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1.

Introduction.

Realizing that the Galois theory of algebraic
equations as commonly presented seems artificial, abstract,
end intricate, we have been led in the following paper
to attempt to present in a clear, tangible fashion the
general, fundamental principles involved in the algébraic
gsolution of equations. In carrying out this aim we have
found it necessary to generalize certain methods of
procedure still more than is done in the extant treatments
of this subject, to formulate some of the theorems
differently, and most of all to define the Galois group
of an equation from an entirely new point of view.

In Ghapter I we consider in & very elementary
manner the solution of quadratic and cubic equations
from the group standpoint. PFrom this elementary discussion
it is hoped that the student will see that even the very
simple and familiar proces®es which he perhaps thought
mechanical or trick processes are but parts of a general
scheme. In Chapter II we study more in detail the
processes involved in the solution of.the cubic equation,
introducing the general theory as needed. Having
found the conditions under which the various processes
can actually be performed, we attempt in Chapter III to
extend the plan of solution for quadratic and cuble equations to
equations of higher degree. '

APtoer the student hes & general picture of the

solution of an equation from the group standpoint, we






Re

introduce in Chapter IV the idea of "the" group of &n
equation. As mentioned abo&e, we discard the ordinary
definition of the Galois group of an equation, and
formulate a definition which we believe to be more
convenient and tangible. It is to be observed that the
finding of the group of én equation according to our
definition does not involve knowledge of the roots of

the equation. We are able to prove that the group of

an equation according to our definition is identical
with the group according to the customary definition;
and, furthermore, from our definition we are able to prove
all the fundamental theorems of the general theory
together with other new theorems which become fundamental
under our definition. After considering in Chapter V¥
the question of the reducibility of an equation, a
question of prime importance for our method, we present
in Chapter VI the solution of equations from the stand-
point of the Galois theory.
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CHAPTER I.

An Elementary Consideration of Quadratic and Cubic

Bquations from the Group Standpoint.

l. The Quadratic Equation. The general

quadratic equation can be written in the form

2

X" -¢ x+e, =0, I.

since the coefficient of X can always be reduced to
unity by the proper division.
Let us designate the roots of equation I by
x, and X,. EKnowing that the coefficients of equation I
cen be expressed as rational, symmetric* functions of the
roots (namely ¢,= X, + X, and ¢, = X, X ),** we are able to
solve for X, and X, as follows:
Take the rational, non-symmetric functions
V=%X-X, 8and V,= X~ X,
These functions are the roots of the equation
(verv)(v-v)=0. II.
Expanding, #-(w+n)v+ﬂ%=m
| Since v,=-v,, equation II becomes

Vz - v?':O.

* If a function of two or more quantities remains unalter-
ed when any two of the quantities are interchanged, it is
called & symmetric function.

** Por the relation between the roots and coefficients of an
equation see L. E. Dickson's "Introduction to the Theory of
Algebraic Equations" p. 99. (This book will henceforth be

referred to as "Dickson").






R
Expressing v, in terms of x, and x
1]
v' - (x, - x,) =0,

& ® ~
V=X =2XX +X,.

4,

2,?

We may choose arbitrarily one of the square roots

of ¢ - 40, for v,. Having done so, the value of v, is

then determined.
Let us take v, -:._Ac:“ - 4c, ,
then v,==Ye" - 4c, .

Knowing the roots of equation II we can now de-

termine the roots of equation I in the following manner:

- W—i -
x, =X = \o 4070

&I'+ X,= ¢

\
x, = e4{e" -~ 4¢c, .
2
x, =¢, =\ ~4c.

-

We have thus solved equation I by means of

the suxiliary equation II. Such an auxiliary equation

used in the solution of & given equation is called a

"resolvent" equation.

2. The Cubic Equation. Our solution of the

quaedretic equation depends upon‘ the fact that certain aux-

iliary functions chosen are symmetric and others are not,

We wish to see if this method of solution cen be extended

to the cubic equation.
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. The general cubic equation

8y +by +ey+d =0 (1)
can be reduced to the fomm [ -b"
5 c,~a&a 3Ja* s
x+ex=-c,=0 (B) wherel " -4, bc -2b
: cs 8 ' Za* e’

by dividing by a and substititing
b

J=X =~ =
3a

Let us consider the reduced cubic (B) and call
its root x, X0 Xy

The coefficients can be expressed as rational,
symmetric funcf'ions of the roots, namely

¢,=x,+xix =0,
6,= X, X+ XX +XX,
6,=X XX,

Following the procedure used in solving the
quadratic equation, we desire now to set up. functions non-
symmetrie in x , x,, and X, e We will be greatly aided in
doing this if we understand substitution-groups.

3. Substitutionse. The operation of permuting a

number of objects is called & substitution. The substitu-~

tion which replaces x, by x,, X by x,, --- x_ by X , whered,A. ..y

constitute a permutation of 1, 2, - - -, n is usually

(xl X,~- - - )
X, X, = ==X,
the order of the columns being immaterial.

denoted by

The identical substitution

(x,xa,- - - xn)
xx,- - =%/
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leaves every letter unaltered and is denoted by 1l.
With three letters x x, and x, we have 3l:= 6
substitutions
(1). The identical substitution 1l.
(2). Substitutions which leave one letter unaltered
and interchange the other two. |
(Xl Xz Xz) 4% Xs) X X Xs)
X X5 5 A By X X
The abbreviated notation for such substitutions
is (23) (12) (13).
(3). Substitutions which interchange the letters
cyclically.
(xl Xy Xz) (Xl X Xz)
N\ XX X5 X %y
or in abbreviated notation
(12 3) (13 2).

Such substitutions are cglled cycles,or circuler
substifutions, and when they involve only two letters are
called transpositions. Thus (23), (12), and (13) are
transpositions.

X X, X_.X, X
The substitution ( VTR TS TR TS

) would be
X, X, X, XXy

denoted in abbreviated form by (132) (45). In fact, any
substitution can be expressed as a product of cycles

affecting different letters.*

* Dickson: Art. 18.
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Anylsubstitution can also be expressed as a
product of transpositions,** e.g.
(13254)= (13) (12) (15) (14)
When & substitution contains aﬁ even number of
transpositions ' it is called an "even" substitution.***

4. Substitution - Groups. A set of distinet

substitutions such thet the produet of any two of them
(equal or different) belongs itself to the set is called
a group of substitutions, or a "substitution-group " H***
When using the word group we shall always mean & substitu-
tion=-group.

A convenient way to determine whether or not
a set of substitutions constitutes a group is to con-
struct the multiplication taple. The table gives the
product & x b in the intersection of the row headed by a
end column headed by D.

For the six substitutions on three letters the

multiplication table is as follows:

** Dickson: Art. 22.

**% pPor g more detailed treatment of substitutions see Dickson:
Chap. II or Cajorils': "Theory of Equations"” Chapter X (Hence-

forth referred to as "Cajori”).

*¥%% Por the general definition of a group see BBcker: "Intro-
duction to Higher Algebra" Art. 26, .
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1 (123) | (132) | (23) | (13) (12)
1 1 | es)| (se) | (23) | (s) | (12)
(123)| (123) | (132)| 1 (13) | (12) (23)
(132)|| (132) 1 (123) | (12) | (23) (13)
(23)|| (23) | (12) (13) 1 (132) | (123)
(13) (13) | (23) (12) | (123) 1 (132)
(12)| (12) | (13) (23)| (122) | (123) i

The multiplication table contains no substitution
which is not & substitution of the set, and thus the set
constitutes & group. In the general case, all the ni
substitutions on n letters from & group.*

The number m of distinet substitutions of a
group is called its order; the number n of letters
operated upon,its degree. A group is designated é“a
or simply G .

5. Subgroups. Upon further investigation we
£ind thet there are groups within the group G,. We find
one group of order;three,

6,[1. (123), (132)]
three groups of order two,
6! [1, (28], eifn, aaz), @, [1, (22)]

and one group of order one,

¢, [1].

* See Cajori: Art. 97.






These groups &re. called "subgroups”™ of the group

G, ,= if all the substitutions of any group H aré contained

in a group G, H is called a subgroup of G. Notice that by

this definition any group is & subgroup of itself.,
If n is the order of a group G and m the order
of a subgroup H of G, the quotient % is called the "index"

G
n
of H under G and is represented disgramatiecally i| . The

H
index is always an integer since the order of & subgroup
is a divisor of the order of the group to which it belongs.*
()] (&
We may display G; and G; together with their

subgroups as follows:
(=

(=
G!‘. G}.‘.
1023 (3 1
1) (D (3 42)
3 % '
3
3 G-3 2
1 6 (3
G: | R m :
» (23) G; (s A () G‘. 1
- N 2

6 L1

6. Rational Functions Belonging Formelly to & Group.

Upon subjecting the rational functions x+x.and X X to the

substitutions of G,, we find that they remain formally**un-

* Dickson: Art. 26.

** Pwo functions in X X, ... Xp 8re formally equal if they
are numerically equal for all seis of values of the x's.

Two functions may be formslly unequal and still be equal
for perticular sets of values of the x's. Iater this dis-
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altered since x, and x, are merely interchanged by the
substitutions of G, . On the other hand, the rational
funetions x, = x, end x =~ x change sign under the sub-
stitutions of Gz.\. , remaining formelly unaltered only by
G, (1) We say that the rational functions x +x, and

x X, "belong formelly" to @, , while the rational func-

2) ?

tions x - x, and x_ - x “beiong formally" to G, 6(1).

By saying that a rational function "belongs formally"™ to

AT G CTEESD ARG VoGO MR

substitutions of the group and formally altered by eve

substitution not in the group.*

Similarly, let us find rational functions
belonging formaily to the group Gy and to its subgroups.

Any symmetric function of x,, x,, and x,,

being formally unaltered when &ny two of the letters are
permuted, is formally unaltered by any substitution of G,
and thus belongs formally to G . Then x +x +X,,
XX, +XX+xXx,andxxx are functions belonging
:E:ormally to GL o Since this property with regard to
symmetric functions is characteristic of G.is it is
designated as the symmetric group.

The group G, consists of all the even sub=-
stitutions on three letters (which includes the identical
element)s A function belonging formally to G is
| A= (x, - x,)(x, - xs)(xs - x)

tinetion becomes important, and it will often be necessary to -
know that two functions are numericelly distinet for specific

values of the x's.

* Por proof that all the substitutions which leave & rational
function (X, X,, «ee Xp) formelly unsltered form & group,
see Dickson: Art. 21.
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since any even substitution leaves it formally unaltered,
while any odd substitution changes its sign. A function

of n distinet magnitudes, as A, such that a single trans-
position changes its sign is celled an alternating funetion
gnd it belongs formally to the group which consists of all the
even substitutions on n letters.* This group is called

the elternating group and its order is gl?*.

The function x, is unchanged formally by every
substitution in G; and is changed formally by every sub-
stitution not in G; . Hence, x belongs formally to G;.
Similarly, x, belongs formally to G, and x, belongs formally
to Gr .

A function which belongs formally to G, is changed
by every substitution of G, other than the identical sub-
stitution, Such a funetion is k x +k x, +k x, where k , &k ,
and k3 are distinct constants. An especially useful

function belonging formally to G, is the Tunction vf=x¢¥wx:ﬁ¢u?x5.

7. Conjugate Values of a Function under a Group.

We observe that the function v, is six~valued under Gu
(thaet is, it takes on six formally distincet values when

operated on by all the substitutions of q) and is two=

{ ]
valued under Gh " Gm

A, is two-valued under G , and the functionsX , X

, end G'. Similarly, the function

» and

X, are three-valued under G . For the genercl case, we

* Tor proof thet all the even substitutions on n letters
form & group, see Dickson: Art. 23

** Dickson: Art. 24
*** v=t+%Y -3, an imeginary cube root of 1, obtained thus:

15 - 1=00
wem 3-34\ -3 | (x-—l)(x;+x+1)=0.
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stete thet the number of formally distinet vslues which a
function belonging formally to & subgroup H of G takes on
under G is equal to the index of H under G.* These

formally distinet values are called the "conjugate™ values

of the function under the group G.

8. The Solution of the Cubic Equation. Let us

now return to the consideration of the reduced cubic
equation
3 —
x-+%}— 3—0
and try to solve it by a scheme similar to that which we

used in solving the quadratic equation (Art. 1).

x*—c¢ X + ¢,=0. I.
G‘z.l
1

()

0= X+ ¥,

(‘J&‘: X ,)(b-

2 V-v)(v-v,)=0. T

G_EJ Vo= X, ~ ¥y

e T o
We observe thet in solving the quadratic equation
what we did was to pick out the rationel, nonsymmetric
functions v, and v, belonging formally to ¢ ,[1] and the
rational, symmetric functions ¢, and ¢, belonging formally
to G, (See At.1). We then constructed the resolvent

equation II, expressed its coefficient in terms of the c's,

* Dickson: Art.29.
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and obteined the value of the functions v and v, in terms
of the c¢'s. Bhis enabled us to combine and solve for x, and
X, .

