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Abstract

This paper compares frequentist risks of several Bayesian estimators of the VAR lag pa-

rameters and covariance matrix under alternative priors. With the constant prior on the VAR

lag parameters, the asymmetric LINEX estimator for the lag parameters does better overall

than the posterior mean. The posterior mean of covariance matrix performs well in most cases.

The choice of prior has more significant effects on the estimates than the form of estimators.

The shrinkage prior on the VAR lag parameters dominates the constant prior, while Yang and

Berger’s reference prior on the covariance matrix dominates the Jeffreys prior. Estimation of a

VAR using the U.S. macroeconomic data reveals significant differences between estimates under

the shrinkage and constant priors.
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1 Introduction

In this paper we examine Bayesian estimators of Vector-Autoregression (VAR) model under several

loss functions and non-informative priors that have been studied in the statistics literature. The

Bayesian estimators considered in the study include alternatives to the posterior mean–the default

choice by the users of VAR models in practice. Under most of the priors, our numerical analysis

shows that commonly used loss functions yield estimators that are quantitatively similar. The prior

choice, on the other hand, has significant effects on the Bayesian estimates. We find that for all

loss functions considered the diffuse prior commonly employed in the empirical VAR literature is

inferior to an alternative.

In the past two decades VAR has become a popular tool for analyzing empirical macroeconomic

questions. In addressing policy questions such as the macroeconomic effects of monetary supply

shocks, economists often rely on VAR models. A typical VAR of a p dimensional variable, yyyt,

(t = 1, .., T ) can be specified as follows.

yyyt = ccc +
L∑

i=1

yyyt−iBBBi + εεεt,

where (ccc′,BBB′1, · · · , BBB′L) are the VAR coefficient matrix (denoted by ΦΦΦ′ hereafter). The covariance

matrix of the error term is ΣΣΣ. For a VAR with even a modest number of variables and relatively

short lag length there are typically hundreds of parameters in matrices ΦΦΦ and ΣΣΣ to be estimated

via Ordinary Least Square or Maximum Likelihood Estimation. Drawing finite sample inferences

of the VAR parameters is a challenge. Frequentist finite sample distributions cannot be derived

in closed-form, while asymptotic asymptotic theory may not be applicable to a VAR with a large

number of parameters and limited data observations, which is usually the case in macroeconomic

applications.

In practice, Bayesian procedures are widely used for finite sample inferences of VAR models.

Bayesian estimators are derived from minimization of expected posterior loss in the parameter

space. Hence the choice of loss function determines the form of Bayesian estimator. In applications

of Bayesian procedures, the posterior means of generated VAR lag coefficients and covariance matrix

are usually employed as the Bayesian estimators. The posterior means of ΣΣΣ and ΦΦΦ are optimal

for certain losses on ΣΣΣ and ΦΦΦ. Bayesian estimators derived from minimizing other commonly used
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loss functions in the Bayesian statistics literature are rarely studied for VAR models. These loss

functions include Yang and Berger’s (1994) quadratic and pseudo inverse entropy losses for ΣΣΣ and

Zellner’s (1986) LINEX loss for ΦΦΦ. The fact that Bayesian estimators derived from these loss

functions differ from the posterior mean may be of interest for macroeconomists. For instance,

under the most commonly used priors the posterior mean of ΦΦΦ is biased. An asymmetric LINEX

estimator may be helpful in correcting the bias.

The properties of Bayesian estimators are also influenced by the choice of prior. Research on

the effects of prior choice on VAR posterior distributions is relatively scant. (For some studies on

the choice of priors for VARs see Kadiyala and Karlsson 1997 and Ni and Sun 2001). The default

prior in the literature for the VAR lag coefficients ΦΦΦ is the constant prior and the default prior

for the covariance matrix of the residuals ΣΣΣ is the Jeffreys prior or a modified version of it used

in RATS (the RATS prior hereafter). This combination of priors allows for easy simulation of

posterior distributions. However, the Jeffreys prior is known to be deficient in high dimensional

settings (see Berger and Bernardo 1992). Bernardo (1979) and Berger and Bernardo (1992) propose

an alternative approach of deriving a reference prior. The reference prior for iid covariance matrix

is derived by Yang and Berger (1994). The constant prior for ΦΦΦ is known to be inadmissible under

quadratic loss for estimation of unknown mean of vector with iid normal distribution (see Berger

and Strawderman 1996). An alternative to the constant prior is a ’shrinkage’ prior for ΦΦΦ, which

has been used in estimating the unknown normal mean in iid cases (e.g, Baranchik 1964), and

in hierarchical linear mixed models (e.g., Berger and Strawderman, 1996). The shrinkage prior is

independent of the sample size and is quite easy to use for computing the posteriors. Ni and Sun

(2001) explore the Bayesian posterior mean estimator of ΦΦΦ under the shrinkage prior, but no work

has been done to compare the posterior mean estimator with other Bayesian estimators under this

prior in the VAR setting. The present study will examine the effect of priors for ΣΣΣ and ΦΦΦ under

alternative loss functions and provide recommendations for VAR users.

In section 2 of the paper we lay out notation for the VAR model. In section 3 we discuss

generalized Bayesian estimators under alternative loss functions. In section 4 we examine MCMC

simulation results of marginal posteriors of ΦΦΦ and ΣΣΣ. In section 5 we compare alternative Bayesian

estimates of a VAR using quarterly data of the U.S. economy. In section 6 we offer concluding

remarks.
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2 VAR Model and the MLE

We consider the VAR model

yyyt = ccc +
L∑

j=1

yyyt−jBBBj + εεεt, (1)

for t = 1, · · · , T, where L is a known positive integer, ccc is a 1×p unknown vector, BBBj is an unknown

p× p matrix, εεε1, · · · , εεεT are independently identically distributed Np(0, ΣΣΣ) errors, and ΣΣΣ is a p× p

positive definite matrix. Denote

xxxt = (1, yyyt−1, · · · , yyyt−L),

YYY =




yyy1

...

yyyT


 , XXX =




xxx1

...

xxxT


 , εεε =




εεε1
...

εεεT


 ,ΦΦΦ =




ccc

BBB1

...

BBBL




.

Here YYY and εεε are T × p matrices, ΦΦΦ is a (1 + Lp) × p matrix of unknown parameters, xxxt is a

1× (1+Lp) row vector, and XXX is a T × (1+Lp) matrix of observations. We may write the VAR as

YYY = XXXΦΦΦ + εεε. (2)

The likelihood function of (ΦΦΦ, ΣΣΣ) is

L(ΦΦΦ, ΣΣΣ) =
1

|ΣΣΣ|T/2
exp

{
−1

2

T∑

t=1

(yyyt − xxxtΦΦΦ)ΣΣΣ−1(yyyt − xxxtΦΦΦ)′
}

=
1

|ΣΣΣ|T/2
etr

{
−1

2
(YYY−XXXΦΦΦ)ΣΣΣ−1(YYY−XXXΦΦΦ)′

}
. (3)

Here and hereafter etr(A) is exp(trace(A)) of a matrix A. The Maximum Likelihood Estimator

(MLE) of ΦΦΦ and ΣΣΣ are

Φ̂ΦΦM = (XXX′XXX)−1XXX′YYY, and Σ̂ΣΣM = SSS(Φ̂ΦΦM )/T, (4)

respectively, where

SSS(ΦΦΦ) = (YYY−XXXΦΦΦ)′(YYY−XXXΦΦΦ). (5)

It is well known that when T ≥ Lp + 1, (XXX′XXX)−1 exists with probability one and if T ≥ Lp + p + 1

the MLEs of ΦΦΦ and ΣΣΣ exist with probability one and SSS(Φ̂ΦΦM ) is positive definite. In this paper, we

consider only the case that T ≥ Lp + p + 1 so the MLEs of ΦΦΦ and ΣΣΣ exist.
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3 Loss Functions and Bayesian Estimators

A Bayesian estimator of (ΦΦΦ,ΣΣΣ) depends on the sampling distribution, the prior, and the loss

function. In this paper we consider loss functions that contain a part measuring the loss associated

with the covariance matrix and a part measuring the loss of VAR lag coefficients only. The overall

loss with respect to (ΦΦΦ, ΣΣΣ) is in the form of

L(Φ̂ΦΦ, Σ̂ΣΣ;ΦΦΦ, ΣΣΣ) = LΦ(Φ̂ΦΦ + LΣ(Σ̂ΣΣ;ΣΣΣ). (6)

The question we seek to answer is whether alternative loss functions result in Bayesian estimators

with significantly different properties.

