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Abstract

The present study makes two contributions to the Bayesian Vector-Autoregression (VAR)

literature. The first contribution is derivation of the Bayesian VAR estimator under the intrinsic

entropy loss. The Bayesian estimator, which is distinctly different from the posterior mean,

involves the frequentist expectation of a function of VAR variables. We find that the condition

that allows for a closed-form expression of the frequentist expectation is violated even when the

VAR is stationary, making it difficult to compute the Bayesian estimates via standard Markov

Chain Monte Carlo (MCMC) procedures. The second contribution of the paper concerns MCMC

simulation of the Bayesian estimator without using the closed-form expression of the frequentist

expectation. A novelty of our MCMC algorithms is that they jointly simulate the posteriors of

frequentist moments of VAR variables as well as the posteriors of VAR parameters. Numerical

simulations show that the algorithms are surprisingly efficient.
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1 Introduction

The present paper concerns Bayesian estimation of Vector-Autoregressive (VAR) models under an

intrinsic entropy loss function. In the past two decades VAR has become a popular tool for mod-

eling time series data, especially in the field of macroeconomics. A VAR of a p dimensional row

variable, yyyt, (t = 1, .., T ) has the form yyyt = ccc +
∑L

j=1 yyyt−jBBBj + εεεt, for t = 1, · · · , T, where VAR lag

length L is a known positive integer, ccc is a 1 × p unknown vector, and BBBj is an unknown p × p

matrix. VAR residuals εεε1, · · · , εεεT are assumed to be independently identically distributed Np(0, ΣΣΣ)

errors, where the covariance matrix of the error term ΣΣΣ is an unknown p×p positive definite matrix.

We now denote xxxt = (1, yyyt−1, · · · , yyyt−L),

YYY =




yyy1
...

yyyT


 , XXX =




xxx1

...

xxxT


 , εεε =




εεε1
...

εεεT


 , ΦΦΦ =




ccc

BBB1

...

BBBL




.

The VAR coefficient matrix ΦΦΦ is a (1+Lp)× p matrix of unknown parameters. Then the VAR can

be written as

YYY = XXXΦΦΦ + εεε. (1)

The likelihood function of (ΦΦΦ, ΣΣΣ) is

f(ΦΦΦ, ΣΣΣ) =
1

|ΣΣΣ|T/2
exp

{
−1

2

T∑

t=1

(yyyt − xxxtΦΦΦ)ΣΣΣ−1(yyyt − xxxtΦΦΦ)′
}

=
1

|ΣΣΣ|T/2
etr

{
−1

2
(YYY−XXXΦΦΦ)ΣΣΣ−1(YYY−XXXΦΦΦ)′

}
. (2)

Here and hereafter etr(A) is exp(trace(A)) of matrix A. The Maximum Likelihood Estimator

(MLE) of ΦΦΦ and ΣΣΣ are 1

Φ̂ΦΦMLE = (XXX′XXX)−1XXX′YYY, and Σ̂ΣΣMLE = (YYY−XXXΦ̂ΦΦMLE)′(YYY−XXXΦ̂ΦΦMLE)/T (3)

respectively.

In a typical macroeconomic application, the number of parameters to be estimated is large

relative to data observations. A VAR with p = 8 and L = 4 involves 300 parameters to be

estimated in ΣΣΣ and ΦΦΦ. As a result of the ’over-parameterization’, the MLE (Σ̂ΣΣMLE , Φ̂ΦΦMLE) for

1We assume that T ≥ Lp + p + 1 and that the MLEs of ΦΦΦ and ΣΣΣ exist.
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finite samples is often found to change significantly when data sample is extended by a few more

observations, when the lag L is changed slightly, or when the model incorporates a different variable.

In addition, drawing finite sample inferences of the VAR parameters is a challenge. With a large

number of parameters and limited data observations, asymptotic asymptotic theories may not be

good guidance for finite sample properties. On the other hand, frequentist finite sample distribution

is not available in analytical form for the VAR model.

In practice, Bayesian procedures are widely used for finite sample inferences of VAR models and

often produce estimators with superior frequentist properties than the MLE. The Bayesian approach

combines prior information with sample information to form posteriors and derive estimators from

minimization of expected posterior loss. Bayesian estimators depend on researcher’s choice of

loss function, with tractability often being the top selection criterion. In applications of Bayesian

procedures, estimators of ΣΣΣ and ΦΦΦ are usually derived independently. For example, the posterior

mean of (ΣΣΣ, ΦΦΦ), seemingly the most natural Bayesian estimator, can be justified by a parametric

loss function that is the sum of two separable losses–a loss with respect to ΦΦΦ and a loss with

respect to ΣΣΣ. Specifically, the loss with respect to ΦΦΦ is the sum of squares of estimation errors of

all elements in ΦΦΦ weighted by constants that are independent of data. The constant weighting of

estimation errors gives rise to unreasonable implications. For instance, it does not take into account

of the fact that data series used in the VAR may be different in scale and volatility. While Bayesian

analysis based on separable loss functions has pitfalls, little research has yet been conducted to find

an alternative approach.

In this paper we suggest that Bayesian estimation of VAR be based on an intrinsic loss function.

The intrinsic loss we focus on is the entropy loss. The parametric form of the entropy loss function

depends on the model. The entropy loss on (ΣΣΣ, ΦΦΦ) is non-separable in ΣΣΣ and ΦΦΦ. Using the entropy

loss has two appeals. First, it serves as a metric of the estimation errors in general settings.

Second, for the VAR model the entropy loss offers a more plausible measure of estimation errors

that economists are concerned about. The entropy loss of (ΣΣΣ, ΦΦΦ) is shown to be the sum of a loss

pertaining to the covariance matrix ΣΣΣ and a loss pertaining to the errors of within-sample forecasts

normalized by the estimated ΣΣΣ.

Deriving the Bayesian estimator under the entropy loss involves computing frequentist moments

of VAR variables. We find that these moments of the VAR can be computed in closed form under a

restrictive condition that requires the VAR to be stationary. This condition is shown to be violated

by our numerical simulations even when the data-generating VAR is stationary. In other words,
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for computation of Bayesian estimates we can no longer rely on standard Monte Carlo methods

that require the use of the closed-form expression of the moments of VAR variables. We propose

algorithms that use generated data as latent parameters in numerical simulation of posteriors and

computation of Bayesian estimators under the entropy loss. The algorithms are applicable to

stationary and nonstationary VARs. Data augmentation is proposed by Tanner and Wang (1987)

to alter the likelihood function for easier MCMC simulation from the posteriors of parameters

of interest. In recent years, data augmentation has been used for various purposes in Bayesian

literature. For examples, in the study by Otrok and Whiteman (1998) the generated latent economic

indicator itself is of primary interest. In the study by Elerian et al. (2001) generated data is used

to estimate stochastic differential equations from discrete sample observations. Data generation

in the present study is different from the existing literature in objective and in implementation.

We use the generated data to compute certain frequentist moment of the VAR variables and then

simulate the joint posterior distribution of the frequentist moment with VAR parameters.

In section 2 of the paper we derive the Bayesian VAR estimator under the entropy loss function.

We show that the Bayesian estimator for ΣΣΣ is larger than the posterior mean. The Bayesian

estimator for ΦΦΦ, which is different from the posterior mean, involves frequentist moments of VAR

variables. In this section we also discuss the issue of computing the moments of VAR variables. We

find unless the VAR is highly stationary, the closed-form expression of the moments cannot be used

for computation of Bayesian estimators. In section 3 we provide general MCMC algorithms that

simulate posteriors of parameters as well as posteriors of frequentist moments of generated data. We

lay out two options for MCMC simulations. One algorithm draws VAR parameters from posteriors

conditional on sample observations as well as generated data. The other one draws parameters

from posteriors conditional on sample observations alone and then adds a Metropolis-Hastings step

for simulations from the full conditional density. In section 4 we discuss implementation of the

general algorithms for computing estimators of (ΦΦΦ, ΣΣΣ) in the VAR model. In section 5 we compare

the simulation results of a numerical example using the alternative algorithms. The numerical

simulations demonstrate that despite a large number of latent parameters involved, the algorithms

are quite efficient. In section 6 we estimate a VAR using a set of U.S. macroeconomic data. We

find that the posterior risk of the Bayesian estimate is substantially lower than that of the posterior

mean. In section 7 we offer concluding remarks.
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2 The Entropy Loss Function and Bayesian Estimator

A common frequentist argument against Bayesian analysis is that Bayesian estimators depend on

researchers’ choices of priors and loss functions and that these choices are often made without

sufficient degree of generalization. Given the fact that researchers use VAR models for a variety of

applications it is useful to establish a framework that allows for easier interpretations of research

findings by others. An extensive literature has been developed in Bayesian statistics for selecting

priors that are in some sense ’noninformative’ or ’objective’ to serve as a reference for inference.

