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Crude Oil and Stock Markets: 
Stability, Instability, and Bubbles

 

1. Introduction 

The relationship between oil prices and economic activity has been investigated by a 

number of researchers. On the issue of the effect of oil price shocks on stock market returns, 

Jones and Kaul (1996), Sadorsky (1999) and Ciner (2001) report a significant negative 

connection, while Chen et al. (1986) and Huang et al. (1996) do not. A negative association 

between oil price shocks and stock market returns has been reported in several recent papers. 

Nandha and Faff (2008) find oil prices rises have a detrimental effect on stock returns in all 

sectors except mining and oil and gas industries, O’Neil et al. (2008) find that oil price increases 

lead to reduced stock returns in the United States, the United Kingdom and France, and Park and 

Ratti (2008) report that oil price shocks have a statistically significant negative impact on real 

stock returns in the U.S. and 12 European oil importing countries. 2  In new strands in the 

literature, Kilian and Park (2007) report that only oil price increases driven by precautionary 

demand for oil over concern about future oil supplies negatively affect stock prices, and 

Gogineni (2007) finds that industry stock price returns depends on demand and cost side reliance 

on oil and on size of oil price changes.  

Research on the effect of oil prices on stock prices parallels a larger literature on the 

connection of oil price shocks with real activity. Much of this research has been influenced by 

Hamilton’s (1983) connection of oil price shocks with recession in the U.S. Hamilton’s finding 

has been elaborated on and confirmed by Mork, (1989), Lee et al. (1995), Hooker (1996), 

                                                 
2 Nandha and Faff (2008) review work on the effect of oil price on equity prices. Recently papers have focused on 
the effect of oil price for stock market risk as in Basher and Sadorsky (2006) and Sadorsky (2006). 
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Hamilton (1996; 2003) and Gronwald (2008), among others.3 The research in the two areas is 

clearly connected, since oil prices shocks influence stock prices through affecting expected cash 

flows and/or discount rates. Oil prices shocks can affect corporate cash flow since oil is an input 

in production and because oil price changes can influence the demand for output at industry and 

national levels. Oil prices shocks can affect the discount rate for cash flow by influencing the 

expected rate of inflation and the expected real interest rate. The corporate investment decision 

can be affected directly by change in the latter and by changes in stock price relative to book 

value.  

In recent work emphasis has been placed on the changing nature of the connection 

between oil prices and real activity. Blanchard and Gali (2007) find smaller effects of oil price 

shocks on macroeconomic variables in recent years. Kilian (2008b) reports that while exogenous 

oil supply shocks, identified as oil production disruptions, have a significant effect on the 

economy, their impact on the U.S. economy since the 1970s has been small compared to the 

impact of other factors. Along similar lines, Cologni and Manera (2009) report that the role of oil 

shocks in explaining recessions has decreased over time in G7 countries. This change in the 

relationship between oil prices and real activity in recent years from earlier decades is attributed 

to several causes including improvements in energy efficiency and in the conduct of monetary 

and fiscal authorities.  

  In this paper, we analyze the long-run relationship between the price of crude oil and 

international stock markets from January 1971 to March 2008 using a vector error correction 

model (VECM). The basic model we employ includes additional regressors to control for short-

                                                 
3 Cologni and Manera (2008), Kilian (2008a) Jimenez-Rodriguez and Sanchez (2005), Cunado and Perez de Garcia 
(2005) and Lee et al. (2001) have confirmed a negative link between oil price shocks and aggregate activity for 
other countries. Huntington (2005), Barsky and Kilian (2004) and Jones et al. (2004) provide reviews on the effect 
of oil shocks on the aggregate economy.  
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run dynamics between stock market prices for six OECD countries and a single international 

crude oil price and other macroeconomic series. The contribution of this paper is in the analysis 

of the long-run relationship between oil price and stock prices in a number of major countries 

jointly while allowing for short-run macroeconomic influences on stock price. This is in contrast 

to much recent work which has focused on the short-term impact of oil price increases on stock 

market returns.4 Moreover, we allow for the possibility of endogenously identified structural 

breaks in both the long-run and short-run relationships. 

  We find a clear long-run relationship between these series for six OECD countries from 

1971 until May 1980 and again from February 1988 until September 1999, suggesting that stock 

market indices respond negatively to increases in the oil price. Although we do not find long-run 

relationships to be statistically significant in the intervening period, they are not statistically 

significantly different from those in the previous period, either.5 

 The long-run relationship appears to disintegrate and even change signs in some cases 

after September 1999, based on data through March 2008. Such an empirical finding supports a 

conjecture, not only of a change in the relationship between oil prices and real variables in recent 

years from earlier decades, but possibly of several stock market bubbles and/or oil price bubbles 

since the turn of the century. 

  The remainder of the paper is structured as follows. In the following section, we provide 

a non-quantitative motivation for our analysis. Our econometric model and explanations of our 

                                                 
4 The impact of oil price increases on stock market returns (and analysis of short-run effects) has been considered by 
Nandha and Faff (2008), O’Neil et al. (2008), Park and Ratti (2008), Ciner (2001) and Sadorsky (1999), as noted 
earlier. In other work, for example, Sadorsky (2001) and Boyer and Filion (2007) find that positive oil price shocks 
significantly raise stocks returns for Canadian oil and gas companies, El-Sharif et al. (2005) report a similar result 
for U.K. oil and gas companies, and Papapetrou (2001) reports that positive oil price shocks significantly reduce 
stock returns in Greece. 
5 In fact, if we omit the break in either 1980 or 1988, we find statistically significant negative relationships from 
January 1971 until January 1988 or from June 1980 until September 1999, respectively. The likelihood function is 
increased by including these breaks, but at the expense of statistical significance over the intervening period. 
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estimation technique and breakpoint identification procedure are contained in Section 3. Section 

4 discusses specification test results, while Section 5 holds our main empirical results. Section 6 

concludes. Data and sources are discussed in an appendix.  