3.1 Loss Functions for ΣΣΣ

First, we consider a loss function for ΣΣΣ:

LΣ1(Σ̂ΣΣ;ΣΣΣ) = tr(Σ̂ΣΣ
−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p, (7)

where p is the number of variables in the VAR. We refer this function as a pseudo entropy loss

since it is an entropy loss with respect to ΣΣΣ only, while the entropy loss is pertaining to both ΣΣΣ

and ΦΦΦ.

The second loss function on ΣΣΣ is a quadratic loss

LΣ2(Σ̂ΣΣ;ΣΣΣ) = tr(Σ̂ΣΣΣΣΣ−1 − III)2. (8)

The third loss function is a pseudo entropy function on ΣΣΣ−1 consider in Berger and Yang (1994):

LΣ3(Σ̂ΣΣ;ΣΣΣ) = tr(Σ̂ΣΣΣΣΣ−1)− log |Σ̂ΣΣΣΣΣ−1| − p. (9)

The following lemma produces Bayesian estimators of ΣΣΣ with any separate loss with respect

to ΦΦΦ. In this setting the Bayesian estimators can the be derived independently from minimizing

expected posterior loss functions regarding (ΦΦΦ, ΣΣΣ).

Lemma 1 (a) Under the loss LΣ1, the generalized Bayesian estimator of ΣΣΣ is Σ̂ΣΣ1, where

Σ̂ΣΣ1 = IE(ΣΣΣ | YYY). (10)
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(b) Under the loss LΣ2, the generalized Bayesian estimator of ΣΣΣ is Σ̂ΣΣ2 given by

vec(Σ̂ΣΣ2) =
[
IE{(ΣΣΣ−1 ⊗ ΣΣΣ−1) | YYY}

]−1
vec(IE(ΣΣΣ−1 | YYY)), (11)

where ΣΣΣ−1 ⊗ ΣΣΣ−1 is the Kronecker product of ΣΣΣ−1 and ΣΣΣ−1.

(c) Under the loss LΣ3, the generalized Bayesian estimator of ΣΣΣ is Σ̂ΣΣ3, where

Σ̂ΣΣ3 =
{
IE(ΣΣΣ−1 | YYY)

}−1
. (12)

Proof. For part (a), note that

∂ log(|Σ̂ΣΣ|)
∂Σ̂ΣΣ

= Σ̂ΣΣ
−1

,
∂tr(Σ̂ΣΣ

−1
ΣΣΣ)

∂Σ̂ΣΣ
= − Σ̂ΣΣ

−1
ΣΣΣΣ̂ΣΣ

−1
.

The above facts can be used to calculate the derivative of IE{LΣ1(Σ̂ΣΣ, ΣΣΣ) | YYY} with respect to

Σ̂ΣΣ. The desired result follows by letting the derivative be zero. The proof of part (b) is more

tedious. For that see Yang and Berger (1994). Part (c) follows from the fact that the derivative of

IE{LΣ3(Σ̂ΣΣ, ΣΣΣ) | YYY} with respect to Σ̂ΣΣ is IE(ΣΣΣ−1 | YYY)− Σ̂ΣΣ
−1

.

3.2 Loss Functions for ΦΦΦ

The most common loss for ΦΦΦ is the quadratic loss

LΦ1(Φ̂ΦΦ, ΦΦΦ) = tr{(Φ̂ΦΦ− ΦΦΦ)′W−1(Φ̂ΦΦ− ΦΦΦ)}, (13)

where W−1 is a constant weighting matrix. If the weighting matrix WWW is the identity matrix, then

the loss of LΦ1 is simply the sum of squared errors of all elements of Φ̂ΦΦ,
∑1+Lp

i=1

∑p
j=1(φ̂φφi,j − φφφi,j)2.

The quadratic function is symmetric, an asymmetric LINEX loss function is explored by Zellner

(1986) for estimation of iid normal mean under conjugate prior. A LINEX loss is

LΦ2(φ̂φφ, φφφ) =
1+Lp∑

i=1

[
exp{a(φ̂φφi − φφφi)} − a(φ̂φφi − φφφi)− 1

]
, (14)

where a is a hyper-parameter. When a is close to zero, the LINEX loss function is close to be

symmetric and not much different from the quadratic loss. When a is a large negative number,

the LINEX loss is close to be exponential when φ̂φφi < φφφi and close to be linear otherwise. Hence if

we suspect that the posterior mean has a downward bias, using the LINEX loss with a negative a

parameter should help correcting the bias. The Bayesian estimators of ΦΦΦ under these loss functions

are well known.
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Lemma 2 (a) Under the loss LΦ1, the generalized Bayesian estimator of ΦΦΦ is Φ̂ΦΦ1, where

Φ̂ΦΦ1 = IE(ΦΦΦ | YYY). (15)

(b) Under the LINEX loss function each elements of the Bayesian estimator Φ̂ΦΦ2 satisfies the con-

dition

φ̂φφi = (−1/a)log[IE{exp(−aφφφi) | YYY}] (16)

for i = 1, ..., Lp + 1.

Proving the Lemma is straightforward. The Lemma shows that the Bayesian estimator on ΦΦΦ

under the quadratic loss function is the posterior mean while the estimator under the LINEX loss

may be larger or smaller than the posterior mean, depending the sign of the a parameter.

3.3 Priors and Posteriors

Bayesian analysis requires explicit specification of prior on the parameters. The prior may be

subjective (informative) or objective (noninformative). Informative priors reflect the beliefs of

researchers about the distribution of the parameters of interest. Noninformative priors reflect the

vagueness of researchers’ knowledge before they observes data. It is not easy to find a subjective

prior that is universally justifiable for VAR models in all applications. Noninformative priors are

a common choice by VAR users. Note that noninformative priors for (ΣΣΣ, ΦΦΦ) can be derived based

on different principles, and are therefore not unique. A recent review of various approaches for

deriving noninformative priors is provided by Kass and Wasserman (1996).

The most popular noninformative prior for ΣΣΣ is the Jeffreys prior (See Geisser 1965, Tiao and

Zellner 1964). The Jeffreys prior is derived from the ”invariance principle”, meaning the prior

is invariant to re-parameterization (see Jeffreys 1961 and Zellner 1971). The Jeffreys prior is

proportional to the square root of the determinant of the Fisher information matrix. Specifically

for the VAR covariance matrix, the Jeffreys prior is

πJ(ΣΣΣ) ∝ 1
|ΣΣΣ|(p+1)/2

. (17)

The prior for ΣΣΣ in RATS is a modified version of the Jeffreys prior

πA(ΣΣΣ) ∝ 1
|ΣΣΣ|(L+1)p/2+1

. (18)
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It has been noted, however, that the Jeffreys prior often gives unsatisfactory results for multi-

parameter problems. Bernardo (1979) proposes an information-based approach of deriving a ref-

erence prior by breaking a single multiparameter problem into a series of problems with fewer

numbers of parameters. The reference prior is chosen to maximizes the difference between itself

and the posterior, so that maximum information about the parameters of interest is extracted from

data. The form of the reference prior depends on the inferential problem at hand and on researchers’

ordering of parameters in terms of perceived importance. For examples in which reference priors

produce more desirable estimators than Jeffreys priors, see Berger and Bernardo (1992), Sun and

Berger (1998), among others. In estimating the variance-covariance matrix ΣΣΣ based on an iid ran-

dom sample from a normal population with known mean, Yang and Berger (1994) re-parameterize

matrix ΣΣΣ as O′DO where D is a diagonal matrix the elements of which are the eigenvalues of ΣΣΣ

(in increasing or decreasing order) and O is an orthogonal matrix. The following reference prior is

derived by placing vectorized D in front of vectorized O:

πR(ΣΣΣ) ∝ 1
|ΣΣΣ|∏1≤i<j≤p(di − dj)

, (19)

where d1 > d2 > · · · > dp are eigenvalues of ΣΣΣ.

