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Summary

In this study, we examine posterior properties and frequentist risks of Bayesian estimators based

on several non-informative priors in Vector Autoregressive (VAR) models. We prove existence of

the posterior distributions and posterior moments under a general class of priors. Using a variety of

priors in this class we conduct numerical simulations of posteriors. We find that in most examples

Bayesian estimators with a shrinkage prior on the VAR coefficients and the reference prior of Yang

and Berger (1994) on the VAR covariance matrix dominate MLE, Bayesian estimators with the

diffuse prior, and Bayesian estimators with the prior used in RATS. We also examine the informative

Minnesota prior and find that its performance depends on the nature of the data sample and on the

tightness of the Minnesota prior. A tightly set Minnesota prior is better when the data generating

processes are similar to random walks, but the shrinkage prior or constant prior can be better

otherwise.
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1 Introduction

Vector-Autoregression (VAR) models initiated by the seminal papers of Sims (1972, 1980) have

become indispensable for macroeconomic research. A VAR of a p dimensional row-random vector

yyyt, typically has the form

yyyt = ccc +
L∑

i=1

yyyt−iBBBi + εεεt, (1)

where t = 1, · · · , T , ccc is a 1 × p unknown vector, BBBi (i = 1, · · · , L) is an unknown p × p matrix,

εεε1, · · · , εεεT are independently and identically distributed (iid) normal Np(0, ΣΣΣ) errors, with a p × p

unknown covariance matrix ΣΣΣ. We call L the lag of the VAR, and the (Lp + 1) × p unknown

matrix ΦΦΦ = (ccc′, BBB′1, · · · ,BBB′L)′ the regression coefficients. The VAR above imposes no restrictions

on the coefficients ΦΦΦ and the covariance matrix ΣΣΣ. In applications, ΦΦΦ and ΣΣΣ can be estimated

from time series macroeconomic data by Ordinary Least Square (OLS) or Maximum Likelihood

Estimator (MLE). Accurate estimation of finite sample distributions of (ΦΦΦ, ΣΣΣ) is important for

economic applications of the VAR model: In the recently developed structural VAR literature

numerous authors (e.g. Sims (1986), Gordon and Leeper (1994), Sims and Zha (1998b), Pagan and

Robertson (1998), Leeper and Zha (1999), and Lee and Ni (2002)) derive identification schemes

based on the estimates of ΣΣΣ. Many quantities of interest such as point forecast or impulse responses

are highly non-linear functions of ΦΦΦ and ΣΣΣ, which makes it important to precisely estimate the VAR

parameters. Unfortunately, the frequentist finite sample distributions of OLS (or ML) estimators

of ΦΦΦ and ΣΣΣ are unavailable. Asymptotic theory, on the other hand, may not be applicable for

finite sample inferences of VARs for two reasons. First, a typical VAR model in macroeconomic

research involves a large number of parameters, and the sample size of data is often not large

enough to justify the use of asymptotic theory. Second, when nonlinear functions of the VAR

coefficients are of interest, the asymptotic theory involves approximation of nonlinear functions,

and the approximation becomes worse the more nonlinear the functions there are (see Kilian 1999).

An alternative to asymptotic theory is the Bayesian approach, which combines information from

the sample and the prior to form a finite sample posterior distribution of (ΦΦΦ,ΣΣΣ). The present paper

evaluates alternative Bayesian procedures in terms of frequentist risks for practitioners who are

interested in finite sample distributions of VAR parameters.

The key element of Bayesian analysis is the choice of prior. The prior may be informative or

noninformative. A commonly used informative prior for ΦΦΦ is the Minnesota prior (see Litterman

1986), which is a multivariate normal distribution. If researchers have justified beliefs about the

hyper-parameters in the prior distributions, it is wise to use informative priors that reflect these
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beliefs. But in practice, using informative prior has pitfalls. One problem is that prior information

developed from experience may be irrelevant for a new data set. Another problem is that using

informative priors makes comparing scientific reports more difficult. In many cases it is desirable

to employ noninformative priors that offer much of the benefit of Bayesian analysis without the

difficulties involved with using an informative prior.

Noninformative priors are designed to reflect the notion that a researcher has only vague knowl-

edge about the distribution of the parameters of interest before he observes data. Alternative criteria

may be used to reflect the vagueness of the researcher’s knowledge. Thus there maybe more than

one noninformative prior for a given problem. It is also true that the parametric form of a non-

informative prior derived using a given criterion is problem-dependent. A recent review of various

approaches for deriving noninformative priors can be found in Kass and Wasserman (1996).

For the covariance matrix ΣΣΣ, a widely employed noninformative prior is the Jeffreys prior (Jef-

freys, 1967). A modified version of the Jeffreys prior is put to use in RATS (Regression Analysis

of Time Series, a software package popular among macroeconomists). This prior will be called the

RATS prior hereafter. The Jeffreys prior is quite useful for single parameter problems but can be

seriously deficient in multiparameter settings (see Berger and Bernardo, 1992). As alternatives,

Berger and Bernardo’s (1989, 1992) reference priors have been shown to be successful in various

statistical models, especially for iid cases. One of the objectives of the present study is to examine

the posterior of the VAR covariance matrix under these alternative priors.

In practice, researchers often combine separately derived priors for ΦΦΦ and ΣΣΣ as priors for (ΦΦΦ,ΣΣΣ).

The most popular noninformative priors include the constant-Jeffreys prior, a constant prior for ΦΦΦ

and the Jeffreys prior for ΣΣΣ, which was initially used for multivariate regression by Tiao and Zellner

(1964) and Geisser (1965). This prior has been widely used in VAR models (e.g., see Kadiyala

and Karlsson, 1997). In the RATS manual, the constant-RATS prior combination for (ΦΦΦ, ΣΣΣ) is

used for generation of the standard error bands of impulse responses. Hundreds, if not thousands,

of published empirical studies have used RATS-generated impulse responses and consequently this

default prior. The constant prior, although is used quite often for VAR coefficients, is known

to be inadmissible under quadratic loss for estimation of an unknown mean of vector with iid

normal observations (see Berger and Strawderman, 1996). An alternative to the constant prior is a

”shrinkage” prior for ΦΦΦ, which has been used in estimating the unknown normal mean in iid cases

(e.g, Baranchik, 1964), and in hierarchical linear mixed models (e.g., Berger and Strawderman,

1996). The shrinkage prior is a natural candidate for the VAR coefficients and will in this study be

explored in the VAR setting.

The fact that all of the noninformative priors of (ΦΦΦ,ΣΣΣ) mentioned above are improper raises
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a question on the propriety of the posterior distribution. 1 There exist situations in which the

posterior is improper even though the full conditional distributions necessary for Markov Chain

Monte Carlo (MCMC) simulations are all proper (e.g., Hobert and Casella 1996, Sun et al. 2001).

Our first task in studying properties of VAR estimators under alternative priors is to show that the

posteriors of (ΦΦΦ,ΣΣΣ) under these priors are proper. We establish posterior propriety for a general

class of priors that includes all prior combinations examined in the paper. In addition we also

give proofs for existence of posterior moments. (The usefulness of the proofs is beyond the present

paper.) Due to the fact that in most cases marginal posteriors are not available in closed-form, we

use MCMC simulations to estimate posterior quantities numerically.

Besides comparing alternative noninformative priors, we also examine an informative Minnesota

prior on ΦΦΦ used in combination with the reference prior on ΣΣΣ. The hyper-parameters for the

Minnesota prior are defined as follows: The mean of BBB1 is set as the identity matrix, the mean

of other elements in ΦΦΦ is set as zero, and the covariance matrix of the ith lag coefficient matrix

BBBi (i = 1, 2, .., L) is set to be diagonal. In some macroeconomic applications, economic theory

predicts random walk type behavior for certain time series (such as stock prices). If the true time

series are random walks and the prior correctly reflects this information, then using an informative

prior should lead to better performance. Intuitively, one would expect that when the Minnesota

prior confirms to the VAR, it should do better for a tightly specified prior variance of BBBi. Otherwise

the shrinkage prior or the constant prior may do better. We will investigate the performance of the

priors when the data generating processes are of different types.

The rest of the paper is organized as follows. Section 2 lays out the notation and the MLE of the

VAR model. Section 3 discusses the essential elements of Bayesian analysis for the VAR, including

priors, posteriors, loss functions, and Bayesian estimators. Section 4 presents MCMC algorithms for

Bayesian computation of posteriors. Section 5 reports numerical results of the Bayesian computation

using noninformative priors. Finally, Section 6 presents some conclusions from this work.

2 Notations and the MLE of the VAR

We condiser the VAR model (1). Let

xxxt = (1, yyyt−1, · · · , yyyt−L), (2)

1A prior is improper if its integral over the entire parameter space is infinity.
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YYY =




yyy1
...

yyyT


 , XXX =




xxx1
...

xxxT


 , εεε =




εεε1
...

εεεT


 ,ΦΦΦ =




ccc

BBB1
...

BBBL




. (3)

Here YYY and εεε are T × p matrices, ΦΦΦ is a (1 + Lp) × p matrix of unknown parameters, xxxt is a

1× (1 + Lp) row vector, and XXX is a T × (1 + Lp) matrix of observations. Then we rewrite (1) as

YYY = XXXΦΦΦ + εεε. (4)

The likelihood function of (ΦΦΦ, ΣΣΣ) is then

L(ΦΦΦ,ΣΣΣ) =
1

|ΣΣΣ|T/2
exp

{
−1

2

T∑

t=1

(yyyt − xxxtΦΦΦ)ΣΣΣ−1(yyyt − xxxtΦΦΦ)′
}

=
1

|ΣΣΣ|T/2
etr

{
−1

2
(YYY−XXXΦΦΦ)ΣΣΣ−1(YYY−XXXΦΦΦ)′

}
. (5)

Here and hereafter etr(A) is exp(trace(A)) of a matrix A. The finite sample distribution of (ΦΦΦ, ΣΣΣ)

is the subject of interest. Note that the MLEs of ΦΦΦ and ΣΣΣ are

Φ̂ΦΦMLE = (XXX′XXX)−1XXX′YYY and Σ̂ΣΣMLE = SSS(Φ̂ΦΦMLE)/T, (6)

respectively, where

SSS(ΦΦΦ) = (YYY−XXXΦΦΦ)′(YYY−XXXΦΦΦ). (7)

We assume that when T ≥ Lp+1, (XXX′XXX)−1 exists with probability one, if T ≥ Lp+p+1, SSS(Φ̂ΦΦMLE)

is positive definite, and the MLEs of ΦΦΦ and ΣΣΣ exist with probability one. In this paper, we take as

given that T ≥ Lp + p + 1 so the MLEs of ΦΦΦ and ΣΣΣ exist.

3 Bayesian Framework with Noninformative Priors

3.1 Priors for ΦΦΦ

In practice, it is often convenient to consider vectorized VAR coefficients φφφ = vec(ΦΦΦ), instead of ΦΦΦ.

A common expression of ignorance about φφφ is a (flat) constant prior. For estimating the mean of

a multivariate normal distribution, some authors (e.g., Baranchik 1964, Berger and Strawderman

1996) advocate the following “shrinkage” prior as an alternative to the constant prior for φφφ:

πS(φφφ) ∝ ‖φφφ‖−(J−2), φφφ ∈ IRJ , (8)

where J = p(Lp + 1), the dimension of φφφ. Berger and Strawderman show that the shrinkage prior

(8) dominates the constant prior for estimating the iid normal means. The intuitive justification of

4



using the shrinkage prior on ΦΦΦ is related to the Stein (1956) effect, where the information about

component variables can be used in such a way that “borrowed strength” improves the overall joint

loss of the estimator. Berger and Strawderman make the following methodological recommandation

on the choice of noninformative priors. “Avoid using constant priors for variances or covariance

matrices, or for groups of mean parameters of dimension greater than 2.” They add that “rigorous

verifications of these recommendations would be difficult, but the results in this paper, together

with our practical experience, suggest that they are very reasonable.”

Our theoretical investigation on the posteriors is conducted in a framework that includes both

the constant and shrinkage priors. We consider the class of priors of φφφ,

π(a)(φφφ) ∝ 1
‖φφφ‖a

, a ≥ 0. (9)

When a > 0, π(a)(φφφ) has the following two-stage hierarchical structure. Let πS(φφφ|δ) be the normal

density of NJ(0, δIIIJ),

(φφφ | δ) ∼ NJ(0, δIIIJ) and assume πa(δ) ∝ 1
δ{a−(J−2)}/2

. (10)

Then
∫ ∞

0
πS(φφφ | δ)π(a)(δ)dδ =

∫ ∞

0

1
(2πδ)J/2

exp
{
− 1

2δ
φφφ′φφφ

} 1
δ{a−(J−2)}/2

dδ

=
1

(2π)J/2

∫ ∞

0

1
δa/2+1

exp
{
− 1

2δ
φφφ′φφφ

}
dδ =

Γ(a/2)
(2π)J/2(φφφ′φφφ)a/2

,

which is proportional to (9). As suggested in the introduction, informative priors are suitable vehicles

for researchers to express their knowledge on the parameters of interest. A popular informative prior

in macroeconomics is the so-called Minnesota prior on φφφ.

πM (φφφ) ∝ 1
|MMM0|1/2

exp
{
−1

2
(φφφ− φφφ0)

′MMM−1
0 (φφφ− φφφ0)

}
. (11)

In this paper we compare the Minnesota prior with the constant and shrinkage priors on φφφ. We will

discuss the selection of hyper-parameters MMM0 and φφφ0 later.

3.2 Priors for ΣΣΣ

The most popular noninformative prior for ΣΣΣ is the Jeffreys prior (see Geisser 1965, Tiao and

Zellner 1964). The Jeffreys prior is derived from the ”invariance principle,” meaning the prior is

invariant to re-parameterization (see Zellner 1971). The Jeffreys prior is proportional to the square

root of the determinant of the Fisher information matrix. Specifically, for the VAR covariance

matrix, the Jeffreys prior is πJ(ΣΣΣ) ∝ |ΣΣΣ|−(p+1)/2. In RATS a modified version of the Jeffreys prior

πA(ΣΣΣ) ∝ |ΣΣΣ|−(L+1)p/2−1 is employed.
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It has been noted, however, that the Jeffreys prior often gives unsatisfactory results for multi-

parameter problems. For example, assuming the mean and variance are independent in the Neyman-

Scott (1948) problem, the Bayesian estimator of the variance under the Jeffreys prior is inconsistent.