We have already found certain rational functions
belonging formally to G, and its subgroups. Using these
same functions, we may proceed with our scheme. The fol-

lowing group-display shows these functions together with

the resolvent equations which we intend to use.

G,
1 (23) (®)] €= % ¥ Y +%y=0.

=X+ P Yt ks
2) (1) @3 i at Tt
0y (D @] >

) (A—A,)(A-BD=0. I

5 % 3
! ] " 1 (lZ‘S) (]32,) Y -
G Gy, Gy, A =06 P00 X ).
1 . 1 i A=A,
A 23 1 (13) 3 3)
3
(V-V)(V-V(Vv-vp =6, 1L,
2 A Ly
G} V= X W% W V= B W kgt whp,

VE WV TR b usty 4ty VWV Wk W,
V= WY = U b, Wl VWY, = UK A g Wy
Our scheme is to write out the resolvent equa-
tion I, express its coefficients in terms of the c¢'s, end

and solve, thus gebting the value of Ain terms of c's.
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We ﬁzill then write out the resolvent equation II, express
its coefficient in terms of A and the e¢'s, and solve,
thus getting the value of v in terms of A and the e¢'s.
Having done this, we will combine gnd solve for X,y X,

and x_, which roots we &ssume are distinct.*

3'
Let us now consider in detail esch step in our
scheme.
Constructing a resolvent equation which has D and
A, for its roots, we have
(A-A)A =D, =0 I
A - (AFD)N+ A D, =0
Since A ,=-—N,, equation I becomes
N = Ne=o. I'.
. _ e 2, 2
We now desire to express A=(x, - x,) (x, - x,)(X,-X)
in terms of the e¢'s. We will show later** that
Aw=c‘o;" - 4c) ¢

3 2 "
. ” - 4c, + 18 e,c.c, - 27c; ; and since

3 3

¢,= 0 in the reduced cubic equation, equation 1’ beconmes,
N+4c) + 27¢3 =0,
Solving, Aexf27c; - 4o . .
We may choose arbitrarily one of the square roots
of - 270: - 4c: for A, Having done so, the value of

A%is then determined.

* In this and the following discussion we will always ex~
clude the case where i’(x)'7' 0 has equal roots. Egual roots
of £(x)=0 also satisfy £f'(x)=0. If H(x) is the highest

common factor of f(x) and £'(x) and if q(x) =f(x) 4+ H(x) the
e?uation Q(x)=0 has distinct roots and every root of
f(x)=0 is a root of ¢ (x)=0.

** See Chap. II Art. 10.
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N

Let us take A=+\- 27c, = 4c, .

then A=-Y\ = 27c;- 4e3 .
Constructing & resolvent equation which has
V.o Voo and . for roots, we have
(v -v )lv-v,)v=v])=0. II.
Since v,= wv, and v,= Wy , equation II becomes a
binominal equation,
v - v?=0. i
We desire now to express v? = (x 4w x,_+m’5:,_‘ )’ in
terms of A, and the c¢'s. It con be shown that
v, = % (2¢] - 9,¢x27c - 35 N-3).
Since ¢,= 0 in the reduced cubic equation, equation
II’ becomes
v® - % (27¢, - 30 {-3)=0. 1T .
Solving, Vv :ﬂl% (2‘705- 3 A.\{-__S_).

Choosing arbitrarily any one of the cubic roots

of % (2703-— 3 A}f-_b_') for the root v, , then the other two
2
roots &are v,=wv, and V=WV, .
Similarly, we can construct & resolvent equation
which hes v,, v, and v, for its roots:
(v—v,’)(v—vs)(v—vh):—o. ITLs
Since v, = wv, and v‘_=u§‘v,+, equation III becomes

8 binomial equation:

v: - vs = 0. 111 .
3
Expressing v:= (x.-\-wx;m‘xl) in terms of Aand the
c's, v - % (27, - 3aY-5)=0. III' .

Solving, v:‘\% (270, - 3 A Y- 3).
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.We observe that equation 11T differs from equation
IT only in that it contains A _in place of A,
| We must now determine which of the three cube roots
of (27, =3 AL‘{:—S-) we should choose. We cannot choose
this value (call it v, ) arbitrarily as we did v,.
If we choose Vv, = X, +twxiuix,,
then we must choose v, = X +dXywx .
Multiplying v, by v,,
v, v, = (x,+wx +rd'x,)(x,+8x +wx,) = - 30,
This is & relation which must be satisfied by the
values chosen for v, and v, .*
Combining with v, and v, the equation
X+ x,+x,=¢ =0,

we are able to find the roots x , x, and x as follows;

2 —
> ST TS SES S (4)
AL WX, =V, (B)
X, +x,+x, =0 (c)

x, =1/3 (v, + v, ).
Multiplying (A) by w*, (B) by w , and (C) by 1, and
adding, we get
x,= 1/3 (w’“v, + wv, ). |
Multiplying (A) byw, (B) by w*, and (C) by 1, and
adding, we get |

®
x,=1/3 (wv, + w7y, ).

* A general explanation of the reason for this will be
given later. (See footnote page3h.)
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CHAPTER II.

4 More Detailed Study of the Processes Involved in the
Solution of the Cubic Equation.

9. _The salution of the cubic equation given in
Chapter I suggests a genersl plan for the sblution of
equations of higher degrees. Before giving & general
plan, however, we must first study the solution of the
cubic equation still more in detail and learn under what
conditions we can actually perform the various operations.

10. We observe thet the coefficients of the
resolvent equation

(A-a)(a-A)=0. I. |

are symmetric functionms of x , x,, and x, (Art. 8 page \4).
It follows from the fundamentel theorem on symmetriec
functione* that the coefficient csn be expressed as ration=-
al, integral functions of the c¢'s. In his "Introduction
to the Theory of Algebraic Equations™ Dickson has given &
rlan by Gauss for expressing any symmetric function of the
x's as a rational, integrél function of the e¢'s.* To
illustrate this plen in a special case, we will proceed
to express the symmetric function A,A,(which occurs as a

coefficient in equation I) in terms of thé c¢'s.

* Dickson: Appendix p. 99.
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Following the plan given by Dickson:
Designate the given symmetric function A A, by S.

S=ANp = - (x, - xL)L (x, - xs)x (x, - x )L.—. 6x, X

X
] n Xy ™
3 % ¥ _% % 3 % _3 A _3 2 _ %
2x,x, X, - X, X, =-2%X X X, =-2%xX_ X, ¥2x, X, -X%X, X,  +
4 a4 3 % 2 3 't 3 2
8X X, X, =~ X, X, = 28X, X, X, = RX, X G X, +2X,X, X, = 2X| X, X+

fo xz - xw, x"‘,-\-zx!: xi - x’: x:-\-zx': X, X, = x': x;' .
The highest™ term of S is

% (T

X

h.E - X‘ P

Build tre symmetric function

-2 & e R
= = C, € = =C C,_ .
Lxpanding o in terms of x,, x,, and X,, We have
U‘—-(x+xx+x3)(xx+xx+xx)=-15x > Sk ¢
3
-8xx,h -x*x -8xxx -8xxx - 2x) X,
-x x'*-?.xxx x’“x*-Bxxx 8x * x5 x
3 VS By T Rag Sy y ooy, ey W B2 &3
3 8 3 3 % 2 3 3
—a::‘x x, =8x x, X, =-2X X =X, X; =2X X,
L, % Y _2
--:c|1:7»-z%::.:z:,_x3 -~X X,

We observe that the hichest term of o is h.
Then the difference

S|=-;S-<r'

is a symmetric function which has its highest term lower
then h.
S,= S-o¢= 2lx| X, X +6x,x3x, +6x %, %, +

~ __3 3 3 % 3 LY 3 TR
6x,x, X, +t4x, X, +4x,x,x; +6X, X, X, + 6x| X, X, +4x x X+

3 ~ 3 3 3 3 %
6x| x, X, +4x x, *+4x ' x, + 4x X, X; .

The highest term of S, is

- 4
h'... 4 X, X, Xy

T x™ ... if the

*xT' xT* x%... is celled higher then x, X,
«ee Which does

x
flrst on- of the differences m-n, m,‘- n_,
not vanish is positive.
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Build the symmetric function
a=4c) " o) c3=4c? Cye
Expanding o7 in terms of x , X, and x,, we have

- 4 3 _ r_R_2 3 _ 2

o=4(x +x,+x,) x x.x, =24z 'x, x,+12x x x, +
% 3 & _3 Y

12x x, x. +12x,x, x, +4x X X

. -\-12x‘3 x:xs'l—lzx:“ xz x,+

4 3 2 Y
4x x, x,+12x x, x, + 4x,k X X

Since the highest term ofgjis h,, the difference
S, =8, ~a
is a8 symmetric function which has its highest term lower
than h .
S, ~o,=-3x"x-x% - 6x,xix, - 6% %, X2

3 _2 % 3 3 2
- 6x, x,x, =-6x x X, =6 X,X,F

Sa

)

x_3 3 3
- 6x X, Xy +4x, X

3 _3 3.3
4x| X, *4x X, .

The highest term of S, is

h2.= 4ix A X 2 *
Build the symmetric function
3-3 3 3
g,=4c, ¢, =4c, .

Expending o; in terms of x , x,, and X, We

LS

have
> 2 _n _32 3 2
o =4l x +x x +xx)=24x"x, x/+12x X, X+
2 3 2 U3 3 _3 3 _2 %
12x 'x, x, t12x x> x, +4x; x, +12x | x,.x, +12x 'x_ x,+
3
r

5 _
lzx?" xkx:-l- 42? x, + 4x° x

Since the highest term of o is h,, the difference
5,= S, =T,
is s symmetric function which has its highest term lower

than h .
9
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% _a_w 3_2
§5,=2 8, -q==-287Tx, x, x, - 18 x,X, X,
2 3 L _3 3 _ % 2 _3
- 18x xx, - 1l8xx, x5y -18x x, x, - 18x x, X =

3 Y
18x x,x, »
The highest term of S, is

3 9
h3= - 18x‘ X, X,e

Build the symmetric function

3-2 &)
oy==18¢ ¢ _ ¢y = = 18c,c,c,.

2 3
Expending 935 in terms of x , x,, end x_, we have
A% _ 2 3 _% % 3 T
o= =b4x "x, x, - 18xx x, =-18x,xx, -~ 18xx, x, =~

3 ® (9 3 3 2
- 18x| X, X, - 18x, X, X, - le‘ X, X,

Since the highest term of ojis h,, the difference
S, = Ss -ay
is & symmetric function which has its highest term lower
than h30
S, = S, -0y = 27x X X,
The highest term of S, is S, itself,
(" 2 2
h, =27x X, X .
Build the symmetric function

_ 2~ A= 7~
0'.,=27 ¢, ©, Oy

= 27(3_:,‘JL .
Expanding o, in terms of x , X, ahd X,, We have
o, = 27x f’x: x:.
end the difference

S. = S

5 *-0—"_:00

Now let us express S in terms of the o,
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e S=ot+a, to, 0y, Fo.
==crc, *+40. ¢, t4c, = 18c,c,c, + 27c, ¥
1l. After expressing the coefficient of equation
I in terms of the c¢'s, we proceed to solve for A . This
is easily done, since equation I is a binomiasl equation.
The coefficients of the second resolvent equation
(vev)va-v)lv-v)=0 II

were found to be expressible in terms of A and the e¢'s.

The discussion of this point will be delayed until the

next chapter.** 1Like equation I, equation II is binomial

and thus can be easily solved,

We have been concerning ourselves with resolvent
equations over the path G - Gs" G, But why not choose
the alternative path G - G,L, select x, belonging formally
to G,:, and write the resolvent equation for finding x,
directly? Upon doing this, we obtein the following re-

" solvent equation:
(x - x,)(x - x,){x-x,)=0.
or x"— c.xh-\- e,X =-0Cy < 0.
or since ¢,= 0, xs-\-c,‘x - ¢.=0. III

* Such & computetion is long, and for a special case the

values of the o's should merely be substituted in the genersl
formula.

*Gohap. III Art. 18.






| . 22,

We observe,however, that equation III is the original
equation; and therefore nothing is gained.