The prior for (ΦΦΦ, ΣΣΣ) can be obtained by putting together priors for ΦΦΦ and ΣΣΣ. In practice, it is

often convenient to consider φφφ = vec(ΦΦΦ), instead of ΦΦΦ. A common expression of ignorance about

φφφ is a (flat) constant prior. A popular noninformative prior for multivariate regression models is

called diffuse prior, which consists of a constant prior for φφφ and the Jeffreys prior for ΣΣΣ. The joint

densities of the constant-Jeffreys prior for (ΦΦΦ, ΣΣΣ) (or (φφφ,ΣΣΣ)) are of the form πCJ(φφφ,ΣΣΣ) ∝ πJ(ΣΣΣ). A

prior similar to πCJ is used by the RATS software package. The constant-RATS prior πCA(ΦΦΦ,ΣΣΣ) ∝
πA(ΣΣΣ) is the default choice in RATS and has been used in hundreds of published papers in empirical

macroeconomics. For an argument of using constant-RATS instead of constant-Jeffreys prior see

Sims and Zha (1999). At last, the constant-reference prior, which has not been commonly used for

VAR models, takes the form πCR(φφφ,ΣΣΣ) ∝ πR(ΣΣΣ).

For estimation of multivariate unknown normal mean, motivated by Stein’s (1956) result on in-

admissibility of MLE, some authors (e.g., Baranchik 1964, Berger and Strawderman 1996) advocate

the following ’shrinkage’ prior as an alternative to the constant prior for φφφ:

πS(φφφ) ∝ ‖φφφ‖−(J−2), φφφ ∈ IRJ , (20)

7



where J = p(Lp + 1), the dimension of φφφ.

We consider three noninformative priors for (ΦΦΦ, ΣΣΣ) that have the shrinkage prior on ΦΦΦ. The

shrinkage-Jeffreys prior is given by

πSJ(φφφ,ΣΣΣ) ∝ πS(φφφ)πJ(ΣΣΣ). (21)

The shrinkage-RATS prior is given by

πSA(φφφ,ΣΣΣ) ∝ πS(φφφ)πA(ΣΣΣ). (22)

At last the shrinkage-reference prior for (φφφ, ΣΣΣ) is

πSR(φφφ,ΣΣΣ) ∝ πS(φφφ)πR(ΣΣΣ). (23)

The posterior properties of various Bayesian estimators of VAR parameters (ΦΦΦ, ΣΣΣ) produced

by alternative noninformative priors are a focus of the study. Since the noninformative priors for

(ΦΦΦ, ΣΣΣ) are improper (i.e., the integrals of which in the parameter space are infinite), it is important

to know if the posteriors of (ΦΦΦ, ΣΣΣ) exist under these priors. Ni and Sun (2001) prove that the

posteriors of (ΦΦΦ, ΣΣΣ) are indeed proper under all of the prior combinations considered in this paper.

3.4 Conditional Posteriors

Although the posteriors of (ΦΦΦ, ΣΣΣ) exist, for most prior combinations they are not available in closed-

form. As in other Bayesian statistics studies we employ Markov Chain Monte Carlo (MCMC)

methods for sampling from the posterior. In particular, we use the Gibbs sampling method. More

details of the theory can be found in Gelfand and Smith (1990). For MCMC numerical simulations

of posterior distributions of (φφφ,ΣΣΣ), We will make use of the following properties of the conditional

posteriors with alternative priors.

Fact 1 Under the constant-Jeffreys prior for (φφφ, ΣΣΣ) the conditional posterior φφφ given ΣΣΣ is multi-

variate normal N(φ̂φφM , ΣΣΣ⊗ (XXX′XXX)−1) and the marginal posterior of ΣΣΣ is Inverse Wishart (SSS(Φ̂ΦΦM ),

T − Lp − 1). Here the definition of Inverse Wishart distribution follows that given by Anderson

(1984, p268).

Fact 2 Under the constant-RATS prior the conditional posterior φφφ given ΣΣΣ is N(φ̂φφM , ΣΣΣ⊗(XXX′XXX)−1)

and the marginal posterior of ΣΣΣ is Inverse Wishart (SSS(Φ̂ΦΦM ), T ).
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Fact 3 Under the constant-reference prior

(a) the conditional distribution of φφφ = vec(ΦΦΦ) given (ΣΣΣ,YYY) is

π(φφφ | ΣΣΣ,YYY) ∼ MV N(φ̂φφM , ΣΣΣ⊗ (XXX′XXX)−1); (24)

(b) the conditional density of ΣΣΣ given (φφφ,YYY) is given by

π(ΣΣΣ | φφφ,YYY) ∝ etr{−1
2ΣΣΣ−1SSS(φφφ)}

|ΣΣΣ|T2 +1
∏

1≤i<j≤p

(di − dj)
, (25)

where SSS(ΦΦΦ) is defined by (??) and d1, ..., dp are eigenvalues of ΣΣΣ in increasing or decreasing order.

To simulate the posterior of (ΣΣΣ,ΦΦΦ) with the shrinkage prior on ΦΦΦ, we introduce a latent variable

δ. So instead of simulating from the conditional distribution of ΦΦΦ and ΣΣΣ within each Gibbs cycle,

we simulate from ΦΦΦ, ΣΣΣ, and δ based on the following fact.

Fact 4 Consider the shrinkage-reference prior πSR.

(a) The conditional density of ΣΣΣ given (φφφ, δ,YYY) is given by (??).

(b) The conditional distribution of φφφ = vec(ΦΦΦ) given (δ,ΣΣΣ,YYY) is N(µµµ,VVV), where

µµµ = δ
(
ΣΣΣ⊗ (XXX′XXX)−1 + δIIIJ

)−1
φ̂φφM ; (26)

VVV =
(
ΣΣΣ−1 ⊗ (XXX′XXX) + δIIIJ

)−1
. (27)

(c)The conditional distribution of δ given (ΦΦΦ,ΣΣΣ,YYY) is Inverse Gamma (J
2 − 1, 1

2φφφ′φφφ).

These conditional posteriors are used for MCMC simulations of posteriors of (ΦΦΦ,ΣΣΣ). Ni and Sun

(2001) offer proofs for some of the above facts as well as detailed algorithms of MCMC procedures.

The Bayesian estimates of (ΦΦΦ,ΣΣΣ) under alternative loss functions and priors can be computed when

the posterior distributions are simulated.

4 Simulations for Marginal Posteriors of ΦΦΦ and ΣΣΣ

In the following we use numerical examples to evaluate the posteriors of competing estimators.

We first generate data samples from a VAR with known parameters, then compute the Bayesian

estimates via MCMC simulations. Using the Monte Carlo results, we evaluate the performance of
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the Bayesian estimators under alternative priors in terms of the frequentist risks, which are the

average losses of these estimators at the point of true parameters over the sample distribution.

Example 1 We consider a five variable VAR with one lag (i.e. p = 5 and L = 1). The size of

sample T = 50. We choose the weighting matrix W in the loss function LΦ1 to be the identity

matrix. The parameter a in loss LΣ2 is set at -1.50. The true parameters are ΣΣΣ = III5, the intercepts

are zero, and

BBB1 =




.90 0 0 0 0

0 .92 0 0 0

0 0 .94 0 0

0 0 0 .96 0

0 0 0 0 .98




.

We generate N = 1000 samples of the five-variable VAR model from the population with the

above true parameters. In computation of the Bayesian estimators of (ΦΦΦ,ΣΣΣ), we run M = 5000

MCMC cycles after 500 burn-in cycles for each of the 1000 samples. The evaluations of the Bayesian

estimators under alternative priors are reported in Tables 1 and 2.

