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1. 

Introduotion. 

Realizing that the Galois theory of algebraic 

equations as commonly presented seems artificial, abstraot, 

and intrioate, we have been led in the following paper 

to attempt to present in a olear, tangible fashion the 

general, fundamental prinoiples involved in the algebraio 

solution o~ equations. In oarrying out this a1m we have 

found it necessary to generalize oertain methods of 

prooedure still more than is done in the extant treatments 

of this subjeot, to for.mulate some of the theorems 

differently, and most of all to define ' the Galois group 

of an equation from an entirely new pOint of view. 

In Ohapter I we oonsider in s veI7 elementary 

manner tbe solution of quadratio and oubio equations 

from the grou» standpoint. From this elementary discussion 

it is hoped that the student will see that even the ver.y 

simple and familiar prooesltes which h'e perhaps thought 

meohanioal or triok prooesses are but parts of a general 

soheme. In Chapter II we study more in detail the 

prooesses involved in tne solution of the cubio equation, 

introduoing the general theor,y as needed. Having 

found the oonditions under which the variousprooesses 

oan aotually be performed, we attempt in Chapter III to 

extend the plan of solution for quadratic and cubio equations to 

equatioDs of higher degree. 

After the stUdent has a general picture of the 

solution of an equation from the group standpoint,we 





2. 

introduoe in Chapter IV the idea o~ "the" group o~ an 

equat-ion. As mentioned above, we disoard the ordinary 

definition o~ the Galois group o~ an equation, and 

for.mulate a definition whioh we believe to be more 

convenient and tangible. It is to be observed that the 

finding of the group of an equation acoording to our 

definition does not involve knowledge of the roots of 

the equation. We are able to prove that the group of 

an equation acoording to our definition is identical 

with the group according to the customary .definition; 

and,furthermore, from our definition we are able to prove 

all the fundamental theorems of the general theor7 

together with other new theorems which become fundamental 

under our definition. After considering in Ohapter V 

the question of the reducibility of an equation, a 

question of prime tmportance· for our method, we present 

in Chapter VI the solution of equations from the stand

point of the Galois theory. 





3. 

ClW?!ER I. 

An Elementary Consideration ~ Quadratic ~ Cubic 

Equations !!2! the GrouE Standpoint. 

1. The Quadratio Equation. The general 

quadratio equation can be written in the form 

%~ - 0, x + 0 .. =- O. I. 
'1. sinoe the coeffioient of x can always be reduced to 

unity by the proper division • 

.. ' Let us designate the roots of equation I by 

%, and :X~. Knowing that the coefficients of equation I 

can be expressed as rational, symmetric* functions of the 

roots (namely 0, = x, + x-a,. and .c.,.. =- X, %a, >:* we are able to 

solve for ,Xl and .%1.0 as follows: 

Expanding. 

Take the rational, non-symmetrio functions 

and v=x-x. 
~ ~ I 

These functions are the roots of the equation 

(v - VI ) (v - v~) = O. 

vtJ. _ (V
1
.+ v~) v + VI v~ =. o. 

Sinoe v~= - v, ' equation II becomes 

v~ - V~ = o. 

II. 

* If a funotion of two or more quantities remains unalter
ed when any two of the quantities are interchanged, it is 
called a symmetric function. 
** For the relation between the roots and coefficients o~ an 
equation see L. E. Dickson's "Introduction to the !beor.y of 
Algebraio Equations" p. 99. (This book will hence~orth be 
referred to as "Dickson"). 
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1. 
Expressing VI in ter.ms o~ x, and X~t 

lJ 
v'N _ (x, - x'A,) ::. O. 

~ lJ 'J., 

V =.x, - 2x,x'N+x'l.le 
~ 1.. 1I 1.. 1., 

Now x, - 2x,x~+ x~ = x, +b:,x1.. +x~ - U,x1.J=c. - 4ca,. 
, ~ ~ Henoe, V :. O. - 4c').,t 

and v =±ic~ - 4c'L. 

We may choose arbitrarily one o~ the square roots 

of o~ - 4c~ for VI. Having done BO, the value of v~ is 

'then determined. 

Let us take v. =+\ c~ ... 4e~, . 

then 

Knowing the roots of equation II we can now de

termine the roots of equation I in the following manner: 

x. - x~ = lc~ - 40~ 

,- XI+x~= c, 

x, = c l+1 o~ - 4c'1.l • 
2 

%N = c, - \o~ - 4o,.,. 
2 

We have thus solved ,equation I by means of 

the auxiliary equation II. Such an a.uxiliary equation 

used in the solution of a given equation ,is called a 

"resolvent- equation. 

2. The Cubic Equatione Our solution of the 

quadratic equation depends upon the fact that oertain aux

illar" functions ohosen are symmetric and others are not. 

We wish to Bee if this method of solution can be extended 

to the cubic equation. 





The general cubic equation 
~ 'a. 

ay +by +cy+d = 0 lA) 

oan be reduced to the for.m 
~ 

%+0%-0=0 a. '3 

by dividing by a and substit.ting 
b 

y=-x - - • 
3a 

eB) 

5. 

'1. 
o -b 

C
' -=& '!ill 
~ "3 where . -d+bc -2b 

c:. a '!i'it -rzrta~ 
~ . 

Let us oonsider tIle reduced cubic (B) and call 

its root %.' X~t x 3 -

The ooeffioients can be expressed as rational, 

symmetric funot~ons of the roots, namely 

C,=%,+%tX~-=O-

Following the prooedure used in solving the 

quadratic equation, we desire now to set up. :fUnctions non

symmetric in x.' X~t and %3. We will be greatly aided in 

doing this if we understand substitution-groups. 

3. Substitutions. The operation of per.muting a 

number of objects is called 8. substitution. The substitu-

tion which replaces x, by xd.' Xj/v by x,(3' --- x" by xl" where d)~). ··Y , 

oonstitute a permutation o~ I, 2, - - -. n is usuallY 

denoted by 

(
X1XN---Xn) 
x 'X - - - X.., t 

d. ~ " 

the order of the oolumns being immaterial. 

The identioal substitution 

(
Xtxa..- - - Xn) . 
xx---:x:...... , 7.1 --n 





leaves ever,y letter unaltered and is denoted by 1. 

With three letters x,~~,and X5 we have 3t~ 6 

substitutions 

or 

(1). The identioal substitution 1. 

(2). Substitutions which leave one letter unaltered 

and interchange the other two. 

(
Xl X2 Xi) (XiX2 X3) (Xl X2 X3\ 
Xl~X2 · ~1l.X3 ~X2XrJ 

~e abbreviated notation for such substitutions 

is (23) (12) (13) • 

(3) • Substitutions which interchange the letters 

cyolically. 

(&:1 ~ X3) 
. ~ 13 Xl 

e~l X2~) 
-X3 ~ X2 

in abbreviated notation 

(1 2 ,3) (1 3 2). 

Suoh substitutions are o~lled cycle~,or circular 

substitutions, and when they involve only two letters·are 

oalled transpositions. 

transpositions. 

Thus (23), (12), and (13) are 

The substitution (X.' xl, x'5 x ... X'S) would b .. 
X-sX, X 1.. X s-xq. 

denoted in abbreviated form by (132) (45). In fact, any 

substitution oan be expressed as a product of cycles 

a~fecting different letters.· 

• Diokson: Art. 18. 
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Any substitution oan also be expressed as a 

pr~duot of transpositions t ** e.g. 

(13254)= (13) (12) (15) (14) 

When 8 substitution contains an even number of 

transpositiOns" it is oa.lled an "even" substitution. *** 
4. Substitution - Groups. A set of distinct 

substitutions such that the product of any two of tham 

(equal or ·different) belongs itse1~ to the set is called 

a group of substitutions, or a "substitution-group .ft.**** 
When using the word group we shall always mean a substitu

tion-group. 

J. oonvenient W&7 to det·ermine whether or not 

B set of substitutions constitutes a group is to con-

struot the multiplioation table. The table gives the 

produot a % b in the interseotion of the row headed by a 

ana column headed by b. 

. For the six substitutions on three letters the 

multiplication table is as follows: 

** Diakson: Art. 22. 

*** For a more detailed treatment of substitutions see Dickson: 
Ohap. II or Ca~ori~': "Theory of Equations" Chapter X (Henoe-
forth re~erred to as "Oa~orin). 

**** ~or the general definition of a group see Backer: "Intro
duotion to Higher Algebra" Art. 26. 
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1 (123) (132) (23) (13) (12) 

1 1 (123) (132) (23) (13) (12) 

(123) (123) (132) 1 (13) (12) (23) 

(132) (132) 1 (123) (12 ) (23 ) (13) 

(23 ) (23) (12) (13) 1 (132) (123) 

(13) (13) (23) (12) (123) 1 (132) 

(12) (12) (13) (23) (132) (123) 1 

The multiplication table contains no substitution 

which is not a substitution of the set. ana thus the set 

constitutes a group. In the general case, all the nJ 

substitutions on n letters from 8 group.* 

The number m of distinct substitutions of a 

group is oalled its order; the number n of letters 

operated upon,its degree. 

o:r simply G"ly\. 

A group is designated 

5. Subgroups. Upon fu.rther investigation we 

find that there ar~ groups within the eroup Gu • W,e find 

one group of order 'three. 

G!> [1. (123), (132 il 
three groups of order two, 

I f. ;t " r· ( )~ G'~ r"l, (12 )~ G ~ L 1 • ( 23)J t G ~ l!- t 13 11 , N L: U 

and one group of order one, 

• See Oajori: Art. >97. 
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These groups are.oalled "subgroups" of the group 

GI. t- if all fu substitutions of' ~ group Hare oontained 

in a grou;p G t H .!!!. called .! subgrou;p of G. Notice toot by 

this definition any group is a subgroup of itself. 

If n is the order of a group G and m the order 
n of a subgroup H ·of' Gt the quotient m is oalled the "index" 

nG 
of H under G and is represented disgrsmatically rol. The 

H 
index is always an integer since the order of a subgroup 

is a divisor of' the order of the group to which it belongs.· 
(~) ,,.) 

We may display Gland G. together with their 
~. a.. 

subgroups as follows: 
('3'\ 

Cr.. 
1 (\'t'3) ('"3~) 

(Ill) (11,) (~~) 

6. Rational Functions Belonging Formally to ~ Group. 

Upon subjecting the rational funotions x.-t-x).,and x,x~ to the 

substitutions of G , we :find that they remain formally**un-
~. 

* Dickson: Art. 26. 

** Two funotions in %"%1.)e e. xn are formally equal if they 
are num~rioally equal for all sets of values of the XIS. 

Two funotions may be for.mall7 unequal and still be equal 
for partioular sets o~ values o~ the XIS. Later this dis-
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altered since Xl and x~ are merely interchanged by the 

substitutions ot G~~ • On the other hand, the rational 

functions x. - XL and x1, - x, ohange sign under the sub

stitutions o~ G~~ t remaining formally unaltered only by 

G, (1). We say that the rational functions x, + x ~ and 

x,x~ "belong formally" to G~~ t while the rational func

tions x, - x~ and x ~ - x, "belong formally" to G I (1). 

~ Baring that ~ rational funotion Wbelongs forma1ll" ~ 

.! group .!!! ~ ~ it l!. fonnal11 unaltered .:El mlli 
substitutions of !h! group ~ formallY altered ~ every 

substitution not in !h! grouR.* 

Similarly, let us find rational funotions 

belonging fonnally to the group G3~ and to its subgroups. 

Any symmetric ftmction of x, t x~, and x3 t 

being for.mally unaltered when any two of the letters are 

permuted, is formally unaltered by"any Bubstitution of G~ 

and thus belongs formally to Gt.. Then x,+ X~+X3t 

XIX +x X +x x , and XIX x are functions belonging 
~ ~~~, 1.,"5 

f~rmally to G
It

• Since this property with regard to 

symmetric functions is oharacteristic of G " it is 
'l\I. 

designated as the symmetric group. 

The group G"5 oonsists of all the even sub

stitutions on three letters (which includes the identical 

element). A function belonging for.mally to G
3

iS 

A=.(x -x)(x -x)(x -xl 
I ~ )., ~ ~ I 

tinction becomes "important, and it will often be necessary to 
know that two fUnctions are numerically distinct for speci~10 
values of the XiS. 

* For proof that all the Bubstitutions whioh leave a rational 
fUnotion (x, t X",t ••• :xn) fonnally unaltered fom a group, . 
Bee Dickson: Art. 2~. 
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since any even substitution leaves it formally unaltered, 

while any odd substitution ahanges its sign. A function 

of n distinct magnitudes, aBA, such that a single trans

position changes its sign is called an alternating function 

and it belongs formally to the group which consists of all tb-e 

even Bubstitutions on n letters.* This group is called 
lJl** the alternating group and its order is 2 • 

The funotion x, is unchanged for.mally by every 
I 

substitution in G
N 

and is changed formally by every sub-
I I 

stitution not in G~ _ Hence, XI belongs formally to G~. 

" Similarly t x ~ belongs formally to G?J land %,3 belongs fonnally 

to G~I _ 

A funotion which belongs formally to G. is changed 

by every ~ubstitutiO~ of G~ other than the identiaal sub-

stitution. Such a function is kIX,+ka.x~+k'Sx~ where kit ka..' 

and k3 are distinct oonstants • An especially useful 
(' 

..". .. - ti b 1" i f 11 t G ';s th fun ti n v ..J:. ***- ~ J..\LllC on e ong ng onna. yo,...... e co, = x" oox)., + "~ %3. 

7. Conjugate Values of ~ Function under ~ GrouE

We observe that the function v, is six-valued Ullder G~ 

(that is. it takes on six formally distinct values when 

operated on by all the substitutions of G) and is two.,. 
It 

valued under G I • G II t and G III • 
1.1 N ~ 

Similarly. the function 

AI is two-valued under G", and the funotionsX, t Xaw' and 

X3 are three-valued under G... For tbe generc.l case, we 
\ ... 

* For proof that all the " even substitutions on n letters 
form a group, see Dickson: Art. 23 

** Dickson: Art. 24 

*** 0) =--§- +t W. an iII18ginary oube root of 1. obtained thus: 
\ x'!> - 1 = o. 

(J.)~... t - t ~ ( x .. 1 ) (x2. -+ xi'l) ::. o • 
..... J T'GJ _ .l.+k '\C=K 
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state that the number of formally distinct values which a 

function belonging formally to a subgroup H of G takes on 

under G is equal to the index of H under G.* These 

formally distinot values are called the "conjugate" values 

of tne function under the group G. 

8. ~ Solution of ~ Cubic Equation. Let us 

now return to the consideration of the reduced cubic 

equation 

and t17 to solve it by a soheme similar to that which we 

used in solving the quadratic equation (Art. 1). 

1. 
X - C X. + c = o. . ,., 

G. 
1 

(11,) 

'VI'" 'J., -'f.l.I" 
v-a,. -=-'f.1.. -~,. 

I. 

We observe that in solving the quadratic equation 

what we did was to pick out the rational, nonsynmletria 

functions v and v belonging formally to G, [1' and the , ~ "J 

rationa~symmetric funotions 0
1 

and c~ belonging formally 

toG a. ~ (S e e Att.1). We then constructea the resolvent 

equation lIt expressed its coefficient in terms of the C'St 

* Dickson: Art.29. 
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and obtained the value of the functions v, and v~ in terms 

of the c's. tJ1is enabled us to combine a11(l solve for x I and 

Xt.,. 

