ...)S

αβγ...
δσρ... . (2.9)

When defining the covariant derivative of a spinor in curved space, it is

desirable to retain the Lorentz transformation property of the partial deriva-

tive of a spinor in flat space. In flat space, the partial derivative of a spinor
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ψ(x) transforms under Lorentz transformation as

∂aψ(x)→ ∂aψ
′(x) = Λb

aR1/2(Λ)∂bψ(x). (2.10)

We may define a spinor covariant ∇a such that under Lorentz transfor-

mation transforms as

∇aψ(x)→ ∇aψ
′(x) = Λb

aR1/2(Λ(x))∇bψ(x). (2.11)

Comparing Eqs. (2.10) and (2.11) and using the vierbein formalism, we

obtain the full covariant derivative of a spin 1/2 field in curved space:

∇aψ = eµa(∂µ + Γµ)ψ, (2.12)

where

Γµ =
1

2
σabeνaebν;µ, (2.13)

σab = −1

4
[γa, γb]. (2.14)

2.2.3 The Dirac equation in a static spherically symmetric space-

time

By replacing the partial derivative in Eq. (2.5) with the covariant deriva-

tive of Eq. (2.12), one may write the Dirac equation for a spin 1/2 field in
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an arbitrarily curved spacetime as

(iγa∇a −m)ψ(x) = 0. (2.15)

The line element for a general static spherically symmetric spacetime is

written in Eq. (1.1). Using Eq. (1.1) and Eq. (2.12), the Dirac equation Eq.

(2.15) is written more explicitly as

(i[etaγ
a(∂t + Γt) + eraγ

a(∂r + Γr) + eθaγ
a(∂θ + Γθ) + eφaγ

a(∂φ + Γφ)]−m)ψ = 0,

(2.16)

where Γµ are defined by Eq. (2.13). Employing Eq. (2.14) and the relation

−→∑
=

 −→σ 0

0 −→σ

 (2.17)

the Dirac equation Eq. (2.16) can be written in the form

i
γ0∂tψ

f 1/2
+ i

γ̃

rf 1/4h1/2
∂r(rf

1/4ψ)− i
γ̃(
−→∑
• −→L + 1)

r
ψ −mψ = 0, (2.18)

where
−→
L is the angular momentum vector; f and h are functions of r in Eq.

(1.1); and γ̃ is defined as

γ̃ ≡ sinθcosφγ1 + sinθsinφγ2 + cosθγ3. (2.19)
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Eq. (2.18) can be solved by separation of variables. The solutions are:

ψ1(x) =
eiωτ

rf 1/4

 F 1
ω,j(r)Ψ

mj

j,+(θ, φ)

G1
ω,j(r)Ψ

mj

j,−(θ, φ)

 , (2.20)

ψ2(x) =
eiωτ

rf 1/4

 G2
ω,j(r)Ψ

mj

j,−(θ, φ)

F 2
ω,j(r)Ψ

mj

j,+(θ, φ)

 , (2.21)

with

Ψm
j,+ =


√

j+m
2j
Y
m−1/2
j−1/2√

j−m
2j
Y
m+1/2
j−1/2

 and Ψm
j,− =


√

j+1−m
2j+2

Y
m−1/2
j+1/2

−
√

j+1+m
2j+2

Y
m+1/2
j+1/2

 , (2.22)

(
ω

f 1/2
− im)F 1

ω,j = (
1

h1/2
∂r +

j + 1/2

r
)G1

ω,j, (2.23)

(
ω

f 1/2
+ im)G1

ω,j = (
1

h1/2
∂r −

j + 1/2

r
)F 1

ω,j, (2.24)

,

(
ω

f 1/2
+ im)F 2

ω,j = (
1

h1/2
∂r +

j + 1/2

r
)G2

ω,j, (2.25)

(
ω

f 1/2
− im)G2

ω,j = (
1

h1/2
∂r −

j + 1/2

r
)F 2

ω,j, (2.26)

.

2.2.4 Stress-energy tensor

A. Derivation of unrenormalized stress-energy tensor
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The action for a massive spin 1/2 field in an arbitrary spacetime is

S =
∫
d4x
√
−g i

2
[ψ(x)γa∇aψ(x)− (∇aψ(x))γaψ(x)]−mψ(x)ψ(x) (2.27)

The stress-energy tensor can be derived by making variation of the action

with respect to the metric gµν [45]:

T µν(x) =
2√
−g(x)

δS

δgµν(x)
. (2.28)

The result is:

Tµν(x) = − i
2

[ψ(x)γ(µ∇ν)ψ(x)−∇(µψ(x)γν)ψ(x)]. (2.29)

Using the relations

ψψ = Tr(ψψ), (2.30)

S(1)(x, x′) =< [ψ(x), ψ(x′)] >, (2.31)

S(1)(x, x′) = iSF (x, x′)− iScF (x, x′), (2.32)

SE(it,−→x ; it′,
−→
x′ ) = iSF (t,−→x ; t′,

−→
x′ ), (2.33)

where S(1), SF , and SE are the Hadamard Green’s function, Feynman Green’s

function, and Euclidean Green’s function respectively, Eq. (2.29) can be

written in terms of the Euclidean Green’s function and its charge conjugate:
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< Tµν >unren= −1

4
lim
x′→x

ImTr[γ(µ(∇ν [SE + ScE]− gλ′ν)∇λ′ [SE + ScE])I(x′, x)],

(2.34)

where gµν′ is bi-vector of parallel transport that transforms a vector at x’ to a

vector at x ; I(x′, x) is bi-spinor of parallel transport that transforms a spinor

at x’ to a spinor at x :

V µ
‖ = gµν′V

ν′ , (2.35)

ψ(x)‖ = I(x′, x)ψ(x′). (2.36)

B. Renormalization of the stress-energy tensor

In a general spacetime, the expectation value of a quantized stress-energy

tensor is divergent. A renormalization scheme is point splitting, which works

for any spacetime. To use this scheme, the stress-energy tensor is written in

terms of the Green’s function, which is a function of two points in spacetime.

Although the stress-energy tensor is divergent when the points come together,

it is finite with the points split. Point-splitting renormalization is achieved by

subtracting off the renormalization counter-terms from the unrenormalized

stress-energy tensor and taking the limit x′ → x. In this way one forms the

renormalized stress-energy tensor

< Tµν >ren= lim
x′→x

(< Tµν >unren − < Tµν >DS), (2.37)
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where DS denotes the counter-terms obtained by the use of the DeWitt-

Schwinger expansion [46, 47].

(a) Point splitting. In [40], the points are chosen to be split in the time

direction so that

ε ≡ t− t′, r = r′, θ = θ′, φ = φ′. (2.38)

With this point-splitting, SE(t, x; t′, x), gµν′ , and I(x′, x) can be expanded

in powers of ε; and so < Tµν >unren [Eq. (2.34)] can be calculated in powers

of ε. The results are:

< T tt >unren = 2Re
∫ dω

4πr2
[−ω2cos[ω(τ − τ ′)]I1(gtt + gtt

′
)A1

−iωsin[ω(τ − τ ′)]I1gtr
′ h1/2

r
A3 − ω2cos[ω(τ − τ ′)]I2gtr

′ h1/2

f 1/2
A1

−iωsin[ω(τ − τ ′)]I2(gtt − gtt
′
)

f ′

4f 1/2h1/2
A1

+ωcos[ω(τ − τ ′)]I2gtr
′ h1/2

r
A2

+iωsin[ω(τ − τ ′)]I1gtr
′
(
1

r
− h1/2

r
+
f ′

4f
)A1

+iωsin[ω(τ − τ ′)]I1gtr
′
h1/2mA4

−ωcos[ω(τ − τ ′)]I2gtr
′
h1/2mA5], (2.39)

< T rr >unren = 2Re
∫ dωh1/2

4πr2f 1/2
[−iωsin[ω(τ − τ ′)]I2(grr − grr

′
)

×(
1

r
− h1/2

r
+
f ′

4f
)A1 + iωsin[ω(τ − τ ′)]I2(grr − grr

′
)
h1/2

r
A3

−ω2cos[ω(τ − τ ′)]I2grt
′
A1
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−ω2cos[ω(τ − τ ′)]I1(grr + grr
′
)
h1/2

f 1/2
A1

+ωcos[ω(τ − τ ′)]I1(grr + grr
′
)
h1/2

r
A2

+iωsin[ω(τ − τ ′)]I1grt
′ f ′

4f 1/2h1/2
A1

−ωcos[ω(τ − τ ′)]I1(grr + grr
′
)h1/2mA5

−iωsin[ω(τ − τ ′)]I2(grr − grr
′
)h1/2mA4], (2.40)

< T θθ >unren = 2Re
∫ dω

4πr3f 1/2
[−ωcos[ω(τ − τ ′)]I1A2

−iωsin[ω(τ − τ ′)]I2A3

+iωsin[ω(τ − τ ′)]I2(
1

h1/2
− 1)A1], (2.41)

where I1, I2 are bi-spinors expressed in terms of f, h and ε; A1 through A5

[whose expressions are given by Eqs. (A11) through (A15) in Appendix A]

are functionals of Fω,l(r) and Gω,l(r) ; and

τ − τ ′ = i(t− t′) + iε. (2.42)

(b) Derivation of the counter-term < Tµν >DS. The Hadamard function

G(1)(x, x′) is defined as

S(1)(x, x′) = (iγµ∇µ +m)G(1)(x, x′). (2.43)

Using relations between S(1), SF , SE [Eqs. (2.31), (2.32) and (2.33)], Eq.
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(2.34) can be written in terms of G(1)(x, x′) as

< Tµν >=
1

2
lim
x′→x

Tr[γ(µγ
ρ(G

(1)
;ρν) −G

(1)
;ρν′))]. (2.44)

Christensen [39] finds the DeWitt-Schwinger expansion for G(1)(x, x′):

G(1)(x, x′) =
∆1/2

4π2
(a0[

1

σ
+m2L(1 +

1

4
m2σ + ...)− 1

2
m2 − 5

16
m4σ + ...]

−a1[L(1 +
1

2
m2σ + ...)− 1

2
m2σ − ...]

+a2σ[L(
1

2
+

1

8
m2σ + ...)− 1

4
− ...] +

1

2m2
[a2 + ...]

+...), (2.45)

where ∆(x, x′) ≡ g−1/2(x)det(σ;µν)g
−1/2(x′), L ≡ C + 1

2
ln(1

2
m2σ); C being

the Euler’s constant; a0, a1, a2 being functions of I(x, x′), ε, and Rαβγδ; and

σ(x, x′) being the geodesic interval, which is half of the square of the proper

distance along a geodesic that connects x’ and x :

σ(x, x′) =
1

2
(σµσ

µ) (2.46)

where σµ ≡ σ;µ is the tangent vector to σ(x, x′) at the point x [40]. Substitut-

ing Eq. (2.45) into Eq. (2.44) and calculating derivatives, we get < Tµν >DS.

(c) Renormalized stress-energy tensor. Substituting < Tµν >DS into Eq.

(2.37), we get renormalized stress-energy tensor. However, a direct numer-

ical computation of Eq. (2.37) is difficult. An alternative is to isolate the
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divergent structure of < Tµν >unren by using the WKB approximation for the

radial modes Fω,j and Gω,j. The divergent part of this expression is labeled

< Tµν >WKBdiv. It can be added and subtracted on the right-hand side of

Eq. (2.37):

< Tµν >ren = lim
x′→x

(< Tµν >unren − < Tµν >WKBdiv

+ < Tµν >WKBdiv − < Tµν >DS)

=< Tµν >numeric + < Tµν >analytic (2.47)

where

< Tµν >numeric≡ lim
x′→x

(< Tµν >unren − < Tµν >WKBdiv) (2.48)

< Tµν >analytic≡ lim
x′→x

(< Tµν >WKBdiv − < Tµν >DS) (2.49)

Since < Tµν >WKBdiv contains all the divergences in < Tµν >unren, both

< Tµν >numeric and < Tµν >analytic are finite. They are so named because

< Tµν >numeric must usually be computed numerically, while < Tµν >analytic

may be computed analytically. The resulting expressions of < Tµν >numeric

and < Tµν >analytic include equations for four components of the stress-

energy tensor. The expressions of the components of < Tµν >analytic involve

the variables f(r), h(r) [metric functions in Eq. (1.1)] and their derivatives,

as well as m, mass of the field quantum, and κ, a parameter that includes the

temperature T. The zero-temperature case is obtained by setting κ = 0 in
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these equations. The expressions of the components of < Tµν >numeric also

involve f(r), h(r) and their derivatives, the field quantum m, as well as A1(r)

through A5(r) which are functionals of the radial modes Fω,l(r) and Gω,l(r).

These expressions are listed in Appendix A.
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Chapter 3. Calculation of Stress-Energy

Tensor of A Quantized Massive Spin 1/2 Field

in A Static Spherically Symmetric Spacetime

As introduced in Chapter 2, Groves [40] has developed a method to com-

pute the stress-energy tensor of a quantized massive spin 1/2 field in a static

spherically symmetric spacetime. The general formulae of the renormalized

stress-energy tensor components, which are derived by Groves in [40], are

listed in Appendix A. To compute < Tµν >analytic [Eq. (A1)], add up Eqs.

(A2) through (A6) for different components, using Eq. (A5) for the zero-

temperature state and Eq. (A6) for thermal states.

To compute < Tµν >numeric, the radial mode equations Eqs. (2.23) –

(2.26) need to be solved so as to get an expression for the radial functions

A1 through A5 [Eqs. (A11) – (A15)]. However, Eqs. (2.23) – (2.26) cannot

be solved exactly and difficult to solve numerically. But they can be solved

by WKB approximation.
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3.1 WKB approximation to solve radial mode equa-

tions

To solve the radial mode equations (2.23) – (2.26), using the ansatz

Gq
ω,j(r) =

1√
2W

exp[−
∫
W (r)(

h

f
)1/2(1− imf 1/2

ω
)dr] (3.1)

Gp
ω,j(r) =

1√
2W

exp[
∫
W (r)(

h

f
)1/2(1− imf 1/2

ω
)dr] (3.2)

and substituting into Eqs. (2.23) and (2.25) gives

F q
ω,j =

Gq
ω,j

ω − imf 1/2
[−W +

imf 1/2W

ω
− f 1/2W ′

2h1/2W
+ (j +

1

2
)
f 1/2

r
] (3.3)

F p
ω,j =

Gp
ω,j

ω − imf 1/2
[W − imf 1/2W

ω
− f 1/2W ′

2h1/2W
+ (j +

1

2
)
f 1/2

r
] (3.4)

Eqs. (2.23) – (2.26) may be combined to form the uncoupled second-order

equations

0 =
f 1/2

h1/2
∂r(

f 1/2

h1/2
∂rFω,j)−

f

h1/2
Fω,j∂r(

j + 1/2

r
)− f(

j + 1/2

r
)2Fω,j

−(ω2 +m2f)Fω,j −
f ′

2h1/2
(
j + 1/2

r
)Fω,j

− imf
′

2h1/2
(ωf 1/2 − imf)

ω2 +m2f
(

1

h1/2
∂r −

j + 1/2

r
)Fω,j (3.5)

0 =
f 1/2

h1/2
∂r(

f 1/2

h1/2
∂rGω,j) +

f

h1/2
Gω,j∂r(

j + 1/2

r
)− f(

j + 1/2

r
)2Gω,j
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−(ω2 +m2f)Gω,j +
f ′

2h1/2
(
j + 1/2

r
)Gω,j

+
imf ′

2h1/2
(ωf 1/2 + imf)

ω2 +m2f
(

1

h1/2
∂r +

j + 1/2

r
)Gω,j (3.6)

Substituting Eqs. (3.1) and (3.3) into Eq. (3.5) gives

W 2 =
ω2

(ω − imf 1/2)2
[Ω2 + Γ[W ]

− 1

ω − imf 1/2
(−imf

′W ′f 1/2

4hW
+
imf ′(j + 1/2)

2h1/2r
)] (3.7)

with

Ω2 ≡ ω2 +m2f − (j + 1/2)f ′

2h1/2r
+

(j + 1/2)f

h1/2r
+

(j + 1/2)1/2f

r2
(3.8)

and

Γ[W ] ≡ fW ′′

2hW
− 3fW ′2

4hW 2
− fh′W ′

4h2W
+
f ′W ′

4hW
(3.9)

Eq. (3.7) may be solved iteratively. To zeroth order,

W =
ωΩ

ω − imf 1/2
(3.10)

Each iteration yields terms containing two more derivatives than the previous

iteration. Therefore the first iteration of Eq. (3.7) yields the second-order

W :

W =
ωΩ

ω − imf 1/2
+

ω

2(ω − imf 1/2)Ω
[Γ[W ]
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− 1

ω − imf 1/2
(−imf

′Ω′f 1/2

4hΩ
+
imf ′(j + 1/2)f 1/2

2h1/2r
)] (3.11)

Substituting Eq. (3.11) into Eq. (3.7), we get the fourth-order W. Then,

substituting the fourth-order W into Eqs. (3.1) – (3.4), we get the fourth-

order WKB approximation of the mode functions Fω,j(r) and Gω,j(r).

In general, Eqs. (3.5) and (3.6) have two sets of linearly independent

solutions. One set, labeled (F q
ω,j, G

q
ω,j), is finite at large r but diverges at

r = 0 or the throat of the wormhole. The other set, labeld (F p
ω,j, G

p
ω,j), is

finite at r = 0 or the throat of the wormhole but diverges at large r [40]. In

solving these equations by the WKB approximation method, no boundary

conditions are imposed.

The WKB approximation is a good approximation if the successive deriva-

tives of the metric functions f(r) and h(r) become smaller. The approxima-

tion is also good for ω and j large enough [40]. However, the uncertainties

caused by the WKB approximation are unassessed; and to what extent it

is justifiable to use the WKB approximation for finding the stress-energy

remains an open question.

3.2 WKB approximation of radial functions

The expressions of the radial functions A1(r) through A5(r) are given by

Eqs. (A11) – (A15) in Appendix A. Since they contain the radial modes

Fω,j(r) and Gω,j(r), they also cannot be computed exactly, but can be com-

puted by WKB approximation.
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From Eqs. (3.1) – (3.4) we can get

Gq

ω,l− 1
2

(r)Gp

ω,l− 1
2

(r) =
1

2W
(3.12)

F q

ω,l+ 1
2

(r)F p

ω,l+ 1
2

(r) =
1

2W (ω − imf 1/2)2
[
fW ′2

4hW 2
− (l + 1)fW ′

h1/2rW
−W 2

(l + 1)2f

r2
+

2imf 1/2W 2

ω
+
m2fW 2

ω2
] (3.13)

Substituting Eqs. (3.12) and (3.13) into Eq. (A11), we get

A1 = Re
∞∑
l=0

(
l + 1

2(ω − imf 1/2)2
[
fW ′2

4hW 3
− (l + 1)fW ′

h1/2rW 2
+

(l + 1)2f

r2W

+(
2imf 1/2

ω
+
m2f

ω2
− 1)W ]− l

2W
+

r

f 1/2
) (3.14)

The fourth-order WKB approximation of A1 is obtained by first substi-

tuting the fourth-order W into Eq. (3.14); then expanding in inverse powers

of ω and keeping only terms of order ω−1 or higher, because terms of order

ω−3 and lower do not contribute to the divergence; finally, summing over l

by using the Plana sum formula, which says that for a function g(k)

∞∑
j=k

g(j) =
1

2
g(k) +

∫ ∞
k

gτdτ

+i
∫ ∞
0

dt

e2πt − 1
[g(k + it)− g(k − it)] (3.15)

The resulting expression of the fourth-order WKB approximation of A1
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is a function of ω as well as f(r), h(r) and their derivatives. The fourth-order

WKB approximations of A2 through A5 are also obtained in a similar fashion.

3.3 Calculation of < Tµν >numeric

The expressions of the components of < Tµν >numeric are given by Eqs.

(A8) – (A10) in Appendix A. To compute these components, it requires

numerical solutions of the mode equations [Eqs. (2.23) – (2.26)] for a very

large number of modes, which is an arduous task.

An approximation method to compute < Tµν >numeric is introduced in

[48]. In this method, < Tµν >unren is approximated by the sixth-order WKB

approximation. Therefore, Eq. (2.48) becomes

< Tµν >numeric= lim
x′→x

(< Tµν >6th−orderWKB − < Tµν >WKBdiv) (3.16)

where < Tµν >WKBdiv is the fourth-order WKB approximation mentioned

in Chapter 2. Both < Tµν >WKBdiv and < Tµν >6th−orderWKB contain the

divergent part of < Tµν >unren, so their difference is finite.

< Tµν >WKBdiv is obtained by substituting the fourth-order WKB ap-

proximations of A1 through A5, which are introduced above, into Eqs. (2.39)

– (2.41) and integrating over ω. Likewise, < Tµν >6th−orderWKB is obtained

by first solving Eq. (3.7) iteratively to the sixth order; the solution, the

sixth-order W, is substituted into Eq. (3.14) and the like to get the sixth-

order WKB approximations of A1 through A5. Then these A1 through A5
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are expanded in inverse powers of ω to the ω−5 order. Next, the Plana sum

formula [Eq. (3.15)] is used to sum over l. The resulting expressions of A1

through A5 are substituted into the expressions of < Tµν >unren [Eqs. (2.39)

– (2.41)]. After integration over ω, we get < Tµν >6th−orderWKB. Substi-

tuting < Tµν >6th−orderWKB and < Tµν >WKBdiv into Eq. (3.16), we obtain

< Tµν >numeric.

In my calculation, however, I compute the difference of< Tµν >6th−orderWKB

and < Tµν >WKBdiv directly rather than first compute these two quantities

separatly and then take their difference. This is achieved by first taking the

differences of the sixth-order WKB approximations of A1 through A5 and

the fourth-order WKB approximations of A1 through A5, then substituting

these differences into Eqs. (2.39) – (2.41), and finally integrating over ω. The

results are the components of < Tµν >numeric. This way of calculation avoids

much repetitive work in computing < Tµν >6th−orderWKB and < Tµν >WKBdiv

separately.

3.4 Renormalized stress-energy tensor

After < Tµν >analytic and < Tµν >numeric are computed, one gets

< Tµν >ren simply by adding them up [Eq. (2.37)]. The resulting expres-

sions of the renormalized stress-energy tensor components of a quantized

massive spin 1/2 field in a static spherically symmetric spacetime are listed

in Appendix B.
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3.5 Approximations used in computation

The fourth-order W is a basic element contained in many quantities

including the radial modes Fω,j(r) and Gω,j(r), and the radial functions

A1(r) through A5(r), which are in turn contained in the expressions of

< Tµν >unren, < Tµν >WKBdiv and < Tµν >numeric. However, the expression

of the fourth-order W is so complicated that it is intractable manually. Other

quantities that contain the fourth-order W are even more intractable. All

these quantities are calculated by using the computer program Mathematica

with approximations. To manipulate these quantities, Taylor expansion is

widely used and only significant parts are kept.

3.5.1 Approximation in computing the fourth-order W

To compute the fourth-order W, various terms in Eq. (3.11) are multiplied

by a dimensionless parameter e to different powers so as to track the order

of the WKB expansion. The zeroth-order Γ[W ] [Eq. (3.9)], which contains

zeroth-order W and its derivatives, is multiplied by e2. The first derivative

of the zeroth-order Γ[W ], which is Γ0[W ]′, is multiplied by another e; and

the second derivative of the zeroth-order Γ[W ], which is Γ0[W ]′′, is multiplied

by an additional e to the derivative of Γ[W ]′. The second-order Γ[W ], which

is Γ2[W ], is multiplied by e2. Besides, the first derivative of f(r) and h(r),

which are f ′(r) and h′(r) respectively, are each multiplied by an e. The

second derivative of f(r) and h(r), which are f ′′(r) and h′′(r) respectively,

are each multiplied by an additional e to the derivative of f ′(r) and h′(r).
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With various terms multiplied by different powers of e, the right-hand side

of Eq. (3.11) is expanded to the fourth-power e, and terms with higher

powers of e are truncated. By setting e = 1 in the remaining expression, the

fourth-order W is obtained.

3.5.2 Approximation in computing the radial functions

As introduced in section 3.2, the radial functions A1(r) through A5(r)

[Eqs. (A11) – (A15)] are also computed by WKB approximation. For exam-

ple, A1(r) is calculated by substituting the fourth-order W into Eq. (3.14).

The expression is expanded in inverse power of ω to the ω−1 order; terms

with order ω−3 or lower are truncated. This expansion is valid because we

are only looking for the divergent part of < Tµν >unren, and those truncated

terms do not contribute to divergence.

3.5.3 Approximation in computing < Tµν >numeric

< Tµν >numeric is computed by approximating < Tµν >unren by the sixth-

order WKB approximation. This is explained in section 3.3.

3.5.4 Approximation in numerical results

Given the uncertainties in the approximations used in the computation

and the poorly known value of the neutrino mass, one significant figure is

used in numerical results of the stress-energy tensor components. However,

while discussing numerical results in graphs, two significant figures are used
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in order to tell possible difference between different graphs.

3.6 Verification of previous work

The calculation in this thesis is based on the method developed by P.

Groves [40], who used the renormalization counter-terms calculated by Chris-

tensen [45]. I have checked and verified most equations in [40]. A few equa-

tions are not checked due to technical difficulties. As for the renormalization

counter-terms in [45], I have checked and verified only one term, which is

the simplest one. The rest terms are too complicated to compute due to

the complicated form of tensor indices. These tensor indices are so compli-

cated that current computer programs, including Mathematica and Maple,

are helpelessly to manipulate. To carry on the calculation of the renor-

malization counter-terms, Christensen particularly developed the computer

software MathTensor to manipulate the tensor indices. This software is com-

mercially available at present.
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Chapter 4. Stress-Energy Tensor of Two

Quantized Massive Spin 1/2 Fields in Four

Static Spherically Symmetric Wormhole

Spacetimes at Zero Temperature

4.1 Conditions of calculating stress-energy tensor for

two fields in four wormhole spacetimes

In this thesis, the method in [40] is applied to computing the renormal-

ized stress-energy tensor of two quantized massive spin 1/2 fields in four

static spherically symmetric wormhole spacetimes. One field is the quan-

tized neutrino field, and the other is the quantized proton field. Although

it is not very clear whether the neutrino is a Dirac particle, I model it so

in this thesis. The neutrino mass is not very well known. However, a set of

experiments [49, 50] have pinned down the mass of the neutrino in the range

of 0.05eV/c2 < mν < 0.28eV/c2. Within this range, a good estimation of the
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mass of the electronic neutrino is mν = 0.24eV/c2 [51]. I take this value for

the neutrino mass. As for the proton field, the mass of the field quantum is

mp = 938MeV/c2.

In my calculation, I use the sign conventions of Misner, Thorne and

Wheeler [52], and adopt Planck units. In this unit system, the mass of

the neutrino and the mass of proton are:

mν = 1.96 × 10−29mPlanck, (4.1)

mp = 7.67 × 10−20mPlanck, (4.2)

where mPlanck = 2.17651 × 10−8kg. A unit length is the Planck length, lp =

1.616199 × 10−35m. c (the speed of light), G (the Newtonian gravitational

constant) and h̄ (the reduced Planck constant) are set to be 1.

To be exotic matter, the stress-energy of the field must violate the weak

energy condition. To examine this, I plot τ0 and ζ0 = (τ0 − ρ0) as functions

of r0 (the radius of the wormhole’s throat) to see for what values of r0 that

Eqs. (1.14) and (1.15) are satisfied.

Moreover, I examine violation of the weak energy condition outside of the

wormhole’s throat. This requires the following two equations

τ = − < T rr >=
b/r − 2(r − b)Φ′

8πr2
> 0, (4.3)

τ − ρ =< T tt > − < T rr >=
b/r − 2(r − b)Φ′ − b′

8πr2
> 0, (4.4)
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be satisfied for r > r0 to some extent. I plot τ and ζ = (τ − ρ) as functions

of r to see the values of r for which Eqs. (4.3) and (4.4) are satisfied.

. The renormalized stress-energy tensor components of a quantized mas-

sive spin 1/2 field in a general static spherically symmetric spacetime are

computed and the resulting expressions are listed in Appendix B. For a spe-

cific wormhole spacetime, I substitute f(r) and h(r) in these equations [(B1),

(B2) and (B3)] by their specific functions in the metric equation for this

wormhole spacetime, and m by the neutrino mass [Eq. (4.1)] or proton mass

[Eq. (4.2)]. I set κ = 0 for the zero-temperature case. Finally, I expand

these components of < T νµ >ren in powers of r0 (for values at the throat of

the wormhole) or in powers of r (for values beyond the throat of the worm-

hole). These stress-energy components are expressed in the units of Fp/l
2
p,

where Fp = 1.21027 × 1044N is the Planck force; l2p = 2.61223 × 10−70m2 is

the Planck area.

In the following section, I will present and discuss the results of my cal-

culation. It should be noted that, as a result of using the parameter values

explained above, the stress-energy tensor components of these two fields turn

out to have unphysically large values in many cases. These large values make

the physical model not credible. However, in the interest of exploring the

mathematical structure of the physical model, I will check when the energy

conditions hold. Besides, some assertions are made for r < r0. They are

based on the formulae derived for r > r0 that may not be valid for r < r0.
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4.2 Stress-energy tensor of two quantized massive spin

1/2 fields in four wormhole spacetimes

4.2.1 Zero-tidal-force wormhole

The first class of wormhole examined is a particularly simple set of worm-

holes whose metric functions satisfy:

φ(r) = 0, (4.5)

b(r) = r0 = constant. (4.6)

Accordingly,

f(r) = 1, (4.7)

h(r) = (1 − r0
r

)−1. (4.8)

This type of wormhole is called a ”zero-tidal-force wormhole” because an

observer at the throat of the wormhole experiences zero tidal force.

A. The neutrino field

The stress-energy tensor components of a quantized neutrino field at the

throat of this type of wormhole are computed to be:

< T tt >0 =
1.6 × 1054

r80
− 5.9 × 1054

r60
− 0.01

r40
− 2.0 × 10−60

r20
, (4.9)
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< T rr >0 = −1.6 × 1054

r80
− 4.0 × 1054

r60
− 0.01

r40
+

0.0008

r30
− 0.00003

r20

−3.2 × 0−7

r0
, (4.10)

< T θθ >0 = 1.6 × 10−117 +
5.0 × 1054

r60
− 0.007

r40
− 2.1 × 10−60

r20
. (4.11)

In these expressions, higher inverse orders of r0 have much bigger coef-

ficients than those of lower inverse orders of r0. For example, in Eq. (4.9),

the 1/r80 term has a coefficient to the order of 1054, while the coefficient of

the 1/r20 term is to the order of 10−60. This implies that large values of r0

are suppressed, while small values of r0 are preferred. In other words, small

values of r0 contribute more to the stress-energy tensor.

Figure 4.1 is plotted for ζ0 and τ0 as functions of r0. From this figure

we see that ζ0 > 0 for r0 < 1.26lp, while τ0 > 0 for all values of r0 in the

plotted range. So, both ζ0 and τ0 are positive for r0 < 1.26lp. This means

that the neutrino field is exotic for this type of wormhole up to the throat

radius r0 < 1.26lp.

I have solved the equation ζ0 = 0 to get its roots. I find that r0 = 1.26lp

is the only root in the range of r0 > 0. Other roots are either negative or

imaginary. This means that in Figure 4.1, as r0 increases beyond 1.26lp, ζ0

will never become positive, thus assuring that the neutrino field is not exotic

for wormholes with larger values of r0.

The stress-energy tensor components of the quantized neutrino field in
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the entire spacetime for this type of wormhole geometry are too complicated

to list here. I list them in Appendix C. However, I plot the radial tension

τ and ζ = (τ − ρ) as functions of r in Figure 4.2 and Figure 4.3. Figure

4.2 is plotted for a zero-tidal-force wormhole with maximum possible throat

radius, r0 = 1.26lp, for which the quantized neutrino field is exotic. From

this figure we see that ζ > 0 for r up to r0 = 1.26lp and τ > 0 for r < 1.29lp.

This means that the weak energy condition is violated up to the boundary

of the wormhole’s throat for which the neutrino field is exotic.

Figure 4.3 is plotted for a zero-tidal-force wormhole with a smaller throat

radius, r0 = 0.50lp, for which the quantized neutrino field is exotic. In this

figure we see that ζ > 0 for r < 0.521lp, while τ > 0 for r < 0.524lp. This

indicates that the weak energy condition violation extends a little beyond the

throat of the wormhole. However, for this type of wormhole, the maximum

radial distance to which the weak energy condition is violated occurs with

a wormhole that has the maximum throat radius for which the quantized

neutrino field is exotic.

B. The proton field

The stress-energy tensor components of a quantized proton field at the

throat of the wormhole are computed to be:

< T tt >0 =
1.0 × 1035

r80
− 3.9 × 1035

r60
− 0.01

r40
− 3.0 × 10−41

r20
, (4.12)
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Figure 4. 1: ζ0 and τ0 of a quantized neutrino field as functions of r0 for
zero-tidal-force wormholes. ζ0 > 0 for r0 < 1.26lp; and τ0 > 0 for all values
of r0.

Figure 4. 2: ζ and τ of a quantized neutrino field as functions of r for a zero-
tidal-force wormhole with throat radius r0 = 1.26lp. ζ > 0 for r < 1.26lp,
while τ > 0 for r < 1.29lp.
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Figure 4. 3: ζ and τ of a quantized neutrino field as functions of r for a zero-
tidal-force wormhole with throat radius r0 = 0.50lp. ζ > 0 for r < 0.521lp,
while τ > 0 for r < 0.524lp.

< T rr >0 = −1.0 × 1035

r80
− 2.6 × 1035

r60
− 0.01

r40
+

0.0008

r30
+

2.8 × 10−17

r20

+
8.7 × 10−19

r0
, (4.13)

< T θθ >0 = 3.7 × 10−79 +
3.3 × 1035

r60
− 0.007

r40
− 3.3 × 10−41

r20
. (4.14)

Similar to the case of the neutrino field, these expressions exhibit a hierar-

chy of coefficients such that the higher inverse orders of r0 have much bigger

coefficients than those of lower orders of r0. This also implies that smaller

values of r0 contribute more than larger values of r0 to the stress-energy

tensor.
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Figure 4.4 is plotted for ζ0 and τ0 as functions of r0 for zero-tidal-force

wormholes. ζ0 > 0 for r0 < 1.26lp; and τ0 > 0 for all values of r0. So,

both ζ0 and τ0 are positive for r0 < 1.26lp. This implies that the quantized

proton field is also exotic for this type of wormhole up to the throat radius

r0 < 1.26lp. As in the case of the neutrino field, I solve the equation ζ0 = 0

and find r0 = 1.26lp is the only root for r0 > 0. So, ζ0 will never become

positive as r0 increases beyond this value. This result is the same as in the

case of the neutrino field.

The stress-energy tensor components of the quantized proton field in the

entire spacetime for this type of wormhole geometry are also listed in Ap-

pendix C. However, I plot τ and ζ as functions of r in Figure 4.5 and Figure

4.6. Figure 4.5 is plotted for a wormhole with the maximum possible throat

radius, r0 = 1.26lp, for which the quantized proton field is exotic. In the

graph, we see that ζ > 0 for r < 1.26lp, while τ > 0 for r < 1.29lp. This

suggests that the weak energy condition violation is limited to the boundary

of the wormhole’s throat.

Figure 4.6 is plotted for a wormhole with a smaller throat radius, r0 =

0.50lp, for which the proton field is exotic. ζ > 0 for r < 0.521lp; while

τ > 0 for r < 0.524lp. This indicates that the weak energy condition viola-

tion extends a little beyond the throat of the wormhole. As in the case of

the neutrino field, the maximum radial distance to which the weak energy

condition is violated occurs with a wormhole that has the maximum throat

radius for which the proton field is exotic, with the same numerical value.
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Figure 4. 4: ζ0 and τ0 of a quantized proton field as functions of r0 for zero-
tidal-force wormholes. ζ0 > 0 for r0 < 1.26lp; and τ0 > 0 for all values of
r0.

Figure 4. 5: ζ and τ of a quantized proton field as functions of r for a zero-
tidal-force wormhole with a throat radius r0 = 1.26lp. ζ > 0 for r < 1.26lp;
τ > 0 for r < 1.29lp.
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Figure 4. 6: ζ and τ of a quantized proton field as functions of r for a zero-
tidal-force wormhole with a throat radius r0 = 0.50lp. ζ > 0 for r < 0.521lp;
τ > 0 for r < 0.524lp.

4.2.2 The simple wormhole

This type of wormhole has the metric functions:

Φ(r) = 0, (4.15)

b(r) =
r20
r
. (4.16)

Accordingly,

f(r) = 1, (4.17)

h(r) = (1 − r20
r2

)−1. (4.18)
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This wormhole is discussed by Morris and Thorne [5] as an example of

traversable wormhole.

A. The neutrino field

I find the stress-energy tensor components of a quantized neutrino field

at the throat of this type of wormhole are:

< T tt >0 =
1.6 × 1054

r80
− 6.1 × 1054

r60
− 0.02

r40
− 1.8 × 10−60

r20
, (4.19)

< T rr >0 = −1.6 × 1054

r80
− 6.4 × 1055

r60
− 0.05

r40
+

0.002

r30
− 2.1 × 10−17

r20

+
2.6 × 10−18

r0
, (4.20)

< T θθ >0 = 1.6 × 10−117 +
3.5 × 1055

r60
− 0.02

r40
− 3.1 × 10−60

r20
. (4.21)

These expressions exhibit a similar hierarchy of coefficients as those of

the zero-tidal-force wormholes. The explanation is similar: smaller values of

r0 contribute more to the stress-energy tensor than larger values of r0. In

other words, the stress-energy tensor is stronger for smaller values of r0.

Figure 4.7 is plotted for ζ0 and τ0 as functions of r0. From this figure we

see that ζ0 > 0 for r0 < 3.32 × 1019lp, and τ > 0 for r0 < 3.42 × 1019lp. So,

both ζ0 and τ0 are positive in the range r0 < 3.32× 1019lp. This implies that

a quantized neutrino field is exotic for simple wormholes with a throat radius
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r0 < 3.32 × 1019lp.

The stress-energy tensor components of the quantized neutrino field for

the simple wormhole in the entire spacetime are listed in Appendix C. Figure

4.8 through Figure 4.10 are plotted for ζ and τ as functions of r for a simple

wormhole with maximum possible throat radius, r0 = 3.32×1019lp, for which

the quantized neutrino field is exotic. I solve ζ = 0 and get only one positive

root, r = r0 = 3.32 × 1019lp; for r > r0, there is no root. Solving τ = 0,

I get two positive roots: r = 3.32 × 1019lp and r = 3.29 × 1034lp. Figure

4.8 shows that both ζ and τ are positive beyond the wormhole’s throat, i.e.,

for r > r0 = 3.32 × 1019lp. However, Figure 4.9 and Figure 4.10 show that

τ becomes negative for r > 3.29 × 1034lp. Since there is no other root of

r beyond this value, we know that τ will never become positive for larger

values of r. Therefore, the weak energy condition violation extends to the

radial distance r = 3.29 × 1034lp.

Figure 4.11 and Figure 4.12 are plotted for ζ and τ as functions of r

for a simple wormhole with a smaller throat radius r0 = 1010lp for which

the quantized neutrino field is exotic. I solve ζ = 0 and get four positive

roots: r = 1.02× 1010lp, 1.49× 1010lp, 3.86× 1012lp, and 6.84× 1030lp; I solve

τ = 0 and get three positive roots: r = 1.03 × 1010lp, 1.42 × 1010lp, and

2.07×1030lp. These roots tell us that ζ and τ are positive in the two regions:

1010lp < r < 1.02 × 1010lp and 1.49 × 1010lp < r < 3.86 × 1012lp, as shown

in Figures 4.11 and 4.12. Therefore, the weak energy condition is violated in

these regions.
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The above two cases tell us that, for simple wormholes of different size, the

weak energy condition is violated in different regions of the entire spacetime.

However, the violation extends to the maximum radial distance, r = 3.29 ×

1034lp, for a simple wormhole that has the maximum throat radius r0 =

3.32 × 1019lp for which the quantized neutrino field is exotic.

Figure 4. 7: ζ0 and τ0 of a quantized neutrino field as functions of r0 for simple
wormholes. ζ0 > 0 for r0 < 3.32 × 1019lp; and τ0 > 0 for r0 < 3.43 × 1019lp.

B. The proton field

The stress-energy tensor components of a quantized proton field at the

throat of the simple wormhole are:

< T tt >0 =
1.0 × 1035

r80
− 4.0 × 1035

r60
− 0.02

r40
− 2.7 × 10−41

r20
, (4.22)
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Figure 4. 8: ζ and τ of a quantized neutrino field as functions of r for a
simple wormhole whose throat radius is r0 = 3.32× 1019lp. Both ζ and τ are
positive for r beyond the throat: r > r0 = 3.32 × 1019lp.

Figure 4. 9: ζ and τ of a quantized neutrino field as functions of r for a simple
wormhole whose throat radius is r0 = 3.32×1019lp. Both ζ and τ are positive
for r < 3.29 × 1034lp. However, τ becomes negative for r > 3.29 × 1034lp.
Note that the graph of τ is indistinguishable from the r0 axis.
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Figure 4. 10: Detail of Figure 4.9. τ becomes negative for r > 3.29 × 1034lp.

Figure 4. 11: ζ and τ of a quantized neutrino field as functions of r for a
simple wormhole whose throat radius is r0 = 1010lp. ζ > 0 for 1010lp < r <
1.02 × 1010lp; τ > 0 for 1010lp < r < 1.03 × 1010lp. Both ζ and τ are positive
in the range 1010lp < r < 1.02 × 1010lp.
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Figure 4. 12: ζ and τ of a quantized neutrino field as functions of r for a
simple wormhole whose throat radius is r0 = 1010lp. Both ζ and τ are positive
in the range 1.49 × 1010lp < r < 3.86 × 1012lp.