These objective priors are derived from certain general principles.2 Scientific reporting is made

more convenient by the common use of objective priors since they are to a large extent independent

of researchers’ individual preferences.

A similar argument can be made on the choice of loss function, which is a metric for the

difference between the true parameter (ΦΦΦ, ΣΣΣ) and an estimator (Φ̂ΦΦ, Σ̂ΣΣ). One may consider a loss

function that is made of separable part for ΣΣΣ and ΦΦΦ, each takes a given parametric form (e.g., a

quadratic function). The overall loss with respect to (ΦΦΦ, ΣΣΣ) is then in the form of

L(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ, ΣΣΣ) = L1(Σ̂ΣΣ;ΣΣΣ) + L2(Φ̂ΦΦ;ΦΦΦ). (4)

In this setting a Bayesian estimator Σ̂ΣΣ is selected independent of the estimator Φ̂ΦΦ. In eco-

nomic applications this restriction gives rise to unreasonable results, as the ensuing discussion will

illustrate. In addition, the parametric functions chosen by different researchers are ad hoc and it

is difficult to argue that one choice is more reasonable than another. If in applications different

parametric loss functions lead to substantially different estimates, there is no obvious criterion to

select among them. Instead of relying on parametric loss functions that are based on researcher’s

preference, an alternative approach is to adopt an intrinsic loss function that defines a metric in a

general sense, with its parametric form depending on the problem at hand. One natural choice of

such metric is the entropy function.
2For example, the Jeffreys prior, which is proportional to the square root of the determinant of the Fisher infor-

mation matrix, is derived from the ”invariance principle”– meaning the prior is invariant to re-parameterization (see

Jeffreys 1961 and Zellner 1971). Another class of priors are derived by maximizing the difference between informa-

tion content in the posterior and prior. Zellner’s Maximal Data Information prior (1971) and Bernardo’s (1979) and

Berger and Bernardo’s (1992) reference prior are based on this approach. For a recent review of various approaches

for deriving noninformative priors see Kass and Wasserman (1996). Ni and Sun (2001) compare the properties of

Bayesian VAR estimators under various non-informative priors.
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2.1 The entropy loss function

The general form of the entropy loss is defined in Robert (1994, p74). For the VAR model it is

given by

LE(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ,ΣΣΣ) =
∫

log

{
f(YYY|ΦΦΦ, ΣΣΣ)
f(YYY|Φ̂ΦΦ, Σ̂ΣΣ)

}
f(YYY|ΦΦΦ,ΣΣΣ)dYYY

= IE(YYY|ΦΦΦ,ΣΣΣ) log

{
f(YYY|ΦΦΦ, ΣΣΣ)
f(YYY|Φ̂ΦΦ, Σ̂ΣΣ)

}
(5)

where f is the density of VAR variables YYY. In information theory log(1/f(YYY)) is often used to

measure the content of information regarding the VAR parameters when a researcher observes YYY.

Thus the entropy loss can be interpreted as the expected difference in information gained from

data observation when researcher’s estimates of the VAR parameters are (Φ̂ΦΦ, Σ̂ΣΣ) instead of the true

parameters (ΦΦΦ, ΣΣΣ). Note that for computing the frequentist expectation in the loss function, (Φ̂ΦΦ, Σ̂ΣΣ)

are not treated as functions of YYY. Naturally, the larger the entropy loss the larger the difference

between (Φ̂ΦΦ, Σ̂ΣΣ) and the true parameters (ΦΦΦ, ΣΣΣ).

In the following, for the multivariate normal model we decompose the loss LE into two parts, a

part measures the loss associated with the covariance matrix ΣΣΣ only, the second part measures the

loss of VAR coefficients but is related to the covariance matrix as well as frequentist expectation

IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX). Throughout the paper the notation IE(YYY|ΦΦΦ,ΣΣΣ) represents frequentist expectation

given parameter (ΦΦΦ, ΣΣΣ). In our VAR notations of the previous section XXX are the lags of YYY. We

will use both YYY and XXX as symbols of VAR variables. Note that for a finite sample IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX)

exists even when the VAR has explosive roots.

Lemma 1 Denote the (1 + Lp)× (1 + Lp) frequentist expectation matrix as

GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX
′XXX). (6)

The entropy loss function LE can be decomposed into two parts,

LE(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ,ΣΣΣ) = LE1(Σ̂ΣΣ;ΣΣΣ) + LE2(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ, ΣΣΣ). (7)

where

LE1(Σ̂ΣΣ;ΣΣΣ) =
T

2
{tr(Σ̂ΣΣ−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p}, (8)

LE2(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ,ΣΣΣ) =
1
2
tr[Σ̂ΣΣ

−1{(ΦΦΦ− Φ̂ΦΦ)′GGG(ΦΦΦ− Φ̂ΦΦ)}. (9)
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Proof. Since yyyt − XXXtΦΦΦ, t = 1, · · · , T are iid. ∼ Np(0,ΣΣΣ), we have IE(YYY|ΦΦΦ,ΣΣΣ){YYY − XXXΦΦΦ} = 0,

IE(YYY|ΦΦΦ,ΣΣΣ){(YYY−XXXΦΦΦ)′XXXΦΦΦ} = 0, and IE(YYY|ΦΦΦ,ΣΣΣ){(YYY−XXXΦΦΦ)′(YYY−XXXΦΦΦ)} = TΣΣΣ.

IE(YYY|ΦΦΦ,ΣΣΣ)



log

|ΣΣΣ|−T/2etr{−1
2(YYY−XXXΦΦΦ)ΣΣΣ−1(YYY−XXXΦΦΦ)′}

|Σ̂ΣΣ|−T/2etr{−1
2(YYY−XXXΦ̂ΦΦ)Σ̂ΣΣ

−1
(YYY−XXXΦ̂ΦΦ)′}





=
T

2
(log |Σ̂ΣΣΣΣΣ−1| − p) +

1
2
trIE(YYY|ΦΦΦ,ΣΣΣ)

{
(YYY−XXXΦ̂ΦΦ)Σ̂ΣΣ

−1
(YYY−XXXΦ̂ΦΦ)′

}

=
T

2
(log |Σ̂ΣΣΣΣΣ−1| − p) +

1
2
tr(Σ̂ΣΣΣΣΣ−1T ) +

1
2
trIE(YYY|ΦΦΦ,ΣΣΣ)

{
XXX(ΦΦΦ− Φ̂ΦΦ)Σ̂ΣΣ

−1
(ΦΦΦ− Φ̂ΦΦ)′XXX′

}

=
T

2
{tr(Σ̂ΣΣ−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p}+

1
2
tr

{
(ΦΦΦ− Φ̂ΦΦ)Σ̂ΣΣ

−1
(ΦΦΦ− Φ̂ΦΦ)′IE(YYY|ΦΦΦ,ΣΣΣ)(XXX

′XXX)
}

.

The result follows.

The next theorem presents the Bayesian estimator under the loss LE .

Theorem 1 Under the loss LE, the generalized Bayesian estimator of (ΦΦΦ,ΣΣΣ) is

Φ̂ΦΦE =
[
IE{GGG |YYY}

]−1
IE{GGGΦΦΦ |YYY}, (10)

Σ̂ΣΣE = IE(ΣΣΣ |YYY) +
1
T

IE{(ΦΦΦ− Φ̂ΦΦE)′GGG(ΦΦΦ− Φ̂ΦΦE) |YYY}. (11)

where GGG is given by (6).

