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ABSTRACT 

Internal fixation implants are widely used by orthopaedic surgeons to stabilize 

various types of fractures in injured patients.  However, the irregular geometry of the 

human skeletal system, as well as the significant variation in the size and shape of bones 

among the population, pose great challenges in efficiently and effectively designing such 

devices.  As a result, the need for improvement in regard to performance and fit is 

evident in many current internal fixation implants, particularly for high load-bearing 

regions such as the femur.  For this reason, a comprehensive methodology was 

developed to design and optimize implants with maximal structural integrity and 

contour fitting among the population, while minimizing its influence on human 

biomechanics.  The systematic methodology uniquely employs both new and existing 

techniques in medical imaging analysis, non-linear finite element methods, and 

optimization to obtain optimal designs prior to experimental testing.  Its efficacy was 

demonstrated using two case studies involving the design of internal fixation implants 

used to stabilize various femoral shaft fractures: intramedullary nailing and locking plate 

systems.  Comparison of finite element results – from simulated physiological loading 

conditions and loads induced by “virtual surgery” – among the optimized implants and 

those currently used in the operating room showed much improvement in regard to 

reliability, fit, and alteration of natural biomechanics.  Subsequent experimental testing 

verified that the results predicted by the developed simulation-based methodology 
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represented actual physiological scenarios within acceptable percent error and were 

valid for design purposes. 
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CHAPTER I.  INTRODUCTION 

Conventional Design Process for Orthopaedic Internal Fixation Implants 

 Internal fracture fixation implants are commonly used to treat trauma injuries by 

providing fracture stability during recovery.  In addition to satisfying biocompatibility 

requirements established by the U.S Food and Drug Administration (FDA), fixation 

implants must have sufficient mechanical integrity to withstand physiological loading 

conditions present at the fracture site.  Post-operative static, dynamic, and cyclic forces 

typically present at the site all contribute in generating stress in the implant.  

Additionally, insertion techniques can induce high stresses in the implant as well as in 

surrounding bone tissue.  These post-operative and insertion-induced stresses can 

potentially lead to fracture instability due to mechanical failure of the implant and/or 

bone.   

Conventionally, the process of orthopaedic implant design is based on computer 

aided design (CAD), prototyping, and experimental testing in order to assess implant 

performance and biomechanical behavior of the treated skeletal region.  This approach 

is iterative in nature and requires numerous iterations – or “redesigns” – to converge to 

a final optimum solution.  In most cases, an “acceptable” solution is chosen before an 

optimum is reached – as is generally true for product development in any industry. 

Many current implant designs and orthopaedic techniques are “standard” 

because they have been used in the past with some success, although they may not be 

optimum.  The rigorous path one must take to attain FDA approval for a class III 
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implantable device does account for this to some extent.  Prototyping and experimental 

costs, as well as limitations in a current design approach that’s largely based on trial-by-

error, also play a role in impeding the advancement of implant design.  Further 

complicating the design process, the size and shape of bones differ significantly among 

individuals.  Yet the more closely an implant conforms to the form of the local bone 

geometry, the more successful the repair will be in the short and long term.  Developing 

implants that can accommodate this large degree of skeletal variation proves to be 

among the greatest challenges for implant design. 

Recently, the use of finite element methods (FEM) for structural analysis has 

been adopted by many in the orthopaedic market as a standard technique for implant 

design.  This allows engineers to predict implant/bone behavior earlier during the design 

process and to make engineering decisions accordingly.  However, FEM for orthopaedic 

applications requires not only CAD modeling of the implant, but also modeling of the 

surrounding local bone tissue.  Although commercial software is available for generating 

bone models from CT scans, the process itself is time-consuming. 

Simulation-Based Design and Optimization 

In light of the present-day inefficiencies of implant design methods, a 

comprehensive simulation-based approach is proposed to not only design, but also 

optimize, implantable fixation devices prior to experimental testing.  The approach 

integrates design, analysis, and optimization into a digital computer-aided system.  The 

time and costs required to design, analyze, and optimize a product can be significantly 
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less than traditional prototyping and experimental methods based on trial-by error.  This 

is largely due to the reduction in manufacturing time and costs for multiple prototypes, 

material costs, experimental testing time and costs, and time required to analyze 

experimental results and make engineering decisions based on those results.   

The proposed simulation-based approach does not replace the need for 

experimental verification of a product; it allows the engineers to begin the experimental 

phase with a product design that is already optimized – or at least very close to the 

optimum.  The experimental phase is therefore not used as an iterative trial-by-error 

optimization process, but rather as for final verification that the product meets the 

objective and satisfies all design constraints. 

 The three core techniques used in the proposed approach are CAD/medical 

imaging, FEM, and numerical optimization.  Each of these techniques have already been 

applied to orthopaedic product development to an extent (as outlined in the following 

chapter); however, the simulation-based approach addresses many current 

inefficiencies and provides a systematic, comprehensive design and optimization 

process applicable to any type of orthopaedic implantable device.  The process is also 

flexible to allow for adaptation to specific needs among various implant types.   

A unique feature of the approach is that implant optimization applies to both 

structural performance and fit.  The intent is to provide a methodology that aids in 

determining the optimum implant shape(s), size(s), and material(s) that best 

accommodate the vast geometry variation among patients and provides adequate 

structural stability while minimizing the effect the implant has on patient biomechanics.  
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Details concerning each step of the methodology are outlined in Chapter 3, and the 

efficacy of the approach is demonstrated using two case studies in Chapter 4. 
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CHAPTER II.  BACKGROUND & LITERATURE REVIEW 

Medical Imaging & Computer-Aided Design 

Computer-aided design (CAD) has been an essential tool for product design 

engineers since its conception in the 1960’s, particularly since the 1980’s with the 

development of graphical 3D solid modeling.  With the rapid expansion of 

computational technology, the application of CAD in the biomedical industry has grown, 

leading to many novel advances in the industry.  The technique, in its most simplistic 

form, allows for graphical 3D representation and manipulation of design concepts, as 

well as the generation of 2D technical drawings, permitting more efficient 

communication between the design engineers, technicians, and physicians.   

Not only is CAD useful for modeling new product designs, but also for digitally 

reconstructing patient-specific musculoskeletal tissue.  Medical imaging modalities, such 

as computed tomography (CT) and magnetic resonance imaging (MRI) scans, coupled 

with image segmentation and surface generating software, allow for accurate digital 

reconstruction of organ models [1-9].  Most reconstruction methods can be 

characterized in two major categories: the volume-based approach and the contour-

based approach [7, 10].  The volume-based approach uses the marching cube method to 

generate triangular-meshed “iso-surfaces” [11, 12].  This technique has been widely 

adopted for visualizing 3D medical images because of its high resolution, computational 

efficiency, and its data structure [7].  However, because of the large number of non-

uniform, skewed triangles that comprise the iso-surfaces, the marching cube method is 
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not suitable for numerical simulation and manufacturing purposes without extensive 

post-processing [7]. 

In contrast, the contour-based approach extracts cross-sectional surface 

boundaries of the tissue(s) from each of the medical images comprising a particular 

scan.  The surface boundaries can be obtained by either manual selection/tracing [13] or 

semi-automatic methods based on defining initial voxel thresholds [14-20] or edge 

detection algorithms [21-23].  Once the series of closed-contours are acquired, a 3D 

boundary is generated by connecting the contours with a triangular meshed or 

parametric surface.  The voxel thresholding/manual segmentation techniques, as well as 

surface generation, contour interpolation, and smoothing, are discussed in greater 

detail in chapter 3. 

Finite Element Method 

The finite element method (FEM) is a powerful numerical technique used to 

digitally simulate complex physical systems.  Simulation systems, including structural, 

thermal, fluid flow, and electromagnetic, can be mathematically defined as “responses 

of a problem domain subject to environmental conditions” [24].  Environmental 

conditions that apply to the problem domain’s boundary surfaces, such as external 

loading (forces, heat flux, current, mass flow, etc.) and constraints (displacement, 

temperature, voltage, etc.), are also known as boundary conditions.  However, 

environmental conditions can also be distributed throughout the volume of the domain 

which include gravitational attraction, inertial forces, and temperature change. 
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The scope of this dissertation is concerned with structural analysis, where the 

deformation of the domain (3D model) is determined by calculating the displacement 

field ሼݑ௜ሽ = ൛ݑ௫௫ + ௬௬ݑ +  ௭௭ൟ ,                                                   (I)ݑ

the strain field 

ሼߝ௜ሽ = ൥߳௫௫ ߳௫௬ ߳௫௭߳௬௫ ߳௬௬ ߳௬௭߳௭௫ ߳௭௬ ߳௭௭ ൩ ,                                                    (II) 

and the stress field 

ሼߪ௜ሽ = ൥ߪ௫௫ ௫௬ߪ ௬௫ߪ௫௭ߪ ௬௬ߪ ௭௫ߪ௬௭ߪ ௭௬ߪ ௭௭ߪ ൩                                                     (III) 

at each spatial location i in the domain.  The unknown responses of Eqs. (I-III) must 

satisfy the equilibrium principal 

  ∑ ௫,௜ܨ = ݉௜ܽ௫,௜ , ∑ ௬,௜ܨ = ݉௜ܽ௬,௜ , ∑ ௭,௜ܨ = ݉௜ܽ௭,௜ ,                           (IV) 

where ∑Fn,i is the summation of boundary conditions applied to each domain point i in 

the n direction, m is the mass of each point i, and an is the acceleration of each point i.  

For static structural analysis, the equilibrium Eqs. (IV) become ∑ ௫,௜ܨ = 0 , ∑ ௬,௜ܨ = 0 , ∑ ௭,௜ܨ = 0 .                                            (V) 

Assuming a linear elastic stress-strain relationship, the equilibrium equations can 

be rewritten as 
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డడ௫ ௫௫,௜ߪ + డడ௬ ௫௬,௜ߪ + డడ௭ ௫௭,௜ߪ + ௫,௜ܨ = 0     

డడ௫ ௫௫,௜ߪ + డడ௬ ௫௬,௜ߪ + డడ௭ ௫௭,௜ߪ + ௫,௜ܨ = 0                                      (VI) 

డడ௫ ௫௫,௜ߪ + డడ௬ ௫௬,௜ߪ + డడ௭ ௫௭,௜ߪ + ௫,௜ܨ = 0 

where Fn is the environmental condition at each domain point i.  The assumed linear 

stress-strain relationships, also known as Hooke’s Law, are ߝ௫௫,௜ = ఙೣೣ,೔ாೣೣ,೔ − ௫௬,௜ߥ ఙ೤೤,೔ா೤೤,೔ − ௫௭,௜ߥ ఙ೥೥,೔ா೥೥,೔ + Δߙ ௜ܶ  , 

௬௬,௜ߝ = ఙ೤೤,೔ா೤೤,೔ − ௬௭,௜ߥ ఙ೥೥,೔ா೥೥,೔ − ௫௬,௜ߥ ఙೣೣ,೔ாೣೣ,೔ + Δߙ ௜ܶ ,                           (VII) 

௭௭,௜ߝ = ఙ೥೥,೔ா೥೥,೔ − ௭௫,௜ߥ ఙೣೣ,೔ாೣೣ,೔ − ௬௭,௜ߥ ఙ೤೤,೔ா೤೤,೔ + Δߙ ௜ܶ  , 

௫௬,௜ߝ = ఙೣ೤,೔ீೣ೤,೔  , ௬௭,௜ߝ = ఙ೤೥,೔ீ೤೥,೔  , ௫௬,௜ߝ = ఙ೥ೣ,೔ீ೥ೣ,೔ , 
where Enn,i is the elastic modulus constant in n direction for each domain point i, νmn,i is 

the Poisson’s ratio at each point i, and Gmn,i is the shear modulus at each point i.   

Under the assumption of small deformations, the six equations describing the 

strain-displacement relationships are ߝ௫௫,௜ = ௗడ௫ ,  ௫,௜ݑ ௬௬,௜ߝ = ௗడ௬ ,  ௬,௜ݑ ௭௭,௜ߝ = ௗడ௭  ௭,௜                              (VIII)ݑ

௫௬,௜ߝ = డడ௬ ௫,௜ݑ + డడ௫ ,  ௬,௜ݑ ௬௭,௜ߝ  = డడ௭ ௬,௜ݑ + డడ௬ ,  ௭,௜ݑ ௭௫,௜ߝ  = డడ௫ ௭,௜ݑ + డడ௭  . ௫,௜ݑ
The fifteen governing equations above (Eqs. (VI-VIII)) can be used to solve for the 

fifteen unknown responses of Eqs. (I-III) for each point in the domain.  According to the 

standard model of particle physics, physical object are actually comprised of an infinite 
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number of points as there is no limit to how many times a volume can be divided.  

Therefore, in order to solve the response of a physical system, the governing equations 

need be applied an infinite number of times in order to represent the entire domain.  