< T rr >0 = −1.0 × 1035

r80
− 4.2 × 1036

r60
− 0.05

r40
+

0.002

r30
− 2.1 × 10−17

r20

+
2.6 × 10−18

r0
, (4.23)

< T θθ >0 = 3.7 × 10−79 +
2.3 × 1036

r60
− 0.02

r40
− 4.7 × 10−41

r20
. (4.24)

The coefficients of these expressions have a similar hierarchy as those in

the previous cases. Its implication is the same: the stress-energy tensor is

stronger for smaller values of r0.

Figure 4.13 is plotted for ζ0 and τ0 as functions of r0. ζ0 > 0 for r0 <

1.34 × 1013lp; and τ0 > 0 for r0 < 1.38 × 1013lp. So, both ζ0 and τ0 are

positive for r0 < 1.34 × 1013lp. This means that a quantized proton field is
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exotic for this type of wormhole with a throat radius r0 < 1.34 × 1013lp. I

solve the equation ζ0 = 0 and find that r0 = 1.34 × 1013lp is the only real

root. Similarly, solving τ0 = 0 I find r0 = 1.38 × 1013lp is the only real

root. So we are convinced that both ζ0 and τ0 will not become positive as

r0 increases beyond these values, assuring the quantized proton field is not

exotic for wormholes with larger values of r0.

The stress-energy tensor components of the quantized proton field in the

entire spacetime for this type of wormhole geometry are listed in Appendix D.

However, I plot τ and ζ as functions of r for two simple wormholes of different

size. Figure 4.14 through Figure 4.16 are plotted for a simple wormhole

with the maximum possible throat radius, r0 = 1.34 × 1013lp, for which the

quantized proton field is exotic. I solve the equation ζ = 0 and find two

positive roots: r = 1.34 × 1013lp and r = 7.65 × 1022lp. Similarly, solving

τ = 0 I also find two positive roots: r = 1.34 × 1013lp and r = 7.23 × 1023lp.

These roots tell us that both ζ and τ are positive in the range 1.34×1013lp <

r < 7.65 × 1022lp. This means that the weak energy condition is violated up

to the radial distance r = 7.65 × 1022lp.

I further plot τ and ζ as functions of r for a simple wormhole whose

throat radius is r0 = 108lp. I solve ζ = 0 and find the only positive root is

r = 3.20×1020lp; solving τ = 0 I find the only positive root is r = 5.76×1021lp.

From these roots we know that both ζ and τ are positive for r < 3.20×1020lp,

as shown in Figure 4.17 through Figure 4.19. This means that the weak

energy condition is violated up to the radial distance r = 3.20 × 1020lp for
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this wormhole geometry.

Comparing the above two wormholes, we see that the weak energy con-

dition is violated to the maximum radial distance r = 7.65 × 1022lp for a

wormhole that has the maximum throat radius r0 = 1.34 × 1013lp for which

the quantized proton field is exotic.

Figure 4. 13: ζ0 and τ0 of a quantized proton field as functions of r0 for simple
wormholes. ζ0 > 0 for r0 < 1.34 × 1013lp; τ0 > 0 for r0 < 1.38 × 1013lp.

4.2.3 Proximal Schwarzschild wormhole

The metric of this type of wormhole is similar to the Schwarzschild metric

except for an additional term in gtt:

−gtt = 1 − r0
r

+
ε

r2
. (4.25)
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Figure 4. 14: ζ and τ of a quantized proton field as functions of r for a simple
wormhole whose throat radius is r0 = 1.34 × 1013lp. Both ζ > 0 and τ > 0
for r beyond the throat radius: r > r0 = 1.34 × 1013lp.

Figure 4. 15: ζ and τ of a quantized proton field as functions of r for a simple
wormhole whose throat radius is r0 = 1.34×1013lp. Both ζ and τ are positive
up to r = 7.65 × 1022lp.
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Figure 4. 16: Detail of Figure. 4.15. ζ becomes negative for r > 7.65×1022lp.

Figure 4. 17: ζ and τ of a quantized proton field as functions of r for a simple
wormhole whose throat radius is r0 = 108lp. Both ζ and τ are positive for
r = 3.20 × 1020lp. The graph τ is indistinguishable from the r0 axis.
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Figure 4. 18: Detail of Figure 3.17. ζ becomes negative for r > 3.20× 1020lp.

Figure 4. 19: Detail of Figure 4.17. τ becomes negative for r > 5.76× 1021lp.
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The parameter ε is a small positive constant which satisfies ε � r20 [53].

This parameter prevents the appearance of an event horizon in this worm-

hole spacetime and keeps the wormhole traversable. Due to its similarity

to the Schwarzschild spacetime, this type of wormhole is called proximal

Schwarzschild wormhole. For this type of wormhole,

Φ(r) =
1

2
ln(1 − r0

r
+

ε

r2
), (4.26)

b(r) = r0. (4.27)

Accordingly,

f(r) = 1 − r0
r

+
ε

r2
, (4.28)

h(r) = (1 − r0
r

)−1. (4.29)

A. The neutrino field

For the proximal Schwarzschild wormhole, I calculate the stress-energy

tensor components of a quantized neutrino field for the entire spacetime by

using the equations in Appendix A. The results are listed in Appendix E. By

setting r = r0 in Eqs. (E1) and (E2), we get Eqs. (E3) and (E4), expressions

of the stress-energy components at the throat of the wormhole.

I plot ζ0 and τ0 as functions of r0 and ε in Figures 4.20 and 4.21. Figure

4.20 is plotted for ε up to 108, and Figure 4.21 is plotted for ε up to 1018. In

both cases, the weak energy condition is violated for wormholes with throat

radius r0 up to 3.57 × 1019lp. So I conclude that a quantized neutrino field
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is exotic for proximal Schwarzschild wormholes with a throat radius r0 up to

3.57 × 1019lp.

In Figure 4.22 and Figure 4.23, I plot ζ and τ as functions of r and ε

to see the weak energy condition is violated to what extent in the entire

spacetime of this wormhole geometry for which the quantized neutrino field

is exotic. To better illustrate these figures, I define rc to be the critical value

of r below which the weak energy condition is violated, and εc to be the

critical value of ε above which the weak energy condition is violated. Figure

4.22 is plotted for a proximal Schwarzschild wormhole with a throat radius

r0 = 3.57 × 1019lp. ε starts from 1 (since it is a positive constant), and r

starts from r0 = 3.57 × 1019lp. Since ε must satisfies ε � r20, I plot ε up

to 1036 to ensure that ε is less than 1% of r20. In the shaded area, both ζ

and τ are positive, which means that the weak energy condition is violated.

Figure 4.22 shows that, within the range of plot, the value of rc is in linear

proportion to the value of εc. As εc reaches its maximum value of 1036, rc

reaches its maximum value of 1.3 × 10102lp.

Figure 4.23 is plotted for a proximal Schwarzschild wormhole with a

smaller throat radius r0 = 1010lp, and ε is plotted to 1018 to ensure that

ε is less than 1% of r20. In the shaded area both ζ and τ are positive, which

means that the weak energy condition is violated. This figure also shows

that within the range of plot, the value of rc is in linear proportion to the

value of εc. As εc reaches its maximum value of 1018, rc reaches its maximum

value of 1.04 × 1065lp.

66



Comparing Figure 4.22 and Figure 4.23, we see that the extent to which

the weak energy condition is violated depends on the size of the wormhole

(the throat radius r0) as well as on the value of ε. The violation extends to

the maximum radial value of rc = 1.3 × 10102lp for a wormhole that has the

maximum possible throat radius r0 = 3.57 × 1019lp for which the quantized

neutrino field is exotic.

Figure 4. 20: ζ0 and τ0 of a quantized neutrino field as functions of r0 and
ε for proximal Schwarzschild wormholes. In the shaded area (105lp < r0 <
3.57 × 1019lp), both ζ0 and τ0 are positive.

B. The proton field

The stress-energy tensor components of a quantized proton field for the

entire spacetime of the proximal Schwarzschild wormhole geometry are listed

in Eqs. (E5) and (E6) in Appendix E. By setting r = r0 in these two

equations, we get Eqs. (E7) and (E8), expressions of the stress-energy com-
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Figure 4. 21: ζ0 and τ0 of a quantized neutrino field as functions of r0 and
ε for proximal Schwarzschild wormholes. In the shaded area (105lp < r0 <
3.57 × 1019lp), both ζ0 and τ0 are positive.

Figure 4. 22: ζ and τ of a quantized neutrino field as functions of r and ε for
a proximal Schwarzschild wormhole with a throat radius r0 = 3.57 × 1019lp.
In the shaded area, both ζ and τ are positive, i.e., weak energy condition is
violated.
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Figure 4. 23: ζ and τ of a quantized neutrino field as functions of r and ε
for a proximal Schwarzschild wormhole with a throat radius r0 = 1010lp. In
the shaded area, both ζ and τ are positive, i.e., weak energy condition is
violated.

ponents at the throat of the wormhole. I plot ζ0 and τ0 as functions of r0

and ε in Figure 4.24 and Figure 4.25. In the shaded area, both ζ0 and τ0

are positive. Figure 4.24 shows that, for ε up to 108, the quantized proton

field is exotic for wormholes with r0 < 1.41× 1013lp. Figure 4.25 shows that,

for ε up to 1018, the quantized proton field is exotic for wormholes also with

r0 < 1.41 × 1013lp. So I conclude that a quantized proton field is exotic for

proximal Schwarzschild wormholes with r0 < 1.41 × 1013lp.

I also plot ζ and τ as functions of r and ε to see weak energy condition is

violated to what extent in the entire spacetime for this wormhole geometry.

Figure 4.26 through Figure 4.29 are plotted for a proximal Schwarzschild

wormhole with the biggest possible throat radius r0 = 1.41 × 1013lp for
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which the quantized proton field is exotic. In these figures, r starts from

the minimum value r0 = 1.41 × 1013lp, and ε starts from 1. From Fig-

ure 4.26 we see that, for εc up to 108, rc is linearly proportional to εc. For

εc = 108, rc = 3.76 × 1051lp.

Figure 4.27 shows that, as ε is greater than about 108, the value of rc

increases not in linear proportion to the value of εc, but follows a curved

relationship. Figure 4.28 and Figure 4.29 show that, as ε reaches the value

of about 1011, rc reaches its maximum value of 1.02 × 1052lp; as ε further

increases, this value of rc does not change.

In Figure 4.30 through Figure 4.33, I plot ζ and τ as functions of r and

ε for a proximal Schwarzschild wormhole with a smaller throat radius, r0 =

108lp, for which the quantized proton field is exotic. Figure 4.30 shows that,

for ε up to 108, rc is in linear proportion to εc. For εc = 108, rc = 1.90×1041lp.

Figure 4.31 shows that, as ε is greater than about 108, the value of rc is

not in linear proportion to the value of εc, but follows a curved relationship.

Figure 4.32 and Figure 4.33 show that, as ε reaches the value of about 1010, rc

reaches its maximum value of 5.0 × 1041lp; as ε further increases, this value

of rc does not change.

Figure 4.26 through Figure 4.33 show that rc depends on both the size

of the wormhole (the value of the throat radius r0) and the value of ε. The

maximum value of rc(1.02 × 1052lp) occurs with a wormhole that has the

maximum throat radius r0 = 1.41 × 1013lp for which the quantized proton

field is exotic.
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Figure 4. 24: ζ0 and τ0 of a quantized proton field as functions of r0 and ε for
proximal Schwarzschild wormholes. In the shaded area (r0 < 1.41 × 1013lp),
both ζ0 and τ0 are positive.

Figure 4. 25: ζ0 and τ0 of a quantized proton field as functions of r0 and ε for
proximal Schwarzschild wormholes. In the shaded area (r0 < 1.41 × 1013lp),
both ζ0 and τ0 are positive.
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Figure 4. 26: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 1.41× 1013lp. In
the shaded area, both ζ and τ are positive. rc is in linear proportion to εc.

Figure 4. 27: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 1.41× 1013lp. In
the shaded area, both ζ and τ are positive.
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Figure 4. 28: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 1.41× 1013lp. In
the shaded area (r < 1.02 × 1052lp), both ζ and τ are positive.

Figure 4. 29: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 1.41× 1013lp. In
the shaded area (r < 1.02 × 1052lp), both ζ and τ are positive.
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Figure 4. 30: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 108lp. In the
shaded area, both ζ and τ are positive. rc is in linear proportion to εc.

Figure 4. 31: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 108lp. In the
shaded area, both ζ and τ are positive.
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Figure 4. 32: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 108lp. In the
shaded area (r < 5.10 × 1041lp), both ζ and τ are positive.

Figure 4. 33: ζ and τ of a quantized proton field as functions of r and ε for
a proximal Schwarzschild wormhole with throat radius r0 = 108lp. In the
shaded area (r < 5.10 × 1041lp), both ζ and τ are positive.
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4.2.4 Wormhole with finite radial cutoff of stress-energy

The last type of wormhole that I examine is the wormhole with finite

radial cutoff of the stress-energy tensor. The metric for this type of wormhole

is:

Φ(r) = 0, (4.30)

b(r) = r0(
r

r0
)1−η. (4.31)

where η is a constant bounded by 0 < η < 1. Accordingly,

f(r) = 1, (4.32)

h(r) = [1 − (
r0
r

)η]−1. (4.33)

A. The neutrino field

The stress-energy tensor components of a quantized neutrino field for

this type of wormhole in the entire spacetime are also too complicated to

list here. So I put them in Eqs. (F1) and (F2) in Appendix F. By setting

r = r0 in these two equations, we get Eqs. (F3) and (F4), the stress-energy

tensor components of a quantized neutrino field at the throat of this type of

wormhole.

Figure 4.34 is plotted for ζ0 and τ0 as functions of r0 and η. In this figure

we see that both ζ0 and τ0 are positive for r0 up to around 0.6lp. This means

that a quantized neutrino field is exotic for this type of wormhole with a

throat radius r0 up to around 0.6lp. However, the maximum value of the
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throat radius r0 varies slightly as η varies. For η = 0, the maximum value of

r0 is r0 = 0.59lp; for η = 1, the maximum value of r0 is r0 = 0.62lp.

I further plot ζ and τ as functions of r and η in the neighborhood of the

wormhole to see the quantity of the weak energy condition violation in the

entire spacetime. Figure 4.35 is plotted for a wormhole whose throat radius

is r0 = 0.59lp for which the quantized neutrino field is exotic. From the figure

we see that the value of rc increases as η increases, ranging from 0.59lp (for

η = 0) to 0.62lp (for η = 1). Figure 4.36 is plotted for a wormhole whose

throat radius is 0.40lp for which the quantized neutrino field is exotic. The

value of rc also increases as η increases, ranging from 0.59lp (for η = 0) to

0.62lp (for η = 1), exactly as in the case of r0 = 0.59lp. However, Figure 4.36

looks different from Figure 4.35 because it is plotted for different range of r.

If we magnify part of Figure 4.36 into Figure 4.37, for the same range of r as

in Figure 4.35, we see that Figure 4.37 looks exactly the same as Figure 4.35.

This tells us that the extent to which the weak energy condition is violated

in a quantized neutrino field for this type of wormhole is independent of the

throat radius of the wormhole for which the quantized neutrino field is exotic.

For a wormhole that has the maximum throat radius (r0 ranges between

0.59lp and 0.62lp depending on the value of η), the weak energy condition

violation is limited to the boundary of the wormhole’s throat (rc = r0) for

all values of η; while for a wormhole that has a smaller throat radius (r0 <

0.59lp), the weak energy condition violation extends beyond the boundary of

the wormhole’s throat.
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Figure 4. 34: ζ0 and τ0 of a quantized neutrino field as functions of r0 and η
for wormholes with finite radial cutoff of stress-energy tensor. In the shaded
area, both ζ0 and τ0 are positive.

Figure 4. 35: ζ and τ of a quantized neutrino field as functions of r and η
for a wormhole with finite radial cutoff of stress-energy tensor whose throat
radius is r0 = 0.59lp. In the shaded area, both ζ and τ are positive.
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Figure 4. 36: ζ and τ of a quantized neutrino field as functions of r and η
for a wormhole with finite radial cutoff of stress-energy tensor whose throat
radius is r0 = 0.40lp. In the shaded area, both ζ and τ are positive.

Figure 4. 37: Detail of Figure 4.36. For η = 0, rc = 0.59lp; for η = 1, rc =
0.62lp.
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B. The proton field

The stress-energy tensor components of a quantized proton field for this

type of wormhole in the entire spacetime are listed in Eqs. (F5) and (F6) in

Appendix F. By setting r = r0 in these two equations, we get the expressions

for the stress-energy tensor components at the throat of the wormhole.

I plot ζ0 and τ0 as functions of r0 and η in Figure 4.38. This figure

shows that ζ0 and τ0 are positive for r0 up to around 0.6lp. This means that

a quantized proton field is exotic for this type of wormhole with a throat

radius up to around 0.6lp. However, the maximum radius of the throat r0

varies slightly as η varies, ranging from 0.59lp (for η = 0) to 0.62lp (for η = 1).

This is the same as in the case of the quantized neutrino field.

I further plot ζ and τ as functions of r and η in the neighborhood of the

wormhole to see the quantity of the weak energy condition violation in the

entire spacetime. Figure 4.39 is plotted for a wormhole whose throat radius

is r0 = 0.59lp. From the graph we see that the value of rc increases as η

increases, ranging from 0.59lp (for η = 0) to 0.62lp (for η = 1). Figure 4.40

is plotted for a wormhole whose throat radius is r0 = 0.40lp. The value of

rc also increases as η increases, ranging from 0.59lp (for η = 0) to 0.66lp (for

η = 1), almost the same as in the case of r0 = 0.59lp. This tells us that the

extent to which the weak energy condition is violated in a quantized proton

field for this type of wormhole is almost independent of the throat radius of

the wormhole, the same as in the case of the quantized neutrino field. For a

wormhole that has the maximum throat radius (r0 ranges between 0.59lp and
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0.62lp depending on the value of η), the weak energy condition violation is

limited to the boundary of the wormhole’s throat (rc = r0) for all values of η;

while for a wormhole that has a smaller throat radius (r0 < 0.59lp), the weak

energy condition violation extends beyond the boundary of the wormhole’s

throat.

Figure 4. 38: ζ0 and τ0 of a quantized proton field as functions of r0 and η
for wormholes with finite radial cutoff of stress-energy tensor. In the shaded
area, both ζ0 and τ0 are positive.
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Figure 4. 39: ζ and τ of a quantized proton field as functions of r and η for a
wormhole with finite radial cutoff of stress-energy tensor whose throat radius
is r0 = 0.59lp. In the shaded area, both ζ and τ are positive.

Figure 4. 40: ζ and τ of a quantized proton field as functions of r and η for a
wormhole with finite radial cutoff of stress-energy tensor whose throat radius
is r0 = 0.40lp. In the shaded area, both ζ and τ are positive.
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Chapter 5. Stress-Energy Tensor of Two

Quantized Massive Spin 1/2 Fields in Four

Static Spherically Symmetric Wormhole

Spacetimes in Thermal States

5.1 Introduction

As introduced in Chapter 2, we take expectation value of the stress-energy

tensor in Eq. (2.2). In thermal states, the expectation value of an observable

is defined to be its thermal average, which is based on the equipartition

theorem. In classical statistical mechanics, the equipartition theorem is a

general formula that relates the temperature of a system with its average

energies. The original idea of equipartition theorem was that, in thermal

equilibrium, energy is shared equally among all of its various forms. For

example, the average kinetic energy per degree of freedom in the translational

motion of a molecule should equal that of its rotational motions.

83



The equipartition theorem makes quantitative predictions. Like the virial

theorem, it gives the total average of kinetic and potential energies for a

system at a given temperature, from which the system’s heat capacity can

be calculated. It also gives the average values of individual components of

the energy, such as the kinetic energy of a particle. For example, it predicts

that every molecule in a monoatomic ideal gas has an average kinetic energy

of 3
2
kBT in thermal equilibrium, where kB is the Boltzmann constant and T

is the temperature.

However, the equipartition law becomes inaccurate when quantum effects

are significant, and it breaks down when the thermal energy kBT is signif-

icantly smaller than the spacing between energy levels. This happens, for

instance, at a very low temperature. Equipartition no longer holds because

it is a poor approximation to assume that the energy levels form a smooth

continuum, which is required in the derivation of the equipartition theorem.

In such circumstances, the mechanism of thermal equilibrium is unclear. My

calculation of the stress-energy tensor of quantized massive spin 1/2 fields in

thermal states is thus a somewhat formal and natural work not yet supported

by a detailed picture of the physical mechanisms involved.
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5.2 Stress-energy tensor of two quantized massive spin

1/2 fields in four wormhole spacetimes

The stress-energy tensor components of a quantized massive spin 1/2

field in a general static spherically symmetric spacetime in thermal states

are calculated and their resulting expressions are listed in Appendix B. In

this chapter, I use the equations in Appendix B to calculate the stress-energy

tensor of the quantized neutrino field and quantized proton field for four

wormhole spacetimes in thermal states. For each wormhole spacetime, I

substitute f(r) and h(r) by their specific functions in the line element for

this wormhole spacetime, and m by the neutrino mass [Eq. (3.1)] or proton

mass [Eq. (3.2)]. Finally, I expand the expressions of < T νµ >ren in powers

of r0 (for values at the throat of the wormhole) or in powers of r (for values

beyond the throat of the wormhole).

In Planck units, a unit temperature is Tp = 1.416833 × 1032K. It should

be noted that neutrinos and antineutrinos were decoupled from other parti-

cles at a temperature T ≈ 1.3 × 1011K(≈ 10−21Tp) [54]. At a temperature

T ≈ 1012K(≈ 10−20Tp), neutrons and protons appeared to be a very small

contamination among other particles [54]. So, in my calculation, I consider

temperature up to 10−21Tp for the neutrino field and up to 10−20Tp for the

proton field.

In the following subsections, I will present and discuss the results of my

calculation. It should be noted that, as a result of using the parameter values
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that I have chosen, the stress-energy tensor components of these two fields

turn out to have unphysically large values in many cases. These large values

make the physical model not credible. However, in the interest of exploring

the mathematical structure of the physical model, I will check when the

energy conditions hold. Besides, some assertions are made for r < r0. They

are based on the formulae derived for r > r0 that may not be valid for r < r0.

5.2.1 Zero-tidal-force wormhole

The first class of wormhole examined is a particularly simple set of worm-

holes whose metric functions satisfy:

Φ(r) = 0, (5.1)

b(r) = r0 = constant. (5.2)

Accordingly,

f(r) = 1, (5.3)

h(r) = (1 − r0
r

)−1. (5.4)

This type of wormhole is called a zero-tidal-force wormhole because an

observer at the throat of the wormhole experiences zero tidal force.

A. The neutrino field

The stress-energy tensor components of a quantized neutrino field at the

throat of this type of wormhole in thermal states are computed to be (in
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units of Fp/l
2
p):

< T tt >0 =
1.6 × 1054

r80
− 5.9 × 1054

r60
− 0.08

r40
− 2.0 × 10−60

r20
+ 3.2 × 10−59T 2

+
2.2 × 10−16T 2

r20
− 1.2T 4 − 0.0009(lnT )

r40
, (5.5)

< T rr >0 = −1.6 × 1054

r80
− 4.0 × 1054

r60
− 0.1

r40
+

0.0008

r30
+

2.8 × 10−17

r20

+
8.7 × 10−19

r0
− 3.2 × 10−59T 2 − 0.01T 2

r20
+ 0.4T 4

−0.002(lnT )

r40
, (5.6)

< T θθ >0 = 1.6 × 10−117 +
5.0 × 1054

r60
− 0.2

r40
− 2.1 × 10−60

r20
− 3.2 × 10−59T 2

+
0.007T 2

r20
+ 0.4T 4 − 0.003(lnT )

r40
. (5.7)

In these expressions, the terms with higher inverse orders of r0 have a

much bigger coefficient than those terms with lower inverse orders of r0.

This implies that smaller values of r0 contribute more to the stress-energy

tensor. In other words, the magnitude of the stress-energy tensor is larger

for smaller values of r0. Meanwhile, those terms involving temperature have

relatively small coefficients. This implies that temperature plays a small and

even negligible part in the stress-energy tensor. This is all the more true

considering that the temperatures considered are less than 10−21Tp.

87



Figure 5.1 is plotted for ζ0 and τ0 as functions of T and r0. In the shaded

area, which is to the left of the line r0 = 1.26lp, both ζ0 > 0 and τ0 > 0. This

means that a quantized neutrino field is exotic for this type of wormhole with

throat radius r0 < 1.26lp. This numerical result is the same as that in the

zero-temperature case. Figure 5.1 shows that temperature has no effect on

the result.

I have also computed the stress-energy tensor components in the entire

spacetime of the zero-tidal-force wormhole geometry for which the quantized

neutrino field is exotic. They are too complicated to list here. So I list

them in Appendix C. However, I plot ζ and τ as functions of T and r to see

the domain of the weak energy condition violation in the neighborhood of

the wormhole. Figure 5.2 is plotted for a zero-tidal-force wormhole that has

the maximum possible throat radius, r0 = 1.26lp, for which the quantized

neutrino field is exotic. This figure shows that both ζ and τ are positive for

r < 1.26lp, independent of the temperature. So, the weak energy condition

violation for this wormhole is limited to the boundary of its throat.

Figure 5.3 is plotted for a zero-tidal-force wormhole whose throat radius

is r0 = 0.50lp for which the quantized neutrino field is exotic. The figure

shows that both ζ and τ are positive for r < 0.52lp, also independent of the

temperature. This means that the weak energy condition violation for this

wormhole extends a little beyond its throat.

B. The proton field

Similarly, the stress-energy tensor components of a quantized proton field
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Figure 5. 1: ζ0 and τ0 of a quantized neutrino field as functions of T and r0
for zero-tidal-force wormholes. Both ζ0 > 0 and τ0 > 0 for r0 < 1.26lp.

Figure 5. 2: ζ and τ of a quantized neutrino field as functions of T and r for
a zero-tidal-force wormhole whose throat radius is r0 = 1.26lp. Both ζ > 0
and τ > 0 for r < 1.26lp.
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Figure 5. 3: ζ and τ of a quantized neutrino field as functions of T and r for
a zero-tidal-force wormhole whose throat radius is r0 = 0.50lp. Both ζ > 0
and τ > 0 for r < 0.52lp.

at the throat of the zero-tidal-force wormhole in thermal states are computed

to be (in units of Fp/l
2
p):

< T tt >0 =
1.0 × 1035

r80
− 3.9 × 1035

r60
− 0.05

r40
− 3.0 × 10−41

r20
+ 4.9 × 10−40T 2

+
2.2 × 10−16T 2

r20
− 1.2T 4 − 0.0009(lnT )

r40
, (5.8)

< T rr >0 = −1.0 × 1035

r80
− 2.6 × 1035

r60
− 0.09

r40
+

0.0008

r30
+

2.8 × 10−17

r20

+
8.7 × 10−19

r0
− 4.9 × 10−40T 2 − 0.01T 2

r20
+ 0.4T 4

−0.002(lnT )

r40
, (5.9)
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< T θθ >0 = 3.7 × 10−79 +
3.3 × 1035

r60
− 0.1

r40
− 3.3 × 10−41

r20
− 4.9 × 10−40T 2

+
0.007T 2

r20
+ 0.4T 4 − 0.003(lnT )

r40
. (5.10)

These expressions exhibit a similar hierarchy of coefficients as in the case

of the neutrino field. The terms with higher inverse orders of r0 have a

much bigger coefficient than those terms with lower inverse orders of r0. The

implication is similar: smaller values of r0 contribute more to the stress-

energy tensor; or in other words, the magnitude of the stress-energy tensor

is larger for smaller values of r0. As in the case of the neutrino field, those

terms involving temperature have relatively small coefficients. This implies

that temperature plays a small and even negligible part in the stress-energy

tensor. This is all the more true considering that temperature has a maximum

value of only 10−20Tp.

ζ0 and τ0 are plotted in Figure 5.4 as functions of T and r0. Both ζ0 > 0

and τ0 > 0 for r0 < 1.26lp. This implies that the quantized proton field is

also exotic for this type of wormhole with the radius r0 < 1.26lp. Figure 5.4

shows that temperature has no effect on this result.

I have computed the stress-energy components of the quantized proton

field in the entire spacetime for the zero-tidal-force wormhole geometry in

thermal states, and list them in Appendix C. Here I present figures of ζ and

τ as functions of T and r for two zero-tidal-force wormholes of different size

for which the quantized proton field is exotic. Figure 5.5 is plotted for a
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wormhole with the maximum possible throat radius, r0 = 1.26lp, for which

the quantized proton field is exotic. The figure shows that both ζ and τ

are positive for r < 1.26lp, independent of the temperature. This implies

that the weak energy condition violation is limited to the boundary of the

wormhole’s throat. This is the same as in the zero-temperature case.

Figure 5.6 is plotted for a zero-tidal-force wormhole whose throat radius

is r0 = 0.50lp. This figure shows that both ζ and τ are positive for r < 0.52lp,

independent of the temperature. This implies that the weak energy condition

violation extends a little beyond the wormhole’s throat. This result is the

same as in the case of zero temperature.

Figure 5. 4: ζ0 and τ0 of a quantized proton field as functions of T and r0
for zero-tidal-force wormholes. Both ζ0 > 0 and τ0 > 0 for r0 < 1.26lp.
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Figure 5. 5: ζ and τ of a quantized proton field as functions of T and r for
a zero-tidal-force wormhole whose throat radius is r0 = 1.26lp. Both ζ > 0
and τ > 0 for r < 1.26lp.

Figure 5. 6: ζ and τ of a quantized proton field as functions of T and r for
a zero-tidal-force wormhole whose throat radius is r0 = 0.50lp. Both ζ > 0
and τ > 0 for r < 0.52lp.
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5.2.2 The simple wormhole

This type of wormhole has the metric functions:

Φ(r) = 0, (5.11)

b(r) =
r20
r
. (5.12)

Accordingly,

f(r) = 1, (5.13)

h(r) = (1 − r20
r2

)−1. (5.14)

This wormhole is discussed by Morris and Thorne [5] as an example of

traversable wormhole.

A. The neutrino field

I find the stress-energy tensor components of a quantized neutrino field

at the throat of the simple wormhole to be (in units of Fp/l
2
p):

< T tt >0 =
1.6 × 1054

r80
− 6.1 × 1054

r60
− 0.02

r40
− 1.8 × 10−60

r20
+ 3.2 × 10−59T 2

−0.01T 2

r20
− 1.2T 4 − 1.6 × 10−11(lnT )

r40
, (5.15)

< T rr >0 = −1.6 × 1054

r80
− 6.4 × 1055

r60
− 1.0

r40
+

0.002

r30
− 2.1 × 10−17

r20

+
2.6 × 10−18

r0
− 3.2 × 10−59T2 −

0.01T 2

r20
+ 0.4T 4
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−0.01(lnT )

r40
, (5.16)

< T θθ >0 = 1.6 × 10−117 +
3.5 × 1055

r60
− 0.4

r40
− 3.1 × 10−60

r20
− 3.2 × 10−59T 2

+
0.01T 2

r20
+ 0.4T 4 − 0.005(lnT )

r40
. (5.17)

The coefficients of these expressions have the same hierarchy as in the

previous cases. Its implication is the same: smaller values of r0 contribute

more to the stress-energy tensor. Besides, terms involving temperature have

relatively small coefficients. This implies that temperature plays a negligible

part in the stress-energy tensor.

Figure 5.7 is plotted for ζ0 and τ0 as functions of T and r0. Both ζ0 > 0

and τ0 > 0 for r0 < 3.32 × 1019lp. This implies that a quantized neutrino

fieldis exotic for simple wormholes with a throat radius r0 < 3.32 × 1019lp.

Figure 5.7 also shows that temperature exerts no influence on ththis result.

It is the same as in the zero-temperature case.

I also have computed the stress-energy tensor components in the entire

spacetime for the simple wormhole geometry for which the quantized neutrino

field is exotic in thermal states. I list them in Appendix D. Here I present

Figure 5.8 through Figure 5.10 that show ζ and τ as functions of T and r

for two simple wormholes of different size. Figure 5.8 is plotted for a simple

wormhole with the maximum possible throat radius, r0 = 3.32 × 1019lp, for

which the quantized neutrino field is exotic. This figure shows that both
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ζ > 0 and τ > 0 for r < 3.29 × 1034lp. This suggests that the weak energy

condition violation for this wormhole extends well beyond the wormhole’s

throat.

Figure 5.9 and Figure 5.10 are plotted for a simple wormhole whose throat

radius is r0 = 1010lp. Figure 5.9 shows that both ζ > 0 and τ > 0 for

1010lp < r < 1.02×1010lp, while Figure 5.10 shows that both ζ > 0 and τ > 0

for 1.49 × 1010lp < r < 3.86 × 1012lp. Therefore, the weak energy violation

condition is violated in two regions beyond the throat of this wormhole. This

result is also the same as that of the zero-temperature case.

Figure 5. 7: ζ0 and τ0 of a quantized neutrino field as functions of T and r0
for simple wormholes. Both ζ0 > 0 and τ0 > 0 for r0 < 3.32 × 1019lp.

B. The proton field

The stress-energy tensor components of a quantized proton field at the

96



Figure 5. 8: ζ and τ of a quantized neutrino field as functions of T and r
for a simple wormhole whose throat radius is r0 = 3.32 × 1019lp. Both ζ > 0
and τ > 0 for r < 3.29 × 1034lp.

Figure 5. 9: ζ and τ of a quantized neutrino field as functions of T and r for
a simple wormhole whose throat radius is r0 = 1010lp. Both ζ > 0 and τ > 0
for 1010lp < r < 1.02 × 1010lp.
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Figure 5. 10: ζ and τ of a quantized neutrino field as functions of T and r
for a simple wormhole whose throat radius is r0 = 1010lp. Both ζ > 0 and
τ > 0 for 1.49 × 1010lp < r < 3.86 × 1012lp.

throat of the simple wormhole are found to be (in units of Fp/l
2
p):

< T tt >0 =
1.0 × 1035

r80
− 4.0 × 1035

r60
− 0.02

r40
− 2.7 × 10−41

r20
+ 4.9 × 10−40T 2

−0.01T 2

r20
− 1.2T 4 − 1.6 × 10−11(lnT )

r40
, (5.18)

< T rr >0 = −1.0 × 1035

r80
− 4.2 × 1036

r60
− 0.5

r40
+

0.002

r30
− 2.1 × 10−17

r20

+
2.6 × 10−18

r0
− 4.9 × 10−40T 2 − 0.01T 2

r20
+ 0.4T 4

−0.01(lnT )

r40
, (5.19)
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< T θθ >0 = 3.7 × 10−79 +
2.3 × 1036

r60
− 0.2

r40
− 4.7 × 10−41

r20
− 4.9 × 10−40T 2

+
0.01T 2

r20
+ 0.4T 4 − 0.005(lnT )

r40
. (5.20)

These expressions exhibit the same hierarchy of coefficients as in the

previous cases. The implication is the same: smaller values of r0 contribute

more to the stress-energy tensor, and temperature plays a negligible part.

Figure 5.11 is plotted for ζ0 and τ0 as functions of T and r0 for simple

wormholes in thermal states. Both ζ0 > 0 and τ0 > 0 for r0 < 1.34 × 1013lp.

This means that a quantized proton field is exotic for simple wormholes with

a throat radius r0 < 1.34 × 1013lp in thermal states. It is the same as in the

zero-temperature case.

I also have computed the stress-energy tensor components in the entire

spacetime for simple wormhole geometry in thermal states. I list them in

Appendix D. Here I present Figure 5.12 and Figure 5.13 to show ζ and τ as

functions of T and r for two simple wormholes of different size for which the

quantized proton field is exotic. Figure 5.12 is plotted for a simple wormhole

with the maximum possible throat radius, r0 = 1.34 × 1013lp. The figure

shows that both ζ > 0 and τ > 0 for 1.34 × 1013lp < r < 7.65 × 1022lp. This

suggests that the weak energy condition violation extends well beyond the

throat of the wormhole, and is independent of temperature.

Figure 5.13 is plotted for a simple wormhole whose throat radius is r0 =

108lp. The figure shows that both ζ > 0 and τ > 0 for 108lp < r < 5.76 ×
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1021lp. This implies that the weak energy condition is violated in this region,

independent of temperature.

It should be noted that for both wormholes, the magnitudes of the weak

energy condition violation in the entire spacetime of the wormhole geometry

for which the field is exotic are the same as in the zero-temperature case.

Figure 5. 11: ζ0 and τ0 of a quantized proton field as functions of T and r0
for simple wormholes. Both ζ0 > 0 and τ0 > 0 for r0 < 1.34 × 1013lp.

5.2.3 Proximal Schwarzschild wormhole

The metric of this type of wormhole is similar to the Schwarzschild metric

except for an additional term in gtt:

−gtt = 1 − r0
r

+
ε

r2
. (5.21)
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Figure 5. 12: ζ and τ of a quantized proton field as functions of T and r for
a simple wormhole whose throat radius is r0 = 1.34×1013lp. Both ζ > 0 and
τ > 0 for 1.34 × 1013lp < r < 7.65 × 1022lp.

Figure 5. 13: ζ and τ of a quantized proton field as functions of T and r for
a simple wormhole whose throat radius is r0 = 108lp. Both ζ > 0 and τ > 0
for 108lp < r < 5.76 × 1021lp.
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The parameter ε is a small positive constant which satisfies ε� r [39].

This parameter prevents the appearance of an event horizon in this worm-

hole spacetime and keeps the wormhole traversable. Due to its similarity

to the Schwarzschild spacetime, this type of wormhole is called proximal

Schwarzschild wormhole. For this type of wormhole,

Φ(r) =
1

2
ln(1 − r0

r
+

ε

r2
), (5.22)

b(r) = r0. (5.23)

Accordingly,

f(r) = 1 − r0
r

+
ε

r2
, (5.24)

h(r) = (1 − r0
r

)−1. (5.25)

A. The neutrino field

For the proximal Schwarzschild wormhole, the stress-energy tensor com-

ponents of a quantized neutrino field are too complicated to list here. So I

list them in Appendix E. However, I plot the graphs of ζ and τ as functions

of r, ε and T at the wormhole’s throat as well as in the entire spacetime.

Figure 5.14 is plotted for ζ0 and τ0 as functions of r0, ε and T. The figure

shows that both ζ0 and τ0 are positive for r0 < 3.57 × 1019lp, independent

of temperature. This means that a quantized neutrino field is exotic for this

type of wormhole with a throat radius r0 < 3.57 × 1019lp. It is the same as

that of the zero-temperature case.
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Figure 5.15 and Figure 5.16 are plotted for ζ and τ as functions of r, ε and

T in the entire spacetime of this wormhole geometry for which the quantized

neutrino field is exotic. To illustrate the figures more conveniently, I define

rc to be the critical value of r below which the weak energy condition is

violated, and εc the critical value of ε above which the weak energy condition

is violated. Figure 5.15 is plotted for a proximal Schwarzschild wormhole

that has the maximum possible throat radius, r0 = 3.57 × 1019lp for which

the quantized neutrino field is exotic. I plot ε up to 1036 to ensure that

ε < 1% of r20. This figure shows that rc increases as εc increases. For εc =

1036, rc ≈ 2.9 × 1034lp. This maximum coordinate distance is smaller than

that of the zero-temperature case, which is 1.3 × 10102lp.

Figure 5.16 is plotted for a proximal Schwarzschild wormhole with a

smaller throat radius, r0 = 1010lp. I plot ε up to 1018 to ensure that ε < 1%

of r20. This figure shows a similar pattern as that of Figure 5.10: rc increases

as εc increases; as εc reaches its maximum value of 1018, rc ≈ 8 × 1015lp.

Comparing this with the results shown in Figure 5.15, we see that the weak

energy condition violation extends to the maximum coordinate distance of

rc ≈ 2.9 × 1034lp for this type of wormhole. It occurs with a wormhole that

has the maximum throat radius for which the quantized neutrino field is

exotic.

B. The proton field

I have computed the stress-energy tensor components of a quantized pro-

ton field in the entire spacetime of the proximal Schwarzschild wormhole
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Figure 5. 14: ζ0 and τ0 of a quantized neutrino field as functions of r0, ε,
and T for proximal Schwarzschild wormholes. Both ζ0 > 0 and τ0 > 0 in the
solid region.

Figure 5. 15: ζ and τ of a quantized neutrino field as functions of T, r,
and ε for a proximal Schwarzschild wormhole whose throat radius is r0 =
3.57 × 1019lp. Both ζ0 > 0 and τ0 > 0 in the solid region.
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Figure 5. 16: ζ and τ of a quantized neutrino field as functions of T, r, and
ε for a proximal Schwarzschild wormhole whose throat radius is r0 = 1010lp.
Both ζ0 > 0 and τ0 > 0 in the solid region.

geometry as well as at the wormhole’s throat. They are too complicated to

list here. So I put them in Appendix E.

Figure 5.17 is a plot of ζ0 and τ0 as functions of r0, ε, and T for proximal

Schwarzschild wormholes. I plot ε up to 1021 to ensure that the condition

ε � r20 be met. This figure shows that both ζ0 and τ0 are positive for

r0 < 1.41×1013lp, independent of the values of ε and T. So a quantized proton

field is exotic for proximal Schwarzschild wormholes with r0 < 1.41 × 1013lp.

This is the same as in the case of zero temperature.

Figure 5.18 is plotted for ζ and τ as functions of r, ε, and T for a proximal

Schwarzschild wormhole that has the maximum possible throat radius, r0 =

1.41×1013lp, for which the quantized proton field is exotic. I plot ε up to 1024
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to ensure ε < 1% of r20. This figure shows that rc increases as εc increases.