Why are we able to solve equation I and equation
ITI when we cannot solve equation III directly? We can
easily solve equation I and equation II because +they are
binomial. We are here then concerned with learning the
conditions for a binomial resolvent. Whether or not the
resolvent equation for a certain function will turn out
to be binomial depends upon the function itself amd upon
& certain characteristic of the group to which the function
formally belongs. Before appreciating a more specific
statement of the conditions for & binomial resolvent we
must understand what is meant by a "self-conjugate™ sub-
group.

12. Self Conjugate Subgroups. We know that

the function x, belonging formally to GL tekes on under
G, the three conjugate velues x,, x , and X s belonging
formally to the subgroups G; . G: , and G:‘ respectively.
The subgroups Gi, G;:, and G: are called "conjugate"
.subgroups of G .

Similerly, the function A= ({x, - x,)(x, - x,) (x4
- x;-) belopging formally to G, tekes on under G, the
conjugate values A and A.=-A, but we observe that both of
these conjugate values belong to the same group G3;
The group G, is called & "self conjugate" subgroup of G .

For the general case, if & rational function ) belongs

D G W M G——
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self-conjugate subgroup of G.

The idea of conjugate and self-conjugate
subgroups may also be approached without reference to the
functions belonging to the groups. Given & subgroup
H of index k under & group G, we can get the k conjugate
subgroups of index k under G by applying within the
cycles constituting H the substitutions of G not contained
in H.* For instance, applying the substitution (12)
of G_ within the cycles of G, |1 (23)]

we got (12) 6, [1 (23)] = [1 (23)] =@, .

Similarly, i

(13) ¢, [1 (23)] = [1 (a2)] = @, .
(123) @, (1 (23)] =[1 .28l =0, .
(132) ¢, [1 (23] =1 ,(22)] =¢ .
Thus the three conjugate groups of index 3 under G
are ¢, [ (23] , 6. [1,(13)], ana ¢." [1,022)].

If, however, & subgroup H of G remains inveri=-

ant under all the substitutions of G, H is called a self-

conjugate subgroup of G.

For instance, consider the subgroup G3 of Gh.
The substitutions of G _not contained in G are (12),4(13),
éﬁd (23). Applying these substitutions within the cycles

of G, we have. .
(12) @, [,(123), (132)] = [1,(132),(128)] =@,
(13) 6,[1,(128),(132)] =[1,(132),(123)] = &,

(23) ¢ [1,(123),(182)] =[1,(132),(123)] = &,

Hence G3 is a self-conjugate subgroup of G,e

* Dickson: Art. 40.
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It is evident that G, (1) is always a self-
conjugate subgroup since it remains invariant under any
substitution.

In our diagrems we will indicate thet & sub-
group is self-conjugate by the use of a heavy line.

Q@
The diagram of G_ end its subgroups would appear as follows:
)]

G
I 073) (33
D » @»
Py
3 3 k)
f " " 1023) (39) °
Gy G; Gy
1 { 1
(&) 13) (12) ’
" 2 A

13. Conditions for & Binomial Resolvent. In

order for the resolvent equation for & retional function
Y(x,x,X,¢.0 x,), belonging formally to & subgroup H of G,
to be binomial the conjugate values of Y under G, from
which the resolvent equation is formed, must differ only
by & constant factor and must therefore all belong
formally to H.* We have seen that if ell the conjugates
of q;under G belong formally to H, H is a self-conjugate

subgroup of G. Thus we have & necessary condition for a
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binomiel resolvent.

Is this condition for a binomial resolvent
also sufficient? Suppose we choose the rational funetion
v ,=2x, - x which belongs formally to the self-conjugate
subgroup G‘? of G(:.’. The resolvent equation for v, is

(v =v)(v =v,) =0. II
v ~(v+v,) v+v,v, =0.
Substituting v,=2x, - x,6 &and v,=2x, - x,
v - (x,+x,) v +5x,x,_= 2x, - 2x =0,

Here we have an example of & rational function
belonging formally to a self-conjugate subgroup and for
which the resolvent equaetion is not binomial. Therefore,
in order that the resolvent equation for & rational

function be binomial, it is necessary but not sufficient

that the group mof the function be a self-conjugate subgroup.
However, upon choosing v =x ,6 - X we have found
that the resolvent equation II becomes binomial ( Art. 1).
Similerly, we have found that the resolvent equation for
the function v, = x +wx,twx, belonging formally to the
self-conjugate subgroups G(? of G‘: becomes binomial
(Art.8). It can be shown that if Y is any rational
function belonging formelly to & self-conjugate subgroup
H of prime index Y under G and if Y ,, V¥, ' ¥, are the
conjugate values of P under G, then the function

‘Pri't:)*\h-i' W Yyt + W Yy

* Dickson: Art. 38.

** wis obtained by solving x_: ~1=0. (x =1)(x""+x% .ax+1)=
0. wis & root of XTV'+X ¥ oo +x+1=0.
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is a function which belongs formally to H #nd whose resolvent
equation becomes binomial.* |
Thus the necessary and sufficient conditions
that & resolvent equatior of prime degree should turn
out to ve binomial are that the rational function § for
which the resolvent equation is formed under G should
belong formally to a self-conjugate subgroup H of prime
index under G and thet @ should be a properly choseﬁ
function. Moreover, these conditions are also general,
since any binomial équation of degree which is not prime
mey be replaced by a chain of binomial equations of prime
degrees. For example, suppose thet x°=c is tle resolvent
equation {ormed under & group G for a function @ belonging
formally to a self-conjugate group H of index 6 under G.
The binomial equation x“= ¢ may be replaced by the binomial
equetions x=y and y = c. This means thet between G
and H there is an intermediate self-conjugate group of
prime index three under G. That is to say, the resolvent
equation formed for a rational function @ under G becomes
binomiel no matter if the group H to which @ formally
belongs is not of prime index under G, providing that there
is & chaein** of self-conjugate subgroups of prime index
beginning with G and terminating with H and precviding ilnatl
q is & properly chosen function. We may then without

loss of generality limit our discussions to binomisl

equations of prime degrees.

* Sce Bolza's article "On the Theory of Substitution Groups
and its applications to Algebraic Equations™ in Msthematical
Journal Vol. 13, 1891 p. 96, Art. 42.

** Groups constitute a chain when each group is & subgroup of
the preceding group.
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14, After solving the binomial equations I and
II, we are able to combine and solve for the roots. (Art.
8 page Ib ). This solution can be extended to the case
of an equation of degree n.
Suppose we have the equetions
x t+x, +txf..o+x =0
X twx, Fux tee. tw x, =7,
x +u?x +m‘x3+ . —\-dﬁ“i) W=V
< +w " + Wy + ot :;:,‘= Vo, o
To find X, We mltiply these equations by

1,o™ w™ . .- w™™ respectively and add the resulting

]
equations.
(=)
Remembering that 1 + w T Tt W -“o;for
m-‘-l, 2, ooon—l, we get |
x = l{_c +ity + Wy A 3™ }
R | n J . W ey @
The form of the equations which we combine is
easily recognizable. The first is of the form
I|+ x’u+ x3+.oo+ x\= c' .
The second is of the fomm
ZAWE,F WX e S X =7, o
The third is obteined from the second by
replacing wby w', w bY W', eces W bY oy
Similarly, the forth is obteined from the third by
2A(ne 5 (m-))
replacing w 'byw g byuo , eeeld by W , etc.
It now remains to see 1f we can find the
values of the v's which ocour in these equations.

This will be done later.*

* See footnote: Chapter III, p.35.
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CHAPTER III.

The Plan of Solution for Quadratic and Cubic

Equations Extended to Equations of Higher Degreee.

15. The Display of G, &nd its Subgroups. As

the degree of an equation increases, the display of G,)and
its subgroups becomes correspondingly more complex.
| To determine all the substitution~groups which can be
formed with n letters we may proceed by writing down
-2ll the n! substitutions and by selecting any r of them.
If the multiplication table for these r substitutions
contains no edditional substitutions, the r substitutions
constitute & group; if it contains additional substitutions,
add them to the system and form the enlarged table. Con-
tinuing this process we will finally arrive at & group,
since there are only a finite number (nl!) of different
substitutions. It is also advantageous to keep the fol-
lowing theorems in mind when determining subgroﬁps:

1. The order of any subgroup of a group G is
& factor of the order of G.*

2. If p“ is the highest power of a prime number
p which divides the order of a group G, G contains a single
conjugate set of kp+ 1 subgroups of order »p° (where k is
an integer)**

3., If p' is any power of & prime number p which
divides the order of a group G, G contains 1p+1 sub=

* Burnside: Theory 6f @roups of FPinite Order. Art.22 p 25
Dickson Art 26. p. 20.

** Burnside: Theory of Groups " w m  Art.86 p. 108.
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groups of order p* (where 1 is an integer. ) [?hese
groups do not neceésarily form & Single conjugate seﬁa *
16. Upon displaying G,, end its subgroups
(See opposite page) the following five direct paths scem
open for the solution of the biquadratic equation (all
other direct paths involving non-binomial resolvents of

fourth degree):

1’* GM Gvr G—m Ga.»
2 3 3 3 3
G, G, G, G, |G,
3 2 2 'LI 2 l
G, G, M, H, H,
% K’ 2 LI %
G, Gu G, G, .
TJ 1‘ | 71 z‘!
G G G

In accordance with the plan used in the
solution of the quadratic and cubic equations we should
now like to know if we ccn obtain retional functions of
the roots belonging formally to each group involved.

We can aelways do this, for consider the
formaelly n{ - valued function

V= mX+MmXt et mX,
where the m's are all distinct constaunts.
Applying to v, the k substitutions of G, we get
Vs Vas oo Vi
which are all formally distinct,
The fonetion

Y= (v - 707 =7 e (7= 7,)

* Purnside: Theory of Groups of Finite Order Art. 77. p. 9l.
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where v is an independent variable remains formally

unaltered by any substitution of G and formélly altered
by any substitution not in G. Hence P is & function

| belbnging formally to G.

Teking v,= x, - x,+i(x, - x,) let us find
e function belonging formally to @, | 1:(12)(34)] by this
method. |

Applying to v, the substitutions of G; we get

v, =% -x +i(x, - x,)
v,= = -z (x, -x]).
Y=(v -v v =-v)=v" (v+7v) v+v,v,
=V =0 = Bx‘- x)+ilx, - xwﬂz .
| The value v=0 keeps P formally distinet from
any value obteined for it upon applying any substitution
not in G Hence Exl -x )+ilx, - xw)]m belongs formally
to G, .

17. The use of the above method of finding
functions belonging formally to a group does not always
furnish simple results so directly. It may, however,
be that ) itself is composed of parts which are functions
of the desired kind. In many oases the calculation of
Y is rendered difficult by long multiplicstion. This
can be avoided by choosing &s a basis for constructlon
the n! valued function

Ao Qg

O
e:x; X,h eee X

the a's being distinct, but otherwise arbitrarily chosen.
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Applying to © the k substitutions of G, we get

B .6 - B,

which are all formally distinct.
Then the function

T= 616+ - +8,

is formally unchanged by every substitution in G and
formally changed by every substitution not in G.

Let us apply this method to find a funetion
belonging formally to the group

¢ [1.(12), (38), (12)(34), (13)(24), (14)(23), (1423],

(1524)_] taking 6,= x; x; x:' xz.

Applying to © the eight substitutions of G;, we

-]
N ?

3

N % 3 (9 3 9
get ©=xx.x B=x X X, , 0=, X, ,0~xx X,

I 3 a 2 3 3 _%
b= x, x, X, 6,=X, X, X, B,I-x‘ x, X, 8=x x, -
3 ) A 3 > (3
x x, x+x'x x,+x x X
3
3
"

]

v 3 2 _3 3 2 3 _% 2 3
xx, x, +xx /x, + XX X +XX X'+ X, x,+
[N 3 X A _ 3 3 2
=lx+vx M=z x, +x,x ) t(xrx)=x'x+x x )
) ~ "
= (x+x )xrx )z "2 +x 'x )

The function ¢ belongs formally to G; , but
by the inspection of § we arrive et the two simpler
functions

(x,+x )(x+x,) and x x,+x x, which also
themselves belong formally to Gé .

18. Legrange's Theorem. In the solution of the

cubic equation we havé obceasion to express the coefficients
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of equation I (Chap. I Art. 8. p.!4 ), which belong
formally to G_, rationally in terms of the c¢'s, which are
functions which also belong to G Furthermore we exXpress
the coefficients of equation II (Chap. I. Art. 8. p.\5 ),

which belong formally to G,, rationslly in terms of A,

3
which belongs formally to Gs’ and the ¢'s, which belong
formally to G o« Cen wesdways express two rational functions
belonging formaelly to the same group as ra.tioné_l functions
of each other? Cen we always express & rational function
belonging formally to & certain group rationally in
terms of another rational function belonging formally
to that group and rational functions belonging formally
to the symmetric group?
The above questions are answered in a theorem

due to Legrange which states that "if a rational
function @ (x,, X,, ¢ X;) remains unaltered by all the
substitutions which leave snother rational function

Y=z, X,y oo X,) unaltered, then Q is rationally
expressible in terms of Y and ¢, ¢, ses Op * .