An intuitive explanation for the poor performance of the Jeffreys prior in multi-parameter settings is

that the parameter inter-dependence amplifies the effect of the prior on each parameter. Bernardo

(1979) proposes an approach for deriving a reference prior by breaking a single multi-parameter

problem into a consecutive series of problems with fewer numbers of parameters. The reference prior

is designed to extract the maximum amount of expected information from the data in the sense of

maximizing the difference (measured by Kullback-Leibler distance) between the posterior and the

prior when the number of samples drawn goes to infinity. The reference priors preserve desirable

features of the Jeffreys prior such as the invariance property, but they often avoid paradoxical

results produced by Jeffreys prior in multi-parameter settings. Berger and Bernardo (1989, 1992)

develop a procedure that leads to explicit forms of reference priors. They show that the Bayesian

estimator of the variance in the Neyman-Scott problem is consistent under the reference prior. For

other examples in which reference priors produce more desirable estimators than Jeffreys priors, see

Berger and Bernardo (1992), Sun and Ye (1995), and Sun and Berger (1998), among others.

It is often the case that not all parameters deserve equal attention from a researcher. The key

difference between the reference prior and the Jeffreys prior is that unlike the latter, the reference

prior allows researchers to rank parameters by their perceived importance. For any given problem

the reference prior depends on the ordering of the parameters. Bernardo (1979) shows that if the

posterior is asymptotically normal, then the reference prior is the Jeffreys prior when there are no

nuisance parameters. In estimating the variance-covariance matrix ΣΣΣ based on an iid random sample

from a normal population with known mean, Yang and Berger (1994) re-parameterize the matrix

ΣΣΣ as O′DO, where D is a diagonal matrix whose elements are the eigenvalues of ΣΣΣ (in increasing

or decreasing order), and O is an orthogonal matrix. The following reference prior is derived by

giving priority to vectorized D over vectorized O: πR(ΣΣΣ) ∝ {|ΣΣΣ|∏1≤i<j≤p(λi − λj)}−1, where

λ1 > λ2 > · · · > λp are the eigenvalues of ΣΣΣ. Yang and Berger evaluate the reference-prior-based

estimators of a covariance matrix in an iid setting.

Similar to our treatment of noninformative priors on ΦΦΦ, we consider a general class of priors for

ΣΣΣ,

π(b,c)(ΣΣΣ) ∝ 1
|ΣΣΣ|b/2{∏1≤i<j≤p(λi − λj)}c

, (12)

where b ∈ IR and c = 0, 1. Then πJ(ΣΣΣ), πA(ΣΣΣ) and πR(ΣΣΣ) are special cases of (12).
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3.3 Joint Priors for (ΦΦΦ, ΣΣΣ)

The prior for (ΦΦΦ, ΣΣΣ) can be obtained by putting together priors for ΦΦΦ and ΣΣΣ. A popular nonin-

formative prior for multivariate regression models is called the diffuse prior, which consists of a

constant prior for φφφ and the Jeffreys prior for ΣΣΣ. A similar prior is used in the RATS package. As

will be shown later, the effect of the choice of prior for ΦΦΦ is not significantly affected by the prior on

ΣΣΣ. For brevity, for evaluating the performance of the Minnesota prior, it suffices to report results

of the Minnesota prior on φφφ in combination with the reference prior on ΣΣΣ.

We now consider a general class of joint priors for (φφφ, ΣΣΣ) :

π(a,b,c)(φφφ,ΣΣΣ) = π(a)(φφφ)π(b,c)(ΣΣΣ), c = 0, 1. (13)

As special cases of (13), the prior combinations for (φφφ,ΣΣΣ) to be examined together with Minnesota-

reference prior can be summarized as follows.

prior notation form (a, b, c)

constant-Jeffreys πCJ(φφφ,ΣΣΣ) 1
|ΣΣΣ|(p+1)/2 (0, p + 1, 0)

constant-RATS πCA(ΦΦΦ,ΣΣΣ) 1
|ΣΣΣ|(L+1)p/2+1 (0, (L + 1)p + 2, 0)

constant-reference πCR(φφφ,ΣΣΣ) 1
|ΣΣΣ|

∏
1≤i<j≤p

(λi−λj)
(0, 2, 1)

shrinkage-Jeffreys πSJ(φφφ,ΣΣΣ) 1
‖φφφ‖J−2|ΣΣΣ|(p+1)/2

(J − 2, p + 1, 0)

shrinkage-RATS πSA(φφφ,ΣΣΣ) 1
‖φφφ‖J−2|ΣΣΣ|(L+1)p/2+1

(J − 2, (L + 1)p + 2, 0)

shrinkage-reference πSR(φφφ,ΣΣΣ) 1
‖φφφ‖J−2|ΣΣΣ|

∏
1≤i<j≤p

(λi−λj)
(J − 2, 2, 1)

Minnesota-reference πMR(φφφ, ΣΣΣ)
exp

{
− 1

2
(φφφ−φφφ0)′MMM−1

0 (φφφ−φφφ0)

}

|MMM0|1/2|ΣΣΣ|
∏

1≤i<j≤p
(λi−λj)

The list of noninformative priors examined in the present paper is by no means exhaustive.

Other noninformative priors, such as Zellner’s (1997) Maximal Data Information Prior (MDIP), can

be derived using approaches not discussed in this paper. A modified version of Zellner’s prior in a

VAR setting is studied by Deschamps (2000). Sims and Zha (1998a) propose an MCMC procedure

drawing ΣΣΣ from an Inverse Wishart distribution and applying priors similar to the Minnesota prior

on φφφ. The Sims-Zha approach is particularly convenient for estimation of identified VARs.
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3.4 Propriety of the Posteriors

In this paper, we will compare various properties of estimators of the VAR parameters (ΦΦΦ, ΣΣΣ)

under various noninformative priors. Since all the noninformative priors for (ΦΦΦ,ΣΣΣ) listed above are

improper, it is important to know if the posteriors of (ΦΦΦ, ΣΣΣ) exist under these priors. Sun and Ni

(2001) prove that the posteriors of (ΦΦΦ, ΣΣΣ) are proper under both the constant-Jeffreys and constant-

reference priors πCJ(φφφ,ΣΣΣ) and πCR(φφφ,ΣΣΣ). We now develop more general results on the posteriors

under the prior π(0,b,c)(φφφ,ΣΣΣ).

Theorem 1 Consider the prior π(0,b,c)(φφφ,ΣΣΣ).

(a) If T > (L + 2)p− b + 1, the posterior of (φφφ, ΣΣΣ) under the prior π(0,b,0) is proper.

(b) If T > Lp− b + 3 > 0, the posterior of (φφφ,ΣΣΣ) under the prior π(0,b,1) is proper.

The proof of the theorem is given in Appendix A. The next theorem shows that if the MLE

exists, then the requirements on the sample size for existence of proper posteriors are satisfied for

prior combinations involving the constant prior.

Theorem 2 If the MLE of (ΦΦΦ, ΣΣΣ) exists, then the posterior of (φφφ,ΣΣΣ) is proper under πCJ(φφφ,ΣΣΣ),

πCA(φφφ,ΣΣΣ), and πCR(φφφ,ΣΣΣ).

Proof. In part (a) of Theorem 1, let b = p + 1 for prior πCJ and b = (L + 1)p + 2 for prior

πCA. The sample size requirement under πCJ(φφφ,ΣΣΣ) is T > (L + 1)p, and the requirement under

πCA(φφφ,ΣΣΣ) is T > p− 1. In part (b) of Theorem 1 with b = 2, the requirement under πCR(φφφ,ΣΣΣ) is

T > Lp + 1. Existence of the MLE requires T > (L + 1)p + 1, which guarantees the existence of the

posterior under all three prior combinations.

Theorem 2 implies that the posterior under the Minnesota-reference prior is proper due to the

facts that the constant-reference prior is proper and the Minnesota prior is bounded by a constant.

To show the existence of the posterior under the prior π(a,b,c)(φφφ,ΣΣΣ) when a > 0, we introduce

the following conditions.

(A) J − a > 0.

(B0) T > max(2p− b, J − a− b + 2).

(B1) T > J − a− b + 2.

Theorem 3 Consider the prior π(a,b,c) when a > 0.

(a) If Conditions (A) and (B0) hold, the posterior of (φφφ,ΣΣΣ) under the prior π(a,b,0) is proper.

(b) If Conditions (A) and (B1) hold, the posterior of (φφφ,ΣΣΣ) under the prior π(a,b,1) is proper.
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The proof of the theorem is given in Appendix B.

Theorem 4 If the MLE of (ΦΦΦ, ΣΣΣ) exists, then posterior of (φφφ,ΣΣΣ) is proper under πSJ(φφφ,ΣΣΣ),

πSA(φφφ,ΣΣΣ), and πSR(φφφ,ΣΣΣ).

Proof. Under prior πSJ , applying part (a) of Theorem 3 with a = J − 2 and b = p + 1 leads

to the requirement T > max(p − 1, 3 − p). Under prior πSA applying part (a) of Theorem 3 with

a = J − 2 and b = (L + 1)p + 2 leads to the requirement T > 2− (L + 1)p. Under prior πSR, letting

a = J − 2 and b = 2 in part (b) of Theorem 3 leads to the requirement T > 2. These requirements

are satisfied if the MLE exists.

3.5 Existence of Posterior Moments

Computing Bayesian estimators of VAR models involves posterior moments of (ΦΦΦ,ΣΣΣ). Existence of

the posterior is necessary but not sufficient for existence of posterior moments. In the following, we

derive sufficient conditions for existence of posterior moments of certain orders. We first consider

the case a = 0.

Theorem 5 (a) If T > (L + 2)p + 2h − b + 3, the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2 under the

prior π(0,b,0) is finite, where h is a nonnegative integer.

(b) If T > Lp + 2h− b + 5, the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2 under the prior π(0,b,1) is finite.

The proof of the theorem is given in Appendix C. The results imply the existence of the first

two posterior moments of the components of φφφ, and the hth posterior moments of the components

of ΣΣΣ. The following theorem for the priors considered in this paper is a straightforward application

of Theorem 5.

Theorem 6 (a) Under πCJ(φφφ,ΣΣΣ), if T > (L+1)p+2+2h, the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2

is finite.

(b) Under πCA(φφφ,ΣΣΣ), if T > p + 2h + 1, the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2 is finite.

(c) Under πCR(φφφ,ΣΣΣ), if T > Lp + 1, the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2 is finite.

Following part (c) of the theorem above, under πMR(φφφ,ΣΣΣ), the posterior mean of ‖φφφ‖2{tr(ΣΣΣ2)}h/2

exists if T > Lp + 1.

Let k and h be nonnegative integers. Consider the conditions for the case a > 0:

(AM) J − a > 0 and a− k > 0;
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(B0M) T > max(2p− b + 2h, J − a + k − b + 2);

(B1M) T > J − a + k − b + 2.

Theorem 7 (a) If Conditions (AM) and (B0M) hold, the posterior mean of ‖φφφ‖k{tr(ΣΣΣ2)}h/2

under the prior π(a,b,0) is finite.

(b) If Conditions (AM) and (B1M) hold, the posterior mean of ‖φφφ‖k{tr(ΣΣΣ2)}h/2 under the prior

π(a,b,1) is finite.

The proof of the theorem is given in Appendix D. The results imply the existence of the kth

posterior moments of the components of φφφ and the hth posterior moments of the components of ΣΣΣ.

Applying Theorem 7 to prior combinations that involve the shrinkage prior, we have the following

result.

Theorem 8 (a) Under πSJ(φφφ,ΣΣΣ), if T > max(p − 1 + 2h, 3 − p + k), the posterior mean of

‖φφφ‖k{tr(ΣΣΣ2)}h/2 is finite.

(b) Under πSA(φφφ,ΣΣΣ), if T > max(p − Lp − 2 + 2h, k − (L + 1)p + 2), the posterior mean of

‖φφφ‖k{tr(ΣΣΣ2)}h/2 is finite.

(c) Under πSR(φφφ,ΣΣΣ), if T > 2 + k, the posterior mean of ‖φφφ‖k{tr(ΣΣΣ2)}h/2 is finite.

From Theorems 6 and 8 we conclude that the requirements on the sample size for existence of

posterior moments are easily satisfied in practical cases.

3.6 Conditional Posterior Distributions

The posteriors of (φφφ,ΣΣΣ) are not available in closed-form for most prior combinations. Recent

years have witnessed vast progress in numerical posterior simulations. For some recent examples of

Bayesian computations in econometrics, see Geweke (1996, 1999), Chib (1998), Chib and Hamilton

(2000), and the references therein. In this study, we use Gibbs sampling MCMC methods to sample

from the posteriors (cf. Gelfand and Smith, 1990). The first step of the MCMC computation is to

find the full conditional distributions of (φφφ,ΣΣΣ). We will make use of the following results.

Fact 1 Consider the constant-Jeffreys prior for (φφφ,ΣΣΣ). The conditional posterior of φφφ given ΣΣΣ

is MV N(φ̂φφMLE , ΣΣΣ⊗ (XXX′XXX)−1) and the marginal posterior of ΣΣΣ is Inverse Wishart (SSS(Φ̂ΦΦMLE), T −
Lp− 1). Here φ̂φφMLE is defined as vectorized Φ̂ΦΦMLE and ⊗ is Kronecker product.

Proof. This follows from the proof of Theorem 1. (We followed the notation of the Inverse

Wishart distribution of Anderson 1984, p268).
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Fact 2 Consider the constant-RATS prior for (φφφ,ΣΣΣ). The conditional posterior of φφφ given ΣΣΣ is

MV N(φ̂φφMLE , ΣΣΣ⊗ (XXX′XXX)−1) and the marginal posterior of ΣΣΣ is Inverse Wishart (SSS(Φ̂ΦΦMLE), T ).