As εc = 1024, rc ≈ 8× 1021lp. So, the weak energy condition is violated up to

the coordinate distance r ≈ 8 × 1021lp for this wormhole.

Figure 5.19 is plotted for ζ and τ as functions of r, ε, and T for a proximal

Schwarzschild wormhole that has a smaller throat radius, r0 = 108lp. I plot

ε up to 1014 to ensure ε < 1% of r20. This figure also shows that rc increases

as εc increases. As εc = 1014, rc ≈ 8 × 1011lp. So, the weak energy condition

is violated up to the coordinate distance r ≈ 8 × 1011lp for this wormhole.

Comparing Figure 5.18 and Figure 5.19, we see that the weak energy con-

dition violation extends further in the spacetime for a bigger wormhole. The

maximum violation in the spacetime, r ≈ 8× 1021lp, occurs with a wormhole

that has the maximum throat radius for which the quantized proton field is

exotic. However, this value is smaller than that of the zero-temperature case,

which is 1.0 × 1052lp.

5.2.4 Wormhole with finite radial cutoff of stress-energy

The last type of wormhole that I examine is the wormhole with finite

radial cutoff of the stress-energy. The metric of this type of wormhole is:

Φ(r) = 0, (5.26)

b(r) = r0(
r

r0
)1−η. (5.27)
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Figure 5. 17: ζ0 and τ0 of a quantized proton field as functions of T, r0, and
ε for proximal Schwarzschild wormholes. Both ζ0 > 0 and τ0 > 0 in the solid
region (r0 < 1.41 × 1013lp).

Figure 5. 18: ζ and τ of a quantized proton field as functions of T, r, and ε for
a proximal Schwarzschild wormhole whose throat radius is r0 = 1.41×1013lp.
Both ζ > 0 and τ > 0 in the solid region.

107



Figure 5. 19: ζ and τ of a quantized proton field as functions of T, r, and
ε for a proximal Schwarzschild wormhole whose throat radius is r0 = 108lp.
Both ζ > 0 and τ > 0 in the solid region.

where η is a constant bounded by 0 < η < 1. Accordingly,

f(r) = 1, (5.28)

h(r) = [1 − (
r0
r

)η]−1. (5.29)

I have computed the stress-energy tensor components in the entire space-

time for this type of wormhole as well as those at the wormhole’s throat.

They are also too complicated to list here. So I put them in Appendix F.

A. The neutrino field

Figure 5.20 is plotted for ζ0 and τ0 as functions of r0 and η. This figure

shows that both ζ0 and τ0 are positive for r0 up to around 0.6lp, independent
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of temperature. So a quantized neutrino field is exotic for this type of worm-

hole with a throat radius r0 up to around 0.6lp. This is the same as that in

the zero-temperature case.

Figure 5.21 and Figure 5.22 are plotted to examine the weak energy con-

dition violation in the entire spacetime for two wormholes of different size for

which the quantized neutrino field is exotic. Figure 5.21 is plotted for a worm-

hole whose throat radius is r0 = 0.59lp. This figure shows that rc increases

slightly as η increases. For η = 0, rc = 0.592lp. For η = 1, rc = 0.617lp.

Figure 5.22 is plotted for a wormhole whose throat radius is r0 = 0.4lp. This

figure shows the same pattern as in Figure 5.21. rc increases slightly as η in-

creases. For η = 0, rc = 0.59lp. For η = 1, rc = 0.62lp. From these two figures

we see that the region of the weak energy condition violation in the entire

spacetime for this type of wormhole is independent of the wormhole’s size,

and also independent of temperature. It varies slightly as η varies, however.

The maximum violation extends to the coordinate distance rc = 0.62lp, which

occurs for η = 1. This result is the same as that of the zero-temperature

case.

B. The proton field

Figure 5.23 is plotted for ζ0 and τ0 as functions of r0, η, and T for worm-

holes with finite radial cutoff of stress-energy. This figure shows that both

ζ0 and τ0 are positive for r0 up to around 0.6lp, independent of temperature.

This means that a quantized proton field is exotic for this type of worm-

hole with a throat radius around 0.6lp. It is the same as in the case of the
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Figure 5. 20: ζ0 and τ0 of a quantized neutrino field as functions of T, r0,
and η for wormholes with finite radial cutoff of stress-energy. Both ζ0 > 0
and τ0 > 0 in the solid region.

Figure 5. 21: ζ and τ of a quantized neutrino field as functions of T, r, and η
for a wormhole with finite radial cutoff of stress-energy, whose throat radius
is r0 = 0.59lp. Both ζ0 > 0 and τ0 > 0 in the solid region.
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Figure 5. 22: ζ and τ of a quantized neutrino field as functions of T, r, and η
for a wormhole with finite radial cutoff of stress-energy, whose throat radius
is r0 = 0.40lp. Both ζ0 > 0 and τ0 > 0 in the solid region.

quantized neutrino field.

In Figure 5.24 and Figure 5.25 I plot ζ and τ as functions of r, η, and T

beyond the wormhole’s throat to examine the weak energy condition violation

in the entire spacetime. Figure 5.24 is plotted for a wormhole whose throat

radius is r0 = 0.59lp. The figure shows that rc increases slightly as η increases.

For η = 0, rc = 0.59lp. For η = 1, rc = 0.62lp. Figure 5.25 is plotted for a

wormhole with a smaller throat radius, r0 = 0.40lp. However, this figure

shows the same pattern as Figure 5.24. rc increases slightly as η increases.

For η = 0, rc = 0.59lp. For η = 1, rc = 0.62lp.

These two figures show that the weak energy condition violation is inde-

pendent of the wormhole’s size, and also independent of temperature. How-
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ever, it varies slightly for different values of η. The maximum violation

extends to the radial distance rc = 0.62lp, which occurs for η = 1. This

result is the same as that of the neutrino field, and also the same as that of

the zero-temperature case.

Figure 5. 23: ζ0 and τ0 of a quantized proton field as functions of T, r0, and
η for wormholes with finite radial cutoff of stress-energy. Both ζ0 > 0 and
τ0 > 0 in the solid region.
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Figure 5. 24: ζ and τ of a quantized proton field as functions of T, r, and η
for a wormhole with finite radial cutoff of stress-energy, whose throat radius
is r0 = 0.59lp. Both ζ > 0 and τ > 0 in the solid region.

Figure 5. 25: ζ and τ of a quantized proton field as functions of T, r, and η
for a wormhole with finite radial cutoff of stress-energy, whose throat radius
is r0 = 0.40lp. Both ζ > 0 and τ > 0 in the solid region.
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Chapter 6. Summary and Concluding

Remarks

I have calculated the stress-energy tensor of a quantized Dirac neutrino

field and a quantized proton field for four types of wormhole spacetime in a

zero-temperature vacuum state as well as in thermal states. I have also ex-

amined the weak energy condition violation at the throat of these wormholes

as well as in the entire spacetime of these wormhole geometries. I find that,

both in the zero-temperature vacuum state and in thermal states, the weak

energy condition is violated at the throats of all the four types of wormhole

to different size, and the violation extends more or less beyond the worm-

holes’ throats. These findings suggest that the two fields are exotic for the

four wormhole geometries up to different radial distances, and temperature

does not exert influence on the results.

However, the results of computation show that some components of the

stress-energy tensor have values well beyond the Planckian scale. For exam-

ple, in Figure 4.1 and Figure 4.2, ζ0 and τ0 are on the scale of 1054 Planckian

energy density units; in Figure 4.3, ζ0 and τ0 are on the scale of 1056 Planck-

114



ian energy density units. At such high energy levels, quantum field theory in

curved spacetime is not credible. In addition, some approximations are used

in the computation, for which the uncertainties are difficult to assess. Due

to these reasons, no firm physical conclusions can be drawn.

In the following sections, I will summarize the mathematical structure

that I have found.

6.1 Zero-temperature vacuum state

6.1.1 At the throat of the wormhole

First, for the zero-tidal-force wormhole, both a quantized neutrino field

and a quantized proton field are exotic for wormholes with throat radius

r0 < 1.26lp. Second, for the simple wormhole, a quantized neutrino field is

exotic for wormholes with r0 < 3.32 × 1019lp, while a quantized proton field

is exotic for wormholes with r0 < 1.33 × 1013lp. Third, for the proximal

Schwarzschild wormhole, a quantized neutrino field is exotic for wormholes

with r0 < 3.57×1019lp, while a quantized proton field is exotic for wormholes

with r0 < 1.41 × 1013lp. Fourth, for the wormhole with finite radial cutoff in

background stress-energy tensor, both quantized neutrino field and quantized

proton field are exotic for wormholes with a throat radius r0 up to around

0.6lp.

Of the four types of wormhole spacetime, the two fields under investiga-

tion are exotic around a Planck length for two types of wormhole spacetime
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(the zero-tidal-force wormhole and the wormhole with finite radial cutoff of

the stress-energy tensor); for the other two types of wormhole spacetime

(the simple wormhole and the proximal Schwarzschild wormhole), these two

fields are exotic up to a throat radius much bigger than the Planck length,

but the throat is still too small for human beings to traverse. Of all the

wormholes for which these two fields are exotic, the biggest is the proximal

Schwarzschild wormhole for which the quantized neutrino field is exotic, with

a throat radius up to 3.57 × 1019lp. This is the scale of a proton.

6.1.2 In the vicinity of the wormhole’s throat

My calculations show that the weak energy condition is violated more or

less in the vicinity of the four types of wormholes at zero temperature. For

two types of wormhole (the zero-tidal-force wormhole and the wormhole with

radial cutoff of energy), the violation of the weak energy condition is limited

to the boundary of the maximum radius of the throat for which these two

fields are exotic; for the other two types of wormholes (the simple wormhole

and the proximal Schwarzschild wormhole), the violation extends beyond

the wormholes’ throat for which these two fields are exotic. The maximum

extension of the weak energy condition violation, which is 1.3×10102lp, occurs

with the proximal Schwarzschild wormhole for which the quantized neutrino

field is exotic.
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6.2 Thermal states

6.2.1 At the throat of the wormhole

In thermal states, both quantized neutrino field and quantized proton

field are exotic for all the four types of wormholes under investigation. The

sizes of these wormholes for which these two fields are exotic are identical

to those in the zero-temperature case. This shows that temperature exerts

no influence on the exotic nature of these two fields in the four wormhole

geometries.

6.2.2 In the vicinity of the wormhole’s throat

In thermal states, the violation of the weak energy condition also extends

to some degree beyond the wormholes’ throat. However, for the proximal

Schwarzschild wormhole, the weak energy condition violation is limited in a

smaller region in the thermal states than that of the zero-temperature state.

For the other three types of wormhole, the weak energy condition violation

extends to the same extent as those of the zero-temperature case.

6.3 Semiclassical Einstein equation

Although the quantized neutrino field and the quantized proton field vi-

olate the weak energy condition and can be considered exotic matter, their

stress-energy components do not satisfy Eq. (2.2) whose solution is a worm-

hole spacetime. First, the underlying assumption of the quantum field theory
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in curved spacetime is that the energy and spacetime curvature are well below

the Planckian scale, so the left-hand side of Eq. (2.2), which is the curvature

of the wormhole spacetime, must be non-Planckian scale; but the right-hand

side of Eq. (2.2), which are components of the two fields under investigation,

are sometime on Planckian scale. Second, the renormalized stress-energy

tensor components of a quantized massive spin 1/2 field are given by Eqs.

(B1) through (B3). For a given wormhole spacetime at a given temperature,

the parameters f, h, r0 and κ are fixed and the spacetime curvature Gµν , the

left-hand side of Eq. (2.2), is fixed; however, for different fields, the field

quanta m are different, thus the stress-energy tensor components, the right-

hand side of Eq. (2.2), have different values and cannot be equal to the

left-hand side of this equation. Due to these reasons, these two fields cannot

be the source of matter of wormhole spacetimes.

6.4 Summary of findings

I summarize my findings in the following three tables.

Category Quantized neutrino field Quantized proton field
Zero-tidal-force wormhole 1.26lp 1.26lp

Simple wormhole 3.32 × 1019lp 1.33 × 1013lp
Proximal Schwarzschild wormhole 3.57 × 1019lp 1.41 × 1013lp

Wormhole with radial energy cutoff around 0.6lp around 0.6lp

Table 1: Maximum value of r0 for which the quantized massive spin 1/2 fields are exotic,
both at zero temperature and in thermal states.
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Category Quantized neutrino field Quantized proton field
Zero-tidal-force wormhole 1.26lp 1.26lp

Simple wormhole 3.29 × 1034lp 7.65 × 1022lp
Proximal Schwarzschild wormhole 1.3 × 10102lp 1.0 × 1052lp

Wormhole with radial energy cutoff around 0.6lp around 0.6lp

Table 2: Maximum radial extension of the weak energy condition violation beyond the
wormhole’s throat at zero temperature.

Category Quantized neutrino field Quantized proton field
Zero-tidal-force wormhole 1.26lp 1.26lp

Simple wormhole 3.29 × 1034lp 7.65 × 1022lp
Proximal Schwarzschild wormhole 2.9 × 1034lp 8 × 1021lp

Wormhole with radial energy cutoff 0.62lp 0.62lp

Table 3: Maximum radial extension of the weak energy condition violation beyond the
wormhole’s throat in thermal states.

6.5 Topics for future study

My research and some previous research [11, 12] have confirmed that

exotic matter exists for microscopic wormholes. However, for human beings

to make use of wormholes, exotic matter must be found for macroscopic

wormholes. Such wormholes are proposed in [12, 13, 16, 17], yet they are

speculative and lack evidence of existence. Topics for future study include

exploration on the possibility of macroscopic wormholes. Specifically, one

topic is to find what substance can make Ω and K, two functions in [13, 14],

behave properly so that a macroscopic wormhole can be sustained. Another

topic is to verify the existence of the phantom energy proposed in [16, 17],

and the wormholes supported by the phantom energy. A third topic is to

verify that macroscopic wormholes can truly grow out of microscopic ones
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due to the accelerating expansion of the universe, as proposed in [16, 17].
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Appendix A: Stress-Energy Tensor of A

Quantized Massive Spin 1/2 Field in A Static

Spherically Symmetric Spacetime

As introduced in Chapter 2, P. Groves [40] derived an expression for the

renormalized stress-energy tensor of a quantized massive spin 1/2 field in a

static spherically symmetric spacetime, which is given by Eq. (2.47). In this

equation, < Tµν >analytic also includes two parts:

< Tµν >analytic= (Tµν)0 + (Tµν)log (A1)

with [40]

(T tt )0 =
1

240π2
[−15m4

2
+

1

r4
− 5m2

r2
− 7κ4

4f(r)2
+

5κ2m2

f(r)
+

5κ2

6r2f(r)

− 1

r4h(r)2
+

5m2

r2h(r)
− 5κ2

6r2f(r)h(r)
+

5κ2f ′(r)

3rf(r)2h(r)
+

10m2f ′(r)

rf(r)h(r)

+
43f ′(r)2

24r2f(r)2h(r)2
− 25κ2f ′(r)2

24f(r)3h(r)
− 5m2f ′(r)2

4f(r)2h(r)
− 5f ′(r)2

8r2f(r)2h(r)
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− 9f ′(r)3

2rf(r)3h(r)2
+

77f ′(r)4

192f(r)4h(r)2
− 2h′(r)

r3h(r)3
− 5m2h′(r)

rh(r)2
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+
11h′(r)f ′′(r)

4rf(r)h(r)3
− 2f ′(r)h′(r)f ′′(r)

f(r)2h(r)3
− 19h′(r)2f ′′(r)

8f(r)h(r)4
+

7f ′′(r)2

8f(r)2h(r)2

+
f ′(r)h′′(r)

4rf(r)h(r)3
− 3f ′(r)2h′′(r)

8f(r)2h(r)3
− 13f ′(r)h′(r)h′′(r)

8f(r)h(r)4
+
f ′′(r)h′′(r)

f(r)h(r)3

− 3f (3)(r)

2rf(r)h(r)2
+

3f ′(r)f (3)(r)

4f(r)2h(r)2
+

3h′(r)f (3)(r)

2f(r)h(r)3
+
f ′(r)h(3)(r)

4f(r)h(r)3

− f (4)(r)

2f(r)h(r)2
] (A4)

(T νµ )log = − 1

4π2
U ν
µ ln(

µf 1/2

2λ
) ifT = 0 (A5)

(T νµ )log = − 1

4π2
U ν
µ [ln(

2µf 1/2

κ
) + C] ifT 6= 0 (A6)
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In Eqs. (A5) and (A6), for the massive case, µ is the mass of the field

quantum, while for the massless case, it is an arbitrary renormalization pa-

rameter with dimensions of mass. In Eq. (A5), λ is an infrared cutoff, which

is necessary only in the zero-temperature case, and C is the Euler’s constant.

Besides, U ν
µ is given by [40]

U ν
µ =

1

10
(Rν

ρµτR
ρτ − 1

4
RρτRρτg

ν
µ)− 1

30
R(Rν

µ −
1

4
Rgνµ) +

1

20
(Rν

µ);ρ
ρ

− 1

60
R;µ

ν − 1

120
R;ρ

ρgνµ (A7)

The quantity < Tµν >numeric is finite in the limit that the points come

together. As a result, one can simply set τ ′ = τ in the expression of

< Tµν >unren [Eqs. (2.39) through (2.41)] to get the components of

< Tµν >numeric [40]:

< T tt >num = 4
∫ dµ

r2f
[ω2A1 −

r2ω3

f
− ω(

1

12
− 1

12h
+
rf ′

6fh
− 5r2f ′2

48f 2h

+
rh′

12h2
− r2f ′h′

24fh2
+
r2f ′′

12fh
+
m2r2

2
)] +

∫ dµ

ω
U t
t (A8)

< T rr >num = 4
∫ dµ

r2f
[
ωA2f

1/2

r
− ω2A1 − f 1/2ωmA5 +

r2ω3

3f
+ ω(

1

12

− 1

12h
+

rf ′

12fh
− r2f ′2

48f 2h
+
m2r2

2
)] +

∫ dµ

ω
U r
r (A9)

< T θθ >num = < T φφ >num= 2
∫ dµ

r2f
[−ωA2f

1/2

r
+

2r2ω3

3f
+ ω(

rf ′

12fh
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− r2f ′2

12f 2h
+

rh′

12h2
− r2f ′h′

24fh2
+
r2f ′′

12fh
+m2r2)]

+
∫ dµ

ω
U θ
θ (A10)

where A1 through A5 are functionals of the radial modes Fω,l(r) and Gω,l(r),

given by:

A1 = Re
∞∑
l=0

[(l + 1)F q

ω,l+ 1
2

(r)F p

ω,l+ 1
2

(r)− lGq

ω,l− 1
2

(r)Gp

ω,l− 1
2

(r) +
r

f 1/2
] (A11)

A2 = Re
∞∑
l=0

[l(l + 1)(Gq

ω,l+ 1
2

(r)F p

ω,l+ 1
2

(r) + F q

ω,l− 1
2

(r)Gp

ω,l− 1
2

(r))

− l(l + 1)

ω
+
r2ω

2f
] (A12)

A3 = Re
∞∑
l=0

[l(l + 1)(F q

ω,l+ 1
2

(r)F p

ω,l+ 1
2

(r) +Gq

ω,l− 1
2

(r)Gp

ω,l− 1
2

(r))− r

2f 1/2

+
r

2f 1/2h1/2
− r2f ′

4f 3/2h1/2
+
m2r2

2ω
] (A13)

A4 = Im
∞∑
l=0

[(l + 1)F q

ω,l+ 1
2

(r)Gp

ω,l+ 1
2

(r) + lGq

ω,l− 1
2

(r)F p

ω,l− 1
2

(r)] (A14)

A5 = Im
∞∑
l=0

[(l + 1)Gq

ω,l+ 1
2

(r)Gp

ω,l+ 1
2

(r) + lF q

ω,l− 1
2

(r)F p

ω,l− 1
2

(r) +
mr

ω
] (A15)
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Appendix B: Resulting Expression of

Stress-Energy Tensor of A Quantized Massive

Spin 1/2 Field in A Static Spherically

Symmetric Spacetime

Using Eqs. (A1) through A(15), the renormalized stress-energy tensor

components of a quantized massive spin 1/2 field in a static spherically sym-

metric spacetime are calculated to be:

< T tt >ren = − 7κ4

960f 2π2
+
κ2m2

48fπ2
− m4

32π2
+
fm4

32π2
+

423f 2

71680m2π2r8

+
7f 2

15360h3/2m2π2r8
+

991f 2

161280hm2π2r8
+

125f 2

10752m2π2r8

+
1747f 2

53760π2r6
+

9f 2

5120hπ2r6
+

79f 2

2560π2r6
− 1781f

80640m2π2r6

+
f

64h3m2π2r6
− f

640h5/2m2π2r6
+

f

64h3/2m2π2r6

− f

512hm2π2r6
− 29f

1280m2π2r6
+

1

240π2r4
− 71f

1280π2r4

− 1

240h2π2r4
+

117f

64h2π2r4
+

f

64h3/2π2r4
− 3f

128π2r4
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− 49f 2m2

5120π2r4
+

f 2m2

512π2r4
+

κ2

288fπ2r2
− κ2

288fhπ2r2
− m2

48π2r2

− 9fm2

256π2r2
+

m2

48hπ2r2
+

13fm2

64hπ2r2
− 3fm2

64π2r2
+

f 2m4

1536π2r2

+
ln[

√
f

8π2 ]

240π2r4
+

ln[

√
f

8π2 ]

80h2π2r4
−

ln[

√
f

8π2 ]

60hπ2r4
− 7ff ′

10240h3/2m2π2r7

− 991ff ′

161280hm2π2r7
− 125ff ′

21504m2π2r7
− 143ff ′

15360hπ2r5
− 127ff ′

5120π2r5

+
43f ′

192h3m2π2r5
+

19f ′

768h5/2m2π2r5
− f ′

64h3/2m2π2r5

+
19f ′

7680hm2π2r5
+

29f ′

2560m2π2r5
− 187f ′

64h2π2r3
+

f ′

128h3/2π2r3

+
17f ′

768π2r3
+

15fm2f ′

1024π2r3
+

κ2f ′

144f 2hπ2r
− 11m2f ′

32hπ2r
+

m2f ′

24fhπ2r

+
3m2f ′

128π2r
+

ln[

√
f

8π2 ]f ′

40fh2π2r3
−

ln[

√
f

8π2 ]f ′

40fhπ2r3
− 5κ2f ′2

1152f 3hπ2
− m2f ′2

64f 2hπ2

+
83m2f ′2

768fhπ2
+

7f ′2

20480h3/2m2π2r6
+

991f ′2

645120hm2π2r6

− f ′2

3072h3/2π2r4
+

23f ′2

6144hπ2r4
− 797f ′2

1536fh3m2π2r4

− 5f ′2

1536fh5/2m2π2r4
+

f ′2

512fh3/2m2π2r4
− 31f ′2

30720fhm2π2r4

+
43f ′2

5760f 2h2π2r2
+

2315f ′2

1536fh2π2r2
− 11f ′2

768fh3/2π2r2

− f ′2

384f 2hπ2r2
− 7f ′2

3072fhπ2r2
+

11m2f ′2

6144hπ2r2
+

29 ln[

√
f

8π2 ]f ′2

960f 2h2π2r2

− 7f ′3

122880fh3/2m2π2r5
+

f ′3

6144fh3/2π2r3
+

613f ′3

1536f 2h3m2π2r3

− f ′3

128f 2h5/2m2π2r3
− 19f ′3

2880f 3h2π2r
− 547f ′3

1536f 2h2π2r

− f ′3

384f 2h3/2π2r
−

5 ln[

√
f

8π2 ]f ′3

192f 3h2π2r
+

77f ′4

46080f 4h2π2
+

61f ′4

1536f 3h2π2
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− 31f ′4

256f 3h3m2π2r2
+

5f ′4

1536f 3h5/2m2π2r2
+

59 ln[

√
f

8π2 ]f ′4

3840f 4h2π2

+
11f ′5

1024f 4h3m2π2r
− 17f ′5

61440f 4h5/2m2π2r
+

11f ′6

24576f 5h3m2π2

+
95fh′

384h4m2π2r5
− 7fh′

384h7/2m2π2r5
+

fh′

128h5/2m2π2r5

+
fh′

1920h2m2π2r5
− h′

120h3π2r3
+

27fh′

64h3π2r3
+

fh′

32h5/2π2r3

+
κ2h′

288fh2π2r
− m2h′

48h2π2r
+

fm2h′

64h2π2r
+

ln[

√
f

8π2 ]h′

60h3π2r3
−

ln[

√
f

8π2 ]h′

120h2π2r3

− κ2f ′h′

576f 2h2π2
+

m2f ′h′

128h2π2
− m2f ′h′

96fh2π2
+

ff ′h′

768h5/2π2r4

+
29ff ′h′

15360h2π2r4
− 77f ′h′

192h4m2π2r4
+

25f ′h′

768h7/2m2π2r4

− 5f ′h′

768h5/2m2π2r4
− f ′h′

3840h2m2π2r4
− 113f ′h′

768h3π2r2
+

f ′h′

64fh3π2r2

− f ′h′

32h5/2π2r2
− 5f ′h′

768h2π2r2
− f ′h′

576fh2π2r2
− fm2f ′h′

512h2π2r2

−
11 ln[

√
f

8π2 ]f ′h′

480fh3π2r2
− f ′2h′

1536h5/2π2r3
+

217f ′2h′

1536fh4m2π2r3

− 19f ′2h′

1024fh7/2m2π2r3
+

f ′2h′

3072fh5/2m2π2r3
− f ′2h′

128f 2h3π2r

− 85f ′2h′

384fh3π2r
+

f ′2h′

512fh5/2π2r
−

ln[

√
f

8π2 ]f ′2h′

48f 2h3π2r
+

f ′3h′

5760f 3h3π2

+
229f ′3h′

3072f 2h3π2
+

f ′3h′

24f 2h4m2π2r2
+

5f ′3h′

1536f 2h7/2m2π2r2

+
13 ln[

√
f

8π2 ]f ′3h′

640f 3h3π2
+

f ′4h′

2048f 3h7/2mπ2
− 55f ′4h′

2048f 3h4m2π2r

+
f ′4h′

12288f 3h7/2m2π2r
+

11f ′5h′

4096f 4h4m2π2
+

fh′2

192h5m2π2r4

+
fh′2

384h7/2m2π2r4
− 7h′2

960h4π2r2
− 29fh′2

512h4π2r2
+

fh′2

64h7/2π2r2
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+
3 ln[

√
f

8π2 ]h′2

320h4π2r2
− 311f ′h′2

768h5m2π2r3
+

3f ′h′2

256h9/2m2π2r3

− f ′h′2

768h7/2m2π2r3
+

143f ′h′2

512h4π2r
− f ′h′2

160fh4π2r
− f ′h′2

128h7/2π2r

−
7 ln[

√
f

8π2 ]f ′h′2

960fh4π2r
− 19f ′2h′2

7680f 2h4π2
− 593f ′2h′2

6144fh4π2
+

1313f ′2h′2

6144fh5m2π2r2

− 3f ′2h′2

512fh9/2m2π2r2
+

67 ln[

√
f

8π2 ]f ′2h′2

3840f 2h4π2
− 35f ′3h′2

1024f 2h5m2π2r

+
f ′3h′2

1024f 2h9/2m2π2r
− f ′4h′2

3072f 3h5m2π2
+

13fh′3

96h6m2π2r3

+
7h′3

240h5π2r
− 7fh′3

128h5π2r
−

7 ln[

√
f

8π2 ]h′3

240h5π2r
+

7f ′h′3

384h5π2
− 7f ′h′3

960fh5π2

− 157f ′h′3

768h6m2π2r2
+

7 ln[

√
f

8π2 ]f ′h′3

480fh5π2
+

271f ′2h′3

3072fh6m2π2r

− 61f ′3h′3

6144f 2h6m2π2
+

35fh′4

768h7m2π2r2
− 35f ′h′4

768h7m2π2r

+
35f ′2h′4

3072fh7m2π2
+

κ2f ′′

288f 2hπ2
− m2f ′′

64hπ2
+

m2f ′′

48fhπ2

− ff ′′

384h3/2π2r4
− 29ff ′′

7680hπ2r4
+

31f ′′

384h3m2π2r4
− f ′′

96h5/2m2π2r4

+
f ′′

192h3/2m2π2r4
+

f ′′

1920hm2π2r4
+

5f ′′

96h2π2r2
− f ′′

288fh2π2r2

+
f ′′

32h3/2π2r2
+

5f ′′

384hπ2r2
+

f ′′

288fhπ2r2
+

fm2f ′′

256hπ2r2

+
f ′f ′′

768h3/2π2r3
− 11f ′f ′′

768fh3m2π2r3
+

5f ′f ′′

512fh5/2m2π2r3

− f ′f ′′

1536fh3/2m2π2r3
+

f ′f ′′

288f 2h2π2r
+

37f ′f ′′

96fh2π2r
− f ′f ′′

256fh3/2π2r

+
9 ln[

√
f

8π2 ]f ′f ′′

160f 2h2π2r
− f ′2f ′′

2880f 3h2π2
− 229f ′2f ′′

1536f 2h2π2
− 223f ′2f ′′

3072f 2h3m2π2r2

− f ′2f ′′

512f 2h5/2m2π2r2
−

13 ln[

√
f

8π2 ]f ′2f ′′

320f 3h2π2
+

83f ′3f ′′

2048f 3h3m2π2r
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− f ′3f ′′

6144f 3h5/2m2π2r
− 11f ′4f ′′

2048f 4h3m2π2
+

113h′f ′′

768h4m2π2r3

− 3h′f ′′

512h7/2m2π2r3
+

h′f ′′

512h5/2m2π2r3
− 61h′f ′′

192h3π2r
− h′f ′′

120fh3π2r

+
3h′f ′′

256h5/2π2r
+

7 ln[

√
f

8π2 ]h′f ′′

480fh3π2r
+

3f ′h′f ′′

640f 2h3π2
+

91f ′h′f ′′

512fh3π2

− 109f ′h′f ′′

768fh4m2π2r2
+

3f ′h′f ′′

512fh7/2m2π2r2
−

37 ln[

√
f

8π2 ]f ′h′f ′′

960f 2h3π2

+
209f ′2h′f ′′

6144f 2h4m2π2r
− 3f ′2h′f ′′

2048f 2h7/2m2π2r
+

f ′3h′f ′′

12288f 3h4m2π2

− 19h′2f ′′

768h4π2
+

19h′2f ′′

1920fh4π2
+

277h′2f ′′

3072h5m2π2r2
−

19 ln[

√
f

8π2 ]h′2f ′′

960fh4π2

− 29f ′h′2f ′′

384fh5m2π2r
+

187f ′2h′2f ′′

12288f 2h5m2π2
+

15h′3f ′′

512h6m2π2r

− 15f ′h′3f ′′

1024fh6m2π2
− f ′′2

640f 2h2π2
− 27f ′′2

512fh2π2
+

19f ′′2

1536fh3m2π2r2

+
19 ln[

√
f

8π2 ]f ′′2

960f 2h2π2
− 23f ′f ′′2

3072f 2h3m2π2r
+

f ′2f ′′2

1536f 3h3m2π2

+
5h′f ′′2

1024fh4m2π2r
− 5f ′h′f ′′2

2048f 2h4m2π2
− fh′′

12h4m2π2r4

+
fh′′

256h7/2m2π2r4
− fh′′

768h5/2m2π2r4
+

h′′

240h3π2r2
+

fh′′

64h3π2r2

− fh′′

128h5/2π2r2
−

ln[

√
f

8π2 ]h′′

240h3π2r2
+

7f ′h′′

48h4m2π2r3
− 3f ′h′′

512h7/2m2π2r3

+
f ′h′′

1536h5/2m2π2r3
− 89f ′h′′

768h3π2r
+

f ′h′′

480fh3π2r
+

f ′h′′

256h5/2π2r

+
ln[

√
f

8π2 ]f ′h′′

160fh3π2r
+

f ′2h′′

960f 2h3π2
+

f ′2h′′

24fh3π2
− 119f ′2h′′

1536fh4m2π2r2

+
3f ′2h′′

1024fh7/2m2π2r2
−

ln[

√
f

8π2 ]f ′2h′′

160f 2h3π2
+

25f ′3h′′

2048f 2h4m2π2r

− f ′3h′′

2048f 2h7/2m2π2r
+

f ′4h′′

4096f 3h4m2π2
− 11fh′h′′

96h5m2π2r3
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− 13h′h′′

480h4π2r
+

13fh′h′′

256h4π2r
+

13 ln[

√
f

8π2 ]h′h′′

480h4π2r
− 13f ′h′h′′

768h4π2

+
13f ′h′h′′

1920fh4π2
+

67f ′h′h′′

384h5m2π2r2
−

13 ln[

√
f

8π2 ]f ′h′h′′

960fh4π2

− 469f ′2h′h′′

6144fh5m2π2r
+

109f ′3h′h′′

12288f 2h5m2π2
− 47fh′2h′′

768h6m2π2r2

+
47f ′h′2h′′

768h6m2π2r
− 47f ′2h′2h′′

3072fh6m2π2
+

f ′′h′′

96h3π2
− f ′′h′′

240fh3π2

− 13f ′′h′′

384h4m2π2r2
+

ln[

√
f

8π2 ]f ′′h′′

120fh3π2
+

89f ′f ′′h′′

3072fh4m2π2r

− 37f ′2f ′′h′′

6144f 2h4m2π2
− 25h′f ′′h′′

1024h5m2π2r
+

25f ′h′f ′′h′′

2048fh5m2π2

+
13fh′′2

1536h5m2π2r2
− 13f ′h′′2

1536h5m2π2r
+

13f ′2h′′2

6144fh5m2π2

− 7f 3

192h3m2π2r3
+

f 3

256h5/2m2π2r3
− f 3

768h3/2m2π2r3

+
19f 3

128h2π2r
+

f 3

120fh2π2r
− f 3

128h3/2π2r
−

ln[

√
f

8π2 ]f 3

60fh2π2r

− f ′f 3

480f 2h2π2
− f ′f 3

12fh2π2
+

53f ′f 3

1536fh3m2π2r2
− f ′f 3

256fh5/2m2π2r2

+
ln[

√
f

8π2 ]f ′f 3

80f 2h2π2
− 11f ′2f 3

1536f 2h3m2π2r
+

f ′2f 3

1024f 2h5/2m2π2r

− f ′3f 3

2048f 3h3m2π2
+

h′f 3

64h3π2
− h′f 3

160fh3π2
− 21h′f 3

512h4m2π2r2

+
ln[

√
f

8π2 ]h′f 3

80fh3π2
+

29f ′h′f 3

768fh4m2π2r
− 53f ′2h′f 3

6144f 2h4m2π2

− 55h′2f 3

3072h5m2π2r
+

55f ′h′2f 3

6144fh5m2π2
− 5f ′′f 3

1536fh3m2π2r

+
5f ′f ′′f 3

3072f 2h3m2π2
+

5h′′f 3

768h4m2π2r
− 5f ′h′′f 3

1536fh4m2π2

+
fh3

64h4m2π2r3
+

h3

240h3π2r
− fh3

128h3π2r
−

ln[

√
f

8π2 ]h3

240h3π2r
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+
f ′h3

384h3π2
− f ′h3

960fh3π2
− 37f ′h3

1536h4m2π2r2
+

ln[

√
f

8π2 ]f ′h3

480fh3π2

+
11f ′2h3

1024fh4m2π2r
− f ′3h3

768f 2h4m2π2
+

19fh′h3

1536h5m2π2r2

− 19f ′h′h3

1536h5m2π2r
+

19f ′2h′h3

6144fh5m2π2
+

5f ′′h3

1536h4m2π2r

− 5f ′f ′′h3

3072fh4m2π2
− f 4

192h2π2
+

f 4

480fh2π2
+

f 4

96h3m2π2r2

−
ln[

√
f

8π2 ]f 4

240fh2π2
− f ′f 4

96fh3m2π2r
+

f ′2f 4

384f 2h3m2π2
+

5h′f 4

768h4m2π2r

− 5f ′h′f 4

1536fh4m2π2
− fh4

768h4m2π2r2
+

f ′h4

768h4m2π2r

− f ′2h4

3072fh4m2π2
− f 5

768h3m2π2r
+

f ′f 5

1536fh3m2π2
(B1)

< T rr >ren = − f

3072h2π2
+

7κ4

2880f 2π2
+

fm2

16hπ2
− κ2m2

48fπ2
+

3m4

32π2
+
fm4

96π2

− 423f 2

71680m2π2r8
− 7f 2

15360h3/2m2π2r8
− 991f 2

161280hm2π2r8

− 125f 2

10752m2π2r8
− 1747f 2

53760π2r6
− 9f 2

5120hπ2r6
− 79f 2

2560π2r6

+
937f

80640m2π2r6
− 193f

192h3m2π2r6
− 2119f

1920h5/2m2π2r6

− 11f

96h2m2π2r6
− f

192h3/2m2π2r6
+

31f

7680hm2π2r6

+
11f

3840m2π2r6
− 81f

1280π2r4
+

5f

192h2π2r4
+

271f

192h3/2π2r4

+
5f

24hπ2r4
− 59f

384π2r4
+

49f 2m2

5120π2r4
− f 2m2

512π2r4
+

f

24h2π2r3

+
9f

64h3/2π2r3
+

f

8hπ2r3
− f

96π2r3
− 3f

128h2π2r2
− 3f

64h3/2π2r2

− f

64hπ2r2
− κ2

288fπ2r2
+

κ2

288fhπ2r2
+

m2

48π2r2
− 245fm2

768π2r2
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− m2

48hπ2r2
− 11fm2

192hπ2r2
+

9fm2

64π2r2
− f 2m4

1536π2r2
+

f

192h2π2r

+
f

256h3/2π2r
− 9fm2

32π2r
+

ln[

√
f

8π2 ]

240π2r4
+

ln[

√
f

8π2 ]

80h2π2r4
−

ln[

√
f

8π2 ]