However, FEM is able to address this issue by dividing continuum objects into a finite 

number of elements.  Responses are calculated at each element vertex, or node, and 

then interpolated within each element.  An element’s displacement field {u}e, therefore, 

becomes a function of nodal displacement by ሼݑሽ௘ = ሾܰሿ௘ሼ݀ሽ௘ ,                                                        (IX) 

where [N]e is the matrix of interpolative shape functions and {d}e is the displacement of 

each node corresponding to the element.  When shape functions of an element are 

represented by first order polynomials, the element is referred to being a linear, or 

lower-order, element.  Increasing the polynomial order of an element – resulting in a 

higher-order element – increases its accuracy.  This technique for obtaining a more 

realistic response is known as p-element convergence.  Alternatively, accuracy can be 

increased by increasing the number of elements comprising the domain (n-element 

convergence).  As either the polynomial order of the shape functions or the number of 

elements approach infinity, the simulation domain approaches perfect representation. 

By discretizing the domain, the static equilibrium system of equations for each 

element can be represented as ሾܭሿ௘ሼ݀ሽ௘ = ሼܨሽ௘                                                           (X) 

where [K] is the stiffness matrix (dependent on material constitutive properties) and {F} 

is the vector characterized by the environmental conditions.  However, Eq. (IX) is valid 
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assuming a linear system response.  However, most physical systems have non-linear 

characteristics, meaning that the responses are not linearly proportional to the external 

loads.  Non-linear characteristics can be categorized by large geometric deformations, 

topology nonlinearity (eg.. changes in contact status, failure in structural members, 

etc.), and non-linear material properties (e.g. non-linear elasticity, plasticity, hysteresis, 

creeping, kinematic/isotropic hardening, etc.) [24].  In many cases, non-linearities can 

be accounted for – or at least approximated – by expressing the stiffness matrix as a 

function of nodal displacement as deemed appropriate by the particular simulation 

system: ሾܭ(݀)ሿ௘ሼ݀ሽ௘ = ሼܨሽ௘  .                                                    (XI) 

In the case of non-linear analysis, the Newton-Raphson method is typically 

implemented to solve the response in time increments using a tangent, linearized 

stiffness matrix at each increment:  ሾܭሿሼ∆݀ሽ = ሼ∆ܨሽ .                                                        (XII) 

The equilibrium equation is then solved in time increments using ሾܭ(݀௧)ሿሼ݀௧ሽ = ሼܨ௧ሽ .                                                    (XIII) 

If the residual force of an equilibrium iteration, denoted by ܨ௧ோ = ௧ିଵܨ) + (ܨ∆ −  ௧  ,                                               (XIV)ܨ

is smaller than a user-define criterion, then the time step is said to have converged, 

otherwise, another equilibrium iteration is initiated for that time step [24]. 
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In the case of orthopaedic implant design and analysis, FEM is valuable for 

simulating static and dynamic physiological loading conditions on intact, fractured, and 

treated bone systems.  The resulting stress/strain within the implant and surrounding 

tissue, as well as the interaction behavior between the implant and tissue, can be 

observed without the need for in vivo trials.  FEM also has the advantage of being the 

only current method able to examine the entire stress/strain field of a device.  Since its 

first application towards orthopaedic research in 1972 [25], FEM has been applied to the 

design and analysis of fixation implants and prosthetics as well as biomechanical 

analysis of various bone and artificial tissue [25-52].  Many difficulties have arisen, 

however, do to the geometric and material complexity of the human body.  Applying 

quality meshes to patient-specific skeletal tissue models in a time-efficient manner 

which yield reliable, practical results continues to be a challenge. 

Optimization 

Optimization techniques are an essential tool for new product design.  

Traditionally, “acceptable” designs were reached through a trial and error process 

involving CAD, prototyping, and experimental testing.  Appropriate design updates 

relied heavily on engineering experience and understanding of the product market, but 

were limited by time, available test equipment and materials, and budget.  In other 

words, if the design did not satisfy all the constraints, or if it did but was obviously over-

designed, then the engineer would propose modified designs until experimental testing 

yielding acceptable results.  This approach is time-consuming and expensive.  Numerical 
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When integrated with FEM simulations, structural/shape optimization consists of 

three major modules [53]:  

1.) Design model – parameterized geometry domain w/ variables defined 

2.) Analysis model – calculates the structural response (FEM) 

3.) Optimization algorithm – updates design variables based on response 

One of the major challenges with this approach is that a seamless, robust link 

between the design and analysis models is required for a successful optimization study 

[53, 54].  As the design model design variables are updated in the study, remeshing is 

required.  If the changes are significantly large, then conventional meshing techniques 

may not be sufficient without experienced user-input.  Several remedies have been 

proposed and demonstrated such as isogeometric shape optimization [53, 54], using β-

splines or NURB (non-uniform rational basis spline) surfaces [53, 54], and adaptive 

meshing [55] (used by commercial software packages such as ANSYS [24], SolidWorks 

Simulation [56], and Pro/Mechanica [57]). 

Common structural optimization algorithms currently implemented in 

commercial and user-developed software include gradient-based algorithms, such as 

sequential quadratic programming (SQP) and gradient projection (GDP), and genetic 

algorithm (GA) [58-60].   

Topology optimization, a variant of shape optimization, takes a slightly different 

approach to optimize structures.  This method is concerned with “laying out material in 

an optimal manner”, whereas the previously described approach is more dependent on 
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the initial design variables (i.e. number/orientation of sides, holes, and other features 

are not permanent) [61].  Techniques for solving FEM-integrated topology optimization 

include the solid isotropic material with penalization (SIMP) method [61], topology 

optimization by penalty (TOP) method [62], and dynamic implicit boundary-based 

moving superimposed finite element method (s-FEM) [63]. 

Several studies have applied structural optimization techniques in the field of 

orthopaedic implant design.  Kayabasi et al. applied a numerical shape optimization 

technique integrated with the finite element method to the design and analysis of a hip 

implant [64].  Gefen used manual optimization techniques with structural finite element 

methods to analyze fixation screw features, materials, and coatings [65].  Gerhart et al. 

developed a purely experimental model system for producing, testing, and optimizing 

particulate composites for structural tissue engineering [66].  Ueda et al. utilized the 

Taguchi fractional factorial method to determine the optimal levels of three design 

factors of a surgical drill and their percentage contribution to performance [67].  Several 

popular commercial CAD/FEA software packages, such as SolidWorks and ANSYS 

Workbench, have adopted a similar design of experiments (DoE) approach for structural 

optimization [24, 56].  Although the techniques exist, it is not apparent that automated 

structural optimization has been successfully applied to the design of internal fracture 

fixation implants for the purpose of minimizing implant mass while satisfying design 

constraints associated with the factor of safety. 

Two recent studies have analyzed and quantified implant/bone fit of internal 

fixation plates for the tibia [68, 69]: 1.) Goyal et al. applied manual fitting and fixation 
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techniques using currently-available tibial plates on a set of 101 cadaver specimens.  

Their method, based on trial-and-error, was used to analyze and quantify anatomic fit in 

the sagittal, coronal, and axial planes [68]; 2.) Schmutz et al. developed an alternative 

semi-automatic approach for analyzing implant fit and demonstrated it using 21 CT data 

sets.  Results of their approach suggested that current tibial plates adequately fit only 

19% of the study samples [69].  Both studies affirmed that human bone geometry 

variation has a significant effect on implant contour fit.  However, to the best of the 

author’s knowledge, only one study has been conducted on optimizing implant/bone fit 

[70].  Its scope was concerned with the development of an optimal implant contour with 

suitable fit for the maximum number of patients considering human bone variability.  

The technique adopted for this approach was based on level-set segmentation to 

generate a statistical shape model representing a target population [70].  The 

optimization loop, however, still required manual interpretation of the fit assessment 

and subsequent manual design updates.   

Optimization techniques have also been applied to simulate the phenomenon of 

bone remodeling [71, 72].  According or Wolff’s law, formulated in the 19th century and 

still widely accepted, bone adapts to changing mechanical stimulation in order to 

optimize energy expenditure by minimizing mass and strain [71-73].  An improved 

understanding of the phenomenon and how it affects the interaction between bone and 

internal fixation implants – before and after full recovery – will lead to improved implant 

design by reducing bone atrophy due to implant-induced stress shielding.  As a result, 

the quality of patient care would increase, and costs associated with secondary 
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operations due to long-term bone atrophy will be minimized.  Additionally, it may help 

develop improved structural optimization methods, as demonstrated by Nowak [71] and 

Harrigan et al. [72], which could be applied to implant design. 

The proposed optimization methodology is unique in that it is the first to address 

both fit and structural optimization and does so without manual updating of design 

variables. 
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1.  Specimen Samples 

An understanding of human skeletal variation is vital for the successful design of 

orthopaedic instrumentation.  Patient variation occurs not just in physiological, 

hormonal, molecular, and behavioral responses to normal activity, disease, and trauma, 

but also in basic gross anatomy.  For orthopaedic applications, osteological variation is 

highly important as the same implant design may perform differently for various 

patients.  It is widely recognized that size variation needs to be considered, but skeletal 

shape (e.g. curvature, proportion, etc.) is another key way in which individuals differ.  

Size and shape variation are partly functions of race, sex, and age, as well as more 

random individual factors.  Quantifying skeletal variation provides an important 

foundation for designing implantable fixation devices that accommodate the entire 

population.   

Skeletal morphology can be visualized in a number of ways thanks to new 

imaging modalities.   Clinically, X-ray computed tomography (CT) scan technology can be 

used to generate 3D images of bones.  These can in turn be processed and converted to 

surface models, including internal as well as external geometries.  Despite the risks 

inherent in any radiographic imaging modality, this is the only reliable way to obtain 

accurate 3D images of a patient’s skeletal anatomy.  Thus CT images are currently the 

most effective way to assess individual patient anatomy for the purpose of developing 

custom patient-specific instrumentation; however, the clinical approach is less 
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promising for broader considerations of skeletal variation required for mass-produced 

instrumentation. 

For determining optimal shapes and sizes of implantable devices, great promise 

lies in the use of skeletal collections located in museums.  The Hamann-Todd 

Osteological Collection in Cleveland, Ohio, contains approximately 3,000 human 

skeletons from the early 19th century in rural Cleveland.   Similarly, the Terry Collection 

is another from the 19th century that also catalogs skeletons by sex and race.  Other 

skeletal collections in the US and around the world are also available and represent 

various human populations.   Skeletal variation can be studied in these specimens 

directly – and without patient risk.   

2.  Medical Imaging 

Once the specimen sample are collected, digital 3D models can then be 

generated via image segmentation techniques using commercial, open source, or user-

developed software.  However, medical imaging techniques, such as CT scanning, are 

required to digitize the samples before the models can be generated.  The images are 

characterized as a 3-D array of voxel intensity data, where each voxel intensity value 

represents the tissue density at a finite location.  The more voxels in each CT slice (or 2-

D layer, usually orientated in the axial direction), the higher the image's resolution will 

be.  Additionally, the smaller the slice thickness, the higher the resolution will be in the 

sagittal and coronal planes.  The image data is typically saved as a series of DICOM 
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(digital imaging and communications in medicine) files, with each file representing a 2-D 

slice of the 3-D array.   

Commercial software packages such as Amira (Visage Imaging, 2011) and Mimics 

(Materialize, 2011) can be used to segment the voxel date into regions of cortical bone, 

cancellous bone, and other various tissue types.  First, once the series of DICOM files are 

loaded into the program, built-in automated tools can be used to make the initial 

selection of the type of tissue(s) desired to be modeled.  This is accomplished by 

defining a voxel intensity range that represents the tissue, and then selecting which 

continuous region(s) of tissue to which it applies.  Alternatively, the voxel intensity 

range can be applied to the entire image.   

With either of these automated techniques, it is highly probable that numerous 

unwanted small holes will be present within the segmented voxel region.  Additionally, 

unwanted islands may be selected outside of the desired bone tissue region.  These 

undesirable artifacts require a second segmentation phase involving manual 

selection/removal techniques.  This is accomplished by viewing each slice layer-by-layer 

– in all three Cartesianal orientations – and performing the necessary "touch-ups."   

For bone tissue modeling, manual segmentation is especially crucial for 

cancellous bone and thin cortical bone regions.  Cancellous bone is inherently porous, 

giving it a non-uniform density.  In many cases, particularly when generating bone 

models for the purpose of finite element simulations, it is more desirable to generate 

solid continuum models where porosity is represented by effective material properties 

acquired through experimental testing.  Additionally, bone tissue geometry 
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measurements are on the macro-scale and do not require porosity to be modeled.  

Therefore, in nearly all applications for orthopaedic implant design, the pores within 

cancellous bone regions can be filled.   

Holes are frequently present within thin-walled regions of cortical bone 

following automated image segmentation techniques, particularly with low resolution 

images or relatively large slice thicknesses compared to the size of the bone features.  

