Adenovirus-36 Antibody Status and BMI Comparison Among Obese Missouri Adolescents

K. Long, T. Pancoast, B. Ge, A. Tosh
Department of Child Health, University of Missouri School of Medicine

Introduction
Worldwide obesity rates have skyrocketed since 1980, a phenomenon often attributed to changes in diet and physical activity. Adenovirus-36 (Adv-36) has been implicated in the multi-factorial etiology of obesity. Adv-36 has been shown to cause obesity in animal models, and previous studies in the U.S. and internationally have found a higher prevalence of Adv-36 antibodies in obese persons compared to non-obese persons. The prevalence of the virus in overweight and normal-weight individuals has never been studied in a Missouri population.

Purpose
To investigate if the prevalence of prior Adv-36 infection in obese Missouri adolescents and whether Adv-36 antibody positivity is associated with increased body mass index (BMI).

Methods
Subjects 10-18 years old attending an adolescent obesity clinic were recruited to participate in data collection. After subject assent and parent consent, 10 mL of serum was collected and sent to a reference laboratory for Adv-36 antibody testing via ELISA assay. Wilcoxon rank sum test was used to compare the difference in body mass index (BMI) at time of testing between Adv-36 positive and negative groups.

Results
Serum samples from 20 obese adolescents were obtained. Adv-36 antibodies were detected in 8 (40%) of the samples. Mean BMI of the Adv-36 positive group was 46.4 (SD 6.0) kg/m² and mean BMI of the Adv-36 negative group was 38.2 (SD 9.4) kg/m² (p=0.032). There was no significant difference in age between the groups (p=0.139).

Figure 1: Obese Adenovirus-36 Positive Subjects by Study

Table 1. Comparison of Age and BMI between Adv-36 Positive and Negative Subjects

<table>
<thead>
<tr>
<th></th>
<th>Adv-36 Positive</th>
<th>Adv-36 Negative</th>
<th>One-Sided p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Age</td>
<td>16.21 (SD 2.45)</td>
<td>15.23 (SD 2.32)</td>
<td>p=0.139</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>46.4 (SD 6.0)</td>
<td>38.2 (SD 9.4)</td>
<td>p = 0.032</td>
</tr>
</tbody>
</table>

Conclusions
Adenovirus-36 antibodies are present among obese Missouri adolescents, and prevalence rates appear to be greater than those found in prior studies using comparable populations (Figure 1). Presence of Adv-36 antibodies was significantly associated with increased BMI at time of testing, but not significantly associated with age. Subjects positive for Adv-36 antibodies had a significantly higher mean BMI than those who were antibody negative, with no difference in age (Table 1). Findings support the suggested role of adenovirus-36 as a risk factor for childhood and adolescent obesity. This study was limited by a small sample size. Further research should be directed towards determining the antibody status of normal-weight adolescents in Missouri as a control group.

References