60hπ2r4

+
7ff ′

10240h3/2m2π2r7
+

991ff ′

161280hm2π2r7
+

125ff ′

21504m2π2r7

+
143ff ′

15360hπ2r5
+

127ff ′

5120π2r5
+

4981f ′

1920h3m2π2r5
+

8387f ′

3840h5/2m2π2r5

+
89f ′

480h2m2π2r5
− 31f ′

7680hm2π2r5
− 11f ′

7680m2π2r5
− 1327f ′

960h2π2r3

+
f ′

120fh2π2r3
− 307f ′

128h3/2π2r3
− 7f ′

48hπ2r3
+

119f ′

768π2r3

− 15fm2f ′

1024π2r3
− κ2f ′

288f 2hπ2r
− 13m2f ′

64hπ2r
+

m2f ′

48fhπ2r
+

71m2f ′

128π2r

−
ln[

√
f

8π2 ]f ′

60fh2π2r3
+

ln[

√
f

8π2 ]f ′

120fhπ2r3
+

κ2f ′2

1152f 3hπ2
+

m2f ′2

192f 2hπ2

− 49m2f ′2

256fhπ2
− 7f ′2

20480h3/2m2π2r6
− 991f ′2

645120hm2π2r6

+
f ′2

3072h3/2π2r4
− 23f ′2

6144hπ2r4
− 17987f ′2

7680fh3m2π2r4

− 2191f ′2

1536fh5/2m2π2r4
− 349f ′2

3840fh2m2π2r4
+

3f ′2

512fh3/2m2π2r4

+
31f ′2

30720fhm2π2r4
− f ′2

384f 2h2π2r2
+

12647f ′2

7680fh2π2r2

+
755f ′2

768fh3/2π2r2
+

f ′2

1152f 2hπ2r2
− 161f ′2

3072fhπ2r2
− 11m2f ′2

6144hπ2r2

+
ln[

√
f

8π2 ]f ′2

320f 2h2π2r2
+

7f ′3

122880fh3/2m2π2r5
− f ′3

6144fh3/2π2r3

+
1821f ′3

2560f 2h3m2π2r3
+

343f ′3

1280f 2h5/2m2π2r3
+

7f ′3

640f 2h2m2π2r3

− f ′3

768f 2h3/2m2π2r3
− 7f ′3

5760f 3h2π2r
− 4781f ′3

7680f 2h2π2r

133



− 49f ′3

384f 2h3/2π2r
−

ln[

√
f

8π2 ]f ′3

960f 3h2π2r
+

f ′4

46080f 4h2π2
+

97f ′4

1024f 3h2π2

+
277f ′4

3840f 3h3m2π2r2
+

601f ′4

15360f 3h5/2m2π2r2
+

f ′4

512f 3h2m2π2r2

+
ln[

√
f

8π2 ]f ′4

1280f 4h2π2
− 637f ′5

10240f 4h3m2π2r
− 661f ′5

61440f 4h5/2m2π2r

+
157f ′6

24576f 5h3m2π2
− fh′

1024h3π2
− 5fm2h′

128h2π2
− 191fh′

480h4m2π2r5

− 343fh′

640h7/2m2π2r5
− 7fh′

160h3m2π2r5
− fh′

128h5/2m2π2r5

+
283fh′

960h3π2r3
+

23fh′

96h5/2π2r3
+

fh′

48h2π2r3
− fh′

256h3π2r2

− fh′

128h5/2π2r2
− fh′

128h2π2r2
+

fh′

256h3π2r
+

fh′

256h5/2π2r

− fm2h′

48h2π2r
−

ln[

√
f

8π2 ]h′

40h3π2r3
+

ln[

√
f

8π2 ]h′

40h2π2r3
+

5m2f ′h′

128h2π2
− ff ′h′

768h5/2π2r4

− 29ff ′h′

15360h2π2r4
+

1727f ′h′

1280h4m2π2r4
+

1329f ′h′

1280h7/2m2π2r4

+
109f ′h′

1920h3m2π2r4
+

5f ′h′

768h5/2m2π2r4
− 329f ′h′

480h3π2r2
+

f ′h′

480fh3π2r2

+
5f ′h′

384h5/2π2r2
− 17f ′h′

768h2π2r2
+

fm2f ′h′

512h2π2r2
−

7 ln[

√
f

8π2 ]f ′h′

480fh3π2r2

+
f ′2h′

1536h5/2π2r3
− 4003f ′2h′

2560fh4m2π2r3
− 3593f ′2h′

5120fh7/2m2π2r3

− 29f ′2h′

1280fh3m2π2r3
− f ′2h′

3072fh5/2m2π2r3
− f ′2h′

960f 2h3π2r

+
421f ′2h′

1280fh3π2r
− 125f ′2h′

1536fh5/2π2r
+

ln[

√
f

8π2 ]f ′2h′

80f 2h3π2r
+

f ′3h′

3840f 3h3π2

− 89f ′3h′

3840f 2h3π2
+

897f ′3h′

1280f 2h4m2π2r2
+

43f ′3h′

240f 2h7/2m2π2r2

+
17f ′3h′

3840f 2h3m2π2r2
+

7 ln[

√
f

8π2 ]f ′3h′

1920f 3h3π2
− f ′4h′

2048f 3h7/2mπ2
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− 5f ′4h′

48f 3h4m2π2r
− 701f ′4h′

61440f 3h7/2m2π2r
+

37f ′5h′

15360f 4h4m2π2

+
863fh′2

1920h5m2π2r4
− 11fh′2

160h9/2m2π2r4
− 29fh′2

3840h4m2π2r4

− fh′2

384h7/2m2π2r4
+

99fh′2

2560h4π2r2
− 3fh′2

64h7/2π2r2
+

9 ln[

√
f

8π2 ]h′2

320h4π2r2

− 61f ′h′2

480h5m2π2r3
+

29f ′h′2

256h9/2m2π2r3
+

23f ′h′2

3840h4m2π2r3

+
f ′h′2

768h7/2m2π2r3
− 319f ′h′2

7680h4π2r
− 7f ′h′2

960fh4π2r
+

23f ′h′2

384h7/2π2r

+
7 ln[

√
f

8π2 ]f ′h′2

320fh4π2r
+

7f ′2h′2

7680f 2h4π2
+

457f ′2h′2

10240fh4π2

− 2251f ′2h′2

10240fh5m2π2r2
− 409f ′2h′2

5120fh9/2m2π2r2
+

7f ′2h′2

5120fh4m2π2r2

+
ln[

√
f

8π2 ]f ′2h′2

1280f 2h4π2
+

291f ′3h′2

2048f 2h5m2π2r
+

167f ′3h′2

10240f 2h9/2m2π2r

− 467f ′4h′2

30720f 3h5m2π2
+

1337fh′3

3840h6m2π2r3
+

19fh′3

480h11/2m2π2r3

− 7fh′3

960h5m2π2r3
− 49fh′3

1920h5π2r
+

7f ′h′3

640h5π2
− 3379f ′h′3

7680h6m2π2r2

− 77f ′h′3

1920h11/2m2π2r2
+

7f ′h′3

1920h5m2π2r2
+

1003f ′2h′3

10240fh6m2π2r

+
11f ′2h′3

2560fh11/2m2π2r
+

151f ′3h′3

20480f 2h6m2π2
+

191fh′4

768h7m2π2r2

+
7fh′4

384h13/2m2π2r2
− 357f ′h′4

1280h7m2π2r
− 7f ′h′4

768h13/2m2π2r

+
311f ′2h′4

7680fh7m2π2
+

91fh′5

768h8m2π2r
− 91f ′h′5

1536h8m2π2
+

f ′′

512h2π2

+
ff ′′

384h3/2π2r4
+

29ff ′′

7680hπ2r4
− 73f ′′

160h3m2π2r4
− 229f ′′

480h5/2m2π2r4

− 19f ′′

480h2m2π2r4
− f ′′

192h3/2m2π2r4
+

41f ′′

80h2π2r2
− f ′′

120fh2π2r2

− f ′′

192h3/2π2r2
+

23f ′′

384hπ2r2
− fm2f ′′

256hπ2r2
− f ′′

128h2π2r
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− f ′′

128h3/2π2r
+

ln[

√
f

8π2 ]f ′′

120fh2π2r2
− f ′f ′′

768h3/2π2r3
+

3773f ′f ′′

3840fh3m2π2r3

+
1623f ′f ′′

2560fh5/2m2π2r3
+

17f ′f ′′

480fh2m2π2r3
+

f ′f ′′

1536fh3/2m2π2r3

+
f ′f ′′

120f 2h2π2r
− 887f ′f ′′

1920fh2π2r
+

125f ′f ′′

768fh3/2π2r
− f ′2f ′′

1920f 3h2π2

+
89f ′2f ′′

1920f 2h2π2
− 10057f ′2f ′′

15360f 2h3m2π2r2
− 157f ′2f ′′

640f 2h5/2m2π2r2

− 17f ′2f ′′

1920f 2h2m2π2r2
−

7 ln[

√
f

8π2 ]f ′2f ′′

960f 3h2π2
+

4139f ′3f ′′

30720f 3h3m2π2r

+
701f ′3f ′′

30720f 3h5/2m2π2r
− 37f ′4f ′′

7680f 4h3m2π2
+

269h′f ′′

3840h4m2π2r3

− 209h′f ′′

2560h7/2m2π2r3
− h′f ′′

240h3m2π2r3
− h′f ′′

512h5/2m2π2r3

+
107h′f ′′

1920h3π2r
+

h′f ′′

240fh3π2r
− 23h′f ′′

256h5/2π2r
−

ln[

√
f

8π2 ]h′f ′′

30fh3π2r

− f ′h′f ′′

960f 2h3π2
− 731f ′h′f ′′

7680fh3π2
+

13f ′h′f ′′

80fh4m2π2r2
+

271f ′h′f ′′

2560fh7/2m2π2r2

− f ′h′f ′′

640fh3m2π2r2
−

ln[

√
f

8π2 ]f ′h′f ′′

120f 2h3π2
− 5533f ′2h′f ′′

30720f 2h4m2π2r

− 323f ′2h′f ′′

10240f 2h7/2m2π2r
+

1771f ′3h′f ′′

61440f 3h4m2π2
− 19h′2f ′′

1280h4π2

+
245h′2f ′′

1024h5m2π2r2
+

67h′2f ′′

2560h9/2m2π2r2
− 19h′2f ′′

3840h4m2π2r2

− 579f ′h′2f ′′

5120fh5m2π2r
− 37f ′h′2f ′′

5120fh9/2m2π2r
− 563f ′2h′2f ′′

61440f 2h5m2π2

+
2609h′3f ′′

15360h6m2π2r
+

3h′3f ′′

256h11/2m2π2r
− 1987f ′h′3f ′′

30720fh6m2π2

+
113h′4f ′′

1536h7m2π2
− f ′′2

1920f 2h2π2
+

347f ′′2

7680fh2π2
− 7f ′′2

7680fh3m2π2r2

− 3f ′′2

160fh5/2m2π2r2
− f ′′2

1280fh2m2π2r2
+

11 ln[

√
f

8π2 ]f ′′2

960f 2h2π2
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+
541f ′f ′′2

15360f 2h3m2π2r
+

29f ′f ′′2

2560f 2h5/2m2π2r
− 37f ′2f ′′2

3840f 3h3m2π2

+
527h′f ′′2

15360fh4m2π2r
+

h′f ′′2

512fh7/2m2π2r
− 13f ′h′f ′′2

10240f 2h4m2π2

+
127h′2f ′′2

7680fh5m2π2
+

f ′′3

7680f 2h3m2π2
− 7fh′′

240h4m2π2r4

+
113fh′′

3840h7/2m2π2r4
+

fh′′

480h3m2π2r4
+

fh′′

768h5/2m2π2r4

− 13fh′′

960h3π2r2
+

3fh′′

128h5/2π2r2
+

ln[

√
f

8π2 ]h′′

240h3π2r2
− 67f ′h′′

1920h4m2π2r3

− 79f ′h′′

1536h7/2m2π2r3
− f ′h′′

640h3m2π2r3
− f ′h′′

1536h5/2m2π2r3

+
13f ′h′′

1280h3π2r
+

f ′h′′

240fh3π2r
− 23f ′h′′

768h5/2π2r
−

ln[

√
f

8π2 ]f ′h′′

240fh3π2r

− f ′2h′′

1920f 2h3π2
− f ′2h′′

60fh3π2
+

919f ′2h′′

7680fh4m2π2r2

+
173f ′2h′′

5120fh7/2m2π2r2
− f ′2h′′

1280fh3m2π2r2
+

ln[

√
f

8π2 ]f ′2h′′

960f 2h3π2

− 123f ′3h′′

2048f 2h4m2π2r
− 69f ′3h′′

10240f 2h7/2m2π2r
+

131f ′4h′′

20480f 3h4m2π2

− 467fh′h′′

1920h5m2π2r3
− 31fh′h′′

960h9/2m2π2r3
+

13fh′h′′

1920h4m2π2r3

+
91fh′h′′

3840h4π2r
− 13f ′h′h′′

1280h4π2
+

1189f ′h′h′′

3840h5m2π2r2
+

f ′h′h′′

30h9/2m2π2r2

− 13f ′h′h′′

3840h4m2π2r2
− 2053f ′2h′h′′

30720fh5m2π2r
− 19f ′2h′h′′

5120fh9/2m2π2r

− 431f ′3h′h′′

61440f 2h5m2π2
− 73fh′2h′′

240h6m2π2r2
− 47fh′2h′′

1920h11/2m2π2r2

+
1333f ′h′2h′′

3840h6m2π2r
+

47f ′h′2h′′

3840h11/2m2π2r
− 531f ′2h′2h′′

10240fh6m2π2

− 797fh′3h′′

3840h7m2π2r
+

797f ′h′3h′′

7680h7m2π2
+

f ′′h′′

160h3π2
− 9f ′′h′′

128h4m2π2r2

− 3f ′′h′′

320h7/2m2π2r2
+

f ′′h′′

480h3m2π2r2
+

497f ′f ′′h′′

15360fh4m2π2r
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+
7f ′f ′′h′′

2560fh7/2m2π2r
+

25f ′2f ′′h′′

6144f 2h4m2π2
− 1963h′f ′′h′′

15360h5m2π2r

− 5h′f ′′h′′

512h9/2m2π2r
+

1559f ′h′f ′′h′′

30720fh5m2π2
− 1403h′2f ′′h′′

15360h6m2π2

− 11f ′′2h′′

1920fh4m2π2
+

287fh′′2

7680h5m2π2r2
+

13fh′′2

3840h9/2m2π2r2

− 167f ′h′′2

3840h5m2π2r
− 13f ′h′′2

7680h9/2m2π2r
+

41f ′2h′′2

6144fh5m2π2

+
493fh′h′′2

7680h6m2π2r
− 493f ′h′h′′2

15360h6m2π2
+

11f ′′h′′2

960h5m2π2
+

11f 3

240h3m2π2r3

+
161f 3

3840h5/2m2π2r3
− f 3

960h2m2π2r3
+

f 3

768h3/2m2π2r3

− 17f 3

1920h2π2r
− f 3

240fh2π2r
+

23f 3

384h3/2π2r
+

ln[

√
f

8π2 ]f 3

240fh2π2r

+
f ′f 3

960f 2h2π2
+

f ′f 3

30fh2π2
− 913f ′f 3

7680fh3m2π2r2

− 23f ′f 3

480fh5/2m2π2r2
+

f ′f 3

640fh2m2π2r2
−

ln[

√
f

8π2 ]f ′f 3

480f 2h2π2

+
607f ′2f 3

7680f 2h3m2π2r
+

69f ′2f 3

5120f 2h5/2m2π2r
− 131f ′3f 3

10240f 3h3m2π2

+
3h′f 3

320h3π2
− 31h′f 3

512h4m2π2r2
− 13h′f 3

1280h7/2m2π2r2
+

h′f 3

320h3m2π2r2

+
91f ′h′f 3

3840fh4m2π2r
+

29f ′h′f 3

7680fh7/2m2π2r
+

193f ′2h′f 3

30720f 2h4m2π2

− 1027h′2f 3

15360h5m2π2r
− 11h′2f 3

1536h9/2m2π2r
+

1037f ′h′2f 3

30720fh5m2π2

− 45h′3f 3

1024h6m2π2
− 23f ′′f 3

1536fh3m2π2r
− f ′′f 3

768fh5/2m2π2r

+
11f ′f ′′f 3

15360f 2h3m2π2
− h′f ′′f 3

80fh4m2π2
+

h′′f 3

48h4m2π2r
+

h′′f 3

384h7/2m2π2r

− 17f ′h′′f 3

1536fh4m2π2
+

17h′h′′f 3

512h5m2π2
+

f 32

768fh3m2π2
+

fh3

40h4m2π2r3

+
fh3

240h7/2m2π2r3
− fh3

960h3m2π2r3
− 7fh3

1920h3π2r
+

f ′h3

640h3π2
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− 247f ′h3

7680h4m2π2r2
− 17f ′h3

3840h7/2m2π2r2
+

f ′h3

1920h3m2π2r2

+
33f ′2h3

5120fh4m2π2r
+

f ′2h3

1920fh7/2m2π2r
+

17f ′3h3

15360f 2h4m2π2

+
421fh′h3

7680h5m2π2r2
+

19fh′h3

3840h9/2m2π2r2
− 493f ′h′h3

7680h5m2π2r

− 19f ′h′h3

7680h9/2m2π2r
+

307f ′2h′h3

30720fh5m2π2
+

359fh′2h3

7680h6m2π2r

− 359f ′h′2h3

15360h6m2π2
+

23f ′′h3

1536h4m2π2r
+

f ′′h3

768h7/2m2π2r

− 97f ′f ′′h3

15360fh4m2π2
+

43h′f ′′h3

2560h5m2π2
− 3fh′′h3

256h5m2π2r
+

3f ′h′′h3

512h5m2π2

− f 3h3

256h4m2π2
− f 4

320h2π2
+

f 4

192h3m2π2r2
+

f 4

480h5/2m2π2r2

− f 4

960h2m2π2r2
+

f ′f 4

3840fh3m2π2r
− f ′f 4

960fh5/2m2π2r

− 17f ′2f 4

7680f 2h3m2π2
+

11h′f 4

640h4m2π2r
+

h′f 4

384h7/2m2π2r

− 43f ′h′f 4

3840fh4m2π2
+

25h′2f 4

1536h5m2π2
+

11f ′′f 4

3840fh3m2π2
− h′′f 4

192h4m2π2

− 19fh4

3840h4m2π2r2
− fh4

1920h7/2m2π2r2
+

23f ′h4

3840h4m2π2r

+
f ′h4

3840h7/2m2π2r
− f ′2h4

1024fh4m2π2
− 13fh′h4

1920h5m2π2r

+
13f ′h′h4

3840h5m2π2
− f ′′h4

640h4m2π2
− 3f 5

1280h3m2π2r
− f 5

1920h5/2m2π2r

+
f ′f 5

512fh3m2π2
− h′f 5

256h4m2π2
+

fh5

1920h4m2π2r
− f ′h5

3840h4m2π2

+
f 6

1920h3m2π2
(B2)

< T θθ >ren = < T φφ >ren=
7κ4

2880f 2π2
− κ2m2

48fπ2
+

3m4

32π2
+
fm4

96π2
+

211f

40320m2π2r6
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+
95f

192h3m2π2r6
+

1061f

1920h5/2m2π2r6
+

11f

192h2m2π2r6

− f

192h3/2m2π2r6
− f

960hm2π2r6
+

19f

1920m2π2r6
+

13f

480π2r4

− 61f

192h2π2r4
− 3f

32h3/2π2r4
− f

96hπ2r4
+

f

32π2r4
− fm2

32π2r2

+
fm2

16hπ2r2
− fm2

64π2r2
+

11 ln[

√
f

8π2 ]

240π2r4
+

3 ln[

√
f

8π2 ]

80h2π2r4
−

ln[

√
f

8π2 ]

12hπ2r4

− 5411f ′

3840h3m2π2r5
− 4241f ′

3840h5/2m2π2r5
− 89f ′

960h2m2π2r5

+
f ′

128h3/2m2π2r5
+

f ′

1280hm2π2r5
− 19f ′

3840m2π2r5
+

1091f ′

960h2π2r3

− f ′

240fh2π2r3
+

21f ′

64h3/2π2r3
− 5f ′

96hπ2r3
− 3f ′

64π2r3
− κ2f ′

576f 2hπ2r

+
25m2f ′

384hπ2r
+

m2f ′

96fhπ2r
− 7m2f ′

128π2r
+

11 ln[

√
f

8π2 ]f ′

240fh2π2r3
−

ln[

√
f

8π2 ]f ′

24fhπ2r3

+
κ2f ′2

576f 3hπ2
+

m2f ′2

16fhπ2
+

1831f ′2

1280fh3m2π2r4
+

183f ′2

256fh5/2m2π2r4

+
349f ′2

7680fh2m2π2r4
− f ′2

256fh3/2m2π2r4
− 633f ′2

640fh2π2r2

− 37f ′2

256fh3/2π2r2
+

11f ′2

256fhπ2r2
+

ln[

√
f

8π2 ]f ′2

48f 2h2π2r2
− 533f ′3

960f 2h3m2π2r3

− 333f ′3

2560f 2h5/2m2π2r3
− 7f ′3

1280f 2h2m2π2r3
+

f ′3

1536f 2h3/2m2π2r3

− f ′3

1280f 3h2π2r
+

311f ′3

960f 2h2π2r
+

5f ′3

512f 2h3/2π2r
+

ln[

√
f

8π2 ]f ′3

960f 3h2π2r

+
29f ′4

15360f 4h2π2
− 143f ′4

3072f 3h2π2
+

47f ′4

1920f 3h3m2π2r2

− 217f ′4

10240f 3h5/2m2π2r2
− f ′4

1024f 3h2m2π2r2
−

19 ln[

√
f

8π2 ]f ′4

3840f 4h2π2

+
527f ′5

20480f 4h3m2π2r
+

113f ′5

20480f 4h5/2m2π2r
− 7f ′6

2048f 5h3m2π2
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+
289fh′

3840h4m2π2r5
+

133fh′

480h7/2m2π2r5
+

7fh′

320h3m2π2r5

− fh′

3840h2m2π2r5
− 209fh′

960h3π2r3
− 7fh′

192h5/2π2r3
− fh′

96h2π2r3

− κ2h′

576fh2π2r
+

m2h′

96h2π2r
+

5fm2h′

384h2π2r
−

11 ln[

√
f

8π2 ]h′

240h3π2r3
+

ln[

√
f

8π2 ]h′

24h2π2r3

+
κ2f ′h′

1152f 2h2π2
+

m2f ′h′

256h2π2
− m2f ′h′

192fh2π2
− 3641f ′h′

7680h4m2π2r4

− 257f ′h′

480h7/2m2π2r4
− 109f ′h′

3840h3m2π2r4
+

f ′h′

7680h2m2π2r4

+
613f ′h′

1920h3π2r2
− f ′h′

160fh3π2r2
− f ′h′

96h5/2π2r2
+

f ′h′

128h2π2r2

−
ln[

√
f

8π2 ]f ′h′

160fh3π2r2
+

2731f ′2h′

3840fh4m2π2r3
+

461f ′2h′

1280fh7/2m2π2r3

+
29f ′2h′

2560fh3m2π2r3
− 7f ′2h′

3840f 2h3π2r
− 107f ′2h′

1920fh3π2r

+
11f ′2h′

384fh5/2π2r
+

ln[

√
f

8π2 ]f ′2h′

240f 2h3π2r
+

73f ′3h′

23040f 3h3π2
− 83f ′3h′

3840f 2h3π2

− 2851f ′3h′

7680f 2h4m2π2r2
− 467f ′3h′

5120f 2h7/2m2π2r2
− 17f ′3h′

7680f 2h3m2π2r2

−
11 ln[

√
f

8π2 ]f ′3h′

1920f 3h3π2
+

805f ′4h′

12288f 3h4m2π2r
+

29f ′4h′

5120f 3h7/2m2π2r

− 313f ′5h′

122880f 4h4m2π2
− 291fh′2

1280h5m2π2r4
+

11fh′2

320h9/2m2π2r4

+
29fh′2

7680h4m2π2r4
− 19fh′2

1920h4π2r2
+

fh′2

96h7/2π2r2
+

3 ln[

√
f

8π2 ]h′2

160h4π2r2

+
681f ′h′2

2560h5m2π2r3
− f ′h′2

16h9/2m2π2r3
− 23f ′h′2

7680h4m2π2r3

− 29f ′h′2

640h4π2r
− f ′h′2

320fh4π2r
− f ′h′2

32h7/2π2r
+

ln[

√
f

8π2 ]f ′h′2

192fh4π2r

+
31f ′2h′2

7680f 2h4π2
+

11f ′2h′2

2560fh4π2
+

47f ′2h′2

15360fh5m2π2r2
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+
439f ′2h′2

10240fh9/2m2π2r2
− 7f ′2h′2

10240fh4m2π2r2
−

23 ln[

√
f

8π2 ]f ′2h′2

3840f 2h4π2

− 221f ′3h′2

4096f 2h5m2π2r
− 177f ′3h′2

20480f 2h9/2m2π2r
+

159f ′4h′2

20480f 3h5m2π2

− 619fh′3

2560h6m2π2r3
− 19fh′3

960h11/2m2π2r3
+

7fh′3

1920h5m2π2r3

+
7fh′3

320h5π2r
+

7 ln[

√
f

8π2 ]h′3

480h5π2r
− 7f ′h′3

480h5π2
+

7f ′h′3

960fh5π2

+
4949f ′h′3

15360h6m2π2r2
+

77f ′h′3

3840h11/2m2π2r2
− 7f ′h′3

3840h5m2π2r2

−
7 ln[

√
f

8π2 ]f ′h′3

960fh5π2
− 5719f ′2h′3

61440fh6m2π2r
− 11f ′2h′3

5120fh11/2m2π2r

+
157f ′3h′3

122880f 2h6m2π2
− 113fh′4

768h7m2π2r2
− 7fh′4

768h13/2m2π2r2

+
623f ′h′4

3840h7m2π2r
+

7f ′h′4

1536h13/2m2π2r
− 797f ′2h′4

30720fh7m2π2

− 91fh′5

1536h8m2π2r
+

91f ′h′5

3072h8m2π2
− κ2f ′′

576f 2hπ2
−m2f ′′128hπ2

+
m2f ′′

96fhπ2
+

721f ′′

3840h3m2π2r4
+

39f ′′

160h5/2m2π2r4
+

19f ′′

960h2m2π2r4

− f ′′

3840hm2π2r4
− 221f ′′

960h2π2r2
+

f ′′

240fh2π2r2
+

f ′′

96h3/2π2r2

− f ′′

64hπ2r2
−

ln[

√
f

8π2 ]f ′′

240fh2π2r2
− 1859f ′f ′′

3840fh3m2π2r3
− 103f ′f ′′

320fh5/2m2π2r3

− 17f ′f ′′

960fh2m2π2r3
+

7f ′f ′′

2880f 2h2π2r
+

37f ′f ′′

640fh2π2r
− 11f ′f ′′

192fh3/2π2r

−
ln[

√
f

8π2 ]f ′f ′′

320f 2h2π2r
− 73f ′2f ′′

11520f 3h2π2
+

83f ′2f ′′

1920f 2h2π2

+
931f ′2f ′′

2560f 2h3m2π2r2
+

633f ′2f ′′

5120f 2h5/2m2π2r2
+

17f ′2f ′′

3840f 2h2m2π2r2

+
11 ln[

√
f

8π2 ]f ′2f ′′

960f 3h2π2
− 673f ′3f ′′

7680f 3h3m2π2r
− 29f ′3f ′′

2560f 3h5/2m2π2r
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+
313f ′4f ′′

61440f 4h3m2π2
− 139h′f ′′

1280h4m2π2r3
+

7h′f ′′

160h7/2m2π2r3

+
h′f ′′

480h3m2π2r3
+

47h′f ′′

960h3π2r
+

11h′f ′′

960fh3π2r
+

3h′f ′′

64h5/2π2r

−
ln[

√
f

8π2 ]h′f ′′

64fh3π2r
− f ′h′f ′′

120f 2h3π2
− f ′h′f ′′

3840fh3π2
− 79f ′h′f ′′

7680fh4m2π2r2

− 143f ′h′f ′′

2560fh7/2m2π2r2
+

f ′h′f ′′

1280fh3m2π2r2
+

7 ln[

√
f

8π2 ]f ′h′f ′′

640f 2h3π2

+
187f ′2h′f ′′

2560f 2h4m2π2r
+

169f ′2h′f ′′

10240f 2h7/2m2π2r
− 37f ′3h′f ′′

2560f 3h4m2π2

+
19h′2f ′′

960h4π2
− 19h′2f ′′

1920fh4π2
− 253h′2f ′′

1536h5m2π2r2
− 67h′2f ′′

5120h9/2m2π2r2

+
19h′2f ′′

7680h4m2π2r2
+

19 ln[

√
f

8π2 ]h′2f ′′

1920fh4π2
+

2897f ′h′2f ′′

30720fh5m2π2r

+
37f ′h′2f ′′

10240fh9/2m2π2r
− 31f ′2h′2f ′′

10240f 2h5m2π2
− 3059h′3f ′′

30720h6m2π2r

− 3h′3f ′′

512h11/2m2π2r
+

2437f ′h′3f ′′

61440fh6m2π2
− 113h′4f ′′

3072h7m2π2

+
7f ′′2

1920f 2h2π2
− 19f ′′2

1920fh2π2
− 11f ′′2

1920fh3m2π2r2

+
3f ′′2

320fh5/2m2π2r2
+

f ′′2

2560fh2m2π2r2
−

ln[

√
f

8π2 ]f ′′2

320f 2h2π2

− 71f ′f ′′2

5120f 2h3m2π2r
− 29f ′f ′′2

5120f 2h5/2m2π2r
+

23f ′2f ′′2

5120f 3h3m2π2

− 301h′f ′′2

15360fh4m2π2r
− h′f ′′2

1024fh7/2m2π2r
+

19f ′h′f ′′2

10240f 2h4m2π2

− 127h′2f ′′2

15360fh5m2π2
− f ′′3

15360f 2h3m2π2
+

9fh′′

160h4m2π2r4

− fh′′

60h7/2m2π2r4
− fh′′

960h3m2π2r4
+

fh′′

240h3π2r2
− fh′′

192h5/2π2r2

− 71f ′h′′

1280h4m2π2r3
+

11f ′h′′

384h7/2m2π2r3
+

f ′h′′

1280h3m2π2r3
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+
11f ′h′′

480h3π2r
+

f ′h′′

960fh3π2r
+

f ′h′′

64h5/2π2r
−

ln[

√
f

8π2 ]f ′h′′

960fh3π2r

− f ′2h′′

640f 2h3π2
− 13f ′2h′′

3840fh3π2
− 27f ′2h′′

1280fh4m2π2r2

− 47f ′2h′′

2560fh7/2m2π2r2
+

f ′2h′′

2560fh3m2π2r2
+

ln[

√
f

8π2 ]f ′2h′′

384f 2h3π2

+
49f ′3h′′

2048f 2h4m2π2r
+

37f ′3h′′

10240f 2h7/2m2π2r
− 17f ′4h′′

5120f 3h4m2π2

+
229fh′h′′

1280h5m2π2r3
+

31fh′h′′

1920h9/2m2π2r3
− 13fh′h′′

3840h4m2π2r3

− 13fh′h′′

640h4π2r
−

13 ln[

√
f

8π2 ]h′h′′

960h4π2r
+

13f ′h′h′′

960h4π2
− 13f ′h′h′′

1920fh4π2

− 1859f ′h′h′′

7680h5m2π2r2
− f ′h′h′′

60h9/2m2π2r2
+

13f ′h′h′′

7680h4m2π2r2

+
13 ln[

√
f

8π2 ]f ′h′h′′

1920fh4π2
+

733f ′2h′h′′

10240fh5m2π2r
+

19f ′2h′h′′

10240fh9/2m2π2r

− 19f ′3h′h′′

20480f 2h5m2π2
+

1403fh′2h′′

7680h6m2π2r2
+

47fh′2h′′

3840h11/2m2π2r2

− 49f ′h′2h′′

240h6m2π2r
− 47f ′h′2h′′

7680h11/2m2π2r
+

2063f ′2h′2h′′

61440fh6m2π2

+
797fh′3h′′

7680h7m2π2r
− 797f ′h′3h′′

15360h7m2π2
− f ′′h′′

120h3π2
+

f ′′h′′

240fh3π2

+
5f ′′h′′

96h4m2π2r2
+

3f ′′h′′

640h7/2m2π2r2
− f ′′h′′

960h3m2π2r2
−

ln[

√
f

8π2 ]f ′′h′′

240fh3π2

− 157f ′f ′′h′′

5120fh4m2π2r
− 7f ′f ′′h′′

5120fh7/2m2π2r
+

f ′2f ′′h′′

1024f 2h4m2π2

+
1169h′f ′′h′′

15360h5m2π2r
+

5h′f ′′h′′

1024h9/2m2π2r
− 967f ′h′f ′′h′′

30720fh5m2π2

+
1403h′2f ′′h′′

30720h6m2π2
+

11f ′′2h′′

3840fh4m2π2
− 11fh′′2

480h5m2π2r2

− 13fh′′2

7680h9/2m2π2r2
+

133f ′h′′2

5120h5m2π2r
+

13f ′h′′2

15360h9/2m2π2r
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− 9f ′2h′′2

2048fh5m2π2
− 493fh′h′′2

15360h6m2π2r
+

493f ′h′h′′2

30720h6m2π2

− 11f ′′h′′2

1920h5m2π2
− 3f 3

640h3m2π2r3
− 11f 3

480h5/2m2π2r3

+
f 3

1920h2m2π2r3
− f 3

30h2π2r
− f 3

160fh2π2r
− f 3

32h3/2π2r

+
ln[

√
f

8π2 ]f 3

160fh2π2r
+

f ′f 3

320f 2h2π2
+

13f ′f 3

1920fh2π2
+

27f ′f 3

640fh3m2π2r2

+
199f ′f 3

7680fh5/2m2π2r2
− f ′f 3

1280fh2m2π2r2
−

ln[

√
f

8π2 ]f ′f 3

192f 2h2π2

− 23f ′2f 3

640f 2h3m2π2r
− 37f ′2f 3

5120f 2h5/2m2π2r
+

17f ′3f 3

2560f 3h3m2π2

− h′f 3

80h3π2
+

h′f 3

160fh3π2
+

13h′f 3

256h4m2π2r2
+

13h′f 3

2560h7/2m2π2r2

− h′f 3

640h3m2π2r2
−

ln[

√
f

8π2 ]h′f 3

160fh3π2
− 59f ′h′f 3

1920fh4m2π2r

− 29f ′h′f 3

15360fh7/2m2π2r
+

3f ′2h′f 3

2560f 2h4m2π2
+

217h′2f 3

5120h5m2π2r

+
11h′2f 3

3072h9/2m2π2r
− 41f ′h′2f 3

1920fh5m2π2
+

45h′3f 3

2048h6m2π2

+
7f ′′f 3

768fh3m2π2r
+

f ′′f 3

1536fh5/2m2π2r
− 3f ′f ′′f 3

2560f 2h3m2π2

+
h′f ′′f 3

160fh4m2π2
− 7h′′f 3

512h4m2π2r
− h′′f 3

768h7/2m2π2r

+
11f ′h′′f 3

1536fh4m2π2
− 17h′h′′f 3

1024h5m2π2
− f 3/2

1536fh3m2π2

− 13fh3

640h4m2π2r3
− fh3

480h7/2m2π2r3
+

fh3

1920h3m2π2r3

+
fh3

320h3π2r
+

ln[

√
f

8π2 ]h3

480h3π2r
− f ′h3

480h3π2
+

f ′h3

960fh3π2

+
9f ′h3

320h4m2π2r2
+

17f ′h3

7680h7/2m2π2r2
− f ′h3

3840h3m2π2r2
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−
ln[

√
f

8π2 ]f ′h3

960fh3π2
− 11f ′2h3

1280fh4m2π2r
− f ′2h3

3840fh7/2m2π2r

+
f ′3h3

10240f 2h4m2π2
− 43fh′h3

1280h5m2π2r2
− 19fh′h3

7680h9/2m2π2r2

+
49f ′h′h3

1280h5m2π2r
+

19f ′h′h3

15360h9/2m2π2r
− 67f ′2h′h3

10240fh5m2π2

− 359fh′2h3

15360h6m2π2r
+

359f ′h′2h3

30720h6m2π2
− 7f ′′h3

768h4m2π2r

− f ′′h3

1536h7/2m2π2r
+

61f ′f ′′h3

15360fh4m2π2
− 43h′f ′′h3

5120h5m2π2

+
3fh′′h3

512h5m2π2r
− 3f ′h′′h3

1024h5m2π2
+

f 3h3

512h4m2π2
+

f 4

240h2π2

− f 4

480fh2π2
− f 4

128h3m2π2r2
− f 4

960h5/2m2π2r2

+
f 4

1920h2m2π2r2
+

ln[

√
f

8π2 ]f 4

480fh2π2
+

13f ′f 4

2560fh3m2π2r

+
f ′f 4

1920fh5/2m2π2r
− f ′2f 4

5120f 2h3m2π2
− 91h′f 4

7680h4m2π2r

− h′f 4

768h7/2m2π2r
+

37f ′h′f 4

5120fh4m2π2
− 25h′2f 4

3072h5m2π2

− 11f ′′f 4

7680fh3m2π2
+

h′′f 4

384h4m2π2
+

fh4

320h4m2π2r2

+
fh4

3840h7/2m2π2r2
− 7f ′h4

1920h4m2π2r
− f ′h4

7680h7/2m2π2r

+
f ′2h4

1536fh4m2π2
+

13fh′h4

3840h5m2π2r
− 13f ′h′h4

7680h5m2π2

+
f ′′h4

1280h4m2π2
+

7f 5

3840h3m2π2r
+

f 5

3840h5/2m2π2r

− f ′f 5

768fh3m2π2
+

h′f 5

512h4m2π2
− fh5

3840h4m2π2r
+

f ′h5

7680h4m2π2

− f 6

3840h3m2π2
(B3)
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In these equations, f and h are coefficient functions in Eq. (1.1); m is

the mass of the field quantum; and κ = 2πT with T being the temperature.
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Appendix C: Stress-Energy Tensor of the

Quantized Neutrino Field and Quantized

Proton Field in the Zero-Tidal-Force

Wormhole Spacetime

C.1 Zero-temperature vacuum state

C.1.1 Quatized neutrino field

The stress-energy tensor components of a quantized neutrino field in

the entire spacetime of the zero-tidal-force wormhole geometry in a zero-

temperature vacuum state are computed to be (in units of Fp/l
2
p):

< T t
t > = 3.2 × 1054/r8 − 2.2 × 1054/r6 + 0.2/r4 + 6.6 × 10−60/r2

−2.0 × 1043/(r3r30) − 1.4 × 10−17/(rr30) − 4.3 × 1042/(r4r20)

+4.0 × 10−16/(r2r20) − 1.4 × 1042/(r5r0) + 9.7 × 10−17/(r3r0)

−1.6 × 1054r0/r
9 − 1.5 × 1056r0/r

7 − 0.4r0/r
5
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−8.5 × 10−60r0/r
3 + 2.7 × 1056r20/r

8 + 0.2r20/r
6

−1.2 × 1056r30/r
9, (C1)

< T r
r > = −0.00003 − 3.16735 × 1054/r8 − 2.9 × 1056/r6 + 0.02/r4

+0.02/r3 − 0.004/r2 + 0.0005/r − 6.6 × 1043/(r3r30)

−1.9 × 10−16/(rr30) − 1.5 × 1043/(r4r20) − 1.0 × 10−16/(r2r20)

−9.0 × 1042/(r5r0) − 7.6 × 10−17/(r3r0) + 1.6 × 1054r0/r
9

+8.7 × 1056r0/r
7 − 0.06r0/r

5 − 0.02r0/r
4 + 0.006r0/r

3

−0.001r0/r
2 + 0.00007r0/r − 6.4 × 1056r20/r

8 + 0.03r20/r
6

+0.004r20/r
5 − 0.002r20/r

4 + 0.0004r20/r
3 − 0.00003r20/r

2

+6.3 × 1055r30/r
9, (C2)

< T θ
θ > = 1.6 × 10−117 + 1.5 × 1056/r6 − 0.03/r4 + 1.2 × 10−60/r2

−2.4 × 1043/(r3r30) + 2.3 × 10−16/(rr30) − 1.2 × 1043/(r4r20)

+9.4 × 10−17/(r2r20) − 4.2 × 1042/(r5r0)

+5.2 × 10−17/(r3r0) − (3.6 × 1056r0)/r
7 + 0.09r0/r

5

−3.6 × 10−60r0/r
3 + 1.9 × 1056r20/r

8 − 0.06r20/r
6

+2.8 × 1055r30/r
9. (C3)
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C.1.2 Quantized proton field

Similarly, the stress-energy tensor components of a quantized proton field

in the entire spacetime of the zero-tidal-force wormhole geometry in a zero-

temperature vacuum state are found to be (in units of Fp/l
2
p):

< T t
t > = 2.1 × 1035/r8 − 1.4 × 1035/r6 + 0.2/r4 + 1.0 × 10−40/r2

+3.0 × 1023/(r3r30) − 1.4 × 10−17/(rr30) + 2.3 × 1023/(r4r20)

+4.0 × 10−16/(r2r20) + 7.6 × 1022/(r5r0)

+9.7 × 10−17/(r3r0) − 1.1 × 1035r0/r
9 − 1.0 × 1037r0/r

7

−0.4r0/r
5 − 1.3 × 10−40r0/r

3 + 1.8 × 1037r20/r
8 + 0.2r20/r

6

−7.7 × 1036r30/r
9, (C4)

< T r
r > = −0.00003 − 2.1 × 1035/r8 − 1.9 × 1037/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 7.4 × 1024/(r3r30) − 1.9 × 10−16/(rr30)

+2.3 × 1024/(r4r20) − 1.0 × 10−16/(r2r20) + 2.1 × 1022/(r5r0)

−7.6 × 10−17/(r3r0) + 1.1 × 1035r0/r
9 + 5.7 × 1037r0/r

7

−0.06r0/r
5 − 0.02r0/r

4 + 0.006r0/r
3 − 0.001r0/r

2

+0.00007r0/r − 4.2 × 1037r20/r
8 + 0.03r20/r

6 + 0.004r20/r
5

−0.002r20/r
4 + 0.0004r20/r

3 − 0.00003r20/r
2

+4.1 × 1036r30/r
9, (C5)
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< T θ
θ > = 3.7 × 10−79 + 9.6 × 1036/r6 − 0.03/r4 + 1.9 × 10−41/r2

−1.7 × 1023/(r3r30) + 2.3 × 10−16/(rr30) − 5.2 × 1023/(r4r20)

+9.4 × 10−17/(r2r20) + 3.8 × 1022/(r5r0)

+5.2 × 10−17/(r3r0) − 2.3 × 1037r0/r
7 + 0.09r0/r

5

−5.1 × 10−41r0/r
3 + 1.2 × 1037r20/r

8 − 0.06r20/r
6

+1.8 × 1036r30/r
9. (C6)

C.2 Thermal states

C.2.1 Quantized neutrino field

The stress-energy tensor components of a quantized neutrino field in the

entire spacetime for the zero-tidal-force wormhole goemetry in thermal states

are found to be (in units of Fp/l
2
p):

< T t
t > = 3.2 × 1054/r8 − 2.2 × 1054/r6 + 0.2/r4 + 6.6 × 10−60/r2

−1.9 × 1043/(r3r30) + 6.0 × 10−15/(rr30) − 5.4 × 1042/(r4r20)

−3.8 × 10−15/(r2r20) − 2.0 × 1042/(r5r0)

+1.9 × 10−15/(r3r0) − 1.6 × 1054r0/r
9 − 1.5 × 1056r0/r

7

−0.4r0/r
5 − 8.5 × 10−60r0/r

3 + 2.7 × 1056r20/r
8 + 0.2r20/r

6

−1.2 × 1056r30/r
9 + 3.2 × 10−59T 2 − 1.2T 4

−1.8 × 10−16(lnT )/(rr30) − 2.8 × 10−17(lnT )/(r2r20)

−0.0009r20(lnT )/r6, (C7)
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< T r
r > = −0.00003 − 3.2 × 1054/r8 − 2.9 × 1056/r6 + 0.02/r4

+0.02/r3 − 0.004/r2 + 0.0005/r + 4.8 × 1043/(r3r30)

−5.3 × 10−15/(rr30) + 1.2 × 1043/(r4r20) − 3.7 × 10−15/(r2r20)

+2.5 × 1042/(r5r0) − 1.6 × 10−15/(r3r0) + 1.6 × 1054r0/r
9

+8.7 × 1056r0/r
7 − 0.06r0/r

5 − 0.02r0/r
4 + 0.006r0/r

3

−0.001r0/r
2 + 0.00007r0/r − 6.4 × 1056r20/r

8 − 0.08r20/r
6

+0.004r20/r
5 − 0.002r20/r

4 + 0.0004r20/r
3 − 0.00003r20/r

2

+6.3 × 1055r30/r
9 − 3.2 × 10−59T 2 − 0.01r0T

2/r3 + 0.4T 4

+3.5 × 10−18(lnT )/r4 + 6.9 × 10−18(lnT )/(r2r20)