We have already fonnet certain rational functions 

belonging formally to G~ and its subgroups. Using these 

same functions, we may proceed with our scheme. The fol-

lowing group-display shows t h ese functions together with 

tl1e resolvent equations which we intend to use. 

1 (12.'!» (\~~) c,: ~~ + ~'1.-\-1J"5: D. 

O'kJ) {\~) (l,~) CJ..=' ~1'1.l.+ ~2.'j.J~+ 'P11-"!>· 

X,I 

VI = l, + U)~1.I+w~~3' v't =. ~I+ w~~+ LUl.~l.._ 
'J~ loU \J, :: l.U~, +- U,)J..~1.J -\-~. "~-:'lJ.) 'l't:: W1., + W""~3+~:t.. 
"'Y.:>-=- 1,).);''1,-= ~'1.~,+ 'f.,J1.. + lA)lJ5, V .. =:. U)'l..'llt-:::' \J.)'1.x, + 'X.?>+ Ul),a; 

Our scheme is t o write out the resolvent equa-

tionI, express its ooefficients in tel'"I!lS of the CIS, and 

and solve. thus gett ing the value of b. in terms of c' s. 
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We will then write out the resolvent equation II, express 

its coefficient in tems of~ and the a's, and solve, 

thus getti~g the value of v in terms of 6 and the a's. 

Having done this, we '1lill combine and solve for x, t x~, 

and x
3

, whioh roots we assume are distinct.* 

Let us now consider in detail each step in our 

scheme. 

Constl~cting a resolvent 'equation which has ~,snd 

6.". for its roots, we have 

(6- b,.~lbt. - ~~) = t>. I. 
~ 1.. _ (tl.,+ b.1.) & + b, ~'I.. =- D. 

Since b, '::. - ~1.' equation I becomes 

1\1.. _ b'2a:= () I' • 
Ll I . 

in terms of the a's. We will show later** that 
/:l'N ~ ~ ~ ~ ~ 

1= c'AI 0. - 40 I c~ - 4c?" + 18 o~ e1.,c. - 27c~ ; and since 
I 

c • = 0 in the reduced cubic equation, equation I becomes, 
7., '3 1.. 

IS. -t-40?" + 270"5 = o. 
Solving, b.=±1=27C~ - 4o~ • • 

We may choose arbitrar.ily one of the square roots 
l.. '!, 1\ of - 27c3 - 40~ forur Having done so, the value of 

~ is then determined. 
1.. 

* In this and the following discussion we will always ex
clude the oase where f(x)~ 0 has equal roots. Equal roots 
of ::rex):. 0 also satisfy f I (x) -= O. If Hex) is the highest 
oommon factor of f(x) and fl (x) and if "ex) =-f(x) + H(x) the 
etlustlon ~ (x) = 0 has distinct roots and every root of 
f(x) =0 is a root of ~ (x):::: o. 

. ** See Chap. II Art. 10. 





Let us take 6\,=-+'- 27c; - 4c~ • 

then Ii -= - \l - 27a'A. - 40 ~ 2.' ~ H· 

16. 

constructing 8 resolvent equation which has 

V , v , and v3 fo r r oots, we have 
I 1. 

(v - VI }(v - v2.,){v - v
3

) =.0. II. 

Since v'I.,~ UlV, a nd V3 =- uf~ , equation II beoomes a 

binominal equation, 

V'3 ~ 
V =- o. , I 

II • 
~ ~ ~ 

We desire now to express v, ::. (x .+w %2. +U)~) in 

tems of fl.. and t he 0' s. I t CQD be Sh OWll t hat 

V~ -= ! (2c~ - 9c I a~270"3 - 3 0. :f=3). 
Sinoe 0.= 0 i n the reduced cubic equation , equation 

I 
II becomes 

V'3 - t · (27c
3 

- 3 ~ ,'\-3) = O. II". 

Solving , v :Sit (2703- 3 t.;f-"3). 

Choosing arbitrarily any one of t he cubic roots 

of t (27c
3

- 3 ~~-3) f or the r oot v.' then t he other two 

r oots a.re va,~~v. and V~=ttv,. 

Similarly , we can construot a resolvent equation 

Which has V~t Vs ' and v~ f or it s roots : 

{v-v )(v-v )(v-v )=0. III. 
~ s ~ 

Since v~ = wv~ and v\.-:::.~v't t equation I I I becomes 

a binomial equation · 

o's, 

3 '5 
V - V = O • .. 

I 

III • 
~ ~ ~ 

Express ing vtt- = (X.+lA)X 5+lo xJ..) i n tenns o~ Al.,a nd the 

v"3 _ t (270"5 - 3 A,1.N) = O. I II". 

Solving, v:{t( 270:s - 3 A .. 0). 
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I, . 
We observe that equation III differs from equation 

II 

II only in that it contains ~~in place of A,. 

We must now determine which of the three cube roots . 
of -t(2'7c ~ -3 ~l.~- 3) we should ohoose. Wa cannot choose 

this value (call it v~) arbitrarily as we did v1 • 

r:r we ohoose v,' -= x, +U)X1o+tJ~~, 

then wa must choose v
it 

-= x,+wxtu)x~. 

Multiplying v, by v~, 

v, v",:: (x,+u)x"A.+U,)'Lxt»)(x,+U)"'X~+LUX3) = - 3oa,. 

This is a relation which must be satisfied by the 

values chosen for VI and v~.* 

Combining with VI and v~ the equation 

:x, + :x 11 + %" = C, ::. 0, 

we are able to find the roots XI ,xa, ,and x'5 as follows: 

~f+ W%-a1 (A)" x-r. = v, (.&.) 

XI-\-urX~+WX'5 ::. v'" (B) 

%,+x,.,+:x~ =0 (e) 

x I ::. 1/3 (v.. + T ... ). 

Multiplying (A) by ~1.., (13) by W , and (C) by 1. and 

adding, w.e get 

% = 1/3 C tJ.\1. v + W VlL ) • a. I T 

Multiplying CA) by~, (B) by ~~, and (e) by 1, and 

adding, we get 

• A general e~lanation of the reason for this will be 
given later. (See footnote page st6.) 





CHAPTER II. 

! More Detailed studY ~ the Prooeases lnvolvedin the 

Solut1on~ th~ Cubio Equation. 

9. The ealution of the cubic equa~~on given in 

Chapter I suggests a general plan for the solution of 

equations of higher degrees. Before giving a general. 

plan, however, we must first study the solution of the 

cubio equation still more in detail and learn under what 

conditions we can actually perfor.m the various operations. 

10. We observe that the coeffioients of the 

resolvent equation 

(b.-A.)(A -A~) := C. I. 

are s;.vmmetric funotions of x" x'l. and- x'!)' (Art. 8 page \ Lt ). 

It follows from the fundamental theorem on symmetric 

funetions* that the coeffioient ee.n be expressed as ration-

al. integral functions of the CiS. In his "Introduction 

to the Theor.y of Algebraio Equations" Dickson has given a 

plan by Gauss for expressing any symmetrio fUnotion of the 

XiS as a rational, integral funetion of the e's.* To ' 

illustrate this plan in a speeial case, we will prooeed 

to express the symmetrio funotion aIA~(whioh oocurs as a 

coeffioient in equation Il in terms of the o's. 

• Diokson: Appendix p. 99. 
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Following the plan given by Diokson: 

Designate the given symmetric function~\A~by s. 
( )

1. ( l. 'l" ",,., 1. 
S = A.rl.~ = - x I - x'l. X 1. - x~) (x!a - x,) = 6x, x'1.. x! -

'l 'I.. 'to 1.. 'l. ~ 1. '3 a'S,. 't-
2x, x'). x, x'll x'! - 2x, %7., x'3 - 2x I X '1. % i + 2x 'A. X 3 - X \ x'3 + 

'to 3.. 'to '! 1.. 'l.. '3 'I- '3 'l.. 
2% \ Xl %3 - xl. % '3 - 2%, % 1v X '3 - 2x I x?. X 5 + 2x \ X 1" x"3 - 2x I X,." %1) + 

'3 ~ &\0 1., '3 '3 1,... 't ,. ~ 

2x\x~ -Xl XJl.+2x,X1..- X '%N+ 2x ,X?.x 3 -X.X3. 

The highest* term of S is 

Build the symmetric function 
I.\--'t l.. l.. 'l. 

O""'a - 0, 0'1.. - - 0, 0'1...0 • 

Expanding a- in terms of x I. xl. t and %3' we have 
~ ~ 'l.. ~ 

cr -= - ( x, + x 1.,+ X 3 ) ( x, x 1." -t- x:l, x!> + x, x~) =- - 15 % I x 1", X 3 

'''3 ~ ... ~ )." 3 )., "5 'l.. '!. - ax. x~ % ~ - X 4. X ~ - 8x, x 1., X"3 - 8x I X.,., % ~ - 2x?. %!t 

i.. If- ...,.,. It- '3 1.. 1., '3 
% I X ~ - 2% , X l. X 3 - X?. X ~ - 8 X, X 1.. X'3 - 8x \ X a. %"5 

~.. 8 '5 ~ _ 2x 3 x!> '\- 7v 2 ~ "3 N.A., xl. x~ - x, xl.. %~ I ~ - Xl X~ - Xl X1.-

'l...... 'to ~ 1.. 

- % , X 1., - 2x, x ').. % ~ - X I X 3 • 

We observe that tho highest term of (j' is h. 

Then the differenoe 

, 
is a symmetric function which has its highest term lower 

then h. 

The highest term of S, is 

h l = 4 %7 X1.%~. 

* ~I ~1v ~~ 11 d hi h ~I ~~ ~3 % I X X • •• is oa e g er than :x, x?. X ~ • •• if the 
first Sn~: 6f the differenoes m, - n, t m7v- n'l..t ••• whioh does 
not vanish is positive. 
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Build the symmetric funotion 
"-I I-I '5 

0"i=4c. ° 11 °"3-:::. 40 , °3 -

Expanding cr; in terms of %" % 1..' and %3' we have 

( 
:5 '&. l. 1.. 31, -

cr,=.4 X'+%~+X' -3) %,X~~ =24%, x~x'5+12%,x'l.%~ + 
1,! ,., 3 ~:5 ~ 'A" ~ 

12%, %7vX"3 +12x,x.,.,x~ +4x,x.,..x~ +12x, x~x~+12xl xa..x~+ 
If- ~ ~ It-

4x,x H x! +12%, % .... %3 + 4%, %".-:.-

Sinoe the highest term of oa is h" the differenoe 

Sa. == S , - <r. 
ie 8 symmetrio function which has its highest term lower 

tha.n hi. 
?w l.. '1. 

S ~= S, - cr,:: -3% \ X L X 3 

'1. ~ "5 3 ~ ~ 
- 6x,x.,.,x'5 +4x1..x~ - 6%. x~x"!t 

~ ~ "5 3 
4x. X3 +4%. %,., -

The highest term of S~ is 
!> ~ 

h~=-4xIX~. 

Build the symmetric function -
3-~ '5 ~ 

<T~ == 4c • 0'4 =- 40'1. -

Expanding 0-;. in terms of x. t X 1.. ' and x 3 ' we 

have 
:5 1.. l., ~ 3 ~ 

<Tl, :: 4(%. %i,+ %1.%3+ % ,X!) = 24·%, %". %'5 +12x I % -a, x'5 + 
'4 3 a. '3 3 '3 .3 ~ ~ ~ + 

12% I %1. x~ + 12x,%7.. X3 + 4%1. x"3 + 12x. %~ %:5 + 12x I x~ x~ 
~ 1, 3 3 . '3 '3 

12%, x~x'5 + 4x I x'!) + 4%, %a., -

Since the highest term of ~Nis h~, the difference 

s~ == S ~ - cr~ 

is 8. symmetrio funotion which ha.s its highest term lower -

than h • 
~ 





,., ~ 1..a '!> 7.. 
S'3:' S 1., - 0-7., = - 27 x I X l. x'5 - 18 x, x ~ % '3 

'a. 3 ~ :3 ~ 1., l.. 3 
- 18x, X4X~ - l8Xlx~ %3 - 18x. X-a. X9 - l8x, Xl.. X:s -

~ ,., 
18x, ~X3 • 

The highest term of 53 is 
!> ~ 

h 3 -= - l8x, x 1v X 3. 

Build the symmetric function 
'5-~ 1.-\ 

cr~ =. - l8c, C '1., 0'3 = - l8c, C~ O~ • 

Expanding ~ in terms of x" x , and x . t we have 
1.. ~ 

a., 1.. "L ~ -a. l.; 3 -a. '5 
cr3 =- -54%, x1.. x'3 - l8x ,%1.. x"'!) - 18x, x~x 3 - 18x,X ~ X'5 

':5 'l. 'l, 3 '3 l.. 
- l8x, x2. %3 - 18x, XL % '3 - l8x, x 1.. X'3 • 

Since the highest term of ~iS h
3

, the difference 

S ... :: S:5 - cr; 
is a symmetric funotion which has its highest term lower 

than h
3

• 

The hig~est ~erm of S", is S". itself, 
'a.. 1.. 1-

h ~ :. 27x, X 'a.. X '5 • 

Build the symmetric function 
1.-')., 'J,-1. ,.., '1. 

0-.. :. 2 7 c, c ,., C '5 =. 27 c""!» • 

Expa.nding~ in terms of x.' x'l.' ahd x
3

, we have 
2. a. 'l.. 

0-... = 27x , x ~ x '!) • 

and the difference 

Ss- = S't- - 0-", =. O. 

Now let us express S in terms of the cr~, 





o == s $" 

:::: S - cr ... ... 

-=8'5 - C1i - o-~ 

=5).. - 0""2, - cr~ - (I't 

=s I - cr, - ct: -- cr. 2,- '"'3- '+ 

••• S -= 0- + cr, + <:r'N + . o-~ + <T"~. 
~ 1.. "3 + 3 ~ • 

=. - C, 0,., + 40, 0'5 40 ~ - 18c, c 'A-0 ~ + 2703 • 

21. 

11. After expressing the ooeffioient of equation 

I in terms of the 0' s t we prooeed to solve for b.. • This 

is easily done, since equation I is a binomial equation. 

The coefficient~of the seoond resolvent equation 

(v - VI )ev - v1. )ev - v 3 ) =0 II 

.~re found to be expressible in terms of ~and the c's. 

The disoussion of this point will be delayed until the 

next ' ohapter.** Like equation It equation II is binomial 

and thus oan be easily solved_ 

We have been oonoerning ourselves with resolvent 

equations over the path G~- G~- G •• But why not choose 
I 

the alternative path G~- G~, seleot x, belonging formally 
, 

to G~t and write the resolvent equation for finding XI 

directly? Upon doing this, we obtain the following re

solvent equation: 

(x - x,)ex - x~)(x - x
3
)=0. 

3 'a..+ . - 0 or x ~ C l % c~x - 03 - • 

'3 
or sinoe a.-:=. 0, X +ca.,x - c~:.O. III 

* Suoh a oomputation is long, and for a speoial case the 
values of the a's should merely be substituted in the general 
formula. 

**Ohap. III Art. 18. 





We observe,however t that equation III is the original 

equation, and therefore nothing is gained. 

22. 