Fact 3 Consider the constant-reference prior.

(a) The conditional distribution of φφφ given (ΣΣΣ,YYY) is

π(φφφ | ΣΣΣ,YYY) ∼ MV N(φ̂φφMLE , ΣΣΣ⊗ (XXX′XXX)−1). (14)

(b) The conditional density of ΣΣΣ given (φφφ,YYY) is

π(ΣΣΣ | φφφ,YYY) ∝ etr{−1
2ΣΣΣ−1SSS(φφφ)}

|ΣΣΣ|T2 +1
∏

1≤i<j≤p

(λi − λj)
, (15)

where SSS(ΦΦΦ) is defined by (7).

Proof. This follows from standard computation.

The hierarchical structure (10) suggests a nice computational formula. For example, the shrink-

age prior πS(φφφ) is a special case of (10) with a = J − 2. In this case, we have

(φφφ | δ) ∼ NJ(0, δIIIJ) and π(δ) ∝ 1.

Instead of simulating from the conditional distribution of ΦΦΦ and ΣΣΣ within each Gibbs cycle, we use

δ as a latent variable and simulate from ΦΦΦ, ΣΣΣ, and δ based on the following fact.

Fact 4 Consider the shrinkage-reference prior.

(a) The conditional density of ΣΣΣ given (φφφ, δ,YYY) is in (15).

(b) The conditional distribution of φφφ = vec(ΦΦΦ) given (δ,ΣΣΣ,YYY) is MV NJ(µµµS ,VVVS), where

µµµS = δ
(
ΣΣΣ⊗ (XXX′XXX)−1 + δIIIJ

)−1
φ̂φφMLE ; (16)

VVVS =
(
ΣΣΣ−1 ⊗XXX′XXX +

1
δ
IIIJ

)−1
. (17)

(c) The conditional distribution of δ given (ΦΦΦ, ΣΣΣ,YYY) is Inverse Gamma (J
2 − 1, 1

2φφφ′φφφ).

Proof. The proof of (b) is similar to Example 9 of Berger (1984). The others are simple.

Since the Minnesota prior of ΦΦΦ is independent of ΣΣΣ, the conditional posterior density under the

Minnesota-reference prior for ΣΣΣ given (φφφ, YYY) is given by (15). The conditional posterior density of

φφφ given (ΣΣΣ, YYY) is

π(φφφ | ΣΣΣ,YYY) ∝ exp
{
−1

2
(φφφ−φφφ0)

′M−1
0 (φφφ−φφφ0)−

1
2
(φφφ−φ̂φφMLE)′

[
ΣΣΣ−1 ⊗ (XXX′XXX)

]
(φφφ−φ̂φφMLE)

}
. (18)

Thus we have the following result.
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Fact 5 Consider the Minnesota-reference prior. The conditional density of φφφ given (ΣΣΣ,YYY) is

MV NJ(µµµM ,VVVM ), where

µµµM = φ̂φφMLE + (M−1
0 + ΣΣΣ−1 ⊗ (XXX′XXX)−1)−1M−1

0 (φφφ0 − φ̂φφMLE); (19)

VM = (M−1
0 + ΣΣΣ−1 ⊗ (XXX′XXX))−1. (20)

The hyper-parameter φφφ0 (i.e. vec(ΦΦΦ0)) is defined by letting the mean of B1 be the identity

matrix and the mean of the other elements be zero. The elements of M0 are given as b1/k for

parameters of VAR variables of their own kth lag; (b1b2/k) (σ̂i/σ̂j)
1/2 for parameters of the kth lag

of the jth variable in the ith equation, j 6= i, (σ̂i is the variance of the residuals of ith VAR equation

estimated via OLS); and b3 for intercepts. There is no unique way of choosing the hyper-parameters.

Our specification of the M0 matrix closely follows that of Kadiyala and Karlsson (1997), which is

slightly different from the form in the RATS manual and Hamilton’s book (1994 p361-362). In our

numerical examples, we experiment with alternative settings of the Minnesota prior with different

variance parameters b1 and b3. Following convention we choose the hyper-parameter b2 to be 0.5.

We also set b3 = 1.0. We control the ”tightness” of the Minnesota prior by adjusting the values of

parameter b1. A tight version of the Minnesota prior is defined by b1 = 0.22, and a loose version sets

b1 = 0.92. Here the words ”tight” or ”loose” are used in relative terms. One can certainly argue

that b1 = 0.92 represents a tight prior compared to the case b1 = 102.

3.7 Loss Functions and Bayesian Estimators

A Bayesian estimator of (ΦΦΦ, ΣΣΣ) depends on the data generating model, the prior, and the loss

function. We consider a pseudo entropy loss function for ΣΣΣ and a quadratic loss function for ΦΦΦ,

L1(Σ̂ΣΣ;ΣΣΣ) = tr(Σ̂ΣΣ
−1

ΣΣΣ)− log |Σ̂ΣΣ−1
ΣΣΣ| − p; (21)

L2(Φ̂ΦΦ, ΦΦΦ) = tr{(Φ̂ΦΦ− ΦΦΦ)′W−1(Φ̂ΦΦ− ΦΦΦ)}, (22)

where W−1 is a constant weighting matrix, and p is the number of variables in the VAR. If the

weighting matrix WWW is the identity matrix, the loss L2 is simply the sum of squared errors of all

elements of Φ̂ΦΦ,

1+Lp∑

i=1

p∑

j=1

(Φ̂i,j − Φi,j)2. (23)

The loss L2 can be decomposed as L21+L22, where the loss associated with the intercept terms

is

L21 =
p∑

j=1

(Φ̂1,j − Φ1,j)2, (24)
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and the loss associated with terms other than the intercepts is

L22 =
1+Lp∑

i=2

p∑

j=1

(Φ̂i,j − Φi,j)2. (25)

The loss function for (ΦΦΦ, ΣΣΣ) contains a part measuring the loss associated with the covariance

matrix (L1) and a part measuring the loss pertaining to the VAR coefficients (L2). It is well known

that the Bayes estimator under the square error loss is the posterior mean. One can also verify that

the posterior mean is the Bayesian estimator under loss function L1. Thus we have the following

result.

Lemma 1 Under the loss L1 + L2, the generalized Bayesian estimator of (ΦΦΦ, ΣΣΣ) is

Φ̂ΦΦ = IE(ΦΦΦ | YYY), (26)

Σ̂ΣΣ = IE(ΣΣΣ | YYY). (27)

4 Algorithms for Simulating from Posterior of (ΦΦΦ, ΣΣΣ)

The algorithms for MCMC computations of posterior distributions of (φφφ,ΣΣΣ) depend on the priors.

For brevity we only outline the algorithms with constant prior on φφφ and the Jeffreys and reference

priors on ΣΣΣ.

Following Fact 1, we use an MC algorithm to sample from the joint posterior distribution (φφφ,ΣΣΣ).

Suppose at cycle k we have (Φk−1,ΣΣΣk−1) sampled from cycle k− 1. The following algorithm is used

for computing the posterior under the constant-Jeffreys prior.

Algorithm CJ:

Step 1: Simulate ΩΩΩ ∼ IW (SSS(Φ̂ΦΦMLE), T − Lp− 1) and let ΣΣΣk = ΩΩΩ.

Step 2: Simulate φφφk from MV N(φ̂φφMLE , ΣΣΣk ⊗ (XXX′XXX)−1). Stop if k + 1 is larger than a pre-set

number M , otherwise replace k by k + 1 and go to Step 1.

The algorithm using the constant-RATS prior is similar to the one above, with the exception that

in Step 1 the distribution of the Inverse Wishart has different degrees of freedom: ΩΩΩ ∼ IW (SSS(Φ̂ΦΦ), T ).

It is much more difficult to simulate from the conditional distribution of ΣΣΣ under the reference

prior. We adopt a hit-and-run algorithm used in Yang and Berger (1994). In implementing the

algorithm, we consider a one-to-one transformation of ΣΣΣ, namely ΣΣΣ∗ = log(ΣΣΣ) or ΣΣΣ = exp(ΣΣΣ∗) in

the sense that

ΣΣΣ =
∞∑

j=0

ΣΣΣ∗j

j!
.
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It can be shown that the conditional posterior density of ΣΣΣ∗ given (φφφ,YYY) is then

π(ΣΣΣ∗ | φφφ,YYY) = π(ΣΣΣ∗ | SSS(φφφ)) ∝ etr{−T
2 |ΣΣΣ∗| − 1

2(expΣΣΣ∗)−1SSS(φφφ)}∏
i<j(λ∗i − λ∗j )

, (28)

where ΣΣΣ∗ = OOO′ΛΛΛ∗OOO, OOO is an orthogonal matrix, and ΛΛΛ∗ = diag(λ∗1, · · · , λ∗p) with λ∗1 > . . . > λ∗p.

Note that exp(ΣΣΣ∗) = OOO′ exp(ΛΛΛ∗)OOO.

To simulate ΣΣΣ∗ from (28), we use the following algorithm. Assume we have a Gibbs sample

(ΦΦΦk−1, ΣΣΣk−1).

For Cycle k:

Step 1: Simulate φφφk ∼ MV N(φ̂φφMLE , ΣΣΣk−1 ⊗ (XXX′XXX)−1) and get ΦΦΦk.

Step 2: Calculate SSSk = S(φφφk) = (YYY−XXXΦΦΦk)′(YYY−XXXΦΦΦk).

Step 3: Decompose ΣΣΣk−1 = OOO′ΛΛΛOOO, where ΛΛΛ = diag(λ1, · · · , λp), λ1 > λ2 · · · > λp, and OOO′OOO = III.

Let λ∗i = log(λi), ΛΛΛ∗ = diag(λ∗1, · · · , λ∗p), and ΣΣΣ∗k−1 = OOOΛΛΛ∗OOO′.

Step 4: Select a random symmetric p × p matrix VVV, with elements vij = zij/
√∑

l≤m z2
lm, where

zij ∼ N(0, 1), 1 ≤ i ≤ j ≤ p. The other elements of VVV are defined by symmetry.

Step 5: Generate t ∼ N(0, 1) and set WWW = ΣΣΣ∗k−1 + tVVV. Decompose WWW = QQQ′CCC∗QQQ, where CCC∗ =

diag(c∗1, · · · , c∗p), c∗1 > c∗2 · · · > c∗p, and QQQ′QQQ = III. Compute

αk = log(π(exp(WWW) | SSSk))− log(π(exp(ΣΣΣ∗k−1)) | SSSk)

=
T

2

p∑

i=1

(λ∗i − c∗i ) +
1
2
tr{((expΣΣΣ∗k−1)

−1 − (expWWW)−1)SSSk}

+
∑

i<j

log(λ∗i − λ∗j )−
∑

i<j

log(c∗i − c∗j ).

Step 6: Generate u ∼ Unif(0, 1).

If u ≤ min(1, exp(αk)), let ΣΣΣ∗k = WWW and ΣΣΣk = QQQCCCQQQ′, where CCC = diag(ec1 , · · · , ecp);

otherwise, let ΣΣΣ∗k = ΣΣΣ∗k−1 and ΣΣΣk = ΣΣΣk−1. Stop if k + 1 is larger than a pre-set number M ;

otherwise replace k by k + 1 and go to Step 1.

When the shrinkage prior is used to replace the constant prior for φφφ, the algorithms for Bayesian

computation need to be modified by adding one step for drawing φφφ using Fact 4. In cycle k, φφφk

is drawn in two-steps. First, parameter δk is drawn from an Inverse Gamma distribution, which

depends on φφφk−1. Then φφφk is drawn from a multivariate normal distribution that depends on

δk, ΣΣΣk, and the data sample. The MCMC algorithm for numerical simulation of the posterior of
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(φφφ,ΣΣΣ) under the Minnesota-reference prior is based on the conditional posteriors in Fact 3 and

Fact 5. The algorithm is quite similar to the algorithm used for drawing the posterior under the

constant-reference prior combination, with a modification in the conditional density π(φφφ | ΣΣΣ, YYY).

5 MCMC Simulations

In the following we use numerical examples to evaluate the posteriors of competing estimators. We

first generate N = 1, 000 data samples from VARs with known parameters. Then for each generated

data set we compute the Bayesian estimates under alternative priors via algorithms described in the

previous section. The MCMC computations for eight prior combinations on (ΦΦΦ,ΣΣΣ) are labled as CA

(Constant-RATS priors), CJ (Constant-Jeffreys priors), CR (Constant-Yang and Berger’s Refer-

ence priors), SA (Shrinkage-RATS priors), SJ (Shrinkage-Jeffreys priors), SR (Shrinkage-Reference

priors), TMR (Tight Minnesota-Reference priors), and LMR (Loose Minnesota-Reference priors).

The length of the Markov Chain is set at M = 10, 500, with the first 500 cycles serving as burn-in

runs. We choose a variety of data-generating VARs. Using the Monte Carlo results, we evaluate

the Bayesian estimators under competing priors in terms of the frequentist risks, impulse responses,

and the Mean Squared Errors of Forecast (MSEF). We also plot frequentist distributions of some

elements of ΣΣΣ. We now discuss the criteria of evaluation in more detail.