+6.9 × 10−18(lnT )/(r3r0) + 1.7 × 10−18r0(lnT )/r5

−0.002r20(lnT )/r6, (C8)

< T θ
θ > = 1.6 × 10−117 + 1.5 × 1056/r6 − 0.03/r4 + 1.2 × 10−60/r2

−7.2 × 1043/(r3r30) + 3.9 × 10−15/(rr30) − 2.5 × 1043/(r4r20)

+2.8 × 10−15/(r2r20) − 5.5 × 1042/(r5r0)

+7.3 × 10−16/(r3r0) − 3.6 × 1056r0/r
7 + 0.09r0/r

5

−3.4−60r0/r
3 + 1.9 × 1056r20/r

8 − 0.2r20/r
6 + 2.8 × 1055r30/r

9

−3.2 × 10−59T 2 + 0.007r0T
2/r3 + 0.4T 4

+1.0 × 10−16(lnT )/(rr30) + 3.5 × 10−18(lnT )/(r2r20)

+1.7 × 10−18(lnT )/(r3r0) − 0.003r20(lnT )/r6. (C9)
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C.2.2 Quantized proton field

The stress-energy tensor components of a quantized proton field in the

entire spacetime for the zero-tidal-force wormhole geometry in thermal states

are found to be (in units of Fp/l
2
p):

< T t
t > = 2.1 × 1035/r8 − 1.4 × 1035/r6 + 0.2/r4 + 1.0 × 10−40/r2

+5.4 × 1023/(r3r30) + 9.9 × 10−15/(rr30) + 2.7 × 1023/(r4r20)

+5.1 × 10−15/(r2r20) + 1.3 × 1023/(r5r0) + 1.9 × 10−15/(r3r0)

−1.1 × 1035r0/r
9 − 1.0 × 1037r0/r

7 − 0.4r0/r
5

−1.3 × 10−40r0/r
3 + 1.8 × 1037r20/r

8 + 0.2r20/r
6

−7.7 × 1036r30/r
9 + 4.9 × 10−40T 2 − 1.2T 4

−1.8 × 10−16(lnT )/(rr30) − 2.8 × 10−17(lnT )/(r2r20)

−0.0009r20(lnT )/r6, (C10)

< T r
r > = −0.00003 − 2.0 × 1035/r8 − 1.9 × 1037/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 3.6 × 1024/(r3r30) − 3.0 × 10−15/(rr30)

+1.9 × 1024/(r4r20) − 1.5 × 10−16/(r2r20) − 1.7 × 1022/(r5r0)

−6.2 × 10−17/(r3r0) + 1.1 × 1035r0/r
9 + 5.7 × 1037r0/r

7

−0.06r0/r
5 − 0.02r0/r

4 + 0.006r0/r
3 − 0.001r0/r

2

+0.00007r0/r − 4.2 × 1037r20/r
8 − 0.04r20/r

6 + 0.004r20/r
5
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−0.002r20/r
4 + 0.0004r20/r

3 − 0.00003r20/r
2 + 4.1 × 1036r30/r

9

−4.9 × 10−40T 2 − 0.01r0T
2/r3 + 0.4T 4 + 3.5 × 10−18(lnT )/r4

+6.9 × 10−18(lnT )/(r2r20) + 6.9 × 10−18(lnT )/(r3r0)

+1.7 × 10−18r0(lnT )/r5 − 0.002r20(lnT )/r6. (C11)

< T θ
θ > = 3.7 × 10−79 + 9.6 × 1036/r6 − 0.03/r4 + 1.9 × 10−41/r2

−6.6 × 1023/(r3r30) − 5.2 × 10−15/(rr30) − 8.4 × 1022/(r4r20)

−5.8 × 10−16/(r2r20) + 2.9 × 1022/(r5r0)

−3.0 × 10−16/(r3r0) − 2.3 × 1037r0/r
7 + 0.09r0/r

5

−5.1 × 10−41r0/r
3 + 1.2 × 1037r20/r

8 − 0.2r20/r
6

+1.8 × 1036r30/r
9 − 4.9 × 10−40T 2 + 0.007r0T

2/r3

+0.4T 4 + 1.0 × 10−16(lnT )/(rr30) + 3.5 × 10−18(lnT )/(r2r20)

+1.7 × 10−18(lnT )/(r3r0) − 0.003r20(lnT )/r6. (C12)
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Appendix D: Stress-Energy Tensor of the

Quantized Neutrino Field and Quantized

Proton Field in the Simple Wormhole

Spacetime

D.1 Zero-temperature vacuum state

D.1.1 Quantized neutrino field

The stress-energy tensor components of a quantized neutrino field in the

entire spacetime of the simple wormhole geometry at zero temperature are

found to be (in units of Fp/l
2
p):

< T t
t > = 3.2 × 1054/r8 − 2.2 × 1054/r6 + 0.2/r4 + 6.6 × 10−60/r2

−1.5 × 1043/(r4r20) + 3.5 × 10−16/(r2r20) − 1.6 × 1054r20/r
10

−4.1 × 1056r20/r
8 − 0.5r20/r

6 − 8.3 × 10−60r20/r
4

+7.4 × 1056r40/r
10 + 0.3r40/r

8 − 3.3 × 1056r60/r
12, (D1)
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< T r
r > = −0.00003 − 3.2 × 1054/r8 − 2.9 × 1056/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 5.0 × 1043/(r4r20) − 3.5 × 10−16/(r2r20)

+1.6 × 1054r20/r
10 + 6.4 × 1056r20/r

8 − 0.1r20/r
6 − 0.02r20/r

5

+0.006r20/r
4 − 0.0009r20/r

3 + 0.00007r20/r
2 + 7.6 × 1056r40/r

10

+0.03r40/r
8 + 0.003r40/r

7 − 0.002r40/r
6 + 0.0003r40/r

5

−0.00003r40/r
4 − 1.2 × 1057r60/r

12, (D2)

< T θ
θ > = 1.6 × 10−117 + 1.5 × 1056/r6 − 0.03/r4 + 1.2 × 10−60/r2

+1.4 × 1044/(r4r20) + 4.3 × 10−16/(r2r20) − 1.1 × 1056r20/r
8

+0.1r20/r
6 − 4.3 × 10−60r20/r

4 − 7.5 × 1056r40/r
10

−0.1r40/r
8 + 7.5 × 1056r60/r

12. (D3)

D.1.2 Quantized proton field

The stress-energy tensor components of a quantized proton field in the

entire spacetime of the simple wormhole geometry at zero temperature are

found to be (in units of Fp/l
2
p):

< T t
t > = 2.1 × 1035/r8 − 1.4 × 1035/r6 + 0.2/r4 + 1.0 × 10−40/r2

+1.2 × 1024/(r4r02) + 3.5 × 10−16/(r2r20) − 1.1 × 1035r20/r
10

−2.7 × 1037r20/r
8 − 0.5r20/r

6 − 1.3 × 10−40r20/r
4

+4.9 × 1037r40/r
10 + 0.3r40/r

8 − 2.2 × 1037r60/r
12, (D4)

156



< T r
r > = −0.00003 − 2.1 × 1035/r8 − 1.9 × 1037/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 2.6 × 1025/(r4r20)

−3.5 × 10−16/(r2r20) + 1.1 × 1035r20/r
10 + 4.2 × 1037r20/r

8

−0.1r20/r
6 − 0.02r20/r

5 + 0.006r20/r
4 − 0.0009r20/r

3

+0.00007r20/r
2 + 4.9 × 1037r40/r

10 + 0.03r40/r
8 + 0.003r40/r

7

−0.002r40/r
6 + 0.0003r40/r

5 − 0.00003r40/r
4

−7.6 × 1037r60/r
12, (D5)

< T θ
θ > = 3.7 × 10−79 + 9.6 × 1036/r6 − 0.03/r4 + 1.9 × 10−41/r2

+1.2 × 1025/(r4r20) + 4.3 × 10−16/(r2r20) − 7.3 × 1036r20/r
8

+0.1r20/r
6 − 6.5 × 10−41r20/r

4 − 4.9 × 1037r40/r
10 − 0.1r40/r

8

+4.9 × 1037r60/r
12. (D6)

D.2 Thermal states

D.2.1 Quantized neutrino field

The stress-energy tensor components of a quantized neutrino field in the

entire spacetime for simple wormhole geometry in thermal states are found

to be (in units of Fp/l
2
p):

< T t
t > = 3.2 × 1054/r8 − 2.2 × 1054/r6 + 0.2/r4 + 6.6 × 10−60/r2
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−1.6 × 1043/(r4r20) − 1.4 × 10−14/(r2r20) − 1.6 × 1054r20/r
10

−4.1 × 1056r20/r
8 − 0.8r20/r

6 − 8.3 × 10−60r20/r
4

+7.4 × 1056r40/r
10 + 0.6r40/r

8 − 3.3 × 1056r60/r
12

+3.2 × 10−59T 2 − 0.01r20T
2/r4 − 1.2T 4 − 1.2 × 10−16(lnT )/r4

−3.1 × 10−16(lnT )/(r2r20) − 0.005r20(lnT )/r6

+0.005r40(lnT )/r8, (D7)

< T r
r > = −0.00003 − 3.2 × 1054/r8 − 2.9 × 1056/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 4.04724 × 1044/(r4r20)

+1.7 × 10−15/(r2r20) + 1.6 × 1054r20/r
10 + 6.4 × 1056r20/r

8

−0.2r20/r
6 − 0.02r20/r

5 + 0.006r20/r
4 − 0.0009r20/r

3

+0.00007r20/r
2 + 7.6 × 1056r40/r

10 − 0.5r40/r
8 + 0.003r40/r

7

−0.002r40/r
6 + 0.0003r40/r

5 − 0.00003r40/r
4 − 1.2 × 1057r60/r

12

−3.2 × 10−59T 2 − 0.01r20T
2/r4 + 0.4T 4 − 0.002r20(lnT )/r6

−0.008r40(lnT )/r8, (D8)

< T θ
θ > = 1.6 × 10−117 + 1.5 × 1056/r6 − 0.03/r4 + 1.2 × 10−60/r2

+2.4 × 1043/(r4r20) + 8.5 × 10−16/(r2r20) − 1.1 × 1056r20/r
8

+0.3r20/r
6 − 4.3 × 10−60r20/r

4 − 7.5 × 1056r40/r
10 − 0.7r40/r

8

+7.5 × 1056r60/r
12 − 3.2 × 10−59T 2 + 0.01r20T

2/r4 + 0.4T 4
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+0.003r20(lnT )/r6 − 0.008r40(lnT )/r8. (D9)

D.2.2 Quantized proton field

The stress-energy tensor components of a quantized proton field in the

entire spacetime for the simple wormhole geometry in thermal states are

found to be (in units of Fp/l
2
p):

< T t
t > = 2.1 × 1035/r8 − 1.4 × 1035/r6 + 0.2/r4 + 1.0 × 10−40/r2

+6.2 × 1023/(r4r20) + 2.7 × 10−14/(r2r20) − 1.1 × 1035r20/r
10

−2.7 × 1037r20/r
8 − 0.7r20/r

6 − 1.3 × 10−40r20/r
4

+4.9 × 1037r40/r
10 + 0.5r40/r

8 − 2.2 × 1037r60/r
12

+4.9 × 10−40T 2 − 0.01r20T
2/r4 − 1.2T 4 − 1.2 × 10−16(lnT )/r4

−3.1 × 10−16(lnT )/(r2r20) − 0.005r20(lnT )/r6

+0.005r40(lnT )/r8, (D10)

< T r
r > = −0.00003 − 2.1 × 1035/r8 − 1.9 × 1037/r6 + 0.02/r4 + 0.02/r3

−0.004/r2 + 0.0005/r + 1.9 × 1025/(r4r20) − 1.1 × 10−16/(r2r20)

+1.1 × 1035r20/r
10 + 4.2 × 1037r20/r

8 − 0.2r20/r
6 − 0.02r20/r

5

+0.006r20/r
4 − 0.0009r20/r

3 + 0.00007r20/r
2 + 4.9 × 1037r40/r

10

−0.3r40/r
8 + 0.003r40/r

7 − 0.002r40/r
6 + 0.0003r40/r

5

−0.00003r40/r
4 − 7.6 × 1037r60/r

12 − 4.9 × 10−40T 2
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−0.01r20T
2/r4 + 0.4T 4 − 0.002r20(lnT )/r6

−0.008r40(lnT )/r8, (D11)

< T θ
θ > = 3.7 × 10−79 + 9.6 × 1036/r6 − 0.03/r41.9 × 10−41/r2

+1.2 × 1025/(r4r20) − 6.9 × 10−15/(r2r20) − 7.3 × 1036r20/r
8

+0.3r20/r
6 − 6.5 × 10−41r20/r

4 − 4.9 × 1037r40/r
10 − 0.5r40/r

8

+4.9 × 1037r60/r
12 − 4.9 × 10−40T 2 + 0.01r20T

2/r4 + 0.4T 4

+0.003r20(lnT )/r6 − 0.008r40(lnT )/r8. (D12)
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Appendix E: Stress-Energy Tensor of the

Quantized Neutrino Field and Quantized

Proton Field in the Proximal Schwarzschild

Wormhole Spacetime

E.1 Zero-temperature vacuum state

E.1.1 Quantized neutrino field

I have computed the stress-energy tensor components of a quantized neu-

trino field in the entire spacetime of the proximal Schwarzschild wormhole

geometry at zero temperature. Because the expression for each component is

lengthy, I list only < T tt > and < T rr > (in units of Fp/l
2
p) but omit < T θθ >

since it is irrelevant to the calculations in this paper:

< T tt > = 3.2× 1054/r8 + 3.9× 1057/r6 + 4.0× 1057/(ε4r6)

−3.0× 1058/(ε3r6) + 6.6× 1058/(ε2r6)− 4.5× 1058/(εr6)
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+0.5/r4 − 0.4/(ε3r4) + 2.2/(ε2r4)− 2.7/(εr4)− 4.4× 10−16ε/r4

−6.9× 10−77ε2/r4 − 1.1× 10−59/r2 − 4.2× 10−60/(ε2r2)

+2.2× 10−59/(εr2)− 6.9× 10−77/r20 − 4.2× 10−60/(ε4r20)

+3.1× 10−59/(ε3r20)− 6.2× 10−59/(ε2r20) + 2.0× 10−59/(εr20)

−8.9× 1043/(r4r20) + 7.0× 1057/(ε6r4r20)− 6.7× 1058/(ε5r4r20)

+2.2× 1059/(ε4r4r20)− 3.0× 1059/(ε3r4r20)

+1.3× 1059/(ε2r4r20)− 8.8× 1057/(εr4r20) + 4.5× 1043ε/(r4r20)

−3.6× 10−15/(r2r20)− 0.4/(ε5r2r20) + 2.8/(ε4r2r20)

−6.2/(ε3r2r20) + 3.9/(ε2r2r20)− 0.2/(εr2r20)

+2.4× 1024/(r7/2r
3/2
0 )− 1.6× 1026/(ε5r7/2r

3/2
0 )

+1.2× 1027/(ε4r7/2r
3/2
0 )− 2.6× 1027/(ε3r7/2r

3/2
0 )

+1.6× 1027/(ε2r7/2r
3/2
0 )− 7.7× 1025/(εr7/2r

3/2
0 )

−2.8× 1023ε/(r7/2r
3/2
0 ) + 3.3× 1043/(r5r0)

+5.4× 1057/(ε5r5r0)− 4.6× 1058/(ε4r5r0)

+1.3× 1059/(ε3r5r0)− 1.3× 1059/(ε2r5r0) + 3.2× 1058/(εr5r0)

−1.1× 1043ε/(r5r0)− 1.3× 10−15/(r3r0)− 0.4/(ε4r3r0)

+2.5/(ε3r3r0)− 4.3/(ε2r3r0) + 1.6/(εr3r0)

−1.3× 10−15ε/(r3r0) + 6.9× 10−77ε2/(r3r0)

+1.4× 10−76/(rr0)− 4.2× 10−60/(ε3rr0) + 2.6× 10−59/(ε2rr0)

−3.7× 10−59/(εrr0) + 6.6× 1024/(r9/2
√
r0)

162



−1.3× 1026/(ε4r9/2
√
r0) + 8.2× 1026/(ε3r9/2

√
r0)

−1.4× 1027/(ε2r9/2
√
r0) + 4.5× 1026/(εr9/2

√
r0)

−4.7× 1023ε/(r9/2
√
r0) + 4.3× 1025√r0/r11/2

−1.0× 1026√r0/(ε3r11/2) + 5.4× 1026√r0/(ε2r11/2)

−6.3× 1026√r0/(εr11/2)− 9.5× 1023ε
√
r0/r

11/2

−9.6× 1054r0/r
9 − 1.1× 1058r0/r

7 + 2.8× 1057r0/(ε
3r7)

−1.7× 1058r0/(ε
2r7) + 2.9× 1058r0/(εr

7) + 1.1× 1043εr0/r
7

−2.2r0/r
5 − 0.4r0/(ε

2r5) + 1.8r0/(εr
5) + 2.2× 10−16εr0/r

5

+3.5× 10−77ε2r0/r
5 − 1.0× 10−59r0/r

3 − 4.2× 10−60r0/(εr
3)

−4.7× 10−118r0/r − 2.0× 1026r
3/2
0 /r13/2

−8.1× 1025r
3/2
0 /(ε2r13/2) + 3.3× 1026r

3/2
0 /(εr13/2)

−2.5× 1024εr
3/2
0 /r13/2 + 1.0× 1055r20/r

10 + 9.6× 1054εr20/r
10

+1.0× 1058r20/r
8 + 1.8× 1057r20/(ε

2r8)− 8.7× 1057r20/(εr
8)

+1.3× 1056εr20/r
8 + 2.4r20/r

6 − 0.4r20/(εr
6)− 0.08εr20/r

6

−1.7× 10−77ε2r20/r
6 + 2.0× 10−59r20/r

4 + 4.7× 10−59εr20/r
4

+4.7× 10−118εr20/r
2 + 1.8× 1026r

5/2
0 /r15/2

−6.0× 1025r
5/2
0 /(εr15/2)− 1.5× 1025εr

5/2
0 /r15/2

−3.6× 1054r30/r
11 − 1.9× 1055εr30/r

11 − 5.0× 1057r30/r
9

+9.2× 1056r30/(εr
9)− 4.2× 1057εr30/r

9 − 0.7r30/r
7 + 0.8εr30/r

7

−4.8× 10−59εr30/r
5 − 4.0× 1025r

7/2
0 /r17/2
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+6.0× 1025εr
7/2
0 /r17/2 + 9.7× 1054εr40/r

12 + 8.0× 1054ε2r40/r
12

+1.3× 1057r40/r
10 + 8.3× 1057εr40/r

10 + 0.005ε2r40/r
10

−0.7εr40/r
8 + 8.2× 10−61ε2r40/r

8 + 9.8× 10−120ε2r40/r
6

−4.0× 1025εr
9/2
0 /r19/2 − 6.5× 1054ε2r50/r

13 − 4.3× 1057εr50/r
11

−0.0009ε2r50/r
11 − 1.3× 10−60ε2r50/r

9 + 0.007(ln ε)/r4

+0.007(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4) + 0.004(ln ε)/(ε4r2r20)

−0.02(ln ε)/(ε3r2r20) + 0.02(ln ε)/(ε2r2r20)− 0.005(ln ε)/(εr2r20)

−2.7× 10−17(ln ε)/(r3r0) + 0.006(ln ε)/(ε3r3r0)

−0.02(ln ε)/(ε2r3r0) + 0.02(ln ε)/(εr3r0)− 0.01r0(ln ε)/r
5

+0.007r0(ln ε)/(εr
5) + 0.004r20(ln ε)/r

6 − 0.01(ln r)/r4

−0.01(ln r)/(ε2r4) + 0.04(ln r)/(εr4)− 0.008(ln r)/(ε4r2r20)

+0.03(ln r)/(ε3r2r20)− 0.04(ln r)/(ε2r2r20) + 0.01(ln r)/(εr2r20)

+5.6× 10−17(ln r)/(r3r0)− 0.01(ln r)/(ε3r3r0)

+0.05(ln r)/(ε2r3r0)− 0.04(ln r)/(εr3r0) + 0.02r0(ln r)/r
5

−0.01r0(ln r)/(εr
5)− 0.008r20(ln r)/r

6 + 0.01(ln r0)/r
4

+0.01(ln r0)/(ε
2r4)− 0.04(ln r0)/(εr

4) + 0.008(ln r0)/(ε
4r2r20)

−0.03(ln r0)/(ε
3r2r20) + 0.04(ln r0)/(ε

2r2r20)

−0.01(ln r0)/(εr
2r20)− 5.6× 10−17(ln r0)/(r

3r0)

+0.01(ln r0)/(ε
3r3r0)− 0.05(ln r0)/(ε

2r3r0)

+0.04(ln r0)/(εr
3r0)− 0.02r0(ln r0)/r

5 + 0.01r0(ln r0)/(εr
5)
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+0.008r20(ln r0)/r
6, (E1)

< T rr > = −0.00003− 3.2× 1054/r8 + 2.7× 1058/r6 + 2.6× 1058/(ε4r6)

−1.9× 1059/(ε3r6) + 4.4× 1059/(ε2r6)− 3.1× 1059/(εr6)

+6.7× 1043ε/r6 − 3.3/r4 + 1.6/(ε3r4)− 10.0/(ε2r4)

+15.5/(εr4) + 4.4× 10−16ε/r4 + 6.9× 10−77ε2/r4 + 0.02/r3

−0.004/r2 + 7.5× 10−60/(ε2r2)− 3.7× 10−59/(εr2)

+0.0005/r + 7.5× 10−60/(ε4r20)− 5.3× 10−59/(ε3r20)

+9.8× 10−59/(ε2r20)− 3.0× 10−59/(εr20) + 8.9× 1043/(r4r20)

+3.2× 1058/(ε6r4r20)− 3.1× 1059/(ε5r4r20)

+1.0× 1060/(ε4r4r20)− 1.4× 1060/(ε3r4r20)

+6.2× 1059/(ε2r4r20)− 4.0× 1058/(εr4r20)

+1.8× 1044ε/(r4r20) + 1.4× 10−15/(r2r20)

+2.0/(ε5r2r20)− 16.5/(ε4r2r20) + 42.7/(ε3r2r20)− 35.3/(ε2r2r20)

+4.4/(εr2r20)− 2.2× 10−16ε/(r2r20)− 2.4× 1024/(r7/2r
3/2
0 )

+1.6× 1026/(ε5r7/2r
3/2
0 )− 1.2× 1027/(ε4r7/2r

3/2
0 )

+2.6× 1027/(ε3r7/2r
3/2
0 )− 1.6× 1027/(ε2r7/2r

3/2
0 )

+7.7× 1025/(εr7/2r
3/2
0 ) + 2.8× 1023ε/(r7/2r

3/2
0 )

−4.5× 1043/(r5r0) + 2.9× 1058/(ε5r5r0)− 2.5× 1059/(ε4r5r0)

+7.0× 1059/(ε3r5r0)− 7.1× 1059/(ε2r5r0) + 1.8× 1059/(εr5r0)
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+8.9× 1043ε/(r5r0)− 8.9× 10−16/(r3r0) + 1.8/(ε4r3r0)

−13.0/(ε3r3r0) + 27.0/(ε2r3r0)− 13.8/(εr3r0)

−4.4× 10−16ε/(r3r0)− 6.9× 10−77ε2/(r3r0)

+7.5× 10−60/(ε3rr0)− 4.5× 10−59/(ε2rr0)

+6.0× 10−59/(εrr0)− 6.6× 1024/(r9/2
√
r0)

+1.3× 1026/(ε4r9/2
√
r0)− 8.2× 1026/(ε3r9/2

√
r0)

+1.4× 1027/(ε2r9/2
√
r0)− 4.5× 1026/(εr9/2

√
r0)

+4.7× 1023ε/(r9/2
√
r0)− 4.3× 1025√r0/r11/2

+1.0× 1026√r0/(ε3r11/2)− 5.4× 1026√r0/(ε2r11/2)

+6.3× 1026√r0/(εr11/2) + 9.5× 1023ε
√
r0/r

11/2

+9.6× 1054r0/r
9 − 9.7× 1058r0/r

7 + 2.2× 1058r0/(ε
3r7)

−1.4× 1059r0/(ε
2r7) + 2.6× 1059r0/(εr

7) + 1.3× 1043εr0/r
7

+7.2r0/r
5 + 1.5r0/(ε

2r5)− 7.5r0/(εr
5) + 2.8× 10−16εr0/r

5

−3.5× 10−77ε2r0/r
5 − 0.04r0/r

4 + 0.009r0/r
3

+7.5× 10−60r0/(εr
3)− 0.001r0/r

2 + 0.0001r0/r

+2.0× 1026r
3/2
0 /r13/2 + 8.1× 1025r

3/2
0 /(ε2r13/2)

−3.3× 1026r
3/2
0 /(εr13/2) + 2.5× 1024εr

3/2
0 /r13/2

−1.0× 1055r20/r
10 − 9.6× 1054εr20/r

10 + 1.2× 1059r20/r
8

+1.9× 1058r20/(ε
2r8)− 1.0× 1059r20/(εr

8)− 1.7× 1058εr20/r
8

−4.3r20/r
6 + 1.3r20)/(εr

6) + 3.0εr20/r
6 + 1.7× 10−77ε2r20/r

6
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+0.02r20/r
5 + 0.01εr20/r

5 − 0.007r20/r
4 − 0.003εr20/r

4

+0.001r20/r
3 + 0.0005εr20/r

3 − 0.0001r20/r
2 − 0.00003εr20/r

2

−1.8× 1026r
5/2
0 /r15/2 + 6.0× 1025r

5/2
0 /(εr15/2)

+1.5× 1025εr
5/2
0 /r15/2 + 3.6× 1054r30/r

11 + 1.9× 1055εr30/r
11

−6.1× 1058r30/r
9 + 1.6× 1058r30/(εr

9) + 5.3× 1058εr30/r
9

+0.3r30/r
7 − 6.3εr30/r

7 − 0.002r30/r
6 − 0.01εr30/r

6 + 0.002r30/r
5

+0.004εr30/r
5 − 0.0004r30/r

4 − 0.001εr30/r
4 + 0.00003r30/r

3

+0.00007εr30/r
3 + 4.0× 1025r

7/2
0 /r17/2 − 6.0× 1025εr

7/2
0 /r17/2

−9.7× 1054εr40/r
12 − 8.0× 1054ε2r40/r

12 + 9.9× 1057r40/r
10

−5.2× 1058εr40/r
10 − 0.005ε2r40/r

10 + 3.4εr40/r
8

−8.2× 10−61ε2r40/r
8 − 0.0009εr40/r

7 − 0.0008εr40/r
6

−9.8× 10−120ε2r40/r
6 + 0.0004εr40/r

5 − 0.00003εr40/r
4

+4.0× 1025εr
9/2
0 /r19/2 + 6.5× 1054ε2r50/r

13 + 1.6× 1058εr50/r
11

+0.0009ε2r50/r
11 + 1.3× 10−60ε2r50/r

9 + 0.007(ln ε)/r4

+0.009(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4)− 2.8× 10−17(ln ε)/(r2r20)

+0.009(ln ε)/(ε4r2r20)− 0.04(ln ε)/(ε3r2r20)

+0.05(ln ε)/(ε2r2r20)− 0.008(ln ε)/(εr2r20)

+1.4× 10−17(ln ε)/(r3r0) + 0.01(ln ε)/(ε3r3r0)

−0.04(ln ε)/(ε2r3r0) + 0.03(ln ε)/(εr3r0)− 0.01r0(ln ε)/r
5

+0.007r0(ln ε)/(εr
5) + 0.004r20(ln ε)/r

6 − 0.01(ln r)/r4
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−0.02(ln r)/(ε2r4) + 0.05(ln r)/(εr4) + 5.6× 10−17(ln r)/(r2r20)

−0.02(ln r)/(ε4r2r20) + 0.08(ln r)/(ε3r2r20)− 0.1(ln r)/(ε2r2r20)

+0.02(ln r)/(εr2r20)− 2.8× 10−17(ln r)/(r3r0)

−0.02(ln r)/(ε3r3r0) + 0.07(ln r)/(ε2r3r0)− 0.05(ln r)/(εr3r0)

+0.02r0(ln r)/r
5 − 0.01r0(ln r)/(εr

5)− 0.008r20(ln r)/r
6

+0.01(ln r0)/r
4 + 0.02(ln r0)/(ε

2r4)− 0.05(ln r0)/(εr
4)

−5.6× 10−17(ln r0)/(r
2r20) + 0.02(ln r0)/(ε

4r2r20)

−0.08(ln r0)/(ε
3r2r20) + 0.1(ln r0)/(ε

2r2r20)− 0.02(ln r0)/(εr
2r20)

+2.8× 10−17(ln r0)/(r
3r0) + 0.02(ln r0)/(ε

3r3r0)

−0.07(ln r0)/(ε
2r3r0) + 0.05(ln r0)/(εr

3r0)− 0.02r0(ln r0)/r
5

+0.01r0(ln r0)/(εr
5) + 0.008r20(ln r0)/r

6, (E2)

By setting r = r0, we get the stress-energy tensor components of a quan-

tized neutrino field at the throat of the proximal Schwarzschild wormhole (in

units of Fp/l
2
p):

< T tt >0 = −4.7× 10−118 + 4.7× 10−118ε+ 2.7× 1039/r80

+4.1× 1039ε/r80 + 1.6× 1054ε2/r80 + 6.8× 1052/r60

+7.0× 1057/(ε6r60)− 6.2× 1058/(ε5r60) + 1.8× 1059/(ε4r60)

−2.0× 1059/(ε3r60) + 5.6× 1058/(ε2r60) + 5.6× 1042/(εr60)

−6.1× 1054ε/r60 + 0.004ε2/r60 − 3.6× 1024/r50
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−1.6× 1026/(ε5r50) + 1.0× 1027/(ε4r50)− 1.9× 1027/(ε3r50)

+7.2× 1026/(ε2r50) + 1.7× 1025/(εr50) + 8.3× 1023ε/r50

+0.02/r40 − 0.4/(ε5r40) + 2.4/(ε4r40)− 4.0/(ε3r40) + 1.3/(ε2r40)

+0.001/(εr40)− 0.03ε/r40 − 5.3× 10−61ε2/r40 − 1.1× 10−60/r20

−4.2× 10−60/(ε4r20) + 2.7× 10−59/(ε3r20)− 3.9× 10−59/(ε2r20)

+4.1× 10−61/(εr20)− 1.4× 10−60ε/r20 + 9.8× 10−120ε2/r20

−0.0002(ln ε)/r40 + 0.004(ln ε)/(ε4r40)− 0.01(ln ε)/(ε3r40)

+0.007(ln ε)/(ε2r40)− 0.0003(ln ε)/(εr40) (E3)

< T rr >0 = −1.4× 1039/r80 − 4.1× 1039ε/r80 − 1.6× 1054ε2/r80

+1.9× 1055/r60 + 5.0× 1058/(ε12r60)− 7.4× 1059/(ε11r60)

+4.4× 1060/(ε10r60)− 1.3× 1061/(ε9r60) + 2.1× 1061/(ε8r60)

−1.7× 1061/(ε7r60) + 6.0× 1060/(ε6r60)− 5.9× 1059/(ε5r60)

+1.6× 1044/(ε4r60)− 1.0× 1045/(ε3r60) + 4.3× 1051/(ε2r60)

−1.6× 1054/(εr60)− 4.2× 1055ε/r60 − 0.004ε2/r60

+8.0× 1023/r50 + 3.8× 1026/(ε11r50)− 4.9× 1027/(ε10r50)

+2.4× 1028/(ε9r50)− 5.6× 1028/(ε8r50) + 6.2× 1028/(ε7r50)

−2.8× 1028/(ε6r50) + 2.9× 1027/(ε5r50) + 2.1× 1025/(ε4r50)

−2.4× 1024/(ε3r50) + 1.2× 1024/(ε2r50)− 1.1× 1024/(εr50)

−2.8× 1023ε/r50 − 0.004/r40 + 3.3/(ε11r40)− 44.7/(ε10r40)
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+231.8/(ε9r40)− 579.3/(ε8r40) + 708.0/(ε7r40)− 373.4/(ε6r40)

+56.7/(ε5r40) + 7.1× 10−15/(ε4r40) + 3.4× 10−14/(ε3r40)

−0.001/(ε2r40) + 0.0004/(εr40)− 0.005ε/r40 + 5.3× 10−61ε2/r40

+3.7× 10−16(ln ε)/r40 − 0.02(ln ε)/(ε10r40) + 0.2(ln ε)/(ε9r40)

−0.9(ln ε)/(ε8r40) + 1.5(ln ε)/(ε7r40)− 1.0(ln ε)/(ε6r40)

+0.2(ln ε)/(ε5r40)− 5.9× 10−17(ln ε)/(ε4r40)

−1.5× 10−16(ln ε)/(ε3r40) + 0.0001(ln ε)/(ε2r40)

+0.0001(ln ε)/(εr40)− 6.9× 10−18/r30 + 0.0008ε/r30

+7.5× 10−60/(ε10r20)− 9.1× 10−59/(ε9r20)

+4.1× 10−58/(ε8r20)− 8.2× 10−58/(ε7r20) + 6.8× 10−58/(ε6r20)

−1.6× 10−58/(ε5r20) + 5.3× 10−74/(ε4r20)− 8.8× 10−74/(ε3r20)

−4.4× 10−75/(ε2r20)− 8.8× 10−75/(εr20)

−9.8× 10−120ε2/r20, (E4)

E.1.2 Quantized proton field

The stress-energy tensor components of a quantized proton field for the

entire spacetime of the proximal Schwarzschild wormhole geometry at zero

temperature are found to be (in units of Fp/l
2
p):

< T tt > = 2.1× 1035/r8 + 2.5× 1038/r6 + 2.6× 1038/(ε4r6)

−1.9× 1039/(ε3r6) + 4.3× 1039/(ε2r6)− 2.9× 1039/(εr6)
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+3.8× 1024ε/r6 + 0.5/r4 − 0.4/(ε3r4) + 2.2/(ε2r4)− 2.7/(εr4)

−5.6× 10−16ε/r4 + 1.3× 10−57ε2/r4 − 1.7× 10−40/r2

−6.4× 10−41/(ε2r2) + 3.3× 10−40/(εr2)− 1.8× 10−15/r40

−0.3/(ε7r40) + 3.2/(ε6r40)− 10.0/(ε5r40) + 11.9/(ε4r40)

−4.1/(ε3r40) + 0.09/(ε2r40) + 3.1× 10−15/(εr40)

−4.7× 10−15ε/r40 + 7.0× 1038/(ε8r2r40)− 8.2× 1039/(ε7r2r40)

+3.6× 1040/(ε6r2r40)− 7.2× 1040/(ε5r2r40)

+6.5× 1040/(ε4r2r40)− 2.1× 1040/(ε3r2r40)

+1.0× 1039/(ε2r2r40) + 4.8× 1024/(εr2r40)− 4.8× 1024ε/(r2r40)

−1.3× 10−56r2/r40 − 6.4× 10−41r2/(ε6r40)

+6.2× 10−40r2/(ε5r40)− 1.9× 10−39r2/(ε4r40)

+2.0× 10−39r2/(ε3r40)− 3.4× 10−40r2/(ε2r40)

−1.3× 10−57r2/(εr40) + 1.7× 1014/(r3/2r
7/2
0 )

−5.6× 1016/(ε7r3/2r
7/2
0 ) + 5.4× 1017/(ε6r3/2r

7/2
0 )

−1.8× 1018/(ε5r3/2r
7/2
0 ) + 2.3× 1018/(ε4r3/2r

7/2
0 )

−9.1× 1017/(ε3r3/2r
7/2
0 ) + 2.9× 1016/(ε2r3/2r

7/2
0 )

−8.3× 1014/(εr3/2r
7/2
0 )− 3.1× 1013ε)/(r3/2r

7/2
0 )

−7.3× 1024/(r3r30) + 5.7× 1038/(ε7r3r30)− 6.1× 1039/(ε6r3r30)

+2.4× 1040/(ε5r3r30)− 3.9× 1040/(ε4r3r30)

+2.6× 1040/(ε3r3r30)− 4.7× 1039/(ε2r3r30) + 1.2× 1024/(εr3r30)
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+1.5× 1025ε/(r3r30) + 3.0/(ε5rr30)− 8.1/(ε4rr30) + 7.4/(ε3rr30)

−1.4/(ε2rr30) + 1.3× 10−15/(εrr30)− 3.6× 10−15ε/(rr30)

−1.8× 10−56r/r30 − 6.4× 10−41r/(ε5r30) + 5.5× 10−40r/(ε4r30)

−1.4× 10−39r/(ε3r30) + 9.5× 10−40r/(ε2r30)

+1.3× 10−57r/(εr30) + 2.9× 1014/(r5/2r
5/2
0 )

−4.8× 1016/(ε6r5/2r
5/2
0 ) + 4.1× 1017/(ε5r5/2r

5/2
0 )

−1.1× 1018/(ε4r5/2r
5/2
0 ) + 1.1× 1018/(ε3r5/2r

5/2
0 )

−2.2× 1017/(ε2r5/2r
5/2
0 )− 2.6× 1015/(εr5/2r

5/2
0 )

−4.5× 1013ε/(r5/2r
5/2
0 )− 2.5× 10−57/r20 − 6.4× 10−41/(ε4r20)

+4.8× 10−40/(ε3r20)− 9.4× 10−40/(ε2r20) + 3.1× 10−40/(εr20)

−2.4× 1024/(r4r20) + 4.5× 1038/(ε6r4r20)− 4.4× 1039/(ε5r4r20)

+1.5× 1040/(ε4r4r20)− 1.9× 1040/(ε3r4r20)

+8.7× 1039/(ε2r4r20)− 5.7× 1038/(εr4r20) + 8.5× 1024ε/(r4r20)

−1.8× 10−15/(r2r20)− 0.4/(ε5r2r20) + 2.8/(ε4r2r20)

−6.2/(ε3r2r20) + 3.9/(ε2r2r20)− 0.2/(εr2r20)

−8.9× 10−16ε/(r2r20) + 6.0× 1014/(r7/2r
3/2
0 )

−4.0× 1016/(ε5r7/2r
3/2
0 ) + 3.0× 1017/(ε4r7/2r

3/2
0 )

−6.7× 1017/(ε3r7/2r
3/2
0 ) + 4.2× 1017/(ε2r7/2r

3/2
0 )

−2.0× 1016/(εr7/2r
3/2
0 )− 7.1× 1013ε/(r7/2r

3/2
0 )

+3.5× 1038/(ε5r5r0)− 3.0× 1039/(ε4r5r0)
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+8.4× 1039/(ε3r5r0)− 8.4× 1039/(ε2r5r0) + 2.1× 1039/(εr5r0)

+6.0× 1023ε/(r5r0) + 4.4× 10−16/(r3r0)− 0.4/(ε4r3r0)

+2.5/(ε3r3r0)− 4.3/(ε2r3r0) + 1.6/(εr3r0)

−1.3× 10−15ε/(r3r0)− 1.3× 10−57ε2/(r3r0)

−7.6× 10−57/(rr0)− 6.4× 10−41/(ε3rr0) + 4.0× 10−40/(ε2rr0)

−5.7× 10−40/(εrr0) + 1.7× 1015/(r9/2
√
r0)

−3.3× 1016/(ε4r9/2
√
r0) + 2.1× 1017/(ε3r9/2

√
r0)

−3.6× 1017/(ε2r9/2
√
r0) + 1.2× 1017/(εr9/2

√
r0)

−1.2× 1014ε/(r9/2
√
r0) + 1.1× 1016√r0/r11/2

−2.6× 1016√r0/(e3r11/2) + 1.4× 1017√r0/(ε2r11/2)

−1.6× 1017√r0/(εr11/2)− 2.4× 1014ε
√
r0/r

11/2

−6.3× 1035r0/r
9 − 6.9× 1038r0/r

7 + 1.8× 1038r0/(ε
3r7)

−1.1× 1039r0/(ε
2r7) + 1.9× 1039r0/(εr

7) + 6.0× 1023εr0/r
7

−2.2r0/r
5 − 0.4r0/(ε

2r5) + 1.8r0/(εr
5) + 2.2× 10−16εr0/r

5

−6.4× 10−58ε2r0/r
5 − 1.6× 10−40r0/r

3 − 6.4× 10−41r0/(εr
3)

−1.1× 10−79r0/r − 5.0× 1016r
3/2
0 /r13/2

−2.1× 1016r
3/2
0 /(ε2r13/2) + 8.5× 1016r

3/2
0 /(εr13/2)

−6.4× 1014εr
3/2
0 /r13/2 + 6.6× 1035r20/r

10 + 6.3× 1035εr20/r
10

+6.8× 1038r20/r
8 + 1.2× 1038r20/(ε

2r8)− 5.7× 1038r20/(εr
8)

+8.4× 1036εr20/r
8 + 2.4r20/r

6 − 0.4r20/(εr
6)− 0.08εr20/r

6

173



+3.2× 10−58ε2r20/r
6 + 3.1× 10−40r20/r

4 + 7.1× 10−40εr20/r
4

+1.1× 10−79εr20/r
2 + 4.6× 1016r

5/2
0 /r15/2

−1.5× 1016r
5/2
0 /(εr15/2)− 3.9× 1015εr

5/2
0 /r15/2

−2.4× 1035r30/r
11 − 1.3× 1036εr30/r

11 − 3.3× 1038r30/r
9

+6.0× 1037r30/(εr
9)− 2.7× 1038εr30/r

9 − 0.7r30/r
7 + 0.8εr30/r

7

−7.3× 10−40εr30/r
5 − 1.0× 1016r

7/2
0 /r17/2

+1.5× 1016εr
7/2
0 /r17/2 + 6.3× 1035εr40/r

12 + 5.2× 1035ε2r40/r
12

+8.3× 1037r40/r
10 + 5.5× 1038εr40/r

10 + 0.005ε2r40/r
10

−0.7εr40/r
8 + 1.3× 10−41ε2r40/r

8 + 2.3× 10−81ε2r40/r
6

−1.0× 1016εr
9/2
0 /r19/2 − 4.2× 1035ε2r50/r

13 − 2.8× 1038εr50/r
11

−0.0009ε2r50/r
11 − 2.1× 10−41ε2r50/r

9 + 0.007(ln ε)/r4

+0.007(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4) + 2.2× 10−16(ln ε)/r40