Proof. Let (Φ̃ΦΦ, Σ̃ΣΣ) denote an arbitrary estimator of (ΦΦΦ, ΣΣΣ). For the loss function LE and

posterior π(ΦΦΦ, ΣΣΣ|YYY), the expected posterior loss is

R(Φ̃ΦΦ, Σ̃ΣΣ|YYY) = IE
{
LE(Φ̃ΦΦ, Σ̃ΣΣ;ΦΦΦ, ΣΣΣ) | YYY

}

= IE
{
LE1(Σ̃ΣΣ;ΣΣΣ) | YYY

}
+ IE

{
LE2(Φ̃ΦΦ, Σ̃ΣΣ;ΦΦΦ, ΣΣΣ) | YYY

}
.

The Bayesian estimator, which minimizes the expected posterior loss, can be derived through the

first order conditions. Note that for any matrices AAA,BBB, and CCC,

∂tr(AAABBBAAA′CCC)
∂AAA

= CCCAAABBB + CCC′AAABBB′.

It follows that

∂R(Φ̃ΦΦ, Σ̃ΣΣ|YYY)
∂Φ̃ΦΦ

= IE{GGG(ΦΦΦ− Φ̃ΦΦ) | YYY}Σ̃ΣΣ−1
. (12)
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Setting the right hand side of Equation (12) to 0 gives the Bayesian estimator for ΦΦΦ in (10). Using

the result that for any matrices AAA and BBB,

∂ log(|AAA|)
∂AAA

= (AAA−1)′,
∂tr(AAA−1BBB)

∂AAA
= − (AAA−1BBBAAA−1)′,

we have

∂

∂Σ̃ΣΣ
R(Φ̂ΦΦE , Σ̃ΣΣ|YYY) = IE

{
T

2
(−Σ̃ΣΣ

−1
ΣΣΣΣ̃ΣΣ

−1
+ Σ̃ΣΣ

−1
)− 1

2
Σ̃ΣΣ
−1

(ΦΦΦ− Φ̂ΦΦE)′GGG(ΦΦΦ− Φ̂ΦΦE)Σ̃ΣΣ
−1

∣∣∣∣YYY
}

. (13)

Let the right hand side of Equation (13) be 0, we get

IE
{

ΣΣΣ− Σ̃ΣΣ +
1
T

(ΦΦΦ− Φ̂ΦΦE)′GGG(ΦΦΦ− Φ̂ΦΦE)
∣∣∣∣YYY

}
= 0.

From this equation the estimator Σ̂ΣΣE can be derived.

2.2 Comparing the Bayesian estimator with the posterior mean

Lemma 1 shows that the entropy loss is related to a separable loss function. The first part of the

entropy loss LE is a loss concerning ΣΣΣ only, the second part of the entropy loss LE is similar to a

quadratic loss. Specifically, we consider the following loss functions closely related with the entropy

loss: for ΣΣΣ we consider a pseudo entropy loss function

L1(Σ̂ΣΣ;ΣΣΣ) =
T

2
tr(Σ̂ΣΣ

−1
ΣΣΣ)− log |Σ̂ΣΣ−1

ΣΣΣ| − p, (14)

where p is the number of variables in the VAR; and for ΦΦΦ we consider a quadratic function

L2(Φ̂ΦΦ;ΦΦΦ) =
1
2
tr{(Φ̂ΦΦ− ΦΦΦ)′W(Φ̂ΦΦ− ΦΦΦ)}, (15)

where W is a constant weighting matrix. Bayesian estimators of ΣΣΣ and ΦΦΦ can be derived indepen-

dently from minimizing expected loss functions regarding ΣΣΣ and ΦΦΦ respectively. The separable loss

function is associated with the posterior mean estimator. The following fact is straightforward.

Fact 1 (a) Under the loss L1, the generalized Bayesian estimator of ΣΣΣ is Σ̂ΣΣMean = IE(ΣΣΣ |YYY). (b)

Under the loss L2, the generalized Bayesian estimator of ΦΦΦ is Φ̂ΦΦMean = IE(ΦΦΦ|YYY).

The above fact shows that using posterior mean as the Bayesian estimator is equivalent to

treating the weighting matrix IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) as constant and ignores the role played by Σ̂ΣΣ in

LE2. The loss L2 is weighted estimation errors of all elements of ΦΦΦ: 1
2

∑p
j=1

∑1+Lp
k=1

∑1+Lp
i=1 (Φ̂k,j −

Φk,j)wk,i(Φ̂i,j − Φi,j). If the weighting matrix WWW is the identity matrix, then the loss of L2 is
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simply the sum of squared errors of all elements of ΦΦΦ, 1
2

∑1+Lp
i=1

∑p
j=1(Φ̂i,j − Φi,j)2. In economic

applications the elements in matrix ΦΦΦ are unlikely to be of equal importance. Furthermore, if the

unit of measurement is changed for a data series (e.g., the dollar amount of GDP is measured in

trillions instead of billions) then the corresponding elements in ΦΦΦ also change in magnitude. It is

obvious that placing data-independent weights on the estimation errors is unreasonable.

In contrast to the ad hoc separable loss function, the entropy loss involves a more complicated

weighting scheme which is far more reasonable. Denote ε̂ = XXXΦΦΦ − XXXΦ̂ΦΦ as the difference between

estimated residuals and the true residuals, which can be interpreted as the within-sample fore-

cast errors attributed to the estimation error of ΦΦΦ. With this notation, LE2 can be rewritten as
1
2 tr

{
Σ̂ΣΣ
−1

IE(YYY|ΦΦΦ,ΣΣΣ)(ε̂′ε̂)
}
. In loss LE2, elements of estimation errors in ΦΦΦ are weighted according to

their contributions to the covariance of forecast errors normalized by the inverse of the estimated

covariance of the residuals. Therefore the entropy loss is a more natural metric for the fit of esti-

mator in frequentist terms than the quadratic loss. Under the entropy loss the Bayesian estimator

of ΦΦΦ is different from the posterior mean. Although LE1 is the same as L1, the Bayesian estimator

of ΣΣΣ is different from the posterior mean because of the presence of Σ̂ΣΣ in LE2.

Theorem 1 shows that the Bayesian estimator Σ̂ΣΣE under the intrinsic loss is strictly larger than

the posterior mean. This result can be explained by the form of the entropy loss. The Bayesian

estimator Σ̂ΣΣE minimizes the posterior risk by striking an optimal balance between the two parts

of the loss, LE1 and LE2. The posterior mean IE(ΣΣΣ|Y ) minimizes LE1-related posterior risk with

no regard to LE2-related risk. The LE1-related posterior risk of Bayesian estimator Σ̂ΣΣE derived

in Theorem 1 is larger than that of the posterior mean. But the larger LE1-related risk of the

Bayesian estimator Σ̂ΣΣE is more than compensated by a smaller LE2-related risk. If GGG is very large

then the gain by using the Bayesian estimator in place of the posterior mean can be sizable.

To compare the Bayesian estimator Φ̂ΦΦE with the posterior mean, note that

Φ̂ΦΦE =
[
IE{GGG |YYY}

]−1
IE{GGGΦΦΦ |YYY}

= IE(ΦΦΦ|YYY) +
[
IE{GGG |YYY}

]−1
COV [GGG,ΦΦΦ |YYY].

It is likely that GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) and ΦΦΦ are positively correlated when VAR variables exhibit

positive serial correlation. In this case the Bayesian estimator of ΦΦΦ under the entropy loss is larger

than the posterior mean. It is known that the MLE of ΦΦΦ has a downward bias when the true

parameters are closed to random walk, a typical pattern for macroeconomic data. With a flat prior

on ΦΦΦ, the posterior mean of ΦΦΦ is likely to show a downward bias as well. We conjecture that the
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Bayesian estimator of ΦΦΦ based on the entropy loss may be helpful in correcting the bias in the

posterior mean. Our numerical simulation results show that it is indeed the case.

2.3 Numerical simulations of (ΣΣΣ, ΦΦΦ) using closed-form expression IE(YYY|ΦΦΦ,ΣΣΣ)(XXX
′XXX)

Suppose the posterior of (ΣΣΣ, ΦΦΦ) is available (either as a standard distribution or as a simulated

distribution), and suppose in addition the frequentist expectation GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) is available

in closed form for any given value of (ΣΣΣ, ΦΦΦ), then the Bayesian estimator (ΣΣΣ, ΦΦΦ) can be calculated

using the result of Theorem 1.