Why are we able to solve equation I and equation 

II when we cannot solve equation III directly? We can 

easily solve equation I and equation II because they are 

binomial. We are here then oonoerned with learning the 

oondltions for a binomial resolvent. Whether or not the 

resolvent equation for a certain fttn~tion will turn out 

to be b~nom1al depends upon the funotion itself smd upon 

a certain oharaoteristio of the group to which the function 

formally belongs. Before appreoiating a more specific 

statement of the oonditions ~or a binomial resolvent we 

must understand what is meant by a "self-conjugate" sub-

group. 

12. ~ Conjugate Subgroups. We know tha.t 

the funo·tion :x: , belonging formally to G ~ takes on under 

G L the three oonjuge.te values :x: I t :x: , and x, belonging ' . ~ ~ . 

'" I,. for.mally to the subgroups G~ , G~ , and G~ respectively. 
. , II '" The subgroups G 7,.' G l. ' and G7.J are called "oonjugate" 

subgroups of G • 

Similarly t the funotion A,=' ex l - x,) ex 'A. - x~) (x"3 

- x - ) , be10Jlging formally to G3 takes on under G 10 the 

oonjugate values A.and A~=--A,. but we observe that both of 

these conjugate ,values belong to the same group G
3

'. 

The group G
3 

is oalled a "self conjugate" subgroup of GL~ 

For the general oase, if! rational function ~belongS 

for.mally !2. ! subgroup !! ~ 5! ~ g !E! con~ugates 2! ]J!.... 

-under i !!1 belong formallz i2. 1!, ~ 11 ~ oalled ! 
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self-oonjugate subgrou~ ~ G. 

Th-e idea. of' oonjugate and self-conjugate 

subgroups may also be approaohed without referenoe to the 

funotions belonging to. the groups. Given a subgroup 

H of index k under a group G, we can get the k oonjugate 

subgroups of index k under G by applying within the 

oyoles oonstituting H the substitutions of G not oontained 

in H.* For instance, applying the substitution 

of G~ within the oyoles of G ~ [1 (23)] 

(lZ) 

we get ( 12) G ~ (1 (23)] - II ( 13 ) J :::. G: • 

Similarly t 
(13) G ~ [1 (23 tl - (1 (12)] = G:' • 
(123) G ~ [1 (23 il = I]. ,( 13 il = G: • 

(132) G ~ ~ (23 j] -= E- ,( 12 il = G'~ • 

Thus the three oonjugate groups of index 3 under G 

are G~ 11 (23~ , G~ ~,(13ll , and G~" [1, (12 il. 
If t however, .! subgroup l! of Q remain~ invari

ant under all lli substitutions of G, l! ~ oalled .! se1f

oonjugate subgroup of' Q. 

F'or instanoe, consider the subgroup G
3 

of Gte • 

. ,The substitutions of G l. not contained in G:3 are (12) t (13) , 

" a~d (23). Applying these substitutions within the cycles 

of G,3 we have , 

(12) G
3 
[!, (123), (132] = ~, (132), (123] = G"3 

( 13) G:3 Q. • (123 ) , {132 B = ~ t (132 ) , (123 n = G"3 

(23) G l}, (123), (132)] = [!, (132), (123] :: G3 

Henoe G is a se1f-qonjugate subgroup of G~. 
3 

* Diokson: Art. 40. 
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It is evident that G, (1) is always a self

conjugate subgroup sinoe it remains invariant under any 

substitution. 

In our diagrams we will indicate that 8. sub-

group is self-conjugate by the USe of a heavy line. 
~ 

The diagram of GI. and its subgroups 
c;:~) 

, ('1~) ,~t) 

Ql,) ""5) Q~) 

would appear as follows: 

13. Conditions for ~ Bi~omia1 Resolvent. In 

order for the resolvent equation for a rational function 

~(XIX~X3 ••• ~)t belonging formally to a subgroup H of G, 

to be binomial the conjugate values of lPunder G, from 

whioh the resolvent equation is formed, must differ only 

by 8. constant factor and. must therefore all belong 

formally to H.* We have seen that if all the conjugates 

of ~under G belong formally to Ht H is a self-conjugate 

subgroup of G. Thus we have 8. neoess8;r oondition for a 
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binomial resolvent. 

Is this condition for a binomial resolvent 

also sufficient? Suppose we choose the rational function 

v I:: 2% I - %a,wh1oh belongs formally to the self-conjugate 
(t) l\l 

subgroup G, of G 7J.. The resolvent equation for v t is 

(v - v, ) Cv - v ) =- o. 41 

v'1.. -(v,+V1..) V + v, v1v = O. 

II. 

Substituting v,:. 2%1 - x~ and v~= 2%1.. - XI' 

V ~ - (x, + X'L) v + 5% I xa, - 2x~ - 2x ~ ::. O. 

Here we have an example of a rational function 

belonging formally to a self-eon jugate subgroup and for 

whioh the resolvent equation is not binomial. Therefore, 

in order that the resolvent equation for a rational 

~otion be binomial, it is neoess8;r b~t ~ sufficient 

that the group of the funotion be a self-conjugate subgroup. 

However, upon choosing v, = X I - x'1..we have found 

that the resolvent equa.tion II beoomes binomial (. Art. 1). 

Similarly. we have found that the resolvent equation for 

the funotion VI = x,+u)XJ.+\'\)~X3 belonging formally to the 
tta) {,) 

self-oonjugate subgroups G, of G~! becomes binomial 

(Art.S). It oan be shown that if lP is any rational 

function belonging formally to a self-oonjugate subgroup 

H of prime index Y under G and if ¥. l lJI~ 1 • • • • 'tpy are the 

oonjugate values of l/J under G. then the function 

** 1.. "1-1 '\f.+Ul 'P'l, + l\l '1'"3 + ... + to ¥"f 

• Dickson: Art. 38. 
'I C (~-' "1-1.. *. w1s obtained by solving x ~.l=O. J[ - 1) x + x + .~+l)~ 

(). U) is a root of x'(-'+x'l-;" ••• +%+1 =0. 
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is a functi·on whiQh belongs formally to H iind whose ~esolv_ent 

equation becomes binomial.* 

Thus the necessary and sufficient conditions 

that a resolvent equatioL of prtme degree should turn 

out to ue binomial are that t he rational funotion ~ for 

which the resolvent equation is formed under G should 

belong formally to a self-oonjugate subgroup H of prime 

index under G and that ~ should be a properly chosen 

funotion. Moreover ~ these condi ti.ons are also general, 

since any binomial equation of degree which is not prime 

may be replaoed by a chain of binomial equations of prime 

degrees. 10 For example, suppose that x :=. C is t:m resolvent 

equation formed under a group G for a function ~ belonging 

formally to a self-conjugate group H of index 6 under G. 

The binomial" equation x":, c may be replaoed by the binomial 

equations x~=y and yl.: c. This means thc.t between G 

and H there is an intermediate self-conjugate group of 

prime index three under-G. That is to say, the resolvent 

equation formed for a rational function ~ under G beoomes 

binomial no matter if the group H to which Cl\ fomally 

belongs is not of prime index under G, providing that there 

is a chain** of self-conjugate subgroups of prime index 

beginning with G and terminating with Hand prcviding ~~t 

~ is a properly chos~n function. We may then without 

lOSBOf generality limit our discussions to binomial 

equations of prime degrees. 

• -Bee Bolz8;'a article "On the Theory of Substitution Groups 
and its 81;plications to Algebraic Equations" in Mathema.tical 
Journal Vol. 13, 1891 p. 96. Art. 42. 

** Groups constitute a chain when each group is a. subgroup of 
the preoeding group. 
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14. After solving the binomial equations I and 

II, we are able to oombine and solve for the roots, (Art. 

8 page Il9 ). This solution can be extended to the case 

of an equation of degree n. 

Suppose we have the equations 

X '+% .. +%3+ ••• +X'-; c 
-'- ~ ~-\ 

X ,+ U)xL -r tA) %3+ ••• 1-W x.,.. = VI 

.,. II- a.ll\-\) 
X. +lA)%~ +U)X'3 + ., -+w x~ = v~ . . . . .. . . . . . . 

"'-, a(",,-~ ~_,)1. 
X. +(0\) x~+ l..\) %3+ ••• +~ %~= v~_, .• 

To find x '-.+\ we multiply these equations by 
. -~ -1, -(,,,,-,) ~ 

1, U) ) lI.) l' W 'respeotively and add the resulting 

equations. 
"'"'" ~ """ (~-,)"'" 

Remembering that 1 + LA> +~ +" ""-+ tAl =Ofor 

m : 1, 2, ••• n - 1, we get 

1 ( -- -1... + + -l'll-\l\L 1 % = -n c. +l.A) v, + l.U v,." •. " ~ V'"t\-I. 
"--+l 

The form of the equations which we combine is 

8as11y recognizable. The first is of the form 

X'+%"'+%"3+ ••• +%,..: c •• 

The second is of the for.m 

The third is obtained from the seoond by 
~ 1 ~ ~-\ ~(~-0 

replaoing w by lA) ,to by L\:) , •••• to by lA) • 

Similarly, the f~th 1s obtained from the third by 
~ ~ '+ \. .2.(",-.1. ~ t"?\-I) 

replacing w by w , w by (.0 t ••• w oy ~ tete. 

It now remains to see if we can find the 

Talues of the v's which oocur in these equations. 

This will be done later.* 

• See footnote.: : Chapter lIlt p. 3S-. 
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CHAPTER III. 

lli ~ of Solution: for Quadratic and _ Cubio 

Equations Extended to Equations of Higher Degree. 

l5~ !rhe Display of ~\ ~ its Sub-groups. As 

the degree of an equation increases. the display of G~~and 

its subgroups beoomes oorrespondingly more oomplex. 

To determine all the substitution-groups whioh can be 

formed with n letters we may prooeed by writing down 

-all the nl substitutions and by seleoting any r of them. 

If the multiplioation table for these r substitutions 

oontains no additional substitutions, the r substitutions 

oonstitute a group; if it oontains additional substitutions, 

add them to the system and form the enlarged table. Con

tinuing this process we will finally arrive at a group, 

since there are only 8 finite number (n:) of different 

substitutions. It is also advantageous to keep the fol-

lowing theorems in mind '\1I.~hen determining subgroups: 

1. The order of _any subgroup of a group G is 

8 factor of the order of G.* 
2. If p~ is the highest power of a prime number 

1> whioh divides the order of a group' G, G contains a single 

conjugate set of kp+ 1 subgroups of order peL (where k is 

an integer)** 

3. If p~ is any power of a prime number p which 

divides the order of a group G. G oontains Ip+ 1 sub-

* Burnside: Theo~ of iroups of Finite Order. Art.22 p 25 
Diokson Art 26. p. 20. 

** Burnside: !heory of Groups n " " Art.S6 p. 108. 
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groups of order pL (where 1 is an integer.) [These 

groups do not neoessarily form a single conjugate set~ * 
16. Upon displaying G~~ and its subgroups 

(See opposite page) the following five direct paths Seem 

open for the solution of the biquadratic equation (all 

other direct paths involving non-binomial resolvents of 

fourth degree) : 

,r~ {u G~,. G~'t- G"" 
~I 31 , ,I 

G,1.. Gf) G
i Gy; ,I { ~I '1 ~I 

G~ G" 

~l 
H't 

l' ~I ~ ·1 
G.,.. 

l' l 1 f f G, '" I \.1', , \ 

In accordance with the plan used in the 

solution of the qua.dratic and cubic equations we should 

now like to know if we C;':l1 obtain rational functions of 

the roots belonging formally to each group involved. 

We can always do this, for consider th~ 

fonnally nl - valued function 

v ;:::. m x + m x + .... -t m x_. 
I I I 1... 1.. 'l\ ,. 

where the mrs are all distinct constants. 

Applying to VI the k substitutions of G, we get 

VI' vl)..' ••• v~ t 

which are all formally distinct, 

The fnn.ction 

1f = (V - VI ) (v - V ~) ••• (v - vk ) 

29 

* Burnside: Theory of Groups of Finite Order Art. 77. p. 91. 





3Q. 

where v is an independent variable remains formally 

unaltered by any substitution of G and formally altered 

by any substitution not in G. Hence 1p is a function 

belonging formally to G. 

Taking Vi= x, - %7,,+i(x 3 - x •• ) let us find 
("')1 [ \\ a function belonging formally to G~ 1:(12)(34~ by this 

method .• 

Applying to v, the substitutions of G~ we get 

v I = :x: I - X ~+ i ( :x: ~ - x ... ) 

V 2. = - [x, - %'11+1 (x'3 - x J1 · 
1IJ = (v - VI ) (v - V?w ) = V ~ - ( V I + V jI.,) v + v, V 11 

= vl. - 0 - ITx, - xJ+ 1(X
3 

- X .. ]]~ • 

The value v = 0 keeps 1p formally distinct from 

any value obtained for it upon applying any substitution 
,. 

not in G~~ 
~ 

Hence ITx, - xl.)+i(x~ - x ... U belongs forma11a' 
, 

to G1.I • 

17. The use of the above method of finding 

fUnotions belonging formally to a group does not always 

furnish simple results so directly. It may, however, 

be that ~ itself is composed of parts which are functions 

of the desired kind. In many oases the calculation of 

~ is rendereddiffioult by long multiplication. This 

oan be avoided by choosing as a basis for construction 

the nl valued function 

the alB being distinct, but otherwise arbitrarily chosen. 
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Applying to e the k substitutions of. G, we get 

a, l e·· · · 'Nl e,{. . 

whioh are all formally distinct. 

Then the funotion 

fs formally unohanged by evel1i substitution in G and 

formally ohanged by every substitution not in G. 

Let us apply this method to find a function 

belonging formally to the group 
lit-)' r. 
G~ L1 t (12) t (34) t (12) (34), (13) (24), .( 14) (23) t (14231, 

(1324)] t hO' 1." ~ aking 0, = x, x~ x\ x&fo. 

Applying to e the eight substitutions of G~ we 
')." '3 1" ~ '3 1.. ~ ~ 

get e. = X).,X 3 %... ' e" = x ,X '5 % It- ' e'5:' X 1..% ~ :X:.. t e .. : % I X ~ %... t 

~ ~ ~ 1v 1.. :3 3 l. 
bs :' x, x~ % ... , 8\. -= x, %1.. %3' b,= XI %1-- X 3 , SCI': X, X1. x .... 

':t 1, ~ 1.. ~ 3 a. 3 ~ 1.. '3 + 
~ -= %1.x? X .. +x,x~ x ... + %,.x'5 X'" + x,x~ x ... + x, %~ X ... 

~ ~ 1.. 3 :5 1.. 
X, x~ X~+XI X~ x~ + X, Xa, x ... 

( )( a. ~ '3 ~) ( )( ~ '3 '3 1.. = X,+ X'A, X3 X"" + X'3 X.., + X'3-t x ... x, X~+X, Xl. ) 

( (
A'" 'a, ,., l. 

• x, + X 1.) X '5 + X ... ), x '!) X at + X I X 1.. ). 