2. Motivation: End of the Oil Era or Beginning of the Bubble Era? 

  Figure 1 shows a simple time series plot of the real stock market prices and real crude oil 

prices6 for six countries from January 1971 through March 2008, with crude oil measured on the 

reversed RHS axis. The countries are Canada, France, Germany, Italy, U.K. and U.S., designated 

by CA, FR, DE, IT, UK and US, respectively. The set of countries is chosen because they 

represent the major developed countries over a sample starting in 1971 and real stock prices and 

real crude oil price share a single stochastic trend. Japan is not included because the real stock 

price for Japan does not share this single stochastic trend. Up until about December 1998, the 

plot clearly indicates the presence of long-run relationships, with one or more common stochastic 

trends. Since the crude oil axis is reversed, such relationships imply that long run decreases in 

the price of oil correspond to long-run increases in stock market prices around the world, and 

vice versa. 

  After December 1998, when the oil price reached its historic low since the early 1970’s, 

this price began to climb. Since early 2003, the climb in the real oil price has been steady and 

rapid. Unlike the early 1970’s, stock market prices continued to climb – rather than decline as the 

preceding relationships suggest that they should. This casual observation stimulates doubt about 

the structural stability of these relationships after 1998, in line with the arguments advanced by a 

number of researchers that the relationship between oil prices and real economic variables has 

differed in the most recent decade from that in earlier years.  
                                                 
6 The plot in Figure 1 shows the natural logarithm of these prices with each series normalized so that the first 
observation is zero. Throughout the remainder of the paper, we refer to these transformed series without further 
reference to the transformation. Data are discussed further in an appendix. 
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Figure 1: Stock Market Prices and the Crude Oil Price (Jan 1971 - Mar 2008) 
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  The presence of a structural break sometime in 1999 may be explained by the now mostly 

uncontroversial presence of the so-called “IT bubble,” which inflated stock markets around the 

turn of the century. The introduction of a speculative bubble could cause stock prices to continue 

to increase, even as oil prices begin to increase, as they did after 1998. The general consensus is 

that the IT bubble peaked in March 2000, and it seems to have dissipated by the end of 2002. 

Stock market prices may have reverted to the pre-bubble long-run trend at that time. Beginning 

in early 2003, however, stock markets began to climb once again, although the oil price 

continued to increase. Indeed, another anomaly in the relationship between real oil price and real 

stock prices becomes apparent in the data after 2003. The stock market downturn that began in 
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the summer of 2007 did very little (as of March 2008) in the way of putting stock markets back 

on track with their apparent long-run relationships with oil prices before 1999.7 

  It is difficult to explain this apparent reversal of the long-run relationship. Improvements 

in energy efficiency in these economies, while significant, cannot affect such change as that 

observed in the relationship between the real oil price and real stock prices in the last decade.8 

Blanchard and Gali (2007) assert several reasons for the diminishing effect of oil prices on GDP, 

including efficiency, more flexible labor markets, improved monetary policy, and a lack of 

shocks. 

 A more feasible explanation for stock market prices lies in speculative bubbles. Perhaps 

investors still believe the increase in the oil price since 1998 – like those in 1979 and 1990 – is 

only temporary. The graph (and our econometric evidence below) suggests that a reassertion of 

the pre-1999 long-term relationship between real oil price and real stock markets would translate 

into a substantial decline in worldwide stock market prices if the real oil price remains at levels 

achieved in early 2008.  

3. Econometric Model and Estimation 

Due to the perceived presence of multiple cointegrating relationships in the data, the 

basic modeling framework we employ is a vector error correction model (VECM) with 

additional regressors. These additional regressors (first-differenced log interest rates and 

industrial production) are included to control for short-run dynamics between the time series of 

                                                 
 7 It is interesting that the 1999 date for a structural break also coincides roughly with financial crisis and hard times 

in Asia, Russia and Brazil.  
8 An interesting contributing factor for the apparent change in the behavior of the data in the recent decade may be 
the prevalence of energy price subsidies in China (reduced substantially in June 2008) with the ongoing rise of 
Chinese exports. China has been subsidizing energy prices to stimulate their economy. In effect, the price of 
imported manufactured goods goes down in OECD countries because more parts are supplied by China, even though 
the price of oil is going up exogenously to stock markets (helped by Chinese subsidies). This transfer of production 
to a cheaper source partially insulated from energy prices is unlikely to be important enough to provide a gain in 
efficiency large enough to offset increasing energy prices and create bubbles in the data. 
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interest and other macroeconomic series. Specifically, changes in interest rates and industrial 

production allow us to control for demand shocks affecting stock market prices but not captured 

by short-run oil price changes. Sadorsky (1999) for the U.S. and Park and Ratti (2008) for the 

U.S. and European countries also consider the influence of first-differences of industrial 

production and interest rates (for each country separately), but do not allow for the long-run 

interaction between oil and stock market prices. We do not include these covariates in the 

cointegrating relationship, because we do not expect them to follow the same long-run trend as 

stock market prices.9 

3.1 Econometric Model 

We have stock market prices for N countries and a single international crude oil price. 

We let tz  denote the 1)1( ×+N  vector of these random variables observed over Tt ,...,1= . The 

family of VECMs based on those studied by Johansen (1988, 1995) may be written as  

 
ttt

q

k ktktt dBxzzAz εμ +++ΔΓ+′Γ=Δ ∑ −

= −−
1

1100 , ( 1 )

where 0A  is an rN ×+ )1(  matrix of cointegrating vectors, 0Γ  is an rN ×+ )1(  matrix of error 

correction coefficients, ( kΓ ) are )1()1( +×+ NN  (nuisance) parameter matrices, tx  is a 12 ×N  

vector containing first-differenced log interest rates and industrial production for the N countries, 

B is an NN 2)1( ×+  (nuisance) parameter matrix, tdμ  is a generic deterministic term, and tε  is 

a normally distributed error term. As is standard in this type of model, the sequence )( tε  is 

assumed to be independent and identically distributed. 