Following the plan of Logrange* let us express

§=v, = X +W x +w x, in terms of Y=V = X twErw'x,,

§ being unaltered formelly by all the substitutions
which leave Y unaltered, namely the identical substitution.
In this case we are deeling with two functions belonging
fommally to the same group G, (1). We observe

that the theorem slso includes the case where |} belongs

* Dickson: Art. 31l.
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formally to & subgroup of the group to which § formally
belongs.
Consider an array of the substitutions of Gb

with the substitution of G, (1) in tre first place :

1 X, twx +wx, =7, =7, X Forx,twx, =V, =q,.

(132) [wx +w'x, + %, =wv, =V, X rwx, +x, =V, =q,.

(123) [ wx, + X +wx,=wV, = Vs wE, + X, +uWx =WV, =q,.

(23) X X X = VY, =Py XWX, tWE, =V, =g,

(12) [wx, + x +u'x -wv, = Y5 X F X, +wX =3V, =qg

(13) [W'x, +wx, + 2=w'7, =Y, WE HWE, + X =V, =G,
Set

glt)=(t =)t -P(t -Y)(t =P)(t -R)(t - p)
=(t - v, )(t -av, ) (t=w'v )(t - v, ) (t= wy, ) (= v, )
=(t = v ) (7= v))
£ - (v v: )+ v v: .

Since g(t) remeins formally unaltered by every
substitution of G _,its coefficients belong formally to Gh,
and thus are rationelly expressible in terms of C» Coo
and c, e

v‘3+ v:= 2(x?+ x:+ x: )= B(X:" X, + X X, + x:' - T o

> 3 x:+x; X 4 x; )+ 12z x x,
=3(x?+x:+x: ) - (x+x + x3)5+18x'x1x3.

2c5

l -90‘ c7~+ 2703.

3 3 9 A a y 3
v, v, =[x +rx+x,+ (wrw J(x,xx %, +x,x,)]

2 3
=an+ x,+ xs) - 3(x, x,+ X X+ x,x )

=[e - SGZP .
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For the reduced cubic ,= 0 and
% ’-\_2
V. ¥ v, = 27,
3 3 _ 3 sk
v, V,= =3¢, .

o 8lt)=t" - 270 ¥ 4+ 5e]
g'(t)= 6t = 8lc,t.
Set
Alt) =g(t)[L+ S +_9__+_<9m_+ q¢ +wa~]

R Sl PP S M S W vt
Teking Y, =} for %,

QN ERURRTR QUER T QTR QTR TR TATES TR Y
= g (¥ g,

q,= AW
og (W)

or v, = AV
g (W)
We now desire to express thre coefficients of
A (t) rationally in terms of the e¢'s, as we did the
coefficients of g' (t).
Be know that this is possible because since
A(t) remains unaltered formally by every substitution
of GL, its coefficients belong formally to Gu and hence
are rationdlly expressible in terms of the c's.
Alt) = v (5 - oy )t -8y, )t = v )t =uv, )(t ~wv,)
+ﬁh(t-v,ﬂt -0V, Ht-—vgﬂt - wy, ) (% -dv%)

-h»v*(t -v Mt ~ww, )t - v,) bt -wv )t -y )

+ v, (t = v, )t ~wv )t -0V, )t ~wr, )(t =SV, ).

—-l—m"v,(t"'v,)(t'w )(t-wv )(t-v )J(t - LS"V*)o

+wy, (t -7V )t -w?, )(t ﬂmrHt-v4Ht—w%j.

* Tn this case the result is complete at this point.
This is merely sccidentual su. is not the case in general.
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Simplifying,

AME) = v (47,8 + v ) (5 - v, )
-\-va,f(tﬂ-wv,t—kw‘v‘" ) t° - v: )
+wv,+(t2‘+u>1v‘t +uov,7' Mt - v: )
+ v,(tz’-—v:" )(t’“+v,,t+v:)

+u§'v| (t* - v? )(t’“-\—wv,,t +wlvj )
+mv|(t3- v?)(t"ﬁ—d'th +wv:‘ .
= 6v‘v,*1:‘F -5, v (v + v} )e
=6(= 3¢, )t" - 3(- 3¢, )27 .t

=~ 18c,t" -+ 243c c t.

- b
A(v,) = - 18c,v +243c c,v, .

5

' 2
g (v, ) =6v] = 8le, v, .

and we have,

v, = - 18¢,v. + 243c.c.V, —= B¢, *
6 v, - 8le v} v

19. Lagrange's theorem is apt to be misinter-
rreted if specicl attention is not given to the above
process. Evidently the theorem must fail when g'(y )=06-W)-(y-y.)
is identically equal to zero. As long as X,y X5 see X
are independent variables, VY,, Y, .-+ Y., are all

formally distinet and the theorem holds . But if we are

* In Chap. I. Art.8 p.lb we stated that having chosen v,
arbitrarily we must choose v, so that v, v=- 3c¢,. Ve see
now thet having chosen v, arbitrarily, v, is completely
determined since it is rationally expressible in terms of

v, o Thus &lso in Chap. II Art.14 p. 2T Thaving chosen
erbitrarily one of the v's, the others are completely
determined since they are rationally expressible in terms of

that one.
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dealing with a specinl equation, two or more of the funcw-

tions Y, ¥, Y, may be numerically equel, in which case g'(y)

would vanish and Lagrange's theorem could no longer be
applied to the function } . Thus in order for the
theorem to hold true without any exception it should be

stated more exactly:

If a rational function ¢(x,, x,, ... x,) remains

rormalvl:y unsltered by all those substitutions which leave

another rational function IP(X.L Xy, eee X} formally

unaltered and if the conjugetes of | under G, are

numerically distinet, then A_;_s_ retionally expressible

in terms of Y and €,, Gy see Cye
If in the ébove theorem VY belongs formally to
G(1) we have the following corollary: Every rational

function of x,, X ..+ x_ is rationally expressible

')\i
in terms of any numerically n!-valued function.

20. When x,, X,, «se¢ X_a8are specific numbers
it is always possible to construct & rationel function
of them which takes on n! numerically distinct values under
Gwe Such a function is
V,=0,X +M0Xteee + DX
where x , X,, ... X, 8Te distinct as usual and where
the m's are properly chosen.* For let us apply to v,
any two substitutions of G.I , say & ané‘b, getting
v, and v, respectively. We do not want to choose tkre

m's so thet v = v The substitutions of G, would

* Dickson: Art. 56.
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furnish n| (né -1) relations of the form V=Y. e
may solve these relations to find the m's which would
satisfy them and upon forming the function v, we avoid
these valueé for the m's, which are finite in number.

Furthermore, given H a subgroup of G we
can always construct a rational function belonging
formally to H and vwhose conjugates under G are nu-
merically distinect. Such a function is

g=(r =-v )Mr -v,) = (r - w)

where r is a properly chosen quaentity and Vs Vot Vi
are the functions derived from v, by applying the
substitutions of H.* For applying to g 2ll the sub-
stitutions of G we would get a finite number of formally
distinet @'s—namely wformally distinct g, where
s is the index of H under G. We do not want to choose
r so thet any two of these formally distinct g'sare equal.
Thus we have m(u- 1) relations to avoid. Te may solve
these relations t:‘find the values of r which would
satisfy them and upon forming the function @ we avoid

these values for r, which are finite in number.

21. Retional Punctions Belonging to & Group.
Such a function as @ which belongs formelly to a subgroup
H of G and whose conjugate values under G are numerically

distinet, we shcll henceforth say "belongs to the group

H under G." We shall say a rational function "belongs

to a group H" when the function belongs formally to H

* Dickson : Art. 70. Art. 25.
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and it conjugates under the next higher* group:are numerically

distinct.**

It is to be observed that the expression "belongs
to a group H" applies to all those functions which "belong
to a group H under G" and others which do not belong to
H under G (providing G is not the next higher group of H).
Thus if & function "belongs to H under G" it "belongs to H",
but the converse is not necessarily true.

Unless otherwise specified we shall exclude

from our discussion all functions belonging formally

to & group but whose conjugates under the next higher

group are not numerically distinct.

22, Generslization of Legrange's Theorem.

Given a rational function Y(x,, x,, ... x,) which belongs
to a subgroup H of ¢ wunder G and & rational function
X(x,, x,, «.. x ) which belong to G under G, . Then if
g(x,, X, «e. T ) is a rationel function which is unchanged
formally by a2ll the substitutions of H, @ can be ex-
presséd retionally in terms of ¥, X.>¢\- Coo ;.. Cpe

G- X belongs to G under G
A
H VYbvelongs to H under G.

gis formally unchonged
by H.

Let the index of H under G be aw.
Writing the substitutions of G with those of H

in the first row:

* ¢ is the next higher group of H(H#G) if H is a subgroup of no
group of lower order than G(excluding the case where H is a

nid self).
ggb%;ggpigeaigsedi%ferent from thet usually expressed by

"belongs to & group". Dickson Art. 69.
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1 ’ h", eeoe hP H):wo q;-'QI
g-,”’ hgg;’ ceoe hpgk 1')%: ]'Pk q't;’_:Qb

. L} L} . . L] « 4

Bur B o2 Bur o B8 | Vo=V | Qu=Ge
Under the substitutions of G,the function P will
take on s numericelly distinet values, Yy, - Yy; the func-
tionqneed not take on u numericelly distinct values since
& belongs to a group of which H is a subgroup. |

Set
glt)=(t =yl (t =y) - (t =Y.
=e(t)[[%_ + % ..+ Qu
A (%) =gl )[t--w. | ’3’-’1;7;.]

T -V
The coefficients of A(t) belong formally to G

and by Lagrange's theorem (Art. 19) are rationally

expressible in terms of ¢ , c,, =- end any trational

S

function X belonging to G under G,
A(t)= R [c‘, C,o eos Coy X, t] .
Putting Y=y for t,
A (W)= R [c‘, C.s oo Oy X “q]
= (0 (%) - - - (p-p)a,
= qmes,

Therefore, Q= R [eo,, C!':.i -;' Gg.;_w_:_ﬂ = Rat. m"'\},‘u""vyﬂﬂ
g '}

23, From the above geherali_zation it easily follows

that if & rational function @ is formally unchanged by the

substitutions of a group H, then § is rationally expressible

in terms of ¢,,0,, ««+ C and rational functions belonging
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to successive subgroups of G,, each under the preceding

subgroup, H being the last subgroup taken. For example,

suppose § is formally unaltered by G~ and thet conditions

G,1 ©,0,=~ 0 are as indicated in fhe

: " diagram.
G wbelongs to G under G,
) By the generalized

G" Abelongs to G" under G¢' theorem we have
y A " won " G.,‘\.
G ybelongs to ¢" under G"

g n nou n G

.
U (111

G mbelongs to G under G"

=R, (4.8, opc,,---0,).
But also by this theorem, '
§=Em( ¥Y,A, c,c,,--- &)
and A=R, (X, w , 6,0, —-- G, ) e
Therefore § = R, my P X» s ©,8s,===,C,)¢
(Notice thet § and A are used only for the purpose of
the proof and need not be computed in the application of

the theorem).

24, In order 4o understand clearly that our
generalized theorem says more than the ordinary theorem,
suppose we have such & case as the following:

G, ' X,== X,
I x, ¥ X,
¢, [1 (23]
.

3
G x|+ 2x, +3x

Under the conditions of the problem, x, belongs

2 2
to G, under GL, and x:'-\- 2x,+ 3x, belongs to G, under
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G, but not under G, o

If q(xx,x,) is any rational function
formnlly unaltered by G,, by our generalized Lagrange
theorem we may say

q=Rat. Fune. (x T+-2x:-+ Bx: By c‘,cz,cs).

We observe thst tho ordinary Lagrange theorem
cannot be applied here since the conjugates of
x,f+2x:W-3x:' under G, are not numerically distinet, i.e.

2 A 2
@ # Rat. Func. (x‘+2xz+5x3 v €,5C,,C, ).

25. The Bigquadratic Equation. From the dis-

play of Gaw we observe that we con pick out five direct
series of groups leading from G,, to G in which all

the indices in the series ars lecs than four. (Art. 16).