Additionally, singularities – where the inner and outer surfaces touch at a point – are 

often present in the surface model generated from the segmented data.  This occurs 

when adjacent segmented voxel regions within a CT slice (from any view orientation) 

only touch at a corner shared by two of the voxels – as is common for cortical wall 

thicknesses of one or two voxels.  These holes and singularities must be filled using the 

manual segmentation techniques described for cancellous bone in order for quality 

bone models to be generated. 

These segmentation techniques using commercial software requires expensive 

software license fees to accomplish this through time-consuming manual and semi-

automatic segmentation techniques.  Alternatively, open-source programs, such as the 

Insight Segmentation and Registration Toolkit (ITK), can be downloading and 

implemented for research purposes free of charge.  In any case, current methods 

do not provide a time- and cost-efficient technique for segmenting thin cortical walls 

and highly porous bone regions so that unwanted artifacts are present in the final 3-D 

model.  Nor do they provide automated means of removing "islands" created by noise.  

Therefore, a fully automated method using MATLAB code was developed by the author 
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in order to reduce the time required for quality image segmentation. Voxel intensity 

ranges corresponding to cortical and cancellous bone on the CT scan – as well as slice CT 

slice information and cropping coordinates  – are entered as input.  The program then 

reads each dicom file and stores the coordinate locations of voxels representing cortical 

and cancellous bone in corresponding point cloud matrices.  Noise is then removed by 

filling holes and removing “islands” given the minimum allowed size of each as input.  

The fully automated procedure is outlined in the steps below and demonstrated using 

an intact femur CT scan.  

Note: the proposed automated segmentation technique was developed after the 

presented case studies were complete.  The tedious nature of the techniques used in 

the case studies gave rise to the need to develop the automated method. 

Step 1 

First, the following user-defined CT specifications and segmentation parameters 

are read into the code via GUI (fig. 3): the number of scan slices, the number of pixels 

per column and per row, and the upper and lower voxel intensity limits for both cortical 

and cancellous bone.  A counter begins to record the total processing time at the end of 

each step, and a wait bar is generated in order to monitor progress.   
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cancellous bone array.  This step is performed because the thin cortical walls in the 

proximal and distal condyles are less dense and, therefore, have lower voxel intensities.  

This can result in the previous segmentation loops assigning a 1 to the corresponding 

cancellous bone array rather than the cortical bone array.  This step partially resolves 

this problem, and additional corrective measurements are performed in steps 6 and 8. 

Step 5 

Small cortical bone "islands" within the cancellous bone region will potentially 

form during the previous segmentation loops due to noise in the CT scan and the 

frequent similarity in voxel intensity between cortical and cancellous bone.  Therefore, 

another loop is performed where these islands are removed.  For each element in the 

cortical bone array that has been assign a 1 during the segmentation loops, the program 

counts how many adjacent elements in the axial plane have - up to this point - been 

labeled as cortical bone and how many elements have been labeled as cancellous bone.  

If the number of adjacent cortical bone elements is less than 4 and if the number of 

adjacent cancellous bone elements is greater than 4, then the corresponding elements 

in the cancellous and cortical bone arrays are assigned a 1 and a 0, respectively.  The 

entire step is repeated three times. 

Step 6 

To further enhance the integrity of the cortical bone point cloud in the upper 

and lower condyles – where the cortical wall is thin and where cancellous bone is 

adjacently located – the present step was developed in order to convert all cancellous 
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bone elements that are adjacent to elements currently segmented as cortical bone 

elements, into cortical bone elements.  This method is anatomically valid because the 

material property change along the cortical/cancellous bone interface is characterized 

as more of a gradient than a discontinuous change.   

For each element in the cancellous bone array with a value of 1, the program 

examines each adjacent element in the corresponding location in the cortical bone 

array; if at least one of the elements has a value of 1, a 0 is assign to the element in the 

cancellous bone array and a 1 to the cortical bone array. 

Step 7 

Some areas within the cancellous bone region have such a low density due to its 

porosity that the cancellous bone array may have holes - or regions of 0's within regions 

on 1's.  The lower voxel intensity limit for cancellous bone could be reduced in order to 

solve this issue; however, the solution would lead to additional problems as many 

cancellous “islands" would form in the empty space of the scan due to noise.   

The present solution solves the problem using a similar counting method 

described in step 5.  For each voxel location that has not yet been defined as cortical or 

cancellous bone in the appropriate arrays, the program counts how many adjacent 

elements in the cancellous array have a value of 1.  If the number is greater than three, 

the corresponding cancellous bone element is assigned a value of 1.  The entire process 

is repeated five times. 
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Step 8 

A final step in ensuring the integrity of the cortical wall is taken by converting 

any remaining cancellous bone elements that are exposed to the outer cortical bone 

surface into cortical bone elements.  For each element in the cancellous bone array with 

a value of 1, the program counts how many adjacent elements are segmented as 

cortical bone and how many are not segmented as either type of bone tissue (empty 

space).  If at least one adjacent element is cortical bone and at least one is empty, then 

the corresponding element in the cortical bone array is given the value of 1, and the 

cancellous bone element is given a value of zero. 

Step 9 

Finally, data points are plotted in 3-D showing the spatial locations of cortical 

bone voxels and cancellous bone voxels (fig. 4 and Fig. 5).  Further development of the 

code will include being able to export the point cloud data into a usable format for CAD 

manipulation.  The code syntax for this technique is found in Appendix B. 

Accuracy 

Reliability and accuracy of the fully-automated segmentation approach depends 

solely on user-input: i.e. the voxel intensity threshold values representing each 

segmented material.  Care should be taken to insure that the defined thresholds 

accurately represent the corresponding bone material. 
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Therefore, an iterative technique involving surface simplification and smoothing 

was developed.  For each iteration, the number of faces was first reduced by 10,000 

while satisfying upper and lower limit constraints regarding edge length.  The upper and 

lower limit constraints were initially defined as 1.2 mm and 0.8 mm, respectively.  An 

option for preserving the slice structure of the model was enabled in order to ensure 

that the final model geometry accurately represented the CT scan data.  Each iteration 

concluded with subtle smoothing of the simplified surface using only one smoothing 

pass. 

Eventually, the initial constraints prevent further simplification as defined by the 

desired number of faces to reduce by.  When this occurred, both constraints were 

increased by 0.1 mm, and the simplification and smoothing passes continued.  The 

process was repeated until the upper limit reached 4.0 mm.  Then, the process still 

continued, but the number of faces was reduced by only 1,000, and only the lower limit 

was increased until it reached 3.9 mm.  One final iteration was then performed with the 

lower limit set to 1.95 mm – giving the triangular-meshed surface models edge lengths 

within the range of 1.95 to 2.00 mm. 

When the surface generation, simplification, and smoothing process was 

complete (fig. 8), the data was saved in stereolithography (STL) format.  For the present 

application, a quality STL model has triangular edges of approximately the same length, 

no holes in its surface, and small angle differences between adjacent surface triangles.  

These stipulations are necessary for quality 3D meshing with tetrahedral elements – the 
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Pro/Engineer (PTC, 2011), and Unigraphics NX (Siemens, 2011) are capable of 

dimensional inquiry of specimen models. 

5.  Statistical Analysis 

Geometry measurement derived from specimen samples can then be used to 

quantify normal human morphology and variation, as well as test hypotheses about the 

type and extent of variation with respect to body size, age, sex, race, or other 

parameters via analysis of variance (ANOVA).  Using standard statistical analysis 

techniques, researchers and design engineers can determine how much variation affects 

the region of interest and which factors are associated (e.g. sex, age, etc.). 

6.  Specimen Mean Form Models 

Based on techniques developed for the automotive industry, mean form models 

are generated from the specimen sample population and sub-populations.  Originally, 

the mean form method was intended for quantifying small dimensional variances in 

manufactured parts from assembly lines; however, the technique was adopted in the 

present study to take into account large variances in human skeletal geometry and 

generate "average" models.   

Specimen CAD models are first imported into Polyworks (InnovMetric, 2011), a 

universal 3D metrology software platform used for digitizing and reverse engineering, 

where “average” point cloud models representing each sample subgroup and 

subpopulation, as well as the total population, are derived.  This process required that 

each specimen model be scaled to equal length based on the average – a necessary step 
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in order to minimize the resulting distortion, particularly in the proximal and distal ends, 

while still capturing shape variation (the trade-off being that size variation is not 

considered).  Following model scaling, specimens in each sample subgroup are manually 

aligned using an “n-point” method: specimen models are aligned based on selecting 

prominent features, and the corresponding displacement vectors were minimized.  An 

optimization algorithm is then used to find the "best-fit" alignment by minimizing the 

displacement vectors between each corresponding surface node location.   

Finally, the optimized surface geometry for each sample subgroup is generated 

by calculating the average location of each corresponding node.  The process of 

alignment and averaging can be repeated for each sample subpopulation and also for 

the total population using the subgroup average models as input.  

7.  Implant Contour Optimization 

In the majority of cases where patient-specific implant manufacturing is not 

economically practical and, therefore, mass production must be adopted, contour 

optimization regarding implant/patient fit is accomplished using the specimen mean 

form models as design "templates."  The logic behind this technique is that if the 

implant is designed to match the shape of the specimen mean form model of interest, 

then the likelihood that the shape will be sufficient for the entire population is 

maximized.  Subsequent simulation and experimental testing may conclude that 

additional shapes are required in order to accommodate large skeletal geometry 

variations within the population.  Implant sizes, on the other hand, can be determined 
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from statistical analysis, which is currently a standard practice in implant design.  A 

significant benefit of this new method for fit optimization is that it utilizes a non-

iterative approach to develop the optimal implant contour(s). 

8.  Simulation-Based Performance Analysis 

The performance of existing implant designs, as well as conceptual designs, is 

then quantified and compared using finite element methods.  Simulating post-operative 

physiological loading conditions using specimen models (fractured or healed) fixated 

with the devices of interest allows design engineers to predict structural behavior.  

Additionally, "virtual surgery" techniques simulating the implant insertion process 

provide similarly useful information.  The reliability of the simulated results is 

dependent of four factors: realistic material properties, accurate loading/boundary 

conditions, mesh quality, and mesh independence. 

Material Properties 

Equilibrium equations and equations of motion used to solve nodal displacement 

during the simulations require material property constants as input.  For anisotropic 

materials, such as biologically inert metals and composites, only the modulus of 

elasticity and Poisson's ratio is required to be explicitly defined for static analysis.  For 

dynamic analysis, the material density must also be defined. 

Bone is considered to behave in an anisotropic manner with material properties 

dependent on direction. However, research has demonstrated that when modeling long 

bones such as the femur, transversely isotropic properties of cortical bone and effective 
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static analyses, the system must have zero degrees of freedom on the macro scale.  This 

is accomplished by constraining the nodal degrees of freedom within a defined region.  

For instance, when modeling the femur, if loading is applied at the hip joint, the knee 

joint interface on the distal condyles must be constrained.  However, identical results 

could be attained by applying the load at the knee joint – equal in magnitude but 

opposite in direction – and constraining the hip joint. 

Mesh Quality 

Tetrahedral elements are the most versatile of all 3D element types and are ideal 

for meshing models with high complexity such as skeletal tissue.  However, they are also 

the most susceptible to inaccurate results due to poor mesh quality.  Therefore, to 

achieve rapid meshing with minimal quality-related inaccuracies, strict mesh quality 

controls must be met.  Mesh quality standards adopted by Dassault Systémes, the 

makers of Abaqus finite element software, were applied to the present study.  These 

tetrahedral element failure criteria include:  

1. Minimum shape factor (i.e. ratio of the element’s volume to the spherical 

volume circumscribing the element) < 0.0001 

2. Minimum face corner angle < 5° 

3. Maximum face corner angle > 170° 

4. Maximum aspect ratio (i.e. ratio between largest edge length and smallest 

edge length) > 10 



37 
 

Mesh Independence 

Because of the linear relationship in the displacement between each adjacent 

node within the system, the strain – calculated by taking the derivative of the 

displacement function – becomes constant throughout each element.  Therefore, the 

stress is also constant due to Hooke’s law.  Mesh independence can be obtained 

through adaptive meshing: either by decreasing the element size (h-adaptivity) or by 

increasing the order of each element’s interpolation function (p-adaptivity).  Adaptive 

meshing can be done manually or automatically by performing multiple simulations 

while successively decreasing element size or increasing element order until the 

response converges within an acceptable percent difference. 

9.  Structural Optimization 

Parametric Analysis 

The Taguchi method for design of experiments was adopted in order to quantify 

how various implant design parameters, such as dimensions, materials, fixation 

techniques, etc., affect the mechanical performance of the implant.  The method uses 

an orthogonal array of experiments – or, in the present case, simulations – to 

statistically represent all possible combinations of design parameter values.  As applied 

to orthopaedic implant design, the Taguchi design of experiments is performed in three 

steps: response analysis, analysis of variance, and superposition model for optimum 

response. 
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1. Response Analysis   

The responses obtained from different simulated design scenarios can be 

analyzed using response tables and graphical representation of the mean effects of each 

parameter on design performance.  The response analysis helps in identifying those 

design parameters that have the greatest impact on performance.  In determining this, 

the signal-to-noise (S/N) ratio analysis is implemented.  It uses the transformation 

method to convert the measured response into an S/N ratio by ܵ ܰ⁄ = −10 log (ܦܵܯ),                                                   (XV) 

where MSD is the mean square deviation.  The mean square deviation can be calculated 

using ܦܵܯ = ଵ௡ ∑ ଵ௬೔మ௡௜ୀଵ  ,                                                       (XVI) 

where yi is the measured response and n is the number of simulations/experiments.  