                                                 
9 In a really large sample, it would not hurt to include these covariates in the cointegrating relationships. If they are 
not cointegrated, we would simply estimate more stochastic trends (fewer cointegrating relationships) in the VECM. 
However, inclusion of these covariates in the cointegrating matrix uses up a large number of degrees of freedom. 
We did not think the sample size large enough to justify relaxing this seemingly innocuous restriction, since 
previous empirical evidence (e.g., Park and Ratti, 2008) suggests that these are not cointegrated with stock market 
prices. 
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Much of the literature on parameter instability in cointegrated models relies on 

structurally stable cointegrating and error correction matrices, but focuses on structural breaks in 

the deterministic components of the cointegrating equations and the error correction equations. 

Gregory and Hansen (1996) developed early tests for stability of both deterministic and 

stochastic trends, but in non-autoregressive single-equation cointegrating regressions. Stability of 

deterministic trends in a cointegrated VAR/VECM has been analyzed by Johansen, Mosconi, and 

Nielsen (2000), Saikkonen and Lütkepohl (2000), and Lütkepohl, Saikkonen, and Trenkler 

(2004). 

Rather than breaks in the deterministic trends, we wish to allow breaks in the stochastic 

trend(s) – i.e., cointegrating matrix, because we suspect a substantial change in the relationship 

near 1998. Our specifications tests (below) suggest that the model needs no more deterministic 

trends than an intercept, 1=td , which does not appear to change at this time. The model thus has 

two deterministic components: a non-zero mean in the differenced series (controlling for the 

covariates) and an intercept in the cointegrating relationship.  

The nonzero mean in differences translates into a linear time trend in levels, but we find 

evidence against such a trend in the individual series. We are not concerned with structural 

breaks in a parameter that may be statistically superfluous.  

A structural break in the intercept in the cointegrating relationship would correspond to a 

sudden shift in the difference between sample means of the series. It appears that such a break 

may have occurred in 1973 and/or 1979, because stock market prices did not fall sharply as oil 

prices increased sharply. Stock market prices declined sharply a few periods after the 1973 shock 

and more steadily after the 1979 shock.  Consequently, the potential break in the intercept of the 
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cointegrating relationship appears to be temporary, and could just as easily be explained by 

short-run disequilibrium error, which our model already captures. 

We allow breaks in the stochastic trend(s) at unknown times iτ  for bi ,...,1= , where b is 

the number of breaks. With the convention that 00 =τ  and Tb =+1τ , we may reparameterize the 

model as  

 { } ttt
q

k ktk
b

i iitiit dBxztzAz εμττ +++ΔΓ+≤<′Γ=Δ ∑∑ −

= −= +−
1

10 111 , ( 2 ) 

where {}⋅1  denotes the indicator function, taking a value of one if its argument is true and zero if 

false. Note that if b = 0, the model in ( 2 ) reduces to that in ( 1 ). 

3.2 Estimation 

Estimation of the model in ( 1 ) is straightforward and may be accomplished using 

standard software packages, such as STATA. The reader is referred to Johansen’s (1995) text for 

details on reduced rank regression estimation of a VECM.  

The entire system contains ( ) )1(1 2 −+ qN  nuisance parameters from lagged endogenous 

variables, N+1 nuisance parameters from constant terms, and )1(2 +NN  nuisance parameters 

from regressing out contemporaneous changes in interest rates and industrial production. The 

cointegrating matrix and disequilibrium coefficients add rN )1(2 +  parameters, but with 2r  

restrictions. The whole system thus has  

  ( ) ( )( )[ ] 2221111 rrNqNTN +−−−−+−+  

degrees of freedom. Since this is not generally divisible by N+1, we use the greatest integer not 

exceeding  

  ( )( ) ( )1/22111 2 ++−−−−+− NrrNqNT  

to approximate degrees of freedom for each equation in order to calculate standard errors. 
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  Estimation of the structural break model in ( 2 ) is more complicated, even if the 

breakpoints are known. For known breakpoints, we may use an iterative procedure with 

preliminary estimates of iA  given by AAi
ˆˆ 0 = , where Â  comes from the restricted model (with 

no structural breaks) in ( 1 ). We may use these preliminary estimates to regress out 

{ }111ˆ
+− ≤<′ iiti tzA ττ  for all but i = 0, in order to estimate 0A using reduced rank regression. This 

estimate 1
0Â  may then be used to obtain 1

1Â ,…, 1ˆ
bA  sequentially. The whole procedure may then 

be iterated to obtain 2
0Â , 2

1Â ,…, 2ˆ
bA , etc., until convergence. 10  0Γ ,…, bΓ  are subsequently 

estimated. This procedure is similar to one described by Johansen (1995) for implementing 

multiple restrictions on a cointegrating matrix.  

 As with most numerical optimization routines, there is no guarantee that convergence 

will be achieved. The initial choice of 0ˆ
iA  may not be close to cointegrating 1−tz  during the 

respective time period. In the extreme, it may lie in the space orthogonal to the cointegrating 

space of 1−tz . In this case, we project out integrated regressors, rather than stationary regressors. 

The asymptotic results may not be similar. 

However, as long as 0ˆ
iA  has full column rank with the correct number of columns, 

collinearity should not be a problem. The moment matrix in the projection onto the space 

orthogonal to { }111ˆ
+− ≤<′ iiti tzA ττ  should be invertible. It is reasonable to expect that, as long as 

the matrix inversion works, estimates of the cointegrating vectors will iteratively improve. 

It would be straightforward to modify the procedure to allow for a break in the constant 

part of the cointegrating relationship. The vector 1−tz  could simply be augmented with td . 