The Path Gt G (o G G,
affords a chain of binomial equations of prime degree,
since each group is & self-conjugate group of prime index
inder the preceding group. Or we may pass from G, to G,
by the solution of a non-binomial cubic and from Gg to &,

in four direct ways by the solution of binomial equations

of prime degree.

26, Summary of Method for Equations of any Degree.

By calling forth genersl theorems, the consideration of the

biquadratic equation has enabled us to state a plan to be

tried for equations of any degree. Pirst display G ,and

its subgroups and learn what groups are self-conjugate.
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Then seek to find the value of & funetion belonging to
each group involved, beginning with functions belonging
- to the higher groups and going down by any path. We
gen?rally'go to GlMeand from there to the group to which
the roots belong, for as soon as & numericelly n! - val-
ued function is known the roots are known, since by
Lagrange's theorem they are rationally expressible
in terms of that function. We observe that our scheme
merely reduces the solution of the given equation to
the solution of & chain of resolvent equations. It is
evident that this reduction will be é real simplifi-
cation if the degrees of the resolvent equations are less
than n, or if the chain of resolvent equations should
turn out to be binomial . If & resolvent equation does
not turn out to be binomial but has & rational linear
factor,we can find at least one of its roots™ and thus

proceed along the path.

27. The Quintic Equation. Upoh displaying

G end its subgroups (See following page), we observe

thet the alternating group and the identical group are

lno

the only silf-conjugate subgroups of G, . In case

of the general equetion the symmetric functions are

the only rational functions of the roots which are rational-
1y expressible in terms of the coefficients, and thus we

must start from the symmetric group. Over any path from

G to G, we must solve a non-binomial equation of degree

120

* fThe question of the reducibility(of an equation will
be treated in Chap. V.
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five or higher. Our method then would seem to fail.
However, in case of & special equation, we may know the
value of a function belonging to some group besides G, 0T

G If so, we seec from the group display that we could

w.
proceed through & chain of binomial resolvents of prime

degrees to G,[1] and thus solve the equation by our method.

\%0 .

1* (12345)* (5234) (134)* (15)(23)*
(12354)* (5243) (143)* (15)(24)*
(12435)* (5324 ) (523)* (15) (34)*
(12453)* (5342) (532)* (23)(45)*
(12543)* ~ (5423) (524 )* (24)(35)*
(12534)* (5432) (542)* (25)(34)*
(13245)* (1534) (534)* (123)(45)
(13254 )* (1543) (543)* (132)(45)
(13425)* (1354 ) (153)* (124)(35)
(13452)* (1345) (135)* (142)(35)
(13524)* (1453) (154)* (134)(25)
(13542 )% (1435) (145)* (143)(25)
(14235)* (1254) (125)* (135)(24)
(14253)* (1245) (152)* (153)(24)
(14325)* (1524) (12) (145)(23)
(14352)* (1542) (13) (154)(23)
(14523)* (1425) (14) » (125)(34)

(14532)* (1452) (15) (152)(34)






(15234 )*
(15243)*
(15324 )*
(15342)*
(15423)*
(15432)*
(1234)
(1243)
(1324)
(1342)
(1423)
(1432)

(1235)
(1253)
(1325)
(1352)
(1523)
(1532)
(123)*
(132)*
(124)*
(142)*
(234)*
(243)*

(23)
(24)
(25)
(34)
(35)
(45)
(12)(34)*
(12)(35)*
(12)(45)*
(13)(24)*
(13)(25)*
(13)(48)*
(14)(23)*
(14)(25)*

(14)(35)*

(234)(15)
(243)(15)
(235)(14)
(253)(14)
(245)(13)

 (254)(13)

(345)(12)
(354)(12)

Note: Those substitutions merked * constitute G, .

44.
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CHAPTER IV.

The Group of an Equation.

28. Domain of Rationality. In the foregoing

chapters we have said nothing concerning the nature of

the quantities to be allowed to appear in the solution

of an equation. It is evident that this question is of
prime importence when the solvability of an equation is
under considerstion. For instance, the equation x" - 2=0
is not solvable if we allow only rational numbers to
appear in the solution, while it is solvable if we allow

Y2 to appear in the solution.

In the study of an equation we naturally admit
into consideration the coefficients and mey adm{t
other quantities. The guantities R, R, === R
whichAwe admit together with all qua.titlies derived
from them by a finite number of additions, subtractionms,
multiplicetions, and divisions (not inecluding division
by zero) constitute the domain of rationality R fR’, R". ——
R*). The simplest domain of retionality is the domein

of rationsl numbers and is designated by R(1).

29, In ChaptersI, II, end III we heve discussed
the solution of equations, a ided by the group-display.
Fof eny given equation and any given domain R, however,
there is one group whose properties are of such importance
in the ctudy of the equetion that this group is called
"the' group of the equation for domein R. This chapter
will be devoted to the development of this notion, but
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the method of development will not be trat of extant works
on the subject.

30. Let £(x) =0 be an equetion of degree n with
coefficients in a démain R and let us designate its

roots by x,, X,, --- x_. If one rational function*

Y(x,, x, --- x,) which belongs t0 & group G under G,}*

3l. Theorem: If & group G lies in R, all

retional functions belngine formally to @** lie in R.

Since G lies in R there is a rational
function Y (x,x,--- x,) which belongs to G under G,,
and vhich lies in R (Art. 30). It now easily follows
from Lagrange's theorem thet all rational functions %he-
longing formally to G lie in R, since they are rationally

expressible in terms of Y and ¢,, ¢,, --- c,.

32, Theorem: If one rational function

¥(x,, X,, == X,) which belongs formally to & group G

does not lie in R, no rational function belonging to G

under G, lies in R.

Let ¢(x,, x,, --- X,) be any rational

function ( § ¥ ¥) which belongs to G under G, By

* Tn the Galois Theory when we say & function is a

retional function of x,, X,, =--- X,, We 2lways meen &
retional function with coefficients in the domein of

rationality.

**  Por the definition of "belongs to a group G under“G;;
and for the distinction between this and"belongs to G :
see Chap. III Art. 21. The expression "belonging formally

to G" applies both to fWnctions "belonging to G" and functions
belonging formally to G, but whose conjugates under the next
higher group are not numerically distinct.
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Lagrange's theorem §=Ret. Func. (g, c,, Cas +o C) o
If @ lies in R, §lies in R since it is rationally
expressible in terms of Qend tre c's, which is 2
contradiction. Therefore @ does not lie in R, and
our theorem is proved.

The above theorem m:y also be stated as

follows: If one rational function which belongs

formelly to & group G does not lie in R, G does not

lie in R.

3%. Theorem: If 2 group G lies in R, all

e emm——

ar eee X,) be any rationel function
belonging to any swergroup of G under G, . Ty Lagraenge's
theorem @ can be expressed rationally in terms of ¢, , Cps oo
¢, and any retional function Y(x,, x,, ««s x) which |
belongs to G under G, . Sinceyand the c¢'s lie in R,

@ lies in R and hence tre supergroup lies in R.

34. [Theorem: If a group G does not lie in

Por suppose any subgroup II of G lies in R.
Then by Art. 33 all supergroups of H lie in R ,and hence
G lies in R, which contradicts hypothesis.
Therefore H does not lie in R.
* By a "supergroup of G" we mean a group of which G is a

gsubgroup. Notice that by this definition G is a supergroup
of itself.
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35. Theorem: If two groups lie in R their

greatest common subgroup lies in R.

Suppose G and M are two groups which lie in R.
Either (1). G is a subgroup or supergroup of M or (2).
G is not a subgroup or supergroup of M.

case (1). If G(orM) is a subgroup éf M (or G)
G(or M) itself is the greatest common subgroup of G and I
and by hypothesis lies in R.

case (2). If G is not a subgroup or super-
group of M, G and M have a greatest common subgroup E
which consists of 211 the substitubions common to G and M*.

Let Ql(x,xk, --- x ) and §,(x, x,, =-- x_) be

a?

rational functions belonging respectively to G and M under
G o
Form the function
Yy =G§,+Rg, (Where ¥ is a quantity to be chosen later).
The functionly is HHrmally unchanged by eny sub-
stitution of H. Any substitution which belongs to G or
M and not to both changes } formally, since it changes
one of the @e formally and not the other. Let us find
for what values of K the function Y would be left numeri-
ally unchanged by any substitution which belongs to G or I

and not to both.

Upon applying to“w a substitution which belongs

* Por prooi that all the substitutions common to two
roups form a group see Netto: Theory of Substitutions
Trans. by F. N. Cole) Art. 44 p. 47.
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to G but not to M, §, remains formally unaltered but g,
becomes formelly altered,and call this new function q;.

If ) remains numerically unaltered, we have
]
q,+ Kg= 9, + Ra,,
K= «—a =9,

Q'.\,_ q'k
Similarly, if ) remains numerically unaltered

upon applying a substitution which belongs to M but not

to G, we have :
@h*'RG\L: g, + \'(“h,

K= @.“‘Q. = 0%,
qz,"'(%'h
Thus if we choose K any definite quantity not

zero, 'u)will be numerically altered by any substitution
vhich belongs to G or M and not to both.

We now desire to find for what value of K
tre function Y is left numerically unaltered by any
substitution which belongs to neither G mor M,
Upon applying to Y any such substitution, both G,and q,,

are formally altered and let us call the new

functions @:and Q; respectively. If Y remains
numerically unaltered, we have

4, tHg,= g + NKq,

and W= 94,79,
Qa' - GQa
Thus we cain apply to Y all the substitutions

which are in neither G nor M and upon each substi-
tution we o¢an ascertain the value of X which would leave
\J numerically unaltered by the substitution. Since

there is one and only one value of K for each substitution’
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these values are finite in number. Thus we can choose
K some rational number not zero which is equal to none
of these values. Then g+Hg,is & rational function which
belongs to H under G_'\\and lies in R. Therefore H lies in

R.

36. Theorem: If a group G lies in R and has

& subgroup H to which there belongs under G a rational

function gk(x,, X, === X,) which lies in R, then H

lies in R.

G ¢bvelongs to G under G

and lies in R.

I g@belongs to H under G and
lies in R.
Kbelongs to E under G,.

Let § and A be raetional functions which belong
respectively to G and H under G, .

By our generzlized Lagrange Theorem (Chep. ITI
Art. 22,)

X=Rat. Fune. (g, %, c¢,c,, -=-c)

Since ¢, ¢ , and the ¢'s lie in R, X lies
in R and hence H lies in K.

Prom this theorem we observe that although
a group H may have a rational function belonging to it
under & group G and lying in R, we cannot conclude that H

lies in R unless we know that G lies in R.
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37. Definition of the Group of an Equation.

If a group G lies in R and has no maximum* subgroup

| Gme——————r— GETe  SSmEm cmsms

equation for domain R.

38. Every Equation Has & Group. It is
evident that every equation has & group for any given domain
R including its coefficients. For since ¢, ¢, , --- C,

belong to G G, lies in R. TIroceeding from group

wo

to subgroup and testing each successively we will surely
find & group which lies in R and has no maximum subgroup
which lies in R. If a1l the groups lie in R, the identity
group meets this requirement and is the group of the

equation.

39. Making use of the theorems of Arts. 33,
34, 35 we are able to deduce the following important
theorem concerning tre relation of groups which lie in R
to & group which satisfies the above definition of thre
group of an equation.

Theorem: If G satisfies the definition of

the group of an equation for & given domain R, all

supergroups of G and no other grcups lie in R.

We have shown (Art. 33) that if a group lies in

* A subgroup H of G (H # G) is a meximum subgroup of
G if it is not conteined in a lawger subgroup of G. (ex-
cluding the case where G is a subgroup of itself).
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R, 211 its supergroups lie in R. By hypothesis

G lies in R. Therefore &8ll supergroups of G lie in R.
It now remains for us to show that no group

whichris not a supergroup of G lies in R. Suppose M

~is 2 group which is not & supergroup of G and which lies

in R. Then G and M have a greatest cormon subgroup H, which

is not G and which consists of all the substitutions

common to G and M. Now if two groups lie in R, their

greatest common subgroup lies in R(Art.35). It

follows that H lies in R. But this is ebsurd, for

by hypothesis no maximum subgroup G’ of G lies in R

end by Art. 34 no subgroup of ¢' lies in R and hence

no subgroup of G(except itself) lies in R. Thus our

hypothesis concerning 1l cannot hold, and our theorem is

proved.

40, The Group of an Iquation is Unique.

In Art. 38 we saw thot any equation has at least one
group for & given domain R including its coefficients.

It now easily follows that any equation has only one

group for a domain R.