The posterior of (ΣΣΣ,ΦΦΦ) depends on the prior. The most popular noninformative prior for ΣΣΣ is

the Jeffreys prior (See Geisser 1965, Tiao and Zellner 1964). Specifically for the VAR covariance

matrix, the Jeffreys prior is

πJ(ΣΣΣ) ∝ 1
|ΣΣΣ|(p+1)/2

. (16)

The prior for (ΦΦΦ, ΣΣΣ) can be obtained by putting together priors for ΦΦΦ and ΣΣΣ. In practice, it is often

more convenient to consider the vectorized form φφφ = vec(ΦΦΦ), instead of ΦΦΦ. A common expression

of ignorance about φφφ is a (flat) constant prior. A popular noninformative prior for multivariate

regression models consists of a constant prior for φφφ and the Jeffreys prior for ΣΣΣ. A similar prior is

used by the RATS package. The joint densities of (φφφ,ΣΣΣ) under the constant-Jeffreys prior are in

the form

πCJ(φφφ,ΣΣΣ) ∝ 1
|ΣΣΣ|(p+1)/2

, (17)

and for the constant-RATS prior

πCA(φφφ, ΣΣΣ) ∝ 1
|ΣΣΣ|(L+1)p/2+1

. (18)

For an argument of using constant-RATS instead of constant-Jeffreys prior see Sims and Zha (1999).

In most applications of VAR models, posteriors based on commonly employed priors and data

distributions are not standard distributions. In these situations the posterior distributions can

be simulated using MCMC method. Besides the papers cited in the introduction, applications of

Monte Carlo methods are shown to be fruitful for a variety of topics of Bayesian econometrics

in the studies of Geweke (1989, 1993), Chib and Greenberg (1996), Sims and Zha (1999), and

DeJong et al. (2000), among others. To illustrate a basic procedure of MCMC, we draw the

VAR coefficients under the constant-RATS prior for a data sample denoted as (XXX, YYY). Suppose
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after cycle k − 1 we have sampled (ΣΣΣk−1,Φk−1). In cycle k we simulate from an Inverse Wishart

distribution 3 ΣΣΣk ∼ IW ({SSS(Φ̂ΦΦMLE)}, T ). Then simulate φφφk from a multivariate normal distribution

MV N(φ̂φφMLE , ΣΣΣk ⊗ (XXX′XXX)−1). Equipped with the closed-form expression for GGG, we then calculate

the matrix GGGk = IE(YYY|ΦΦΦk,ΣΣΣk)(XXX′XXX). The Bayesian estimate of (ΦΦΦ, ΣΣΣ) is then calculated based on

the moments of posterior density using the formula given in Theorem 1. It is obvious that the

Monte Carlo algorithm is applicable only when IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) can be computed throughout all

MCMC cycles.

2.4 Computing the frequentist expectation IE(XXX′XXX |ΦΦΦ, ΣΣΣ)

For computation of the frequentist expectation GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) in a stationary VAR we rewrite

the VAR following the notations of Lutkepohl (1993). We define

µµµ = (IIIp − BBB1 − · · · − BBBL)−1ccc,

ỹyyt = yyyt − µµµ,

ỸYYt = (yyyt − µµµ, yyyt−1 − µµµ, · · · , yyyt−L − µµµ).

Clearly ỸYYt has a stationary distribution with auto-covariance matrix

ΓΓΓ(h) = IE(ỸYY
′
tỸYYt−h).

We define ΣΣΣu = diag(ΣΣΣ,0, · · · ,0)Lp×Lp and

BBB =




BBB1 IIIp 0 · · · 0

BBB2 0 IIIp · · · 0

· · · · · · ·
BBBL 0 0 · · · IIIp




Lp×Lp

.

A closed-form expression of IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) is available under the following condition.

Condition A: The matrix (IIIL2p2×L2p2 −BBB⊗BBB) is invertable and positive semi-definite, and the

initial observations yyy−1,..., yyy−L equal to the unconditional mean µµµ.

Lemma 2 Assume Condition A holds then

a) The covariance matrix ΓΓΓ(0) has the expression

vec {ΓΓΓ(0)} = (IIIL2p2×L2p2 − BBB⊗ BBB)−1vec (ΣΣΣu). (19)

3There are more than one definition of IW distribution (e.g., see Press 1982 and Anderson 1984). We use the

definition given by Anderson (1984).
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(b) The matrix GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) can be computed as

IE(YYY|ΦΦΦ,ΣΣΣ)(XXX
′XXX) = T (1, µµµ⊗ III)′(1, µµµ⊗ III) + (T − 1)diag(0, ΓΓΓ(0)). (20)

The Lemma can be proved using derivation similar to that of Lutkepohl (1993). If the second

part of Condition A on initial observations is relaxed the matrix GGG can still be computed, but via

a modified formula.

Condition A requires eigenvalues of the matrix (IIIL2p2×L2p2−BBB⊗BBB) to be positive, which needs

all roots of matrix BBB⊗BBB to be stationary. The condition is obviously violated if the VAR contains

explosive roots, a common case for macroeconomic time series. Furthermore, to make use of the

results with the closed-form expression of IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) for the purpose of computing Bayesian

estimators using posteriors simulated via Monte Carlo method, the simulated parameters must

satisfy condition A in each MCMC cycle. Some generated VAR coefficients ΦΦΦk (in the kth MCMC

cycle) may have explosive roots even when the true VAR parameters are stationary.

To study how restrictive the condition is for using closed-form expression of GGG, consider the

following example, a VAR with the true parameters

ΣΣΣ =




0.5 0 0 0 0
0 1.0 0 0 0
0 0 1.5 0 0
0 0 0 2.0 0
0 0 0 0 2.5




, ΦΦΦ =




0 0 0 0 0
b 0 0 0 0
0 b 0 0 0
0 0 b 0 0
0 0 0 b 0
0 0 0 0 b




.

We conduct the following experiment. First, we generate 1000 time series with the diagonal

elements of matrix ΦΦΦ, b, set at a given value (to be specified later), with ΣΣΣ given above and the

sample size T set as 100. Then for each data sample we simulate 10000 MCMC cycles that generate

numerical posterior distributions of (ΦΦΦ,ΣΣΣ) following the procedure described in Section 2.3. For

a given data set the MCMC cycles stop when some diagonal elements of covariance matrix ΓΓΓ(0)

become negative. For that data set the MCMC procedure using the closed-form expression of GGG

matrix fails. We report the frequency of failure of the procedure out of 1000 data sets. The failure

rate varies with the parameter b.

First, let b be 0.2. We do not find any case of negative variance in ΓΓΓ(0). Hence with the

eigenvalues of the matrix ΦΦΦ sufficiently close to zero we can use the closed-form solution to calculate

the frequentist expectation IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) and the Bayesian estimator under the entropy loss.
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Table 1: Failure Frequency of MCMC Algorithm using the Closed-Form Expression of GGG

b Failure Frequency

0.2 0.000

0.5 0.412

0.6 0.896

0.8 1.000

We now let b be 0.5, which is far from unity. Despite the stationarity of the true VAR, it turns

out that the simulated matrix ΓΓΓ(0) often has at least one negative variance component. Out of

1000 generated data samples, the MCMC procedure breaks down 412 times.

We then increase the parameter b to 0.6 and repeat the experiment. Under this set of parameters,

the failure incidents of the MCMC procedure using the closed-from expression of GGG are increased to

896 out of 1000 generated data sets. When b is raised to 0.8, the VAR is still stationary, but in every

data sample some variance components of the simulated covariance matrix ΓΓΓ(0) become negative,

rendering Lemma 2 inapplicable. One may suspect that the high failure rate of the MCMC routine

is caused by the large variance components in the ΣΣΣ matrix of this example. It turns out not to

be the case. Note that in the kth cycle of the MCMC algorithm the variance of the simulated φφφk

vector is ΣΣΣk⊗ (XXX′XXX)−1. If the variance components of the true ΣΣΣ used to generate data are smaller

then (XXX′XXX) is smaller and (XXX′XXX)−1 larger for the generated data. As a result the MCMC routine

fails in approximately same frequency as reported in the above table when the variance components

of ΣΣΣ are substantially reduced.