, 
The function I belongs formally ta G

t 
t but 

by the inspection of ~we arrive et the two simpler 

funotions 

(x, + xl.) (x'3 + x ... ) and x. x,. + x
3
x* which also 

, 
themselves belong formally to G( • 

18. Lagrange's Theorem. In the solution of the 

oubic equation ~i e h~ve 'oooasion to express the ooeffioients 
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of equation I (Chap. I Art. 8. p.t~ ), which belong 

forma.lly to Ga." rationa.l1y -in terms of the (3', s, which are 

functions which also belong to G~. Furthermore we express 

the ooeffioients of equation II (Ohap. I. Art. a. p. \ 5 ) t 

which belong :fonnal1y to G3 , rationally in terms of b." 

which belongsfor.mally to G
3

, and the o's, which belong 

formally to G-.. Cen we 8l.ways express two rs tioool functions 
,~ 

belonging formally to the same group as rational functions 

of each other? Cen we always express a rational function 

belonging formally to a certain group rationally in 

~.terms of another rational function belonging ' formally 

to that group and rational ~otions belonging formally 

to the sJIDmetrio group? 

The a bove questions are answered in a theorem 

due to Lagrange whioh states that "if a rational 

funct ion ~ (x.' x,.,. ••• xn) remains una I t ered by all the 

Bubstitutions which leave another rational function 

tp (x, t X 1..' ••• Xn) unaltered, then ~ is rationally 

expressible in terms of ~ and c,c~ ••• cn * 
Following the plan of Lagrange* let us express 

~': V'to = x. +lJ.)~ x 1..1+ W x!> in terms of 1P~ v, -::. X .+ W x'l..+w~ x'3' 

~ being unaltered f'ormB.lly by all the substitutions 

whioh leave~ unaltered, namely the identical substitution. 

In this case we are dealing with two functions belonging 

fomma11y to the same grou~ G I (1). We observe 

that the theorem also inoludes the oase where 1/J belongs 

* Dickson: Art. 31. 
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formally to a subgroup of the group to which ~ formally 

belongs. 

Consider an array of the substitutions of G~ 

with the substitution of G,(l) in t~e first place: 

1 

(132) 

X ,+ wx),. + (.X)~x~ :. v, :.-.pl 
~ W%,+U) %1.1 + x"!l =It.>V, -:::. 11'1.. 

(123) U)'x, + x1.,+l.UX~=wl.v, =lJ1"?, 

(23) x , +001. X 1u +w x ~ ':: V,+ = "1IJ't 

(12 ) w x, + X N -t w1. X "!> = W v,+ == 1IJs-

(13) w1.x , +wx1.. + X3~ wl. V At- ::. 1IJ .. 

Set 

x,+w'k%1...+ WX "5 -=. vLt:::'~,· 

~~ +W X 1./ -t x '!> = ();l1.. v at-:::' ~~. 

U)J[I + X 1..J + U)~x 11:; ();lV '+ =-~!I. 

X I + wx1v + \).)'" % 11 :::: V I ':& ~&f.. 

utx, + x~ + W x'3 =~1.VI =. <.;~. 

1... 
w% ,+ LU x,., + x"5:: ().)V, ::. ~l.. 

g (t) = (t - l',) (t -1'1.) (t - 11'3) (t - 1f,,) (t - lps-) (t - '¥'cJ 
= (t - VI ) (t - wV I ) ( t - (A'l.v ) (t - v'to) (t - lOV It- ) (t- fJ.)"l..v 'f- ) 

=(t3
_ v"3)(tS _ ~, 

, vLt-J 

t '- _ (~ 3).3 '3 ~ 
V,+V't t-t-v, v lt • 

Since get) remains formally unaltered by every 

substitution of G~,its coefficients belong formally to G~t 

and thus are rationally expressible in terms of c I' c~, 

and c • 
3 
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For tbe reduced cubic a , :. 0 and 
~ "5 

v, + V ... ::: 270 3 
~ ~ !> 

V I V it :. - 3c l. • * 
'- '3?> 

••• g(t)=t - 27c~t +301-

g I (t) -=. 6t - 81c
3 
t. 

Set 
il.(t)=.g(t)[q· +-h + 

t-'V.t-lp'N 

Taking ~. = l for t, 

A. ( \p,) = (1p ,- '\p~)( 'Ii.- "P ~)( 'P, -lP't-)( '\11. - 'Jl')")( 1JJ. - '1' .. ) ~I 
= ~' ( '\II.) ~. 

~ I=' i\ ( 'lP.) 
~(~,) 

or v ... = Alv,). 
,'t VI) 

We now desire to express tre coeff icients of 

~(t) rationally in terms of the CIS. as we did the 

coefficients of g' (t). 

lie mow tll c!.t thts is possible beoause since 

A(t} remains unaltered formally by every substitution 

of G~, its coefficients belong formally to G~ and hence 

are rationally expressible in terms of the CIS. 

" (t) ;: V (t 
It 

- U)v, ) (t - uS VI ) (t - V It ) (t - U) V it ) (t -ttv ) 
At 

+ttv", (t - VI ) (t 
~ 

) (t - v,+) (t - UlVlf- ) (t - LO~ ~ ) -l,t)V, 

+WV", (t - VI ) (t - wv. ) (t - V Ii-) t - WV Ii) (t - w~v ) 

+ VI (t - v, ){t - ~VI )(t - ~V. ) (t - u,)v'to ) ( t - U)4V If- ). 

+ U) ~ v, (t - V. ) (t - l.U V I ) (t - w'1..v ) (t - V ) (t - ttv ). 
~, ~ ~ 

+ WV,(t - VI )(t - wV, )( t -L0V, )(t - v~)(t -LUV .... ). 

* In this oase the r esult is complete at this point. 
This is merely accidenta.l a lllL is not the case in general. 
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Simplifying, 
l( ~ ~ ~ ~ 
I~ t)-= v~(t +v.t +v, )(t - v ... ) 

--.L 1.. ( t'a. t -+ 1. ~ ) ( t 3 _ "3) 
,-t.\) V ~ +w V , LU V, V Lt- . 

( ~ l. ~ '!> ~ 
+lA)V't- t +l.U VI t +l.\)V, )(t - Vat-

( 3 ~)( ~ 1.. + V I t -V, t + V &+t +v ~ ) 

+ ~ ("'5 :5 ~ .~ a.. 
~v, t - V, )(t +wv ... t+wv .. 

+(A)V, (t '3_ v~)(t ~+wv ~t +w v 't~ ). 

_ If. ~ '5 
- 6v 1 V ... t - 3v, v ... (v, + v"" )t 

= 6 (- 30 ) t't- - 3 (- 3 c ) 2'1 c t 
~ l, '3 

It-= - 18o~t + 24301.c3t. 

i\(v.) = -18c~v't-,+243c c v. 
... a.. ~ I 

g' (VI ) = 6v ~ - 8lc v ~ • 
I '3 I 

and we have, 

19. Lagrange's theorem is apt to be misinter

preted if specinl attention is not given to the above 

process. Evidently the theorem must fail when g't \II ,),=(\tJ,-l~)"· C\f-~) 

is identically equal to zero. As long as x.' x~, ••• xn 
are independent variables, 'PI) ~~ ,,' .. l¥"",-, are all 

formally distinct and the theorem holds • But if we are 

* In Chap. I. Art.8 p. '6 we stated that having chosen VI 
arbitrarily we must ohoose v~ so that VI v ... = - 3c~. We see 
now that having cnosen VI aroitrsrily, v~ is completely 
aetermined since it is rationally expressible in terms of 
V I • Thus also in Chap. II :Art .14 p. 1.,1 having chosen 
arbitrarily one of the v's, the others are completely 
determined. sinoe they are rationally expressible in terms of' 
that one. 
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dealing with a speoial equation, two or more of the funo

tions "'tl~")- -11'"" may be numerioally equal, in which case g I ( l/J ) 

would vanish and Lagrange's theorem oould no longer be 

applied to the funotion ~ • Thus in order for the 

theorem to hold true without any exoeption it should be 

stated more exactly: 

If a rational funotion cq ex l t Xi' ••• x b) remains 

rormally unaltered !l all those substitutions whioh leave 

another rational funotion 11> (xI' x'1. t ••• Xl,) formally 

unaltered ~ if ~ conjugates of ~ under G..:a! !!! 

numerioally distinct, then C\ is rationally expressible 

in terms of :lit and a,. Ole' ••• On· 

If in the ooove theorem l' belongs formally to 

~(l) we have the following oorollary: Every rational 

function of x,. x~, ••• x~ is rationally expressible 

in terms of any numerioally n!-valued funotion. 

20. When Xl t x'1' ••• x.,.. are specific numbers 

it is always possible to oonstruot s rational flUlction 

of them which takes on n! numerioally distinot values under 

G~! Such a function is 

v ,= m I x, + m1. x1.T ••• + m "x"" 

where x x ••• x are distinct as usual and where 
, ' J. ' "'" 

the m's are properly ohosen.* For let us apply to v. 

any two substitutions of G~: , say a ana b, getting 

v~ and v~ regpeotively. We do not want to ohoose the 

m 's sot he. t v 9.J = v \r- • The substitutions of G~~ would 

* Diokson: Art. 56. 





fUrnish nl (nl -1) relations of the form v,~v¢ We 
2 

msy solve these relations to find the mls which would 

satisfy them and· upon forming the function v, we avoid 

these values for the mIs, which are finite in number. 

Furthermore, given H a subgroup of G we 

oan always oonstruct a rational function belonging 

formally to H and whose conjugates under G are nu-

merically distinot. Such a function is 

- v )er - v ) --- (r - vk) I 1. 

where r is a properly chosen quantity and v,, V~l" v\(. 

are tne functions derived from v, by applying the 

substitutions of H.* For applying to ~ all tne sub-

stitutions of G we would get a finite number of :formally 

distinct ~l6)-namely foformally distinct G\"\~t where 

~is the index of H under G. We do not want to choose 

3/_ . 

r so that any two of these formally distinct ~\8re equal. 

ThuB we have ~(~- 1) relations to avoid. he may solve 
~ 

these relations to find the values of r which would 

satisfy them and upon forming the fUllction ~ we avoid 

these values for r, which are finite in number. 

21. Rational Funotions Belonging to ! Group. 

Such a function as ~~hich belongs formally to a subgroup 

H of G and whose conjugate . values und~r G are numATioally 

distinct, we shc.II henceforth say "belon~s to .!2:2. group 

H under G." We shall say a rational funotion "belongs 

to. a group H" when the function · belongs form:stl1y to .!! _ .. - - ------

* Diokson Art. 70. Art. 25. 
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and it oonjugates under the next higher* grou;p~~~ numerioally 

distinot.** 

It is to be observed that the expression "belongs 

to a group R" applies to all those functions which "belong 

to 8 group H under G" and. others which do not belong to 

H under G (providing G is not the next higher group of H). 

Thus if' a function "belongs to H under G" it "belongs to R" , 

but the converse is not neoessarily true. 

Unless ot~erVJise specified ~ shall exolude 

from ~ discussion all functions belonging formally 

to ~ group but whose conjugates under the next higher 

group ·~ not numericalll distinct. 

22. Generalization of Lagrange's Theorem. 

Given a rational function '"V' (x,. x~, ••• x",,) which belongs 

to a subgroup H of Gunder G and a rational function 

X( x,. X ,,' ••• x.~.) which belong . t 0 ~ under G,!\~. Then if 

~(x" x., ••• x.,) is a ratione.l function which is unchanged 

formally by all the substitutions of H, ~ can be ex-

pressed r ationa.lly in terms of 1p) X) c" ca.' • • • 

(; X belongs to Gunder G I • '10\, 

)'\ 

H 1pbelongs to H under G. 

~ is formally unchanged 
by H. 

Let the index of H under G be )W. 

cn • 

Writing the substitutions of G with those of H 

in the first row: 

* G is the next higher group of H(H~G) if H is a subgroup of no 
group of lower order than G(excluding the case where H is a 
subgroup of itself). . ** This idea is different from that usually expressea. by 
"belongs to a ' group"~. Dickson Art. 69. 
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1 t h~, ••• h f 

g~, h,.g a. , ••• h.,gl.. 
. . , . ,. . 

Under tne substitutions of G, the function "tIJ will 

take on ~ numerioally distinct values, \lJ'l1P:Ll· .11'~; the func

tion,need not take on ~ numerioally distinct values sinoe 

~ belongs to a group of which H is a subgroup. 

Set 

g ( ~ ) = (t - ¥, ) (t - lI'a.) - - - (t - If .14) • 

i\ (t) ; g(t) '-~I + ~a. + ... + qu J 
. L-t"-"\I>, t- ~a. - t -l~ . 

The ooefficients of ~(t) belong formally to G 

and by Lagrange's theorem (Art. 19) are .rationally 

expressible in terms of o. t ca.' -- 0..,... and any rational 

funotion X belonging to G under G~\' 

~ (t):. R [0 t' 0" ' ••• 0 "t\ t 't t t ] • 

Putting 1.!l1p for t, 

A l~)= R [0,. 0 'k' ••• o~, ).. 1 ~J 

= (~.-l~)tl'-"""6)· · · (lp-1p,,)~, 
= ~ltlJJl)~' 

Therefore, t1 =- R [0" Oa..r ••• O'b''\jJ ,-Xl = Rat. F1i.nc.~,c.,."O""t~,'¥'J 
.., g , ¥) 

23. From the above generalization it easily follows 

that if a rational funotion ~ is formall~ unchanged by the 

substitutions of a group H, then .~ is rationally expressible 

in terms of 0 \ ,0 ~t ••• 0"", and rational functions belonging 





to successive subgroups of G \ each under the preceding ". 
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subgroup. H being the last subgroup taken. For example, 

suppose ~ is formally unaltered by GIIII and that conditions 

G~, o 0·--0 are a.s indicated in the I · '''' '" 
diagram. 

I 
G' G tA)belongs to under 

I " 
G,",,~ 

By the generalized 

G A belongs to Gil under G' theorem we have 

I., A. " " " .n G,,\ 
Gill d G lbelongs to un er Gil 

i"" I G 

n " " " G""f\~ 
... belongs to G 111\ d un er Gill 

~ :. R I ( "I' I. c I ,0 ~ ) - - - ) () l\ ) • 

But also by this theorem, 

l>:·R",(~, A, CIP~l--- )c.~). 

and ~==' R 3 (1 , t.P t ()I'O~, --- ,c."'). 

Therefore ~ = R ~( , t l ' 'J. t U,), c. )c7..) --- ,0.,,). 

(Notice thll.t 1. and ~ are used only for the purpose of 

the proof and need not be computed in the application of 

the theorem). 

24. In order to understand clearly that our 

generalized theorem says more than the ordinary theorem, 

suppose we have such a oase as the following: 

Gl. 

I 
x=:.-x , l. 

G" 

I 
G 

I 

D. (23)] 
x, 

~ ~ ~ 
x, + 2x~ + 3%1>. 

Under the oonditions of the problem, x, belongs 
1. 1. ~ 

to G" under G .. t and XL + 2x~ + 3x? belongs to G, under 





G 1.. but not under G~. 

If ~ (x 1~1.~~) is any rational function 

fonnnlly ungltered by G" by our generalized Lagrange 

theorem we may say 

41. 

( 
'k 10. ~ 

~ ~ Bat. Func. x, + 2x ~ + 3x"5 • X I' C \ ' C ~ ,c
3 

) • 

We observe t h 2 t tl"1 o ordinary Lagrange theorem 

cannot be aDpl i ed here since the conjugates of 

~ '" ~ 
X \ +2x~ + 3x~ under Glo are not numerically distinct, i. e • 

.1 (?. ~ ~ 
~ T Ra t · Func. X \ + 2x" + 3x , C t C , C ). 