The frequentist risks under loss L, i.e. EYYY|ΦΦΦ,ΣΣΣL(ΣΣΣ, Σ̂ΣΣ) and EYYY|ΦΦΦ,ΣΣΣL(ΦΦΦ, Φ̂ΦΦ), of MLE and

Bayesian estimators using alternative priors on ΣΣΣ and ΦΦΦ are computed as the average across gen-

erated data samples. For instance, EYYY|ΦΦΦ,ΣΣΣL(ΦΦΦ, Φ̂ΦΦ) is computed as 1
N

∑N
j=1 L(ΦΦΦ, Φ̂ΦΦj). Here Φ̂ΦΦj is

Bayesian estimates of sample j (j = 1, ..., N), and ΦΦΦ is the true parameter matrix BBB1.

We denote the estimators by the loss function and prior choice. For example, Σ̂ΣΣ1CA represents

the estimator of ΣΣΣ under loss LΣ1 and the constant-RATS prior combination and Φ̂ΦΦ2SR the estimator

of ΦΦΦ under loss LΦ2 and the shrinkage-reference prior combination. Each row of the tables reports

the frequentist risks of the corresponding estimator under different loss functions.

Several patterns merge from Tables 1 and 2:

(a) The estimates of ΣΣΣ are largely independent of the priors on ΦΦΦ, and estimates of ΦΦΦ are

largely independent of the priors on ΣΣΣ. This is due to the assumption that the loss functions are

separable in ΣΣΣ and ΦΦΦ. For example, the ΣΣΣ-related losses of Σ̂ΣΣ1CA (based on the constant-RATS

prior) are quite similar to that of Σ̂ΣΣ1SA (based on the shrinkage-RATS prior), and the ΦΦΦ-related
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losses of Φ̂ΦΦ1CA (based on the constant-RATS prior) are similar to those of Φ̂ΦΦ1CJ (based on the

constant-Jeffreys prior) and Φ̂ΦΦ1CR (based on the constant-reference prior).

(b) Among the estimators for ΣΣΣ, posterior mean is the best overall for the loss functions con-

sidered. The finding provides a justification for the common practice of using the posterior mean

as the estimator of the covariance matrix. Note that this does not contradict to the optimality

of other Bayesian estimators because a Bayesian estimator minimizes the posterior loss over the

parameter space, while the frequentist risk only concerns the loss at the true parameter. Another

interesting pattern is that under the RATS prior the Bayesian estimators Σ̂ΣΣ3CA and Σ̂ΣΣ3SA are very

similar to the MLE Σ̂ΣΣMLE . Whether it suggests a theoretical result remains to be determined by

future research.

(c) Under the constant prior, the estimator Φ̂ΦΦ2 obtained from minimizing the LINEX loss

function is slightly worse than estimator Φ̂ΦΦ1 in terms of the quadratic loss but it is much better in

terms of the LINEX loss. Hence overall Φ̂ΦΦ2 is better than the posterior mean.

(d) In terms of frequentist risk, the influence of prior exceeds that of the loss functions. Table

1 shows that the reference prior dominates other priors on ΣΣΣ. Under the reference prior, with any

loss function the average losses associated with ΣΣΣ are reduced by more than half for all estimators.

Table 2 shows that even with strong asymmetry ( a= -1.5) in the loss function LΦ2 there is not

much difference between the two estimators of ΦΦΦ under the shrinkage prior. But the prior choice

is critically important. Under the constant prior both Bayesian estimators perform poorly, even in

comparison with the MLE. The large standard deviations of the frequentist losses under constant

prior indicate that these Bayesian estimators are not successful in dealing with outliers. In contrast,

under the shrinkage prior both estimators dominate the MLE in terms of the frequentist risk

associated with ΦΦΦ. It is worthwhile to note that under the shrinkage prior the conditional posterior

mean of φφφ is {ΣΣΣ ⊗ (δXXX′XXX)−1 + IIIJ}−1φ̂φφM (where φ̂φφM is MLE of φφφ), which appears to shrink the

estimator of φφφ towards zero. However, not all elements of shrinkage-based Bayesian estimator of

matrix ΦΦΦ are smaller than their MLE counterparts. Some diagonal elements of Bayesian estimates

of the first lag coefficients B1 can be larger than those of the MLE. In VAR models, by construction

the regressors and the lags of error terms are correlated, and the MLEs are biased in finite samples.

Even with a downward bias of the MLE, the Bayesian estimator under shrinkage prior improves
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over the MLE by reducing bias for some elements and at the same time substantially reducing

variances.

Example 2 For a robustness check, in the next example we change the true parameters of the

ΣΣΣ matrix and keep ΦΦΦ unchanged. We assume that the residuals of VAR variables have different

variances and pairwise correlation of 0.5. Specifically, the upper triangle of the covariance is

ΣΣΣ =




0.500 0.354 0.433 0.500 0.559

1.0 0.612 0.707 0.791

1.5 0.866 0.968

2.0 1.118

2.5




.

The results are different from that in Example 1 in two aspects.

(a) In Table 3 the dominance of the reference prior is no longer as prominent as in Table 1.

This is due to the fact that by construction, the reference prior re-parameterizes ΣΣΣ as O′DO with

diagonal matrix D being the eigenvalues and O being an orthogonal matrix. The eigenvalues are

placed before the orthogonal matrix in the order of importance. By design the data reveal more

information pertaining to the diagonal elements. As a result the diagonal elements are estimated

more precisely at the expense of the off-diagonal elements. In Example 1 the true ΣΣΣ matrix is

diagonal hence the reference prior does much better.

(b) In Table 4 the shrinkage prior are much better relative to the constant prior. This is because

the pairwise correlations of the VAR variables amplify the variances of MLEs and the variances of

Bayesian estimators under constant prior. The shrinkage prior is effective in reducing the variances

of the Bayesian estimators and results in smaller losses.

Example 3 In this example we consider a five variable VAR(2) model. The covariance matrix

ΣΣΣ is the same as that in Example 2, the intercepts are set at zero for each equation, and the VAR

lag coefficients are

BBB1 =




.50 0 0 0 0

0 .52 0 0 0

0 0 .54 0 0

0 0 0 .56 0

0 0 0 0 .58




, BBB2 =




0.30 0 0 0 0

0 0.32 0 0 0

0 0 0.34 0 0

0 0 0 0.36 0

0 0 0 0 0.38




.
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Tables 5 and 6 show that the conclusions drawn from the previous VAR(1) examples still hold

qualitatively in Example 3. The Bayesian estimators for ΣΣΣ under the reference prior still dominate

other estimators of ΣΣΣ. As in Tables 2 and 4, under the constant prior the LINEX estimator Φ̂ΦΦ2

does better than the posterior mean Φ̂ΦΦ1 overall.

The significance of the role played by the prior choice depends on the sample size of data. With

larger sample sizes the importance of prior should diminish. Now we examine the performance of

the Bayesian estimators with a larger sample size. We keep the parameters of Example 3 unchanged

while increase the sample size from T = 50 to T = 200.

The results are in Tables 7 and 8. These tables show that with a larger sample size, frequentist

risks of alternative estimators for ΣΣΣ and ΦΦΦ under various priors are all smaller. This is in part

due to the fact that with the enlarged sample size the MLE is less erratic and less biased. While

the alternative estimators for ΣΣΣ yield losses similar in magnitude under all prior combinations, the

estimators for ΦΦΦ under the shrinkage prior yield losses only half as much as those under the constant

prior. In practice, there is no precise guidance on whether the sample size is large enough to render

the choice of prior and the form of estimator unimportant. In this example it appears that 200

observations are adequate. But for a VAR of more variables (larger p), longer lags (larger L), or

with different parameters in BBB1 or BBB2 (e.g., when the VAR is explosive rather than stationary),

different choice of prior and loss function may produce vastly different estimates with a data sample

of 200 observations.

In the next section we will examine competing estimators under alternative priors in a VAR of

the U.S. economy with a data sample of 172 periods.