5.1 Criteria for Evaluations of Bayesian VAR Estimates

a. Average Frequentist Losses. The most important criterion of evaluation is the frequentist risks

of MLE and Bayesian estimators with various prior combinations on ΣΣΣ and ΦΦΦ. For loss function

Li, we denote the frequentist risk as Ri(i = 1, 2). We also denote the estimates of ΣΣΣ and ΦΦΦ from

the nth data set as Σ̂ΣΣ
n

and Φ̂ΦΦ
n
. The frequentist risks are estimated by averaging the losses over N

samples:

R1(ΣΣΣ) =
1
N

N∑

n=1

L1(Σ̂ΣΣ
(n)

, ΣΣΣ), and R2(ΦΦΦ) =
1
N

N∑

n=1

L2(Φ̂ΦΦ
(n)

, ΦΦΦ).

b. Impulse Response Functions. A covariance stationary VAR has the moving average represen-

tation

yyyt = IE0yyyt +
t−1∑

j=0

εεεt−jHHHj , (29)

where HHH0 is the p by p identity matrix, and the impulse responses of yyyt to a shock εεεt−j from j
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periods earlier is

HHHj =
j∑

i=1

BBBiHHHj−i, (30)

where BBBi=0 for i larger than L. Note that the components of the vector of errors εεεt are correlated

since the covariance matrix is unrestricted. For example, the forecasting error of short-term interest

rates may be correlated with that of inflation. Suppose a short-term interest rate is the monetary

policy indicator. Then a monetary policy shock is represented by a shock in the short-term interest

rate uncorrelated with other shocks. Thus more economic meaningful impulse responses are ones

to orthogonalized (structural) errors. Orthogonalization of the errors can be achieved through the

Cholesky decomposition of the covariance matrix,

ΣΣΣ = ΨΨΨΨΨΨ′, (31)

and a mapping from VAR errors to structural shocks,

uuut = εεεtΨΨΨ−1′. (32)

The covariance matrix of the structural error vector uuut is the identity matrix. The impulse response

to structural shocks from j periods earlier is given by ZZZj=ΨΨΨ′HHHj . By definition, impulse responses

are nonlinear functions of (ΦΦΦ, ΣΣΣ). The nonlinearity makes it difficult to derive frequentist inferences

but does not pose difficulties for Bayesian simulations as long as (ΦΦΦ,ΣΣΣ) can be simulated. For

the nth data set generated in the experiment, we denote the impulse response matrix on the ith

step after the shock as ẐZZ
(n)
i . The accuracy in estimation of the impulse responses (with forecasting

horizon H) is measured by the frequentist average of sum of squared errors

RImp =
1

Np2H

N∑

n=1

tr{
H∑

i=1

(ZZZi − ẐZZ
(n)
i )′(ZZZi − ẐZZ

(n)
i )}. (33)

c. Improvement in Mean Squared Errors of Forecast compared to the MLE. Besides risks, one

frequentist criterion for evaluating estimators is the forecasting error attributable to the deviation

of estimates from the true parameters. The h-step-ahead forecasting error at period T can be

decomposed into two orthogonal parts:

yyyT+h − ŷyyT+h | Φ̂ΦΦ = (yyyT+h − ŷyyT+h | ΦΦΦ) + (ŷyyT+h | ΦΦΦ− ŷyyT+h | Φ̂ΦΦ),

where ŷyyT+h | ΦΦΦ and ŷyyT+h | Φ̂ΦΦ are the forecasts conditional on observations up to period T . They

can be calculated from the VAR by setting the error term to zero after period T .

The first term in the right-hand-side is the sampling error. The second term is the forecasting

error attributable to the deviation of estimates from the true parameters. Since the true parameters
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are known, the second term can be calculated with competing estimators, and the MSEF of the

second term can be compared. The MSEF is related to the frequentist loss in L2. To see this, note

the one-step-ahead forecasts are

ŷyyT+1 | ΦΦΦ = xxxT ΦΦΦ, (34)

ŷyyT+1 | Φ̂ΦΦ = xxxT Φ̂ΦΦ. (35)

Hence

IE(ŷyyT+1 | ΦΦΦ− ŷyyT+1 | Φ̂ΦΦ)′(ŷyyT+1 | ΦΦΦ− ŷyyT+1 | Φ̂ΦΦ) = IE(ΦΦΦ− Φ̂ΦΦ)′xxx′T xxxT (ΦΦΦ− Φ̂ΦΦ). (36)

In other words, the MSEF is the expectation of weighted quadratic estimation errors of ΦΦΦ.

The frequentist average of the one-step-ahead MSEF for N samples is

ÎE(ΦΦΦ− Φ̂ΦΦ)′xxx′T xxxT (ΦΦΦ− Φ̂ΦΦ) =
1
N

N∑

n=1

(ΦΦΦ− Φ̂ΦΦ
(n)

)′xxx(n) ′
T xxx(n)

T (ΦΦΦ− Φ̂ΦΦ
(n)

).

5.2 Simulation Results

Numerous factors in the model design influence the performance of Bayesian estimators. For a given

model, a larger sample size (T ) makes smaller the effect of prior choice on the estimates. For a given

sample size, a larger number of variables (p) included in the VAR or a longer lag length (L) makes

the prior choice more important. Numerical results are presented to illustrate the effects of the

sample size and dimension of the model. We will denote the VAR model (4) as VAR(T, p, L; ΦΦΦ, ΣΣΣ).

The relative performance of a prior also depends on the data generating process. For instance,

the Minnesota prior should do well if data are generated from random walk processes and not as

well otherwise. The types of models we choose have some characteristics commonly observed in

macroeconomic time series. We first consider bivariate VARs with one lag. This setting involves the

least number of parameters and allows for more experiments. We employ the covariance matrix ΣΣΣ

with different correlations and different types of VAR coefficient matrix ΦΦΦ. We consider three types

of data generating models for VARs with one lag: random walks with uncorrelated errors ( ΣΣΣ = IIIp ),

Granger-causal chains with correlated errors, and VARs with relatively large off-diagonal elements

in the lag coefficient matrix. In addition to the one-lag VARs, we also consider two-lag VARs that

are close to being I(2) processes (i.e., the first difference in the time series are random walks).

Example 1 We consider VAR(T = 20, p = 2, L = 1; ΦΦΦ, ΣΣΣ), where ΦΦΦ is given by (3) with ccc =

(0, 0),BBB1 = III2, and ΣΣΣ = III2. This model serves as the benchmark. The assumption that the

covariance matrix ΣΣΣ is the identity matrix means that we treat the VAR disturbances as structural
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shocks. The assumption that the VAR lag coefficient matrix is also the identity means that the

VAR consists of independent random walk variables.

For 1,000 replications with Markov Chain length 10,500, the MCMC computations take about

two hours total on a 1.7 GHz Pentium4 PC for all eight prior combinations. Simulation results

are little changed when the Markov Chain length is reduced to 5,000 and the number of gener-

ated samples is reduced to 500, suggesting that the Markov chains converge rather quickly. The

Metropolis-Hastings procedure is efficient for simulation of the ΣΣΣ matrix under the Yang-Berger’s

reference prior, with acceptance rates around 58 percent.

The frequentist risks of MLE and Bayesian estimates under the test priors are reported in Table

1. The first two columns report the average and standard errors of losses associated with ΣΣΣ and

ΦΦΦ over the 1,000 generated samples. They show that the average losses associated with ΣΣΣ are not

influenced much by the prior on ΦΦΦ. For estimating ΣΣΣ, the reference prior reduces risks by more

than two third of that of the MLE and by about one half to two third compared with the Bayesian

estimates under RATS and Jeffreys priors. For estimating ΦΦΦ, the tight Minnesota prior does best and

the loose Minnesota prior second best. This not surprising given the fact that the data generating

ΦΦΦ is the mean of the Minnesota prior. If a researcher knows the data are generated by time series

best characterized as random walks, then a tight Minnesota prior is a good choice. Comparison of

the first four rows of the second column shows that Bayesian estimates of ΦΦΦ based on the constant

prior are no better than the MLE. On the other hand, the shrinkage-reference prior reduces the

average loss pertaining to ΦΦΦ by over a half, compared to the MLE. It is worthwhile to note that

under the shrinkage prior the conditional posterior mean of φφφ is (ΣΣΣ ⊗ (δXXX′XXX)−1 + IIIJ)−1φ̂φφMLE ,

which appears to shrink φ̂φφ towards zero. However, not all elements of the shrinkage-based Bayesian

estimator of the matrix ΦΦΦ are smaller than their MLE counterparts. It turns out that the diagonal

elements of the Bayesian estimates of the lag coefficients BBB1 are larger than those of the MLE.

In VAR models, by construction the regressors and the lags of error terms are correlated, and the

MLEs are biased in finite samples. With a downward bias of the MLE of BBB1, the Bayesian estimator

under the shrinkage prior may improve over the MLE by reducing bias for some elements and at

the same time substantially reducing variances.

The third column of Table 1 reports the frequentist average of L22 losses associated with elements

of the VAR lag coefficients BBB1. The difference between the second and third column is the average

L21 loss associated with the constant terms in the VAR. The average losses in the third column

are much smaller than the second column, suggesting that most of the L2 losses are due to L21.

By definition, the intercept terms in the VAR do not affect the impulse responses. It is therefore

reasonable that different rows of the fourth column of Table 1, which report the averages of mean
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squared errors of elements of impulse responses, are fairly similar under different priors.

Figure 1 plots the impulse response of the first variable to a shock of the first equation. The

response with respect to the true parameters is a horizontal line at 1. Each panel of the figure plots

the frequentist average and frequentist standard errors of the impulse responses based on the MLE

and Bayesian estimates. With the constant prior applied to ΦΦΦ, the MLE and Bayesian estimates

of ΦΦΦ are very similar. The impulse responses corresponding to the Bayesian estimates are different

from those corresponding to the MLE mainly because the estimates of ΣΣΣ are different. The MLEs

of ΦΦΦ and ΣΣΣ are both biased downwards. For this example the Bayesian estimate Σ̂ΣΣCA has a slight

downward bias, Σ̂ΣΣCJ has an upward bias, and Σ̂ΣΣCR has almost no bias. The frequentist standard

errors for the MLE appear to be slightly smaller than those of the Bayesian estimates largely because

the average of Σ̂ΣΣMLE is significantly smaller than its Bayesian counterparts. In every panel there

is a downward bias, which becomes worse with the increase of time. Overall the average errors in

estimation of impulse responses are similar under the constant prior and MLE. Under the shrinkage

prior the variance in ΦΦΦ is reduced. For similar estimates of ΣΣΣ, the impulse responses show smaller

variances across samples. The improvements in the mean and reduced variance result in smaller

frequentist average of the estimation errors in impulse responses. Such improvements are quite

marginal, though, because the main source of estimation error is the downward bias of the MLE of

ΦΦΦ. The tight Minnesota prior is most effective in correcting the bias. Naturally the estimates of the

tight Minnesota-reference prior yield the smallest average error in impulse responses.

Unlike the impulse responses, the forecast errors are affected by the estimates of the intercept

terms. To illustrate the point, we will follow the notation in (3) and in addition let

yyy = (yyyT−1, · · · , yyyT−L), BBB =




BBB1
...

BBBL


 , ∆ccc = ccc− ĉcc, ∆BBB = BBB− B̂BB. (37)

The MSEF can be decomposed as

IE(ΦΦΦ− Φ̂ΦΦ)′xxx′T xxxT (ΦΦΦ− Φ̂ΦΦ) = IE(∆ccc′∆ccc + ∆ccc′yyy∆BBB + ∆BBB′yyy′∆ccc + ∆BBB′yyy′yyy∆BBB). (38)

As the frequentist average losses in Table 1 show, for the MLE and the constant-prior-based

Bayesian estimators, the estimation error for the intercept term ∆ccc is quite large compared to the

error in the lag coefficients. This results in relatively large improvements of shrinkage-prior-based

estimators over the MLE in forecasting errors, as indicated in the last column of Table 1.

Example 2 We now generate data sets from VAR(T = 20, p = 2, L = 1; ΦΦΦ, ΣΣΣ), where

ΣΣΣ =

(
1.0 0.71

0.71 2.0

)
, ΦΦΦ =




1.0 1.0
0.7 0
0.3 1.0


 .
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Here errors are assumed to have correlation of 0.5, and BBB1 is lower triangular, suggesting that the

lags of yyy1t are not useful for predicting yyy2t. The VAR contains a unit root.

We calculate the frequentist risks and compare the performance of Bayesian estimators based

on the set of test priors. The results are reported in Table 2. Bayesian estimators based on the

reference prior on ΣΣΣ are better than the MLE, but the improvements are not as substantial as in the

previous example. The less dominating performance of the reference prior may be due to the strong

pairwise correlations of the VAR residuals in this example. By construction, the reference prior

employed in this paper re-parameterizes ΣΣΣ as O′DO, with diagonal matrix D being the eigenvalues

and O being an orthogonal matrix. The eigenvalues are placed before the orthogonal matrix in

the order of importance, hence by design the performance for estimators for D is perceived to be

more important. In the previous example the ΣΣΣ matrix is diagonal, and the reference prior does

much better. In this example, the pairwise correlations of VAR residuals are close to unity, hence

the off-diagonal elements of the ΣΣΣ matrix are more prominent. But note that even in this case the

reference prior still does better than other priors. In Table 2 the relatively large forecasting errors

of the estimates under the tight Minnesota-reference prior is caused by the poor estimates of the

first column of BBB1, the column that corresponds to the variable that does not follow a random walk.

Example 3 We now consider VAR(T = 20, p = 2, L = 1; ΦΦΦ, ΣΣΣ), where

ΣΣΣ =

(
1.0 0.71

0.71 2.0

)
, and ΦΦΦ =




1.0 1.0
0.3 0.7
0.7 0.3


 .

Here BBB1 is quite different from III2.

The focus is to compare the Minnesota prior with the shrinkage prior. The data-generating

model in this example is substantially different from random walks. The tight Minnesota prior puts

a heavy weight on the wrong prior information and results in rather poor estimates. The frequentist

risks with respect to both ΣΣΣ and ΦΦΦ for the Bayesian estimates based on the tight Minnesota-reference

prior are larger than those of the shrinkage-reference prior. The frequentist averages of the Bayesian

estimates under the shrinkage-reference prior are

Σ̂ΣΣSR =

(
1.1985 0.6904
0.6904 2.1723

)
, Φ̂ΦΦSR =




0.6810 0.6252
0.3024 0.7006
0.7124 0.3159


 .

In comparison, the frequentist averages of the Minnesota-reference prior estimates deviate consid-

erably further from the true parameters:

Σ̂ΣΣTMR =

(
2.0674 0.0081
0.0081 2.8750

)
, Φ̂ΦΦTMR =




0.6276 0.5878
0.8887 0.1458
0.1279 0.8714


 .
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Under the tight Minnesota prior, the estimate of the VAR lag coefficient matrix is severely

biased towards the identity matrix. The average estimation errors of impulse responses of the tight-

Minnesota-prior-based estimates are larger than those of the other estimates. The last column of

Table 3 shows that the one-step-ahead forecast errors of the Bayesian estimates under the tight

Minnesota prior are much larger than those of the MLE.