For let G and Ls be any two groups vhich
setisfy the definition of the group of an equation.
Then G and [r both lie in R. Since G lies in R,

it is & supergroup of Lr (Art.39). Similarly since
T+ 1ies in R, it is a supergroup of G». It follows that
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G and [r must be identiecal.

4l1. The Ordinary Geloisian Definition of the

Group of an Equation. We have defined the group of
an equation for domain R &s that group which lies in R
and has no maximum subgroup which lies in R. Our
definition of the group of an equation differs from
the ordinary Galoisian definition which is arrived at
as follows:*

Let there be given an eéuation of degree n with
coefficieﬁts belonging to domain R.

Form the equation

Flv) = (v=v )v=v) ---(v=-v,)=0

where v,=m X +m Xt---+m x , the m's being chosen in
R and such that v, takes on n'! numerically distinct
values under the n' substitutions on x,, x, =--=- x_,

If P(v) is reducible** in R, let F_(v) be
that irreducible factor for which F, (v)=0. If F(v)
is irreducible in R  let F, (v) be F(v) itsclf. Then
P (v)=0 1is an irreducible equation celled the ‘Galois
resolvent" of the given equation.

Let the roots of the Galois resolvent be

denoted by v, ,, V, , === Vg The substitutions by

o ?

which they are derived from v , namely 1l,a, --- ¥

* Dickson: Arts. 56, 57, 60.

*% T1f P(v) caen be decomposed into factors of lower degree
such $hat the coefficients of the factors are numbers be-

longing to domein R, then B(v) is called reducible in R.
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form a group, called the group of the given equation

for domsin R.

42. Let us call G the group of a given equation
of degree n for domain R according to our definition and
M the group for domain R according to the Galoisian defini-
tion. We will proceed to show that G and M are identical.
In the first place, we know thet the coefficients
of the Galois resolvent P, (v)=0 belong to M under G,
and also lie in R, since they are integral, rational
functions of the m's and e¢'s. It follows that M lies iﬁ
R.
Now we have shown that all supergroups of G
and no other groups lie in R. (Art.39). Therefore M
is either a supergroup of higher order than G‘or is
identical with G.
Let us suppose that M is a supergroup of
higher order than G. Form the equation FG(V)=-O,
taking for its roots those roots of the Galois resolvent
P (v) =0 which can be derived from v, by the sub-
stitutions of G. The coefficients of Fg}v)==0 belong
to G under G, and therefore lie in R. Then Fgﬂv) is a
rational factor of P _(v), i. e. the Galois resolvent is
reducible for domain R, which is absurd. It follows

_therefore that G and M must be identical.

43. The Group of tho General Equation of Degree

n. By a general equation we mean an equation whose roots
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end likewise whose coefficients are independént variables.
Let us find the group of the general equation of degree n
for a domain R, containing the coefficients of the
equation (and no other functions of the roots) and any
assigned constants.

The symmetric group G,,lies in R since to it
belong the coefficients of the equation. Now consider
any subgroup H of G, (E # G, ) and any rational function

g (x,x,~-- x_) belonging ‘Eo H under (%\... If @ lies in
R it is rational in the coefficients* and hence belongs
to G , which is a contradiction. Since @ was any
rational function belonging under G ,to any subgroup of
G ,(execept itself), it follows thet no rational function
belonging under G,  to any subgroup of G“§(except itself)
lies in R and hence that no subgroup of G,d(eicept itself)
lies in R. The group G, is thus the group of the
equation for domain R, sinece it lies in R and has no
subgroup (except itself) which lies in R.

44, TPinding the Group of an Eguation. Let us

consider the chein** of groups G 44 I , H, G. Suppose

we have found thaet I lies in R by testing a rational

* If, however the coefficients are not independent vari-
ables, there are some relations between them. In this
case it is possible that & function which is formally
irrational in the coefficients may by eliminatim by means
of these relations become & rational function in the
elements of the domain. The group of the equation would
‘then be different from G.'.

** oroups constitute & chain when each group is &
subgroup of the prece¢ding group.
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function o belonging to I under G e We now desire to
know if H lies in R. By definition H lies in R if a
rational function 43 beioﬁgs to H under G, and lies in
R. However, as a result of applying our generalized
Legrange theorem we know that . need merely belong to
‘H under I and lie in R, in order to conclude that H lies
in R. (Art. 36). Having found that H lies in R, similar-
Aly G lies in R if one rational function belonging to G
under H lie¢ in R. On the other hand, if one rational
function belonging formelly to H does not lie in R, H
‘does not lie in R (Art. 32). Thus to conclude that
any group G lies in R, it is necessary to kmow that one
rational function lies in R which belongs to G under &
supergroup of G which lies in R; while to conclude thet
G ddes not lie in R, it is necessary to know ith¢{ one
rational function which belongs formally to G does not
lie in R.

As long as we find successive subgroups lying
in R, we may proceed along a single chain. But when we
find a group not lying in R, we must continue to test the
maximum subgroups of the last group found in R until
we find one lying in R or find thet none lie in R. ‘If
we find one lying in R, we may proceed again along e
single chein until we oome to & group not lying in R.
Hereupon,we test as befoie the maximum subgroups of

the last group found in R. Continuing this process we
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will arrive at a group vhich lies in R and has no
maximum subgroup which lies in R. This group of lowest
order found in R is the group oi the equation for R.

Instead of considering groups which belong to
the same chain, it may oftentimes be simpler to consider
two groups which belong to different chains, remember-
ing that if two groups are found to lie in R their
greatest common subgroup lies in R (Art.35).

In the ebove method we observe that it is
immaterial whether or not we begin with the investigation
of the nearest subgroups of G, . If desired, groups
to be tested may be selected at random, though any in-
formation gained from a random selection would naturally
influence the student in choosing groups for subsew
quent tests.

If we do not know the value of a function
belonging formally to a group G, we consider the re-
solvent equation for the function. between G and a
supergroup M which lies in R. If the equetion is
binomial, we can easily solve it and find the value of
the function. If the equation is not binomial, we test
it for a rationsl linear factor*. If the equation
does not have a rational linear factor, the function
does not lie in R, and thus by Art. 32 the group G

does not lie in R. If the equation does have a rational

* The method of doing this will be explained in Chap. V.
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linear factor, it remains for us to see if the equation
has distinct roots in order to find whether or not the
funetion hes distinct conjugates under I,

To find if an equation f(x)=0 has distinct
roots we may form the discriminant by means of &
determinant of (2n - 1) order.

-t

f(x)=ax+8 X + ...+ 8

! v -t n-v -»
£ (x)=na,x" +(n - 1l)a ¥ + (n-2)a,x +..-8__,

a, a, 8, « « e 8, , &84 0. . .

0 a, & + « ¢« 8 8y, o o > n-1 rows.

D= . . e s e e e . e o o o
na. (n-1l)ae,(n-2)a,. . . &

0
0 na, (n-l)a,- - -28,, a,, 0. .. n TOWS.

©

e Ed L] L] L] L] L4 L d ° L] L] L] J

D will venish if f(x)=0 hes equal roots.*

If the roots are distinct,the function belongs
to G under M and will serve our purpose. If the roots
are not distinect, the function does not belong to G under
M and under such conditions we must choose another
function if we are to pass directlyfrom M to G. If II
is not thc next higher group of G it mey be that the

function belongs to G under & group of lower order than M

* See Cajori: Art. 76.

The method for determining whether or not the roots of an
ennntion are distinet by finding the greatest common divisor of f(x;
end f(x) has been explained in 2 footnote (p. It.)
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and in thot case it together with other functions be-
longing to subgroups of M would enable us to pass by
steps from M to G.

45, The problem of finding the group of an
equation is most simple if the nature of the roots is'
known. Let us consider the quadratic and cubic equations
in this connection.

I. Quadratiec Equation.

Case A. Given: x, end x, lie in R.
Then G, lies in R
G, lies in R
end G, is the group for R.
Case B. Given: x, and x, do not lie in R.
Then G, lies in R.
G , does not lie in R
and G, is the group for R.
II. Cubic Equation.
Case A. Given: x ,x., and X, lie in R.
Then G, lies in R.
G, lies in R.
G, lies in R.
G, lies in R.
and G  is the group for R.
Case B. Given: x, and x, lie in R, but x  does
not lie in R.
This is impossible for we have the

relation,
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¢,=X + X,+X,
x,=c, —(x,+x,;)
which shows thet x, is the difference of
two quantities which lie irn R and hence
must lie in R.
Case C. Given: x | lies in R, but xz'and X, do
not lie in R.
Then G, lies in R.
!

% lies in R.

G, does not lie in R.

and G.

*

is the group for R.
Case D. Given: x, X . and x, do not lie in R.
Then G, lies in R.

G, may lie in R.

G, does not lie in R

G, does not lie in R.

and the group for R is G_ or Gs‘
To test whether or not G, lies in R,
solve the resolvent equation for the func-
tion A\ =(x - x,)(x,- x,)(x ~ x,).
If A lies in R, the group for R is Gy,

otherwise the group is G .

46, Thc problem ot finding the group of an
equation becomes more complex when the roots of the
equation are unknown. As an illustration let us

find the group of the cubic equation
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x> - 7x+7 =0 for domain R(1).

olsx\+1'u+"3=0'
G, = X%, ¥ )(wxb-\-)(\‘}z,: b |
Cy= X, %%y =11

A~ AF=0.

4,
G-‘ Vo= YWy, WSy

The symmetric group lies in R ,since to it
belong the coefficients.

Let us now see if Gylies in R. To do this
we must solve the resolvent equation

A -AY=0

Substituting A""—_-c e, - 4c, c, - 4c: T18c c,c, -

=0-0 +1372 + 0 - 1323
=49,
we have
A* - 49 =0
A=x7,

* por the derivation of this expression see Chap. II.
Art. 10.






Since A lies in R and belongs to G, under G.»
G, lies in R. ‘

It now remains to investigate G,. If G,
lies in R, &1l the roots of the given equation must
lie in R. Now & rational root of an equation of the
form x> = 7x +7 =0 must be an integer.* By trisl
we find that 1 and X7 are not roots,and thus G,
does not 1i® in R. The group of the equation, therefore,

18 GS‘

47. Reduction of the Group of an Equation by

Adjunction. For a given domein R, the group of an

equation is completely determined. It is evident,
however, that if we change the domain of rationality
the group of the equation may undergo a corresponding
shift.

Suppose we have tound that G is the group of a

"

/
given equetion for domein R=(R, R, ... R*) where

+*

] "

R, R, «.c R" are certain constants or variables

including thre coeffiecients of the equation. Take H

- any subgroup of G (H#¥ G) and P any rotional function o

the roots belonging to H under G. By hypothesis Y does

not lie in R. Now adjoin Y to domain R. The group H

lies in the extended. domein (Y, R, R", e« R®) since

Y belongs to H and lies in the domein (Art. 36).
Furthermore, no subgroup of H (except itself)

lies in domain (¥, R', .- R"). For suppose H' is

* Hawkes: Advanced Algebra Art. 178,

62.

£
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a subgroup of H(H'# H) which lies in (y, R, oo R").
Then any rational function & beloﬁging to H' under H
lies in (Y, R', «e. R) and can be expressed rationally
in terms of Y, R'. sse Rk.

¢ = Rat. Punc. (Y, R, R", «ee R")‘.
By hypothesis § cannot be expressed in GLerms of

R', R”, oo R* alone; for if it could, E' would lie in

domein (R', R" ... R") [Bee art. 36].
From the above relation we see that ¢ is
formally unaltered by eny substitution which leaves
Y formally unaltered; so that the group to which )
belongs must contain that to which Pbelongs, i. e.
H' mst contain H. This is ebsurd tor by hypothesis
H' is a subgroup of H (E'$ H). Therefore H cannot
lie in domain (} R ... R ) ; and H satisfies the definition
of the group of the eguation for domain (P, B wes Rk),
since it lies in thre domain end has no subgroup (except
itself) which lies in the domain. |
We hove thus shown thet

By the sdjunction of & ration-l function Y(x,, X,y ee. X4

which belongs under the group G of the equation to a

subgroup H of G, the group of the equation is reduced

precisely to the subgroup H.

48. Solution of sn Equation by Resolvent

Equations. Suppose the group of a given equation is
¢ (6 3 6,[1). for a given domain of rationelity
(r', R", vee R*). ©Let H be a subgroup of C(H % G)
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and let}b be & rationsl funetion belonging to H under G.
Suppose we are able to solve the resolvent equation for P
and let us adjoin Yto the domain of rationality. The

group of the.eéuation for the enlarged domeain (), R', R eee
R") is precisely H (Art. 47). Suppose we are able 1o

solve the resolvent equation.for g rational function R:.
which belongs to & subgroup M of H under H. Upon
adjoining A to the domsin of rationslity the group of the
equation becomes M. Proceeding in this way we would finally
reéch & domein for which the group of the equation would

be G.[j], providing all the resolvent equations could be

solved; * and the roots of the equation could then be

expressed in terms of the quantities of this domein.