5 Estimating a VAR of the U.S. Economy

In the past two decades, VAR models have been commonly used for analyzing multivariate time

series macroeconomic data and addressing policy questions. Given the fact that macroeconomic

data are limited in availability, variable selection for the VARs is always a result of researchers’

balancing act between two conflicting considerations. On the one hand, the number of parameters

(for ΣΣΣ and ΦΦΦ) in a VAR of p variables and L lags to be estimated is p(p + 1)/2 + p(Lp + 1),

hence including more variables significantly expands the total parameters and the finite sample
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inferences become less robust; on the other hand, omitting useful variables results in an incorrect

model. The Bayesian approach for finite sample inferences may help to mitigate the difficulty a

VAR practitioner faces. However, the Bayesian inferences depend on the loss function and prior

choice, it is useful to examine whether the commonly adopted Bayesian estimators such as the

posterior mean and priors such as the constant-RATS prior give rise to estimates that are similar

to alternative estimators under alternative priors. In the following, we compare various Bayesian

estimates of a six-variable VAR using quarterly data of the U.S. economy from 1959Q1 to 2001Q4.

The lag length of the VAR is two.1 The variables are real GDP, GDP deflator, world commodity

price, M2 money stock, non-borrowed reserves, and the federal funds rate. The commodity price

data are obtained from the International Monetary Fund, the rest of data series from the FRED

database at the Federal Reserve Bank of St Louis. All variables except the fed funds rate are in

logarithms. These variables frequently appear in macroeconomics related VARs (e.g. Sims 1992,

Gordon and Leeper 1994, Sims and Zha 1998, and Christiano, Eichenbaum, and Evans 1999).

To measure the difference of the alternative Bayesian estimates, we use the posterior mean of ΣΣΣ

and ΦΦΦ under the constant-RATS prior combination (Σ̂ΣΣ1CA, Φ̂ΦΦ1CA) as the benchmark for (Σ̂ΣΣ, Φ̂ΦΦ),

and use the loss functions to measure the distance between other estimates from the benchmark

estimates. Tables 9 and 10 report the distance between the benchmark Bayesian estimator and

alternative estimators. For example, the Σ̂ΣΣ3SR row and LΣ2 column of Table 9 reports the distance

LΣ2(Σ̂ΣΣ1CA, Σ̂ΣΣ3SR). The main finding in the tables is that the estimates for ΣΣΣ are similar but the

estimates are distinctly different for ΦΦΦ under constant and shrinkage priors even with a short VAR

lag of two.

Our benchmark estimates are as follows. Under the constant-RATS prior, the posterior means

are

Σ̂ΣΣ1CA =




0.0037 0.0015 0.0013 0.0028 0.0006 0.0001
0.0015 0.0006 0.0006 0.0011 0.0003 0.0000
0.0013 0.0006 0.0020 0.0010 0.0002 0.0001
0.0028 0.0011 0.0010 0.0021 0.0005 0.0000
0.0006 0.0003 0.0002 0.0005 0.0013 -0.0001
0.0001 0.0000 0.0001 0.0000 -0.0001 0.0001




,

1A four-lag VAR produces similar results.
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Φ̂ΦΦ1CA =




7.6508 3.0508 3.489 5.6024 2.3428 0.0246
-1.4406 -1.1026 -1.2361 -1.9825 -0.7285 0.1141
3.0555 2.6087 1.0809 2.0534 2.3192 -0.4009
-0.2109 -0.0771 1.2914 -0.1748 -0.1646 0.0629
0.6838 0.2295 0.4314 1.8888 -0.5640 0.0238
-0.5571 -0.2194 -0.3025 -0.4265 0.9542 -0.0092
-0.2794 0.0048 -0.2142 -0.3078 -0.4271 1.0502
0.9843 0.5174 0.5669 0.9140 0.2875 -0.1266
-3.7121 -1.9043 -.5284 -2.5485 -2.4442 0.3636
0.0551 0.0248 -0.3735 0.066 0.0833 -0.0432
0.3835 0.2135 0.1359 -0.0945 0.8896 -0.0012
0.6352 0.2513 0.366 0.4722 0.012 0.0055
-0.1588 -0.1062 0.0776 0.0439 0.2301 -0.1291




.

Tables 9 and 10 show that overall the estimates under the shrinkage-reference prior are most

different from the benchmark. To explore the difference in the estimates we report the posterior

means under the shrinkage-reference prior.

Σ̂ΣΣ1SR =




0.0039 0.0016 0.0014 0.0029 0.0006 0.0001
0.0016 0.0007 0.0006 0.0012 0.0003 0.0000
0.0014 0.0006 0.0020 0.0011 0.0003 0.0001
0.0029 0.0012 0.0011 0.0022 0.0005 0.0000
0.0006 0.0003 0.0003 0.0005 0.0014 -0.0001
0.0001 0.0000 0.0001 0.0000 -0.0001 0.0001




,

Φ̂ΦΦ1SR =




7.6150 3.0361 3.4727 5.5752 2.3341 0.0244
-0.3538 -0.6538 -0.7502 -1.1513 -0.4358 0.1169
0.3872 1.5022 -0.0621 0.0076 1.1720 -0.3611
-0.1996 -0.0725 1.2890 -0.1660 -0.1581 0.0621
0.6114 0.2021 0.3767 1.8362 -0.3544 -0.0012
-0.4598 -0.1792 -0.2597 -0.3524 0.9843 -0.0094
-0.0991 0.0797 -0.1261 -0.1686 -0.3043 1.0398
-0.1113 0.0649 0.0774 0.0760 -0.0094 -0.1293
-1.1606 -0.8463 -0.4363 -0.5924 -1.3471 0.3255
0.0866 0.0379 -0.3531 0.0900 0.0929 -0.0428
0.5045 0.2610 0.2123 -0.0045 0.6985 0.0234
0.5474 0.2152 0.3268 0.4054 -0.0074 0.0048
0.0185 -0.0324 0.1429 0.1788 0.2674 -0.1256




.

Under alternative priors the difference in estimates for ΣΣΣ is negligible. On the other hand the
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difference in the estimates for ΦΦΦ is quite large:

Φ̂ΦΦ1CA − Φ̂ΦΦ1SR =




0.0358 0.0147 0.0163 0.0272 0.0087 0.0002
-1.0868 -0.4488 -0.4859 -0.8312 -0.2927 -0.0028
2.6683 1.1065 1.1430 2.0458 1.1472 -0.0398

-0.0113 -0.0046 0.0024 -0.0088 -0.0065 0.0008
0.0724 0.0274 0.0547 0.0526 -0.2096 0.0250

-0.0973 -0.0402 -0.0428 -0.0741 -0.0301 0.0002
-0.1803 -0.0749 -0.0881 -0.1392 -0.1228 0.0104
1.0956 0.4525 0.4895 0.8380 0.2969 0.0027

-2.5515 -1.0580 -1.0921 -1.9561 -1.0971 0.0381
-0.0315 -0.0131 -0.0204 -0.0240 -0.0096 -0.0004
-0.1210 -0.0475 -0.0764 -0.0900 0.1911 -0.0246
0.0878 0.0361 0.0392 0.0668 0.0194 0.0007

-0.1773 -0.0738 -0.0653 -0.1349 -0.0373 -0.0035




.

The most prominent differences of the two estimates under the alternative priors are reflected

in the third and the ninth rows of ΦΦΦ, which correspond to the first and second lag parameters of the

GDP deflator equation. As in our numerical examples, under the constant-RATS prior the posterior

mean of ΦΦΦ is very close to the MLE. Most elements of the third row of Φ̂ΦΦ1CA are in similar magnitude

with the elements in the ninth row of the same column, but have the opposite signs. The pattern of

estimates also emerge in the GDP equation (of the second and eighth rows) and the non-borrowed

reserves equation (of the sixth and the twelfth rows). The pattern of estimates of this VAR is

not uncommon for macroeconomic applications of VARs because macroeconomic time series data

often exhibit strong serial and pairwise correlations and the VAR models are ’over-parameterized’

with no restrictions on the matrix ΦΦΦ. In empirical applications such as the present one, the MLE

estimates of the first and second lag coefficients are not only in similar magnitude and opposite

signs, they are also often found to be very sensitive to model specification and sample period. The

fact the estimates of ΦΦΦ under the constant-RATS prior combination are similar to MLE suggests a

possibility of improvement by using alternative priors in place of the constant prior. As is discussed

earlier, the shrinkage estimator of James and Stein (1961), which motivates the the shrinkage prior,

reduces quadratic frequentist loss in estimation of multivariate normal mean. The James-Stein

estimator is known for improving efficiency in the presence of multicollinearity in regression models.