The conditional densities π(φφφ | ΣΣΣ, YYY, δ) or π(φφφ | ΣΣΣ, YYY) under the shrinkage and Minnesota priors

are both multivariate normal. Under the Minnesota prior, the conditional mean of φφφ, µµµM , is the

MLE φ̂φφMLE adjusted by the weighted difference between the mean of prior φφφ0 and the MLE. Under

the shrinkage prior the conditional mean µµµS is the MLE multiplied by a shrinkage matrix. Both

the Minnesota prior and the shrinkage prior lead to smaller conditional variance. The reduction of

conditional variance by the Minnesota prior depends on the variance of the prior M0. The tighter

the Minnesota prior (i.e. the smaller M0) the larger is the reduction in the conditional variance.

The relative performance of the shrinkage prior and the Minnesota prior depends on whether the

Minnesota prior correctly reflects the true parameters. If φφφ0 is closer to the true parameter φφφ than

the MLE φ̂φφMLE , and if the variance M0 is small, then the Minnesota prior should be superior to

the shrinkage prior. On the other hand, if the Minnesota prior is not concentrated around the

true parameter φφφ, then the shrinkage prior or the loose Minnesota prior may dominate the tight

Minnesota prior.

Example 4 We generate data from VAR(T = 20, p = 2, L = 1; ΦΦΦ, ΣΣΣ), where

ΣΣΣ =

(
1.0 0.71

0.71 2.0

)
, ΦΦΦ =




3.0 3.0
0.3 0

0 0.3


 .

Here BBB1 has small lag coefficients but large intercepts. In this case, the constant prior dominates

the shrinkage prior and the Minnesota prior. The frequentist average of the MLE and Bayesian

estimates exhibit a clear pattern. The averages of MLE over the 1000 samples are

Σ̂ΣΣMLE =

(
0.8553 0.6029
0.6029 1.7118

)
, Φ̂ΦΦMLE =




3.4097 3.4608
0.1897 -0.0021
0.0160 0.1952


 .

The estimates for ΣΣΣ and the VAR lag coefficients are biased downwards. The intercepts are

biased upwards. Under the constant-reference prior, the averages of the Bayesian estimates are

Σ̂ΣΣCR =

(
1.2143 0.6973
0.6973 2.2058

)
, Φ̂ΦΦCR =




3.4093 3.4610
0.1898 -0.0023
0.0160 0.1954


 .
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The average of the estimates for ΣΣΣ is better than that of the MLE, while the estimates for ΦΦΦ

are almost identical to that of the MLE. Under the shrinkage-reference prior the averages of the

estimates are

Σ̂ΣΣSR =

(
1.3332 0.8558
0.8558 2.3866

)
, Φ̂ΦΦSR =




1.9508 1.6142
0.4301 0.3080
0.0949 0.2892


 .

The estimates for ΣΣΣ have an upward bias in magnitude similar to the downward bias of MLE.

But the variance of the estimates is smaller than that of the MLE, which is the main reason for

smaller frequentist risk associated with the Bayesian estimates. Contrary to the Bayesian estimates

under the constant prior, under the shrinkage prior the Bayesian estimates for the intercepts are

biased downward while the estimates for VAR coefficients tend to be biased upward. Finally, the

frequentist average of the Bayesian estimates under the tight Minnesota-reference prior is

Σ̂ΣΣTMR =

(
1.6204 0.9933
0.9933 2.9373

)
, Φ̂ΦΦTMR =




0.6577 0.6273
0.8031 0.0539
0.0262 0.7732


 .

The estimates for the VAR lag coefficients are biased towards the identity matrix. The influence

of the prior is significant because of the small sample size of the data.

In terms of the estimation errors of impulse responses and MSE of forecast, the constant prior

also dominates the shrinkage and Minnesota priors, with the tight Minnesota prior being the worst

among all priors under examination. The estimates of ΣΣΣ and BBB1 both show upward bias under the

shrinkage-reference prior, the compound effect of which may explain the relatively poor performance

of the estimator in terms of impulse responses.

This example shows that for a VAR(1) (the number in the bracket indicates the lag length)

model with large intercept terms and small VAR coefficients, the constant prior is better than the

shrinkage or Minnesota prior. This result is partially due to fact that the downward biases of

ML estimates of VAR lag coefficients are relatively small when the true parameters are near zero.

MacKinnon and Smith (1998) show that the downward bias of ML estimates for an AR(1) coefficient

is nonlinear in the true parameter. When the true parameter is near unity the downward bias is

substantially larger than when the true parameter is near zero. The constant prior is better than

the shrinkage and Minnesota priors in estimating the intercept terms. If the intercept terms are

large, the downward bias induced by the shrinkage and Minnesota priors is amplified, resulting in

undesirable performance. However, for most macroeconomic applications of VAR models, the first

lag coefficient matrix BBB1 is not as small as in this example. So in practice, the dominance of the

constant-prior is not a very likely scenario. In addition, the dominance of the constant prior is no
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longer present for VARs with longer lags. For example, for the same covariance matrix and intercept

terms, if the lag coefficient is changed from 0.3 in a VAR(1) to 0.1 in each of the lags in a VAR(3),

then the shrinkage prior dominates the constant and Minnesota priors.

Example 5 We now generate data sets from VAR(T = 20, p = 2, L = 2; ΦΦΦ, ΣΣΣ), where

ΣΣΣ =

(
1.0 0

0 1.0

)
, ΦΦΦ =




1.0 1.0
1.85 0

0 1.85
-0.9 0

0 -0.9




.

The VAR variables are nearly I(2). The averages of the estimates under the shrinkage-reference

prior and the tight Minnesota-reference prior are

Σ̂ΣΣSR =

(
1.0182 0.0380

0.0380 1.0029

)
, Φ̂ΦΦSR =




0.6537 0.7291
1.5424 0.0365
0.0484 1.5321
-0.6251 0.0099
-0.0046 -0.6194




.

Σ̂ΣΣTMR =

(
2.3509 0.1829
0.1829 2.2851

)
, Φ̂ΦΦTMR =




0.2012 0.2727
1.1772 0.0245
0.0249 1.1719

-0.2229 0.0026
-0.0011 -0.2229




.

In this example the larger matrix ΦΦΦ does not substantially change the computation cost for the

MCMC routine. The acceptance rates of the Metropolis step in simulation of ΣΣΣ under the reference

prior are around 63 percent. The tight Minnesota prior is again substantially worse than other

priors in all aspects except for the average MSE of impulse responses. This is due to the fact that

under the tight Minnesota prior the estimates for BBB1 are biased downward, while the estimates for

ΣΣΣ are biased upward. These two types of bias partially offset when the impulse response functions

are computed. This example suggests that errors in estimating of impulse response functions may

not be good indicators for accuracy of VAR estimates.

The five examples of the bivariate VAR provide a fairly comprehensive picture on the perfor-

mance of the test priors. For estimating the covariance matrix ΣΣΣ, the reference prior dominates

the Jeffreys and RATS priors. For estimating VAR coefficients ΦΦΦ, the shrinkage prior most likely

dominates the constant prior. The relative performance of the Minnesota prior depends on the

tightness of the prior and the nature of the data generating models. When the data generating

process is not similar to random walks, the tight Minnesota prior may be much less desirable than

a loose Minnesota prior. In fact, when the data generating process is sufficiently different from the

random walk, even the loose Minnesota prior can be undesirable (as in Example 4).
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We examine the robustness of the pattern exhibited in Tables 1 to 5 by altering the sample size

and the size of the VAR. We simulate the same models as that in Examples 1 to 5, but the sample

size T is increased to 50 from 20. With the enlarged sample size, the average losses are smaller under

all priors, and the difference in losses are smaller as well. This is because more data observations

diminish the impact of prior choice. However, in most cases the shrinkage-reference prior still

performs better than the other priors. We experiment with VARs containing more explosive roots

and find that the shrinkage-reference prior combination still dominates other noninformative prior

combinations.

The following examples show that the effects of prior choice are more prominent when the number

of variables in the VAR is increased from two to six, even with sample size T increased from 20 to

50. We consider several VAR models representative of many monthly and quarterly macroeconomic

variables. The first example is the same as Example 1, which consists of time series of random

walks. We expect superior performance by the Minnesota prior since the prior centers at the true

parameters. The second example combines the features of Examples 2 and 4. The third example is

a VAR with two lags. In this example, we find that the shrinkage prior out-performs the Minnesota

prior. Finally, we estimate a VAR using quarterly data of the U.S. economy and use the estimates

as the ”true” parameters to evaluate the fit of the estimators.

Example 6 We now consider VAR(T = 50, p = 6, L = 1;ΦΦΦ, ΣΣΣ), with intercept ccc=0, lag coeffi-

cients BBB1=I6, and covariance matrix ΣΣΣ=I6,

Compared to the case with p = 2 in Example 5, in this example there are a larger number of

parameters. The number of parameters to be estimated in ΣΣΣ is increased from 3 (with p = 2) to 21

(with p = 6) and the number of parameters in ΦΦΦ is increased from 6 to 42. The Bayesian estimators

with the shrinkage-reference prior combination dominates MLE and Bayesian estimators under other

priors in terms of average losses associated with the covariance matrix. The acceptance rates of the

Metropolis step in simulating ΣΣΣ under the reference prior are about 27 percent. Compared with

Example 1, a notable difference made by the larger number of parameters and larger sample size is

that the frequentist average loss associated with ΦΦΦ under the shrinkage-reference prior is now smaller

than that of the MLE. It is known that MLE of BBB1 is biased towards the stationary region. The

downward bias in BBB1 is much smaller under the shrinkage and Minnesota priors. Under the shrinkage

prior, the frequentist average losses associated with ΦΦΦ are small mainly because the estimates of the

intercept term are not as erratic as the MLE. A striking result is that the frequentist average loss

for ΦΦΦ under the shrinkage-prior is smaller than that of the tight Minnesota prior. This is largely

due to the fact that b3, the variance of the Minnesota prior for the intercept term, is set at 1.0. If
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b3 is set at 0.22, then the average loss for ΦΦΦ is reduced from 2.653 to about 0.3, smaller than that

under the shrinkage prior.

The frequentist risks of the Bayesian estimates of non-intercept terms under the shrinkage prior

are larger than under the tight Minnesota prior and are comparable to those under the loose Min-

nesota prior. The tight Minnesota prior performs best in terms of impulse responses and forecasting

errors. The shrinkage prior is effective in reducing the frequentist variance of the estimates, but

it tends to yield biased estimates. The bias results in relatively mediocre performance in terms of

impulse responses and forecast errors compared with the tight Minnesota prior.

A loose Minnesota prior, on the other hand, may not be better than the shrinkage prior. Table

6 shows that the average loss associated with the ΦΦΦ parameters under the loose Minnesota prior

is 4.369, considerably better than the MLE average loss 15.681, but worse than the average loss

of 1.258 under the shrinkage prior. Even though the Minnesota prior is centered close to the true

parameters, if the prior is not tightly set, then the MLE estimates overwhelm the prior. As noted

earlier, the small frequentist average losses of the ΦΦΦ parameters achieved by the shrinkage prior is

through variance reduction for the intercept term. In this example, the shrinkage prior is not much

inferior to the loose Minnesota prior for non-intercept terms. Overall, in comparison to the loosely

specified Minnesota prior, the shrinkage prior is quite effective.

Table 6 demonstrates that the reference prior yields estimators for ΣΣΣ with good frequentist

properties in terms of average losses. More intuitive comparisons can be made by plotting the his-

tograms of estimators of the ΣΣΣ parameters across the 1,000 generated samples. Since it is impossible

to plot such graphs for matrices, in the following we focus on a single element of covariance matrix

ΣΣΣ, σ1,1. Figure 2 plots the frequentist distributions of posterior means of σ1,1 under test priors,

and that of the MLE. Comparison of the panels shows that the MLE and the RATS-prior-based

estimator are skewed to the left while the Jeffreys-prior-based estimators are more skewed to the

right of the true value (1.0). The frequentist averages (standard errors) of estimates of σ1,1 over

the 1,000 samples are 0.755(0.168) for the MLE, 0.878 (0.195) for the Bayesian estimator with the

shrinkage-RATS prior, 1.049 (0.233) for the estimator with shrinkage-Jeffreys prior, 0.936 (0.136)

for the estimator with shrinkage-reference prior, and 0.921(0.130) for the estimator with the tight

Minnesota-reference. The reference-prior-based estimator shows relatively small bias, but its most

prominent feature is the small dispersion. The figure offers intuitive confirmations of results in Table

6. The figure indicates that the reference prior reduces average losses through variance reduction,

not necessarily through bias reduction. Regarding the elements of ΦΦΦ, it is well known that although

shrinkage estimators may reduce risks, they do not improve universally over all elements. To provide

a complete picture we should plot distributions of all elements of ΦΦΦ, which will take up too much
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space. Hence element-wise comparison of estimates for ΦΦΦ is omitted.

Example 7 We examine the test priors in a VAR with Granger causal chain. We consider

VAR(T = 50, p = 6, L = 1; ΦΦΦ, ΣΣΣ), with intercept ccc = (1, 1, 1, 1, 1, 1), and following covariance

matrix ΣΣΣ and lag coefficients BBB1 :

ΣΣΣ =




1.00 0.71 0.87 1.00 1.12 1.22
0.71 2.00 1.22 1.41 1.58 1.73
0.87 1.22 3.00 1.73 1.94 2.12
1.00 1.41 1.73 4.00 2.24 2.45
1.12 1.58 1.94 2.24 5.00 2.74
1.22 1.73 2.12 2.45 2.74 6.00




, BBB1 =




1/6 0 0 0 0 0
1/6 1/5 0 0 0 0
1/6 1/5 1/4 0 0 0
1/6 1/5 1/4 1/3 0 0
1/6 1/5 1/4 1/3 1/2 0
1/6 1/5 1/4 1/3 1/2 1




.