~ 1> ,1. '3 

25. The Biquadratic Equation. From the dis-

play of G~~ we observe that we c ~n pick out five direct 

series of groups leac1 ing from G ~~ to G I in which all 

the indices in the series are les s than four. (Art. 16). 

2 The path G1!!I~!!I"''t----GI~ 
3 2 2 

G ... 't---- G~'k----G , 

affords a chain of binomial equations of prime a.agree, 

since each group is a self-conjugate group of prime ind.ex 

inder the preceding group. Or we may pass from G~ to G~ 

by1he solution of a non-binomial cul)ic and from Gt' to G, 

in four direct ways by the solution of binomial equations 

of prime degree. 

26. Summary E! Method for Equations .2! any Degree. 

By aalling forth gener~l theorems, the consideration of the 

biquadratic equation has enabled us to state a plan to be 

tried for equations of any degree. First display G~~and 

1. ts subgroups and leanl \vh a t groups are ' self-conjugate. 
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" . 

Then Beek to find the value of a function belonging to 

each group involved,beg1nning with functions belonging 

to the hi~~er groups and going down by any path. We 

generally ' go to G,ul and from there to the , group to which 

the roots belong, for as soon as 8 numerioally n! - val

ued function is lalown the roots are known, since by 

Lagrange's theorem they are rationally expressible 

in terms of that function. We observe that our scheme 

merely reduoes the solution of the given equation to 

the solution of a chain of resolvent equations. It is 

evident that this reduction will be a real simplifi

cation if the degrees of , the resolvent equations are less 

than n, or if the chain of resolvent equations should 

turn out to be binomial • If a resolvent equation does 

not turn out to be binomial but has a rational linear' 

faotor,we O8.n find at least one of its roots* and thus 

prooeed along the path. 

27. ~ Quintio Equation. Upon displaying 

G ,~O and its subgroups (See following page), we observe 

that the alternating group and the identical group are 

the only silf-oonjugate subgroups of GI~O. In esse 

of the general equation the symmetrio functions are 

the only rational functions of the roots whioh are rational

ly expressible in terms of the coefficients, and thus we 

must start from the symmetrio group. Over any path from 

G to G. we must solve a non-binomial equation of degree 
'~b 

• The question of the reduoibility ,of an equation will 
be treated in Ohap. V. 



, ,~)(~*) :('~~) (~q~) :(\~~) (l"'~) 
I I 

(l~)l~ _ 9~~~~)~ 9_~~!_ 9~_~ )~~?~~ --~'-~~?
-(\L) (54): (l~) {'4-"5~): t~~) ('~It-3) 

Ltl,~) O~l't): (1,Lf) (\1.J~"') ~(\~~'L) <1'+) 

(l~"t~ 

O~~1.~ ~~),~:~) 
-oi,) -- -(~~)-

1. ~~): (\~~ ) 
I 

(\""5~) i l~~Lt) 

M ' U~X~ 
'+ (I 't-'~ ~ ) (\ "!> ~ 't 

, (\*"51.~) " ~5~1u) ,~~~~) ('~""'!>'t-) 

(4-~)(~~ O"5'"l.'t't-) ~~'X.""5,,") U~)t~S) <lq.l.~~) 

~~i~)- (\~",S) -(~-3i.)- -l''l-'l.~) - -(\is--,.) --

(!l.5~~) (\1. ~5) ('~~) (\~~~) (1"5~1t) 

"';J~ ~. 
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five or higher. Our m~thod then would seem to fail. 

However, in case of a special equation, we may know the 

value of a function belonging to some group besides G~'kOor 

G~. If so, we see from the group dis~lay that we could 

prooeed through a chain of binomial reso1vents of prime 

degrees to · ~,[lJ and thus solve the equation by our method. 

G\1.0 

1* (12-345) * (5234) (134)* (15) (23) * 

(12354)* (5243) (143)* '(15) (24) ~ 

(12435)* (5324) (523)* (15) (34)* 

(12453)* (5342) (532)* (23) (45) * 

(12543)* 
of 

(5423) (524)* (24) (35) * 

(12534)* (5432) (542)* (25) (34) * 
(13245)* (1534) (534)* (123) (45) 

(13254)* (1543) (543)* (132) (45) 

(13425)* (1354) (153)* (124) (35) 

(13452)* (1345) (135)* (142) (35) 

(13524)* (1453) (154)* (134) (25) 

(13542)! (1435) ·(145) * (143) (25) 

(14235)* (1254) (125)* (135) (24) 

(14253)* (1245) (152)* (153) (24) 

(14325)* (1524) (12) (145) (23) 

(14352)* (1542) (13.) (154) (23) 

(14523)* (1425) (14) (125) (34) 

(14532)* (1452) (15) (152) (34) 
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(15234)* (1235) (23) (234) (15) 

(15243)* (1253) (24) (243) (15) 

(15324)* (1325) (25) (235) (14) 

(15342)* (1352) (34) (253) (14) 

(15423)* (1523) (35 ) (245) (13) 

(15432)* (1532) (45) (254) (13) 

(1234) (123)* (12) (34) * (345) (12) 

(1243) (132)* (12) (35)* (354) (12) 

(1324) (124)* (12) (45) * 
(1342) (142)* (13) (24)* 

(1423) (234)* (13) (25) * 

(1432) (243)* (13) (45)* 

(14) (23) * 
(14) (25)* 

(14) (35)* 

Bote: !hose Bubstitutions marked * constitute G~ • 





CHAPTER IV. 

~ Groul> of .!:!! Equation. 

28. Domain of Rationality. In the foregoing 

ohapters we have said nothing ooncerning the nature of 

the quantities to be allowed to appear in the solution 

of an equation. It is evident that this question is of 

prime importance when the solvability of an equation is 

46. 

under oonsideration. 
')., 

For instanoe, the equation x - 2=0 

is not solvable if we allow only rational numbers to 

appear in the solution, ,while it is solvable if we allow 

f2 to appear in the solution. 

In the study of an equation we naturally admit 
into oonsideration the coeffic1ents,snd"may admlt 
other quantities. The quantities R, R , --- R 

whioh we admit together with all quai'ltiti es derived 

from them by a finite number of additions, subtraotions, 

multiplioations, and divisions (not inoluding division 
I " by zero) oonstitute tne domain of rationality R ('li, R , ---

R~). The simplest domain of rationality is the domain 

of rationnl numbers and is designated by R(l). 

29. In Chapters I, II, and III we have disoussed 

the solution of equations, aided by the group-display. 

For e.ny given equation and any given doma.in R, however, 

there is one group whose properties are of suoh importanoe 

in the study of the equ8.tion that this group is oalled 

"the'group of the equation for dom~in R. This chapter 

will be devoted to the development of this notion, but 
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the method of development will not be tnat of extant works 

on the subject. 

30. Let f(x) =-0 be an equation of degree n with 

coefficients in a domain R and. let us designate its 

roots by x,. x?.' --- x"". If o~ rational ' function* 

If ex I. x" --- x b ) which belongs to ~ group Q. under h~* 

lies in!: domain ~ ~ will say ~ "Q lies in R". 

31. Theorem: If.! group G ~ .!.!! li, all 

rational functions b&-:lalpfDgformally to G** lie.!!! B. 

Since G lies in R there is a rational 

funotion ~ (x. x .... ~-- x.,,) which belongs to Gunder G",l 

and which lies in R (Art. 30). It now easily follows 

from Lagrange's theorem tb8.t all rat ional functions be

longing formally to G lie in R, since they are rationally 

expressible in terms of lJ; and c, ' c", --- c~. 

32. Theorem: If ~ ra.tional function 

I (x I! x]" --- x",,) which belongs formall~ !2 ~ group G 

does not lie in R,~ rational function belonging to G 

under G",! lies in B. 
Let ~ (x I' X 1..' --- x.~J be c.ny rat ional 

function ( ~ t !) which belongs to Gunder G ~~ By 

* In the Galois Theory when we say a function is a 
r[:tiol'lsl function of x I' x~! --- x~, we always mean a 
ra.tional function with coefficients in the domain of 
rationality. 

l} 

** For the definition of "belongs to a group Gunder G"" 
and for the distinction between this and'~elongs to G" . 
see Chap. III Art. 21. T'te expression "belonging formally 
to G" applies both to finotions "belonging to G" and functions 
belonging formally to G. but whose conjugates under the next 
higher group are not numerioally distinct. 





Lagrange's theorem lsRat. Funo. (~t 0" o~, ••• 0",) • 

If ~ lies in R, !lies in n sinoe it is rationa,lly 

expressihle in terms of' ~ a na t re 0' s, wbi ch is a 

cOntradiotion. Therefore ~ dqes not lie in R, and 

our theorem is proved. 
, . 

Th e above t heorAID m~y also be stated as 

foll'ows: If ~ rational function which belongs 

fonnelly. to ! group G does not lie in.& G does not 

lie in R. 

·33. Theorem: 

supergroups* of Q lie in ~ 

Let ~ (x'. , x'h' ••• x.,,) be any rationa l function 

belonging to any Bq)-EDgl'o'Q.l? of G under G"y\~ • By Lagrange's 
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theorem ~ can be ~xpressed r ationally in terms of c, t c~, ••• 

o~ and any rationa l function 'P (x,, Xl' ••• x J which 

belongs to G un~er G~\ • Sinoe1pand the CiS lie in R, 

'i lies in R and hence tr.e superg~oup lies in R. 

34. Theorem: If!l group G d,oesnot lie in 

R, ~ subgroup 2! Q lies in R. 

For suppose any subgroup II of G lies in R. 

Th en by Art. 33 all supergroups of H lie in R,anu hence 

G 1ie.s in R, which cont'radicts hypothesis. 

Th erefore H does not lie in R. 

* By a. "supergroup of G" we . mean a group of , which G is 8 
subgroup. Notioe thnt by this definition G is a supergroup 
of itself. 





35. Theorem: If two groups lie in R their 

greatest common subgroup lies ~ R • 
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. Suppose G and M are t wo groups which lie in R. 

Either (1). G is a subgroup or supergroup of M or (2). 

G is not a supgroup or supergroup of M. 

Case (1). If G(orM) is a subgroup of 1.1 (or Go) 

G(or M) itself is the greatest common subgroup of G and M 

and by hypothesis lies in R. 

Case (2). If G is not a subgroup or super-

group of M, G and M have a greatest common subgroup H 

which consists of all the substitutions common to G and M*. 

Let ~ I ( X I ~ " • - -- x .~) a nd ~ ~ (x .' x ~ , -- - x .. ,) b a 

rational functions belonging respectively to G and M under 

G \. 
't\. 

Form the fUnction 

¥ 'Co~, + \{ C,7v (Where K is a quantity to be chosen later). 

The function1l' js fonnallyunchanged by any sub-

stitution of H .. Any substitution which belongs to G or 

M and not to both changes ~ formally, since it changes 

one of the ~l'O formally and not the other. Let us find 

for what values of K the function ~would be left numeri

ally unchanged by any substitution which belongs to G or M 

and not to both. 

Upon applying to 1f a substitution which belongs 

* For prooi' tb.at all the substitutions common to two 
groups form a group see Netto: Theory of Substitutions 
(Trans. by F. N. Cole) Art. 44 p. 47. 





to G but not to M, ~I remains formally unaltered but ~~ 

becomes formally altered,and call this new function ~~. 

If ~ remains numerically unaltered, we have 

~ I + \{,~N -= ~ I + l-l ~~ 

\{::.. ~I-~' = O. , 
~~ - ~1tI 

Similarly, if ~ remains numerically unaltered 

upon applying a substitution which belongs to M but not 

to G, we have 

= 00. 

~~ - CsJ1.. 

Thus if we choose K any definite quantity not 
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zero, ~ will be numerically altered by any substitution 

which belongs to G or M and not to' both. 

We now desire to find f or wha t value of K 

t r e function ~ is left numerically unaltered by a ny 

substitution which belongs to neither G nor :M. 

Upon applying to 'P any such substitution. both ~,and ~1v 

are forma.lly altered and let us call the new 
I , 

functions ~,and ~1v respeotively. If ¥ remains 

numerioally unaltered, we have , , 
~ I + '{ ~ 1-1 == ~ I + \{ ~ ~ 

, 
and \"'::. a, I - ~ I , 

~'A - ~ 10.1 

Thus we C [t ~1 apply to 'tf all the substitutions 

which are in neither G nor M and upon each substi-

tution we oan ascertain t he value o~ K whioh would leave 

~ numerically unaltered by t h e subs titution. Since 

there is one and only one value of K for each substitution, 





these values are finite in number. Thus we can choose 

X some rational number not zero which is equal to none 

of these values. Then ~,+\{&,~iS a. rational function which 

belongs to H under G ~nd lies in R. 
'l\. 

Therefore H lies in 

R. 

36. Theorem: If.!: group G lies l!! R and has 

a subgroup li to which there belongs under G ~ rational 

function <i (XI. Xu 

lies in R. ---
G !belongs to G under G",~ 

and lies in R. 

n ~ belongs to H under G and 

lies in R. 

'f... belongs to H under Gr"\,\~. 

Let I and ~ be rational functions which belong 

respectively to G and H under G~~ • 

By our generalized Lagrange Theorem (Chap. III 

Art. 22.) 

"Iv=- Rat. Funo. (~, 1 t C \' C ~, --- c"",) 

Since ~, "1 ' and t he 0 's lie in Rt ~ lies 

in Rand henoe H lies in R. 
'l 

From this theorem we observe that although 

a group H may have a rational function belonging to it 

under a group G and lying in R. we oannot conclude th nt H 

lies in R unless we lmow that G lies in R. 

50. 





37. Definition of tne Group of ~ Equation. 

If a group G lies in R and. has .!!£ maximum* subgroup 

which ~ in li, .!!! define ~ to · be the group of the 

equation 1£!: domain~. 

38. CEvery Equation Has !! Group. It is 
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evident thnt every equation has a group for any given do'main 

R inoluding its ooeffioients. For sinoe at' o~, --- o~ 

belong, to G~~, G~~ lies in R. Prooeeding from group 

to subgroup and testing eaoh sucoessively we will surely 

find a group whioh lies in R and has no maximum subgroup 

whioh lies in R. If all the groups lie in R, the identity 

group meets this requirement and is the group of the 

equation. 

39. Making use of the theorems of Arts. 33, 

34, 35 we are able to deduoe the following important 

tneorem conoerning tlie relation of groups which lie in R 

to a group whioh satisfies the above definition of the 

group of 2 U equation. 

Theorem: If G satisfies the definition of 

the grou~ of ~ equation!£! ! given domain R, all 

su;pergroups .Q.f 2 ~ .!!2 other groups lie 19 1!. 
We have shown (Art. 33) that if a group lies in 

* A subgroup H of G (H f G) is a maximum subgroup of 
G if it is not oontained in a laltger subgroup of G. (ex
cluding the case \x:here G is a subgroup of i tsel:f ~ • 





B, all its supergroups lie in R. By hypothesis 

G lies in R. Therefore all supergroups of G lie in R. 