−0.0005(ln ε)/(ε6r40) + 0.004(ln ε)/(ε5r40)− 0.005(ln ε)/(ε4r40)

−0.004(ln ε)/(ε3r40) + 0.002(ln ε)/(ε2r40)

+3.3× 10−16(ln ε)/(rr30) + 0.001(ln ε)/(ε5rr30)

−0.006(ln ε)/(ε4rr30) + 0.01(ln ε)/(ε3rr30)− 0.008(ln ε)/(ε2rr30)

+1.7× 10−16(ln ε)/(εrr30) + 2.2× 10−16(ln ε)/(r2r20)

+0.004(ln ε)/(ε4r2r20)− 0.02(ln ε)/(ε3r2r20) + 0.02(ln ε)/(ε2r2r20)

−0.005(ln ε)/(εr2r20) + 5.6× 10−17(ln ε)/(r3r0)

+0.006(ln ε)/(ε3r3r0)− 0.02(ln ε)/(ε2r3r0) + 0.02(ln ε)/(εr3r0)
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−0.01r0(ln ε)/r
5 + 0.007r0(ln ε)/(εr

5) + 0.004r20(ln ε)/r
6

−0.01(ln r)/r4 − 0.01(ln r)/(ε2r4) + 0.04(ln r)/(εr4)

−4.4× 10−16(ln r)/r40 + 0.001(ln r)/(ε6r40)− 0.008(ln r)/(ε5r40)

+0.01(ln r)/(ε4r40) + 0.008(ln r)/(ε3r40)− 0.003(ln r)/(ε2r40)

−6.7× 10−16(ln r)/(rr30)− 0.003(ln r)/(ε5rr30)

+0.01(ln r)/(ε4rr30)− 0.02(ln r)/(ε3rr30) + 0.02(ln r)/(ε2rr30)

−3.3× 10−16(ln r)/(εrr30)− 4.4× 10−16(ln r)/(r2r20)

−0.008(ln r)/(ε4r2r20) + 0.03(ln r)/(ε3r2r20)

−0.04(ln r)/(ε2r2r20) + 0.01(ln r)/(εr2r20)

−1.1× 10−16(ln r)/(r3r0)− 0.01(ln r)/(ε3r3r0)

+0.05(ln r)/(ε2r3r0)− 0.04(ln r)/(εr3r0) + 0.02r0(ln r)/r
5

−0.01r0(ln r)/(εr
5)− 0.008r20(ln r)/r

6 + 0.01(ln r)/r4

+0.01(ln r0)/(ε
2r4)− 0.041795(ln r0)/(εr

4)

+4.4× 10−16(ln r0)/r
4
0 − 0.001(ln r0)/(ε

6r40)

+0.008(ln r0)/(ε
5r40)− 0.01(ln r0)/(ε

4r40)

−0.008(ln r0)/(ε
3r40) + 0.003(ln r0)/(ε

2r40)

+6.7× 10−16(ln r0)/(rr
3
0) + 0.003(ln r0)/(ε

5rr30)

−0.01(ln r0)/(ε
4rr30) + 0.02(ln r0)/(ε

3rr30)

−0.02(ln r0)/(ε
2rr30) + 3.3× 10−16(ln r0)/(εrr

3
0)

+4.4× 10−16(ln r0)/(r
2r20) + 0.008(ln r0)/(ε

4r2r20)
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−0.03(ln r0)/(ε
3r2r20) + 0.04(ln r0)/(ε

2r2r20)

−0.01(ln r0)/(εr
2r20) + 1.1× 10−16(ln r0)/(r

3r0)

+0.01(ln r0)/(ε
3r3r0)− 0.05(ln r0)/(ε

2r3r0)

+0.04(ln r0)/(εr
3r0)− 0.02r0(ln r0)/r

5 + 0.01r0(ln r0)/(εr
5)

+0.008r20(ln r0)/r
6, (E5)

< T rr > = −0.00003− 2.1× 1035/r8 + 1.8× 1039/r6 + 1.7× 1039/(ε4r6)

−1.3× 1040/(ε3r6) + 2.9× 1040/(ε2r6)− 2.0× 1040/(εr6)

+7.7× 1024ε/r6 − 3.3/r4 + 1.6/(ε3r4)− 10.0/(ε2r4)

+15.5/(εr4) + 5.0× 10−16ε/r4 − 1.3× 10−57ε2/r4 + 0.01/r3

−0.004/r2 + 1.1× 10−40/(ε2r2)− 5.7× 10−40/(εr2) + 0.0005/r

+8.9× 10−16/r40 + 2.4/(ε7r40)− 24.8/(ε6r40) + 89.6/(ε5r40)

−132.7/(ε4r40) + 68.7/(ε3r40)− 5.6/(ε2r40)− 2.2× 10−16/(εr40)

−2.7× 10−15ε/r40 + 7.7× 1025/(r2r40) + 2.6× 1039/(ε8r2r40)

−3.0× 1040/(ε7r2r40) + 1.3× 1041/(ε6r2r40)

−2.6× 1041/(ε5r2r40) + 2.3× 1041/(ε4r2r40)

−7.2× 1040/(ε3r2r40) + 3.4× 1039/(ε2r2r40) + 9.7× 1024/(εr2r40)

+3.3× 1026ε/(r2r40) + 1.1× 10−40r2/(ε6r40)

−1.0× 10−39r2/(ε5r40) + 3.0× 10−39r2/(ε4r40)

−3.0× 10−39r2/(ε3r40) + 4.7× 10−40r2/(ε2r40)
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−1.7× 1014/(r3/2r
7/2
0 ) + 5.6× 1016/(ε7r3/2r

7/2
0 )

−5.4× 1017/(ε6r3/2r
7/2
0 ) + 1.8× 1018/(ε5r3/2r

7/2
0 )

−2.3× 1018/(ε4r3/2r
7/2
0 ) + 9.1× 1017/(ε3r3/2r

7/2
0 )

−2.9× 1016/(ε2r3/2r
7/2
0 ) + 8.3× 1014/(εr3/2r

7/2
0 )

+3.1× 1013ε/(r3/2r
7/2
0 ) + 2.9× 1025/(r3r30)

+2.3× 1039/(ε7r3r30)− 2.5× 1040/(ε6r3r30)

+9.6× 1040/(ε5r3r30)− 1.6× 1041/(ε4r3r30)

+1.0× 1041/(ε3r3r30)− 1.8× 1040/(ε2r3r30)

−2.4× 1024/(εr3r30) + 1.1× 1026ε/(r3r30) + 8.9× 10−16/(rr30)

+2.2/(ε6rr30)− 20.4/(ε5rr30) + 63.3/(ε4rr30)− 72.9/(ε3rr30)

+22.5/(ε2rr30) + 4.4× 10−16/(εrr30)− 3.3× 10−16ε/(rr30)

+1.1× 10−40r/(ε5r30)− 9.2× 10−40r/(ε4r30)

+2.2× 10−39r/(ε3r30)− 1.4× 10−39r/(ε2r30)

−2.9× 1014/(r5/2r
5/2
0 ) + 4.8× 1016/(ε6r5/2r

5/2
0 )

−4.1× 1017/(ε5r5/2r
5/2
0 ) + 1.1× 1018/(ε4r5/2r

5/2
0 )

−1.1× 1018/(ε3r5/2r
5/2
0 ) + 2.2× 1017/(ε2r5/2r

5/2
0 )

+2.6× 1015/(εr5/2r
5/2
0 ) + 4.5× 1013ε/(r5/2r

5/2
0 )

+1.1× 10−40/(ε4r20)− 8.1× 10−40/(ε3r20) + 1.5× 10−39/(ε2r20)

−4.6× 10−40/(εr20) + 9.7× 1024/(r4r20) + 2.1× 1039/(ε6r4r20)

−2.0× 1040/(ε5r4r20) + 6.8× 1040/(ε4r4r20)

177



−9.1× 1040/(ε3r4r20) + 4.1× 1040/(ε2r4r20)

−2.6× 1039/(εr4r20) + 4.8× 1024ε/(r4r20) + 8.9× 10−16/(r2r20)

+2.0/(ε5r2r20)− 16.5/(ε4r2r20) + 42.7/(ε3r2r20)− 35.3/(ε2r2r20)

+4.4/(εr2r20)− 4.4× 10−16ε/(r2r20)− 6.0× 1014/(r7/2r
3/2
0 )

+4.0× 1016/(ε5r7/2r
3/2
0 )− 3.0× 1017/(ε4r7/2r

3/2
0 )

+6.7× 1017/(ε3r7/2r
3/2
0 )− 4.2× 1017/(ε2r7/2r

3/2
0 )

+2.0× 1016/(εr7/2r
3/2
0 ) + 7.1× 1013ε/(r7/2r

3/2
0 )

−2.4× 1024/(r5r0) + 1.9× 1039/(ε5r5r0)− 1.6× 1040/(ε4r5r0)

+4.6× 1040/(ε3r5r0)− 4.6× 1040/(ε2r5r0) + 1.2× 1040/(εr5r0)

+1.6× 1025ε/(r5r0) + 4.4× 10−16/(r3r0) + 1.8/(ε4r3r0)

−13.0/(ε3r3r0) + 27.0/(ε2r3r0)− 13.8/(εr3r0)

+1.3× 10−57ε2/(r3r0) + 1.1× 10−40/(ε3rr0)

−6.9× 10−40/(ε2rr0) + 9.1× 10−40/(εrr0)

−1.7× 1015/(r9/2
√
r0) + 3.3× 1016/(ε4r9/2

√
r0)

−2.1× 1017/(ε3r9/2
√
r0) + 3.6× 1017/(ε2r9/2

√
r0)

−1.2× 1017/(εr9/2
√
r0) + 1.2× 1014ε/(r9/2

√
r0)

−1.1× 1016√r0/r11/2 + 2.6× 1016√r0/(ε3r11/2)

−1.4× 1017√r0/(ε2r11/2) + 1.6× 1017√r0/(εr11/2)

+2.4× 1014ε
√
r0/r

11/2 + 6.3× 1035r0/r
9 − 6.3× 1039r0/r

7

+1.5× 1039r0/(ε
3r7)− 9.4× 1039r0/(ε

2r7)
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+1.7× 1040r0/(εr
7) + 4.5× 1023εr0/r

7 + 7.2r0/r
5

+1.4r0/(ε
2r5)− 7.4r0/(εr

5) + 2.2× 10−16εr0/r
5

+6.4× 10−58ε2r0/r
5 − 0.04r0/r

4 + 0.009r0/r
3

+1.1× 10−40r0/(εr
3)− 0.001r0/r

2 + 0.0001r0/r

+5.0× 1016r
3/2
0 /r13/2 + 2.1× 1016r

3/2
0 /(ε2r13/2)

−8.5× 1016r
3/2
0 /(εr13/2) + 6.4× 1014εr

3/2
0 /r13/2

−6.6× 1035r20/r
10 − 6.3× 1035εr20/r

10 + 7.9× 1039r20/r
8

+1.2× 1039r20/(ε
2r8)− 6.7× 1039r20/(εr

8)− 1.1× 1039εr20/r
8

−4.3r20/r
6 + 1.3r20/(εr

6) + 3.0εr20/r
6 − 3.2× 10−58ε2r20/r

6

+0.02r20/r
5 + 0.01εr20/r

5 − 0.007r20/r
4 − 0.003εr20/r

4

+0.001r20/r
3 + 0.0005εr20/r

3 − 0.0001r20/r
2 − 0.00003εr20/r

2

−4.6× 1016r
5/2
0 /r15/2 + 1.5× 1016r

5/2
0 /(εr15/2)

+3.9× 1015εr
5/2
0 /r15/2 + 2.4× 1035r30/r

11 + 1.3× 1036εr30/r
11

−4.0× 1039r30/r
9 + 1.0× 1039r30/(εr

9) + 3.5× 1039εr30/r
9

+0.3r30/r
7 − 6.3εr30/r

7 − 0.002r30/r
6 − 0.01εr30/r

6

+0.002r30/r
5 + 0.004εr30/r

5 − 0.0004r30/r
4 − 0.001εr30/r

4

+0.00003r30/r
3 + 0.00007εr30/r

3 + 1.0× 1016r
7/2
0 /r17/2

−1.5× 1016εr
7/2
0 /r17/2 − 6.3× 1035εr40/r

12

−5.2× 1035ε2r40/r
12 + 6.5× 1038r40/r

10 − 3.4× 1039εr40/r
10

−0.005ε2r40/r
10 + 3.4εr40/r

8 − 1.3× 10−41ε2r40/r
8
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−0.0009εr40/r
7 − 0.0008εr40/r

6 − 2.3× 10−81ε2r40/r
6

+0.0004εr40/r
5 − 0.00003εr40/r

4 + 1.0× 1016εr
9/2
0 /r19/2

+4.2× 1035ε2r50/r
13 + 1.1× 1039εr50/r

11 + 0.0009ε2r50/r
11

+2.1× 10−41ε2r50/r
9 + 0.007(ln ε)/r4 + 0.009(ln ε)/(ε2r4)

−0.02(ln ε)/(εr4) + 1.7× 10−16(ln ε)/r40 + 0.004(ln ε)/(ε6r40)

−0.02(ln ε)/(ε5r40) + 0.04(ln ε)/(ε4r40)− 0.02(ln ε)/(ε3r40)

+0.003(ln ε)/(ε2r40)− 2.8× 10−17(ln ε)/(εr40)

+9.7× 10−17(ln ε)/(rr30) + 0.007(ln ε)/(ε5rr30)

−0.04(ln ε)/(ε4rr30) + 0.06(ln ε)/(ε3rr30)− 0.02(ln ε)/(ε2rr30)

+2.8× 10−17(ln ε)/(r2r20) + 0.009(ln ε)/(ε4r2r20)

−0.04(ln ε)/(ε3r2r20) + 0.05(ln ε)/(ε2r2r20)− 0.008(ln ε)/(εr2r20)

+6.9× 10−18(ln ε)/(r3r0) + 0.01(ln ε)/(ε3r3r0)

−0.04(ln ε)/(ε2r3r0) + 0.03(ln ε)/(εr3r0)− 0.01r0(ln ε)/r
5

+0.007r0(ln ε)/(εr
5) + 0.004r20(ln ε)/r

6 − 0.01(ln r)/r4

−0.02(ln r)/(ε2r4) + 0.05(ln r)/(εr4)− 3.3× 10−16(ln r)/r40

−0.009(ln r)/(ε6r40) + 0.05(ln r)/(ε5r40)− 0.08(ln r)/(ε4r40)

+0.05(ln r)/(ε3r40)− 0.007(ln r)/(ε2r40)

+5.6× 10−17(ln r)/(εr40)− 1.9× 10−16(ln r)/(rr30)

−0.01(ln r)/(ε5rr30) + 0.08(ln r)/(ε4rr30)− 0.1(ln r)/(ε3rr30)

+0.05(ln r)/(ε2rr30)− 5.6× 10−17(ln r)/(r2r20)
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−0.02(ln r)/(ε4r2r20) + 0.08(ln r)/(ε3r2r20)− 0.1(ln r)/(ε2r2r20)

+0.02(ln r)/(εr2r20)− 1.4× 10−17(ln r)/(r3r0)

−0.02(ln r)/(ε3r3r0) + 0.07(ln r)/(ε2r3r0)− 0.05(ln r)/(εr3r0)

+0.02r0(ln r)/r
5 − 0.01r0(ln r)/(εr

5)− 0.008r20(ln r)/r
6

+0.01(ln r0)/r
4 + 0.02(ln r0)/(ε

2r4)− 0.05(ln r0)/(εr
4)

+3.3× 10−16(ln r0)/r
4
0 + 0.009(ln r0)/(ε

6r40)

−0.05(ln r0)/(ε
5r40) + 0.08(ln r0)/(ε

4r40)− 0.05(ln r0)/(ε
3r40)

+0.007(ln r0)/(ε
2r40)− 5.6× 10−17(ln r0)/(εr

4
0)

+1.9× 10−16(ln r0)/(rr
3
0) + 0.01(ln r0)/(ε

5rr30)

−0.08(ln r0)/(ε
4rr30) + 0.1(ln r0)/(ε

3rr30)− 0.05(ln r0)/(ε
2rr30)

+5.6× 10−17(ln r)/(r2r20) + 0.02(ln r0)/(ε
4r2r20)

−0.08(ln r0)/(ε
3r2r20) + 0.1(ln r0)/(ε

2r2r20)

−0.02(ln r0)/(εr
2r20) + 1.4× 10−17(ln r0)/(r

3r0)

+0.02(ln r0)/(ε
3r3r0)− 0.07(ln r0)/(ε

2r3r0)

+0.05(ln r0)/(εr
3r0)− 0.02r0(ln r0)/r

5 + 0.01r0(ln r0)/(εr
5)

+0.008r20(ln r0)/r
6. (E6)

By setting r = r0 in Eqs. (E5) and (E6), we get the stress-energy ten-

sor components of a quantized proton field at the throat of the proximal

Schwarzschild wormhole (in units of Fp/l
2
p):
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< T tt >0 = −1.1× 10−79 + 1.1× 10−79ε+ 7.4× 1019/r80 + 1.5× 1020ε/r80

+1.0× 1035ε2/r80 + 4.5× 1033/r60 + 1.4× 1039/(ε12r60)

−2.0× 1040/(ε11r60) + 1.2× 1041/(ε10r60)− 3.8× 1041/(ε9r60)

+6.2× 1041/(ε8r60)− 5.2× 1041/(ε7r60) + 1.9× 1041/(ε6r60)

−2.1× 1040/(ε5r60) + 1.5× 1025/(ε4r60)− 9.1× 1024/(ε3r60)

+1.8× 1025/(ε2r60)− 3.1× 1025/(εr60)− 4.0× 1035ε/r60

+0.004ε2/r60 − 2.0× 1014/r50 − 9.6× 1016/(ε11r50)

+1.2× 1018/(ε10r50)− 6.1× 1018/(ε9r50) + 1.4× 1019/(ε8r50)

−1.6× 1019/(ε7r50) + 7.2× 1018/(ε6r50)− 7.4× 1017/(ε5r50)

−5.3× 1015/(ε4r50) + 6.2× 1014/(ε3r50)− 3.2× 1014/(ε2r50)

+2.8× 1014/(εr50) + 7.2× 1013ε/r50 + 0.02/r40 − 0.2/(ε11r40)

+2.4/(ε10r40)− 8.4/(ε9r40) + 8.7/(ε8r40) + 8.3/(ε7r40)

−17.4/(ε6r40) + 5.4/(ε5r40) + 3.2× 10−14/(ε4r40)

+5.7× 10−15/(ε3r40)− 0.002/(ε2r40) + 0.001/(εr40)− 0.03ε/r40

−8.0× 10−42ε2/r40 − 0.0002(ln ε)/r40 + 0.01(ln ε)/(ε10r40)

−0.2(ln ε)/(ε9r40) + 0.8(ln ε)/(ε8r40)− 1.7(ln ε)/(ε7r40)

+1.4(ln ε)/(ε6r40)− 0.3(ln ε)/(ε5r40)− 1.4× 10−16(ln ε)/(ε4r40)

−4.0× 10−16(ln ε)/(ε3r40) + 0.0003(ln ε)/(ε2r40)

−0.0003(ln ε)/(εr40)− 1.7× 10−41/r20 − 6.4× 10−41/(ε10r20)
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+8.5× 10−40/(ε9r20)− 4.2× 10−39/(ε8r20) + 9.0× 10−39/(ε7r20)

−8.1× 10−39/(ε6r20) + 2.1× 10−39/(ε5r20) + 8.2× 10−55/(ε4r20)

+1.6× 10−55/(ε2r20) + 6.2× 10−42/(εr20)− 2.1× 10−41ε/r20

+2.3× 10−81ε2/r20, (E7)

< T rr >0 = −7.4× 1019/r80 − 1.5× 1020ε/r80 − 1.0× 1035ε2/r80

+1.2× 1036/r60 + 3.3× 1039/(ε12r60)− 4.9× 1040/(ε11r60)

+2.9× 1041/(ε10r60)− 8.6× 1041/(ε9r60) + 1.4× 1042/(ε8r60)

−1.1× 1042/(ε7r60) + 3.9× 1041/(ε6r60)− 3.9× 1040/(ε5r60)

−1.6× 1025/(ε4r60)− 2.2× 1025/(ε3r60) + 2.8× 1032/(ε2r60)

−1.1× 1035/(εr60)− 2.7× 1036ε/r60 − 0.004ε2/r60

+2.0× 1014/r50 + 9.6× 1016/(ε11r50)− 1.2× 1018/(ε10r50)

+6.1× 1018/(ε9r50)− 1.4× 1019/(ε8r50) + 1.6× 1019/(ε7r50)

−7.2× 1018/(ε6r50) + 7.4× 1017/(ε5r50) + 5.3× 1015/(ε4r50)

−6.2× 1014/(ε3r50) + 3.2× 1014/(ε2r50)− 2.8× 1014/(εr50)

−7.2× 1013ε/r50 − 0.004/r40 + 3.3/(ε11r40)− 44.7/(ε10r40)

+231.8/(ε9r40)− 579.3/(ε8r40) + 708.0/(ε7r40)− 373.4/(ε6r40)

+56.7/(ε5r40) + 7.1× 10−15/(ε4r40) + 3.4× 10−14/(ε3r40)

−0.001/(ε2r40) + 0.0004/(εr40)− 0.005ε/r40 + 8.0× 10−42ε2/r40

+3.7× 10−16(ln ε)/r40 − 0.02(ln ε)/(ε10r40) + 0.2(ln ε)/(ε9r40)
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−0.9(ln ε)/(ε8r40) + 1.5(ln ε)/(ε7r40)− 1.0(ln ε)/(ε6r40)

+0.2(ln ε)/(ε5r40)− 5.9× 10−17(ln ε)/(ε4r40)

−1.5× 10−16(ln ε)/(ε3r40) + 0.0001(ln ε)/(ε2r40)

+0.0001(ln ε)/(εr40)− 6.9× 10−18/r30 + 0.0008ε/r30

+1.1× 10−40/(ε10r20)− 1.4× 10−39/(ε9r20) + 6.3× 10−39/(ε8r20)

−1.3× 10−38/(ε7r20) + 1.0× 10−38/(ε6r20)− 2.5× 10−39/(ε5r20)

+3.3× 10−55/(ε4r20)− 3.3× 10−55/(ε3r20) + 1.6× 10−55/(εr20)

−2.3× 10−81ε2/r20, (E8)

E.2 Thermal states

E.2.1 Quantized neutrino field

The stress-energy tensor components of a quantized neutrino field in

the entire spacetime for the proximal Schwarzschild wormhole geometry are

lengthy and complicated. So I list only < T tt > and < T rr > (in units of

Fp/l
2
p) but omit < T θθ > because it is irrelevant to the calculations in this

thesis.

< T tt > = 3.2× 1054/r8 + 3.9× 1057/r6 + 4.0× 1057/(ε4r6)

−3.0× 1058/(ε3r6) + 6.6× 1058/(ε2r6)− 4.5× 1058/(εr6)

−1.1× 1043ε/r6 − 0.4/r4 − 0.4/(ε3r4) + 1.2/(ε2r4) + 0.06/(εr4)

−1.3× 10−15ε/r4 − 6.9× 10−77ε2/r4 + 0.007(ln ε)/r4
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+0.007(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4)− 0.01(ln r)/r4

−0.01(ln r)/(ε2r4) + 0.04(ln r)/(εr4) + 0.01(ln r0)/r
4

+0.01(ln r0)/(ε
2r4)− 0.04(ln r0)/(εr

4)− 0.01(lnT )/r4

−0.01(lnT )/(ε2r4) + 0.04(lnT )/(εr4)− 1.1× 10−59/r2

−4.2× 10−60/(ε2r2) + 2.2× 10−59/(εr2)− 6.9× 10−77/r20

−4.2× 10−60/(ε4r20) + 3.1× 10−59/(ε3r20)− 6.2× 10−59/(ε2r20)

+2.0× 10−59/(εr20) + 7.0× 1057/(ε6r4r20)− 6.7× 1058/(ε5r4r20)

+2.2× 1059/(ε4r4r20)− 3.0× 1059/(ε3r4r20)

+1.3× 1059/(ε2r4r20)− 8.8× 1057/(εr4r20)− 8.9× 1043ε/(r4r20)

+2.3× 10−14/(r2r20)− 0.4/(ε5r2r20) + 2.3/(ε4r2r20)

−3.9/(ε3r2r20) + 0.9/(ε2r2r20) + 0.4/(εr2r20)

+8.9× 10−16ε/(r2r20) + 5.6× 10−17(ln ε)/(r2r20)

+0.004(ln ε)/(ε4r2r20)− 0.02(ln ε)/(ε3r2r20) + 0.02(ln ε)/(ε2r2r20)

−0.005(ln ε)/(εr2r20)− 1.1× 10−16(ln r)/(r2r20)

−0.008(ln r)/(ε4r2r20) + 0.03(ln r)/(ε3r2r20)− 0.04(ln r)/(ε2r2r20)

+0.01(ln r)/(εr2r20) + 1.1× 10−16(ln r0)/(r
2r20)

+0.008(ln r0)/(ε
4r2r20)− 0.03(ln r0)/(ε

3r2r20)

+0.04(ln r0)/(ε
2r2r20)− 0.01(ln r0)/(εr

2r20)

−2.8× 10−17(lnT )/(r2r20)− 0.008(lnT )/(ε4r2r20)

+0.03(lnT )/(ε3r2r20)− 0.04(lnT )/(ε2r2r20)

185



+0.01(lnT )/(εr2r20) + 2.4× 1024/(r7/2r
3/2
0 )

−1.6× 1026/(ε5r7/2r
3/2
0 ) + 1.2× 1027/(ε4r7/2r

3/2
0 )

−2.6× 1027/(ε3r7/2r
3/2
0 ) + 1.6× 1027/(ε2r7/2r

3/2
0 )

−7.7× 1025/(εr7/2r
3/2
0 )− 2.8× 1023ε/(r7/2r

3/2
0 )

+5.4× 1057/(ε5r5r0)− 4.6× 1058/(ε4r5r0)

+1.3× 1059/(ε3r5r0)− 1.3× 1059/(ε2r5r0) + 3.2× 1058/(εr5r0)

−4.5× 1043ε/(r5r0)− 1.8× 10−15/(r3r0)− 0.4/(ε4r3r0)

+1.7/(ε3r3r0)− 1.3/(ε2r3r0)− 0.9/(εr3r0)

−1.3× 10−15ε/(r3r0) + 6.9× 10−77ε2/(r3r0)

+0.006(ln ε)/(ε3r3r0)− 0.02(ln ε)/(ε2r3r0) + 0.02(ln ε)/(εr3r0)

−0.01(ln r)/(ε3r3r0) + 0.05(ln r)/(ε2r3r0)− 0.04(ln r)/(εr3r0)

+0.01(ln r0)/(ε
3r3r0)− 0.05(ln r0)/(ε

2r3r0)

+0.04(ln r0)/(εr
3r0)− 5.6× 10−17(lnT )/(r3r0)

−0.01(lnT )/(ε3r3r0) + 0.05(lnT )/(ε2r3r0)− 0.04(lnT )/(εr3r0)

+1.4× 10−76/(rr0)− 4.2× 10−60/(ε3rr0) + 2.6× 10−59/(ε2rr0)

−3.7× 10−59/(εrr0) + 6.6× 1024/(r9/2
√
r0)

−1.3× 1026/(ε4r9/2
√
r0) + 8.2× 1026/(ε3r9/2

√
r0)

−1.4× 1027/(ε2r9/2
√
r0) + 4.5× 1026/(εr9/2

√
r0)

−4.7× 1023ε/(r9/2
√
r0) + 4.3× 1025√r0/r11/2

−1.0× 1026√r0/(ε3r11/2) + 5.4× 1026√r0/(ε2r11/2)
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−6.3× 1026√r0/(εr11/2)− 9.5× 1023ε
√
r0/r

11/2

−9.6× 1054r0/r
9 − 1.1× 1058r0/r

7 + 2.8× 1057r0/(ε
3r7)

−1.7× 1058r0/(ε
2r7) + 2.9× 1058r0/(εr

7) + 2.2× 1043εr0/r
7

−0.7r0/r
5 − 0.4r0/(ε

2r5) + 0.9r0/(εr
5) + 2.2× 10−16εr0/r

5

+3.5× 10−77ε2r0/r
5 − 0.01(ln ε)r0/r

5 + 0.007(ln ε)r0/(εr
5)

+0.02(ln r)r0/r
5 − 0.01(ln r)r0/(εr

5)− 0.02(ln r0)r0/r
5

+0.01(ln r0)r0/(εr
5) + 0.02(lnT )r0/r

5 − 0.01(lnT )r0/(εr
5)

−1.0× 10−59r0/r
3 − 4.2× 10−60r0/(εr

3)− 4.7× 10−118r0/r

−2.0× 1026r
3/2
0 /r13/2 − 8.1× 1025r

3/2
0 /(ε2r13/2)

+3.3× 1026r
3/2
0 /(εr13/2)− 2.5× 1024εr

3/2
0 /r13/2

+1.0× 1055r20/r
10 + 9.6× 1054εr20/r

10 + 1.0× 1058r20/r
8

+1.8× 1057r20/(ε
2r8)− 8.7× 1057r20/(εr

8) + 1.3× 1056εr20/r
8

+1.8r20/r
6 − 0.4r20/(εr

6)− 0.08εr20/r
6 − 1.7× 10−77ε2r20/r

6

+0.004(ln ε)r20/r
6 − 0.008(ln r)r20/r

6 + 0.008(ln r0)r
2
0/r

6

−0.008(lnT )r20/r
6 + 2.0× 10−59r20/r

4 + 4.7× 10−59εr20/r
4

+4.7× 10−118εr20/r
2 + 1.8× 1026r

5/2
0 /r15/2

−6.0× 1025r
5/2
0 /(εr15/2)− 1.5× 1025εr

5/2
0 /r15/2

−3.6× 1054r30/r
11 − 1.9× 1055εr30/r

11 − 5.0× 1057r30/r
9

+9.2× 1056r30/(εr
9)− 4.2× 1057εr30/r

9 − 0.7r30/r
7 + 0.8εr30/r

7

−4.8× 10−59εr30/r
5 − 4.0× 1025r

7/2
0 /r17/2
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+6.0× 1025εr
7/2
0 /r17/2 + 9.7× 1054εr40/r

12 + 8.0× 1054ε2r40/r
12

+1.3× 1057r40/r
10 + 8.3× 1057εr40/r

10 + 0.005ε2r40/r
10

−0.7εr40/r
8 + 8.2× 10−61ε2r40/r

8 + 9.8× 10−120ε2r40/r
6

−4.0× 1025εr
9/2
0 /r19/2 − 6.5× 1054ε2r50/r

13 − 4.3× 1057εr50/r
11

−0.0009ε2r50/r
11 − 1.3× 10−60ε2r50/r

9 + 0.06T 2/(ε2r20)

−0.04T 2/(εr20) + 3.2× 10−59r2T 2/(εr20) + 0.03T 2/(εrr0), (E9)

< T rr > = −0.00003− 3.2× 1054/r8 + 2.7× 1058/r6 + 2.6× 1058/(ε4r6)

−1.9× 1059/(ε3r6) + 4.4× 1059/(ε2r6)− 3.1× 1059/(εr6)

+4.5× 1043ε/r6 − 4.2/r4 + 1.6/(ε3r4)− 11.3/(ε2r4)

+18.8/(εr4) + 6.7× 10−16ε/r4 + 6.9× 10−77ε2/r4

+0.007(ln ε)/r4 + 0.009(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4)

−0.01(ln r)/r4 − 0.02(ln r)/(ε2r4) + 0.05(ln r)/(εr4)

+0.01(ln r0)/r
4 + 0.02(ln r0)/(ε

2r4)− 0.05(ln r0)/(εr
4)

−0.01(lnT )/r4 − 0.02(lnT )/(ε2r4) + 0.05(lnT )/(εr4)

+0.02/r3 − 0.004/r2 + 7.5× 10−60/(ε2r2)− 3.7× 10−59/(εr2)

+0.0005/r + 7.5× 10−60/(ε4r20)− 5.3× 10−59/(ε3r20)

+9.8× 10−59/(ε2r20)− 3.0× 10−59/(εr20) + 3.6× 1044/(r4r20)

+3.2× 1058/(ε6r4r20)− 3.1× 1059/(ε5r4r20)

+1.0× 1060/(ε4r4r20)− 1.4× 1060/(ε3r4r20)
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+6.2× 1059/(ε2r4r20)− 4.0× 1058/(εr4r20)− 8.9× 1043ε/(r4r20)

+2.1× 10−15/(r2r20) + 2.0/(ε5r2r20)− 17.7/(ε4r2r20)

+48.3/(ε3r2r20)− 41.7/(ε2r2r20) + 5.5/(εr2r20)

−4.4× 10−16ε/(r2r20)− 5.6× 10−17(ln ε)/(r2r20)

+0.009(ln ε)/(ε4r2r20)− 0.04(ln ε)/(ε3r2r20)

+0.05(ln ε)/(ε2r2r20)− 0.008(ln ε)/(εr2r20)

+1.1× 10−16(ln r)/(r2r20)− 0.02(ln r)/(ε4r2r20)

+0.08(ln r)/(ε3r2r20)− 0.1(ln r)/(ε2r2r20) + 0.02(ln r)/(εr2r20)

−1.1× 10−16(ln r0)/(r
2r20) + 0.02(ln r0)/(ε

4r2r20)

−0.08(ln r0)/(ε
3r2r20) + 0.1(ln r0)/(ε

2r2r20)− 0.02(ln r0)/(εr
2r20)

+2.8× 10−17(lnT )/(r2r20)− 0.02(lnT )/(ε4r2r20)

+0.08(lnT )/(ε3r2r20)− 0.1(lnT )/(ε2r2r20) + 0.02(lnT )/(εr2r20)

−2.4× 1024/(r7/2r
3/2
0 ) + 1.6× 1026/(ε5r7/2r

3/2
0 )

−1.2× 1027/(ε4r7/2r
3/2
0 ) + 2.6× 1027/(ε3r7/2r

3/2
0 )

−1.6× 1027/(ε2r7/2r
3/2
0 ) + 7.7× 1025/(εr7/2r

3/2
0 )

+2.8× 1023ε/(r7/2r
3/2
0 ) + 2.9× 1058/(ε5r5r0)

−2.5× 1059/(ε4r5r0) + 7.0× 1059/(ε3r5r0)

−7.1× 1059/(ε2r5r0) + 1.8× 1059/(εr5r0)− 4.5× 1043ε/(r5r0)

+2.4× 10−15/(r3r0) + 1.8/(ε4r3r0)− 14.4/(ε3r3r0)

+31.8/(ε2r3r0)− 17.2/(εr3r0) + 4.4× 10−16ε/(r3r0)
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−6.9× 10−77ε2/(r3r0) + 6.9× 10−18(ln ε)/(r3r0)

+0.01(ln ε)/(ε3r3r0)− 0.04(ln ε)/(ε2r3r0) + 0.03(ln ε)/(εr3r0)

−1.4× 10−17(ln r)/(r3r0)− 0.02(ln r)/(ε3r3r0)

+0.07(ln r)/(ε2r3r0)− 0.05(ln r)/(εr3r0)

+1.4× 10−17(ln r0)/(r
3r0) + 0.02(ln r0)/(ε

3r3r0)

−0.07(ln r0)/(ε
2r3r0) + 0.05(ln r0)/(εr

3r0)

−0.02(lnT )/(ε3r3r0) + 0.07(lnT )/(ε2r3r0)

−0.05(lnT )/(εr3r0) + 7.5× 10−60/(ε3rr0)

−4.5× 10−59/(ε2rr0) + 6.0× 10−59/(εrr0)

−6.6× 1024/(r9/2
√
r0) + 1.3× 1026/(ε4r9/2

√
r0)

−8.2× 1026/(ε3r9/2
√
r0) + 1.4× 1027/(ε2r9/2

√
r0)

−4.5× 1026/(εr9/2
√
r0) + 4.7× 1023ε/(r9/2

√
r0)

−4.3× 1025√r0/r11/2 + 1.0× 1026√r0/(ε3r11/2)

−5.4× 1026√r0/(ε2r11/2) + 6.3× 1026√r0/(εr11/2)

+9.5× 1023ε
√
r0/r

11/2 + 9.6× 1054r0/r
9 − 9.7× 1058r0/r

7

+2.2× 1058r0/(ε
3r7)− 1.4× 1059r0/(ε

2r7) + 2.6× 1059r0/(εr
7)

+5.6× 1042εr0/r
7 + 8.7r0/r

5 + 1.5r0/(ε
2r5)− 8.4r0/(εr

5)

+5.6× 10−17εr0/r
5 − 3.5× 10−77ε2r0/r

5 − 0.01(ln ε)r0/r
5

+0.007(ln ε)r0/(εr
5) + 0.02(ln r)r0/r

5 − 0.01(ln r)r0/(εr
5)

−0.02(ln r0)r0/r
5 + 0.01(ln r0)r0/(εr

5) + 0.02(lnT )r0/r
5
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−0.01(lnT )r0/(εr
5)− 0.04r0/r

4 + 0.009r0/r
3

+7.5× 10−60r0/(εr
3)− 0.001r0/r

2 + 0.0001r0/r

+2.0× 1026r
3/2
0 /r13/2 + 8.1× 1025r

3/2
0 /(ε2r13/2)

−3.3× 1026r
3/2
0 /(εr13/2) + 2.5× 1024εr

3/2
0 /r13/2

−1.0× 1055r20/r
10 − 9.6× 1054εr20/r

10 + 1.2× 1059r20/r
8

+1.9× 1058r20/(ε
2r8)− 1.0× 1059r20/(εr

8)− 1.7× 1058εr20/r
8

−4.8r20/r
6 + 1.3r20/(εr

6) + 3.0εr20/r
6 + 1.7× 10−77ε2r20/r

6

+0.004(ln ε)r20/r
6 − 0.008(ln r)r20/r

6 + 0.008(ln r0)r
2
0/r

6

−0.008(lnT )r20/r
6 + 0.02r20/r

5 + 0.01εr20/r
5

−0.007r20/r
4 − 0.003εr20/r

4 + 0.001r20/r
3 + 0.0005εr20/r

3

−0.0001r20/r
2 − 0.00003εr20/r

2 − 1.8× 1026r
5/2
0 /r15/2

+6.0× 1025r
5/2
0 /(εr15/2) + 1.5× 1025εr

5/2
0 /r15/2

+3.6× 1054r30/r
11 + 1.9× 1055εr30/r

11 − 6.1× 1058r30/r
9

+1.6× 1058r30/(εr
9) + 5.3× 1058εr30/r

9 + 0.3r30/r
7 − 6.3εr30/r

7

−0.002r30/r
6 − 0.01εr30/r

6 + 0.002r30/r
5 + 0.004εr30/r

5

−0.0004r30/r
4 − 0.001εr30/r

4 + 0.00003r30/r
3 + 0.00007εr30/r

3

+4.0× 1025r
7/2
0 /r17/2 − 6.0× 1025εr

7/2
0 /r17/2

−9.7× 1054εr40/r
12 − 8.0× 1054ε2r40/r

12 + 9.9× 1057r40/r
10

−5.2× 1058εr40/r
10 − 0.005ε2r40/r

10 + 3.4εr40/r
8

−8.2× 10−61ε2r40/r
8 − 0.0009εr40/r

7 − 0.0008εr40/r
6
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−9.8× 10−120ε2r40/r
6 + 0.0004εr40/r

5 − 0.00003εr40/r
4

+4.0× 1025εr
9/2
0 /r19/2 + 6.5× 1054ε2r50/r

13

+1.6× 1058εr50/r
11 + 0.0009ε2r50/r

11 + 1.3× 10−60ε2r50/r
9

−0.08T 2/(ε2r20) + 0.04T 2/(εr20)− 3.2× 10−59r2T 2/(εr20)

−0.06T 2/(εrr0). (E10)

Setting r = r0 in Eqs. (E9) and (E10), we get the expressions of the

stress-energy components of a quantized neutrino field at the throat of the

wormhole (in units of Fp/l
2
p):

< T tt >0 = −4.7× 10−118 + 4.7× 10−118ε+ 2.7× 1039/r80

+4.1× 1039ε/r80 + 1.6× 1054ε2/r80 + 6.8× 1052/r60

+7.0× 1057/(ε6r60)− 6.2× 1058/(ε5r60) + 1.8× 1059/(ε4r60)

−2.0× 1059/(ε3r60) + 5.6× 1058/(ε2r60) + 5.6× 1042/(εr60)

−6.1× 1054ε/r60 + 0.004ε2/r60 − 3.6× 1024/r50

−1.6× 1026/(ε5r50) + 1.0× 1027/(ε4r50)− 1.9× 1027/(ε3r50)

+7.2× 1026/(ε2r50) + 1.7× 1025/(εr50) + 8.3× 1023ε/r50

+0.04/r40 − 0.4/(ε5r40) + 1.9/(ε4r40)− 2.6/(ε3r40) + 0.4/(ε2r40)