* Dhis question is discussed in Chap. VI.
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CHAPTER V.
Reducibility and Irreducibility.

49, In Chapter III Art. 26 we made the
statement that if & non-binomial resolvent equation
has & rational linear factor we can find at least
one of its roots and thus proceed along the path.

The question 6f the reducibility of an equation is
then of prime importance in our method. Also, if
the given equation is reducible we may substitute
for its solution the solution of equations of lower
degrees, in which case its solution would generally
be much simplified.

It is evident that the terms "reducible" and
"irreducible” are meaningless except when referred to
some domzin of rationality.* Taking the simplest case
first, let us consider the ways in vhich we méy learn
whether or not an equation with rational coefficients
is reducible in the domain of rational numbers R(1l).

50, Reducibility for R(1l). Linear Factors.

Suppose we have given the equation
flx)=8,X+8 X+ eset+a =0, I.
where the a's are integers.
Let us test this equation for rational linear

factors. The most satisfactory method of'doing this is

as Tollows:

* 5ee footnote page 53.
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If a, # 1, divide equation I by a and multiply
the roots by a constant so chosen as to give an equa-
tion of the form

| x™te x" +... +e,=0. II
where the ¢'s are integers*.

By Gauss's Lemma**, if a function has integral
coefficients and can be resolved into rational factors,
it can be resolved into rational factors with integral
coefficients. Therefore, if equation II has & rational
root, this root must be an integer and ,furthermore, from
the relation which exists between the roots and coeffi-
cients of an equation, it must be & factor of c_,

Test each integral factor ¢ of ¢, by dividing equation

II by x - c. If there is no remcinder upon at least

one of the triasl divisions, then equation II has a2 rationsl
root and is thus reducible for R(1). |

If equation II has a rationel root, equation
I is reducible for R(1l), since it hes a rational root
which caen be obtained by dividing the integrel root
found for equation II by the constant by which the

-roots of equation I were multiplied.

50. Kronecker's Method of Testing Reducibility

for R(1). It may be thet f£(x) (Art. 50) has no
linear rational factors, but has factors of higher
degree. When the degree of f(x) does not exceed five,

*ap joriz Arts. 29, 55.
** cgjori:Art. 127.






67.

we can ascertain by the aid of ordinary algebra
whether or not the function has factors of higher
degree then unity.* However, & method which can
be applied to f(x), no matter how high its degree,
is that due to Kronecker, and is as follows:

Suppose we wish to see if f(x) has 8 rational
factor of degree d (d<wv),

Assuming that f(x) hes such a factor g(x), we
write

f(x) = qlx) Y(x).
Select any d+1 integers, z,, 2

z cce Z‘_H

(N 3?

)

+1\

preferably numberssuch thet f(z ), £(z,), £(z,) ... £z,
have the least number ot integral factors.

ITow construct the functions

M, (x) = (x=32,)(x - 23) oo (x-32)
(z,- z,)(z,- 2,) «0o (2,- 2.)

(x =z )(x = 2,) eeo (x~-132,)

u_(x) =
* (z,‘- Z. )‘z.b" Z,s) cee o (Z.‘- Z“)
Mzﬂ,(x) _fx -z )z -2,) cee (=g )(x -2 )iz - z,)
(Z.H..- zu)‘z-u-\ -2 1.) "'(Z&*l— Z‘)(Z‘_H" Z-Hv'k ).'.(Z\H-:‘ z\)

Observing that the function

q(z,) M, (x)+q(z,) M,_%(x)+...+q(z,w) M,  (x) is equal

to @(z,) for x=2z,, to q(z,) for x=z,, ... togq(z,,, ) for

* cajori Art. 128,






68.

X=2 we may write

d+l ?

glz, i, (x)+q(z, )0, (x)+..+qlz, M, (x)=qg(x).*

1

We now desire to find q(z,), §(z,) ... gq(z,,,).

Denote the integral factorsof

£(z,) vy 4,,4' a" .....

] 7] ni

£(z,) " A, d, Ay ... ..

F(Z,0) ™ By Gy Giy e e e

Q(z,) is one of the d'ls; €(z,) is one of the d,'S ; ee»
q(z,, ) is one of the 4, ,'s.

| Try some 4, for g(z,), some 4, for §(z,) ...

some 4 for § (z,,,), and ascertain by division whether

|

or not
a, le (x) + d%M,_L(x) +oeeet dH‘M_z“‘(x)

is a factor of f(x). If not, try eanother combination

of the d's. Trying all possible combinations of the

d's, we will ascertein in & finite number of trials

whether or not f(x) has a rationsl factor ¢(x) of

degree d . **

F2. As an illustration of the above method
let us see if the equation
f(x)=x 4 5x +3x +6x+6 =0

has a rational factor of second degrece.

* Bacher: "Introduction to Higher Algebra"™, page 3 Theorems

3 and 4.
** Netto: Vorlesungen iiber Algebra Art. 50. Erster Band.
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Assuming that f(x) has such a factor g(x)

we write
f(x)=¢g(x) P (x).
Select any 3 integers, say z =1, z,=0, z_ = -1,
rhen M_(x)= (2=0)(x¥1) _ X +x .
a (1 -0)(1+1) 2
M (x) =[fx=1)(x ¥+1) _ x*=1
- (0 - 1)(0 +1) -1
M(x):‘x"l)(x"o):xk-X.
% (=1-1)(-1-0) 2

G (1) xz'—é-x + @(0) x =1 +Q(-l) x&—zx = g(x).

The integral factors of
f£(1)=21 are 21, =21, 1, =1, 3, =3, 7, ~7.
f(0) =6 "™ 6, -6, 1, =1, 3, =3, 2, =2,
f(«l)==3 " 3, =3, 1, =1,

g(1) is one of the integrel factors of £(1); g(0) is
one of the integral factors of f(0); g(-1) is one of
the integral factors of f(-1).
Let us try 3 for @ (1), 2 for g(0), and 3 for g(-1).

As our trial g (x) we have
A X A
3(x é\-xz 4+ 2(x_- ) 4+ 3(x-x) _ xz_‘_z.

Testing x + 2 os & divisor of £(x), we find that

f(x) = xz+5X + 3.
xi—t—s

which shows that f(x) hes a rational factor of second

degree, namely x+ 2.
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53. Eiscnstein's Test for Irreducibility for

R(1).Eisenstein has given a test for irreducibility
which, when i1t can be applied, is much simpler than
Kronecker's method. The conditions are the following:
If an equation with integral coefficients
f(x)=2,x +8,X + oo +a,=0
is such that all its coefficients except a,6 are
divisible by a prime nuﬁber p, but aw\is not divisible
by p > then f(x)=0 is irreducible for R(1).*
Applying the above test we know immediately
that such an equation as 3% +5x +15x° +40x°+35 = 0
is irreducible for R(1), since =11 its coefficients except
the first are divisible by the prime number 5 and 35

2
is not divisible by (5) .

54. Reducibility for an Arbitrary Domein. 1In
the study of 2n equation we may admit into the investiga-
tion various irrationalities and desire to know whether
or not the equation is reducible.for this domsin. Thus it
becomes necessary to consider the reduction of an integral
rational function f(x) into irreducible factors for
an arbitrary domain. Following the method given by
Pierpont** for the general case, we will work with a
special case with the hope of making the genersl procedure

more intelligible. For the general case, the student

* gajori: Art. 129.

**  Annals of Mathematics. Ser. 2, 1900-1901, page 31,
Art. 44.
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15 referred to Pierpont's article.*

Let us teke the function

flx) = x = 2Wx+M =2

and attempt to factor it for domain R (T, N2 ).

The coefficientsof f(x) &are in the domain..
The Y2 does not appear explicitly in f(x) but may
be conteined implicitly since certain retional
Tunctions of T§~are rational numbers. The quean-
tity W appears explicitly in f(x) and whenever it is
conteined in f(x) it must appear explicitly, since it
is transcendental. Because of this property of T,
we may deal with AT as & variable without altering
the character of our problem.

Now f(x) does not contain \2 explicitly; so
we replace x successively by t+V2 and t —‘TE?

24 +Y2 )= t"+2( N2 -m)t + (-2 {27). (a)

£(¢ =2 ) = t*+2(-T2-m)t +1 (2 {2). (B.)

The necessity that {E‘shall appear explicitly
will appear later. If f already contains qE—explicitly
this substitution is unnecessary.

Multiplying (A) by (B),

£(t +72) £(t -V2) = ¢t - 4wt 4 (6w =8)t" (16T -47°)%
+n* -8t
Notice that Yg—no longer appears explicitly.
The product f£(t+Y2) £(t -\2) is called

the"norm” of f and is designeted Nf.

* annals of Mathematics. Ser. 2. Vol. 2, 1900-1901,
page 31, Art. 44,
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Supposing f(t +2) is reducible for R(TT, \2),
we may write
£(t +12) = ¢t +12) m(t+12)
£(t =\2) = a(t- \2) H(t -\2)
2(t +(2) 2(¢ -¥2) =[a(t +1@) ot -V2)|[m(t +8) m(s-
- {2)] .

or Nf = NG . NH. (1)

The functions Nf, NG, and NH are integral
functions of t+ and W™ . Brom relation (1) we see
that if Nf is irreducible for R(1), f(t+2) is irre-
ducible for R(, Y2); and every diviser of f£(t +\2)
is a common divisar of f(t +\2) and & factor of
Nf. Thus our procegdure is to find 211l the factors
of Nf for R(1) and find the greatest common factor
of £(t +Y2) and one of these factors, which takes
but & finite number of operations.
Since we are dealing with 1T as a variable we
propose to attempt to factor the function Nf of the
two varisbles t and T for domain R(1).
Since Nf is of fourth degree in t, we need not
test it for factors of higher degree than two in t.
Let us test Nf for a factor of degrece two in t.
To do this we select arbitrarily three values
for t, say t,=0, t,=1, t = -1.

Now form the functions
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u (4) = Lo B)(Eot) o (5 =21)(21) e
! (t,~ t )(%, - t,) (0 - 1)(0 +1)

M, (8) = (t =t )(t -t5) = (£ -0)(t+1) _ t"+% .
. (t,- t,)(t,- t;) (1 -0)(1 +1) 2

Mt(t)z(t-'g)(t-tk) _ (5 -0)(t-1) t¥-%.
3 F,- 1 )(%,- t,) (-1 ~-0)(- 1-1) 2

Since the function
NG(t) M (t)+N6(t,)M, ($)+NG(t,)M o (t) is equal to
NG(t,) for t =%t , to NG(t,) for t =%t , and to

NG(t,) for t = t,, we may write

3’

2 LS
WG(t,)(1 - t¥)+uG(t, ) T4 +we(s,) B = F=re(t).

We now desire to find NG(%,),

NG(t.), end NG(t,).
NE(t, )= n*-81"and its factors are
ot 8, (M- 8).

Nf(t, )= -7 +12@ - 2= 4>+ w* and its factors
are (= 1), (W -1)*, (% = 27-7),(W=-1)(m= 21 - 7) [by
Kronecker's method for factoring an integral function
of one variable in R(l)J .

NE(t,)= -7 - 12w - 21 *+4 m° +Ttand its factors
are (m+1), (w+1)", (M+2w - 7), (T+1)(T+2m - 7).

NC(t,) must be one of the factors of
Nf(t, ); NG(t,), one of the factors of Nf(tz);
NG(t,), one of the factors of NEf(t,).

Let us try T = 8 for NG(t,),

T = 2= 7 for NG(t,), andTW*+ 2~ 7 for NG(t,).
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Then as & trial value for NG we have

(- 8)(1 =t )+( n-z2w-mitt + (v*r2a-7E-t =
2 2

- 8 - wth et v [MtY - 2wt - Tt - 2wt - TE] +
3 [ +ent™ - 1t -nt - 2mt +7E]=tT - 2nt+TM - g,

Testing t* - 2wt +T"- 8 as & factor of Nf,'

we find
Nf ot 4P r(6n" - 8)EHI6T - A+ -8 o
t¥ - 2wt +m-8 » t* - 2wt + - 8

(t -mw)".
Thus t - 2wt + T = 8 =NG, i.e. is a factor of Nf.
It now remains to find the highest common
factor of f£(t +V&) end t~ - 21rf + Nt*- 8 by the
ordinary method.
t7+2( V2 -mit+ - zn\'é}[_gf -2nt+ns -8
t - 2mt +7n"- 8 L '
2\2 12\"2’1: - 2w \2 +8
- T2 YZ| t"- 2wt+mes |t ~(T+2V2)
- 1t + 28
-t - 2\2t4T- 8

-t - 226+1T- 8

We thus find that t -w+2 {2 is the highest
common factor of f(t +{2) anda t¥ - 2mt+ -8 .