The experiment shows that computation of the Bayesian estimator is possible for very limited

cases if we use the closed-form expression to compute GGG matrix. Furthermore, it is not feasible to

add a step to simulate the GGG matrix in the standard MCMC procedure. It is because that in the

kth MCMC cycle GGGk is the frequentist mean which is a function of parameters (ΦΦΦk,ΣΣΣk). If for the

purpose of computing the frequentist mean GGGk we generate 5000 data sample from the VAR with

parameters (ΦΦΦk,ΣΣΣk) then the amount of computation required for the whole MCMC procedure is

increased by the additional time needed for simulating the GGGk matrix multiplied by the number of

MCMC cycles. Suppose it takes 10 seconds to generate the 5000 VAR samples and compute the GGG

matrix for each MCMC cycle and the number of MCMC cycles is 10000, then the additional amount
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of time added to the standard MCMC procedure is about 28 hours for computation of Bayesian

estimates for one data sample. For practical purposes, we must take an alternative approach to

compute Bayesian estimates under the entropy loss.

We propose some general algorithms to deal with the difficulty raised in computing the frequen-

tist expectation GGG. Note that to compute the Bayesian estimators of ΦΦΦ and ΣΣΣ, we need compute

the quantities IE{GGG |YYY} and IE{GGGΦΦΦ |YYY}. The challenge is to compute the posterior moments with-

out first deriving the closed-form frequentist expectation GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) as the conventional

procedure requires. Our approach is to generate data as latent parameters which are used to obtain

IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX). To be more specific, we define a random matrix YYY∗ which is independent of the

VAR variable matrix YYY and has the same sampling distribution as YYY. The resulting VAR lag vari-

able matrix XXX corresponding to YYY∗ is written as XXX∗. Then the problem of computing moments of

GGG conditional on observation YYY becomes the problem of computing moments of XXX∗
′
XXX∗ conditional

on (ΦΦΦ, ΣΣΣ) and YYY, e.g.,

IE(GGG | YYY) = IE{IE(XXX∗|ΦΦΦ,ΣΣΣ)(XXX
∗′XXX∗) | YYY},

IE{GGGΦΦΦ | YYY} = IE{IE(XXX∗|ΦΦΦ,ΣΣΣ)(XXX
∗′XXX∗)ΦΦΦ | YYY}.

A general approach of computing such posterior quantities is given in the next section.

3 General Algorithms Using Generated Data as Latent Parame-

ters

Suppose that observed data XXX for given unknown parameters θθθ has density f(xxx|θθθ). The prior

employed by the researcher is π(θθθ) (which may be informative or noninformtive). Let X∗ be a

random vector (or a matrix) with density f∗(x∗ | θθθ). Let h(θθθ) be a function of the parameters θθθ.

In practice XXX∗ may have the same sampling distribution as the data XXX, which is the case for the

VAR model in this paper. We are interested in the posterior mean of [IE(X∗|θθθ){g(XXX∗)}]h(θθθ) given

data XXX.

The foundation of our algorithm is the following fact.

IE(IE(XXX∗|θθθ){g(XXX∗)}h(θθθ) | XXX) =

∫ {∫
g(xxx∗)f∗(xxx∗ | θθθ)dxxx∗

}
h(θθθ)f(XXX | θθθ)π(θθθ)dθθθ

∫
f(XXX | θθθ)π(θθθ)dθθθ
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=

∫ {∫
g(xxx∗)h(θθθ)f∗(xxx∗ | θθθ)dxxx∗

}
f(XXX | θθθ)π(θθθ)dθθθ

∫ {∫
f∗(x̃xx∗ | θ̃θθ)dx̃xx∗

}
f(XXX | θ̃θθ)π(θ̃θθ)dθ̃θθ

=
∫ ∫

{g(xxx∗)h(θθθ)}π(xxx∗, θθθ | XXX) dxxx∗dθθθ,

where

π∗(xxx∗, θθθ | XXX) =
f∗(xxx∗ | θθθ)f(XXX | θθθ)π(θθθ)∫ ∫
f∗(x̃xx∗ | θ̃θθ)f(XXX | θ̃θθ)π(θ̃θθ)dx̃xx∗dθ̃θθ

. (21)

The asterisk ’*’ reflects the fact that the density involves simulated data XXX∗. The above equa-

tions indicate that the mean of function [IE(XXX∗|θθθ){g(XXX∗)}]h(θθθ) under the posterior of θθθ given data

XXX is the mean of g(XXX∗)h(θθθ) under the posterior of (XXX∗, θθθ) given data XXX. Our task becomes simu-

lating the joint posterior distribution of (XXX∗, θθθ) given data XXX. An MCMC method can be used for

this purpose. Our approach is made computationally feasible by the law of iteration of conditional

expectations. If we have a random sample (XXX∗k, θθθk), k = 1, · · · ,M from the joint distribution (21),

we can estimate IE(IE(XXX∗|θθθ){g(XXX∗)}h(θθθ) | XXX) using the result

ÎE(IE(XXX∗|θθθ){g(XXX∗)}h(θθθ) | XXX) = ÎE((XXX∗,θθθ)|XXX){g(XXX∗)h(θθθ)} =
1
M

M∑

k=1

g{XXX∗k}h(θθθk).

We propose two options to run MCMC simulations to generate (XXX∗,θθθ).

Option 1: We will sample from π∗(θθθ | XXX∗, XXX) ∝ f∗(XXX∗ | θθθ)f(XXX | θθθ)π(θθθ), the distribution of

parameter θθθ conditional on both the observation XXX and simulated data XXX∗.

Suppose that at the beginning of cycle k we have sampled (XXX∗k−1, θθθ
∗
k−1).

Step 1. Simulate XXX∗k ∼ f∗(xxx∗ | θθθk−1).

Step 2. Simulate θθθk ∼ π∗(θθθ | XXX∗k, XXX) ∝ f∗(XXX∗k | θθθ)f(XXX | θθθ)π(θθθ).

Option 2: If it is costly to simulate from the full conditional distribution π∗(θθθ | XXX∗,XXX), we may

simulate θθθ from the partial conditional distribution π(θθθ | XXX) and then add a Metropolis-Hastings

step to the MCMC algorithm.

Step 1. Simulate XXX∗k ∼ f∗(xxx∗ | θθθk−1).

Step 2. Simulate θ̃θθ ∼ π(θθθ | XXX) ∝ f(XXX | θθθ)π(θθθ).

Step 3. Simulate u ∼ uniform (0, 1).
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Step 4. Let

θθθk =





θ̃θθ, if u ≤ α(θθθk−1, θ̃θθ, XXX∗k),

θθθk−1, otherwise.

where

α(θθθk−1, θ̃θθ, XXX∗k) = min

(
1,

π∗(θ̃θθ | XXX∗k,XXX)
π∗(θθθk−1 | XXX∗k,XXX)

π(θθθk−1 | XXX)
π(θ̃θθ | XXX)

)

= min

(
1,

f∗(XXX∗k | θ̃θθ)
f∗(XXX∗k | θθθk−1)

)
.

In the Metropolis-Hastings step π∗(θθθ | XXX∗k, XXX) is the target density, π(θθθ | XXX) is the candidate-

generating density that happens to be independent of the current state (i.e., θ̃θθ generated in Step 2 of

the algorithm does not depend on θθθk−1). Tierney (1994) calls this Markov Chain an ’independence

chain’. For a lucid illustration of Metropolis-Hastings algorithms, see Chib and Greenberg (1995).

In general, the two options may incur different costs in terms of computer programming and

CPU time but they should produce the same posterior if the MCMC cycles are long enough. In

the following we make more explicit the MCMC algorithms for the VAR model based on the two

options and compare the results.

4 Bayesian Computation of (ΦΦΦ, ΣΣΣ) in the VAR Model

4.1 Algorithms for simulating posteriors of (ΦΦΦ, ΣΣΣ) in the VAR model

We use MCMC methods to sample from the posterior. In particular, we use the Gibbs sampling

method illustrated by Gelfand and Smith (1990). We denote the latent variables as XXX∗ and YYY∗.

Fact 2 Consider the constant-Jeffreys prior (17). Suppose that at cycle k we have simulated

(YYY∗k−1, ΦΦΦk−1,ΣΣΣk−1).

(a) The algorithm in Option 1 is as follows.