Proposed by Taguchi, S/N ratios are performance measures that optimize a design.  The 

optimum design given the specified parameters is achieved when the S/N ratio is 

maximized. 

2. Analysis of Variance 

The analysis of variance (ANOVA) technique predicts the relative significance of 

the design parameters.  It gives the percentage of contribution of each factor, thus, 

providing a quantitative measure of various factors on design performance. 
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3. Superposition Model for Optimum Response   

A superposition model for optimum response approximates the relationship 

between the performance measures and its factor levels.  The total effect of each design 

factors is equal to the sum of the individual factor effects, and interactions among the 

design factors are considered errors in this model [84].  In the superposition model, 

optimum performance can be predicted by using the optimum conditions of the 

controlled parameters using the equation ߟ௢௣௧ = ݉ + ܽ௜ + ௝ܾ + ܿ௞ + ⋯ + ݁ ,                                      (XVII) 

where m is the overall mean of the simulation responses, ܽ௜ = ௢௣௧ܣ − ݉,    ௝ܾ = ௢௣௧ܤ − ݉,    ܿ௞ = ௢௣௧ܥ − ݉,…                    (XVIII) 

and e is the error in the repeatability of ηopt.  Xopt. in Eq. (XVIII) denotes the optimal 

condition for parameter X. 

FEM-Integrated Optimization 

While Taguchi’s superposition model for optimum response can be used to 

determine the design parameter values that give the best overall performance and even 

predict the response, it does not consider objective functions such as mass 

minimization.  Mass minimization is important in orthopaedic implant design as 

increased weight and size have adverse effects on surrounding tissue [85].   

For design parameters associated with geometric dimensions and material 

properties, a finite element-based structural optimization technique should be 

implemented.  For these dimensional parameters, the Taguchi method is best applicable 
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for determining which parameters should be optimized for mass minimization – those 

that have the greatest effect on performance as determined by ANOVA.   

However, constraints associated with material yielding must be considered 

during structural optimization.  Implant dimensions cannot be so small as to give rise to 

stresses that result in mechanical failure under normal and extreme physiological 

loading conditions. 

The general workflow of simulation-based structural optimization is depicted in 

fig. 9.  Several current computer-aided engineering software packages, such as 

SolidWorks, Pro/Mechanica, and NX, have the ability to integrate optimization 

techniques with structural analysis.  The built-in algorithms iteratively update user-

specified CAD model parameters until the objective function is met and constraints are 

satisfied.  With each optimization pass, the structural analysis is performed followed by 

a design sensitivity analysis that determines the correlation between each design 

parameter and the objective function.  After calculating the improved parameter values 

and updating the CAD model parameters, the optimization process is reiterated until 

convergence is achieved (usually 2%). 

Typically, sequential quadratic programming (SQP) is the optimization algorithm 

implemented for this type of design study.  With SQP, a global minimum is guaranteed if 

the initial conditions of the system meet the specified design constraints.   Therefore, 

the initial concept should be overdesigned and checked via static analysis prior to 

optimization.  Once optimization is achieved, the new design should be analyzed using 
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impossible to experimentally reproduce – as well as internal stress/strain measurements 

– can be efficiently and reliably achieved using finite element methods.   

In vitro testing using cadaveric specimen is difficult to reproduce due to the 

significant geometry variation associated with the human population.  Using Sawbones 

fourth-generation artificial composite bones alleviates this problem by providing a test 

specimen control.  Numerous independent studies have validated the use of Sawbones 

composite bones as an acceptable alternative to cadaveric specimen [76-82].   

For the following case studies, a femur fixation device was developed in order to 

apply in vitro compression loads to femur specimen for the purpose of validating finite 

element-based simulations (fig. 10-Fig. 12).  The fixture was designed to fit an MTS 

Universal Testing Machine.  The distal fixture allowed for two degrees of freedom 

(translation) in the axial plane; however, it could be locked in place removing all degrees 

of freedom.  The axial plane degrees of freedom allowed for proper alignment between 

the hip and knee joints in both the sagittal and coronal planes as well as freedom for 

femoral bending due to axial loading.  Proximal fixation devices were developed in order 

to provide two degrees of freedom (rotation about axes normal to the sagittal and 

coronal planes) for both the hip joint and the proximal end of an intramedullary nail 

being inserted into the femur specimen. 
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CHAPTER IV.  CASE STUDIES 

Femoral Intramedullary Nail 

 Fractures of long bones, particularly the femur, can be debilitating for patients, 

adversely affecting quality of life and potentially leading to long term complications.  

Intramedullary (IM) nailing involves creating an opening in one end of a long bone and 

inserting a rod through the medullary cavity of the bone.  This technique allows earlier 

return to weight bearing on the injured extremity and shorter recovery times than other 

methods.  It not only stabilizes the fracture, but decreases risk of infection since no 

incisions are made near the fracture site.  It has revolutionized the ability to care for 

patients with fracture of the femoral shaft [86].   

 However, this procedure also has significant shortcomings that lead to adverse 

consequences for patients because current nail designs do not match the curvature of 

the medullary canal, particularly for the femur [87-92].  The femur is curved, and this 

curvature varies among individuals, but current nail designs are much straighter than 

human femora [87,89,92,93].  This results in problems inserting nails, including distal 

perforation of the anterior femoral cortical bone by the tip of the nail [87,88,92,94], 

iatrogenic fractures [93,95], angular defects causing inadequate contact between 

fracture ends resulting in union problems [89,95], and the nail rubbing against the canal 

wall [87,89,92,93] sometimes leading to fracture of the proximal femur [93].  Extraction 

of dysfunctional nails may eventually become difficult or even impossible due to friction 
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[87,89,92,93].  Furthermore, mismatch between nail and femur geometries can 

significantly affect the biomechanics of the proximal femur [87, 93].   

 A strong clinical need exists for an IM nail that is geometrically optimized for 

anatomical fit.  Several studies have examined the curvature radius of the human femur 

as well as the correlates of curvature [87-90,92,96-101].  According to these studies, 

radius of curvature varies between 109 cm and 158 cm [89,90], but it is not correlated 

with femoral width, length, or age [87].  The predominant factors affecting femur 

curvature were determined to be race and sex [87,97-101].  In each study, the radius of 

curvature was calculated using a three-point arc fit with the assumption that the 

curvature is constant throughout the length of the femur.  However, close examination 

of the femur reveals that its curvature is not constant.  Thus, it may not be sufficient to 

assume a constant radius of curvature for intramedullary nail design. 

 Although it is generally recognized that medullary canals are curved and that 

individuals vary in femoral size and shape, femoral geometry variation has never been 

quantified, leading to instrumentation that fits poorly in the majority of individuals.  The 

design and optimization method discussed in the previous chapter was therefore 

implemented in order to overcome these limitations in knowledge and improve IM nail 

design.  The technique was used to optimize IM nail geometry with respect to patient fit 

while taking into consideration the large variation in femoral curvature.  A successful 

match between nail and femur geometry will allow development of new 

instrumentation that will avoid generation of stresses that could lead to other fractures, 

or altered femoral biomechanics that can impede the healing process. 
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Methods & Materials 

1.  Femur Specimens 

Forty intact femora were selected from the Hamann Todd Osteological 

Collection housed at the Cleveland Museum of Natural History (fig. 13).  This is a 

cadaver sample of urban populations from Cleveland from the early 20th century and 

consists of 3,000 skeletons of known sex, race, age, and health history.  The relatively 

small sample size was chosen to conduct a pilot study to determine the approach’s 

feasibility with the intent of later expanding the study with a larger sample size to better 

represent the American population as well as populations of other nationalities.   

All included specimens were from individuals with no developmental or skeletal 

pathologies.  The sample was chosen to represent a range of age, sex, and race variation 

in femoral geometry.  Due to both the collection’s specimen availability and the 

predominant races/ages representing the American population, the selected sample 

was racially differentiated into Caucasians and African Americans differentiated in into 

age groups in the ranges of 30-40 years and 70-80 years.  Within the age groups, 

individual ages were roughly evenly distributed. 
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To demonstrate the effect of an optimized nail design, the femur having the 

highest curvature was chosen for the finite element study (see part 8, Simulation 

Performance Analysis).  This required that both cortical and cancellous bone geometries 

be segmented separately.  For this specimen, the bone was first segmented using the 

automated technique.  Manual segmentation followed to ensure that no holes were 

present between cortical and cancellous bone tissue as well as within the material’s 

volume (fig. 17) (Note: the fully-automated segmentation code discussed in the previous 

chapter was developed after the surface generation phase of this case study was carried 

out).  The medullary canal void was ignored for both cortical and cancellous bone 

because the canal was to be later reamed to a larger diameter during "virtual surgery", 

simulating the actual clinical procedure.  The reamed canal was later cut into the canal-

less femur using CAD Boolean operations given the actual canal geometry derived from 

the CT scan and the desired reamed diameter.   
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4.  Femoral Geometry Measurements 

The CT scans and STL models were used in combination to measure geometric 

features of each specimen.  An oblique sagittal CT slice coplanar with the medullary 

canal centerline was generated from each CT scan and orientated with respect to the 

corresponding diaphyseal STL model (fig. 18).  These were used to measure total bone 

length, diaphyseal length, periosteal and medullary diameters at mid-shaft, cortical wall 

thickness, and the location of the most anterior point of the anterior surface as a 

function of percent length from the proximal end.  Additionally, radius of curvature of 

the medullary canal’s centerline was calculated using three equidistant points on the 

centerline within the diaphyseal length.  The ratio of the shaft length to the outer 

diameter at mid-shaft was also calculated.  These measurements were selected because 

of their potential contribution towards IM nail design: by aiding in determining the 

range of sizes/shapes required to accommodate the sample’s variation. 
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representing the curvature of the medullary canal's centerline was created.  The 

proximal end of the curve was extended to the nail entry point located on the greater 

trochanter.  According to the CT scan, the average diameter of the canal was 

approximately 11 cm.  A standard diameter available for current IM nails is 12 mm; 

therefore, a reamed canal diameter of 13 mm was chosen.  Surgical technique requires 

a reamed canal to be approximately 1 mm larger than the nail diameter [102].  Over-

reaming the canal by 1 mm is generally recommended to ease nail insertion, regardless 

of nail curvature [102,103].  A solid reamed canal cross-section was then extruded along 

the spline curve.  The canal geometry was then superimposed onto the femur assembly 

model (fig. 24).  Using Boolean operations, the intersecting solid volume of the reamed 

canal geometry and the femur model was removed from the femur model (fig. 24).  The 

reaming path follows the medullary canal centerline throughout the diaphysis; however, 

the drilled and reamed path through the proximal cancellous bone region must have a 

path that’s tangent to the proximal medullary canal and normal to the proximal 

insertion hole in the greater trochanter as described in current IM nail technique guides 

[86].  This was taken into consideration when determining the reaming geometry. 
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IM Nail Insertion  A finite element technique based on the Abaqus/Standard 

(Dassault Systèmes) platform was developed in order to simulate the insertion 

procedure of IM nails.  Because of the extraordinarily high computational costs of using 

dynamic FE techniques to drive a curved nail through a reamed canal with a dissimilar 

curvature, an approach using multiple static steps was adopted.  In the present case 

study, only stresses induced by curvature mismatch were of interest for comparing the 

two IM nails. 

Material properties assigned to cortical and cancellous bone were based upon 

experimentally verified material constants [74,75] as described in the previous chapter. 

Surface tie constraints were defined at the cortical/cancellous bone interfaces in order 

to prevent relative motion between all mated surfaces within the femur model. 

The three IM nails were given isotropic material properties of the titanium alloy 

Ti6Al7Nb [104].  Additionally, it was also desirable to examine how a biocompatible 

polymer composite material with similar mechanical properties as cortical bone affected 

the interference-induced stress as well as the biomechanics of a healed femur treated 

with IM nailing.  Therefore, an additional isotropic material was created to mimic CFR-

PEEK as described in the previous chapter.  Each nail was then assembled with the 

femur model having initial positions as illustrated in fig. 25. 
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Finally, in the fifth step, a static load of 250 lbs. was applied at the hip joint to 

simulate the effect of an individual standing with all weight on the treated leg.  