Assessing the improvement of shrinkage-prior-based estimators requires computation of losses. The

frequentist risks cannot be calculated since the true parameters are unknown in the application

and the theoretical results on admissibility of estimators under alternative priors have not been

established in the VAR framework, but most likely the use of shrinkage prior for ΦΦΦ improves upon
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the MLE and the Bayesian estimators based on the constant prior.

Unlike the frequentist risk, the posterior risk for the given data sample can be computed using

the MCMC simulation output. For some loss functions this can be done at little added cost. For

example, with the posterior mean estimator Σ̂ΣΣ = IE(ΣΣΣ | YYY) the posterior loss of LΣ1(Σ̂ΣΣ, ΣΣΣ) is

IE
[
{tr(Σ̂ΣΣ−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p} | YYY

]
= log |Σ̂ΣΣ| − IE{(log |ΣΣΣ|) | YYY}. (28)

To compute IE{(log |ΣΣΣ|) | YYY}, we decompose the ΣΣΣk matrix in the kth MCMC cycle as ΣΣΣk =

OOOkDDDkOOO′
k, where DDDk is the diagonal matrix that consists of eigenvalues of ΣΣΣk, i.e., Dk = diag(dk1,

dk2, .., dkp), and OOOk is an orthogonal matrix with OOOkOOO′
k = III. It follows that ÎE{(log |ΣΣΣ|) | YYY} =

1
M

∑M
k=1

∑p
i=1 log|dki|, which can be computed in MCMC runs without restoring the simulated ΣΣΣk

matrices for k = 1, ...,M . The posterior risk of the estimator Φ̂ΦΦ = IE(ΦΦΦ | YYY) associated with the

loss LΦ1(Φ̂ΦΦ, ΦΦΦ) is

IE
[
tr{(Φ̂ΦΦ− ΦΦΦ)′(Φ̂ΦΦ− ΦΦΦ)} | YYY

]
= tr

[
IE(ΦΦΦ′ΦΦΦ | YYY)− {IE(ΦΦΦ | YYY)}′{IE(ΦΦΦ | YYY)}

]
. (29)

Both IE(ΦΦΦ | YYY) and IE(ΦΦΦ′ΦΦΦ | YYY) can be computed in the process of MCMC simulations without

the storage of the entire MCMC outputs.

The posterior risks of the posterior mean estimator under alternative priors turn out to be

quite different. For instance, under the constant-RATS prior the posterior risks (??) and (??) are

0.126 and 13.703, respectively. Under the shrinkage-reference prior combination, the corresponding

posterior losses are 0.123 and 6.470, respectively. The posterior losses under the shrinkage-reference

prior are smaller because the posterior distributions are tighter for the distribution of the VAR lag

coefficients ΦΦΦ.

6 Concluding Remarks

The paper compares frequentist risks of several Bayesian estimators of the VAR lag parameters ΦΦΦ

and covariance matrix ΣΣΣ under alternative priors. With the constant prior on ΦΦΦ, the asymmetric

LINEX estimator ΦΦΦ does better overall than the posterior mean. With the shrinkage prior on ΦΦΦ the

LINEX estimator and the posterior mean yield similar losses. The posterior mean of ΣΣΣ performs

well in most cases. The choice of prior has more significant effects on the Bayesian estimates than
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the choice of loss function. The shrinkage prior on ΦΦΦ dominates the constant prior, while Yang

and Berger’s reference prior on ΣΣΣ dominates the Jeffreys prior and the RATS prior. Estimation of

a VAR using the U.S. macroeconomic data reveals significant difference between estimates under

the shrinkage and constant priors.

The study may be extended in several directions. First, note that the list of noninformative

priors examined in the present paper is by no means exhaustive. Other noninformative priors

applicable to the VAR framework need to be explored. Second, in this paper Bayesian estimators

are derived from loss functions separable in ΦΦΦ and ΣΣΣ . As a result, the inferences of ΦΦΦ and ΣΣΣ are

largely independent. Our future research concerns joint Bayesian inferences of ΦΦΦ and ΣΣΣ based on an

intrinsic loss function such as the entropy loss. Derivation and computation of Bayesian estimators

are more challenging under the entropy loss on (ΦΦΦ,ΣΣΣ) because the joint loss is non-separable in ΦΦΦ

and ΣΣΣ and it involves computing moments of sample distribution for which closed-form expressions

are unavailable.

References

Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis. 2nd edition, Wiley,
New York.

Baranchik, A. J. (1964). Multiple regression and estimation of the mean of multivariate normal
distribution. Technical Report 51, Dept. Statistics, Stanford University.

Berger, J.O. and Bernardo, J.M. (1992). On the development of reference priors. In Bayesian
Analysis IV, J.M. Bernardo, et. al., (Eds.). Oxford University Press, Oxford.

Berger, J.O. and Strawderman, W.E. (1996). Choice of hierarchical priors: Admissibility in esti-
mation of normal means. Annals of Statistics, 24, 931-951.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. J. Roy. Statist.
Soc. Ser. B, 41, 113-147.

Christiano, L. J., Eichenbaum, M. and Evans C. (1999), Monetary policy shocks: What have we
learned and to what end? in: J.B. Taylor and M. Woodford eds., Handbook of Macroeconomics,
Volume 1, pp. 65–147.

Geisser, S. (1965). Bayesian estimation in multivariate analysis. Annals of Mathematical Statistics
36, 150-159.

Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating marginal
densities. Journal of the American Statistical Association 85, 398-409.

Gordon, D. B. and Leeper, E. M. (1994), The dynamic impacts of monetary policy: an exercise in
tentative identification, Journal of Political Economy 102, 1228–1247.

18



James, W. and Stein, C. (1961) Estimation with quadratic loss. In Proceedings of the fourth
Berkeley symposium on mathematics, statistics, and probability. 1, 361-380. University of
California Press, Berkeley.

Jeffreys, H. (1961) Probability Theory. Oxford University Press, New York.

Kadiyala, K.R. and Karlsson, S. (1997). Numerical methods for estimation and inference in
Bayesian VAR-models. Journal of Applied Econometrics. 12, 99-132.

Kass, R.E. and Wasserman, L. (1996). The selection of prior distributions by formal rules, J. Amer.
Statist. Assoc., 91, 1343-1370.

Ni, S. and D. Sun (2001). A Monte Carlo study on frequentist risks of Bayesian estimators of
vector-autoregressive models based on noninformative priors. Submitted.

Sims, Christopher A. (1992), Interpreting the macroeconomic time series facts: The effects of
monetary policy, European Economic Review 38, pp. 975 – 1000.

Sims, C.A. and Zha T. (1998). Does monetary policy generate recessions? Federal Reserve Bank
of Atlanta working paper 98-12.

Sims, C. A. and Zha T. (1999). Error Bands for Impulse Responses, Econometrica, 67, 1113–1155.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal dis-
tribution, Proceedings of the third Berkeley symposium, Vol. 1, 197-206, Berkeley: University
of California Press.

Sun, D. and Berger, J.O. (1998). Reference priors under partial information. Biometrika, 85,
55-71.

Tiao, G.C. and Zellner, A. (1964). On the Bayesian estimation analysis of multivariate regression,
Journal of Royal Statistical Society, B, 26, 389-399.

Yang, R. and Berger, J.O. (1994). Estimation of a covariance matrix using the reference prior.
Annals of Statistics, 22, 1195-1211.

Zellner, A (1971). An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons,
New York.

Zellner, A (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of
the American Statistical Association, 81. 446-451.

19



Table 1: Frequentist Risks of Alternative Bayesian Estimators of ΣΣΣ in Example 1. (Standard
deviations are in parentheses.)