It now remains for us to show that no group 

which is not a sjupergroup of G lies in R. Suppose M 

is a group which is not a supergroup o~ G and which lies 

in R. Then G and 14 have a greatest COH1mon sub~roup H, which 

is not G and which oonsists of all the substitutions 

oommon to G and M. now if two groups lie in Rt their 

greatest common subgroup lies in RCArt.3S). It 

follows thnt H lies in R. But this is absurd,for 
I 

by hypothesis no maximum subgroup G of G lies in R 
I 

and by Art. 34 no subgroup of G lies in R)and henoe 

no subgroup of G(exoept itself) lies in R. Thus our 

hypothesis concerning M oannot hold, and our theorem is 

proved. 

40. ru Group of ~ Equation is Unique. 

In Art. 38 we saw tll c,t any equa.tion has at least one 

group for a. given domain R including its coeffioients. 

It now easily follows tbat ~ equation has only ~ 

group for ~ domain B. 
For let G and L be any t wo groups ,".:hieh 

satisfy the definition of the group of an equation. 

Then G and "L- both lie in R. Since G lies in R t 

it is a supergroup of lr CArt.39). Similarly)sinoe 

b lies in R t it is a supergroup of G. It follows tha.t 
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G and L- must be identioal. 

41. The Ordinary Galoisian Definition of the 

Group of ~ ' Equation. We have defined the group of 

an equation for domain R as tbat group whic~h lies in R 

and has no maximum subgroup which lies in R. Our 

definition of the group of an equation differs from 

the ordinary Galoisian definition which is arrived at 

as follows:* 

Let tl1ere be given an equation of degree n with 

coefficients belOnging to domain R. 

Form the equation 

F ( v) :. (v - v, ) (v - V 1..) - - - ( v - v ~! ) -=. 0 

where v,= mlxl+mlx~---+m'1\x"", the mls being ohosen in 

R and such tha.t v, takes . on n~ numerically distinct 

values under the n ~ substitutions on x I' X ~t ~-- x,.: 

If F(v) is reduoible** in R, let Fo(v) be 

that irreduoible factor for whioh F 0 (Vi) = O. If F(v) 

is irreduoib:1e in R 1 let Fo (v) be F(v) itself. T'hen 

F 4) (v) ::. 0 is an irreducible equation oelled the "Galois 

resolvent"of t'he given equation. 

Let the roots of the Galois resolvent be 

denoted by v \ t v -_ ... 
Q,' 

The substitutions by 

which tney are derived from V,t namely l,a, --- t 

* Diokson: Arts. 56, 57, 60. 
** If F(v) oan be decomposed into factors of lower degree 
suoh tliat the coeffioients of tl1e factors are numbers be
longing to domain R, then .(v) is oalled reduoible in R. 





form a group, called the group of the given equation 

for domain B. 
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42. Let us cnll G the group of a given equation 

of degree n for domain R according to our definition and 

M the group for domain R according to the Galoisian defini

tion. We will prooeed to show that G and Mare identioal. 

In the first place, we know that the coefficients 

of the Galois resolvent l!' o(v) =0 belong to M under G",~ 

and also lie in R, sinoe they are integral, rational 

funotions of the m' send 0 r s. It follows th2.t IvI lies in 

R. 

Now we have shown that all supergroups of G 

and no other groups lie in R. (Art.59). Therefore M 

is either a supergroup of higher order than G or is 

identical with G. 

Let us suppose that M is a supergroup of 

higher order than G. Form the equation F(',.(V)=- 0, 

taking for its roots those roots of the Galois resolvent 

'go(V) =0 which can be derived from v, by the sub

stitutions of G. The coefficients of F G-(V) =. 0 belong 

to G under G~\ and therefore lie in R. Then F~(V) is a 

rational factor of Fo(V)' i. e. the Galois resolvent is 

reduoible for domain R, which is absurd. It follows 

therefore that G and M must be identical. 

45. The Group ~ the General Equation of Degree 

.!!!. By a general equation we mean an equation whose roots 





and likewise whose ooefficients are independent variables. 

Let us find the group of the general equation of degree n 

for 8 domain R, containing the coefficients of the 

equation (and no otber functions of the roots) and any 

assigned constants. 

The symmetrio group G~\lieB in R sinoe to it 

belong the ooefficients of the equation. Now consider 

any subgroup ~' H of G,,~ (n t G",,~ ) and any rational function 

~ (x, x",--- x,,) belonging to H under G!\ 
~'" . If ~ lies in 

R lit is rational in the ooefficients* and henoe belongs 

to G , which is a oontradiotion. Sinoe ~ was any 

rational funotion belonging under G~~to any subgroup of 

G .... ~( exoept itself) , it follows th['~t no rational funotion 

belonging under G",~ to any subgroup of G~~ (exoept itself) 

lies in R ann henoe that no subgroup of G~~(exoept itself) 

lies in R. The group G~\ is thus the grou}) of- tbe 

equation for domain R, sinoe it lies in R and has no 

subgroup (exoept itself) which lies in R. 

44. Finding the Group of §!! }t.,jluation. Let us 

consid.ar t~he che., in** of groups G '1\~ ~ I , lit G. Suppose 

we have found that I lias in R by testing a rational 

* If, however the coeffioients are not independent vari
ables, there are some relations between them. In this 
oasa it is possible that a function which is formally 
irrational in the ooeffioients may by aliminatbn by means 
of these relations beoome a rational funotion in the 
elements of the domain. The group of the equation would 

' then be different from G~~ • 
•• Groups constitute a chain when each group is 8 
subgroup of the preae;ding group. 
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funotion ~ belonging to I under G ,. We now desire to ". 
know if H lies in R. By definition H lies in R if a 

rational function ,A3 belongs to H under G ",'. and lies in 

R. However, as 8 result ' of applying our generalized 

Lagrange theorem we know that ~ need merely belong tp 

H under I and lie in R, in order to conolude that H lies 

in H. (Art. 36). Having found that H lies in R t similar-

ly G lies in R if one rational function belonging to G 

under H lies in R. On the other hand, if one rational 

function belonging formally to H does not lie in R t H 

'does not lie in H (Art. 32). Thus to conclude that 

any group G lies in R, it is necessary to know that one 

rational function lies in R which belongs to Gunder 8 

supergroup of G which lies in R; while to 'conolude that 

G does not lie in R, it is neoessary to know th~: ' t one 

rational funotion which belongs formally to G does not 

lie in H. 

As long as we find sucoessive subgroups lying 

in H, we Inay proceed along a single chain. But when we 

find a group not lying in R, we must continue to teet the 

maximum subgroups of the last group found in R until 

we find one lying in R or find that none lie in R. If 

we find one lying ' in R, we may prooeed again along e 

single chain until we oome to a group not lying in R. 

Hereupon,we test as before the maximum subgroups of 

the last group found in R. Continuing this prooess we 
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will arrive at a group ~hich lies in R and has no 

maximum subgroup which lies in B. This group of lowest 

order found in R is the group of the equation for R. 

Instead of considering groups which belong to 

the same chain, it may oftentimes be simpler to c·onsider 

two groups which belong to different chains, remember

ing that if two groups are found to lie in R their 

greatest common subgroup lies in R (Art.55). 

In the above method we observe that it is 

immaterial whether or not we begin wi th the investigati,on 

of the nearest subgroups of G",-'.. If desired, groups 

to be tested may be selected at random, though any in

formation gained from a random selection would naturally 

influence the student in chOOSing groups 'for subse

quent tests. 

If we do not knO\~; the value of a function 

belonging formally to a group G, we consider the re

solvent equation for the function . between G and, a 

supergroup M which lies in R. If the equation is 

binomial, we can easily solve it and find the value of 

the function. If the equation is not binomial, we test 

it for a rationel linear factor*. If the equation 

does not have 8 rational linear factor, the function 

does not lie in R, ana thus by Art. 32 the group G 

does not lie in R. If the equation does have a rational 

* The method of doing this vlill be explaIned in Chap. V. 





linea.r factor, it remains for us to see if the equation 

has distinct roots in order to find whether or not the 

function has distinct conjugates under M. 

To find if an equation f(x) = 0 has distinct 

roots we may form the discriminant by means Of a 

detenninsnt of (2n - 1) order. 

( 
'r\ "'-, 

f x).:: a,x + a, x + .•• + a ~ 
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I . ~-, "",-a. ""'-~ 
f (x) = nsox + (n - l)a ,x + (n-2)sa.x -+ .•• -t-s"Y'\_'. 

a. s, s1.. • • • s",_, s"'l 0 • 

0 no a, · · • a ",-.L s"'_, a"" • • n-l 

D • • • • • · · • • · • • • 

ns. (n-l)s, (n-2)s,.,. • • s "'_, 0 0 • • • 

rows. 

0 ns o (n-l)a · . · 28 'W\-a. 8",_, 0 · • • n rows. 
I 

• • • • •• • • • • • 

• • • • • • • • • • • 

D will vanish if f(x)~O bas equal roots.* 

If the roots are dis~inot,the function belongs 

to Gunder M nn(l l .... ill serve our purpose. If the roots 

are not distinct, the function does not belong to Gunder 

M ana under such conditions we must choose another 

function if we are to pass directlyfT01:1 M to G. If H 

is not the next hieher group of G it mc_y bo that the 

function belongs to G under a group of lower order than M 

* See Cajori: Art. 76. 

The method for determining whether or not the roots of an 
e('Jlia~ion are distinct by finding the greatest oommon divisor of f(x; 

and I(x) has been explained in So footnote (p. Pt .) 





and in ths"t oase it together ili th other funotions be

longing to subgroups of M would enable us to pass by 

steps from M to G. 

45. The problem of finding the group of an 

equation is most simple if the nature of the roots is 
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known. Let us consider the quadratio and cubio equations 

in this connection. 

I. Quadratio Equation. 

Case A. Given: x, and xlJ lie in R. 

Then G~ lies in R 

G, lies in R 

and G, is the group for R. 

Case B. Given: Xl and x~ do not lie in R. 

Then G~ lies in R. 

G , does not lie in R 

and G A. is the group for R. 

II. Cubic Equation. 

Case A. Given: x \ ,x"" and X3 lie in R. 

Then GI. lies in R. 

G
3 

lies in R. 

G
1II 

lies in R. 

G l 
lies in R. 

and G , is the group for R. 

Case B. Given: x, and x'" lie in R, but x 3 dOd 

not lie in R. 

This is impossible for we have the 

relation .. 





c ,= X,+ X:;t.,+X~ 

x'?>=-c, -(x,+%7.,) 

which shows that X3 is the difference of 

two quantities which lie in R and hence 

must lie in R. 

Case C. 

Then 

and 

Given: x, lies in R, but x ~ and x'5 do 

not lie in R. 

G 1. lies in R. 

G
l 

~ 
lies in R. 

G, does not lie in R. 
, 

G~ is the group for R. 
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Case D. G i v en: x I' X ~ t and x 3 do not lie in R. 

Then G .. lies in R. 

G
3 

may lie in R. 

G ~ does not lie in R 

G, does not lie in R. 

and the group for R is G~ or G~. 

To test whether or not G 3 lies in R, 

solve the resolvent equation for the funa

tion A,= (x ,- X.,) (x,,- x 3 ) (x~- X I). 

If A,lies in R, the group for R is G3t . 

otherwise the group is G~. 

46. The problem of finding the group of an 

equation becomes more complex when the roots of the 

equation are unknown. As an illustration let us 

find the group of the cubic equation 





x 3 
- 7x -+ 7 :=.. 0 for domain ReI). 

(11,'5) (\~l) · 

(llJ) (,~) (t~) 

CJ, -=- '/.,+}~ +l.~ = O. 

CoN':. X, l2.1 ~ ~~..,. ~ + )(\ '" ~ =. - l' 
G,. =. X 'I. Y. ~ '1 

.. 'lor"!> 

A"'-b,.1..=O. , 

The symmetric group lies fn R lsince to it 

belong t he coefficients. 
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Let us now see if G
3
1ies in R. 

we must solve the resolvent equation . 

To do this 

"" ... 6 -b. =() 
\ 

Substituting 

we have 

b.~- 49 =- ,0 

/1 =. ±7. 

~ .... 1. '?> ! 
b.,-=c, 0,.. - 40, c'3 - 4c~+18c,c~c~-

27c~" * 
= 0 - 0 + 1372 + 0 - 1323 

::. 49. 

* For the derivation of this expression see Chap. II. 
Art. 10. 





Sinoe A lies in "R a.nd belongs to G~ under G«., 

G 3 lies in R. 

It now remains to investigate G,. 

lies in R., all the roots of the given equation must 

lie in R. Now 8 rational root of an equation of the 

form x"3 - 1% + ~ -= 0 must be an integer. * By trie.l 

we find that ± 1 and ±. 7 are not roots ,and thus G t 

does not lie in R. The group of the equation, therefore, 

47. Reduction of the Group of ~ Equation ~ 

Adjunotion. For 8 given domain R, the group of an 

equation is completely determined. It is evident, 

however, that if we change the domain of rationality 

the group of the equation may undergo a correspona~ng 

shift. 

Suppose we have round that G is the group of a 

R ' 1/ \t, given equation for domain R.::. ( ~ • R. • •• R ) where 

R', R'I, ••• Ri, are oerta.in oonstants or varia.bles 

inoluding the ooefficients of the equation. Take H 
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any subgroup of G (H '$ G) and 1f any r Htional funotion of 

the roots belonging to H under G. By hy:pothes is lp do es 

not lie in R. Now adjoin l/J to domain R. The group H 

lies in the extended. domain (1f ' "R: :R"t ••• Rk.) sinoe 

~ belongs to H and lies in t~e doma i n (Art. 36). 

Furthermore, no subgroup of H (exoept itself) 

lies in domain (~t "R', ••• R"). For suppose H' . is 

* Hawkes: Advan~ed Algebra Art. 178. 
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a subgroup of HCH'¥. H) which lies in (Y' t 1\', ••• n""). 
Then any rational function I belonging to H' under H 

11es in (11', "n', ••• R~) and can be express ed rationally 

in terms of ljJ, R' • " ••• R • 

1.= C ' " II ~) Rat. Funo. "/J", R , R , ••• R • 

By hypothesis I cannot be expressed in t erms ot 
'" " ~ " " R , R , ••• R alone; for if it could, H' would lie in 

( ' II ~ k ;1 domain R, R • • •• R ) (.8ee Art. 36.J. 

From the above relation we see that ~ is 

fonnally unaltered by eny substitution which leaves 

1p formally una 1 tared; so that the group to which ! 
belongs must contain tha.t to whioh" "p belongs, i. e. 

H ' must conta.in H. This is absurd lI·or by hyPothesis 

I '4- ' H is a subgroup of H (H r H). Therefore H cannot 

, " lie in domain (~t "R ••• R ) ~ and H satisfies the definition 

of the group of the equation for domain (~, R' ••• R~)t 
since 1 t lies in tl:e domain £l.ud has no subgroup (except 

itself) which lies in the domain. 

We h[~ve thus shown the.t 

Ez the adjunction of a ra.tion~' l :function ljJ (x I. Xi' ••• x J 

which belon~s uncler th,e grolll) G of the equution to .! 

Bubgrou;E !! of Q, !.h!! group E.f lli equation is reduced 

preoisely 12 the subgroup ~. 

48. Solution of ~ Equation by Resolvent 

Equations. Suppose the group of a given eque.tion is 

G (G =¥ G, [1] ) ~ for a given domain of ratione.11ty 

"' " " ~ (n , R t ••• R ). Let H be a. subgroup of a eH =f. G) 





a.nd let Y; be a rational funotion belonging to H under G. 