                                                 
10 For practical implementation, we assume convergence when the maximum element in the matrix of differences 
from one iteration to the next falls below 10-6. 
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Unlike with the standard VECM, this would not be collinear with the td  already in the model, 

since the indicator function adds variation.  

Finally, we note that with each structural break in the cointegrating matrix, an additional 

( )1/2 2 +− Nrr  degrees of freedom per equation are employed. Degrees of freedom corrections 

for standard errors in small samples are adjusted accordingly. 

3.3 Endogenous Break Point Identification 

 We allow the break points to be determined endogenously by performing rolling 

likelihood ratio tests similar to those employed by Camarero and Tamarit (2002) using the 

testing procedure of Hansen and Johansen (1993). We start with a null of no breaks and calculate 

an LR test for a series of alternatives with break points from near the beginning of the sample 

rolling to near the end of the sample. We choose one or more break points where the series of LR 

test statistics reaches salient maxima, if the maxima are above the chi-squared critical value.  

 We then repeat this procedure with the new null incorporating the break points just 

chosen. The alternative is one more breakpoint, and additional points may be chosen by a similar 

rolling procedure with a buffer around the break points in the null, in order to allow sufficient 

degrees of freedom between breaks.11 The procedure may be repeated until either no statistically 

significant break points are found or until the buffers allow no more alternatives. 

4.  Specification and Identification 

 Before presenting our main empirical findings, we more precisely specify the VECM 

model. We must choose the number and type of deterministic trends, the cointegrating rank, lag 

length, an appropriate identification scheme for the cointegrating space, and of course the break 

                                                 
11 We chose the buffer to be ( ) 361/2 2 ++− Nrr  in our empirical analysis in order to allow at least 36 degrees of 
freedom between each break. This choice is somewhat arbitrary, but did not appear to be a binding constraint in our 
empirical results. 
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points. We note that the specification tests in this section are conducted prior to modeling 

structural breaks in the cointegrating relationships. This priority does not affect any of the 

univariate tests, such as those for unit roots and deterministic trends in the individual series.  

4.1 Deterministic Trends and Unit Roots Tests 

 Within the family of VECM’s described above, there are five typical specifications for a 

deterministic trend in either levels of )( tz  or in the differenced model given by ( 1 ). In order to 

get a rough idea of which specification might be most appropriate, we conduct diagnostic tests 

on the individual series over the full sample, shown in Table 1. 

The first and second columns of Table 1 show the estimate and standard error of an 

intercept in a first-order autoregression using the first difference of each series. These tests 

provide justification for the type of deterministic trend to be included in the subsequent unit root 

tests on the individual series (since the critical values depend on this) and in the VECM model 

itself. Under the maintained hypothesis that this first difference is either stationary or trend 

stationary, t-tests constructed from these are (asymptotically) normal. Clearly, we cannot reject a 

null of no intercept in differences, providing evidence against a linear trend in levels.  

The third, fourth, and fifth column of Table 1 show results from unit root tests. 

Specifically, we conduct standard Phillips-Perron (1988) coefficient and t- tests and KPSS tests, 

including only a constant. (We omit a linear trend as suggested by the results of the 

autoregression in first differences.) We firmly reject stationarity of the crude oil price series and 

all of the stock market price series using the KPSS tests, and we fail to reject a unit root 

anywhere using the Phillips-Perron tests, evidence which clearly indicates the presence of 

nonstationarity. 
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In light of these preliminary tests, the most appropriate specification for our model seems 

to be a VECM specification with 1=td . We allow an unrestricted constant term so that a 

constant may be included in both the cointegrating equations and in the error correction 

equations. This allows a (perhaps unnecessary) linear trend in the r stationary combinations. 

Further restriction of this term does not seem to improve efficiency. 

4.2 Cointegrating Rank and Lag Length 

Determining the number of lags q and dimension r of the cointegration space can be 

challenging in such models, and usually requires some kind of prioritization of choices. To avoid 

this, we employ a semiparametric rank selection approach similar to Cheng and Phillips 

(2008).12 They show analytically that information criteria such as the Hannan-Quinn criterion 

(HQ) and the log of the Hannan-Quinn criterion (lnHQ) consistently select the correct 

cointegrating rank. Their technique is robust to misspecification of the lag length in large 

samples. In order to deal with potential small-sample complications arising from a misspecified 

lag length, we construct three portmanteau-type information criteria for rank selection, using 

information from lag lengths one through sixteen. Specifically, we take a simple average of HQ 

across all lag lengths, a simple average of lnHQ across all lag lengths, and a simple average of 

both HQ and lnHQ across all lag lengths. For each rank r, we denote these by IC1(r), IC2(r), and 

IC3(r), respectively. We similarly create IC1(q), IC2(q), and IC3(q) by averaging HQ, lnHQ, and 

both HQ and lnHQ, respectively, across all ranks for each lag length q.13 

                                                 
12 The literature on rank selection using information criteria (IC) instead of likelihood ratio tests is well-established. 
See, for example, Gonzalo and Pitarkis (1998), Chao and Phillips (1999), Aznar and Salvador (2002), Kapetanios 
(2004), and Wang and Bessler (2005). A disadvantage of the traditional testing approach lies in the fact that there is 
always a positive probability of making a mistake (size and one minus power), even in large samples. A consistent 
IC (such as BIC, HQ, lnHQ) overcomes this problem in large samples, and a few of the papers mentioned above 
show favorable small-sample results for such IC. The semiparametric approach of Cheng and Phillips (2008) offers 
an additional advantage, in that the exact number of lags need not be chosen before the cointegration rank is selected.  
13 Our approach does not differ that much from Cheng and Phillips (2008). Those authors showed that HQ-type 
information criteria consistently select cointegrating rank with lag length set to one (the remaining lags are thus 
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Table 2 shows the information criteria calculated for ranks zero through N+1 (all possible 

ranks) and for lags one through sixteen for the full sample with no breaks. Minimal information 

criteria in each group are noted. IC1(r), IC2(r), and IC3(r) agree on only a single common trend 

N(  cointegrating relationships).  