Step 1. Simulate yyy∗k,t ∼ MV N(ccc +
∑L

i=1 yyy∗k,t−iBBBk−1,i, ΣΣΣk−1), for t = 1, · · · , T . Define

YYY∗k =




yyy∗k,1
...

yyy∗k,T


 and XXX∗k =




1 yyy∗k,−1 · · · yyy∗k,−L

1 yyy∗k,0 · · · yyy∗k,1−L

· · · · · ·
1 yyy∗k,T−1 · · · yyy∗k,T−L




.
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Step 2. Simulate φφφk = vec(ΦΦΦk) ∼ MV N(φ̂φφk, ΣΣΣk−1 ⊗ (XXX′XXX + XXX∗k
′XXX∗k)

−1), where

φ̂φφk = vec
{(

XXX′XXX + XXX∗k
′XXX∗k

)−1(
XXX′YYY + XXX∗k

′YYY∗k
)}

. (22)

Step 3. Simulate ΣΣΣk ∼ Inverse Wishart (SSSk, 2T ), where

SSSk = (YYY−XXXΦΦΦk)′(YYY−XXXΦΦΦk) + (YYY∗k −XXX∗kΦΦΦk)′(YYY∗k −XXX∗kΦΦΦk).

(b) The algorithm in Option 2 is as follows.

Step 1. Do the same as Step 1 in Part (a).

Step 2. Simulate φ̃φφ ≡ vec(Φ̃ΦΦ) ∼ MV N(φ̂φφMLE , Σ̃ΣΣk−1 ⊗ (XXX′XXX)−1), where

φ̂φφMLE = vec{(XXX′XXX)−1(XXX′YYY)}. (23)

Step 3. Simulate Σ̃ΣΣ ∼ Inverse Wishart (SSS0,k, T ), where

SSS0,k = (YYY−XXXΦ̃ΦΦ)′(YYY−XXXΦ̃ΦΦ).

Step 4. Simulate u ∼ uniform(0, 1).

Step 5. Define

(φφφk, ΣΣΣk) =





(φ̃φφ, Σ̃ΣΣ), if u ≤ αk,

(φφφk−1, ΣΣΣk−1), otherwise,

where

αk = min


1,

|Σ̃ΣΣ|−T/2etr
{
−1

2(YYY∗k −XXX∗kΦ̃ΦΦ)Σ̃ΣΣ
−1

(YYY∗k −XXX∗kΦ̃ΦΦ)′
}

|ΣΣΣk−1|−T/2etr
{
−1

2(YYY∗k −XXX∗kΦΦΦk−1)ΣΣΣ−1
k−1(YYY

∗
k −XXX∗kΦΦΦk−1)′

}


 .

Fact 3 Consider the constant-RATS prior (18). Suppose that at cycle k we have (YYY∗k−1,ΦΦΦk−1, ΣΣΣk−1).

(a) The algorithm in Option 1 is the same as Part (a) of Fact 2, except the degree freedom for the

Inverse Wishart distribution in Step 3 is 2T + Lp instead of 2T .

(b) The algorithm in Option 2 is the same as Part (b) of Fact 2, except the degree freedom for the

Inverse Wishart distribution in Step 3 is T + Lp instead of T .
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4.2 Computing the expected posterior loss

The Bayesian risk under the entropy loss can be computed using the posterior distribution generated

by the MCMC procedure. Given the estimate (Φ̂ΦΦ, Σ̂ΣΣ), which is computed for a given data sample

YYY, the expected posterior loss is IELE(Φ̂ΦΦ, Σ̂ΣΣ,ΦΦΦ,ΣΣΣ|YYY) = IE[LE1(Σ̂ΣΣ;ΣΣΣ|YYY) + LE2(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ, ΣΣΣ|YYY)].

Recall that

LE1(Σ̂ΣΣ;ΣΣΣ) =
T

2
{tr(Σ̂ΣΣ−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p},

LE2(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ,ΣΣΣ) =
1
2
tr[Σ̂ΣΣ

−1{(ΦΦΦ− Φ̂ΦΦ)′GGG(ΦΦΦ− Φ̂ΦΦ)},

and GGG = IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX).

In the kth MCMC cycle (k=1, 2, ..., M) ΣΣΣk can be decomposed as ΣΣΣk = QQQkDDDkQQQ′
k, where

DDDk = diag(dddk1, dddk2, ..,dddkp) is the diagonal matrix consisting of eigenvalues of ΣΣΣk, and QQQk is an

orthogonal matrix with QQQkQQQ
′
k = I.

The expected posterior loss of the LE can be computed as the sum of the two parts,

ÎELE1(Σ̂ΣΣ, ΣΣΣ|YYY) =
T

2
[tr(Σ̂ΣΣ

−1 1
M

M∑

k=1

ΣΣΣk) + log |Σ̂ΣΣ| − p− 1
M

M∑

k=1

p∑

i=1

log|dddki|],

and

ÎELE2(Φ̂ΦΦ, Σ̂ΣΣ, ΦΦΦ, ΣΣΣ|YYY) =
1
2
[tr(Σ̂ΣΣ

−1 1
M

M∑

k=1

ΦΦΦ′kXXX
∗
k
′XXX∗kΦΦΦk) + tr(Φ̂ΦΦΣ̂ΣΣ

−1
Φ̂ΦΦ
′ 1
M

M∑

k=1

XXX∗k
′XXX∗k)]

−tr(Σ̂ΣΣ
−1

Φ̂ΦΦ
′ 1
M

M∑

k=1

XXX∗k
′XXX∗kΦΦΦk).

Note that both parts are functions of moments of simulated ΣΣΣ, ΦΦΦ, and XXX∗ in the MCMC

procedure. The moments of the simulated parameters can be computed in the MCMC cycles, just

as the posterior mean, without the need of storing the parameters simulated in all MCMC cylces.

Therefore the average posterior loss is computed at little additional cost in the MCMC simulations.

5 MCMC Simulation Results Without Using the Closed-Form Ex-

pression of IE(YYY|ΦΦΦ,ΣΣΣ)(XXX
′XXX)

In this section for a generated data sample posterior means and the Bayesian estimates are computed

under the constant-RATS prior using alternative MCMC algorithms. The first algorithm is the

algorithm Option 1 in Section 4 that makes use of full conditional posteriors. The second algorithm
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is Option 2 of Section 4 which is a Metropolized MCMC drawing from partial conditional posteriors.

These two algorithms should produce the same result if the number of the Markov Chain is set

long enough. The number of MCMC cycles is set at 10000 in our simulations.

We consider the following example:

Example 1 The true parameters are

ΣΣΣ =




0.5 0 0 0 0
0 1.0 0 0 0
0 0 1.5 0 0
0 0 0 2.0 0
0 0 0 0 2.5




, ΦΦΦ =




0 0 0 0 0
0.5 0 0 0 0

0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 0.5 0
0 0 0 0 0.5




.

We generate a data set of 100 obsrevations using a VAR with the above true parameters. The

MLE for the data sample is

Σ̂ΣΣMLE =




0.4703 0.0620 -0.0541 0.1348 -0.0488
0.0620 0.8802 0.0084 -0.0851 0.1356
-0.0541 0.0084 1.2911 0.0047 -0.0829
0.1348 -0.0851 0.0047 1.7684 -0.4500
-0.0488 0.1356 -0.0829 -0.4500 2.0876


 ,

Φ̂ΦΦMLE =




-0.0451 0.1045 0.0111 0.0983 0.2011
0.5258 0.2447 0.1905 -0.1246 -0.2422
0.0246 0.4174 -0.0321 0.0789 0.2711

-0.0403 -0.0336 0.5014 -0.0028 -0.1279
-0.0471 0.0154 0.0940 0.3681 0.0045
-0.0139 -0.0029 -0.0723 0.0595 0.3507




.

The mean of posterior simulated by using MCMC algorithm Option 1 is

Σ̂ΣΣMean =




0.5059 0.0647 -0.0573 0.1455 -0.0520
0.0647 0.9437 0.0073 -0.0885 0.1486

-0.0573 0.0073 1.3872 0.0025 -0.0890
0.1455 -0.0885 0.0025 1.9090 -0.4943

-0.0520 0.1486 -0.0890 -0.4943 2.2468


 ,

Φ̂ΦΦMean =




-0.0464 0.1016 0.0129 0.0961 0.2012
0.5245 0.2442 0.1889 -0.1307 -0.2434
0.0269 0.4180 -0.0315 0.0774 0.2759
-0.039 -0.0324 0.5026 -0.0016 -0.1303

-0.0459 0.0166 0.0932 0.3703 0.0036
-0.0128 -0.0007 -0.0732 0.0610 0.3452




.