Suppose ~e are able to solve the resolvent equation for~ 

and let us adjoin~to the domain of rationality. The 

( , . " group of the . equation for the enlarged domain 'P, R ,~t ••• 

RIl) is preoisely H (Art. 47). Suppose we are able to 

solve the resolVent equation for a rational funotion ~ 

which belongs to a. subgroup M of H under H. Upon 

a 'djoining i\ to the domain of ration&,lity the group of the 

equation becomes M. 'Proceeding in this way we would f~ally 

reaoh 8 doms.in for whioh the group of the equation would 

be G I DJ , providing all the resolvent equations' oould be 

solved; * and the roots of the equation could then be 

expressed in terms of the quantities of this domain. 

* This question is disoussed in Chap. VI. 
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CHAPTER V. 

R.eduoibility and Irreducibilitl. 

49. In Chapter III Art. 26 we made the 

statement that if 8 non-binomial resolvent equation 

has a rational linear factor we can :find at least 

one of its roots and thus proceed along the path. 

The question of the reducibility of an equation is 

then of prime importance in our method. Also, if 

the given equation is reducible we may substitute 

for its solution the solution of equations of lower 

degrees, in which case its solution would generally 

be much simplified. 

It is evident tha t the terms "reducible" and 

"irreducible" are meaningless except when referred to 

some domain of rationallty.* Taking the simplest case 

first, let us consider the ways in v.:hich we may learn 

whether or not an equation with rational ooefficients 

is reducible in the domain of rationnl numbers R(l). 

50. Reducibility for R(l) • . Linear Factors. 

Suppose we have given the equation 

where the a's are integers. 

Let us test this equation. for ra.tional linear 

factors. The most satisf~ctory method of doin6 this is 

as follows: 

* See footnote ' page 55. 
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If a~ =1= 1, divide equation I by a and multiply 

the roots by a constant so chosen as to give an equa-

t10n of the form 
'1\ ..,..-, 

x -t c, x + ••• i-o"",:' o. II 

where the CiS are integers*. 

By Gauss's Lemma**, if a function has integral 

coefficients and can be resolved into rational factors, 

it can be resolved into rational factors with integral 

ooeffioients. Tberefore, if equation II has a rational 

root, this root must be an integer and ~fUrthermore, from 

the relation which exists between the roots and. coeff'i-

oients of an equation, it must be a factor of c~. 

Test each integral factor c of o~ by dividing equation 

II by x - o. If there is no remninder upon at least 

one of the trial divisions, then equation II has a. rational 

root and is thus reducible for R(l). 

If equation II has a rational root, equation 

I is reducible fOT R(l), since it has a rational root 

which cnn be obtained by dividing the integral Toot 

found for equation II by t}~e constant by which the 

. roots of equation I were multiplied. 

.!91: R(l). 

50. Kronecker'S Method of Testing Reduoibili.ty 

It may be that f(x) (Art. 50) has no 

linear rational factors, but has factors of higher 

degree • ~hen the degree of f(x) does not exceed five, 

• Oajor1:Arta. 29, 55. 
** Cajori : Art • '12'1. 





we can asoertain by the a.id of ordinary algebra 

whether or not the function has factors of higher 

degree the.n unity.* However, a method which can 

be applied to f(x), no matter how high its degree, 

is thnt due to Kronecker, and is as follows: 

Suppose we wish to see if f(x) has a rational 

factor of degree d (~L.'"Y\J), 

Assumitng that f(x) has such a factor ~ (x) " we 

write 

f(x) =- ~(x) "lP (x). 

Select any ~ +1 integers, z" z~, z~, ••• zcI.+\ 

have the least number of integral factors. 

How construct the functions 

Kz. (x) , ':; ex - z~) (x - z;:a) • •• (x - Z :!l) 

(z -, zl.)(z,- z?> ) • • • (z -, z.~J 
( 

M (x) (x - z , ) (x - z} ) ••• (x - z,,) 
-

%2, 

(z - z,)(z'N- z.~) (z - z,.) • • • ", ~ 

• • • •• •• • • • • • 

6'1. 

M (x) == J,x - z,) (x - z'l) • • • (x - z~ )(x - Z ) ••• (x - z~) 
- ~ -t-l. .. 

%.-.+, 

(z .a+, - Z') ( ZolT' -z ,) 

Observing that the function 

~ ( z, ) lvI%.· (x) + ~ ( Z 1.,) M z. (x) + •.. + crt ( z z. ) 11 z. (x) is equal 
• '" ~'I '&'+1 

t 0 ~ (z, ) for x:. Z, t t 0 CI (z .,.) for :x: = z 1,' ••• t 0 ~ ( z ~ + , ) for 

* Oejori Art. 128. 
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X =. Z.tT' , we ma.y write 

~ ( z, ) Jri 2. (x) +.~ ( Z ... _ ) M z. (x) + . . .+ ,,( z ) M z ( :x: ) = to ( x) • * 
., I rv)., , d + , wl-+I ..., 

We now desire to :find ~ (z I ), ~ (z~ ) 1 ~ " •• ~ (Z .,1,.+' ) • 

Denote the integral :factorsof 
I " III 

f( z, ) by d. , d
t

, d
l 

, • • • • • 

d' 
I, ,,1 

f(z1..) n 
d 1-1' d 7v , 

" ' • • • • • 

• • • • • • . • 

• • • • • • • • 

f(Zck+') 
, .. III 

" d~+, • dd..-H d~+, , • • • • • 

cq(z,) is one of the d's· ~ ( Z1v) is one of the d 's . I • N 
, 

«\ C z ) is 0 n G of the d -..J+ , IS. , .+\ .... 

Try some d. :f'or~(zl)' some d'J..for ~(z~) ••• 

some d cl+' for ~ (Z~+, ), anet ascertain by division whether 

or not 

d, Mx (x) + d'tM z. (x) + ..• + dtl,-L\ M-z (x) 
• ,. 1.. -. ol+\ 

is a factor of f(x). If not, try another combination 

of" the d's. Trying all possible combinations of the 

d l B, we will ascertain in a finite number of trials 

whether or not rex) has a rational factor <9 (x) of 

degree ct • ** 

52. As an illustration of the above method 

let us see if the equation 
oS "!, "-

f(x).:: x + 5x + 3x +-6x + 6 -= 0 

has a rational factor of second degree • 

• •• 

• Baaher: "Introduction to Higher Algebra", page 3,Theorems 
3 and 4. *. Netto: Vorlesungen uber Algebra Art. 50. Ereter Band. 
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Assuming that f(x) has such a factor ~(x) 

we write 

f(x)=..~(x) l (x). 

Select any 3 integers, sa.y Z 1:..1, z'k-=-O, Z ~ -= -1. 

Thall (x ... 0)(x+1) 
?. 

}l z (x) = == 
x +x 

• (1 ~ 0)(1 +1) 2 
• 

)[ (x) (x - l)(x +1) x~ 1 - -
"%.2., (0 - 1)(0 +1) -1 

• 

(x - l)(x - 0) "-
)[ (x) ~ -= x - x • 

1:.3 ( -1-1 ) ( -1-0 ) 2 

q> (1) 
~ + ~(O) 1.-

- 1 +~( -1) 
1v q (x). x+x x x - x 

2 -1 2 -

The integral factors of 

f( 1) =. 21 are 21, -21, 1, -1, 3, -3. 7, -7. 

flO) -::. 6 " 6, -6, 1, -1, 3, -3, 2, -2. 

f( -1) =: -3 " 3, -3. 1, -1, 

~(l) is one of the integral factors of f(l); ~(O) is 

one of the integral factors of f(O); ~(-1) is one of 

the integral factors of f(-l). 

Let us try 3 for ~ (1) , 

As our trial cst (x) we ha.ve 
~ ~ ~ 

3(x +x) + 2(x - ll) + 3(% - x) 
2 -1 2 

2 for ~(O), and 3 for ~(-l). 

~ 
:=. X +2. 

1-Testing x +2 os a divisor of f(x), we find that 

f(x) 
x 1+8 

~ 

x +3x + 3. 

which shows that :rex) 1188 a ra.tional factor of second 
'J,. 

degree, namely x + 2. 
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53. Eisenstein's Test for Irreducibilitu for 

Hel).Eisenstein has given a test for irreduoibility 

whioh, when it oan be applied, is muoh simpler than 

Kronecker's method. The oonditions are the following: 

If an equation with integral ooefficients 
~ ",-, 

i( x) =- Sb x +a, x + ••• -t-a 't\ =-0 

is such that all its coefficients except a o are 

divisible by a prime number p, but a~ is not divisible 

by p2., then f(x)=O is irreducible for R(l).* 

Applying the above test \ve know immediately 
5" . 't- 3 l.. 

that such an equat,ion a.s 3x +5x + l5x +40x .+ 35 =. 0 

is irreducible for ReI), since D.ll its coefficients exoept 

the first are divisible by the prime number 5 and 35 
~ 

is not divisible by (5) • 

54. Reducibility for ~ Arbitrary Domain. In 

the study of 2n equation we may admit into the investiga

tion various irrationalities and desire to knOVi whether 

aT not the equation is reducible for this domain. Thus it 

becomes neoessa.ry to consi<1.er tl1e reduction of an integral 

rational function rex) into irreducible factors for 

an arbitrary domain. Followine; .the method given by 

• Pierpont· for t1"! 8 general case, we v\·ill work with a 

special case with the hope of making the general prooedure 

more intelligible. For tre general case. the student 

* Cajori: Art. 129. 

** Annals of Mathematics. Sere 2. 1900-1901. page 31, 
Art. 44. 





is referred to Pierpont's article.* 

Let us take the function 
'A ~ 

f(x) ::. x - 21Tx +ft -2 

and attempt to factor it for domain R ('IT, 'f2 ). 
The coefficientsof f(x) are in the domain •. 

The ~ does not appear explicitly in f(x) but may 

be contained implicitly since certain rational 

functions of t2 are rational numbers. The quan-

tity 1r appears explicitly in f(x) and whenever it is 

contnined in f(x) it must appear explicitly, since it 

is transcendental. Beoause of this property of' 'IT ') 

we may deal with -IT as a variable without altering 

the charaoter of our problem. . 

Now f(x) does not contain {2: explicitly; so 

we replaoe x sucoessively by t +i2 and t - 'f2: 
f(t + '(2) =. t~ +2( '{2 -11')t + IT (11'-2 '{2 ). (A~ 

f(t -'{2) =- t~+2(-n-1T)t +1T (1T+2 \2). (B~) 

The neoessity that f2 shall appear explioitly 

will appear lat~r. If f already contains 'f2 explicitly 

this substitution is unnecessary. 

Multiplying (A) by (B), 

f(t +f2) f( t -'f2"l :. t if- - 4.,.... t ~ + (61r~ -8)t ~ (1611 -4-T)t 

+n'i- - 81T~ 

Notioe that ~no longer appears explicitly. 

The product f(t + '\2) f( t - '[2) is called 

th.e "uorm" of f and is designe.ted lif. 

* Annale of Mathematios. 
page 31, Art. 44. 

Sere 2. Vol. 2, 1900-1901, 





SUPPosing f(t ±W) is ' reduoible for R (tr, '{2) .. 

we may write 

:ret +f2) -::. Get -+i2) Bet + '{2) 

:r(t -{2) :: G(t- '(2) B(t-W 

'12. 

f(t +i2) f(t - i2) = [?(t +f2) G(t -'f2)][H(t +f2) H(t·

- f2)] • 
or Nt' = NG • Nn. (1) 

The functions Nf, NG, and NH are integral 

funotions of t and 1f • Grom relation (1) we see 

that if Nf is irreduoible for R(l), f(t~f:2) is irre

ducible fOT R( '1f, {2); and every divisoy . of f(t -r\2) 

is a common divis:a Y of f(t + f2) and a factor of 

Nf. ThuB our proce~dure is to find all the factors 

of Nf for R(l) and find the greatest COl~on factor 

of f(t +f2) and one of these ~actors, which takes 

but a finite number of operations. 

Since we are dealing with 1T as a variable we 

propose to attempt to factor the function Nf of the 

two variables t and tr for dcolmain R( 1). 

Since Nf is of fourth degree in t, we need not 

test it for factors of higher degree than two i~ t. 

Let us test Nf for a faotor of degree two in t. 

To do this we select arbitrarily three values 

for t, say t, = 0, t'J. = 1, t ~ = -1. 

now form the ftmotions 
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M (t) ::. (t - t 1 ) (t - t~ ) - (t - 1)(t +1) "1-

t. (t,- t1o.)(t,- t~) (0 -1)(0+1) 
= 1 - t • 

Mt"(t) = (t - t. ) (t - t~) -= (t - O)(t +1) il.+t • = 
),. 

(t 7w - t I ) ( t 1. - t3 ) (1 - 0)(1 + 1) 2 

(t - t. )(t - t,,) (t - O)(t -1) 
1.. 

M
t 

(t) t - t • - -
~ (t - t )(t - t ) (- 1 - 0) (- 1-1) 3 , 3 ~ 

Since the function 

NG(t,) Mt'(t)+NG(t1.)Mt- (t)+NG(t~)lxl T(t) is equal 
, .to 3 

N G (t .) for t = t J t toN G ( t 1.) for t :. t ~, an d. t 0 

NG(t 3 ) for t = t" we may write 

2 

to 

~ ~ 

NG(t,) (1 - t 1w )+NG(t ) t -tt + NG(t~) t - t =.NG(t). 
~ 2 J 2 

We now desire to find HG(t.), 

NG( t 'l.)' and nG( t3 L. 

Nf(t. ) = n't--81T"- and its factors are 

1i ,11'2.;rr ~ 8, 1T ( IT'1._ 8). 

Nf( t ) = -7 + 121T - 2 "'L._ 4 1T~ + 'IT" and. its factors 
~ 

are (1f- 1), (tr _1)4. (-tt2._ 21f- 7),(11- l)(tr~ 2 iT' - 7) [by 

Kronecker's method for factoring an integral function 

of one variable in R(l)]. 

Nf( t )::=. - 7 - 12 1r - 21T ;a.+4 1f~ +1Tltana its f~ctors 
~ 

are (1r + 1 ), (11" + 1 ) 'J,., (rr:L+ 2 1T - 7), (11 + 1 ) ( tr 2.+ 2 1T - 7). 

NC( t ~) must be one of the factors of 

Nf(t,); NG(t~)t one of the factors of Nf(t~); 

NG(t
3

), one of the factors of Nf(t 3 ). 

Let us try 1Ta._ 8 for NG( t I ) , 

11' 'L _ 2 IT - 7 for N G ( t l.. ), and 1T :t + 21T - 7 for n G (-t "'5) • 





Then as a trial value for BG we have 

( 1T ~ _ 8) (1 _ t').) + ( nl, _ 2 1f _ '1) t:a. + t + ( 1T ~ + 2 IT _ '1) t 'L - t = 
2 2 

1t~ - 8 - 1la.t~ +8ta. +-t [n2..t.~ .. 2 lTt:L - 7t :L+1T~t - 2 nt - 'It] + 
r:,.", " ~ 2. a. - ~ 2;- 2-i LFt +2-1tt - 7t _ ·1ft - 2~t +7t-1=t - 2TTt+1T - 8. 

Testing t 2.. - 21T t + 1T'I.. - 8 aa a factor of N:t, 

we find 
'.- If. 3 1. 