LΣ1 LΣ2 LΣ3

Σ̂ΣΣMLE .7690 (.3723) .6570 (.1950) .4764 (.1706)

Σ̂ΣΣ1CA .5512 (.2847) .6635 (.2505) .3968 (.1508)
Σ̂ΣΣ2CA 1.0595 (.4645) .7528 (.1888) .6035 (.1951)
Σ̂ΣΣ3CA .7691 (.3724) .6571 (.1953) .4765 (.1706)

Σ̂ΣΣ1CJ .4273 (.2066) .8914 (.4053) .4002 (.1518)
Σ̂ΣΣ2CJ .7692 (.3724) .6572 (.1953) .4766 (.1706)
Σ̂ΣΣ3CJ .5513 (.2847) .6638 (.2508) .3969 (.1509)

Σ̂ΣΣ1CR .1660 (.1279) .2720 (.1835) .1441 (.0942)
Σ̂ΣΣ2CR .3300 (.2529) .3375 (.1781) .2294 (.1431)
Σ̂ΣΣ3CR .2284 (.1825) .2794 (.1620) .1729 (.1130)

Σ̂ΣΣ1SA .5515 (.2847) .6636 (.2499) .3970 (.1508)
Σ̂ΣΣ2SA 1.0598 (.4647) .7527 (.1887) .6035 (.1951)
Σ̂ΣΣ3SA .7694 (.3726) .6570 (.1949) .4765 (.1706)

Σ̂ΣΣ1SJ .4271 (.2062) .8908 (.4040) .4000 (.1513)
Σ̂ΣΣ2SJ .7693 (.3722) .6572 (.1952) .4766 (.1706)
Σ̂ΣΣ3SJ .5512 (.2844) .6636 (.2502) .3969 (.1507)

Σ̂ΣΣ1SR .1582 (.1248) .2589 (.1721) .1375 (.0903)
Σ̂ΣΣ2SR .3169 (.2436) .3271 (.1707) .2214 (.1374)
Σ̂ΣΣ3SR .2185 (.1764) .2688 (.1538) .1660 (.1084)
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Table 2: Frequentist Risks of Alternative Bayesian Estimators of ΦΦΦ in Example 1. (Standard
deviations are in parentheses.)

LΦ1 LΦ2

Φ̂ΦΦMLE 3.9199 (3.8931) 8.7284 (32.8418)

Φ̂ΦΦ1CA 3.9192(3.8866) 8.7075 (32.3707)
Φ̂ΦΦ2CA 4.2583 (4.8835) 5.5381 (12.7549)

Φ̂ΦΦ1CJ 3.9202 (3.8936) 8.7546 (33.3711)
Φ̂ΦΦ2CJ 4.3768 (5.2561) 5.2834 (11.1703)

Φ̂ΦΦ1CR 3.9197 (3.8896) 8.7037 (32.5073)
Φ̂ΦΦ2CR 4.2689 (4.9135) 5.2939 (10.8249)

Φ̂ΦΦ1SA 1.2523 (.5009) 1.5511 (.7845)
Φ̂ΦΦ2SA 1.2725 (.5422) 1.4603 (.6438)

Φ̂ΦΦ1SJ 1.1673 (.4264) 1.4364 (.6442)
Φ̂ΦΦ2SJ 1.1870 (.4648) 1.3570 (.5347)

Φ̂ΦΦ1SR 1.0743 (.3071) 1.3079 (.4348)
Φ̂ΦΦ2SR 1.0909 (.3340) 1.2465 (.3756)
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Table 3: Frequentist Risks of Alternative Bayesian Estimators of ΣΣΣ in Example 2. (Standard
deviations are in parentheses.)

LΣ1 LΣ2 LΣ3

Σ̂ΣΣMLE .7683 (.3626) .6560 (.1937) .4753 (.1651)

Σ̂ΣΣ1CA .5518 (.2751) .6649 (.2556) .3969 (.1446)
Σ̂ΣΣ2CA 1.0578 (.4548) .7505 (.1863) .6015 (.1912)
Σ̂ΣΣ3CA .7685 (.3627) .6561 (.1940) .4754 (.1653)

Σ̂ΣΣ1CJ .4290 (.1977) .8964 (.4211) .4017 (.1470)
Σ̂ΣΣ2CJ .7685 (.3627) .6561 (.1939) .4754 (.1652)
Σ̂ΣΣ3CJ .5519 (.2750) .6649 (.2554) .3969 (.1446)

Σ̂ΣΣ1CR .3859 (.1727) .7716 (.3442) .3563 (.1232)
Σ̂ΣΣ2CR .6556 (.3117) .6031 (.1803) .4223 (.1481)
Σ̂ΣΣ3CR .4842 (.2367) .6072 (.2237) .3577 (.1261)

Σ̂ΣΣ1SA .5518 (.2751) .6650 (.2557) .3969 (.1446)
Σ̂ΣΣ2SA 1.0578 (.4551) .7504 (.1863) .6015 (.1912)
Σ̂ΣΣ3SA .7685 (.3629) .6561 (.1938) .4754 (.1652)

Σ̂ΣΣ1SJ .4290 (.1979) .8959 (.4216) .4015 (.1472)
Σ̂ΣΣ2SJ .7687 (.3628) .6562 (.1938) .4755 (.1652)
Σ̂ΣΣ3SJ .5519 (.2751) .6648 (.2554) .3969 (.1446)

Σ̂ΣΣ1SR .3708 (.1666) .7502 (.3534) .3452 (.1253)
Σ̂ΣΣ2SR .6343 (.3011) .5925 (.1827) .4122 (.1459)
Σ̂ΣΣ3SR .4666 (.2285) .5938 (.2303) .3478 (.1260)
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Table 4: Frequentist Risks of Alternative Bayesian Estimators of ΦΦΦ in Example 2. (Standard
deviations are in parentheses.)

LΦ1 LΦ2

Φ̂ΦΦMLE 6.3680 (7.3344) 37.5860 (379.1343)

Φ̂ΦΦ1CA 6.3704(7.3302) 37.3729 (373.5502)
Φ̂ΦΦ2CA 7.0974 (10.0639) 12.0093 (59.9915)

Φ̂ΦΦ1CJ 6.3652 (7.3279) 37.5890 (380.1670)
Φ̂ΦΦ2CJ 7.4269 (11.4723) 10.4756 (46.1726)

Φ̂ΦΦ1CR 6.3682 (7.3333) 37.4291 (376.6031)
Φ̂ΦΦ2CR 7.1591 (10.4047) 11.6565 (55.5603)

Φ̂ΦΦ1SA 1.3037 (.4934) 1.5886 (.6739)
Φ̂ΦΦ2SA 1.3180 (.5226) 1.4953 (.5833)

Φ̂ΦΦ1SJ 1.2151 (.4327) 1.4748 (.5785)
Φ̂ΦΦ2SJ 1.2302 (.4595) 1.3915 (.5078)

Φ̂ΦΦ1SR 1.1849 (.3824) 1.4325 (.5034)
Φ̂ΦΦ2SR 1.1989 (.4049) 1.3572 (.4497)
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Table 5: Frequentist Risks of Alternative Bayesian Estimators of ΣΣΣ in Example 3, with sample size
T=50. (Standard deviations are in parentheses.)

LΣ1 LΣ2 LΣ3

Σ̂ΣΣMLE 1.1540 (.5251) .7887 (.1939) .6396 (.2051)

Σ̂ΣΣ1CA .8220 (.4141) .7085 (.2173) .5050 (.1779)
Σ̂ΣΣ2CA 1.5588 (.6398) .9351 (.2008) .8100 (.2325)
Σ̂ΣΣ3CA 1.1541 (.5254) .7888 (.1940) .6397 (.2052)

Σ̂ΣΣ1CJ .4797 (.2333) 1.1070 (.5325) .4678 (.1745)
Σ̂ΣΣ2CJ .8716 (.4323) .7144 (.2092) .5240 (.1822)
Σ̂ΣΣ3CJ .6158 (.3261) .7535 (.2987) .4408 (.1623)

Σ̂ΣΣ1CR .4192 (.1936) .9160 (.4295) .4020 (.1460)
Σ̂ΣΣ2CR .7184 (.3594) .6467 (.1905) .4549 (.1614)
Σ̂ΣΣ3CR .5238 (.2686) .6740 (.2547) .3885 (.1394)

Σ̂ΣΣ1SA .8221 (.4136) .7086 (.2174) .5051 (.1778)
Σ̂ΣΣ2SA 1.5590 (.6393) .9351 (.2006) .8100 (.2323)
Σ̂ΣΣ3SA 1.1543 (.5249) .7888 (.1939) .6398 (.2050)

Σ̂ΣΣ1SJ .4794 (.2329) 1.1066 (.5322) .4676 (.1745)
Σ̂ΣΣ2SJ .8715 (.4321) .7144 (.2091) .5239 (.1821)
Σ̂ΣΣ3SJ .6156 (.3258) .7534 (.2986) .4407 (.1623)

Σ̂ΣΣ1SR .3950 (.1895) .8011 (.3607) .3665 (.1307)
Σ̂ΣΣ2SR .6881 (.3465) .6197 (.1837) .4379 (.1575)
Σ̂ΣΣ3SR .5010 (.2616) .6231 (.2283) .3678 (.1335)

24



Table 6: Frequentist Risks of Alternative Bayesian Estimators of ΦΦΦ in Example 3, with sample size
T=50. (Standard deviations are in parentheses.)