The presence of at least one cointegrating relationship and at least one trend support 

reduced rank regression to estimate the VECM, rather than standard estimation of a VAR in 

levels or differences. Our results suggest that all seven series (real crude oil price and six stock 

market prices) share a single common stochastic trend. The rank tests thus provides evidence for 

cointegration between the stock prices in our sample and is consistent with findings of capital 

markets integration noted by Korajczyk (1996) and Forbes and Rigobon (2002). This finding 

contrasts with that of Ahlgren and Antell (2002), for example, who find little evidence for 

cointegration of international stock prices. Ahlgren and Antell (2002) use standard Johansen rank 

tests and note the sensitivity of their results to pre-test lag selection. Our semiparametric rank 

selection criteria are consistent and robust to misspecification of lag length (at least in large 

samples). Also, Ahlgren and Antell (2002) consider a different set of countries (Finland, France, 

Germany, Sweden, the U.K. and the U.S.) and a different sample period (January 1980 to 

February 1997). 

Lag selection is more complicated, since selection criteria suggest two, fifteen, and 

sixteen (the maximum) lags. We choose the most parsimonious specification of these: two lags. 

Parsimonious lag selection reserves degrees of freedom for endogenous selection of structural 

breaks. 

                                                                                                                                                             
nonparametrically specified). Their large-sample results should reasonably hold for any fixed lag length, and the 
small-sample properties should be improved by fixing at some number higher than one, since this naturally removes 
some serial correlation from the error term. Using information criteria to choose the lag with rank fixed (to be full) is 
a more traditional approach. We take the average IC across all ranks so that the procedure is more robust to rank 
deficiency. 
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4.3 Break Points 

We select break points using the technique discussed above. Time series plots of the 

rolling likelihood ratio tests are given in Figure 2. The null of no break is rejected against a large 

number of alternatives. The most salient rejections occur for breaks after May 1980 and 

September 1999. We then iterate the procedure with a null of breaks only at these points. The 

null is rejected against fewer alternatives, with the most salient rejection after January 1988. 

Based on our criterion described above, there are insufficient degrees of freedom to effectively 

identify additional breakpoints. 

4.4 Identification of the Cointegrating Space 

Having chosen the number of deterministic trends, the cointegrating rank, the number of 

lags, and the location of the structural breaks, we need only choose an identification scheme for 

A. We sort the equations with stock market prices first and the crude oil price last and then 

restrict the first r columns of A (corresponding to the N stock market prices) to be an identity 

matrix, an identification scheme suggested by Johansen (1995). This identifying restriction is 

natural, since the information criteria discussed above suggest that the last series (crude oil price) 

is cointegrated with each of the first r series (stock market prices), which are jointly cointegrated. 

Note that since identification of the cointegrating space occurs after testing and estimation, it 

does not affect the likelihood function. 
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Figure 2: Rolling Likelihood Ratio Test Statistics for Structural Breaks 
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4.5 Potential Asymmetries 

Ciner (2001) and others note that the relationship between oil price shocks and stock 

prices may be nonlinear. We believe that observed nonlinearities in the long-run relationship 

could result from structural breaks in an otherwise linear relationship, such as our model 

employs. Asymmetries in the short-run relationship should not affect our estimates of the long-

run relationship (our parameters of interest) substantially, but the nuisance parameter estimates 

could be affected. Asymmetries in the long-run relationship are possible. After 1979, oil prices 

steadily but stochastically declined until 1999, while stock market prices steadily but 

stochastically increased. Beginning in 1999, oil prices began steadily increasing, while stock 

market prices (at first) continued to increase. Alternatively to our simple structural breaks, 



 17

asymmetry in the long-run response could be explicitly modeled. In that case, we would expect 

that while oil prices were increasing during the 1970’s, the asymmetric response of stock market 

prices would cause them to increase during the 1970’s. Since the relationship does not appear to 

change signs in the 1970’s as it does in the 2000’s, explicitly modeling asymmetry would require 

a structural break in the asymmetric behavior.  

5. Main Empirical Results 

 For comparison, we first estimate the model with no structural breaks. We then estimate 

the model with the three breaks identified above (May 1980, January 1988, and September 1999). 

The results of the first estimation are given in Table 3, while those of the four periods of the 

second estimation are given in Tables 4-7. We omit nuisance parameter estimates for brevity. 

 Estimates of the short-run coefficients are less robust than those of long-run coefficients 

to misspecification of the number of lags. The robustness of the long-run estimates comes from 

the well-known superconsistency of the respective estimators, which may overcome asymptotic 

bias from this type of misspecification. Since the short-run estimates have only root-T 

convergence in a correctly specified model, they are more sensitive to misspecification of the 

stationary covariates (such as number of lagged differences). Since common practice for any 

vector time series model is to restrict the number of lags to be the same for every series, 

superfluous lags in some series may render short-run coefficients insignificant, while omitted 

lags in another series may switch the sign of the estimate. 

 Note that positive estimates of the non-unit, non-zero elements of the cointegrating 

matrix denote negative long-run relationships, and vice versa. 
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5.1 January 1971 – March 2008 (No Breaks) 

 Allowing no structural breaks does not yield any statistically significant long-run 

relationship between stock market and crude oil prices. Moreover, the negative sign is the 

opposite of what we expect, suggesting that long-run changes in the crude oil price are 

accompanied by long-run changes in stock prices in the same direction. Note that this does not 

mean crude oil follows a separate stochastic trend – consistent information criteria suggest only 

one common stochastic trend. However, lack of significance clearly indicates uncertainty about 

the magnitudes and signs of the cointegrating coefficients. 

5.2 January 1971 – May 1980 

 All estimated long-run parameters during this period have the expected positive sign. 

Long-run changes in the crude oil price are therefore accompanied by long-run changes in stock 

prices in the opposite direction, as expected. We find these coefficients to be statistically 

significant for the U.S., the U.K., Germany, and Italy. 