The covariance matrix implies pairwise correlation of 0.5. The VAR contains a unit root. The results

are qualitatively the same as Example 2. The shrinkage prior produces better estimators of BBB1 than

the MLE because it reduces variance through shrinkage. Many elements of the shrinkage-prior-based

Bayesian estimator show smaller bias than the MLE. For example, the intercept terms in the MLE

are considerably larger than those of the Bayesian estimators and larger than the true parameter

of 1. The estimates under the shrinkage and Minnesota priors under-estimate the intercepts. The

forecasts of the first variable by the shrinkage-prior-based estimators are worse than their constant-

prior-based counterparts, similar to the finding in Example 4 where the constant prior is better

when the VAR lag coefficients are small. It is not surprising that the estimator under the tight

Minnesota prior does better in forecasting the sixth variable since it follows a random walk.

Example 8 We now consider VAR(T = 50, p = 6, L = 2;ΦΦΦ, ΣΣΣ), with intercept ccc = (1, 1, 1, 1, 1, 1),

the covariance matrix ΣΣΣ as in Example 7. The VAR lag coefficients BBB1 is twice the BBB1 matrix in

Example 7, and BBB2 is the negative of the BBB1 matrix in Example 7. The sixth variable follows an

I(2) process. For this example, we reduce the number of MCMC cycles to 5500 with 500 burn-in

runs to reduce computing time (which is over eighty hours total for simulations under all priors).

The acceptance rates for the Metropolis step in simulating ΣΣΣ under the reference prior are about

36 percent. Table 8 shows that the Bayesian estimator of ΦΦΦ based on the tight Minnesota prior is

better than the MLE, but for BBB1 it is worse than the MLE and the Bayesian estimator based on the

shrinkage-reference prior. The loose Minnesota prior is better than the tight one in estimating the

non-intercept terms of ΦΦΦ because the mean of the Minnesota prior is far from the true parameters.

It is not surprising that it does better than the tight Minnesota prior in estimation errors of impulse

responses. This is the opposite case of Example 6, in which a tight Minnesota prior is better when

the prior is centered at the true parameters.

The examples show that the performance of the Minnesota priors depends on the data generating

process and the setting of hyper-parameters. In practice, researchers often follow conventions when
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they select hyper-parameter values. As we point out in the introduction, it is quite unlikely that

a set of hyper-parameters is suitable for all data generating processes. The conventional values of

the hyper-parameters (e.g., b1 = 0.22) may result in undesirable estimators. On the other hand,

when researchers decide to use alternative hyper-parameters to incorporate their knowledge of the

data generating processes, it would become necessary for readers to take into account the difference

between their own priors and those of the researchers. Adopting a noninformative prior as a reference

for a wide range of empirical problems may be a better approach if a researcher is not very certain

about the validity of his priors or when opinions of different researchers are diverse. In addition

to the convenience in scientific reporting, a good noninformative prior may be less vulnerable to

mistakes in researchers’ judgement and therefore be able to deliver robust performance for a large

variety of problems. The numerical examples show that the shrinkage prior produces more robust

results compared to the Minnesota priors. The dominance of a tight Minnesota prior over the

shrinkage prior in the random walk model is less remarkable than the dominance of the shrinkage

prior over a ”wrong” Minnesota prior.

Example 9 Now we consider a numerical example based on a set of actual macroeconomic data.

We apply VAR(T = 58, p = 6, L = 1; ΦΦΦ,ΣΣΣ) model to analyze quarterly data of the U.S. economy

from 1987Q1 to 2001Q2. The variables include the M2 money stock, non-borrowed reserves, federal

funds rate, world commodity price, GDP deflator, and real GDP. The commodity price data are

obtained from the International Monetary Fund and the rest of data series from the FRED database

at the Federal Reserve Bank of St. Louis. All variables except the fed funds rate are growth rates. All

variables are measured in percentage terms. These variables frequently appear in macroeconomics

related VARs (e.g. Sims 1992, Gordon and Leeper 1994, Sims and Zha 1998b, and Christiano,

Eichenbaum, and Evans 1999). The six data series exhibit strong pairwise and serial correlations.

We use the MLE of the actual data as the ”true” parameters for ΦΦΦ and ΣΣΣ and conduct the same

MCMC simulations for drawing posteriors of VAR coefficients and the covariance matrix as in

previous examples. Note that the impulse responses are based on the lower triangular mapping

from the VAR residuals to structural shocks. The order of the variables implies that a shock in a

variable affects all other variables placed before it contemporaneously but not the other way around.

The reference prior shows moderate improvement over the RATS prior and is comparable to the

Jeffreys prior. The absence of more significant improvement of the reference prior can be explained

by two reasons. First, there are strong pairwise correlations of the VAR error terms that make

the off-diagonal elements prominent. Since the reference prior places the variance components in

higher priority than the covariance components, it tends to perform less well in case the covariance

components are large. Second, the reference prior shrinks the eigenvalues of the covariance towards
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one another. It does less well when the true data generating model has variance components that

are very different in scale, as is the case here. The variances of the error terms range from .035

(GDP deflator) to 7.74 (commodity price).

The Bayesian estimators of ΦΦΦ show significant improvement over the MLE. The shrinkage prior

does slightly better than the Minnesota priors for the VAR lag coefficients. In this example, the

VAR has one lag, and the ”true” parameters do not deviate too much from random walks. We also

estimate a VAR model with two lags using the same data set. If the VAR(2) estimates are used as

the ”true” parameters then the mean of the Minnesota prior significantly deviates from these true

parameters. In this case, the shrinkage prior is much better than the Minnesota priors.

A few general conclusions can be drawn from these numerical examples. (1) Yang and Berger’s

reference prior for the covariance matrix ΣΣΣ dominates the Jeffreys and RATS prior in many cases.

The reference prior does less well when the data-generating ΣΣΣ has large off-diagonal elements and the

variance components are significantly different. But even in the least favorable cases, the reference

prior is not dominated by its competitors. (2) The posterior mean of ΦΦΦ under the constant prior

(regardless of the prior on ΣΣΣ) has properties very similar to the MLE. For VAR(1) models consisting

near-random-walk type variables, the frequentist averages of the posterior means under the constant

prior over-estimate the intercept term ccc and under-estimate the VAR lag coefficients BBB1. The fre-

quentist averages of quadratic losses are large for these estimators because the variances of the

intercept terms across samples are often quite large. The shrinkage prior, on the other hand, tends

to under-estimate the intercept terms and over-estimate the VAR lag coefficients. The shrinkage-

prior-based estimators induce smaller frequentist average losses mainly because the shrinkage prior

effectively reduces variances of the elements in ΦΦΦ across samples. (3) Impulse responses and fore-

casting errors are nonlinear functions of elements of ΦΦΦ and ΣΣΣ. Smaller frequentist average losses

with respect to parameters do not necessarily lead to smaller average losses in terms of impulse

responses and forecasting errors, and vice versa. In Example 5, the tight Minnesota prior happens

to significantly over-estimate ΣΣΣ and under-estimate BBB1. But the biases cancel out and the estimates

for impulse responses are more accurate than those with better estimated ΦΦΦ and ΣΣΣ. A shrinkage

prior often reduces the variance of the elements of the posterior mean of ΦΦΦ but may make them

quite biased. The bias may result in poor performance in terms of impulse responses and forecasting

errors. Estimators other than the posterior mean may be more desirable under the shrinkage prior

if they can reduce the bias. (4) As with any informative prior, the performance of the Minnesota

prior depends on the nature of the data generating model and the hyper-parameters. If the VAR

is made of random-walk type of variables, then a tightly set Minnesota prior does better than a

loosely set Minnesota prior and noninformative priors. However, if the model is not in agreement

28



with the prior, a tightly set Minnesota prior does much worse than alternative priors. The examples

highlight the sensitivity of the estimates to the hyper-parameters and serve as a note of caution for

researchers who rely on an informative prior.

6 Concluding Remarks

In this study we evaluate Bayesian VAR estimators based on several noninformative priors in terms

of frequentist risks. For the VAR covariance matrix ΣΣΣ, we study the Jeffreys prior, the RATS prior

and Yang and Berger’s reference prior. For VAR coefficients ΦΦΦ, we consider the constant prior, a

shrinkage prior, and the Minnesota prior. We establish the propriety of posteriors as well as existence

of posterior moments for (ΦΦΦ, ΣΣΣ) under a general class of priors that includes the prior combinations

studied in this paper. We compute posteriors under different priors via MCMC simulations. Our

numerical examples show that in most cases the combination with the shrinkage prior on ΦΦΦ and Yang

and Berger’s reference prior on ΣΣΣ produces smaller frequentist average losses than other combinations

of noninformative priors, mainly through reducing the variances of estimates across samples. In all

examples considered in the paper the constant prior generates Bayesian estimates of ΦΦΦ very similar

to the MLE. We also find that the performance of the Minnesota prior critically depends on the

tightness of the prior and the nature of data generating models. A tightly set Minnesota prior

dominates the shrinkage prior when the data generation processes are close to random walks, while

the shrinkage prior or a loosely set Minnesota prior is a better choice otherwise. We have argued

in the introduction that Bayesian procedures with appropriate priors are a practical tool for users

of VAR models who are mainly concerned with finite sample properties of estimators. In light

of the MCMC simulation results, we conclude that the shrinkage-reference prior combination is a

reasonable choice for Bayesian analysis of finite sample inferences of VAR models.

The present study can be extended in several directions. First, it is useful to explore other priors

for the VAR model. For estimation of identified VARs, identifying restrictions on the factorization

of the covariance matrix ΣΣΣ may be incorporated into a prior in a way similar to Sims and Zha

(1998a, 1999). For the VAR coefficients ΦΦΦ, it is useful to investigate whether the shrinkage prior

can be modified for better bias correction. Note that the present paper considers priors for ΣΣΣ and

ΦΦΦ separately. Joint noninformative priors for (ΦΦΦ,ΣΣΣ) are more difficult to derive. Consider the

AR(1) model yt = βyt−1 + εt, where εt is iid normal with variance σ2. The asymptotic form of

Berger-Bernardo’s reference prior for (β, σ) is (1 − β2)−1/2σ−1 in the stationary region |β| < 1,

which takes the same form as the Jeffreys prior. Jeffreys (1967) deems the performance of his prior

in multiparameter cases unsatisfactory. The Jeffreys and reference prior in this model put infinite
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weight at the unit root. Zellner’s (1997) MDIP takes the more reasonable form of (1− β2)1/2σ−1.

For the finite sample AR(1) model, Phillips (1991) derives the joint Jeffreys prior, and Berger and

Yang (1996) derive a joint reference prior for the autoregressive and the variance parameters. Sims

(1991) points out some undesirable features of the finite sample AR(1) Jeffreys prior. Nonetheless,

deriving and evaluating joint priors for the VAR model is an interesting research topic.

The second direction of extension is to consider loss functions that produce Bayesian estimators

different from the posterior mean. There are good reasons to doubt the use of the constant-weighted

quadratic loss. In economic applications, the elements in matrix ΦΦΦ are unlikely to be of equal

importance. Furthermore, if the unit of measurement is changed for a data series (e.g., the dollar

amount of GDP is measured in trillions instead of billions), then the corresponding elements in ΦΦΦ

also change in magnitude. It is obvious that placing data-independent weights on the estimation

errors is unreasonable. Some alternatives to the quadratic loss function include Zellner’s (1986)

LINEX asymmetric loss and functions used for the Minimum Expected Loss (MELO) approach

in Zellner (1978). The LINEX loss allows for asymmetric weight on the positive and negative

estimation errors, and the MELO functions place data-dependent weights on the elements of ΦΦΦ. An

additional motivation for considering alternative loss functions is that the posterior mean of ΦΦΦ under

the shrinkage prior can be quite biased. Correction of the bias may make substantial improvement

for estimation of the impulse responses. These questions are beyond the scope of this paper, and

they are on our agenda for future research.
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Appendix A: Proof for Theorem 1

In the following, we let C1, C2, . . . be constants depending only on sample size T and observation
YYY. We rewrite the likelihood function (5) of (φφφ,ΣΣΣ) as

L(φφφ, ΣΣΣ) =
1

|ΣΣΣ|T/2
exp

[
−1

2
(φφφ− φ̂φφ)′

{
ΣΣΣ−1 ⊗ (XXX′XXX)

}
(φφφ− φ̂φφ)− 1

2
tr{ΣΣΣ−1SSS(Φ̂ΦΦ)}

]
, (39)

where φ̂φφ = vec(Φ̂ΦΦ) is the ML estimator, where Φ̂ΦΦ and SSS(Φ̂ΦΦ) = (YYY−XXXΦ̂ΦΦ)′(YYY−XXXΦ̂ΦΦ) are given by (6)
and (7) respectively. Then

∫

IRJ
L(φφφ,ΣΣΣ)dφφφ =

(2π)J/2

|ΣΣΣ|T/2|ΣΣΣ−1 ⊗ (XXX′XXX)|1/2
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
.