Transverse screws were not used to secure the nail - which is typically done to provide 

rotational stability.  Since prior to analysis it is unknown where the nail's transverse 

screw holes will be positioned with respect to the femur when fully inserted, the 

following approach was taken to secure the nail.  Tangential contact constraints 

between the nail and reamed canal wall were redefined at this step so that no relative 

sliding between contact surfaces was allowed.  Additionally, normal contact constraints 

were redefined so that surfaces in contact were not permitted to separate. 

The loading and boundary conditions described above were also applied to a 

model featuring the straightest femur (highest radius of curvature) in the sample and 

the optimum nail (fig. 29).  However, this time the contact constraints at the anterior 

canal surface were activated first as the nail was bent in the opposite direction.  The 

reasoning behind choosing the maximum and minimum radius femora in the sample is 

that if it can be shown that an IM nail with an “average” curvature can be fit into the 

two extreme femora, then it can be inferred that the nail can accommodate the entire 

sample population.   
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with the integrity of the femur during IM nail insertion and the effect the nail has on the 

femur's biomechanics post-operation.  Therefore, structural optimization is not applied 

to this case study. 

10.  Experimental Testing 

The MTS universal testing machine and femur fixture were used to measure the 

force necessary to insert the current and optimal IM nails at a constant velocity of 0.01 

in/s – as was well as to verify the finite element models.  Prototypes of the optimal IM 

nail and a nail with a 200 cm radius were fabricated from mild steel rods – each with a 

0.5” diameter (fig. 33, see Appendix A for technical drawings).  The desired curvature 

was obtained using a CNC bending machine where the nails were bent at one-inch 

increments (fig. 34).  The appropriate bend angle at each increment was calculated to 

achieve the desired curvature.  Springback was taken into consideration by multiplying 

the bend angles by a springback factor; this was determined by bending a rod 1° and 

measuring the actual bend angle.  The final curvature profile of each nail was measured 

with a quality control device and verified with the technical drawings (fig. 35).  A 

Sawbones composite femur with an intramedullary canal diameter of 13 mm was used 

as the test specimen.  A 13 mm diameter hole was drilled and reamed into the greater 

trochanter – tangentially meeting the canal.  Because a local maximum in the strain field 

at the anterior mid-diaphysis was calculated for each of the finite element analyses 

simulating nail insertion (see following Results section), a strain gauge rosette was 
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this measurement.  However, the p-value was slightly greater than 0.05 (p = 0.064); 

therefore, no significant correlating factor was found.  

 The total femur length (L) ranged from 41.3 cm to 52.9 cm with an average of 

45.9 cm and standard deviation of 2.7 cm.  Diaphyseal length (DL) ranged from 27.4 cm 

to 36.7 cm with an average of 31.1 cm and standard deviation of 1.9 cm.  Sex had the 

most significant correlation pertaining to both L and DL.  Race also showed significant 

correlation for both measurements.  In general, males and African Americans had longer 

femora compared to their counter sub-population groups. 

 The periosteal diameter (PD) at mid-shaft ranged from 2.37 cm to 3.56 cm with 

an average of 2.80 cm and a standard deviation of 0.29 cm.  Sex had the most significant 

correlation on PD with an average of 3.02 cm for males and 2.59 cm for females.  Race 

also showed significance in correlation with PD, where African Americans and 

Caucasians averaged 2.87 cm and 2.74 cm, respectively.  The medullary diameter (MD) 

ranged from 1.06 cm to 2.00 cm with an average of 1.51 cm and a standard deviation of 

0.22 cm.  Only sex showed strong correlation with MD where the averages for males 

and females were 1.59 cm and 1.42 cm, respectively.  

 Sex was the only factor that showed strong correlation with cortical wall 

thickness (T) where the average thickness was measured to be 0.71 cm for males and 

0.58 cm for females (total range: 0.28-0.91 cm, average: 0.65 cm, standard deviation: 

0.28 cm,).  The ratio of femoral shaft length to periosteal diameter (L/PD) ranged from 

9.3 to 12.9 with an average of 11.2 and a standard deviation of 0.9.  Again, only sex had 

a significant correlation on this ratio (male average: 11.8, female average: 10.6).   
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All geometry measures and statistics are found in Table 13 in Appendix A.  These 

are beneficial for determining the number of sizes (e.g. IM nail diameter and length) 

required in order to accommodate the sample population.  Although the inner diameter 

of a patient’s intramedullary canal is reamed prior to insertion of the implant, the initial 

inner diameter and wall thickness determine the final reaming and nail diameters.  

Although the present statistical analysis shows a significant variation in femoral 

curvature, the necessity for multiple IM nail shapes is determined through finite 

element analysis as follows.  As previously stated, no significant correlation between 

curvature and the three population factors (i.e. race, sex, and age) was found in the pilot 

study; therefore, evidence was not found that showed a need for developing different 

nails for different sub-populations. 

Virtual Surgery 

Fig. 37-Fig. 42 depict the von Mises stress fields resulting from the interference 

fit of each nail with the femur.  Local maximum stresses at regions of stress 

concentration are also labeled.  The FEA results from the hammer impact simulations 

are illustrated in Fig. 43.  Finally, the simulation results comparing femur biomechanics 

due to standing with different IM nails are shown in fig. 45–fig. 47. 

The tangential compressive strength of cortical bone is approximately 130 MPa 

with a yield strength of 114 MPa [74].  The allowable stress was calculated to be 60.8 

MPa by taking into consideration that the yield strength of cortical bone decreases with 

age by approximately 20% [75] and by implementing a safety factor of 1.5.  In the 
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For the maximum radius femur fitted with the optimized IM nail, the maximum 

von Mises stress remained well below the allowable stress.   

The simulated hammer impact had very little effect on the stress generated 

where the distal tip of the nail comes into contact with the canal wall.  A greater 

curvature mismatch between the nail and femur seemed to result in a larger percent 

difference between stresses induced only by interference fit and corresponding impact-

induced stresses.  The mid-diaphyseal and proximal regions of the femur were the most 

affected by the hammer impact.  However, even in these regions the stress increase was 

only between two and twenty percent. 

The stress distribution in the femur during simulated standing varied significantly 

when the femur was fixated with a titanium IM nail compared to an untreated intact 

femur.  The closer the nail geometry matched the canal curvature (i.e. optimized nail 

verses 200 cm radius nail), the more closely the stress in the treated femur matched 

that of the untreated femur.  However, nail material had the greatest impact on femoral 

stress during standing as the stress distribution with a CFR-PEEK nail was virtually 

identical to that without IM nail fixation.  

Experimental Testing 

The experimental results of IM nail insertion comparing the optimized nail with 

the 200 mm radius nail are illustrated in fig. 48–fig. 50. 
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does not appear to change throughout adult life, or at least does not vary between the 

younger and older groups of adults (30’s and 70’s) in this study.  However, a previous 

study with a larger sample did find significant correlation [87] between race and femoral 

curvature.  Both the present and cited studies found that the average radius of 

curvature for African Americans was larger than that of Caucasians.   

 Because the location of the most anterior point was found to be fairly consistent 

among the sample femora, it can be inferred that the same general shape is found 

within the sample population.  In other words, the locations along the length of the 

femoral shaft where maximum and minimum curvatures occur are relatively consistent.   

Virtual Surgery & Experimental Testing 

 Results of the finite element analysis simulating the insertion of the 

geometrically optimized IM nail showed that the stresses induced in the femoral shaft 

were within the allowable range.  Since the femora having the highest and lowest 

curvature in the sample were used for analysis, it is probable that the average curvature 

function is sufficient for the entire population.  Therefore, no additional curvature 

"sizes" would be necessary.  With titanium alloy as the nail material, stresses adjacent to 

the proximal entry hole which exceeded the allowable stress could be reduced by 

moving the hole towards the anterior margin. 

 Whereas failure was predicted at mid-shaft with both the 200 and 300 cm radius  

nails inserted into the minimum radius femur, the stresses induced in the distal shaft 

were relatively low and nearly identical for all three nails.  Here, contact was made 
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between the nails and the porous cancellous bone which has a much lower effective 

modulus than cortical bone.  Yielding and microfractures within cancellous bone along 

the canal are expected during the reaming process; however, cortical bone is a much 

greater contributing factor towards the overall mechanical integrity of the femur. In the 

distal region of the femur, the stresses within cortical bone remain well below the 

allowable stress - even when considering age degradation. 

While stresses within the minimum-radius femur were significantly lower with 

the optimized nail verses the two commercial nails when the nails were in their final 

position of insertion, the experimental tests showed that for some femora, such as the 

Sawbones composite femur, the forces required for insertion may be greater for the 

optimized nail.  Additionally, the strain – and therefore stress – could also be greater 

with the optimized nail.  This is largely due to the fact that the optimized nail has a 

lower curvature in the distal region, so as it passes through regions of the canal where 

the curvature is high, a greater amount of bending in the femur – as well as the nail – 

occurs to accommodate the curvature mismatch.  The more bending required, the 

greater force necessary to insert the nail.   

However, the objective of the shape optimization technique applied to IM nail 

geometry is to determine a curvature function that best fits the entire population, not 

just certain cases.  In other words, one curvature function that is sufficient for the wide 

variation in human femoral curvature would be used as a "one shape fits all" - while still 

allowing for the selection of various sizes (e.g. length and diameter).  According to the 
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present study, an optimized nail fabricated from titanium alloy seems to be a possible 

solution to the current problem with IM nailing. 

An even more effective solution would be to fabricate IM nails from a 

biocompatible, high-strength composite with a similar elastic modulus as cortical bone – 

such as CFR-PEEK.  The current study has shown that not only does this significantly 

reduce stresses induced by curvature mismatch, but – compared to metal alloys – it also 

has negligible effects on the femur's biomechanics.   
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Femoral Locking Plate 

Locking plate technology is commonly used in orthopedic trauma surgery to 

stabilize fractures in long bones such as the femur and humerus.  This screw-plate 

system offers the possibility of using conventional screws – oriented at oblique angles 

(not perpendicular to the plate) if necessary – as well as locking head screws.  Locking 

screws provide fixed angle stability and alleviate the need for plate-bone interface 

friction [105,106].  The locking plate technique can be used to treat numerous fracture 

patterns as it offers the surgeon many possible screw configurations.  However, as the 

use of locking plates have increased due to much clinical success, clinical failures due to 

plate yielding and fracture have been observed [105,107,108].  These failures are not 

limited to any particular plate model [109].  The vast majority of failures are contributed 

to improper placement and fixation techniques, plate selection, and pre-mature weight-

bearing by the patient [105,107,108].  While the mechanical function of locking plates is 

well-understood, the optimum parameters that lead to efficient stability and fracture 

healing, such as plate geometry and material properties, as well as the optimum fixation 

techniques, such as screw configuration and the use of hole plugs, are unknown [110-

115].   

 Therefore, the simulation-based implant design and optimization techniques will 

be used to determine the optimum design parameters for the purpose of damage 

management.  Proper engineering design practice requires the application of a factor of 

safety when structural stability is a necessity.  Particularly when dealing with the safety 
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of an individual, the factor of safety should be sufficiently high to prevent failure even 

under extreme or un-recommended environmental conditions, such as premature 

weight-bearing.  A factor of safety can also compensate for fatigue failure – a common 

failure mechanism in many implants.  It is therefore desirable and necessary to analyze 

the biomechanics of current femoral fixation systems under both typical and extreme 

physiological loading conditions in order to improve reliability of a new design.   

A large number of experiments are required to adequately compare the various 

parameters of interest under these conditions, making traditional mechanical testing 

methods inefficient.  Additionally, the complicated time-dependent static and dynamic 

loads are difficult and expensive to replicate by machine.  Therefore, simulation-based 

techniques will be used to simulate the behavior of current plate models under various 

loads and predict failure.  A successful study would provide surgeons with crucial 

information regarding the improvement of fixation techniques and plate selection and 

well as provide manufactures with data that would improve overall plating system 

designs.  This in turn would improve the overall quality that orthopaedic trauma 

patients receive. 
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Methods & Materials 

Steps 1–6:  Digital Reconstruction and Analysis of Specimen Samples  

Since locking plate systems and IM nailing are both standard treatment 

techniques for femoral fractures, the present and previous case studies share the same 

initial six steps - beginning with acquiring femoral specimen samples and ending with 

the generation of average femoral models.   

7.  Contour Optimization 

Current distal femoral plating systems are designed for fixation at the lateral side 

of the femur.  This is based on the assumption that typical physiological loading causes 

medial bending of the femur – resulting in compression at the fracture interface (as 

opposed to lateral bending which would lead to the fracture gap expanding).   

Compression at the fracture gap is imperative due to the nature of bone remodeling: 

bone requires stress to heal. 