Applying now the reverse substitution

x=% +f§-, we have
t - +2V2 =x -1+
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Therefore, x - T 42 is a factor of f(x) for
.R(’W,Tg). Py division we find thet x - T - Tﬁ'is also
a factor of f(x), i.6. fix)= (x ~-TM+{2)(x ~-1T - {"5).

55. Reducibility and Transitivity. With the
property of the ieduoibility or irreducibility of a
given equation for & domain R is correlated a corresponés
ing property of its group for that domein. That is,
knowing whether or not an equation is reducible, we are
able to stete & certain cherscteristic of its group; and
on the other hand, knowing its group, we are able to
stete whether -or not the equation is reducible. The
property of the group to which we refer is its
"trensitivity" or "intransitivity". By & transitive

group is meant one which carries any arbitrarily given

letter into sny other arbitrarily given lctter.

We will now proceed to show (A) if the g?oup
of an equation is intransitive, the equation is reduecible;
and conversely, (B)if the equation is reducible its group
is intransitive.

(A). Let there be given the equation

flx)=(x = x)(x = x) ees (x=-x) =0

whose group G for domein R ie intransitive and connects
x, with only the elements
X0 Xy see X o (p <n).

Then the function

g(x) = (x-x)zx=-x) 0 (x-x)
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has its coefficients formally unchanged by all the
substitutions of G, since they are symmetric in

X,» X . x? and every substitution of G merely permutes

2’

X, X cee x? smong themselves.

)t

By Lagrenge's theorem the coefficients of g(x)

can be expressed retionally in terms of ¢ , ¢ cee C_|

a"

and eny function belonging to G under G and thus lie in
K It follows that @ (x) is a rational factor of f(x).
and therefore theot the given equation f(x) = 0 is reducible
for domein R.
(B). Let theres be civen the equation

flx)=(x =-x )x=-x) oo (x=-x)=0
reducible for domain R, namely such that

f(x)= g(x) ¥ (x)
where the coefficients of q(x)=(x - x )(x = x_) eev (x - x?)

and Y(x) = (x - x_, )z - ) ese (x = x,) lie in R.

X ova,
Since any summetric function of Xy X,y oo xP and any

symmetric funetion of x,,, X_ ., eee X ) liesin R, the function

PHa

Y =Sym. Funect. (X, X, , eee xv)+K Sym. Funct. (x cee X, )

2?

P
(where X is a quantity in R) lies in R.

The function Yis formally unchanged by any sub-
stitution of the group H, which consists of all the sub-

stitutions on x , X , «.. X, among themselves, all the

7.’

substitutions on x p.d » +++ X _among themselves, and

| 2l » fﬁ-;)_

all the products of the above-mentioned substitutions.
On the other hand, Y is formally changed by any substi-
tution not in H, i.e. by any substitution which carries

any of the elements x,, X , oo XT into any of the elements

XF” ’ xr‘\_l, cee x\.
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Therefore y)belongs formally to the intransitive group
H.

Heving properly chosen K, the conjugates of‘w
under G, are numerically distinct and }Pbelongs to
H under G, . Since P belongs to H under G\\and
lies in R, H lies in R ; and sinece H lies in R |
the group G of f(x) =0 for domein R is a subgroup of
H. But H is intransitive, and since any subgroup

. . W "
of an intransitive group is in transitive, G must be

intransitive.

56. It is evident that in the determination
of the group of an equation the fact that the
reducibility (or irreducibility) of the equation is
correlated with the intransitivity (or transitivity)
of its group directs us in the choice of groups
for investigetion. This fact is especially useful
when we reach the biquadratic equation, where the de-

termination of the group begins to show complexities.
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CHAPTER VI.
The Solution of Equations from the Standpoint of the

Galois Theory.

57. In Chapter IV we found thet for aﬁy
given equation and any given domain R there is one
group whose properties are of such importance in the
study of an equation that this group'is cclled "the™
group of tre equation for doﬁain R. By meking use
of this idea of the group of an equation we are
enabled to view the solution of equations in a
manner somewhat different from that used in earlier

chapters.

58. Quadratic Equation. The Galois group

of the generel quadratic equation
z’ —
x"=-¢,x +e¢,=0

for domain R(c,c, ) is the symmetric group éz,(Chap.IV,

I =
Art. 43.)
@
s G = X+X,
C,=X X
2 (v =v,)(v -v. ) =0,
(D
G V=X -X

\ | \ LY

The only subgroup of G, is G, . We are able to solve the
resolvent equation (v - v )(v - v, ) =0 for the

function v, belongings to G, (Chap.I, Art.l).

Upon adjoining v, to the domain of
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rationality the group of the equation becomes G, .
(Chap. IV, Art. 47).

Knowing thet ¢, = x +x, and v=x - x_we
) | ~

are able to express X, and xbi;'x_ terne of elements

of the qOmain: x =c,tv ,
2

X,=C, = Y, o (See Chap. I. Art. 1).

—_—re

2

59, The Cubic Equation. The Gslois group

of the general reduced cubic equation

3 -
X +¢, X - 03—0
()

for domain R(c“cmcs) is GL *

°[= w'+1)7“+ 1’3:‘0,

Ca= Tl + Py TNy

c“b: ‘l“"::t".‘)-
(A-A)(A-A)=0. T,

GB A= (1», =¥ ) (¥, - 1:.0(1._5—10.
) A= -4

V-V )v=-v)(v-¥)=0. 1T,

V= B b Wiy,
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In Chap. I, Art. 8 we solved the resolvent
equation I for the function A,, which belongs to G,
under Gb. Upon adjoining Alto the domein the group of
the equation becomes Gb. Similarly, in Chapter I, Art.
8 we solved the resolvent equation II for the func-
tiqn V. which belongs to Gl under Gs. Upon adjoin=-
ing v, to the domain the group of the equation becomes
G,,and we are able to express its roots in terms of

elements of the domain B(c., C,s Oy AV, )e

x,=1/3 | v, - _."gc_;,,]

x =1/3 E?m - msﬂ
Vi
x,=1/3 l:u)v‘ - &5%
v, (See Chap.I Art.8 page 1b).

60. The Biquadratic Equation. The Galois

Group of the general bigquadratic equation
i 3 > _
X' -¢Xx+tc,x =-c.X +-c*-—0

)
for domein R(e,, ¢,, ¢, ¢, ) is G, « We have seen that

-
five direct pathe are open for the solution of the
biquadratic equation (See Chapter III. Art. 16 and
group-displays opposite pages 29 axd %1 ). Since we

may select not only a great variety of functions

at each adjunction but also different groups, we can

gccount fTor the fact that the number of different‘.A
solutions that has been given for the biquadratic

equetion is enormous.*

* Por detsils of solution see Dickson Arts. 4 - 7, 35 - 42,

For informetion on different solutions see Listthiesen:
Grundzige der Antiken u. Modernern Algebra.
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Tote: In this group-display only one group of a conjugate
set is given.
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Let us consider the following path:
G clﬂ°2.i°'5vc“t

A

2 (A*AD(A —AQ= 0. I

(TW\» A= (r TE x’."ﬁ-ﬂ(’:,—‘ﬁ.ﬂ(*p:_- By N 1‘:_"1"1)(1’5'1'0.

’5| (3-a)(g-q(g-gn=0. 1.

G o (Ul %) + (bt ¥ 1) +w (¥ B+ B %)

A= §, (B4 YY)
(V=¥ (V=V)=0. .

Y
&

W

%l (-2 (-2 (a-2=0. TI

I
G«, Vi= B =Bt Wl -y,

The resolvent equations I, II, III, &nd IV can
be solved since they are quadratic and cubic equations.
Upon adjoining A, q,, l|, and v, to the domain,
the group of the equation becomes G, , and the roots may
be expressed in terms of elements of the domain.

If ve choose a path in which we pass from szto
G (See Chapter III, Art. 16), we must solve & non-
binomial equation in order to find a function belonzing

to G¢ under G since G is not self-conjugate under

24

Gz*. But since this non-binomial equation is only

of third degree, there is no difficulty due to this

situation. Thus along any of the paths indicated in
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Chapter III, Art. 16, the resolvent equations can be
solved, since they are not of higher degree than three,

and the solution of the given equation can be accomplished.

6le The Quintic Equation. The Gealois group

of the genersl quintic equation '
x* - ¢,x've,X =c X +0,Xx =-c =0

for domain R(e,, c,, C,» Cy» Cg) is G:l .

Apparently the method of procedure used
in solving the general equations of second, third, and
fourth degrees should lead to the solution of the general
quintic, but & difficulty arises in that in each

possible path from G, , there occur non-binomial

0

equations of degree five or higher ( See group-display
opposite page ¥3).

The meximum subgroups of G‘aoare sz’ le,

Guo' end G, . Passing to ka would involve the

solution of a non-binomisl equation of fifth degres;

passing to G a non-binomial equation of tenth

12
degree; passing to Gzo, a non-binomial equation of
sixth degree. Since G, 1is the group of the

equation for R, the groups G Gu;’ and Gao do

ar’
not lie in R, and it is thus impossible to solve

any of the above resolvents by inspection (i.e. by
finding & rat ional linear factor in R)e Qur procedure

then is blocked. On the other hand, we may pass to G
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by & binomial resolvent of second degree, but to pass
from G to & maximum subgroup of Guo we would have to
solve non-binomial resolvents of fifth, sixth, or tenth
degrees., Since no maximum subgroup of G ,1lies in R,
none of these resolvents can be solved by insvection,- and
our procedure is here also blocked.

We thus arrive at the conclusion that the
general quintic equation camnot be solved by our method.
Furthermore,it is evident that the same is true for
any special quintie equation which has for its group

for R(c\ , C c

2 9 £ 3 ’ c

w ) the symmetric or alternating
group.

Let us now consider the case of a special
quintic equation whose group is neither G, nor G .
Tre group may or may not be a subgroup of Guo( ﬁé(}uo)‘

case (1). Suppose the group is not a sub-
group of Guo’ Since by hypothesis G|&° is not the
group of lowest order in R, at least one of the
non-binomial resolvent equations to be tried in passing

from G ,  to a maximum subgroup of G . has a

©

rational linear foetor in R and cen thus be solved
by inspection. We observe from the group display

that starting from eny maximum subgroup of G

of G‘% 120 °

0
other than G  , we can select & series of groups
terminating with G(l) in which each group is a self-

conjugate subgroup of prime index under the preceding
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group, and can therefore pass to G|(1) by & chain of
binomial equations of prime degrees.

Cese (2). Suppose that the group is a sub-
group of G, ( $£6G_)e. We can pass to G , by the
solution of & binomial equation. Since by hypothesis
a subgroup of Gu§ of lower order than G, 1lies in R,
at least one of the non-binomial resaolent equations
to be tried in passing from GLD to & maximum subgroup

of G, hes a rational linear factor in R and can thus
be solved by inspection. We observe from the group
display of G\%b that sterting from any meximum subgroup
of G, we con select a series of groups terminating
with G(1) in which each grdup is & self-conjugete
subgroup of prime index under the preceding group.
Therefore, as in case (1), we cen pass ta G, (1) vy
solving a chain of binomial equations of prime
degrees; and the solution of any quintic equation
whose group is neither the symmetric nor alternating
group can thus be accomplished by our method.

62, Algebraic Solvability of Equations of Higher

than Fourth Degree. We observe that we can slways colve

any equation by our method if starting from the group of
the equation we can select a series of groups terminating
with G,(1) in which each group is a self-conjugete

subgroup of prime index under the preceding group.
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Furthermore, it is shown in treatments of this subject
that this condition is not only sufficient but also
necessary for the algebraic solution of any equation.*
Since it has been proved that the symmetric
group G, on n74 Iletters contains no self-conjugate
subgroups besides itself, G , and G (1),** it
follows immediately that the g%;eneral equatioﬁ of
higher than fourth degree is not solvable algebraically.
Foratthough the index of G-_ni under G, 1is the

A
prime number 2, the index of G .under G\ is

&
the number %‘. , which is not prime for n>4.
However,it is cleer thot & special equation of higher
than fourth degree may have & group which meets the

above conditions and this mey be solvable algebraically.

* Dickson: Arts. 84, 92.
** Dickson: Art. 45.
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