Since |ΣΣΣ−1 ⊗ (XXX′XXX)| = |ΣΣΣ|−(Lp+1)|XXX′XXX|p,
∫ ∫

IRJ
L(φφφ, ΣΣΣ)π(0,b,c)(φφφ,ΣΣΣ)dφφφdΣΣΣ ≤ C1

∫ etr
{
−1

2ΣΣΣ−1SSS(Φ̂ΦΦ)
}

|ΣΣΣ|(T−Lp−1+b)/2{∏1≤i<j≤p(λi − λj)}c
dΣΣΣ. (40)

Use the orthogonal decomposition ΣΣΣ = OOO′ΛΛΛOOO, where ΛΛΛ = diag(λ1, . . . , λp), and OOO is an orthogonal
matrix of the form OOO = (OOO12OOO13 · · ·OOO1p)(OOO23 · · ·OOO2p) · · · (OOOp−1,p). Each OOOij is a simple orthogonal
matrix of the form

OOOij = OOOij(oij) =
i

j




III 0 0 0 0
0 cos(oij) 0 − sin(oij) 0
0 0 III 0 0
0 sin(oij) 0 cos(oij) 0
0 0 0 0 III




,

i j

where oij ∈ [−π/2, π/2]. Let λλλ = (λ1, · · · , λp) and ooo = (oij , 1 ≤ i < j ≤ p). It follows from Anderson,

33



Olkin and Unherhill (1987) that the transformation from ΣΣΣ to (λλλ, ooo) has the Jacobian

|JJJ| ≡
{ ∏

1≤i<j≤p

cosj−i−1(oij)
}{ ∏

1≤i<j≤p

(λi − λj)
}

. (41)

So the right hand side of (40) equals

C1

∫ ∫ { ∏

1≤i<j≤p

cosj−i−1(oij)
}{∏1≤i<j≤p(λi − λj)}1−c

∏p
i=1 λ

(T−Lp−1+b)/2
i

etr
{
−1

2
ΛΛΛ−1OOOSSS(Φ̂ΦΦ)OOO′

}
dλλλdooo

≤ C1

∫ {∏1≤i<j≤p(λi − λj)}1−c

∏p
i=1 λ

(T−Lp−1+b)/2
i

etr
{
−1

2
ΛΛΛ−1OOOSSS(Φ̂ΦΦ)OOO′

}
dλλλdooo. (42)

The last inequality holds because | cosj−i−1(oij)| ≤ 1.

Let η1 > η2 > · · · > ηp > 0 be the eigenvalues of SSS(Φ̂ΦΦ), so that SSS(Φ̂ΦΦ) = ΓΓΓdiag(η1, η2, · · · , ηp)ΓΓΓ′,
where ΓΓΓ is a p× p orthogonal matrix. Clearly SSS(Φ̂ΦΦ)− ηpIIIp is nonnegitive definite, and

tr(ΛΛΛ−1OOOSSS(Φ̂ΦΦ)OOO′) ≥ tr(ΛΛΛ−1OOOηpIIIpOOO′) = ηptr(ΛΛΛ−1) =
p∑

j=1

ηp

λj
. (43)

Combining (40), (42) and (43), we have

∫ ∫

IRJ
L(φφφ,ΣΣΣ)π(0,b,c)(φφφ,ΣΣΣ)dφφφdΣΣΣ ≤ C2

∫ {∏
1≤i<j≤p(λi − λj)

}1−c

∏p
i=1 λ

(T−Lp−1+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλdooo

≤ C3

∫ {∏
1≤i<j≤p(λi − λj)

}1−c

∏p
i=1 λ

(T−Lp−1+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ. (44)

The last inequality holds because the range of oij is bounded.

If c = 0, note that
∏

1≤i<j≤p(λi − λj) ≤
∏p

i=1 λp−i
i , and the right hand side of (44) is bounded

above by

C3

∫ { p∏

i=1

λ p−i
i

} p∏

i=1

1

λ
(T−Lp−1+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ

= C3

p∏

i=1

∫ ∞

0

1

λ
(T−Lp−1+b−2p+2i)/2
i

exp
(
− ηp

2λi

)
dλi. (45)

Note that
∫∞
0 x−(α+1)x−β/xdx is finite if and only if α > 0 and β > 0. So the right hand side is

integrable if T − Lp− 1 + b− 2p + 2 > 2, which holds if T > (L + 2)p + 1− b.

If c = 1, (44) becomes

∫ ∫

IRJ
L(φφφ,ΣΣΣ)π(0,b,1)(φφφ,ΣΣΣ)dφφφdΣΣΣ ≤ C3

p∏

i=1

∫ ∞

0

1

λ
(T−Lp−1+b)/2
i

exp
(
− ηp

2λi

)
dλi, (46)

which is integrable if T − Lp− 1 + b− 2 > 0, i.e. T > Lp + 3− b. The results then follow.
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Appendix B: Proof for Theorem 3

Using the expression (39) of the likihood function and the hierarchical structure of (10), we have
∫

IRJ
L(φφφ,ΣΣΣ)π(a)(φφφ) dφφφ =

∫ ∞

0

{∫

IRJ
L(φφφ,ΣΣΣ)πs(φφφ | δ) dφφφ

}
πa(δ)dδ

=
∫ ∞

0

(2π)J/2|ΣΣΣ|−T/2

δJ/2|ΣΣΣ−1 ⊗ (XXX′XXX) + δ−1IIIJ |1/2
etr

{
− φ̂φφ

′
Gφ̂φφ

2
− ΣΣΣ−1SSS(Φ̂ΦΦ)

2

}
πa(δ)dδ,

where

G = ΣΣΣ−1 ⊗ (XXX′XXX)− {ΣΣΣ−1 ⊗ (XXX′XXX)}{ΣΣΣ−1 ⊗ (XXX′XXX) + δ−1IIIJ}−1{ΣΣΣ−1 ⊗ (XXX′XXX)}
= δ−1{ΣΣΣ−1 ⊗ (XXX′XXX) + δ−1IIIJ}−1{ΣΣΣ−1 ⊗ (XXX′XXX)}
= {δIIIJ + ΣΣΣ⊗ (XXX′XXX)}−1. (47)

Clearly, GGG is nonnegative definite and etr{−1
2 φ̂φφ

′
Gφ̂φφ} ≤ 1. Define ΛΛΛ = diag(λ1, . . . , λp) and ΞΞΞ =

diag(ξ1, · · · , ξLp+1), where λ1 > · · · > λp are the eigenvalues of ΣΣΣ and ξ1 ≥ · · · ≥ ξLp+1 > 0 are the
eigenvalues of the matrix XXX′XXX. Then

δJ/2|ΣΣΣ−1 ⊗ (XXX′XXX) + δ−1IIIJ |1/2 = |δΛΛΛ−1 ⊗ ΞΞΞ + IIIJ |1/2 =
p∏

i=1

Lp+1∏

j=1

(δξjλ
−1
i + 1)1/2

≥
p∏

i=1

(δξLp+1λ
−1
i + 1)(Lp+1)/2

≥ (δξLp+1λ
−1
p + 1)J/2.

So we have
∫

IRJ
L(φφφ,ΣΣΣ)π(a)(φφφ)dφφφ ≤ 1

(2π)J/2|ΣΣΣ|T/2
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}∫ ∞

0

δ(J−2−a)/2

(δξLp+1λ
−1
p + 1)J/2

dδ.

Making the transformation u = δξLp+1λ
−1
p /(δξLp+1λ

−1
p + 1), we get δ = (λp/ξLp+1)u/(1− u). Thus

∫ ∞

0

δ(J−2−a)/2

(δξLp+1λ
−1
p + 1)J/2

dδ =
(

λp

ξLp+1

)(J−a)/2∫ 1

0

(
u

1− u

)(J−2−a)/2

(1− u)J/2du

=
(

λp

ξLp+1

)(J−a)/2∫ 1

0
u(J−a)/2−1(1− u)a/2+1du

=
(

λp

ξLp+1

)(J−a)/2

Beta
(J − a

2
,

a

2
+ 2

)
.

The last equality holds from Condition (A). So

∫

IRJ
L(φφφ,ΣΣΣ)π(a)(φφφ)dφφφ ≤ C

λ
(J−a)/2
p

|ΣΣΣ|T/2
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
, (48)

where C = Beta(1
2(J−a), 1

2a+2)/{(2π)J/2ξ
(J−a)/2
Lp+1 }. Since π(a,b,c)(φφφ,ΣΣΣ) = π(a)(φφφ)π(b,c)(ΣΣΣ), we have

∫ ∫

IRJ
L(φφφ, ΣΣΣ)π(a,b,c)(φφφ,ΣΣΣ)dφφφdΣΣΣ
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≤ C

∫
λ

(J−a)/2
p

|ΣΣΣ|(T+b)/2{∏1≤i<j≤p(λi−λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ

= C5

∫ ∫ { ∏

1≤i<j≤p

cosj−i−1(oij)
}λ

J−a
2

p

{ ∏

1≤i<j≤p

(λi−λj)
}1−c

p∏

i=1

λ
(T+b)/2
i

etr
{
−ΛΛΛ−1OOOSSS(Φ̂ΦΦ)OOO′

2

}
dλλλdooo

≤ C6

∫ λ
J−a

2
p

{∏
1≤i<j≤p(λi − λj)

}1−c

∏p
i=1 λ

(T+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ, (49)

where the equality follows from the transformation from ΣΣΣ to (λλλ, ooo) as in the proof of Theorem 1.

If c = 0, the right hand side of (49) is bounded by

C6

∫ ( p∏

i=1

λ p−i
i

)
λ(J−a)/2

p =
p∏

i=1

1

λ
(T+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ

= C6

{p−1∏

i=1

∫ ∞

0

1

λ
(T+b−2p+2i)/2
i

exp
(
− ηp

2λi

)
dλi

} ∫ ∞

0

1

λ
(T+b−J+a)/2
p

exp
(
− ηp

2λp

)
dλp.

So the right hand side is integrable under Condition (B0).

If c = 1, the right hand side of (49) equals to

C6

∫
λ(J−a)/2

p

p∏

i=1

1

λ
(T+b)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ

= C6

{p−1∏

i=1

∫ ∞

0

1

λ
(T+b)/2
i

exp
(
− ηp

2λi

)
dλi

} ∫ ∞

0

1

λ
(T+b−J+a)/2
p

exp
(
− ηp

2λp

)
dλp.

The right hand side is integrable under Condition (B1). The results then follow.

Appendix C: Proof for Theorem 5

Since the posterior is proper from the assumptions, it is enough to show that
∫ ∫

IRJ
‖φφφ‖2{tr(ΣΣΣ2)}h/2L(φφφ,ΣΣΣ)π(0,b,c)(φφφ, ΣΣΣ)dφφφdΣΣΣ < ∞. (50)

Since (φφφ | ΣΣΣ, YYY) ∼ NJ(φ̂φφ,ΣΣΣ⊗ (XXX′XXX)−1), we have

IE(‖φφφ‖2 | ΣΣΣ, YYY) = IE(φφφ′φφφ | ΣΣΣ,YYY) = tr{IE(φφφφφφ′ | ΣΣΣ, YYY)}
= tr{φ̂φφφ̂φφ

′
+ ΣΣΣ⊗ (XXX′XXX)−1} = φ̂φφ

′
φ̂φφ + tr(ΣΣΣ) tr{(XXX′XXX)−1}.

The marginal posterior of ΣΣΣ given YYY has the form

m(ΣΣΣ | YYY) = C7

∫
L(φφφ,ΣΣΣ)dφφφπ(b,c)(ΣΣΣ)

= C8
|ΣΣΣ⊗ (XXX′XXX)−1|1/2

|ΣΣΣ|(T+b)/2{∑1≤i<j≤p(λi − λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}

= C9
1

|ΣΣΣ|(T+b−Lp−1)/2{∑1≤i<j≤p(λi − λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
,
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where we use the fact that |ΣΣΣ ⊗ (XXX′XXX)−1|1/2 = |ΣΣΣ|(Lp+1)/2|XXX′XXX|−p/2. Therefore the left hand side
of (50) equals J1 + J2, where,

J1 = C10

∫ {tr(ΣΣΣ2)}h/2

|ΣΣΣ|(T+b−Lp−1)/2{∑1≤i<j≤p(λi − λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ,

J2 = C11

∫ tr(ΣΣΣ) {tr(ΣΣΣ2)}h/2

|ΣΣΣ|(T+b−Lp−1)/2{∑1≤i<j≤p(λi − λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ.

Note that {tr(ΣΣΣ2)}h/2 = {∑p
i=1 λ2

i }h/2 ≤ (pλ1)h. It easy to show that

J1 ≤ C12

∫
λh

1∏p
i=1 λ

(T+b−Lp−1)/2
i {∑1≤i<j≤p(λi − λj)}c

etr
{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ

≤ C13

∫ λh
1{

∑
1≤i<j≤p(λi − λj)}1−c

∏p
i=1 λ

(T+b−Lp−1)/2
i

exp
(
−

p∑

i=1

ηp

2λi

)
dλλλ.

If c = 0,

J1 ≤ C14

∫ 1

λ
(T+b−2h−2p−Lp+1)/2
1

exp
(
− ηp

2λ1

)
dλ1

p∏

i=2

∫ 1

λ
(T+b−Lp−2p+2i−1)/2
i

exp
(
− ηp

2λi

)
dλi,

which is finite if T > (L + 2)p + 2h− b + 1. If c = 1,

J1 ≤ C15

∫ 1

λ
(T+b−2h−Lp−1)/2
1

exp
(
− ηp

2λ1

)
dλ1

p∏

i=2

∫ 1

λ
(T+b−Lp−1)/2
i

exp
(
− ηp

2λi

)
dλi,

which is finite if T > Lp + 2h− b + 3.

Similarly,

J2 ≤ C16

∫
λh+1

1∏p
i=1 λ

(T+b−Lp−1)/2
i {∑1≤i<j≤p(λi − λj)}c

etr
{1

2
Σ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ

≤ C17

∫ λh+1
1 {∑1≤i<j≤p(λi − λj)}1−c

∏p
i=1 λ

(T+b−Lp−1)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ.

If c = 0,

J2 ≤ C18

∫
λh+1

1

∏p
i=1 λp−i

i∏p
i=1 λ

(T+b−Lp−1)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ,

which is finite if T > (L + 2)p + 2h− b + 3. If c = 1,

J2 ≤ C19

∫
λh+1

1∏p
i=1 λ

(T+b−Lp−1)/2
i

exp
(
−

p∑

j=1

ηp

2λj

)
dλλλ,

which is finite if T > Lp + 2h− b + 5. Note that the conditions with respect to J2 (for c = 0, 1) are
stronger than those with respect to J1. The theorem follows.

37



Appendix D: Proof for Theorem 7

The condition (AM) implies (A), (B0M) implies (B0), and (B1M) implies (B1). Thus the corre-
sponding posteriors are all proper. It is then enough to show

∫ ∫

IRJ
‖φφφ‖k{tr(ΣΣΣ2)}h/2L(φφφ, ΣΣΣ)π(a,b,c)(φφφ,ΣΣΣ)dφφφdΣΣΣ < ∞.