On average, the loading direction at the hip joint in the coronal plane is 

approximately 5-10° medially with respect to the diaphyseal axis.  In this case, the 

reaction force at the knee joint is distributed so that 60% is across the medial condyle 

and 40% is across the lateral condyle – leading to medial, or inward, mending.  However, 

the significant variation in human skeletal geometry among the population could have a 

great impact on the loading angle, known as the q angle.  For example, a patient with 

wider hips than the average individual would have a larger q angle.  It is common 

knowledge among orthopaedic surgeons that approximately 10-15% of patients have a 
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q angle of 15° or more.  As following simulation results will verify, a q angle of this 

magnitude will cause lateral bending – leading to expansion of the fracture gap if a 

laterally fixated plate is used.  Therefore, the present case study focuses on the 

development of a plate that would improve the outcome for this minority of patients - 

otherwise known as a "medially locking plate" (MLP).  

First, the average femur model was imported into Pro/Engineer (PTC, 2010), a 

CAD software package.  Positioning of the plate relative to the femur was then defined 

by creating datum planes.  The datum planes were positioned in such a way that the 

sagittal plane was parallel to a planar approximation of the medial epicondylar surface 

and approximately tangent to the diaphyseal surface.  The coronal plane was then 

position 90° to the sagittal plane rotated about a linear approximation of the diaphyseal 

axis  (fig. 51). 
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8.  Simulation-Based Performance Analysis Digital Reconstruction of Current Plates   
The following distal femur locked plating systems, including locking screws of 

various lengths, were digitally reconstructed using Pro/Engineer.  A 0.1 mm precision 

was maintained to ensure accurate geometric representation.   

• DePuy POLYAX distal femur Plate (fig. 58) 

• Smith & Nephew PERI-LOC distal femur locking plate (fig. 59) 

• Synthes locking condylar plate (LCP) (fig. 60) 

• Synthes less invasive stabilizing system (LISS) (fig. 61) 

• Zimmer NCB distal femoral plating system (fig. 62) 
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Comparative Performance Analysis   
A finite element femoral fracture model was created using Abaqus CAE (Dassault 

Systèmes, 2008).  The flexibility of the fracture model allowed for the simulation of 

various fracture types, methods of fracture stabilization, and physiological loading 

conditions, as well as modifications to the plating systems.  Cortical and cancellous bone 

geometry was generated from one of the femur specimen from the Cleveland Museum 

of Natural History.  Each plate was fitted to the femur model as recommended by the 

corresponding technique guides provided by the manufacturers.  Interlocking screws 

were then inserted at the appropriate locations.  One to two holes adjacent to the 

fracture site – the number depending on the relative location of the hole – were left 

vacant.  This allowed for an experimental control where the plate length between the 

nearest proximal and distal screws relative to the fracture was as close to being the 

same length as possible.   

The screw placement elsewhere throughout the plates was not as critical to the 

present study.  Therefore, the maximum number of course-threaded screws (used to 

anchor into cancellous bone) that was allowed by the femur's geometry was used in the 

distal condylar region.  Bicortical screws were used to fixate the plate to the diaphysis; 

each going through the lateral side of the diaphysis with the tip anchoring in the medial 

side.  Placement of the bicortical screws depended on whether the holes were 

staggered.  If they weren't staggered, then every other screw hole was left vacant.  If 

they were staggered, then screws were inserted into pairs of adjacent screw holes 

separated by pairs of vacant holes.  This method of placement was chosen primarily to 
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maintain a control among the plating systems for comparative purposes, not as an 

optimum screw configuration technique.  Once each screw was positioned, a subtractive 

Boolean operation was performed to "drill" the screw holes into the femur.  This was 

accomplished by removing overlapping geometry among the femur and screws. 

After inserting the screws into the desired locations, in order to simulate locking 

threads, tie constraints were assigned to prevent relative motion between screw/bone 

and screw/plate nodes in contact.  The threaded interfaces were simplified as smooth 

cylindrical surfaces matching the inner diameters of the screw's shaft and head.  The 

screw heads were also given a 5° draft.   

Contact constraints mimicking the normal and tangential behavior of the 

bone/implant interface were assigned between the plate and femur.  A coefficient of 

friction of 0.2 was chosen to mimic the behavior of tangential bone/metal sliding in a 

wet environment.  The displacement was constrained in all three degrees of freedom for 

nodes located at the knee joint. 

The fracture model geometry for each plating system – with two different 

fracture types (distal fractures with and without bone loss) – is illustrated in figures fig. 

63-Fig. 67.  The fractures were generated via Boolean operations by subtracting 

overlapping fracture geometry from the femur model.  Wherever subtractive operations 

were performed – whether by fracture or drilling – virtual topology techniques were 

used to combine all faces that were modified in the process.  As described in the 

Methodology section, this ensures a quality local tetrahedral mesh adjacent to the 

fracture/drill site. 
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weight off the injured leg during the initial weeks of recovery, it is not uncommon for 

the individual to attempt to stand or even walk during this time – whether intentionally 

or by accident.  It is therefore desirable to determine the performance of the plating 

system under this extreme loading condition.   

Nodes at the hip joint interface were selected for distributing the maximum load 

magnitude across the joint surface in the appropriate direction (q° and qhigh°).  For the 

impulse loads, tabular amplitude functions were generated to simulate the change in 

hip load throughout the impact duration.  During the load time step, the amplitude 

function, ranging from zero to one, was multiplied with the maximum load magnitude. 

Muscular reaction forces were omitted for the present case studies.  Various 

muscles act as stabilizers for the femur during hip joint loading and, therefore, have 

some effect on how the femur behaves structurally.  However, for the present feasibility 

study demonstrating the effectiveness of the proposed design and optimization 

methodology, it is valid to ignore muscular reaction forces knowing that their presence 

will only reduce load-induced stresses in the femur/implant system.  Experimental data 

will be necessary to include these elements in further analyses. 
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Table 4.  In addition, the 64 simulations found in the table were performed for each q-

angle (°q and qhigh°); therefore, a total of 128 scenarios were analyzed. 



 

Table 
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4.  Simulationn scenarios 
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The analysis steps for each simulation were defined as static.  For the impulsive 

"dynamic" loading conditions, the experimental data provided by Bergmann, et al, could 

be simulated as quasi-static – a change in hip load as a function of time.  Non-linear 

large deformations were assumed. 

Solid meshing was achieved using approximately two million linear tetrahedral 

elements for each fracture model.  Through preliminary simulations using h-adaptivity 

convergence, the element size was reduced with an average edge length of 0.5 mm for 

the plate systems and 2.0 mm for the femur (fig. 72) in order to ensure that the solution 

was mesh independent.  Once the input files for each simulation were generated, most 

of the processing was accomplished via remote access to a supercomputer at the 

National Center for Supercomputing Applications (NCSA), located at the University of 

Illinois.  Eventually, a high-performance 64-bit personal computer with eight processing 

threads, 24 GB of memory, and a solid state scratch drive was built to alleviate the wait 

time required to run the analyses and download the large output files. 
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9.  Structural Optimization Parametric Analysis 
The Smith & Nephew PERI-LOC fracture model with a distal transverse fracture 

was chosen to perform the parametric analysis.  Stress concentrations are found around 

empty screw holes in the plate, particularly near the fracture; therefore, screw hole 

inserts were also created for the fracture model.  The use of inserts may reduce the 

stress in these locations.  Additionally, using an interlocking oblique screw angled 45° 

distally through the fracture – in the coronal plane – may provide increased stability.  

Although current plates do not allow for such large angle oblique screws with 

interlocking capabilities, a screw model was modified to allow the technique to be 

simulated and quantify its potential.  Fig. 73 illustrates the fracture model assembly 

configuration with screw hole inserts and oblique screw. 
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properties, meshing, time step, and solver properties were identical to those of the 

comparative performance analysis. 

Table 5. Factors and their alternate levels 

Factors 
Number of Levels 

1 2 3 

A. Material (Type) Type 1 Type 2 Type 3 

B. Thickness 3.5 mm 4.5 mm 5.5 mm 

C. Use of screw hole inserts With Without With (dummy) 

D. Use of oblique screw  (45°) With Without With (dummy) 

 

Table 6.  Simulation log for parametric analysis 

Simul. 
No. 

Material 
Thickness 

(mm) 
Screw Hole 

Inserts 
Oblique Screw 

(45°) 

1 316L SS 3.5 Yes Yes 

2 316L SS 4.5 No No 

3 316L SS 5.5 Yes Yes 

4 Ti6Al7Nb 3.5 No Yes 

5 Ti6Al7Nb 4.5 Yes Yes 

6 Ti6Al7Nb 5.5 Yes No 

7 CFR-PEEK 3.5 Yes No 

8 CFR-PEEK 4.5 Yes Yes 

9 CFR-PEEK 5.5 No Yes 

 

Surgical grade metallic alloys such as 316L stainless steel and titanium Ti6Al7Nb 

are commonly used to fabricate orthopaedic implants, including locked plating systems. 

These alloys have traditionally been used because of their biologically inert properties 

and because of their high resistance to corrosion.  The 316L SS and Ti6Al7Nb alloys were 

therefore both chosen as two of the materials in the parametric study. 
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Polymer composites are also of interest for fabricating plating systems due to 

their potential in having mechanical properties that more closely match cortical bone.  

This is important because a significant mismatch in implant/bone stiffness can cause 

local bone atrophy due to stress shielding, a phenomenon in which bone tissue 

remodels so that strains return to normal [73,116,117].  Carbon fiber-reinforced 

polyetheretherketone (CFR-PEEK) is a biocompatible, biologically inert composite 

designed for non-degradable implants that can be tailored to match the mechanical 

properties of cortical bone.  CFR-PEEK also has good wear resistant properties [118] and 

is stable at high temperatures allowing it to endure repeated sterilization cycles [119].  

Because of its potential, CFR-PEEK was chosen as the third material for the study. 

FEM-Integrated Optimization 
The objective of the FEM-integrated structural optimization phase was to 

minimize the mass of the initial plate geometry obtained through shape optimization.  

However, the major design constraint limiting mass minimization was the yield strength 

of the plate.  The material properties of titanium alloy Ti6Al7Nb were used define the 

behavior of the plate resulting in a yield strength of 880 MPa.  However, a factor of 

safety of 2.0 (because of long-term cyclic loading and the nature of the device) and a 

20% strength degradation due to aging were assumed.  Therefore, the maximum stress 

under normal physiological loading was set at 350 MPa. 

The variable design parameters were the width and thickness of the plate.  An 

additional design constraint was a minimum thickness of 2.5 mm.  This was established 
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in order to insure that sufficient surface area was present at the screw/plate interfaces 

for interlocking to occur.   

First, a pseudo-static analysis – simulating the impact at the hip joint due to a 

250 lb individual stumbling – was pre-processed using an intact femur fixated with the 

plate obtained from the shape optimization phase.  The thickness and width dimensions 

of the plate were overdesigned to insure that the results of the initial static analysis 

satisfied the allowable stress constraint (σmax ≤ 350 MPa).  The structural analysis was 

then imbedded into an sequential quadratic programming (SQT) optimization algorithm 

where, based on the results of the preceding structural analysis, the design parameters 

were updated before repeating the simulation.   

The static analysis and optimization algorithm were both developed in 

Pro/Mechanica because of it integrative capabilities.  Because Pro/Mechanica uses an 

automated mesh generator with p-element convergence to insure mesh independence 

at each optimization pass, a simplified femur model was developed in order to decrease 

processing time.  This allowed for larger element edge lengths as opposed to the femur 

models generated directly from the CT scans – when consisted of triangular-meshed 

surfaces with small edge lengths.  The simplified femur model was developed using CAD 

sweeping techniques to match the geometry of the average femur model as illustrated 

in fig. 74.  Because the femoral diaphysis is comprised almost entirely of cortical bone, 

and since the since the interaction between the plate in at femur is most significant 

within the diaphysis, the simplified femur model in its entirety was assumed to be 
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failure was predicted for all of the plating systems regardless of which loading condition 

was simulated.  The two stainless steel plates – the Synthes LCP and Smith & Nephew 

PERI-LOC – had the lowest factor of safety for all loading and fracture scenarios.   

Stress concentrations were present near vacant screw holes.  For the intact 

femur, the highest stress was found in the proximal region fixated to the diaphysis.  

With femoral fractures introduced to the models, the maximum plate stress occurred 

along the fracture site.  When bone loss was present, failure was predicted for all 

simulation cases.  More details regarding the simulation results are found in Table 14 

and Table 15 in Appendix A. 
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Fig. 91-Fig. 94 illustrate how each of the plate systems affect the biomechanics 

of the femur by comparing the standing-induced femoral stress fields to that of a femur 

without plate fixation.  In particular, the effects of stress shielding can be observed.  It is 

apparent that throughout the length of plate/diaphysis interface, the femoral stress is 

significantly reduced compared to a healthy untreated femur.  The same is true for the 

medial side of the diaphysis as well, particularly for the longer plates (Synthes LCP, LISS, 

and Zimmer NCB). 
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illustrated in Fig. 100.  Rounding to the nearest 0.5 mm, the optimum values for the 

width and thickness of the medial locking plate were determined to be 19.5 mm and 3.5 

mm, respectively.   