Bf ~ t - 'fit +( 6n'a._ 8)t+(161f - 41T3t+1T~-8fT~ • 
t~- 21Tt+1f~-8 t~ - 21Tt+n2..- 8 

'a. 

(t -1f) • 
2. ~ 

Thus t - 21ft -\- 11' - 8 =NG, i.e. is a factor of Nf. 

It now remains to ~ind the highest common 

factor of r(t +i2) and t~ - 21ft + n~- 8 by the 

ordinary method. 

t .. + 2 ( 12 - TI ) t + IT'' - 2 fT \2 il t .. - 2 n t + n .... - 8 
~ _ 1 , _ 

t - 211 t +11 - 8 

2{2 } 2 'f!"t - 2n '{2 +8 

t iT +2 'f21 t'1.._ 21ft+1f~8 \ t -(1T+2 fi) 
t~ - 1Tt + 2t2t 

-1lt - 2'{2t-t1T:' 8 

- TIt - 2 12t-rlT:' 8 

We thus find that t -V+2 f2 is the highest 

oommon factor of f(t +~) and t'- - 21Tt+ 1T:a..- 8 • 

Applying now the reverse substitution 

x = t + \2, we have 

t -1T + 2 IT =- x -1r +~. 





. R( 11" ,(2) • 

Therefore, x -~+f2 is a factor of f(x) for 

By ai vision we fin(l that x - 1l' - f2 is elso 

a fac to r of f ( x) t i • 9. f ·( x) = C x - 1T -+ \2) (x - IT ~ f2). 

55. Reducibility ~ Transitivity. With the 

property of the reduoibility or irreducibility of a . 

given equation for a domain R is oorrelated a corresponi

ing proper.ty of its group for that domain. That is, 

knowing whether or not an equation is reducible, we are 

able to state a certain oharacteristic of its group; and 

on the other b~ndt knowing its group, we are able to 

state whether '9r not the equation is reducible. The 

Iproperty of :the group .to which we refer is its 

"transitivity" .or "intransitivity". ~! transitive 

grouE ~ meant ~ which oarries ~ arbitrarily given 

letter into any other arbitrarily given letter. 

We will now prooeed to 'show CA) if the group 

'75. 

of an equation is intransitive,. the equation is reduoible; 

and oonversely, (B)if the equation is reducible its group 

is intransitive. 

(A). Let there be given the equation 

f(x) ::. (x - x~ ex - %1) ••• (x - x't\) = 0 

whose group G for domain R is lntransltl've and connects 

x, with only the elements 

x tXt ••• x: • (p ~n). 
1. 3 ~ 

Then the function 

" (x) == (x - x,) (x - x.,) ••• (x - x f) 





has its coefficients formally unchanged by all the 

substitutions of G, since they a.re symmetric in 

'16. 

••• x and every substitution of G ~erely permutes 
l' 

x " x '1.,' ••• x among themselves. "f . 
By LagrDnge's theorem the coefficients of ~(x) 

can be expressed T8.tionally in terms of c , Ct ••• C 
1 ~ ~ 

and· Rny function belonging to Gunder G , B,nd thus lie in .,... 
R. It follows that ~ (x) is a rational factor of f(x)., 

and therefore thpt the given equation f(x) = 0 is reducible 

for domnin R. 

(B). Let there be given the equation 

f( x) = (x - X I ) (x - x~) ••• (x - x",) = a. 

reducible for domain R, namely such that 

f(x) =- c,(x) 11> (x) 

where the cOefficients of ~(x) :::. (x - x, }(x - x.J ••• (x - x-y) 

and lIJ ( x) = (x - X1*1 ) (x - x-p+~).. • (x - x .. ~.) lie in R. 

Since any srumnetric f'unction of x, t x~, ••• x an(l any 
~ 

symmetric function of x..,+\' xl*iI..' ••• x .~) lies in R, the function 

l.I> ~Sym. Funot. (x \' x1.' ••• xl') +K Sym. Funct. (xr+I ' ••• x'lV ) 

(where K is a quantity in R) lies in R. 

Tlie function1pis fonnally unchanged by any sub

stitution of tbe group li, which consists of all the sub-

stitutions on x" x 1.' ••• x." among themselves, all the 

substitutions on x +1 ' X , ••• x among themselves, and 
f f+.2.. ,.. 

all the products of the above-mentioned substitutions. 

On the other hand, 'I> is formally changed by any substi

tution not in H, i.e. by any substitution which carries 

any of tile elements x" x2.' ••• x into any of the elements 
f 

XiIH-I ,x •• •• x_ • 
... " ,.+J. ". 
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Therefore 'P belongs fonnally to t'he intransitive group 

H. 

Having properly chosen K, the conjugates of ~ 

under Gl\~ are numerically distinct . ana "Pbelongs to 

H under G~! • Sinoe lbelongs to H under G"".8.nd 

lies in R, II lies in R ; and 8inoe H lies in R ) 

the group G of f(x) -=-0 for domain R is a subgroup of 

H. But H is intransitive, and since any subgroup 

o~ an intransitive group is i~transitive, G must be 

intransitive. 

56. It is evident that in the determination 

of the group of an equation the'" fact that the 

reducibility (or irreducibility) of the equation is 

correlated with the intransitivity (or trl;l.nsitivity) 

of its group directs us in the ohoice of groups 

for investigation. ·This fact is especially useful 

when we reach the biquadratio equation, where the de

termination of the group begins to show oomplexities. 





CHAPTER VI. 

The Solution ~ Equations from tbe Standpoint of the 

Galois Theory. 

57. In Chapter IV we found th2t for any 

'given equation and any given domain R tl1ere is one 

group whose properties are of such importance in the 

study of a.n equation that this group is c [~lled "the" 

group of tr.e equation for domain R. ~ making use 

of this idea of the group of an equation we are 

enabled to view the solu.tion of equations in a 

manner somewhat different from that used in earlier 

chapters. 

58. Quadratic Equation. The Galois group 

of the genere.l qu.adratic equation 

x1J _ c X + c = 0 
I ~ 

(~) 

for o.omr..in R( CllC",) is the symmetric group G?J~ (Chap. IV t 

Art. 43.) 
(1.') 

G~.. c l =- x.+x,.. 
c'N:.x,x;r.. 

2 {v - VI )(v - V",,) =- o • . 

78. 

The only subgroup of G~ is G1 • We are able to solve the 

resolvent equation (v - v. ) (v - V 1J) = 0 for the 

function v, belonging to G, (Chap.I, Art.I). 

Upon adjoining v, to the domain of 





rationality the group of the equ8tion becomes G,. 

( Chap. IV, Art. 47). 

Knowing that c, = x ,+ x 1u 8onc1 v,::: X I - x'k.. we 

are a b le to eX1Jres s x I [tllQ x 1v i ]'l "te :cL': s of elements 

of tbe domain: x :: o,+v. 
\ 2 

x ~ = C I - v, • (See Chap. I. Art. I). 
2 

59. The Cubic Eauation. Tbe GBlois group 

of the general reduced cubic equation 
:5 

X + c~ x - c ~ =. 0 

C, "::. ~,+"tJ'N + "'/J lJ =.. 0 . 

c.~: ~I '#Jl, + j~'tJ"!) +YJ;~"?. 

c.~:. ~,~~:t.3' 

79. 

~"!> fl,= (-x" -l~) t't~ -}It. )('tt~ -lJJ. 
A 1..':. -fl,. 
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In Chap. I, Art. 8 we solved the resolvent 

equation I for the function AI' which belongs to G3 

under G~. Upon adjoining ~,to the domain tbe group of 

the equation becomes G'!>. Similarly, in Chapter I, Art. 

8 we solved the resolvent equation II for the func-

Upon a.djoin-

ing VI to the clomain the group of the equa.tion becomes 

G,~and we are able to express its roots in terms of 

elements of the aomain ~(o I' C,., t C~t A'lv,). 

X I :. 1/3 [v. - 3c,., ] 
VI 

xl. =- 1/3 tl.V1 · - ul ;,~ 

X 0 =1/3 rv, - ~>.;.~ 
(See Chap.I Art.8 page l~). 

60. The Biquadratio Equation. The Galois 

Group of the general biquadratio equation 
If. '3 iL 

X - 0, x + c 2. X - c:sx -t- c't- =- 0 
~ .. ) 

for a.omain R( c " 0 .. , c , cJL) is G • We have seen that 
~ ~ T ~~ 

five direct paths are open for the solution of the 

biquadratic equation (See Chapter III. Art. 16 and 

groUl)-displays opposite pages l.~ ariIid ~1 ). Since we 

may select not only a great variety of functions 

at each adjunction but also different groups, we can 

account for the fact tllat the number of different · 

solutions thnt has been given for the biquadratic 

equation is enormous.* 

* For details of solution Bee Dickson Arts. 4 - 7, 35 - 42. 
For information on different solutions Bee Ma tthiesen: 
Grundzugl dar Ant1kan u. Modernern Algebra. 
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I I 

~)t1-~ l\*~l,~): () ~~) t ,~I\): (1.. ~I\-) (\ ~~) 
-(\~i - - - - (3"it) -:- {f~ - - -(l't-!,1.,):- -(7w~) -- -(, i~~) 

1 
1 I 

~4'L"!l) O~'la~: (~~) ()~~'\): (\~Lt~) (\'t) 

1 O~)t~~: U1..~) 
1 

(r~)l'~") G'+Xl.'!»): 0 'tls) 

, 
G: 

I 

~t 
1 O'2X'5it) 

~X1..",) <taf)t~~ 
-(\~----~-

Oq.~:~) 0"5 ~"') 

note : I n thi s gr oup- di splay only one group of a conjugate 
set i s Given. 





Let us consider the following path: 

. ~ (~- ~ ,) ( Cit - <i a.l ( ~ - ~~) = 0 . E. 

~r ( V - V,) t v - 'I,..) =. b . N. 

G-; " • -= lJ, -} .. + l. ~~ - "l. ""/J't • 

The resolvent equations I, II, III, end IV can 

be solved since they are quadratio and cubic equations. 

Upon a.djoining 8" ~ I' it., and v I to the domain, 

t 1J e group of the equation becomes G., ana tl1. e roots may 

be expressed in terms of elements of the cl omain. 

If Y,' C choose a path in which v.~ o pass from G2.'f. to 

G, (See Chapter III, Art. 16), we must solve a non

binomial equation in order to find a function belonging 

to Gt under G~~, since G~ is not self-conjugate under 

G • But since this non-binomial equation is only 
".'" 

of third degree, there is no diffioulty due to this 

situation. Thus along any of the paths indioated in 

81. 





Chapter III, Art. 16, the resolvent equations can be 

solved, since they are not of higher degree thon three, 

B2~ 

and the solution of the given equation can be accomplished. 

61. The Quintic Equation. 

of the geners.l quintic equation 

The Galois group 

~ ~ "5 
X o,x + c2.x 

for domain R(o. t o~, 03' O~t o~) 

". . 

- c~x + ° "'x 
(i"') 

is G • 
lJ.C> 

o == 0 '$ 

Apparently the method of prooedure used 

in solving the general equations of seoond, third, and 

fourth degrees should lead to the solution of the general 

quintic, but a difficulty arises in that in each 

possible path from G,~o there occur non-binomial 

equations of degree five or higher ( See group-display 

opposite page "'"3 ). 
The maximum subgroups of G \'a.() are G ~'t' G I~ , 

G '-b t and G ~(). Passing to Ga.'\- would involve the 

solution of a non-binomial equation of fifth degree; 

passing to a,~, a non-binomial equation of tenth 

degree; ~assing to G ,a non-binomial equation of a.a 

sixth degree. Since G, is the group of the a.o 

equation for R, the groups G , G, t and G do 
~'t:L ~o 

not lie in R, an(1. it is thus impossible to solve 

any of the above resolvents by inspection (i.e. by 

finding a rational linear factor in R). Our procedure 

then is blocked. On the other hand, we may pess to G~ 
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by a binomial resolvent of second degree, but to pass 

from Ge.o to e. maximum subgroup of G '-b we 'would, have to 

solve non-binomial resolvents of fifth, sixth, or tenth 

degrees. Since no maximum subgroup of G~olies in R, 

none of these resolvents can be solved by inspection, -and 

our procedure is here also blocked. 

We thus arrive at the conclusion th8t the 

general quintic equation cannot be solved by our method. 

Furthermore,it is evident that tre same is true for 

any special quintic equation which ne..s for its group 

for R{ c \ ' C ~ , c ~. clf- ) the symmetrio or alternating 

group. 

Let us nOTI consider the case of a speoial 

quintic equation whose group is neither G I~O nor G~o. 

TJ:c group mayor may not be a subgroup of Gl.
b 

( 1- G 1.<». 

Case (1). SUI'POS e the groull is not a sub-

group of G 1.0 • Since by hypothesis G l is not the 
~b 

group of lowest order in R, at least one of the 

non-binomial resolvent equations to be tried in passing 

from G ,~O to a maximum subgroup of G,~~ has a 

ra.tional linear foctor in R and can thus be solved 

We observe from the group oisplay 

of G,~~ thnt starting from eny maximum subgroup of GI~O' 

other than G~<> ' we cnn select a series of groups 

terminating with GJ1) in which a'sch group is a se1f-

conjugate subgroup of prime index uncler t'ne 'preceding 





group, and can therefore pass to G,(l) by a chain of 

binOmial equations of prime degrees. 

Case (2). Suppose that the group is a sub

group of G .. o ( '$ Gl.c). We can pass to GI.~ by the 

solution of a binomial equation. Since by ~~othesis 

a subgroup of G 1.0 of lower order than G 1.0 lies in R, 

at least one of the non-binomial . res~nt equations 

to be tried in passing from G to a maximum subgroup 
l.~ 

of G~' has 8 rational linear factor in n and can thus 

be solved by inspection. We observe from t he group 

display of G,~o that starting from any maximum subgroup 

of G'-b we cnn select a series of groups terminating 

with G,(l) in which each group is a self-conjugate 

subgroup of prime index under the preceding group. 

Therefore, as in case (1), we cpn pass to G.(l) by 

solving a chain of binomial equations of prime 

degrees; and the solution of any quintic equation 

whose group is neither the symmetric nor alternating 

group can thus be accomplished by our method. 

84:. 

62. Algebraic Solvability of Eguations of Higher 

than Fourth Degree. We observe thr:t we c c~n ;:.lways solve 

any equation by our ·method if starting froLl t 118 group of 

tho equation we cnn select a series of groups terminating 

with G,(l) in which eacb group is a self-conjugate 

subgroup of prime index under t he l)rececting group_ 
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Furthermore, it is shown in treatments of this subject 

that this condition is not only sufficient but also 

necessary for the algebraic solution of any equation.* 

Since it has been proved that the symmetric 

group G"". on n 74 letters contains no self-oonjugate 

subgroups besides itself, G ~\ ,and G.(l),** it 
'-i. 

follows immediately that the general equation of 

higher than fourth degree is not solvable algebraically. 

Foralthough the index of G"'\\, under G , is the 
~ ""' . 

. prime number 2, the index of G I under G ",'. is 
~ 

the number n~, which is not prime for n '7 4. 
. ~ 

However .. it is clear th[~t. as;pecial equ8,tion of higher 

than fourth degree may have a group which meets the 

above conditions and thus may be solvable a1eebraically. 

* Dickson: Arts. 84·, 92. 

** Dickson: Art. 45. 
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