Since tr(ΣΣΣ2) = tr(ΛΛΛ2) =
∑p

i=1 λ2
i ≤ pλ2

1, it is equivalent to show that
∫ ∫

IRJ
L(φφφ,ΣΣΣ)

1
‖φφφ‖a−k|ΣΣΣ|b/2+h{∏1≤i<j≤p(λi − λj)}c

dφφφdΣΣΣ

≤ C20

∫ ∫

IRJ
L(φφφ,ΣΣΣ)λh

1π(a−k,b,c)(φφφ,ΣΣΣ)dφφφdΣΣΣ < ∞. (51)

Since a− k > 0, we apply (48) to the inner integral by replacing a by a− k. The right hand side of
(51) is bounded by

C21

∫
λh

1λ
(J−a+k)/2
p

|ΣΣΣ|(T+b)/2{∏1≤i<j≤p(λi − λj)}c
etr

{
−1

2
ΣΣΣ−1SSS(Φ̂ΦΦ)

}
dΣΣΣ

≤ C22

∫ λh
1λ

(J−a+k)/2
p {∏1≤i<j≤p(λi − λj)}1−c

∏p
i=1 λ

(T+b)/2
i

exp
(
−

p∑

i=1

ηp

2λi

)
dλλλ. (52)

If c = 0, the right hand side of (52) equals

C23

∫ ∞

0

exp(− ηp

2λ1
)

λ
(T+b−2p−2h+2)/2
1

dλ1

{p−1∏

i=2

∫ ∞

0

exp(− ηp

2λi
)

λ
(T+b−2p+2i)/2
i

dλi

} ∫ ∞

0

exp(− ηp

2λp
)

λ
(T+b−J+a−k)/2
p

dλp,

which is finite under Condition (B0M).

If c = 1, the right hand side of (52) equals

C24

∫ ∞

0

exp(− ηp

2λ1
)

λ
(T+b−2h)/2
1

dλ1

{p−1∏

i=2

∫ ∞

0

exp(− ηp

2λi
)

λ
(T+b)/2
i

dλi

} ∫ ∞

0

exp(− ηp

2λp
)

λ
(T+b−J+a−k)/2
p

dλp,

which is finite under Condition (B1M).
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Tables on MCMC Results of Numerical Examples

Notations for Tables 1-9

R1(Σ̂ΣΣ) is the estimated frequentist risk of the Bayesian estimator for ΣΣΣ under loss L1 (with
frequentist standard errors of the losses in parentheses).

R2(Φ̂ΦΦ) is the the estimated frequentist risk of the Bayesian estimator for ΦΦΦ under loss L2 (with
frequentist standard errors of the losses in parentheses).

R22 is part of the R2 associated with the non-intercept elements of ΦΦΦ (with frequentist standard
errors of the losses in parentheses).

RImp is the frequentist average of sum of estimation errors of the impulse responses, as defined
by (33) in the text.

Improvement in Forecast: Percentage improvement in Mean Square of One-step Forecast Errors
attributable to deviation of estimates for ΦΦΦ from the true parameter relative to the MLE by Bayesian
estimators. Wi, the ith element is the bracket, corresponds to percentage improvement of the ith
variable by the Bayesian estimators.

Bayesian estimators based on competing priors are denoted as

CA: Bayesian estimator with constant-RATS prior;

CJ: Bayesian estimator with constant-Jeffreys prior;

CR: Bayesian estimator with constant-reference prior;

SA: Bayesian estimator with shrinkage-RATS prior;

SJ: Bayesian estimator with shrinkage-Jeffreys prior;

SR: Bayesian estimator with shrinkage-reference prior;

TMR: Bayesian estimator with the tight Minnesota-reference prior defined in the text;

LMR: Bayesian estimator with the loose Minnesota-reference prior defined in the text.



Table 1: Example 1.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2)
MLE .526(.519) 5.491(8.794) .393(.288) .610
CA .353(.382) 5.491(8.787) .393(.288) .611 (−.02, 0.01)
CJ .244(.257) 5.490(8.793) .393(.288) .616 (−.00,−.00)
CR .167(.208) 5.493(8.804) .393(.288) .613 (0.00, 0.00)
SA .353(.382) 2.509(4.231) .301(.222) .581 (20.76, 27.08)
SJ .244(.258) 2.216(3.647) .293(.215) .578 (21.52, 28.54)
SR .161(.202) 2.005(2.879) .287(.210) .575 (22.65, 29.71)
TMR .136(.169) .555(.428) .053(.027) .456 (78.44, 79.24)
LMR .157(.199) 1.199(.763) .222(.173) .569 (36.65, 40.73)

Table 2: Example 2.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2)
MLE .361(.429) 4.583(8.133) .292(.402) .482
CA .250(.312) 4.584(8.136) .292(.402) .494 (0.05, 0.00)
CJ .202(.214) 4.584(8.124) .292(.402) .521 (−.03,−.09)
CR .191(.185) 4.583(8.140) .292(.402) .521 (0.16,−.04)
SA .250(.311) 1.577(1.871) .236(.309) .436 (20.77, 23.90)
SJ .202(.213) 1.454(1.561) .231(.296) .476 (22.23, 24.59)
SR .187(.183) 1.363(1.372) .230(.298) .464 (23.55, 24.59)
TMR .195(.142) .720(.641) .096(.033) .459 (6.80, 53.39)
LMR .186(.180) 1.031(.801) .175(.228) .470 (31.70, 32.85)

Table 3: Example 3.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1, W2)
MLE .338(.410) 2.376(3.006) .169(.203) .308
CA .236(.299) 2.376(3.009) .169(.203) .315 (0.03,−.03)
CJ .198(.206) 2.377(3.006) .169(.203) .340 (−.02,−.01)
CR .194(.186) 2.375(2.999) .1687(.203) .332 (0.08,−.01)
SA .236(.300) 1.091(1.129) .131(.154) .281 (18.02, 24.81)
SJ .198(.207) 1.052(1.002) .125(.147) .337 (18.74, 25.93)
SR .188(.184) 1.009(.968) .127(.150) .300 (19.32, 26.33)
TMR .583(.261) 1.860(.620) 1.311(.075) .440 (−205.0,−82.78)
LMR .188(.176) .869(.746) .128(.141) .298 (21.39, 28.27)



Table 4: Example 4.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2)
MLE .315(.331) 4.017(4.822) .370(.407) .099
CA .220(.232) 4.021(4.827) .370(.408) .105 (−.06,−.07)
CJ .189(.157) 4.016(4.826) .370(.406) .114 (−.07,−.04)
CR .184(.145) 4.016(4.822) .370(.406) .112 (0.03, 0.14)
SA .220(.232) 4.896(3.495) .371(.350) .147 (−26.21,−17.16)
SJ .189(.157) 5.426(3.496) .376(.339) .177 (−33.69,−21.51)
SR .184(.135) 5.455(3.407) .371(.335) .177 (−35.95,−19.89)
TMR .261(.149) 11.667(.735) .486(.047) .383 (−108.0,−90.00)
LMR .196(.136) 9.460(1.498) .406(.226) .267 (−73.75,−40.34)

Table 5: Example 5.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2)
MLE 1.052(.974) 43.316(65.798) .999(.774) .853
CA .735(.759) 43.318(65.831) .999(.774) .873 (−.04, .06)
CJ .360(.416) 43.301(65.765) .999(.773) .942 (.02,−.03)
CR .257(.343) 43.303(65.701) .999(.774) .922 (.16, .08)
SA .735(.760) 8.187(17.881) .815(.624) .733 (20.77, 23.90)
SJ .360(.416) 5.352(1.055) .816(.617) .751 (30.32, 27.85)
SR .199(.281) 3.152(3.327) .804(.610) .728 (28.48, 25.76)
TMR .586(.407) 4.974(2.998) 1.901(.273) .711 (−259.9,−241.3)
LMR .191(.255) 2.147(1.314) .670(.468) .717 (33.52, 31.75)

Table 6: Example 6.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2,W3, W4,W5,W6)
MLE 1.410(.553) 15.681(13.483) 1.083(.306) .353
CA .963(.412) 15.682(13.488) 1.082(.306) .355 (0.03, 0.01, −.04, −.01, −.02, −.09)
CJ .677(.282) 15.682(13.491) 1.083(.306) .358 (0.07, 0.02, 0.07, −.08, − .06, 0.10)
CR .255(.173) 15.684(13.483) 1.083(.305) .354 (0.04, − .08, − .05, 0.01, 0.03, 0.05)
SA .963(.412) 1.593(.494) .872(.240) .334 (8.96, 14.13, 9.70, 13.67, 9.28, 7.83)
SJ .677(.282) 1.455(.406) .881(.238) .334 (7.19, 12.31, 8.32, 12.45, 7.38, 5.95)
SR .225(.152) 1.258(.287) .877(.240) .329 (7.79, 12.99, 8.25, 12.39, 8.29, 6.84)
TMR .220(.148) 2.653(.896) .342(.068) .312 (64.05, 63.97, 63.68, 63.42, 64.92, 64.79)
LMR .250(.166) 4.369(1.404) .830(.236) .344 (17.44, 21.88, 17.40, 18.54, 19.23, 18.53)



Table 7: Example 7.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2,W3,W4,W5,W6)
MLE .939(.392) 6.950(9.272) 1.563(.809) .412
CA .666(.286) 6.953(9.269) 1.563(.809) .423 (0.05,−.05,−.02,−.16,−.05,−.04)
CJ .554(.199) 6.948(9.253) 1.563(.809) .444 (0.04, 0.16, 0.12, 0.16,−.08,−.02)
CR .459(.166) 6.952(9.298) 1.563(.809) .421 (−.22, 0.05,−.09, 0.03,−.06, 0.01)
SA .666(.286) 5.556(.596) .657(.212) .380 (−17.19, 6.07, 10.51, 15.36, 2.21, 9.89)
SJ .554(.198) 5.650(.537) .640(.203) .404 (−19.96, 4.91, 10.09, 14.30, 18.25, 5.75)
SR .439(.151) 5.710(.470) .633(.200) .396 (−24.68, 4.49, 10.25, 14.86, 18.62, 6.47)
TMR .498(.140) 3.023(1.390) .864(.146) .454 (−69.28,−47.19,−35.09,−20.04,−4.19, 41.58)
LMR .452(.165) 3.735(1.656) 1.037(.423) .380 (7.37, 17.40, 16.29, 19.62, 23.21, 22.15)

Table 8: Example 8.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2,W3, W4,W5,W6)
MLE 1.718(.692) 26.867(41.701) 3.812(1.411) 2.755
CA 1.187(.528) 26.852(41.659) 3.8116(1.413) 2.732 (−.07,−.07,−.14,−.06,−.11,−.06)
CJ .679(.258) 26.878(41.701) 3.814(1.414) 2.781 (−.11,−.08, .15, .13, .06,−.02)
CR .561(.212) 26.874(41.784) 3.812(1.412) 2.709 (0.14, 0.05, 0.19, 0.02, 0.04, 0.19)
SA 1.187(.529) 6.607(1.117) 2.239(.607) 2.103 (3.48, 11.83, 14.41, 2.33, 15.69, 6.61)
SJ .679(.259) 6.778(.958) 2.211(.575) 2.242 (−.63, 10.15, 12.81, 17.55, 10.43,−4.02)
SR .528(.189) 6.795(.893) 2.209(.572) 2.167 (−1.00, 10.48, 12.95, 17.02, 10.01,−3.43)
TMR 1.258(.389) 5.163(1.236) 4.032(.412) 3.083 (−1115,−754,−830,−828,−871,−746)
LMR .538(.199) 5.108(1.856) 2.242(.646) 2.225 (16.48, 19.10, 19.09, 23.08, 21.76, 20.92)

Table 9: Example 9.

R1(Σ̂ΣΣ) R2(Φ̂ΦΦ) R22 RImp
Improvement in Forecast

(W1,W2,W3,W4,W5,W6)
MLE .674(.280) 24.313(16.011) 15.662(12.752) .143
CA .502(.207) 24.316(16.027) 15.668(12.772) .150 (0.03,−0.05,−0.09, 0.02, 0.01, 0.01)
CJ .436(.149) 24.309(16.012) 15.656(12.739) .159 (−0.13, 0.02,−0.04, 0.04,−0.06,−0.01)
CR .420(.149) 24.325(15.997) 15.669(12.739) .151 (−0.06,−0.01, 0.11, 0.11,−0.06,−0.10)
SA .502(.207) 13.578(1.445) 3.799(.770) .122 (18.02, 6.38,−50.08, 30.47, 8.92,−9.66)
SJ .436(.149) 14.094(1.298) 3.989(.706) .128 (15.45, 3.78,−57.77, 29.27, 8.87,−13.34)
SR .434(.142) 14.824(.986) 4.189(.609) .130 (11.94, 1.91,−72.42, 28.69, 10.09,−22.08)
TMR .488(.146) 12.658(1.564) 4.634(.418) .128 (47.35, 24.12,−63.63, 33.12,−8.23,−51.39)
LMR .420(.147) 11.542(3.608) 5.375(3.093) .130 (22.66, 18.67,−6.36, 29.81, 13.02, 10.48)



 

 

               (a) MLE vs. CA prior
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               (c) MLE vs. CR prior
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                   (e) MLE vs. SJ prior

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

                    (f) MLE vs. SR prior
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                 (g) MLE vs. TMR prior
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Figure 2: Frequentist histograms of the estimators of σ1,1 in Example 6 with p = 6, L = 1, T = 50
and ΣΣΣ = III6: (a) posterior mean based on constant-RATS prior; (b) posterior mean based on
constant-Jeffreys prior; (c) posterior mean based on constant-reference prior; (d) posterior mean
based on shrinkage-RATS prior; (e) posterior mean based on shrinkage-Jeffreys prior; (f) posterior
mean based on shrinkage-reference prior. (g) posterior mean based on a Tight Minnesota-reference
prior; (h) posterior mean based on a Loose Minnesota-reference prior; (i) MLE.