+0.04/(εr40)− 0.03ε/r40 − 5.3× 10−61ε2/r40 − 0.0002(ln ε)/r40

+0.004(ln ε)/(ε4r40)− 0.01(ln ε)/(ε3r40) + 0.007(ln ε)/(ε2r40)

−0.0003(ln ε)/(εr40) + 0.0004(ln r)/r40 − 0.008(ln r)/(ε4r40)
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+0.02(ln r)/(ε3r40)− 0.01(ln r)/(ε2r40) + 0.0006(ln r)/(εr40)

−0.0004(ln r0)/r
4
0 + 0.008(ln r0)/(ε

4r40)− 0.02(ln r0)/(ε
3r40)

+0.01(ln r0)/(ε
2r40)− 0.0006(ln r0)/(εr

4
0) + 0.0004(lnT )/r40

−0.008(lnT )/(ε4r40) + 0.02(lnT )/(ε3r40)− 0.01(lnT )/(ε2r40)

+0.0006(lnT )/(εr40)− 1.1× 10−60/r20 − 4.2× 10−60/(ε4r20)

+2.7× 10−59/(ε3r20)− 3.9× 10−59/(ε2r20) + 4.1× 10−61/(εr20)

−1.4× 10−60ε/r20 + 9.8× 10−120ε2/r20 + 3.2× 10−59T 2/ε

+0.06T 2/(ε2r20)− 0.01T 2/(εr20) (E11)

< T rr >0 = −1.4× 1039/r80 − 2.7× 1039ε/r80 − 1.6× 1054ε2/r80

+1.9× 1055/r60 + 3.2× 1058/(ε6r60)− 2.8× 1059/(ε5r60)

+8.2× 1059/(ε4r60)− 8.6× 1059/(ε3r60) + 2.3× 1059/(ε2r60)

−1.6× 1054/(εr60)− 4.2× 1055ε/r60 − 0.004ε2/r60

+3.6× 1024/r50 + 1.6× 1026/(ε5r50)− 1.0× 1027/(ε4r50)

+1.9× 1027/(ε3r50)− 7.2× 1026/(ε2r50)− 1.7× 1025/(εr50)

−8.3× 1023ε/r50 − 0.004/r40 + 2.0/(ε5r40)− 15.9/(ε4r40)

+35.6/(ε3r40)− 19.7/(ε2r40)− 0.01/(εr40)− 0.005ε/r40

+5.3× 10−61ε2/r40 − 4.2× 10−17(ln ε)/r40 + 0.009(ln ε)/(ε4r40)

−0.03(ln ε)/(ε3r40) + 0.02(ln ε)/(ε2r40) + 0.0001(ln ε)/(εr40)

+8.3× 10−17(ln r)/r40 − 0.02(ln r)/(ε4r40) + 0.06(ln r)/(ε3r40)
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−0.04(ln r)/(ε2r40)− 0.0002(ln r)/(εr40)

−8.3× 10−17(ln r)0)/r
4
0 + 0.02(ln r)0)/(ε

4r40)

−0.06(ln r0)/(ε
3r40) + 0.04(ln r0)/(ε

2r40) + 0.0002(ln r0)/(εr
4
0)

+4.2× 10−17(lnT )/r40 − 0.02(lnT )/(ε4r40) + 0.06(lnT )/(ε3r40)

−0.04(lnT )/(ε2r40)− 0.0002(lnT )/(εr40)− 1.0× 10−17/r30

+0.0008ε/r30 + 7.5× 10−60/(ε4r20)− 4.5× 10−59/(ε3r20)

+6.1× 10−59/(ε2r20)− 9.8× 10−120ε2/r20 − 3.2× 10−59T 2/ε

−0.08T 2/(ε2r20)− 0.01T 2/(εr20) (E12)

E.2.2 Quantized proton field

The stress-energy tensor components of a quantized proton field in the

entire spacetime for the proximal Schwarzschild wormhole in thermal states

are computed to be (in units of Fp/l
2
p):

< T tt > = 2.1× 1035/r8 + 2.5× 1038/r6 + 2.6× 1038/(ε4r6)

−1.9× 1039/(ε3r6) + 4.3× 1039/(ε2r6)− 2.9× 1039/(εr6)

+1.2× 1024ε/r6 − 0.1/r4 − 0.4/(ε3r4) + 1.5/(ε2r4)− 0.9/(εr4)

−1.3× 10−15ε/r4 + 1.3× 10−57ε2/r4 + 0.007(ln ε)/r4

+0.007(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4)− 0.01(ln r)/r4

−0.01(ln r)/(ε2r4) + 0.04(ln r)/(εr4) + 0.01(ln r)0)/r
4

+0.01(ln r0)/(ε
2r4)− 0.04(ln r0)/(εr

4)− 0.01(lnT )/r4
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−0.01(lnT )/(ε2r4) + 0.04(lnT )/(εr4)− 1.7× 10−40/r2

−6.4× 10−41/(ε2r2) + 3.3× 10−40/(εr2) + 1.3× 10−57/r20

−6.4× 10−41/(ε4r20) + 4.8× 10−40/(ε3r20)− 9.4× 10−40/(ε2r20)

+3.1× 10−40/(εr20) + 4.6× 1038/(ε6r4r20)

−4.4× 1039/(ε5r4r20) + 1.5× 1040/(ε4r4r20)

−1.9× 1040/(ε3r4r20) + 8.7× 1039/(ε2r4r20)

−5.7× 1038/(εr4r20) + 4.8× 1024ε/(r4r20)

−5.3× 10−15/(r2r20)− 0.4/(ε5r2r20) + 2.5/(ε4r2r20)

−4.6/(ε3r2r20) + 1.9/(ε2r2r20) + 0.2/(εr2r20)

+5.6× 10−17(ln ε)/(r2r20) + 0.004(ln ε)/(ε4r2r20)

−0.02(ln ε)/(ε3r2r20) + 0.02(ln ε)/(ε2r2r20)− 0.005(ln ε)/(εr2r20)

−1.1× 10−16(ln r)/(r2r20)− 0.008(ln r)/(ε4r2r20)

+0.03(ln r)/(ε3r2r20)− 0.04(ln r)/(ε2r2r20) + 0.01(ln r)/(εr2r20)

+1.1× 10−16(ln r0)/(r
2r20) + 0.008(ln r0)/(ε

4r2r20)

−0.03(ln r0)/(ε
3r2r20) + 0.04(ln r0)/(ε

2r2r20)

−0.01(ln r0)/(εr
2r20)− 2.8× 10−17(lnT )/(r2r20)

−0.008(lnT )/(ε4r2r20) + 0.03(lnT )/(ε3r2r20)

−0.04(lnT )/(ε2r2r20) + 0.01(lnT )/(εr2r20)

+6.0× 1014/(r7/2r
3/2
0 )− 4.0× 1016/(ε5r7/2r

3/2
0 )

+3.0× 1017/(ε4r7/2r
3/2
0 )− 6.7× 1017/(ε3r7/2r

3/2
0 )
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+4.2× 1017/(ε2r7/2r
3/2
0 )− 2.0× 1016/(εr7/2r

3/2
0 )

−7.1× 1013ε/(r7/2r
3/2
0 ) + 3.5× 1038/(ε5r5r0)

−3.0× 1039/(ε4r5r0) + 8.4× 1039/(ε3r5r0)

−8.4× 1039/(ε2r5r0) + 2.1× 1039/(εr5r0) + 3.6× 1024ε/(r5r0)

−8.9× 10−16/(r3r0)− 0.4/(ε4r3r0) + 2.0/(ε3r3r0)

−2.3/(ε2r3r0)− 0.1/(εr3r0)− 1.3× 10−15ε/(r3r0)

−1.3× 10−57ε2/(r3r0) + 0.006(ln ε)/(ε3r3r0)

−0.02(ln ε)/(ε2r3r0) + 0.02(ln ε)/(εr3r0)− 0.01(ln r)/(ε3r3r0)

+0.05(ln r)/(ε2r3r0)− 0.04(ln r)/(εr3r0) + 0.01(ln r0)/(ε
3r3r0)

−0.05(ln r0)/(ε
2r3r0) + 0.04(ln r0)/(εr

3r0)

−5.6× 10−17(lnT )/(r3r0)− 0.01(lnT )/(ε3r3r0)

+0.05(lnT )/(ε2r3r0)− 0.04(lnT )/(εr3r0)− 7.6× 10−57/(rr0)

−6.4× 10−41/(ε3rr0) + 4.0× 10−40/(ε2rr0)

−5.7× 10−40/(εrr0) + 1.7× 1015/(r9/2
√
r0)

−3.3× 1016/(ε4r9/2
√
r0) + 2.1× 1017/(ε3r9/2

√
r0)

−3.6× 1017/(ε2r9/2
√
r0) + 1.2× 1017/(εr9/2

√
r0)

−1.2× 1014ε/(r9/2
√
r0) + 1.1× 1016√r0/r11/2

−2.6× 1016√r0/(ε3r11/2) + 1.4× 1017√r0/(ε2r11/2)

−1.6× 1017√r0/(εr11/2)− 2.4× 1014ε
√
r0/r

11/2

−6.3× 1035r0/r
9 − 6.9× 1038r0/r

7 + 1.8× 1038r0/(ε
3r7)
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−1.1× 1039r0/(ε
2r7) + 1.9× 1039r0/(εr

7) + 1.2× 1024εr0/r
7

−1.2r0/r
5 − 0.4r0/(ε

2r5) + 1.2r0/(εr
5) + 2.2× 10−16εr0/r

5

−6.4× 10−58ε2r0/r
5 − 0.01(ln ε)r0/r

5 + 0.007(ln ε)r0/(εr
5)

+0.02(ln r)r0)/r
5 − 0.01(ln r)r0/(εr

5)− 0.02(ln r0)r0/r
5

+0.01(ln r0)r0/(εr
5) + 0.02(lnT )r0/r

5 − 0.01(lnT )r0/(εr
5)

−1.6× 10−40r0/r
3 − 6.4× 10−41r0/(εr

3)− 1.1× 10−79r0/r

−5.0× 1016r
3/2
0 /r13/2 − 2.1× 1016r

3/2
0 /(ε2r13/2)

+8.5× 1016r
3/2
0 /(εr13/2)− 6.4× 1014εr

3/2
0 /r13/2

+6.6× 1035r20/r
10 + 6.3× 1035εr20/r

10 + 6.8× 1038r20/r
8

+1.2× 1038r20/(ε
2r8)− 5.7× 1038r20/(εr

8) + 8.4× 1036εr20/r
8

+2.0r20/r
6 − 0.4r20/(εr

6)− 0.08εr20/r
6 + 3.2× 10−58ε2r20/r

6

+0.004(ln ε)r20/r
6 − 0.008(ln r)r20/r

6 + 0.008(ln r0)r
2
0/r

6

−0.008(lnT )r20)/r
6 + 3.1× 10−40r20/r

4 + 7.1× 10−40εr20/r
4

+1.1× 10−79εr20/r
2 + 4.6× 1016r

5/2
0 /r15/2

−1.5× 1016r
5/2
0 /(εr15/2)− 3.9× 1015εr

5/2
0 /r15/2

−2.4× 1035r30/r
11 − 1.3× 1036εr30/r

11 − 3.3× 1038r30/r
9

+6.0× 1037r30/(εr
9)− 2.7× 1038εr30/r

9 − 0.7r30/r
7 + 0.8εr30/r

7

−7.3× 10−40εr30/r
5 − 1.0× 1016r

7/2
0 /r17/2

+1.5× 1016εr
7/2
0 /r17/2 + 6.3× 1035εr40/r

12 + 5.2× 1035ε2r40/r
12

+8.3× 1037r40/r
10 + 5.5× 1038εr40/r

10 + 0.005ε2r40/r
10
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−0.7εr40/r
8 + 1.3× 10−41ε2r40/r

8 + 2.8× 10−81ε2r40/r
6

−1.0× 1016εr
9/2
0 /r19/2 − 4.2× 1035ε2r50/r

13

−2.8× 1038εr50/r
11 − 0.0009ε2r50/r

11 − 2.1× 10−41ε2r50/r
9

+0.06T 2/(ε2r20)− 0.04T 2/(εr20) + 4.9× 10−40r2T 2/(εr20)

+0.03T 2/(εrr0) (E13)

< T rr > = −0.00003− 2.1× 1035/r8 + 1.8× 1039/r6 + 1.7× 1039/(ε4r6)

−1.3× 1040/(ε3r6) + 2.9× 1040/(ε2r6)− 2.0× 1040/(εr6)

+4.8× 1024ε/r6 − 3.9/r4 + 1.6/(ε3r4)− 10.9/(ε2r4)

+17.7/(εr4) + 6.7× 10−16ε/r4 − 1.3× 10−57ε2/r4

+0.007(ln ε)/r4 + 0.009(ln ε)/(ε2r4)− 0.02(ln ε)/(εr4)

−0.01(ln r)/r4 − 0.02(ln r)/(ε2r4) + 0.05(ln r)/(εr4)

+0.01(ln r0)/r
4 + 0.02(ln r0)/(ε

2r4)− 0.05(ln r0)/(εr
4)

−0.01(lnT )/r4 − 0.02(lnT )/(ε2r4) + 0.05(lnT )/(εr4)

+0.02/r3 − 0.004/r2 + 1.1× 10−40/(ε2r2)− 5.7× 10−40/(εr2)

+0.0005/r + 1.1× 10−40/(ε4r20)− 8.1× 10−40/(ε3r20)

+1.5× 10−39/(ε2r20)− 4.6× 10−40/(εr20)− 4.8× 1024/(r4r20)

+2.1× 1039/(ε6r4r20)− 2.0× 1040/(ε5r4r20)

+6.8× 1040/(ε4r4r20)− 9.1× 1040/(ε3r4r20)

+4.1× 1040/(ε2r4r20)− 2.6× 1039/(εr4r20)− 2.4× 1025ε/(r4r20)
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−2.3× 10−15/(r2r20) + 2.0/(ε5r2r20)− 17.3/(ε4r2r20)

+46.4/(ε3r2r20)− 39.6/(ε2r2r20) + 5.2/(εr2r20)

−4.4× 10−16ε/(r2r20)− 5.6× 10−17(ln ε)/(r2r20)

+0.009(ln ε)/(ε4r2r20)− 0.04(ln ε)/(ε3r2r20)

+0.05(ln ε)/(ε2r2r20)− 0.008(ln ε)/(εr2r20)

+1.1× 10−16(ln r)/(r2r20)− 0.02(ln r)/(ε4r2r20)

+0.08(ln r)/(ε3r2r20)− 0.1(ln r)/(ε2r2r20) + 0.02(ln r)/(εr2r20)

−1.1× 10−16(ln r0)/(r
2r20) + 0.02(ln r0)/(ε

4r2r20)

−0.08(ln r0)/(ε
3r2r20) + 0.1(ln r0)/(ε

2r2r20)− 0.02(ln r0)/(εr
2r20)

+2.8× 10−17(lnT )/(r2r20)− 0.02(lnT )/(ε4r2r20)

+0.08(lnT )/(ε3r2r20)− 0.1(lnT )/(ε2r2r20)

+0.02(lnT )/(εr2r20)− 6.0× 1014/(r7/2r
3/2
0 )

+4.0× 1016/(ε5r7/2r
3/2
0 )− 3.0× 1017/(ε4r7/2r

3/2
0 )

+6.7× 1017/(ε3r7/2r
3/2
0 )− 4.2× 1017/(ε2r7/2r

3/2
0 )

+2.0× 1016/(εr7/2r
3/2
0 ) + 7.0× 1013ε/(r7/2r

3/2
0 )

−2.4× 1024/(r5r0) + 1.9× 1039/(ε5r5r0)− 1.6× 1040/(ε4r5r0)

+4.6× 1040/(ε3r5r0)− 4.6× 1040/(ε2r5r0) + 1.2× 1040/(εr5r0)

+1.2× 1025ε/(r5r0) + 2.2× 10−16/(r3r0) + 1.8/(ε4r3r0)

−13.9/(ε3r3r0) + 30.2/(ε2r3r0)− 16.1/(εr3r0)

+4.4× 10−16ε/(r3r0) + 1.3× 10−57ε2/(r3r0)

199



+6.9× 10−18(ln ε)/(r3r0) + 0.01(ln ε)/(ε3r3r0)

−0.04(ln ε)/(ε2r3r0) + 0.03(ln ε)/(εr3r0)

−1.4× 10−17(ln r)/(r3r0)− 0.02(ln r)/(ε3r3r0)

+0.07(ln r)/(ε2r3r0)− 0.05(ln r)/(εr3r0)

+1.4× 10−17(ln r0)/(r
3r0) + 0.02(ln r0)/(ε

3r3r0)

−0.07(ln r0)/(ε
2r3r0) + 0.05(ln r0)/(εr

3r0)

−0.02(lnT )/(ε3r3r0) + 0.07(lnT )/(ε2r3r0)− 0.05(lnT )/(εr3r0)

+1.1× 10−40/(ε3rr0)− 6.9× 10−40/(ε2rr0)

+9.1× 10−40/(εrr0)− 1.7× 1015/(r9/2
√
r0)

+3.3× 1016/(ε4r9/2
√
r0)− 2.1× 1017/(ε3r9/2

√
r0)

+3.6× 1017/(ε2r9/2
√
r0)− 1.2× 1017/(εr9/2

√
r0)

+1.2× 1014ε/(r9/2
√
r0)− 1.1× 1016√r0/r11/2

+2.6× 1016√r0/(ε3r11/2)− 1.4× 1017√r0/(ε2r11/2)

+1.6× 1017√r0/(εr11/2) + 2.4× 1014ε
√
r0/r

11/2

+6.3× 1035r0/r
9 − 6.3× 1039r0/r

7 + 1.5× 1039r0/(ε
3r7)

−9.4× 1039r0/(ε
2r7) + 1.7× 1040r0/(εr

7) + 7.6× 1023εr0/r
7

+8.2r0/r
5 + 1.5r0/(ε

2r5)− 8.1r0/(εr
5) + 5.6× 10−17εr0/r

5

+6.4× 10−58ε2r0/r
5 − 0.01(ln ε)r0/r

5 + 0.007(ln ε)r0/(εr
5)

+0.02(ln r)r0/r
5 − 0.01(ln r)r0/(εr

5)− 0.02(ln r0)r0/r
5

+0.01(ln r0)r0/(εr
5) + 0.02(lnT )r0/r

5 − 0.01(lnT )r0/(εr
5)
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−0.04r0/r
4 + 0.009r0/r

3 + 1.1× 10−40r0/(εr
3)− 0.001r0/r

2

+0.0001r0/r + 5.0× 1016r
3/2
0 /r13/2 + 2.1× 1016r

3/2
0 /(ε2r13/2)

−8.5× 1016r
3/2
0 /(εr13/2) + 6.4× 1014εr

3/2
0 /r13/2

−6.6× 1035r20/r
10 − 6.3× 1035εr20/r

10 + 7.9× 1039r20/r
8

+1.2× 1039r20/(ε
2r8)− 6.7× 1039r20/(εr

8)− 1.1× 1039εr20/r
8

−4.6r20/r
6 + 1.3r20/(εr

6) + 3.0εr20/r
6 − 3.2× 10−58ε2r20/r

6

+0.004(ln ε)r20/r
6 − 0.008(ln r)r20/r

6 + 0.008(ln r0)r
2
0/r

6

−0.008(lnT )r20/r
6 + 0.02r20/r

5 + 0.01εr20/r
5 − 0.007r20/r

4

−0.003εr20/r
4 + 0.001r20/r

3 + 0.0005εr20/r
3 − 0.0001r20/r

2

−0.00003εr20/r
2 − 4.6× 1016r

5/2
0 /r15/2 + 1.5× 1016r

5/2
0 /(εr15/2)

+3.9× 1015εr
5/2
0 /r15/2 + 2.4× 1035r30/r

11 + 1.3× 1036εr30/r
11

−4.0× 1039r30/r
9 + 1.0× 1039r30/(εr

9) + 3.5× 1039εr30/r
9

+0.3r30/r
7 − 6.3εr30/r

7 − 0.002r30/r
6 − 0.01εr30/r

6 + 0.002r30/r
5

+0.004εr30/r
5 − 0.0004r30/r

4 − 0.001εr30/r
4 + 0.00003r30/r

3

+0.00007εr30/r
3 + 1.0× 1016r

7/2
0 /r17/2 − 1.5× 1016εr

7/2
0 /r17/2

−6.3× 1035εr40/r
12 − 5.2× 1035ε2r40/r

12 + 6.5× 1038r40/r
10

−3.4× 1039εr40/r
10 − 0.005ε2r40/r

10 + 3.4εr40/r
8

−1.3× 10−41ε2r40/r
8 − 0.0009εr40/r

7 − 0.0008εr40/r
6

−2.3× 10−81ε2r40/r
6 + 0.0004εr40/r

5 − 0.00003εr40/r
4

+1.0× 1016εr
9/2
0 /r19/2 + 4.2× 1035ε2r50/r

13 + 1.1× 1039εr50/r
11
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+0.0009ε2r50/r
11 + 2.1× 10−41ε2r50/r

9 − 0.08T 2/(ε2r20)

+0.04T 2/(εr20)− 4.9× 10−40r2T 2/(εr20)− 0.05T 2/(εrr0). (E14)

Setting r = r0 in Eqs. (E13) and (E14), we obtain the stress-energy

tensor components of a quantized proton field at the throat of the wormhole

(in units of Fp/l
2
p):

< T tt >0 = −1.1× 10−79 + 1.1× 10−79ε+ 7.4× 1019/r80 + 1.5× 1020ε/r80

+1.0× 1035ε2/r80 + 4.5× 1033/r60 + 4.6× 1038/(ε6r60)

−4.0× 1039/(ε5r60) + 1.2× 1040/(ε4r60)− 1.3× 1040/(ε3r60)

+3.7× 1039/(ε2r60) + 4.2× 1024/(εr60)− 4.0× 1035ε/r60

+0.004ε2/r60 − 9.3× 1014/r50 − 4.0× 1016/(ε5r50)

+2.7× 1017/(ε4r50)− 4.8× 1017/(ε3r50) + 1.8× 1017/(ε2r50)

+4.5× 1015/(εr50) + 2.1× 1014ε/r50 + 0.03/r40 − 0.4/(ε5r40)

+2.1/(ε4r40)− 3.1/(ε3r40) + 0.7/(ε2r40) + 0.03/(εr40)− 0.03ε/r40

−8.0× 10−42ε2/r40 − 0.0002(ln ε)/r40 + 0.004(ln ε)/(ε4r40)

−0.01(ln ε)/(ε3r40) + 0.007(ln ε)/(ε2r40)− 0.0003(ln ε)/(εr40)

+0.0004(ln r)/r40 − 0.008(ln r)/(ε4r40) + 0.02(ln r)/(ε3r40)

−0.01(ln r)/(ε2r40) + 0.0006(ln r)/(εr40)− 0.0004(ln r0)/r
4
0

+0.008(ln r0)/(ε
4r40)− 0.02(ln r0)/(ε

3r40) + 0.01(ln r0)/(ε
2r40)

−0.0006(ln r0)/(εr
4
0) + 0.0004(lnT )/r40 − 0.008(lnT )/(ε4r40)
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+0.02(lnT )/(ε3r40)− 0.01(lnT )/(ε2r40) + 0.0006(lnT )/(εr40)

−1.7× 10−41/r20 − 6.4× 10−41/(ε4r20) + 4.1× 10−40/(ε3r20)

−6.0× 10−40/(ε2r20) + 6.2× 10−42/(εr20)− 2.1× 10−41ε/r20

+2.3× 10−81ε2/r20 + 4.9× 10−40T 2/ε+ 0.06T 2/(ε2r20)

−0.01T 2/(εr20) (E15)

< T rr >0 = −1.5× 1020ε/r80 − 1.0× 1035ε2/r80 + 1.2× 1036/r60

+2.1× 1039/(ε6r60)− 1.9× 1040/(ε5r60) + 5.4× 1040/(ε4r60)

−5.6× 1040/(ε3r60) + 1.5× 1040/(ε2r60)− 1.1× 1035/(εr60)

−2.7× 1036ε/r60 − 0.004ε2/r60 + 9.3× 1014/r50

+4.0× 1016/(ε5r50)− 2.7× 1017/(ε4r50) + 4.8× 1017/(ε3r50)

−1.8× 1017/(ε2r50)− 4.5× 1015/(εr50)− 2.1× 1014ε/r50

−0.004/r40 + 2.0/(ε5r40)− 15.5/(ε4r40) + 34.1/(ε3r40)

−18.8/(ε2r40)− 0.009/(εr40)− 0.005ε/r40 + 8.0× 10−42ε2/r40

−4.2× 10−17(ln ε)/r40 + 0.009(ln ε)/(ε4r40)− 0.03(ln ε)/(ε3r40)

+0.02(ln ε)/(ε2r40) + 0.0001(ln ε)/(εr40) + 8.3× 10−17(ln r)/r40

−0.02(ln r)/(ε4r40) + 0.06(ln r)/(ε3r40)− 0.04(ln r)/(ε2r40)

−0.0002(ln r)/(εr40)− 8.3× 10−17(ln r0)/r
4
0

+0.02(ln r0)/(ε
4r40)− 0.06(ln r0)/(ε

3r40) + 0.04(ln r0)/(ε
2r40)

+0.0002(ln r0)/(εr
4
0) + 4.2× 10−17(lnT )/r40
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−0.02(lnT )/(ε4r40) + 0.06(lnT )/(ε3r40)− 0.04(lnT )/(ε2r40)

−0.0002(lnT )/(εr40)− 1.04× 10−17/r30 + 0.0008ε/r30

+1.1× 10−40/(ε4r20)− 6.9× 10−40/(ε3r20) + 9.3× 10−40/(ε2r20)

−1.6× 10−55/(εr20)− 2.3× 10−81ε2/r20 − 4.9× 10−40T 2/ε

−0.08T 2/(ε2r20)− 0.01T 2/(εr20). (E16)
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Appendix F: Stress-Energy Tensor of the

Quantized Neutrino Field and Quantized

Proton Field in the Spacetime of Wormhole

with Finite Radial Energy Cutoff

F.1 Zero-temperature vacuum state

F.1.1 Quantized neutrino field

I have computed the stress-energy tensor components of a quantized neu-

trino field for the wormhole with finite radial cutoff of the stress-energy in

the entire spacetime. Because the expression for each component is lengthy,

I list only < T tt > and < T rr > (in units of Fp/l
2
p) but omit < T φφ > since it

is irrelevant to the calculations in this thesis:

< T tt > = 1.6 × 1054/r8 + 1.6 × 1054η(ln r)/r8 − 8.1 × 1053η2(ln r)2/r8

−1.6 × 1054η(ln r0)/r
8 + 1.6 × 1054η2(ln r)(ln r0)/r

8
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−8.1 × 1053η2(ln r0)
2/r8 − 5.8 × 1054/r6 − 1.4 × 1053η/r6

−1.1 × 1041η2/r6 − 5.1 × 1053η(ln r)/r6 + 1.4 × 1053η2(ln r)/r6

+2.6 × 1053η2(ln r2)/r6 + 5.7 × 1041/[(ln r0)
2r6]

−8.7 × 1040/[η(ln r0)
2r6] − 3.7 × 1042η/[(ln r0)

2r6]

+1.7 × 1043η2/[(ln r0)
2r6] − 2.2 × 1041(ln r)/[(ln r0)

2r6]

−1.1 × 1042η(ln r)/[(ln r0)
2r6] + 8.6 × 1043η2(ln r)/[(ln r0)

2r6]

+7.8 × 1041η(ln r)2/[(ln r0)
2r6]

+7.7 × 1042η2(ln r)2/[(ln r0)
2r6]

+4.2 × 1042η2(ln r)3/[(ln r0)
2r6] − 1.3 × 1041/[(ln r0)r

6]

−6.5 × 1040η/[(ln r0)r
6] + 1.1 × 1043η2/[(ln r0)r

6]

+2.2 × 1040η(ln r)/[(ln r0)r
6] + 1.7 × 1042η2(ln r)/[(ln r0)r

6]

−1.9 × 1042η2(ln r)2/[(ln r0)r
6] + 5.1 × 1053η(ln r0)/r

6

−1.4 × 1053η2(ln r0)/r
6 − 5.1 × 1053η2(ln r)(ln r0)/r

6

+2.6 × 1053η2(ln r0)
2/r6 − 0.007/r4 − 0.004η/r4 − 0.002η2/r4

+0.007η(ln r)/r4 − 0.03η2(ln r)/r4 + 0.2η2(ln r)2/r4

−2.3 × 10−17/[(ln r0)
2r4] − 4.1 × 10−16η/[(ln r0)

2r4]

−1.4 × 10−17(ln r)/[(ln r0)
2r4] − 6.1 × 10−18η(ln r)/[(ln r0)

2r4]

+4.3 × 10−15η2(ln r)/[(ln r0)
2r4]

+1.4 × 10−17η(ln r)2/(ln r0)
2r4]

−5.7 × 10−17η2(ln r)2/[(ln r0)
2r4]
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+2.0 × 10−16η2(ln r)3/[(ln r0)
2r4] − 6.9 × 10−18/[(ln r0)r

4]

−8.7 × 10−18η/[(ln r0)r
4] + 4.7 × 10−16η2/[(ln r0)r

4]

+6.9 × 10−18η(ln r)/[(ln r0)r
4] − 1.5 × 10−17η2(ln r)/[(ln r0)r

4]

−4.4 × 10−17η2(ln r)2/[(ln r0)r
4] − 0.007η(ln r0)/r

4

+0.03η2(ln r0)/r
4 − 0.4η2(ln r)(ln r0)/r

4 + 0.2η2(ln r0)
2/r4

−2.2 × 10−60/r2 + 2.0 × 10−61η/r2 + 8.7 × 10−60η(ln r)/r2

−2.0 × 10−61η2(ln r)/r2 − 4.4 × 10−60η2(ln r)2/r2

−6.9 × 10−77η(ln r)2/[(ln r0)
2r2]

+8.2 × 10−76η2(ln r)3/[(ln r0)
2r2]

−3.5 × 10−77η(ln r)/[(ln r0)r
2] + 2.6 × 10−76η2(ln r)2/[(ln r0)r

2]

−8.7 × 10−60η(ln r0)/r
2 + 2.0 × 10−61η2(ln r0)/r

2

+8.7 × 10−60η2(ln r)(ln r0)/r
2 − 4.4 × 10−60η2(lnr0)

2/r2, (F1)

< T rr > = −0.00003η2(ln r)2 + 0.00007η2(ln r)(ln r0) − 0.00003η2(ln r0)
2

−1.6 × 1054/r8 − 1.6 × 1054η(ln r)/r8 + 8.1 × 1053η2(ln r)2/r8

+1.6 × 1054η(ln r0)/r
8 − 1.6 × 1054η2(ln r)(ln r0)/r

8

+8.1 × 1053η2(ln r0)
2/r8 + 1.5 × 1056/[(ln r0)r

6]

+3.1 × 1054/r6 + 6.5 × 1040η/r6 − 1.0 × 1054η2/r6

+1.1 × 1054η(ln r)/r6 + 1.3 × 1055η2(ln r)/r6

−3.1 × 1055η2(ln r2)/r6 − 7.0 × 1041/[(ln r0)
2r6]
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−3.3 × 1043η/[(ln r0)
2r6] + 1.9 × 1044η2/[(ln r0)

2r6]

−4.4 × 1040(ln r)/[(ln r0)
2r6] − 3.1 × 1042η(ln r)/[(ln r0)

2r6]

+3.8 × 1044η2(ln r)/[(ln r0)
2r6] − 4.4 × 1040η(ln r)2/[(ln r0)

2r6]

+6.3 × 1043η2(ln r)2/[(ln r0)
2r6]

−4.0 × 1042η2(ln r)3/[(ln r0)
2r6] − 1.5 × 1056/[(ln r0)r

6]

−2.4 × 1042η/[(ln r0)r
6] + 3.9 × 1043η2/[(ln r0)r

6]

+1.4 × 1043η2(ln r)/[(ln r0)r
6] + 1.4 × 1042η2(ln r)2/[(ln r0)r

6]

−1.1 × 1054η(ln r0)/r
6 − 1.3 × 1055η2(ln r0)/r

6

+6.1 × 1055η2(ln r)(ln r0)/r
6 − 3.1 × 1055η2(ln r0)

2/r6

−0.009/[(ln r0)r
4] − 0.008/r4 + 0.009η/r4 − 0.02η2/r4

+0.03η(ln r)/r4 − 0.05η2(ln r)/r4 − 0.02η2(ln r)2/r4

−3.5 × 10−17/[(ln r0)
2r4] + 9.7 × 10−17η/[(ln r0)

2r4]

−1.4 × 10−17(ln r)/[(ln r0)
2r4] + 1.7 × 10−17η(ln r)/[(ln r0)

2r4]

−1.1 × 10−15η2(ln r)/[(ln r0)
2r4]

−9.7 × 10−17η(ln r)2/[(ln r0)
2r4]

−6.2 × 10−16η2(ln r)2/[(ln r0)
2r4]

+1.5 × 10−15η2(ln r)3/[(ln r0)
2r4] + 0.009/[(ln r0)r

4]

−1.7 × 10−17η/[(ln r0)r
4] − 1.2 × 10−16η2/[(ln r0)r

4]

+6.9 × 10−18η(ln r)/[(ln r0)r
4] − 1.8 × 10−16η2(ln r)/[(ln r0)r

4]

+2.3 × 10−16η2(ln r)2/[(ln r0)r
4] − 0.03η(ln r0)/r

4
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+0.05η2(ln r0)/r
4 + 0.03η2(ln r)(ln r0)/r

4 − 0.02η2(ln r0)
2/r4

−0.0008/[(ln r0)r
3] + 0.0008η/r3 + 0.01η(ln r)/r3

−0.0004η2(ln r)/r3 − 0.002η2(ln r)2/r3

−4.3 × 10−19η(ln r)2/[(ln r0)
2r3]

−7.5 × 10−18η2(ln r)3/[(ln r0)
2r3] + 0.0008/[(ln r0)r

3]

−2.2 × 10−19η(ln r)/[(ln r0)r
3]

−1.2 × 10−18η2(ln r)2/[(ln r0)r
3] − 0.01η(ln r0)/r

3

+0.0004η2(ln r0)/r
3 + 0.004η2(ln r)(ln r0)/r

3

−0.002η2(ln r0)
2/r3 − 0.002η(ln r)/r2 − 0.0004η2(ln r)/r2

−0.002η2(ln r)2/r2 + 2.2 × 10−19η(ln r)2/[(ln r0)
2r2]

+1.0 × 10−17η2(ln r)3/[(ln r0)
2r2] + 1.1 × 10−19η(ln r)/[(ln r0)r

2]

+1.6 × 10−18η2(ln r)2/[(ln r0)r
2] + 0.002η(ln r0)/r

2

+0.0004η2(ln r0)/r
2 + 0.003η2(ln r)(ln r0)/r

2

−0.002η2(ln r0)
2/r2 − 6.8 × 10−21η/r + 0.0001η2(ln r)/r

+0.0005η2(ln r)2/r − 5.4 × 10−20η(ln r)2/[(ln r0)
2r]

−2.5 × 10−18η2(ln r3)/[(ln r0)
2r] − 2.7 × 10−20η(ln r)/[(ln r0)r]

−4.1 × 10−19η2(ln r)2/[(ln r0)r] − 0.0001η2(ln r0)/r

−0.001η2(ln r)(ln r0)/r + 0.0005η2(ln r0)
2/r. (F2)

By setting r = r0 in Eqs. (F1) and (F2), we get the stress-energy tensor

components of a quantized neutrino field at the throat of the wormhole (in
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units of Fp/l
2
p):

< T tt >0 = 1.6 × 1054/r80 − 5.8 × 1054/r60 − 1.4 × 1053η/r60

+9.3 × 1042η2/r60 + 5.7 × 1041/[(ln r0)
2r60]

−8.7 × 1040/[(η(ln r0)
2r60] − 3.7 × 1042η/[(ln r0)

2r60]

+1.7 × 1043η2/[(ln r0)
2r60] − 3.5 × 1041/[(ln r0)r

6
0]

−1.2 × 1042η/[(ln r0)r
6
0] + 9.7 × 1043η2/[(ln r0)r

6
0]

+1.2 × 1042η2(ln r0)/r
6
0 − 0.007/r40 − 0.004η/r40 − 0.002η2/r40

−2.3 × 10−17/[(ln r0)
2r40] − 4.1 × 10−16η/[(ln r0)

2r40]

−2.1 × 10−17/[(ln r0)r
4
0] − 1.5 × 10−17η/[(ln r0)r

4
0]

+4.7 × 10−15η2/[(ln r0)r
4
0] + 2.0 × 10−16η2(ln r0)/r

4
0

−2.2 × 10−60/r20 + 2.0 × 10−61η/r20

+1.0 × 10−75η2(ln r0)/r
2
0, (F3)

< T rr >0 = −1.6 × 1054/r80 + 1.5 × 1056/[(ln r0)r
6
0] + 3.1 × 1054/r60

+2.2 × 1040η/r60 − 1.0 × 1054η2/r60 − 7.0 × 1041/[(ln r0)
2r60]

−3.3 × 1043η/[(ln r02r60] + 1.9 × 1044η2/[(ln r0)
2r60]

−1.5 × 1056/[(ln r0)r
6
0] − 5.6 × 1042η/[(ln r0)r

6
0]

+4.1 × 1044η2/[(ln r0)r
6
0] − 1.8 × 1042η2(ln r0)/r

6
0

−0.009/[(ln r0)r
4
0] − 0.008/r40 + 0.009η/r40 − 0.02η2/r40
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−3.5 × 10−17/[(ln r0)
2r40] + 9.7 × 10−17η/[(ln r0)

2r40]

+0.009/[(ln r0)r
4
0] − 1.2 × 10−15η2/[(ln r0r

4
0]

+1.7 × 10−15η2(ln r0)/r
4
0 − 0.0008/[(ln r0)r

3
0] + 0.0008η/r30

+0.0008/[(ln r0)r
3
0] − 8.8 × 10−18η2(ln r0)/r

3
0

+3.3 × 10−19η/r20 + 1.2 × 10−17η2(ln r0)/r
2
0 − 8.8 × 10−20η/r0

−2.9 × 10−18η2(ln r0)/r0. (F4)

F.1.2 Quantized proton field

The stress-energy tensor components of a quantized proton field for worm-

holes with finite radial cutoff of stress-energy tensor in the entire spacetime

are found to be (in units of Fp/l
2
p):

< T tt > = 1.0 × 1035/r8 + 1.1 × 1035η(ln r)/r8 − 5.3 × 1034η2(ln r2)/r8

−1.1 × 1035η(ln r0)/r
8 + 1.1 × 1035η2(ln r)(ln r0)/r

8

−5.3 × 1034η2(ln r0)
2/r8 − 3.8 × 1035/r6 − 9.0 × 1033η/r6

−1.8 × 1021η2/r6 − 3.4 × 1034η(ln r)/r6

+9.0 × 1033η2(ln r)/r6 + 1.7 × 1034η2(ln r)2/r6

−4.2 × 1023η/[(ln r0)
2r6] + 1.2 × 1024η2/[(ln r0)

2r6]

+1.4 × 1022(ln r)/[(ln r0)
2r6] − 2.1 × 1022η(ln r)/[(ln r0)

2r6]

+5.8 × 1024η2(ln r)/[(ln r0)
2r6] + 2.4 × 1021η(ln r)2/[(ln r0)

2r6]

+5.6 × 1023η2(ln r)2/[(ln r0)
2r6]
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−1.9 × 1023η2(ln r)3/[(ln r0)
2r6]

+9.4 × 1021/[(ln r0)r
6] + 1.7 × 1022η/[(ln r0)r

6]

+5.7 × 1023η2/[(ln r0)r
6] + 1.2 × 1021η(ln r)/[(lnr0)r

6]

+1.2 × 1023η2(ln r)/[(ln r0)r
6] − 7.0 × 1022η2(ln r)2/[(ln r0)r

6]

+3.4 × 1034η(ln r0)/r
6 − 9.0 × 1033η2(ln r0)/r

6

−3.4 × 1034η2(ln r)(ln r0)/r
6 + 1.7 × 1034η2(ln r0)

2/r6

−0.007/r4 − 0.004η/r4 − 0.002η2/r4 + 0.007η(ln r)/r4

−0.03η2(ln r)/r4 + 0.2η2(ln r)2/r4 − 2.3 × 10−17/[(ln r0)
2r4]

−4.1 × 10−16η/[(ln r0)
2r4] − 1.4 × 10−17(ln r)/[(ln r0)

2r4]

−6.1 × 10−18η(ln r)/[(ln r0)
2r4]

+4.3 × 10−15η2(ln r)/[(ln r0)
2r4]

+1.4 × 10−17η(ln r)2/[(ln r0)
2r4]

−5.7 × 10−17η2(ln r)2/[(ln r0)
2r4]

+2.0 × 10−16η2(ln r)3/[(ln r0)
2r4] − 8.7 × 10−18η/[(ln r0)r

4]

+4.7 × 10−16η2/[(ln r0)r
4] + 6.9 × 10−18η(ln r)/[(ln r0)r

4]

−1.5 × 10−17η2(ln r)/[(ln r0)r
4]

−4.4 × 10−17η2(ln r)2/[(ln r0)r
4] − 0.007η(ln r0)/r

4

+0.03η2(ln r0)/r
4 − 0.4η2(ln r)(ln r0)/r

4 + 0.2η2(ln r0)
2/r4

−3.3 × 10−41/r2 + 3.1 × 10−42η/r2 + 1.3 × 10−40η(ln r)/r2

−3.1 × 10−42η2(ln r)/r2 − 6.7 × 10−41η2(ln r2)/r2
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−6.4 × 10−58η(ln r)2/[(ln r0)
2r2]