Finally, the structurally optimized plate was modified so that the axial diameter 

throughout the proximal length on the nail – that which is secured to the diaphysis – 

had an axial diameter matching the approximated average outer diameter in the sample 

(28.0 mm, fig. 101).   The optimized plate was then assembled into the fracture model 

used in the comparative performance analysis (fig. 102), where each of the fracture and 

loading conditions were simulated given the high q-angle loading direction (15°).  The 

FEA results comparing the medial locking plate to the five plating systems previously 

analyzed are illustrated in fig. 103 and Fig. 104.  For the intact femur model, the 

optimized plate actually had a slightly less factor of safety than the Synthes LISS, but in 

all loading cases neither plate failed, whereas the other plates did.  However, for the 

distal transverse fracture model, the optimized plate outperformed the LISS by a factor 

of 5 for each load case.  Only during stumbling did yielding occur in the optimized plate, 

while all other plates analyzed yielded during each of the loading scenarios. 
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A cue in the statistical analysis performed on the femur sample suggests that the 

same basic shape is consistent among the population to a certain degree: the location of 

the most anterior point of the anterior diaphyseal surface (as a function of percent 

length from the proximal end) was reasonably consistent.  The magnitude of curvature 

varies to a large degree, but relatively little variation seems to exist regarding the 

location along the diaphysis where curvature is the highest.  Coupling statistical results 

with shape optimization can aid in determining early on whether multiple shapes may 

be necessary to fit the patient population.  Finite element simulations followed by 

experimental mechanical testing and animal/human in vivo tests are required for final 

verification as to whether multiple shapes are necessary.  Again, the goal of the 

computer-aided implant design process is to minimize the time and expenses associated 

with experimental testing by approaching the optimal design of the entire implant 

system prior to prototyping.   

Simulation-Based Comparative Performance Analysis 

 Before beginning the development of conceptual designs, it is important to have 

a clear understanding of how existing competitive devices perform.  Clinical studies 

comparing different devices are expensive and pose risks to the patients.  Experimental 

mechanical testing is also expensive, and limitations of equipment and specimen 

samples limit the type of loading scenarios that can be accurately reproduced.  By 

verifying simulation results with those found experimentally using simple physiological 
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conditions, it is inferred that complex simulated physiological conditions – based on the 

same system – are also verified.  This is standard engineering design practice. 

The highest percent difference between simulation and experimental results 

occurred with experiment three (distal transverse fracture fixated with Synthes LISS).  

This was the only experimental case where the corresponding finite element simulation 

featured nonlinear contact within the fracture site.  The other simulation cases did have 

nonlinear contact constraints assigned between the femur and plate, but only did the 

fracture with bone loss scenario actually have loading-induce contact in this region 

during the analysis.  The contact pressure within the transverse fracture was much 

higher and, therefore, had a much higher effect on the results than did plate/femur 

contact.  This could be the cause of the higher percent difference with the transverse 

fracture case.   

Friction within the distal transverse fracture could also have played a role in the 

higher percent difference between the simulated and experimental results in the 

transverse fracture case.  The experimental test had dry, rough contact, whereas the FE 

simulation assumed wet contact.  Additionally, the initial fracture gap between the 

femur fragments was higher for the experimental test compared to the corresponding 

simulation (approximately 0.2 mm verses 0.0001 mm, respectively).   

For the remaining three experimental tests, the remarkably low percent 

difference between experimental and simulation results suggests that that finite 

element fracture accurately represents human physiological loading conditions.  Not 
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only is this inferred to be true for the simple standing load, but also for any complex 

quasi-static loads and fixation methods. 

Simulation-Based Parametric Analysis 

Material properties, particularly the stiffness and strength, were shown to have 

the greatest impact on plate performance. Stainless steel, having a slightly lower 

modulus of elasticity, resulted in slightly lower stresses.  However, because the strength 

of the titanium alloy is significantly higher than stainless steel, using titanium yields the 

highest performance.  CFR-PEEK also outperformed stainless steel.  Although a higher 

factor of safety can be achieved using titanium alloy, CFR-PEEK did show to have 

potential as an alternative. The benefits of its flexibility may prove to outweigh its 

relatively lower strength when selecting materials for orthopaedic implants.   

 Increasing the thickness of the plate was the second greatest contributing factor 

towards plate performance.  Intuitively, this is expected as the cross-sectional area is 

increased.  However, two adverse effects arise with increasing thickness.  First, 

increasing implant size potentially increases the inflammation in surrounding tissue [74].  

Second, the flexibility of an implant is inversely related to thickness, and decreased 

flexibility increases the effects of stress shielding [116]. These two design constraints 

must be examined along with the performance measures for optimum implant design.  

 Using an oblique screw also aided in increasing the factor of safety.  It acts as a 

stabilizing member in a manner similar to a kickstand on a bicycle. Because current 

distal femur plates do not offer the ability to implement oblique screws at angles large 
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enough to give longitudinal support, a new screw/plate interface design would be 

necessary if this technique is adopted. Optimum angles, given the location of the screw, 

could be determined using the described method. 

Although the overall factor of safety was not significantly affected by the use of 

screw hole plugs, they are beneficial for reducing local stress concentrations around 

vacant screw holes.  The stress concentration factors in these areas were reduced 

because the hole was virtually eliminated.  However, stress concentrations were still 

present due to edges around the counter-sink and the reduced thickness near the 

plugged hole.  Eliminating countersink features around the screw holes could help 

improve the performance effect of inserts.   

Structural Optimization 

Structural optimization was performed assuming worst-case loading conditions 

following a full recovery of the patient.  Patients are strongly advised to keep weight off 

of their leg before bone remodeling and healing takes place, let alone participate in 

activities involving impact, including walking.  However, it is impossible to insure that 

the fracture heals in an "ideal" environment; therefore, design precautions must be 

taken to ensure the implant can withstand 100% of the patient's weight via static and 

low impact loading.  By using structural optimization techniques to design for extreme 

loading conditions after full recovery, and by implementing a sufficient factor of safety, 

the possibly of mechanical failures occurring prior to recovery can be minimized.  
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Various fracture and loading scenarios can then be simulated using the optimized 

implant geometry to insure its mechanical integrity against un-recommended loading. 

Although titanium alloy – the highest structurally-performing material from the 

parametric analysis – was used for the present structural analysis, it would be 

worthwhile to further examine the feasibility of CFR-PEEK plates.  By applying the 

appropriate material properties, the optimum dimensions can be obtained using the 

established methodology.  Further simulations would then be required to ensure 

mechanical integrity during various fracture and loading conditions as mentioned 

earlier, followed by in vivo testing.  Although it is obvious that titanium will outperform 

CFR-PEEK from a structural point of view, the added long-term benefits of a more 

flexible CFR-PEEK may prove its superiority. 

Finally, a complete distal locked plating system can be designed based on the 

present case study results and further analysis – particularly dealing with the locking 

screws themselves.  The use of oblique screw orientation for the purpose of structural 

support showed potential during the parametric analysis.  As mentioned previously, a 

new screw/plate interlocking system needs to be designed to allow for higher angle 

orientation.  The simulation and optimization techniques can then be applied in order to 

determine the optimum orientation angle. 
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CHAPTER V.  CONCLUSION & RECOMMENDATIONS 

Conclusion 

The design of load-bearing, internal fracture fixation implants is a complicated 

process involving the optimization of performance measures while meeting 

physiological-related design constraints not typically considered in other engineering 

fields.  The developed simulation-based approach is capable of improving contour fit 

and structural integrity while minimizing weight and stress shielding.  Complex loading 

conditions can be simulated while various implant geometry features, fixation 

techniques, and materials can be analyzed in an efficient manner compared to 

traditional trial-and-error methods.  The design methodology is not only applicable for 

femoral fixation implants as demonstrated with the present case studies; it can be 

utilized for the design of internal fixation implants intended for any fracture location.  

Ultimately, the comprehensive simulation-based methodology for the design and 

optimization of orthopaedic internal fixation implants can help in both improving 

patient care and reducing costs associated with R&D. 

Recommendations 

Recommended improvements on the design methodology include: 

• Expand on statistical variation analysis by determining modes of variation in 

the bone specimen in addition to the geometry measurements taken in the 

present study (e.g. twisting, shaft axis angle relative to knee joint, etc.) 

• Analyze and visualize modes of variation using Polyworks 
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• Incorporate material selection in structural optimization techniques 

(including particle volume fraction/size of polymer composites) using ANSYS 

Workbench.   

• Use CT scanner to create CAD model of Sawbones composite specimen for 

experimental validation of numerical simulations.  (a better approach for 

validation than using a scanned cadaver specimen with geometry different 

from the test specimen). 

• Use CT voxel data to import material properties as a function of bone density 

into finite element model (adopt and improve on current techniques). 

• Predict fatigue failure via cyclic loading (weight-shifting, walking, jogging, and 

running) and applying material failure criteria. 

• Further investigate the use of CFR-PEEK for manufacturing flexible IM nails 

and locking plates (may need titanium core w/ relatively small cross-sectional 

area for strength and stability during recovery) 

• Apply muscular reaction forces to the finite element fracture models based 

on experimental measurements.  
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APPENDIX B 
Automated Image Segmentation Code (Matlab) 

function varargout = Segmentator(varargin) 
  
%  SEGMENTATOR M-file for Segmentator.fig 
%      A fully-automated CT image segmentation program specific to bone CT scans. 
% 
%      Imports a set of DICOM files corresponding to a 3-D digital CT scan and determines the spatial  
%      coordinates of voxels representing cortical and cancellous bone.  The program is unique in that the 
%      surface integrity of the thin cortical walls in the proximal and distal condyles is preserved (i.e. no  
%      holes or islands). 
 
%      SEGMENTATOR, by itself, creates a new SEGMENTATOR or raises the existing 
%      singleton*. 
% 
%      H = SEGMENTATOR returns the handle to a new SEGMENTATOR or the handle to 
%      the existing singleton*. 
% 
%      SEGMENTATOR('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in SEGMENTATOR.M with the given input arguments. 
% 
%      SEGMENTATOR('Property','Value',...) creates a new SEGMENTATOR or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Segmentator_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Segmentator_OpeningFcn via varargin. 
% 
%  Author: Josh Arnone 
%  Date: May 6, 2010 
  
% ----------------------------------------------------------------------- % 
  
% Begin initialization code 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Segmentator_OpeningFcn, ... 
                   'gui_OutputFcn',  @Segmentator_OutputFcn, ... 
                   'gui_LayoutFcn',  [], ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
   gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code 
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% ----------------------------------------------------------------------- % 
  
% --- Executes just before Segmentator is made visible. 
function Segmentator_OpeningFcn(hObject, eventdata, handles, varargin) 
  
% Choose default command line output for Segmentator 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% ----------------------------------------------------------------------- % 
  
% --- Outputs from this function are returned to the command line. 
function varargout = Segmentator_OutputFcn(hObject, eventdata, handles) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
% ----------------------------------------------------------------------- % 
  
% --- Executes on button press in Generate_pushbutton. 
function Generate_pushbutton_Callback(hObject, eventdata, handles) 
  
% Set number of scan slices, pixel rows, pixel columns, and slice thickness 
num_of_slices = str2num(get(handles.Slice_edit,'String')); 
row_num = str2num(get(handles.RowNum_edit,'String')); 
col_num = str2num(get(handles.ColNum_edit,'String')); 
slice_thickness = 2; 
  
% Set voxel intensity limits for cortical and cancellous bone 
lower_limit_1 = str2num(get(handles.CorticalLowerLimit_edit,'String')); 
upper_limit_1 = str2num(get(handles.CorticalUpperLimit_edit,'String')); 
lower_limit_2 = str2num(get(handles.CancellousLowerLimit_edit,'String')); 
upper_limit_2 = str2num(get(handles.CancellousUpperLimit_edit,'String')); 
  
% Set cropping planes for plotting results 
row_min = str2num(get(handles.RowsLowerLimit_edit,'String')); 
row_max = str2num(get(handles.RowsUpperLimit_edit,'String')); 
col_min = str2num(get(handles.ColumnsLowerLimit_edit,'String')); 
col_max = str2num(get(handles.ColumnsUpperLimit_edit,'String')); 
  
% Begin time counter 
tic 
  
% Open Waitbar 
% h = waitbar(0,'Computing...')%,'CreateCancelBtn','setappdata(h,"canceling",1)'); 
  
% Step 1/9 
% Initialize the 3D CT scan array with zeros 
CT_scan = zeros(row_num, col_num, slice_thickness*num_of_slices - 1); 
clf 
  
% Import voxel intensity data from CT DICOM files into CT_scan array 
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disp('Importing CT scan slices (step 1 of 9)') 
for ii = 1:num_of_slices     
    jj = num_of_slices + 1 - ii; 
    slice_num = num2str(jj);                        % Turns jj into a string    
    CT_slice = sprintf('Slice%s.dcm', slice_num);   % Creates a string for current filename    
    current_slice = dicomread(CT_slice);            % Load the DICOM file from current directory  
    CT_scan(:,:,2*ii-1) = current_slice;            % Puts the file into a slice of CT scan matrix 
end 
toc 
% waitbar(0.111,h) 
  