LΦ1 LΦ2

Φ̂ΦΦMLE 7.5518 (6.4369) 23.5908 (219.3303)

Φ̂ΦΦ1CA 7.5513(6.4312) 28.6443 (219.6075)
Φ̂ΦΦ2CA 8.2089 (9.1060) 11.7866 (36.0243)

Φ̂ΦΦ1CJ 7.5583 (6.4506) 28.4572 (211.7202)
Φ̂ΦΦ2CJ 8.7972 (11.4382) 9.9813 (21.3180)

Φ̂ΦΦ1CR 7.5573 (6.4484) 28.9039 (227.2678)
Φ̂ΦΦ2CR 8.4998 (10.3763) 11.1306 (34.2694)

Φ̂ΦΦ1SA 1.0140 (.2642) 1.1986 (.3224)
Φ̂ΦΦ2SA 1.0041 (.2632) 1.1591 (.3063)

Φ̂ΦΦ1SJ .8833 (.2073) 1.0484 (.2534)
Φ̂ΦΦ2SJ .8709 (.2064) 1.0091 (.2414)

Φ̂ΦΦ1SR .8608 (.1876) 1.0210 (.2306)
Φ̂ΦΦ2SR .8485 (.1864) .9837 (.2200)
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Table 7: Frequentist Risks of Alternative Bayesian Estimators of ΣΣΣ in Example 3, with sample size
T=200. (Standard deviations are in parentheses.)

LΣ1 LΣ2 LΣ3

Σ̂ΣΣMLE .1042 (.0444) .1584 (.0536) .0896 (.0332)

Σ̂ΣΣ1CA .0917 (.0388) .1539 (.0547) .0826 (.0307)
Σ̂ΣΣ2CA .1213 (.0506) .1706 (.0554) .0896 (.0366)
Σ̂ΣΣ3CA .1043 (.0444) .1584 (.0536) .0896 (.0332)

Σ̂ΣΣ1CJ .0813 (.0315) .1711 (.0671) .0819 (.0301)
Σ̂ΣΣ2CJ .0935 (.0396) .1541 (.0543) .0835 (.0310)
Σ̂ΣΣ3CJ .0849 (.0349) .1572 (.0586) .0802 (.0296)

Σ̂ΣΣ1CR .0832 (.0310) .1759 (.0680) .0840 (.0300)
Σ̂ΣΣ2CR .0943 (.0386) .1579 (.0550) .0849 (.0306)
Σ̂ΣΣ3CR .0864 (.0341) .1619 (.0596) .0821 (.0295)

Σ̂ΣΣ1SA .0917 (.0388) .1539 (.0547) .0826 (.0307)
Σ̂ΣΣ2SA .1213 (.0506) .1706 (.0554) .1006 (.0366)
Σ̂ΣΣ3SA .1043 (.0444) .1584 (.0536) .0896 (.0332)

Σ̂ΣΣ1SJ .0814 (.0315) .1712 (.0672) .0820 (.0301)
Σ̂ΣΣ2SJ .0935 (.0397) .1541 (.0543) .0835 (.0310)
Σ̂ΣΣ3SJ .0849 (.0349) .1573 (.0586) .0803 (.0297)

Σ̂ΣΣ1SR .0832 (.0318) .1728 (.0671) .0833 (.0301)
Σ̂ΣΣ2SR .0956 (.0396) .1577 (.0548) .0854 (.0311)
Σ̂ΣΣ3SR .0871 (.0351) .1604 (.0590) .0821 (.0298)
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Table 8: Frequentist Risks of Alternative Bayesian Estimators of ΦΦΦ in Example 3, with sample size
T=200. (Standard deviations are in parentheses.)

LΦ1 LΦ2

Φ̂ΦΦMLE .7602 (.3847) .8748 (.5133)

Φ̂ΦΦ1CA .7601 (.3841) .8746 (.5105)
Φ̂ΦΦ2CA .7661 (.3871) .8591 (.4708)

Φ̂ΦΦ1CJ .7603 (.3844) .8747 (.5112)
Φ̂ΦΦ2CJ .7670 (.3877) .8589 (.4695)

Φ̂ΦΦ1CAR .7602 (.3848) .8749 (.5129)
Φ̂ΦΦ2CR .7665 ( .3876) .8591 (.4717)

Φ̂ΦΦ1SA .3000 (.0816) .3416 (.0936)
Φ̂ΦΦ2SA .2995 (.0821) .3376 (.0918)

Φ̂ΦΦ1SJ .2925 (.0786) .3330 (.0901)
Φ̂ΦΦ2SJ .2919 (.0791) .3290 (.0883)

Φ̂ΦΦ1SR .2959 (.0793) .3369 (.0909)
Φ̂ΦΦ2SR .2953 (.0799) .3329 (.0892)
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Table 9: Distance Between the Benchmark Bayesian Estimator Σ̂ΣΣ1CA and Alternative Bayesian
Estimators of ΣΣΣ, U.S. Quarterly Data 1959Q1-2001Q4.

LΣ1 LΣ2 LΣ3

Σ̂ΣΣMLE .0053 .0100 .1603

Σ̂ΣΣ1CA 0 0 0
Σ̂ΣΣ2CA .0053 .0100 .0051
Σ̂ΣΣ3CA .0053 .0100 .0051

Σ̂ΣΣ1CJ .0193 .0431 .0204
Σ̂ΣΣ2CJ .0001 .0003 .0001
Σ̂ΣΣ3CJ .0040 .0084 .0041

Σ̂ΣΣ1CR .0322 .0773 .0353
Σ̂ΣΣ2CR .0054 .0115 .0056
Σ̂ΣΣ3CR .0138 .0317 .0148

Σ̂ΣΣ1SA .0000 .0001 .0000
Σ̂ΣΣ2SA .0203 .0365 .0192
Σ̂ΣΣ3SA .0052 .0099 .0051

Σ̂ΣΣ1SJ .0195 .0436 .0206
Σ̂ΣΣ2SJ .0001 .0003 .0001
Σ̂ΣΣ3SJ .0040 .0085 .0041

Σ̂ΣΣ1SR .0342 .0829 .0376
Σ̂ΣΣ2SR .0110 .0232 .0113
Σ̂ΣΣ3SR .0177 .0409 .0190
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Table 10: Distance Between the Benchmark Bayesian Estimator Φ̂ΦΦ1CA and Alternative Bayesian
Estimators of ΦΦΦ, U.S. Quarterly Data 1959Q1-2001Q4.

LΦ1 LΦ2

Φ̂ΦΦMLE .0008 .0009

Φ̂ΦΦ1CA 0 0
Φ̂ΦΦ2CA 4.6800 3.8900

Φ̂ΦΦ1CJ .0013 .0015
Φ̂ΦΦ2CJ 5.6773 4.5720

Φ̂ΦΦ1CR .0025 .0029
Φ̂ΦΦ2CR 5.6664 4.5472

Φ̂ΦΦ1SA 33.2468 86.0668
Φ̂ΦΦ2SA 33.7148 61.0389

Φ̂ΦΦ1SJ 34.8034 93.0472
Φ̂ΦΦ2SJ 35.3489 66.0322

Φ̂ΦΦ1SR 34.1431 89.4955
Φ̂ΦΦ2SR 34.6330 63.0639
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