 Moreover, a number of the short-run adjustment coefficients are statistically significant. 

For example, when Italian stock market is out of equilibrium with the world crude oil price, such 

that the Italian stocks are overvalued, statistically significant parameter estimates suggest that the 

Italian stock market price should adjust downwards, the crude oil price should adjust downwards, 

or the U.K. stock market price should adjust downwards, all else being equal. In fact, if any of 

the six stock markets are overvalued relative to the oil price, the respective stock market will 

adjust downwards in the short run. However, this relationship is only significant for Italy, 

Canada, and the U.K. 
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5.3 June 1980 – January 1988 

 In contrast, none of the long-run relationships are statistically significant during this 

period, even though all but Canada have the expected positive sign. Canada is very close to zero, 

but the negative sign no doubt results from a precipitous – but perhaps idiosyncratic – decline in 

the Canadian stock market during the early part of this period. On the other hand, none are 

statistically significantly different from the parameter estimates of the 1971-1980 period, 

suggesting the possibility that the structural break in 1980 was limited to the short-run 

coefficients. 

Without significant long-run relationships, it is difficult to interpret short-run dynamics. 

However, a few of them are significant with the correct sign. Similarly to the previous period, 

the stock markets adjust downwards in the short-run if overvalued relative to crude oil, except 

for Germany. This relationship is significant for Italy, France, and Canada. 

5.4 February 1988 – September 1999 

 During the third period, all of the long-run relationships are significant with the expected 

positive sign. This period featured steadily growing stock markets, except for the Italian stock 

market around 1992 (probably due to speculative attacks on the Lira at about that time), and 

steadily declining oil prices, except during the Gulf War. 

 Some of the short-run dynamics are significant with the expected sign. Similarly to 

previous periods, all of the stock markets adjust downwards in the short-run if overvalued 

relative to crude oil, with a significant coefficient for Italy and Germany. 

None of the short-run adjustments of the crude oil price to the equilibrium relationships 

with stock market prices are significant. The supposed exogeneity of this series may account for 

this result. The Italian stock market, for example, would more reasonably adjust downwards to 



 20

correct an imbalance with the world oil price than would the world oil price adjust downwards to 

correct the imbalance.  

5.5 September 1999 – May 2008 

 During the last period, the long-run relationships are mostly insignificant, with the U.S. 

and Canada having the wrong sign. The counter-intuitive sign for Canada is even significant. 

Even the positive coefficients are substantially smaller than in the previous period. These results 

suggest a break in 1999 so substantial that the natural, prevailing long-run relationship fell apart 

or was even reversed. 

5. Concluding Remarks 

We analyze the long-run relationship between the world price of crude oil and 

international stock markets over the period from January 1971 to March 2008. We utilize a 

cointegrated vector error correction model with additional macroeconomic variables as 

regressors to capture short-term influences. Our technique allows for endogenously identified 

structural breaks in the cointegrating matrix and error correction matrix.  

We find a clear long-run relationship between real stock prices for six OECD countries 

and world real oil price from January 1971 until May 1980 and again from February 1988 and 

September 19998, with positive statistically significant cointegrating coefficients for real stock 

market prices and the real oil price. Intuitively, this means stock market prices increase as the oil 

price decrease or decrease as the oil price increase, over the long-run. These results are natural in 

light of modern economies’ reliance on oil at all levels of economic activity. 

Between May 1980 and February 1988, the relationship is no longer significant. It should 

be noted, however, that although these estimates are not statistically significantly different from 

zero, neither are they statistically significantly different from the estimates of the previous period.  
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After September 1999, a more substantial break is apparent, with even a sign reversal in 

some cases. Overall, the stability of the long-run relationship between crude oil and stock market 

prices over the pre-1999 period with the subsequent disintegration or reversal of this relationship 

suggests that stock markets have not responded to oil prices in the expected way since then. Such 

an empirical finding supports a conjecture of change in the relationship between real oil price 

and real stock prices in the last decade compared to earlier years and the presence of several 

stock market bubbles and/or oil price bubbles since the turn of the century. 
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Appendix: Data Sources 

Data are monthly from January 1971 through March 2008. We construct a single world 

real crude oil price by subtracting the log of the U.S. PPI for all commodities from the log of the 

nominal price of U.K. Brent (a U.S. dollar index). Real stock market prices for six countries, CA, 

FR, DE, IT, UK and US, are created in a similar way using the respective countries’ CPIs. We 

also use the log of 100 plus nominal short-term interest rates and the log of real industrial 

production for each country. All series are normalized so that the initial values are zero.  

The sources of our raw data are as follows:  

Nominal Oil Price: U.K. Brent from IFS, International Monetary Fund, (11276AADZF). 

Producer Price Index (All Commodities): FRED, FRB of St. Louis (PPIACO). 

Stock Market Prices: S&P 500 (US), and Main Economic Indicators, OECD (other countries). 

Consumer Price Indices: Main Economic Indicators, OECD. 

Industrial Production Indices: Main Economic Indicators, OECD.  

Short-term Interest Rates:  

US: 3-month Treasury-bill rate from FRED, FRB of St. Louis (TB3MS). 

DE: Money market rates reported by Frankfurt banks / Three-month funds / Monthly 

average, German Federal Bank. 

UK: Treasury bill rate, IFS (line 60c), International Monetary Fund. 

IT: money market rate, IFS (line 60c), International Monetary Fund. 

FR: money market rate, National Institute for Statistics and Economic Studies (INSEE). 