% Initialize the 3D point cloud arrays with zeros 
cortical = zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
cancellous = zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
  
% Step 2/9 
% Begin image segmentation loop for cortical bone 
disp('Segmenting cortical bone (step 2 of 9)') 
for kk = 1:num_of_slices 
    for jj = 1:col_num 
        for ii = 1:row_num 
            if ((lower_limit_1 <= CT_scan(ii,jj,slice_thickness*kk-1)) ... 
            && (CT_scan(ii,jj,slice_thickness*kk-1) < upper_limit_1)) 
                cortical(jj,ii,slice_thickness*kk-1) = 1; 
            end 
        end 
    end 
end 
toc 
% waitbar(0.222,h) 
  
% Step 3/9 
% Begin image segmentation loop for cancellous bone 
disp('Segmenting cancellous bone (step 3 of 9)') 
for kk = 1:num_of_slices 
    for jj = 1:col_num 
        for ii = 1:row_num 
            if ((lower_limit_2 <= CT_scan(ii,jj,slice_thickness*kk-1))) ... 
            && (CT_scan(ii,jj,slice_thickness*kk-1) < upper_limit_2) ... 
            && (cortical(ii,jj,2*kk-1) ~= 1) 
                cancellous(jj,ii,slice_thickness*kk-1) = 1; 
            end 
        end 
    end 
end 
toc 
% waitbar(0.333,h) 
  
% Step 4/9 
% Begin image segmentation loops for thin, less dense, cortical walls of 
% proximal and distal condyles (edge detection: user-specified contrast in 
% voxel intensity) 
disp('Detecting outer edges of low density cortical walls of condyles (step 4 of 9)') 
cortical_temp =  zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
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for kk = 1:num_of_slices 
    for jj = 2:col_num-1 
        for ii = 2:row_num-1 
            if (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii+1,jj,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii+1,jj+1,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii,jj+1,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii-1,jj+1,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii-1,jj,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii-1,jj-1,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii,jj-1,slice_thickness*kk-1)) > 300 ... 
            || (CT_scan(ii,jj,slice_thickness*kk-1) - CT_scan(ii+1,jj-1,slice_thickness*kk-1)) > 300 
                cortical_temp(jj,ii,slice_thickness*kk-1) = 1; 
                cancellous(jj,ii,slice_thickness*kk-1) = 0; 
            end 
        end 
    end 
end 
for kk = 1:num_of_slices 
    for jj = 2:col_num-1 
        for ii = 2:row_num-1 
            if cortical_temp(ii,jj,slice_thickness*kk-1) == 1 
                cortical(ii,jj,slice_thickness*kk-1) = 1; 
            end 
        end 
    end 
end 
toc 
% waitbar(0.444,h) 
  
% Step 5/9 
% Convert small cortical bone "islands" within cancellous bone region to  
% cancellous bone 
disp('Removing noise (step 5 of 9)') 
cortical_temp =  zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
for nn = 1:3 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cortical(ii,jj,slice_thickness*kk-1) == 1 
                    cortical_count = 0; 
                    cancellous_count = 0; 
                    if cortical(ii+1,jj,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii+1,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj-1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii,jj-1,slice_thickness*kk-1) == 1 
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                        cortical_count = cortical_count + 1; end 
                    if cortical(ii+1,jj-1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cancellous(ii+1,jj,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii+1,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii+1,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cortical_count <= 3 && cancellous_count >= 5 
                        cortical_temp(ii,jj,slice_thickness*kk-1) = 1; 
                        cancellous(ii,jj,slice_thickness*kk-1) = 1; 
                    end 
                end 
            end 
        end 
    end 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cortical_temp(ii,jj,slice_thickness*kk-1) == 1 
                    cortical(ii,jj,slice_thickness*kk-1) = 0; 
                end 
            end 
        end 
    end 
end 
toc 
% waitbar(0.555,h) 
  
% Step 6/9 
% Convert cancellous bone voxels that are adjacent to cortical bone to  
% cortical bone 
disp('Removing holes in cortical wall - method 1 (step 6 of 9)') 
cortical_temp =  zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
for kk = 1:num_of_slices 
    for jj = 2:col_num-1 
        for ii = 2:row_num-1 
            if cancellous(ii,jj,slice_thickness*kk-1) == 1 
                if (cortical(ii+1,jj,slice_thickness*kk-1) == 1 ... 
                || cortical(ii+1,jj+1,slice_thickness*kk-1) == 1 ... 
                || cortical(ii,jj+1,slice_thickness*kk-1) == 1 ... 
                || cortical(ii-1,jj+1,slice_thickness*kk-1) == 1 ... 
                || cortical(ii-1,jj,slice_thickness*kk-1) == 1 ... 
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                || cortical(ii-1,jj-1,slice_thickness*kk-1) == 1 ... 
                || cortical(ii,jj-1,slice_thickness*kk-1) == 1 ... 
                || cortical(ii+1,jj-1,slice_thickness*kk-1) == 1) 
                    cortical_temp(ii,jj,slice_thickness*kk-1) = 1; 
                    cancellous(ii,jj,slice_thickness*kk-1) = 0; 
                end 
            end 
        end 
    end 
end 
for kk = 1:num_of_slices 
    for jj = 2:col_num-1 
        for ii = 2:row_num-1 
            if cortical_temp(ii,jj,slice_thickness*kk-1) == 1 
                cortical(ii,jj,slice_thickness*kk-1) = 1; 
            end 
        end 
    end 
end 
toc 
% waitbar(0.666,h) 
  
% Step 7/9 
% Fill in holes within cancellous bone (due to bone density variation) 
disp('Removing holes within cancellous bone (step 7 of 9)') 
cancellous_temp =  zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
for nn = 1:5 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cortical(ii,jj,slice_thickness*kk-1) == 0 ... 
                && cancellous(ii,jj,slice_thickness*kk-1) == 0 
                    cancellous_count = 0; 
                    if cancellous(ii+1,jj,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii+1,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj+1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii-1,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous(ii+1,jj-1,slice_thickness*kk-1) == 1 
                        cancellous_count = cancellous_count + 1; end 
                    if cancellous_count >= 4 
                        cancellous_temp(ii,jj,slice_thickness*kk-1) = 1; 
                    end 
                end 
            end 
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        end 
    end 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cancellous_temp(ii,jj,slice_thickness*kk-1) == 1 
                    cancellous(ii,jj,slice_thickness*kk-1) = 1; 
                end 
            end 
        end 
    end 
end 
toc 
% waitbar(0.777,h) 
  
% Step 8/9 
% Convert cancellous bone voxels that are exposed to the outer bone surface  
% to cortical bone 
disp('Removing holes in cortical walls - method 2 (step 8 of 9)') 
cortical_temp =  zeros(row_num, col_num, slice_thickness*num_of_slices-1); 
for nn = 1:3 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cancellous(ii,jj,slice_thickness*kk-1) == 1 
                    cortical_count = 0; 
                    empty_count = 0; 
                    if cortical(ii+1,jj,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii+1,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj+1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii-1,jj-1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii,jj-1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cortical(ii+1,jj-1,slice_thickness*kk-1) == 1 
                        cortical_count = cortical_count + 1; end 
                    if cancellous(ii+1,jj,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii+1,jj,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii+1,jj+1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii+1,jj+1,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii,jj+1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii,jj+1,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii-1,jj+1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii-1,jj+1,slice_thickness*kk-1) == 0 
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                        empty_count = empty_count + 1; end 
                    if cancellous(ii-1,jj,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii-1,jj,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii-1,jj-1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii-1,jj-1,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii,jj-1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii,jj-1,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cancellous(ii+1,jj-1,slice_thickness*kk-1) == 0 ... 
                    && cortical(ii+1,jj-1,slice_thickness*kk-1) == 0 
                        empty_count = empty_count + 1; end 
                    if cortical_count >= 1 && empty_count >= 1 
                        cortical_temp(ii,jj,slice_thickness*kk-1) = 1; 
                        cancellous(ii,jj,slice_thickness*kk-1) = 0; 
                    end 
                end 
            end 
        end 
    end 
    for kk = 1:num_of_slices 
        for jj = 2:col_num-1 
            for ii = 2:row_num-1 
                if cortical_temp(ii,jj,slice_thickness*kk-1) == 1 
                    cortical(ii,jj,slice_thickness*kk-1) = 1; 
                end 
            end 
        end 
    end 
end 
toc 
% waitbar(0.888,h) 
  
% Step 9/9 
% Plot cropped 3D point cloud of cortical and cancellous bone 
disp('Plotting cortical and cancellous bone point clouds (step 9 of 9)') 
figure(1) 
hold; 
axis([row_min row_max col_min col_max 5 slice_thickness*248-1]); 
view(20,20) 
for kk = 1:num_of_slices 
    for jj = col_min:col_max 
        for ii = row_min:row_max 
            if cortical(ii,jj,slice_thickness*kk-1) == 1 
                 plot3(ii,jj,slice_thickness*kk-1);                
            end 
            if cancellous(ii,jj,slice_thickness*kk-1) == 1 
                 plot3(ii,jj,slice_thickness*kk-1,'r');                
            end 
        end 
    end 
end 
hold; 
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% End time counter 
toc 
% waitbar(1,h) 
% setappdata(h,'Canceling...',0) 
% close(h) 
 
% ----------------------------------------------------------------------- % 
  
% Set user-defined "number of slices" as a variable 
function Slice_edit_Callback(hObject, eventdata, handles) 
  
num_of_slices = str2num(get(hObject,'String')); 
  
if(isempty(num_of_slices)) 
    set(hObject,'String',259); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function Slice_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "number of columns" as a variable 
function ColNum_edit_Callback(hObject, eventdata, handles) 
  
col_num = str2num(get(hObject,'String')); 
  
if(isempty(col_num)) 
    set(hObject,'String',512); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function ColNum_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "number of rows" as a variable 
function RowNum_edit_Callback(hObject, eventdata, handles) 
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row_num = str2num(get(hObject,'String')); 
  
if(isempty(row_num)) 
    set(hObject,'String',512); 
end 
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function RowNum_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "lower voxel intensity limit for cancellous bone" as a  
% variable 
function CancellousLowerLimit_edit_Callback(hObject, eventdata, handles) 
  
lower_limit_2 = str2num(get(hObject,'String')); 
  
if(isempty(lower_limit_2)) 
    set(hObject,'String',-800); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function CancellousLowerLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "upper voxel intensity limit for cancellous bone" as a 
% variable 
function CancellousUpperLimit_edit_Callback(hObject, eventdata, handles) 
  
upper_limit_2 = str2num(get(hObject,'String')); 
  
if(isempty(upper_limit_2)) 
    set(hObject,'String',0); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function CancellousUpperLimit_edit_CreateFcn(hObject, eventdata, handles) 
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if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "lower voxel intensity limit for cortical bone" as a 
% variable 
function CorticalLowerLimit_edit_Callback(hObject, eventdata, handles) 
  
lower_limit_1 = str2num(get(hObject,'String')); 
  
if(isempty(lower_limit_1)) 
    set(hObject,'String',0); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function CorticalLowerLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "upper voxel intensity limit for cortical bone" as a 
% variable 
function CorticalUpperLimit_edit_Callback(hObject, eventdata, handles) 
  
upper_limit_1 = str2num(get(hObject,'String')); 
  
if(isempty(upper_limit_1)) 
    set(hObject,'String',2000); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function CorticalUpperLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "column lower limit" (for cropping) as a variable 
function ColumnsLowerLimit_edit_Callback(hObject, eventdata, handles) 
  



182 
 

col_min = str2num(get(hObject,'String')); 
  
if(isempty(col_min)) 
    set(hObject,'String',0); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function ColumnsLowerLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "column upper limit" (for cropping) as a variable 
function ColumnsUpperLimit_edit_Callback(hObject, eventdata, handles) 
  
col_max = str2num(get(hObject,'String')); 
  
if(isempty(col_max)) 
    set(hObject,'String',512); 
end 
  
guidata(hObject,handles); 
  
% --- Executes during object creation, after setting all properties. 
function ColumnsUpperLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "row lower limit" (for cropping) as a variable 
function RowsLowerLimit_edit_Callback(hObject, eventdata, handles) 
  
row_min = str2num(get(hObject,'String')); 
  
if(isempty(row_min)) 
    set(hObject,'String',0); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function RowsLowerLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
  
% ----------------------------------------------------------------------- % 
  
% Set user-defined "crop upper limit" (for cropping) as a variable 
function RowsUpperLimit_edit_Callback(hObject, eventdata, handles) 
  
row_max = str2num(get(hObject,'String')); 
  
if(isempty(row_max)) 
    set(hObject,'String',512); 
end 
  
guidata(hObject,handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function RowsUpperLimit_edit_CreateFcn(hObject, eventdata, handles) 
  
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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