The Bayesian estimate of (ΣΣΣ, ΦΦΦ) simulated using Option 1 is

Σ̂ΣΣE =




0.5414 0.0690 -0.0607 0.1552 -0.0562
0.0690 1.0099 0.0078 -0.0953 0.1599
-0.0607 0.0078 1.4840 0.0022 -0.0965
0.1552 -0.0953 0.0022 2.0431 -0.5283
-0.0562 0.1599 -0.0965 -0.5283 2.4018


 ,
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Table 2: Posterior Risks of the Estimates in Example 1

LE1 LE2 LE

Σ̂ΣΣMean, Φ̂ΦΦMean 7.9504 26.1078 34.0582

Σ̂ΣΣE , Φ̂ΦΦE 8.5083 16.3292 24.8375

Φ̂ΦΦE =




-0.0405 0.0918 0.0153 0.0836 0.1826
0.5721 0.2391 0.1815 -0.1353 -0.2418
0.0313 0.4644 -0.0360 0.0780 0.2729
-0.035 -0.0327 0.5478 0.0057 -0.1331
-0.047 0.0200 0.0916 0.4165 0.0063

-0.0143 0.0045 -0.0742 0.0595 0.3890




.

We find that the algorithms Options 1 and 2 produce estimates that are quite similar (see the

appendix for the estimates obtained using Option 2). This is not surprising in light of the fact

that the acceptance rate at the Metropolis-Hastings step in Option 2 is about 94%. As is reported

earlier, the MCMC procedure using closed-form expression of GGG breaks down over forty percent of

the time for the set of parameters used in the example, but is applicable when the diagonal elements

of ΦΦΦ is 0.2. We also experimented with the parameterization that allows for simulation of posteriors

under three alternative algorithms. The first and second are the MCMC procedures Options 1 and

2. The third algorithm is the one discussed in Section 2.3, in which the frequentist expectation

IE(YYY|ΦΦΦ,ΣΣΣ)(XXX′XXX) is computed using the closed-form expression in Lemma 2. For MCMC cycles of

length 10,000 the three procedures produce results that are close to be identical. Note the standard

procedure that uses closed-form expression for GGG does not simulate data as latent parameters,

while Options 1 and 2 add hundreds of latent parameters. However, following Options 1 and 2

after integrating out these latent parameters the simulated posteriors for (ΣΣΣ, ΦΦΦ) are almost exactly

the same as that produced by the standard algorithm. Given the large number of parameters in ΣΣΣ

and ΦΦΦ (45) and the number of data generated as latent parameters (500), the MCMC algorithms

of Options 1 and 2 are surprisingly efficient. Both algorithms take about one minute to finish the

entire computation on a 1.7 GHz Pentium 4 machine. There is little difference in computation time

using Options 1 and 2.

For the sample generated in Example 1, the posterior risk of the posterior mean estimator

(34.0582) is about 37% larger than that of the Bayesian estimator (24.8375). The lower overall

posterior risk of the Bayesian estimator is achieved by substantially lowering the risk of the quadratic

part, from 26.1078 for the posterior mean to 16.3292. The first term of the loss related to ΣΣΣ under
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Table 3: Loss of the estimates in Example 1

LE1 LE2 LE

Σ̂ΣΣMLE , Φ̂ΦΦMLE 0.1953 0.3566 0.5519

Σ̂ΣΣMean, Φ̂ΦΦMean 0.1432 0.3353 0.4786

Σ̂ΣΣE , Φ̂ΦΦE 0.1195 0.2730 0.3925

the Bayesian estimator is slightly larger compared to that under the posterior mean estimator.

As is noted earlier, the Bayesian estimator improves LE2-related risk with a tradeoff of larger

LE1-related risk. Table 2 shows that the Bayesian estimator induces lower posterior risk than the

posterior mean by making the LE2-related risk substantially lower and the LE1-related risk only

slightly higher.

To compare the alternative estimates we calculate the value of the entropy loss LE(Φ̂ΦΦ, Σ̂ΣΣ, ΦΦΦ, ΣΣΣ)

with (ΦΦΦ,ΣΣΣ) being the true parameters. In terms of the loss of the estimates evaluated at the true

parameters, the Bayesian estimates for the data sample are better than the posterior mean and the

MLE. It is well known that finite sample MLE of the variance components of ΣΣΣ has a downward

bias. For this sample the posterior mean under the constant-RATS prior partially corrects the

bias of the MLE. Theorem 1 shows that the Bayesian estimates for the variance components of

ΣΣΣ are larger than those for the posterior mean. For this sample most of the variance elements in

the posterior mean ΣΣΣ happen to be smaller than the true parameters. It is not surprising that

the Bayesian estimator incurs smaller LE1-related loss at the point of true parameters than the

posterior mean although the latter produces smaller average LE1-related posterior loss.

The MLE of ΦΦΦ tends to have a downward bias if the true VAR(1) parameters represent positive

auto-correlations. Applying the constant prior on ΦΦΦ does not make the posterior mean of ΦΦΦ deviate

much from the MLE, hence the posterior mean also shows a downward bias. The discussion in

Section 2 suggests that the Bayesian estimate for ΦΦΦ is likely to be larger than the posterior mean.

The conjecture turns out to be true for the estimates of ΦΦΦ.

20



6 Estimating a VAR Using Macroeconomic Data of the U.S.

In the past two decades, VAR models have been widely used for analyzing multivariate time series

macroeconomic data. In the following, we compare Bayesian estimates and the posterior mean

estimates of a six-variable VAR using quarterly data of the U.S. economy from 1959Q1 to 2001Q4.

The lag length of the VAR is one.4 The variables are real GDP, GDP deflator, world commodity

price, M2 money stock, non-borrowed reserves, and the federal funds rate. The commodity price

data are obtained from the International Monetary Fund, the rest of data series from the FRED

database at the Federal Reserve Bank of St Louis. All variables except the fed funds rate are in

logarithms. These variables frequently appear in macroeconomics related VARs (e.g., Sims 1992,

Gordon and Leeper 1994, Sims and Zha 1998, and Christiano et al. 1999).

The posterior mean and Bayesian estimator of (ΣΣΣ,ΦΦΦ) (computed via Option 1) are reported in

the following.

Σ̂ΣΣMean =




0.00442 0.00181 0.00164 0.00329 0.00075 0.00005
0.00181 0.00076 0.00069 0.00136 0.00035 0.00002
0.00164 0.00069 0.00239 0.00120 0.00022 0.00011
0.00329 0.00136 0.00120 0.00250 0.00061 0.00002
0.00075 0.00035 0.00022 0.00061 0.00141 -0.00015
0.00005 0.00002 0.00011 0.00002 -0.00015 0.00010




,

Φ̂ΦΦMean =




7.63542 3.04415 3.48148 5.59176 2.34007 0.02463
-0.47129 -0.59331 -0.68718 -1.07988 -0.45012 -0.01141
-0.78591 0.63318 -0.60194 -0.57308 -0.20369 -0.03752
-0.10012 -0.02430 0.97518 -0.07117 -0.05809 0.01857
1.11321 0.46930 0.62947 1.82868 0.35210 0.02071
0.09832 0.04369 0.08666 0.04478 0.99211 -0.00034
0.08643 0.17231 -0.00485 0.06953 0.15719 0.87980




.