+3.2 × 10−57η2(ln r)3/[(ln r0)
2r2]

−3.2 × 10−58η(ln r)/[(ln r0)r
2] + 1.9 × 10−57η2(ln r)2/[(ln r0)r

2]

−1.3 × 10−40η(ln r0)/r
2 + 3.1 × 10−42η2(ln r0)/r

2

+1.3 × 10−40η2(ln r)(ln r0)/r
2 − 6.7 × 10−41η2(ln r0)

2/r2, (F5)

< T rr > = −0.00003η2(ln r)2 + 0.00007η2(ln r)(ln r0) − 0.00003η2(ln r0)
2

−1.0 × 1035/r8 − 1.1 × 1035η(ln r)/r8 + 5.3 × 1034η2(ln r)2)/r8

+1.1 × 1035η(ln r0)/r
8 − 1.1 × 1035η2(ln r)(ln r0)/r

8

+5.3 × 1034η2(ln r0)
2/r8 + 2.0 × 1035/r6 + 1.4 × 1022η/r6

−6.7 × 1034η2/r6 + 6.9 × 1034η(ln r)/r6 + 8.2 × 1035η2(ln r)/r6

−2.0 × 1036η2(ln r)2/r6 + 7.6 × 1022/[(ln r0)
2r6]

+4.7 × 1021/[η(ln r0)
2r6] − 2.2 × 1024η/[(ln r0)

2r6]

+1.1 × 1025η2/[(ln r0)
2r6] + 9.4 × 1021(ln r)/[(ln r0)

2r6]

−9.4 × 1022η(ln r)/[(ln r0)
2r6] + 2.2 × 1025η2(ln r)/[(ln r0)

2r6]

−7.8 × 1022η(ln r)2/[(ln r0)
2r6] + 5.0 × 1024η2(ln r)2/[(ln r0)

2r6]

+3.5 × 1023η2(ln r)3/[(lnr0)
2r6] + 9.4 × 1021/[(ln r0)r

6]

+2.8 × 1022η/[(ln r0)r
6] + 2.1 × 1024η2/[(ln r0)r

6]

−1.2 × 1021η(ln r)/[(ln r0)r
6] + 1.2 × 1024η2(ln r)/[(ln r0)r

6]

+1.4 × 1023η2(ln r)2/[(ln r0)r
6] − 6.9 × 1034η(ln r0)/r

6
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−8.2 × 1035η2(ln r0)/r
6 + 4.0 × 1036η2(ln r)(ln r0)/r

6

−2.0 × 1036η2(ln r0)
2/r6 − 0.008/r4 + 0.009η/r4 − 0.02η2/r4

+0.03η(ln r)/r4 − 0.05η2(ln r)/r4 − 0.02η2(ln r)2/r4

−2.8 × 10−17/[(ln r0)
2r4] + 9.7 × 10−17η/[(ln r0)

2r4]

−1.4 × 10−17(ln r)/[(ln r0)
2r4] + 1.7 × 10−17η(ln r)/[(ln r0)

2r4]

−1.1 × 10−15η2(ln r)/[(ln r0)
2r4]

−9.7 × 10−17η(ln r)2/[(ln r0)
2r4]

−6.2 × 10−16η2(ln r)2/[(ln r0)
2r4]

+1.5 × 10−15η2(ln r)3/[(ln r0)
2r4] − 1.7 × 10−17η/[(ln r0)r

4]

−1.2 × 10−16η2/[(ln r0)r
4] + 6.9 × 10−18η(ln r)/[(ln r0)r

4]

−1.8 × 10−16η2(ln r)/(ln r0)r
4]

+2.3 × 10−16η2(ln r)2/[(ln r0)r
4] − 0.03η(ln r0)/r

4

+0.05η2(ln r0)/r
4 + 0.03η2(ln r)(ln r0)/r

4 − 0.02η2(ln r0)
2/r4

+0.0008η/r3 + 0.01η(ln r)/r3 − 0.0004η2(ln r)/r3

−0.002η2(ln r)2/r3 − 4.3 × 10−19η(ln r)2/[(ln r0)
2r3]

−7.5 × 10−18η2(ln r)3/[(ln r0)
2r3]

−2.2 × 10−19η(ln r)/[(ln r0)r
3] − 1.2 × 10−18η2(ln r)2/[(ln r0)r

3]

−0.01η(ln r0)/r
3 + 0.0004η2(ln r0)/r

3 + 0.004η2(ln r)(ln r0)/r
3

−0.002η2(ln r0)
2/r3 − 0.002η(ln r)/r2 − 0.0004η2(ln r)/r2

−0.002η2(ln r)2/r2 + 2.2 × 10−19η(ln r)2/[(ln r0)
2r2]
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+1.0 × 10−17η2(ln r)3/[(ln r0)
2r2]

+1.1 × 10−19η(ln r)/[(ln r0)r
2] + 1.6 × 10−18η2(ln r)2/[(ln r0)r

2]

+0.002η(ln r0)/r
2 + 0.0004η2(ln r0)/r

2 + 0.003η2(ln r)(ln r0)/r
2

−0.002η2(ln r0)
2/r2 − 6.8 × 10−21η/r + 0.0001η2(ln r)/r

+0.0005η2(ln r)2/r − 5.4 × 10−20η(ln r)2/[(ln r0)
2r]

−2.5 × 10−18η2(ln r)3/[(ln r0)
2r] − 2.7 × 10−20η(ln r)/[(ln r0)r]

−4.1 × 10−19η2(ln r)2/[(ln r0)r] − 0.0001η2(ln r0)/r

−0.001η2(ln r)(ln r0)/r + 0.0005η2(ln r0)
2/r. (F6)

By setting r = r0 in Eqs. (F5) and (F6), we get the stress-energy com-

ponents of a quantized proton field at the throat of the wormhole (in units

of Fp/l
2
p):

< T tt >0 = 1.0 × 1035/r80 − 3.8 × 1035/r60 − 9.0 × 1033η/r60

+6.8 × 1023η2/r60 − 4.2 × 1023η/[(ln r0)
2r60]

+1.2 × 1024η2/[(ln r0)
2r60] + 2.4 × 1022/[(ln r0)r

6
0]

−4.7 × 1021η/[(ln r0)r
6
0] + 6.4 × 1024η2/[(ln r0)r

6
0]

−3.0 × 1023η2(ln r0)/r
6
0 − 0.007/r40 − 0.004η/r40 − 0.002η2/r40

−2.3 × 10−17/[(ln r0)
2r40] − 4.1 × 10−16η/[(ln r0)

2r40]

−1.4 × 10−17/[(ln r0)r
4
0] − 1.5 × 10−17η/[(ln r0)r

4
0]

+4.8 × 10−15η2/[(ln r0)r
4
0] + 2.0 × 10−16η2(ln r0)/r

4
0
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−3.3 × 10−41/r20 + 3.1 × 10−42η/r20

+5.7 × 10−57η2(ln r0)/r
2
0, (F7)

< T rr >0 = −1.0 × 1035/r80 + 2.0 × 1035/r60 − 6.5 × 1022η/r60

−6.7 × 1034η2/r60 + 7.6 × 1022/[(ln r0)
2r60]

+4.7 × 1021/[η(ln r0)
2r60] − 2.2 × 1024η/[(ln r0)

2r60]

+1.1 × 1025η2/[(ln r02r60] + 1.9 × 1022/[(ln r0)r
6
0]

−6.6 × 1022η/[(ln r0)r
6
0] + 2.4 × 1025η2/[(ln r0)r

6
0]

+5.1 × 1023η2(ln r0)/r
6
0 − 0.008/r40 + 0.009η/r40 − 0.02η2/r40

−2.8 × 10−17/[(ln r0)
2r40] + 9.7 × 10−17η/[(ln r0)

2r40]

−1.4 × 10−17/[(ln r0)r
4
0] − 1.2 × 10−15η2/[(ln r0)r

4
0]

+1.7 × 10−15η2(ln r0)/r
4
0 + 0.0008η/r30

−8.78204 × 10−18η2(ln r0)/r
3
0 + 3.3 × 10−19η/r20

+1.2 × 10−17η2(ln r0)/r
2
0 − 8.8 × 10−20η/r0

−2.9 × 10−18η2(ln r0)/r0. (F8)

F.2 Thermal states

F.2.1 Quantized neutrino field

I have computed the stress-energy tensor components in the entire space-

time for the wormhole with finite radial cutoff of stress-energy tensor in
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thermal states. Each component is lengthy and complicated. So I list only

< T tt > and < T rr > (in units of Fp/l
2
p), but omit < T θθ > because it is

irrelevant to the calculations in this thesis.

< T tt > = 3.2 × 1054/r8 − 1.6 × 1054/r8 + 1.6 × 1054η(ln r)/r8

−8.1 × 1053η2(ln r)2/r8 − 1.6 × 1054η(ln r0)/r
8

+1.6 × 1054η2(ln r)(ln r0)/r
8 − 8.1 × 1053η2(ln r0)

2/r8

−2.2 × 1054/r6 − 3.6 × 1054/r6 − 1.4 × 1053η/r6

−1.1 × 1042η2/r6 − 5.1 × 1053η(ln r)/r6 + 1.4 × 1053η2(ln r)/r6

+2.6 × 1053η2(ln r)2/r6 − 3.0 × 1041/[(ln r0)
2r6]

−8.7 × 1040/[η(ln r0)
2r6] − 6.5 × 1042η/[(ln r0)

2r6]

+1.7 × 1043η2/[(ln r0)
2r6] − 2.2 × 1041(ln r)/[(ln r0)

2r6]

−1.1 × 1042η(ln r)/[(ln r0)
2r6] + 9.1 × 1043η2(ln r)/[(ln r0)

2r6]

+7.8 × 1041η(ln r)2/[(ln r0)
2r6] + 8.9 × 1042η2(ln r)2/[(ln r0)

2r6]

+4.2 × 1042η2(ln r)3/[(ln r0)
2r6] − 1.3 × 1041/[(ln r0)r

6]

−5.9 × 1041η/[(ln r0)r
6] + 1.0 × 1043η2/[(ln r0)r

6]

+2.2 × 1040η(ln r)/[(ln r0)r
6] + 1.4 × 1042η2(ln r)/[(ln r0)r

6]

−1.9 × 1042η2(ln r)2/[(ln r0)r
6] + 5.1 × 1053η(ln r0)/r

6

−1.4 × 1053η2(ln r0)/r
6 − 5.1 × 1053η2(ln r)(ln r0)/r

6

+2.6 × 1053η2(ln r0)
2/r6 + 0.2/r4 − 0.2/r4 − 0.06η/r4

+0.005η2/r4 + 0.1η(ln r)/r4 + 0.1η2(ln r)/r4 + 0.04η2(ln r)2/r4
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−3.1 × 10−16/[(ln r0)
2r4] − 5.6 × 10−17/[(η(ln r0)

2r4]

−5.0 × 10−15η/[(ln r0)
2r4] − 3.5 × 10−17(ln r)/[(ln r0)

2r4]

−1.4 × 10−15η(ln r)/[(ln r0)
2r4]

+8.1 × 10−14η2(ln r)/[(ln r0)
2r4]

−5.9 × 10−17η(ln r)2/[(ln r0)
2r4]

+1.1 × 10−14η2(ln r)2/[(ln r0)
2r4]

−8.0 × 10−16η2(ln r)3/[(ln r0)
2r4] − 4.9 × 10−17/[(ln r0)r

4]

−5.0 × 10−16η/[(ln r0)r
4] + 1.1 × 10−14η2/[(ln r0)r

4]

−1.7 × 10−18η(ln r)/[(ln r0)r
4] + 2.5 × 10−15η2(ln r)/[(ln r0)r

4]

−3.3 × 10−17η2(ln r)2/[(ln r0)r
4] − 0.1η(ln r0)/r

4

−0.1η2(ln r0)/r
4 − 0.07η2(ln r)(ln r0)/r

4 + 0.04η2(ln r0)
2/r4

−0.0004(lnT )/r4 − 0.0008η(lnT )/r4 + 0.0001η2(lnT )/r4

+0.002η(ln r)(lnT )/r4 + 0.002η2(ln r)(lnT )/r4

−0.002η2(ln r)2(lnT )/r4 − 1.1 × 10−16η(lnT )/[(ln r0)
2r4]

−5.6 × 10−18η(ln r)(lnT )/[(ln r0)
2r4]

+1.3 × 10−15η2(ln r)(lnT )/[(ln r0)
2r4]

−2.3 × 10−19η(ln r)2(lnT )/[(ln r0)
2r4]

+1.5 × 10−16η2(ln r)2(lnT )/[(ln r0)
2r4]

−2.0 × 10−17η2(ln r)3(lnT )/[(ln r0)
2r4]

−1.5 × 10−18η(lnT )/[(ln r0)r
4] + 1.4 × 10−16η2(lnT )/[(ln r0)r

4]
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−1.2 × 10−19η(ln r)(lnT )/[(ln r0)r
4]

+2.5 × 10−17η2(ln r)(lnT )/[(ln r0)r
4]

−2.0 × 10−18η2(ln r)2(lnT )/[(ln r0)r
4] − 0.002η(ln r0)(lnT )/r4

−0.002η2(ln r0)(lnT )/r4 + 0.004η2(ln r)(ln r0)(lnT )/r4

−0.002η2(ln r0)
2(lnT )/r4 + 6.6 × 10−60/r2 − 8.7 × 10−60/r2

+2.0 × 10−61η/r2 + 8.7 × 10−60η(ln r)/r2

−2.0 × 10−61η2(ln r)/r2 − 4.4 × 10−60η2(ln r)2/r2

−6.9 × 10−77η(ln r)2/[(ln r0)
2r2]

+8.2 × 10−76η2(ln r)3/[(ln r0)
2r2]

−3.5 × 10−77η(ln r)/[(ln r0)r
2]

+2.6 × 10−76η2(ln r)2/[(ln r0)r
2] − 8.7 × 10−60η(ln r0)/r

2

+2.0 × 10−61η2(ln r0)/r
2 + 8.7 × 10−60η2(ln r)(ln r0)/r

2

−4.4 × 10−60η2(ln r0)
2/r2 + 3.2 × 10−59T 2 + 0.01T 2/r2

−0.01ηT 2/r2 − 0.01η(ln r)T 2/r2 + 0.01η2(ln r)T 2/r2

+0.007η2(ln r)2T 2/r2 + 3.1 × 10−18η(ln r)2T 2/[(ln r0)
2r2]

+1.1 × 10−17η2(ln r)3T 2/[(ln r0)
2r2]

+1.5 × 10−18η(ln r)T 2/[(ln r0)r
2]

+6.6 × 10−18η2(ln r)2T 2/[(ln r0)r
2] + 0.01η(ln r0)T

2/r2

−0.01η2(ln r0)T
2/r2 − 0.01η2(ln r)(ln r0)T

2/r2

+0.007η2(ln r0)
2T 2/r2 − 1.2T 4, (F9)
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< T rr > = −0.00003η2(ln r)2 + 0.00007η2(ln r)(ln r0) − 0.00003η2(ln r0)
2

−3.2 × 1054/r8 + 1.6 × 1054/r8 − 1.6 × 1054η(ln r)/r8

+8.1 × 1053η2(ln r)2/r8 + 1.6 × 1054η(ln r0)/r
8

−1.6 × 1054η2(ln r)(ln r0)/r
8 + 8.1 × 1053η2(ln r0)

2/r8

−2.9 × 1056/r6 + 2.9 × 1056/r6 + 6.5 × 1040η/r6

−1.0 × 1054η2/r6 + 1.1 × 1054η(ln r)/r6 + 1.3 × 1055η2(ln r)/r6

−3.1 × 1055η2(ln r)2/r6 − 7.0 × 1041/[(ln r0)
2r6)

−2.2 × 1043η/[(ln r0)
2r6] + 1.7 × 1044η2/[(ln r0)

2r6]

−4.4 × 1040(ln r)/[(ln r0)
2r6] − 3.1 × 1042η(ln r)/[(ln r0)

2r6]

+3.6 × 1044η2(ln r)/[(ln r0)
2r6]

−4.4 × 1040η(ln r)2/[(ln r0)
2r6]

+7.4 × 1043η2(ln r)2/[(ln r0)
2r6]

−4.0 × 1042η2(ln r)3/[(ln r0)
2r6] − 4.4 × 1040/[(ln r0)r

6]

−1.0 × 1042η/[(ln r0)r
6] + 4.3 × 1043η2/[(ln r0)r

6]

+1.4 × 1043η2(ln r)/[(ln r0)r
6] + 1.4 × 1042η2(ln r)2/[(ln r0)r

6]

−1.1 × 1054η(ln r0)/r
6 − 1.3 × 1055η2(ln r0)/r

6

+6.1 × 1055η2(ln r)(ln r0)/r
6 − 3.1 × 1055η2(ln r0)

2/r6

+0.02/r4 − 0.05/r4 + 0.2η/r4 − 0.3η2/r4 + 0.1η(ln r)/r4

−0.4η2(ln r)/r4 − 0.2η2(ln r)2/r4 − 8.9 × 10−16/[(ln r0)
2r4]

+9.7 × 10−17η/[(ln r0)
2r4] − 3.6 × 10−16(ln r)/[(ln r0)

2r4]
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+7.2 × 10−16η(ln r)/[(ln r0)
2r4]

−1.1 × 10−15η2(ln r)/[(ln r0)
2r4]

+5.6 × 10−17η(ln r)2/[(ln r0)
2r4]

−9.0 × 10−15η2(ln r)2/[(ln r0)
2r4]

+1.5 × 10−15η2(ln r)3/[(ln r0)
2r4] − 3.9 × 10−16/[(ln r0)r

4]

+2.2 × 10−16η/[(ln r0)r
4] − 1.2 × 10−16η2/[(ln r0)r

4]

+2.8 × 10−17η(ln r)/[(ln r0)r
4] − 2.5 × 10−15η2(ln r)/[(ln r0)r

4]

−1.0 × 10−15η2(ln r)2/[(ln r0)r
4] − 0.1η(ln r0)/r

4

+0.4η2(ln r0)/r
4 + 0.3η2(ln r)(ln r0)/r

4 − 0.2η2(ln r0)
2/r4

−0.0004(lnT )/r4 + 0.003η(lnT )/r4 − 0.004η2(lnT )/r4

+0.002η(ln r)(lnT )/r4 − 0.005η2(ln r)(lnT )/r4

−0.002η2(ln r)2(lnT )/r4 + 8.7 × 10−18η(ln r)(lnT )/[(ln r0)
2r4]

+4.2 × 10−19η(ln r)2(lnT )/[(ln r0)
2r4]

−2.3 × 10−16η2(ln r)2(lnT )/[(ln r0)
2r4

+4.5 × 10−17η2(ln r)3(lnT )/[(ln r0)
2r4]

+2.6 × 10−18η(lnT )/[(ln r0)r
4]

+2.1 × 10−19η(ln r)(lnT )/[(ln r0)r
4]

−4.3 × 10−17η2(ln r)(lnT )/[(ln r0)r
4]

+4.5 × 10−18η2(ln r)2(lnT )/[(ln r0)r
4] − 0.002η(ln r0)(lnT )/r4

+0.005η2(ln r0)(lnT )/r4 + 0.004η2(ln r)(ln r0)(lnT )/r4
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−0.002η2(ln r0)
2(lnT )/r4 + 0.02/r3 − 0.02/r3 + 0.0008η/r3

+0.01η(ln r)/r3 − 0.0004η2(ln r)/r3 − 0.002η2(ln r)2/r3

−4.3 × 10−19η(ln r)2/[(ln r0)
2r3]

−7.5 × 10−18η2(ln r)3/[(ln r0)
2r3]

−2.2 × 10−19η(ln r)/[(ln r0)r
3] − 1.2 × 10−18η2(ln r)2/[(ln r0)r

3]

−0.01η(ln r0)/r
3 + 0.0004η2(ln r0)/r

3 + 0.004η2(ln r)(ln r0)/r
3

−0.002η2(ln r0)
2/r3 − 0.004/r2 + 0.004/r2 − 0.002η(ln r)/r2

−0.0004η2(ln r)/r2 − 0.002η2(ln r)2/r2

+2.2 × 10−19η(ln r)2/[(ln r0)
2r2]

+1.0 × 10−17η2(ln r)3/[(ln r0)
2r2]

+1.1 × 10−19η(ln r)/[(ln r0)r
2] + 1.6 × 10−18η2(ln r)2/[(ln r0)r

2]

+0.002η(ln r0)/r
2 + 0.0004η2(ln r0)/r

2 + 0.003η2(ln r)(ln r0)/r
2

−0.002η2(ln r0)
2/r2 − 6.8 × 10−21η/r + 0.0001η2(ln r)/r

+0.0005η2(ln r)2/r − 5.4 × 10−20η(ln r)2/[(ln r0)
2r]

−2.5 × 10−18η2(ln r)3/[(ln r0)
2r] − 2.7 × 10−20η(ln r)/[(ln r0)r]

−4.1 × 10−19η2(ln r)2/[(ln r0)r] − 0.0001η2(ln r0)/r

−0.001η2(ln r)(ln r0)/r + 0.0005η2(ln r0)
2/r − 3.2 × 10−59T 2

−0.01T 2/r2 + 0.01η(ln r)T 2/r2 − 0.007η2(ln r)2T 2/r2

−0.01η(ln r0)T
2/r2 + 0.01η2(ln r)(ln r0)T

2/r2

−0.007η2(ln r0)
2T 2/r2 + 0.4T 4. (F10)
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Setting r = r0 in Eqs. (F9) and (F10), we obtain the expressions of the

stress-energy tensor components of a quantized neutrino field at the throat

of the wormhole (in units of Fp/l
2
p):

< T tt >0 = 3.2 × 1054/r80 − 1.6 × 1054/r80 − 2.2 × 1054/r60 − 3.6 × 1054/r60

−1.4 × 1053η/r60 + 9.2 × 1042η2/r60 − 3.0 × 1041/[(ln r0)
2r60]

−8.7 × 1040/[η(ln r0)
2r60] − 6.5 × 1042η/[(ln r0)

2r60]

+1.7 × 1043η2/[(ln r0)
2r60] − 3.5 × 1041/[(ln r0)r

6
0]

−1.7 × 1042η/[(ln r0)r
6
0] + 1.0 × 1044η2/[(ln r0)r

6
0]

+1.2 × 1042η2(ln r0)/r
6
0 − 0.06η/r40 + 0.005η2/r40

−3.1 × 10−16/[(ln r0)
2r40] − 5.6 × 10−17/[η(ln r0)

2r40]

−5.0 × 10−15η/[(ln r0)
2r40] − 8.3 × 10−17/[(ln r0)r

4
0]

−1.9 × 10−15η/[(ln r0)r
4
0] + 9.2 × 10−14η2/[(ln r0)r

4
0]

−7.5 × 10−16η2(ln r0)/r
4
0 − 0.0004(lnT )/r40 − 0.0008η(lnT )/r40

+0.0001η2(lnT )/r40 − 1.1 × 10−16η(lnT )/[(ln r0)
2r40]

−7.2 × 10−18η(lnT )/[(ln r0)r
4
0] + 1.4 × 10−15η2(lnT )/[(ln r0)r

4
0]

−1.9 × 10−17η2(ln r0)(lnT )/r40 + 6.6 × 10−60/r20

−8.7 × 10−60/r20 + 2.0 × 10−61η/r20 + 1.0 × 10−75η2(ln r0)/r
2
0

+3.2 × 10−59T 2 + 0.01T 2/r20 − 0.01ηT 2/r20

+1.2 × 10−17η2(ln r0)T
2/r20 − 1.2T 4, (F11)
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< T rr >0 = −3.2 × 1054/r80 + 1.6 × 1054/r80 + 2.2 × 1040η/r60

−1.0 × 1054η2/r60 − 7.0 × 1041/[(ln r0)
2r60]

−2.2 × 1043η/[(ln r0)
2r60] + 1.7 × 1044η2/[(ln r0)

2r60]

−8.7 × 1040/[(ln r0)r
6
0] − 4.2 × 1042η/[(ln r0)r

6
0]

+4.1 × 1044η2/[(ln r0)r
6
0] − 1.8 × 1042η2(ln r0)/r

6
0 + 0.02/r40

−0.05/r40 + 0.2η/r40 − 0.3η2/r40 − 8.9 × 10−16/[(ln r0)
2r40]

+9.7 × 10−17η/[(ln r0)
2r40] − 7.5 × 10−16/[(ln r0)r

4
0]

+9.4 × 10−16η/[(ln r0)r
4
0] − 1.2 × 10−15η2/[(ln r0)r

4
0]

+2.2 × 10−16η2(ln r0)/r
4
0 − 0.0004(lnT )/r40 + 0.003η(lnT )/r40

−0.004η2(lnT )/r40 + 1.1 × 10−17η(lnT )/[(ln r0)r
4
0]

+4.4 × 10−17η2(ln r0)(lnT )/r40 + 0.0008η/r30

−8.8 × 10−18η2(ln r0)/r
3
0 + 3.3 × 10−19η/r20

+1.2 × 10−17η2(ln r0)/r
2
0 − 8.8 × 10−20η/r0

−2.9 × 10−18η2(ln r0)/r0 − 3.2 × 10−59T 2 − 0.01T 2/r20

+0.4T 4 (F12)

F.2.2 Quantized proton field

The stress-energy tensor components of a quantized proton field in the

entire spacetime for the wormhole with finite radial cutoff of stress-energy

tensor in thermal states are computed to be (in units of Fp/l
2
p):
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< T tt > = 2.1 × 1035/r8 − 1.1 × 1035/r8 + 1.1 × 1035η(ln r)/r8

−5.3 × 1034η2(ln r)2/r8 − 1.1 × 1035η(ln r0)/r
8

+1.1 × 1035η2(ln r)(ln r0)/r
8 − 5.3 × 1034η2(ln r0)

2/r8

−1.4 × 1035/r6 − 2.4 × 1035/r6 − 9.0 × 1033η/r6

−2.1 × 1022η2/r6 − 3.4 × 1034η(ln r)/r6 + 9.0 × 1033η2(ln r)/r6

+1.7 × 1034η2(ln r)2/r6 − 2.4 × 1022/[(ln r0)
2r6]

−4.2 × 1023η/[(ln r0)
2r6] + 1.2 × 1024η2/[(ln r0)

2r6]

+1.4 × 1022(ln r)/[(ln r0)
2r6] − 2.1 × 1022η(ln r)/[(ln r0)

2r6]

+5.8 × 1024η2(ln r)/[(ln r0)
2r6] + 2.4 × 1021η(ln r)2/[(ln r0)

2r6]

+3.4 × 1023η2(ln r)2/[(ln r0)
2r6]

−1.9 × 1023η2(ln r)3)/[(ln r0)
2r6] + 9.4 × 1021/[(ln r0)r

6]

−2.1 × 1022η/[(ln r0)r
6] + 6.0 × 1023η2/[(ln r0)r

6]

+1.2 × 1021η(ln r)/[(ln r0)r
6] + 1.4 × 1023η2(ln r)/[(ln r0)r

6]

−7.0 × 1022η2(ln r)2/[(ln r0)r
6] + 3.4 × 1034η(ln r0)/r

6

−9.0 × 1033η2(ln r0)/r
6 − 3.4 × 1034η2(ln r)(ln r0)/r

6

+1.7 × 1034η2(ln r0)
2/r6 − 0.04η/r4 + 0.003η2/r4

+0.08η(ln r)/r4 + 0.06η2(ln r)/r4 + 0.08η2(ln r)2/r4

+1.2 × 10−16/[(ln r0)
2r4] − 5.3 × 10−15η/[(ln r0)

2r4]

−2.1 × 10−17(ln r)/[(ln r0)
2r4] − 1.7 × 10−16η(ln r)/[(ln r0)

2r4]
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+6.1 × 10−14η2(ln r)/[(ln r0)
2r4]

+1.7 × 10−18η(ln r)2/[(ln r0)
2r4]

+6.6 × 10−15η2(ln r)2/[(ln r0)
2r4]

+4.8 × 10−17η2(ln r)3/[(ln r0)
2r4] − 1.4 × 10−17/[(ln r0)r

4]

−2.4 × 10−16η/[(ln r0)r
4] + 7.5 × 10−15η2/[(ln r0)r

4]

+8.7 × 10−19η(ln r)/[(ln r0)r
4] + 1.3 × 10−15η2(ln r)/[(ln r0)r

4]

−3.4 × 10−17η2(ln r)2/[(ln r0)r
4] − 0.08η(ln r0)/r

4

−0.06η2(ln r0)/r
4 − 0.2η2(ln r)(ln r0)/r

4 + 0.08η2(ln r0)
2/r4

−0.0004(lnT )/r4 − 0.0008η(lnT )/r4 + 0.0001η2(lnT )/r4

+0.002η(ln r)(lnT )/r4 + 0.002η2(ln r)(lnT )/r4

−0.002η2(ln r)2(lnT )/r4 − 1.1 × 10−16η(lnT )/[(ln r0)
2r4]

−5.6 × 10−18η(ln r)(lnT )/[(ln r0)
2r4]

+1.3 × 10−15η2(ln r)(lnT )/[(ln r0)
2r4)

−2.3 × 10−19η(ln r)2(lnT )/[(ln r0)
2r4]

+1.5 × 10−16η2(ln r)2(lnT )/[(ln r0)
2r4]

−2.0 × 10−17η2(ln r)3(lnT )/[(ln r0)
2r4]

−1.5 × 10−18η(lnT )/[(ln r0)r
4] + 1.4 × 10−16η2(lnT )/[(ln r0)r

4]

−1.2 × 10−19η(ln r)(lnT )/[(ln r0)r
4]

+2.5 × 10−17η2(ln r)(lnT )/[(ln r0)r
4]

−2.0 × 10−18η2(ln r)2(lnT )/[(ln r0)r
4] − 0.002η(ln r0)(lnT )/r4
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−0.002η2(ln r0)(lnT )/r4 + 0.004η2(ln r)(ln r0)(lnT )/r4

−0.002η2(ln r0)
2(lnT )/r4 + 1.0 × 10−40/r2 − 1.3 × 10−40/r2

+3.1 × 10−42η/r2 + 1.3 × 10−40η(ln r)/r2

−3.1 × 10−42η2(ln r)/r2 − 6.7 × 10−41η2(ln r)2/r2

−6.4 × 10−58η(ln r)2/[(ln r0)
2r2]

+3.2 × 10−57η2(ln r)3/[(ln r0)
2r2]

−3.2 × 10−58η(ln r)/[(ln r0)r
2] + 1.9 × 10−57η2(ln r)2/[(ln r0)r

2]

−1.3 × 10−40η(ln r0)/r
2 + 3.1 × 10−42η2(ln r0)/r

2

+1.3 × 10−40η2(ln r)(ln r0)/r
2 − 6.7 × 10−41η2(ln r0)

2/r2

+4.9 × 10−40T 2 + 0.01T 2/r2 − 0.01ηT 2/r2 − 0.01η(ln r)T 2/r2

+0.01η2(ln r)T 2/r2 + 0.007η2(ln r)2T 2/r2

+3.1 × 10−18η(ln r)2T 2/[(ln r0)
2r2]

+1.1 × 10−17η2(ln r)3T 2/[(ln r0)
2r2]

+1.5 × 10−18η(ln r)T 2/[(ln r0)r
2]

+6.6 × 10−18η2(ln r)2T 2/[(ln r0)r
2] + 0.01η(ln r0)T

2/r2

−0.01η2(ln r0)T
2/r2 − 0.01η2(ln r)(ln r0)T

2/r2

+0.007η2(ln r0)
2T 2/r2 − 1.2T 4, (F13)

< T rr > = −0.00003η2(ln r)2 + 0.00007η2(ln r)(ln r0) − 0.00003η2(ln r0)
2

−2.1 × 1035/r8 + 1.1 × 1035/r8 − 1.1 × 1035η(ln r)/r8
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+5.3 × 1034η2(ln r)2/r8 + 1.1 × 1035η(ln r0)/r
8

−1.1 × 1035η2(ln r)(ln r0)/r
8 + 5.3 × 1034η2(ln r0)

2/r8

−1.9 × 1037/r6 + 1.9 × 1037/r6 − 6.7 × 1034η2/r6

+6.9 × 1034η(ln r)/r6 + 8.2 × 1035η2(ln r)/r6

−2.0 × 1036η2(ln r)2/r6 + 7.6 × 1022/[(ln r0)
2r6]

−1.8 × 1024η/[(ln r0)
2r6] + 1.1 × 1025η2/[(ln r0)

2r6]

−9.4 × 1022η(ln r)/[(ln r0)
2r6] + 2.3 × 1025η2(ln r)/[(ln r0)

2r6]

−2.4 × 1021η(ln r)2/[(ln r0)
2r6]

+5.2 × 1024η2(ln r)2/[(ln r0)
2r6]

+5.0 × 1023η2(ln r)3/[(ln r0)
2r6] + 3.8 × 1022η/[(ln r0)r

6]

+2.6 × 1024η2/[(ln r0)r
6] − 1.2 × 1021η(ln r)/[(ln r0)r

6]

+1.2 × 1024η2(ln r)/[(ln r0)r
6] + 2.1 × 1023η2(ln r)2/[(ln r0)r

6]

−6.9 × 1034η(ln r0)/r
6 − 8.2 × 1035η2(ln r0)/r

6

+4.0 × 1036η2(ln r)(ln r0)/r
6 − 2.0 × 1036η2(ln r0)

2/r6

+0.02/r4 − 0.003(lnT )/[(ln r0)r
4] − 0.04/r4 + 0.1η/r4

−0.2η2/r4 + 0.1η(ln r)/r4 − 0.3η2(ln r)/r4 − 0.1η2(ln r)2/r4

−2.2 × 10−16/[(ln r0)
2r4] + 9.7 × 10−17η/[(ln r0)

2r4]

+1.1 × 10−16(ln r)/[(ln r0)
2r4] − 1.1 × 10−16η(ln r)/[(ln r0)

2r4]

−1.1 × 10−15η2(ln r)/[(ln r0)
2r4]

+3.1 × 10−16η(ln r)2/[(ln r0)
2r4]
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−6.0 × 10−15η2(ln r)2/[(ln r0)
2r4]

+6.3 × 10−15η2(ln r)3/[(ln r0)
2r4] − 3.3 × 10−16η/[(ln r0)r

4]

−1.2 × 10−16η2/[(ln r0)r
4] + 2.8 × 10−17η(ln r)/[(ln r0)r

4]

−2.1 × 10−15η2(ln r)/[(ln r0)r
4]

+7.0 × 10−16η2(ln r)2/[(ln r0)r
4] − 0.1η(ln r0)/r

4

+0.3η2(ln r0)/r
4 + 0.2η2(ln r)(ln r0)/r

4 − 0.1η2(ln r0)
2/r4

−0.0004(lnT )/r4 + 0.003η(lnT )/r4 − 0.004η2(lnT )/r4

+0.002η(ln r)(lnT )/r4 − 0.005η2(ln r)(lnT )/r4

−0.002η2(ln r)2(lnT )/r4 + 8.7 × 10−18η(ln r)(lnT )/[(ln r0)
2r4]

+4.2 × 10−19η(ln r)2(lnT )/[(ln r0)
2r4]

−2.3 × 10−16η2(ln r)2(lnT )/[(ln r0)
2r4]

+4.5 × 10−17η2(ln r)3(lnT )/[(ln r0)
2r4] + 0.003(lnT )/[(ln r0)r

4]

+2.6 × 10−18η(lnT )/[(ln r0)r
4]

+2.1 × 10−19η(ln r)(lnT )/[(ln r0)r
4]

−4.3 × 10−17η2(ln r)(lnT )/[(ln r0)r
4]

+4.5 × 10−18η2(ln r)2(lnT )/[(ln r0)r
4] − 0.002η(ln r0)(lnT )/r4

+0.005η2(ln r0)(lnT )/r4 + 0.004η2(ln r)(ln r0)(lnT )/r4

−0.002η2(ln r0)
2(lnT )/r4 + 0.0008η/r3 + 0.01η(ln r)/r3

−0.0004η2(ln r)/r3 − 0.002η2(ln r)2/r3

−4.3 × 10−19η(ln r)2/[(ln r0)
2r3]
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−7.5 × 10−18η2(ln r)3/[(ln r0)
2r3]

−2.2 × 10−19η(ln r)/[(ln r0)r
3] − 1.2 × 10−18η2(ln r)2/[(ln r0)r

3]

−0.01η(ln r0)/r
3 + 0.0004η2(ln r0)/r

3 + 0.004η2(ln r)(ln r0)/r
3

−0.002η2(ln r0)
2/r3 − 0.002η(ln r)/r2

−0.0004η2(ln r)/r2 − 0.002η2(ln r)2/r2

+2.2 × 10−19η(ln r)2/[(ln r0)
2r2]

+1.0 × 10−17η2(ln r)3)/[(ln r0)
2r2]

+1.1 × 10−19η(ln r)/[(ln r0)r
2] + 1.6 × 10−18η2(ln r)2/[(ln r0)r

2]

+0.002η(ln r0)/r
2 + 0.0004η2(ln r0)/r

2 + 0.003η2(ln r)(ln r0)/r
2

−0.002η2(ln r0)
2/r2 − 6.8 × 10−21η/r + 0.0001η2(ln r)/r

+0.0005η2(ln r)2/r − 5.4 × 10−20η(ln r)2/[(ln r0)
2r]

−2.5 × 10−18η2(ln r)3/[(ln r0)
2r] − 2.7 × 10−20η(ln r)/[(ln r0)r]

−4.1 × 10−19η2(ln r)2/[(ln r0)r] − 0.0001η2(ln r0)/r

−0.001η2(ln r)(ln r0)/r + 0.0005η2(ln r0)
2/r − 4.9 × 10−40T 2

−0.01T 2/r2 + 0.01η(ln r)T 2/r2 − 0.007η2(ln r)2T 2/r2

−0.01η(ln r0)T
2/r2 + 0.01η2(ln r)(ln r0)T

2/r2

−0.007η2(ln r0)
2T 2/r2 + 0.4T 4. (F14)

Setting r = r0 in Eqs. (F13) and (F14), we obtain the stress-energy

tensor components of a quantized proton field at the throat of the wormhole

(in units of Fp/l
2
p):
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< T tt >0 = 1.0 × 1035/r80 − 3.8 × 1035/r60 − 9.0 × 1033η/r60

+4.6 × 1023η2/r60 − 2.4 × 1022/[(ln r0)
2r60]

−4.2 × 1023η/[(ln r0)
2r60] + 1.2 × 1024η2/[(ln r0)

2r60]

+2.4 × 1022/[(ln r0)r
6
0] − 4.3 × 1022η/[(ln r0)r

6
0]

+6.4 × 1024η2/[(ln r0)r
6
0] − 3.0 × 1023η2(ln r0)/r

6
0 − 0.04η/r40

+0.003η2/r40 + 1.2 × 10−16/[(ln r0)
2r40]

−5.3 × 10−15η/[(ln r0)
2r40] − 3.5 × 10−17/[(ln r0)r

4
0]

−4.0 × 10−16η/[(ln r0)r
4
0] + 6.9 × 10−14η2/[(ln r0)r

4
0]

+4.2 × 10−17η2(ln r0)/r
4
0 − 0.0004(lnT )/r40 − 0.0008η(lnT )/r40

+0.0001η2(lnT )/r40 − 1.1 × 10−16η(lnT )/[(ln r0)
2r40]

−7.2 × 10−18η(lnT )/[(ln r0)r
4
0]

+1.4 × 10−15η2(lnT )/[(ln r0)r
4
0] − 1.9 × 10−17η2(ln r0)(lnT )/r40

+1.0 × 10−40/r20 − 1.3 × 10−40/r20 + 3.1 × 10−42η/r20

+5.7 × 10−57η2(ln r0)/r
2
0 + 4.9 × 10−40T 2 + 0.01T 2/r20

−0.01ηT 2/r20 + 1.2 × 10−17η2(ln r0)T
2/r20 − 1.2T 4, (F15)

< T rr >0 = −1.0 × 1035/r80 − 3.5 × 1021η/r60 − 6.7 × 1034η2/r60

+7.6 × 1022/[(ln r0)
2r60] − 1.8 × 1024η/[(ln r0)

2r60]
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+1.1 × 1025η2/[(ln r0)
2r60] − 5.7 × 1022η/[(ln r0)r

6
0]

+2.5 × 1025η2/[(ln r0)r
6
0] + 7.6 × 1023η2(ln r0)/r

6
0 + 0.02/r40

−0.003(lnT )/[(ln r0)r
4
0] − 0.04/r40 + 0.1η/r40 − 0.2η2/r40

−2.2 × 10−16/[(ln r0)
2r40] + 9.7 × 10−17η/[(ln r0)

2r40]

+1.1 × 10−16/[(ln r0)r
4
0] − 4.4 × 10−16η/[(ln r0)r

4
0]

−1.2 × 10−15η2/[(ln r0)r
4
0] + 7.0 × 10−15η2(ln r0)/r

4
0

−0.0004(lnT )/r40 + 0.003η(lnT )/r40 − 0.004η2(lnT )/r40

+0.003(lnT )/[(ln r0)r
4
0] + 1.1 × 10−17η(lnT )/[(ln r0)r

4
0

+4.4 × 10−17η2(ln r0)(lnT )/r40 + 0.0008η/r30

−8.8 × 10−18η2(ln r0)/r
3
0 − 0.008/r20 + 3.3 × 10−19η/r20

+1.2 × 10−17η2(ln r0)/r
2
0 − 8.8 × 10−20η/r0

−2.9 × 10−18η2(ln r0)/r0 − 4.9 × 10−40T 2 − 0.01T 2/r20

+0.4T 4. (F16)
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