CA: short term rate (three month maturity), OECD. 
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Table 1: Diagnostic Tests on the Individual Series 

Int (s.e.) (c.v.) -14.1 -2.86 0.463
ΔSUS 0.0025 0.0017 SUS 0.221 -0.093 7.728 **
ΔSUK 0.0018 0.0022 SUK -1.199 -0.909 7.197 **
ΔSDE 0.0021 0.0025 SDE -1.671 -0.890 7.175 **
ΔSCA 0.0020 0.0022 SCA -1.280 -0.570 6.397 **
ΔSFR 0.0022 0.0027 SFR -0.979 -0.654 7.204 **
ΔSIT 0.0003 0.0028 SIT -2.505 -1.391 4.390 **
ΔCrude 0.0047 0.0045 Crude -10.147 -2.393 0.811 **

Z(c) Z(t) KPSSt-tests

 
Int:  Intercept estimate from a first-order autoregression of first differenced series; 
Z(c) and Z(t):  Phillips-Perron unit root coefficient tests and t-tests (unit root null, intercept only);  and 
KPSS:  KPSS unit root tests (stationary null, intercept only). 
Only significance at 5% size noted. 
 
Table 2: Information Criteria for Rank and Lag Selection 
Rank Lag

0 -43.214 -44.490 -43.852 1 -43.249 -43.583 -43.416
1 -43.263 -44.575 -43.919 2 -43.599 ** -44.068 -43.833
2 -43.276 -44.619 -43.947 3 -43.539 -44.143 -43.841
3 -43.283 -44.651 -43.967 4 -43.494 -44.233 -43.863
4 -43.284 -44.672 -43.978 5 -43.429 -44.305 -43.867
5 -43.286 -44.687 -43.987 6 -43.402 -44.414 -43.908
6 -43.287 ** -44.696 ** -43.992 ** 7 -43.343 -44.493 -43.918
7 -43.283 -44.695 -43.989 8 -43.360 -44.648 -44.004

9 -43.325 -44.752 -44.039
10 -43.235 -44.801 -44.018
11 -43.165 -44.871 -44.018
12 -43.115 -44.962 -44.038
13 -43.080 -45.067 -44.074
14 -43.070 -45.199 -44.134
15 -43.017 -45.289 -44.153 **
16 -42.928 -45.343 ** -44.136

IC3(r) IC2(q) IC3(q)IC1(q)IC1(r) IC2(r)

 
Information criterion for rank selection (left panel) and lag selection (right panel).  
Information criteria calculated as 
IC1(r): Average of HQ across all lags q for rank r; 
IC2(r): Average of lnHQ across all lags q for rank r; 
IC3(r): Average of both HQ and lnHQ across all lags q for rank r; 
IC1(q): Average of HQ across all ranks r for lag q; 
IC2(q): Average of lnHQ across all ranks r for lag q; and 
IC3(q): Average of both HQ and lnHQ across all ranks r for lag q. 
Minimal criterion in each column noted with two asterisks. 



 27

Table 3: Jan 1971 – Mar 2008 (No Structural Break) 
LR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS 1 0 0 0 0 0
SUK 0 1 0 0 0 0
SDE 0 0 1 0 0 0
SCA 0 0 0 1 0 0
SFR 0 0 0 0 1 0
SIT 0 0 0 0 0 1
Crude -1.661 1.174 -1.284 1.031 -1.226 0.938 -1.373 0.738 -1.668 1.254 -1.422 0.916
SR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS -0.003 0.023 0.026 0.018 -0.015 0.017 -0.013 0.026 0.009 0.019 -0.011 0.011
SUK 0.015 0.028 -0.003 0.022 0.000 0.021 -0.003 0.032 0.002 0.023 -0.020 0.014
SDE 0.035 0.038 0.050 0.030 -0.062 0.028 ** -0.023 0.043 -0.013 0.031 -0.004 0.019
SCA 0.053 0.034 0.022 0.026 -0.022 0.025 -0.046 0.038 -0.016 0.028 -0.010 0.016
SFR 0.064 0.039 0.032 0.030 0.022 0.029 -0.037 0.044 -0.093 0.032 ** 0.018 0.019
SIT -0.079 0.037 ** 0.063 0.029 ** -0.045 0.027 0.103 0.041 ** 0.044 0.030 -0.068 0.018 **
Crude 0.045 0.066 -0.094 0.052 -0.009 0.049 0.054 0.075 0.024 0.054 -0.012 0.032
Estimates of matrix of cointegrating vectors A (LR relationships) and error correction matrix Γ  (SR adjustments to 
the LR relationships) for full sample using standard reduced rank regression. CE denotes the r cointegrating 
equations. A normalized for identification. Only significance at 5% size noted. 
 