Σ̂ΣΣE =




0.00554 0.00228 0.00216 0.00413 0.00107 0.00006
0.00228 0.00096 0.00092 0.00171 0.00048 0.00002
0.00216 0.00092 0.00328 0.00157 0.00038 0.00017
0.00413 0.00171 0.00157 0.00315 0.00086 0.00002
0.00107 0.00048 0.00038 0.00086 0.00169 -0.00016
0.00006 0.00002 0.00017 0.00002 -0.00016 0.00011




,

4A two-lag and a four-lag VAR produce results similar in nature to the one-lag model. We choose to report the

result of the one-lag model since it takes up the least space.
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Table 4: Posterior Risks of the Estimates, U.S. Macroeconomic Data 1959Q1-2001Q4

LE1 LE2 LE

Σ̂ΣΣMean, Φ̂ΦΦMean 10.7802 6798.9789 6809.7590

Σ̂ΣΣE , Φ̂ΦΦE 25.1250 103.1036 128.2286

Φ̂ΦΦE =




7.61187 3.03431 3.46824 5.57455 2.33248 0.02446
-0.46742 -0.59135 -0.69031 -1.07859 -0.4472 -0.00765
-0.77483 0.64331 -0.54087 -0.57417 -0.23118 -0.02623
-0.11667 -0.03135 1.00848 -0.08292 -0.04781 0.00945
1.12139 0.46952 0.58962 1.84098 0.33967 0.01283
0.08514 0.03806 0.07128 0.03567 1.03748 0.00377
0.06712 0.16046 -0.07539 0.05755 0.11241 0.98440




.

Table 4 reports the posterior risks of the posterior mean and the Bayesian estimator. The

Bayesian estimator dominates the posterior mean by a large margin. The large difference in the

posterior risk is mainly due to the difference in the risks of the quadratic term LE2, which is

proportional to X′X. X′X is quite large in this application, hence with a larger Σ̂ΣΣ the Bayesian

estimate substantially reduces the posterior risk, compared with the posterior mean.

7 Concluding Remarks

In this paper we investigate properties of Bayesian estimators of (ΦΦΦ, ΣΣΣ) derived from an intrinsic

entropy loss function. These estimators are shown to be distinctly different from the posterior

mean. The entropy loss of (ΦΦΦ, ΣΣΣ) is non-separable in ΦΦΦ and ΣΣΣ. Using posterior mean as the

estimator is equivalent of ignoring the non-separability, consequently results in larger posterior

risk under the entropy loss. Computation of Bayesian estimator under the entropy loss raises a

technical challenge since the weighting matrix in the loss function involves frequentist moments of

VAR variables which only in very restrictive cases can be computed in closed form. We propose

algorithms that use generated data as latent parameters in numerical simulation of posteriors and

computation of Bayesian estimators under the entropy loss. The algorithms are shown to be quite

efficient. Our MCMC simulation scheme is of interest in its own right because it may be useful

for Bayesian analysis in other problems. For example, in the Bayesian VAR literature, the priors
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on ΦΦΦ and ΣΣΣ are often considered separately. In this paper we examines the Bayesian estimator

under the joint non-separable loss on (ΦΦΦ, ΣΣΣ) under separate priors. For users of Bayesian VAR, it

is of interest to experiment with joint non-informative priors for (ΦΦΦ, ΣΣΣ) under the general princi-

ples outlined in Kass and Wasserman (1996). The joint non-informative priors generally involve

frequentist moments of VAR variables. The algorithms developed in this paper cleared a major

obstacle in employing these joint priors in estimation of VAR models.

References

Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis (2nd edition). Wiley,
New York.

Berger, J.O. and Bernardo, J.M. (1992). On the development of reference priors. In Bayesian
Analysis IV, J.M. Bernardo, et. al., (Eds.). Oxford University Press, Oxford.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of Royal
Statistical Society Ser. B 41, 113-147.

Chib, S. and E. Greenberg (1995). Understanding the Metropolis-Hastings algorithms. American
Statistician 49, 327-335.

Chib, S. and E. Greenberg (1996). Markov Chain Monte Carlo simulation methods in econometrics.
Econometric Theory 12, 327-335.

Christiano, L.J., Eichenbaum, M. and Evans C. (1999). Monetary policy shocks: What have we
learned and to what end? in: J.B. Taylor and M. Woodford eds., Handbook of Macroeconomics,
Volume 1, 65–147.

DeJong D.N., Ingram B.F., and Whiteman C.H. (2000). A Bayesian approach to dynamic macroe-
conomics. Journal of Econometrics 98, 203-223.

Elerian O., Chib, S. and Shephard N. (2001). Likelihood inference for discretely observed nonlinear
diffusions. Econometrica 69, 959-993.

Geisser, S. (1965). Bayesian estimation in multivariate analysis. Annals of Mathematical Statistics
36, 150-159.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating marginal
densities. Journal of the American Statistical Association 85, 398-409.

Geweke J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econo-
metrica 57, 1317-1339.

Geweke J. (1993). Bayesian treatment of the independent Student-t linear model. Journal of
Applied Econometrics 8, s19-s40.

Gordon, D. B. and Leeper, E. M. (1994). The dynamic impacts of monetary policy: an exercise in
tentative identification. Journal of Political Economy 102, 1228–1247.

Jeffreys, H. (1961) Probability Theory. Oxford University Press, New York.

23



Kass, R.E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal
of American Statistical Association 91, 1343-1370.

Lutkepohl H. (1993). Introduction to Multiple Time Series (2nd edition). Springer-Verlag, New
York.

Ni S. and Sun D. (2001). A Monte Carlo study on frequentist risks of Bayesian estimators of
vector-autoregressive models based on noninformative priors. Manuscript.

Otrok C. and Whiteman C.H. (1998). Bayesian leading indicators: measuring and predicating
economic conditions in Iowa. International Economic Review 39, 997-1014.

Press, J.S. (1982). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of
Inference (2nd edition). Krieger, Florida.

Robert C.P. (1994). The Bayesian Choice. Springer-Verlag, New York.

Sims, C. A. (1992). Interpreting the macroeconomic time series facts: The effects of monetary
policy. European Economic Review 38, 975 – 1000.

Sims, C.A. and Zha T. (1998). Does monetary policy generate recessions? Federal Reserve Bank
of Atlanta working paper 98-12.

Sims, C. A. and Zha T. (1999). Error bands for impulse responses. Econometrica 67, 1113–1155.

Tanner M. and Wang W.H. (1987). The calculation of posterior distributions by data augmentation.
Journal of American Statistical Association 82, 528-540.

Tiao, G.C. and Zellner, A. (1964). On the Bayesian estimation analysis of multivariate regression.
Journal of Royal Statistical Society Ser. B 26, 389-399.

Tierney L. (1994). Markov chains for exploring posterior distributions (with discussions). Annals
of Statistics 22, 1701-1762.

Zellner, A (1971). An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons,
New York.

24



Appendix

For the data sample in Example 1, the results using MCMC algorithm Option 2 are very close
to that obtained using algorithm Option 1. The posterior mean obtained from MCMC algorithm
Option 2 is

Σ̂ΣΣMean =




0.5049 0.0666 -0.0589 0.1424 -0.0493
0.0666 0.9476 0.0079 -0.0923 0.1482

-0.0589 0.0079 1.3878 0.0038 -0.0900
0.1424 -0.0923 0.0038 1.8985 -0.4805

-0.0493 0.1482 -0.0900 -0.4805 2.2389




,

Φ̂ΦΦMean =




-0.0444 0.1044 0.0106 0.0961 0.2021
0.5253 0.2453 0.1898 -0.1276 -0.2409
0.0248 0.4177 -0.0344 0.0804 0.2684

-0.0394 -0.0329 0.5005 -0.0028 -0.1264
-0.0469 0.0151 0.0941 0.3672 0.0059
-0.0146 -0.0021 -0.0721 0.0588 0.3513




.

The Bayesian estimate of (ΣΣΣ, ΦΦΦ) is

Σ̂ΣΣE =




0.5394 0.0711 -0.0627 0.1519 -0.0528
0.0711 1.0123 0.0089 -0.0993 0.1586
-0.0627 0.0089 1.4823 0.0050 -0.0963
0.1519 -0.0993 0.0050 2.0289 -0.5120
-0.0528 0.1586 -0.0963 -0.5120 2.3935




,

Φ̂ΦΦE =




-0.0390 0.0959 0.0121 0.0868 0.1844
0.5708 0.2409 0.1816 -0.1308 -0.2389
0.0281 0.4621 -0.0370 0.0801 0.2653
-0.0354 -0.0331 0.5445 0.0052 -0.1280
-0.0473 0.0180 0.0940 0.4115 0.0075
-0.0156 0.0024 -0.0711 0.0568 0.3950




.
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