Table 4: Jan 1971 – May 1980 Estimates 
LR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS 1 0 0 0 0 0
SUK 0 1 0 0 0 0
SDE 0 0 1 0 0 0
SCA 0 0 0 1 0 0
SFR 0 0 0 0 1 0
SIT 0 0 0 0 0 1
Crude 0.364 0.049 ** 0.545 0.086 ** 0.226 0.026 ** 0.121 0.117 0.266 0.160 0.602 0.277 **
SR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS -0.081 0.049 0.030 0.025 0.058 0.059 -0.140 0.049 ** 0.116 0.045 ** -0.004 0.020
SUK 0.009 0.060 -0.085 0.031 ** 0.115 0.073 -0.026 0.060 0.141 0.055 ** -0.074 0.024 **
SDE -0.030 0.078 0.007 0.040 -0.129 0.095 0.014 0.079 0.001 0.072 -0.014 0.032
SCA -0.145 0.070 ** 0.100 0.036 ** -0.003 0.085 -0.158 0.071 ** 0.142 0.065 ** -0.027 0.028
SFR -0.241 0.080 ** 0.067 0.041 0.059 0.098 0.134 0.081 -0.083 0.075 0.002 0.033
SIT -0.015 0.077 0.026 0.039 -0.054 0.093 -0.010 0.077 0.147 0.071 ** -0.071 0.031 **
Crude -0.228 0.137 0.038 0.070 -0.567 0.167 ** 0.125 0.138 0.286 0.127 ** -0.203 0.055 **
Estimates of matrix of cointegrating vectors A (LR relationships) and error correction matrix Γ  (SR adjustments to 
the LR relationships) for sub-period, allowing for endogenously-chosen structural breaks using iterative reduced 
rank regression with the whole sample. CE denotes the r cointegrating equations. A normalized for identification. 
Only significance at 5% size noted. 
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Table 5: Jun 1980 – Jan 1988 Estimates 
LR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS 1 0 0 0 0 0
SUK 0 1 0 0 0 0
SDE 0 0 1 0 0 0
SCA 0 0 0 1 0 0
SFR 0 0 0 0 1 0
SIT 0 0 0 0 0 1
Crude 0.134 0.184 0.056 0.311 0.036 0.384 -0.006 0.157 0.278 0.292 0.362 0.290
SR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS -0.147 0.106 -0.003 0.058 0.046 0.028 0.044 0.059 0.019 0.031 -0.006 0.016
SUK -0.034 0.130 -0.086 0.071 0.060 0.034 -0.013 0.073 0.025 0.038 -0.001 0.020
SDE -0.273 0.167 0.130 0.092 0.043 0.044 0.188 0.094 ** -0.111 0.049 ** -0.011 0.025
SCA 0.275 0.151 -0.169 0.083 ** 0.048 0.040 -0.182 0.085 ** 0.051 0.045 -0.044 0.023
SFR 0.084 0.174 -0.087 0.095 0.186 0.046 ** 0.057 0.097 -0.208 0.051 ** -0.028 0.026
SIT -0.053 0.164 -0.173 0.090 0.114 0.043 ** 0.068 0.092 0.111 0.048 ** -0.091 0.025 **
Crude -0.187 0.297 0.097 0.163 -0.030 0.078 0.010 0.166 0.036 0.088 0.020 0.045
Estimates of matrix of cointegrating vectors A (LR relationships) and error correction matrix Γ  (SR adjustments to 
the LR relationships) for sub-period, allowing for endogenously-chosen structural breaks using iterative reduced 
rank regression with the whole sample. CE denotes the r cointegrating equations. A normalized for identification. 
Only significance at 5% size noted. 
 
Table 6: Feb 1988 – Sep 1999 Estimates 
LR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS 1 0 0 0 0 0
SUK 0 1 0 0 0 0
SDE 0 0 1 0 0 0
SCA 0 0 0 1 0 0
SFR 0 0 0 0 1 0
SIT 0 0 0 0 0 1
Crude 3.319 1.320 ** 2.328 0.959 ** 1.979 0.825 ** 1.641 0.536 ** 1.865 0.860 ** 1.435 0.449 **
SR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS -0.038 0.033 0.070 0.059 0.033 0.041 0.006 0.036 -0.042 0.039 -0.013 0.021
SUK 0.003 0.041 -0.046 0.073 0.039 0.051 0.042 0.044 0.009 0.048 -0.035 0.026
SDE -0.075 0.053 0.195 0.095 ** -0.169 0.066 ** 0.085 0.057 0.003 0.062 0.041 0.034
SCA -0.031 0.048 0.152 0.086 -0.094 0.059 -0.030 0.052 -0.011 0.056 0.010 0.031
SFR -0.067 0.055 0.207 0.097 ** -0.036 0.067 0.012 0.058 -0.117 0.064 0.050 0.035
SIT -0.094 0.052 0.028 0.093 0.017 0.064 0.143 0.056 ** 0.038 0.061 -0.085 0.033 **
Crude -0.162 0.095 0.268 0.169 -0.023 0.117 -0.137 0.101 0.052 0.111 0.014 0.060
Estimates of matrix of cointegrating vectors A (LR relationships) and error correction matrix Γ  (SR adjustments to 
the LR relationships) for sub-period, allowing for endogenously-chosen structural breaks using iterative reduced 
rank regression with the whole sample. CE denotes the r cointegrating equations. A normalized for identification. 
Only significance at 5% size noted. 
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Table 7: Oct 1999 – Mar 2008 Estimates 
LR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS 1 0 0 0 0 0
SUK 0 1 0 0 0 0
SDE 0 0 1 0 0 0
SCA 0 0 0 1 0 0
SFR 0 0 0 0 1 0
SIT 0 0 0 0 0 1
Crude -0.078 0.433 0.196 0.572 0.036 0.555 -0.410 0.151 ** 0.138 0.665 0.007 0.296
SR CE1 (s.e.) CE2 (s.e.) CE3 (s.e.) CE4 (s.e.) CE5 (s.e.) CE6 (s.e.)
SUS -0.065 0.087 0.150 0.125 -0.084 0.057 0.075 0.081 -0.024 0.109 -0.011 0.069
SUK 0.036 0.107 0.046 0.153 -0.073 0.070 -0.007 0.100 -0.026 0.133 0.056 0.084
SDE 0.041 0.136 0.948 0.194 ** -0.289 0.089 ** 0.316 0.127 ** -0.750 0.169 ** 0.218 0.107 **
SCA 0.044 0.126 0.317 0.179 0.005 0.082 -0.005 0.117 -0.319 0.156 ** 0.046 0.099
SFR -0.071 0.143 0.568 0.204 ** -0.051 0.093 0.201 0.133 -0.430 0.177 ** -0.005 0.112
SIT -0.118 0.135 0.359 0.193 -0.028 0.088 0.163 0.126 -0.207 0.168 -0.094 0.106
Crude 0.342 0.242 -0.168 0.345 0.065 0.158 0.462 0.225 ** -0.078 0.300 -0.326 0.190
Estimates of matrix of cointegrating vectors A (LR relationships) and error correction matrix Γ  (SR adjustments to 
the LR relationships) for sub-period, allowing for endogenously-chosen structural breaks using iterative reduced 
rank regression with the whole sample. CE denotes the r cointegrating equations. A normalized for identification. 
Only significance at 5% size noted. 


