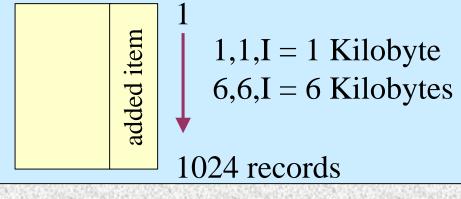


Navigating INFO

presented by: Tim Haithcoat University of Missouri Columbia

with materials from: Environmental Systems Research Institute



Database Hygiene

- Creating and maintaining an efficient relational database
- Modifying existing databases that were poorly defined/implemented
- Subtopics
 - Bits/bytes/item definitions
 - Normalization
 - ARC RELATE command
 - Restructuring tricks projecting files
 - Minimal output overlays {NOJOIN}

Bits & Bytes & Item Definitions ~ Revisited

- Good database design begins with the proper item definitions ("B" and "F" types as opposed to "I" and "N" types).
- Once a database is built, changing item definitions is very difficult
- Item definition especially important on larger files (each extra byte in an item equals many kilobytes on the file).

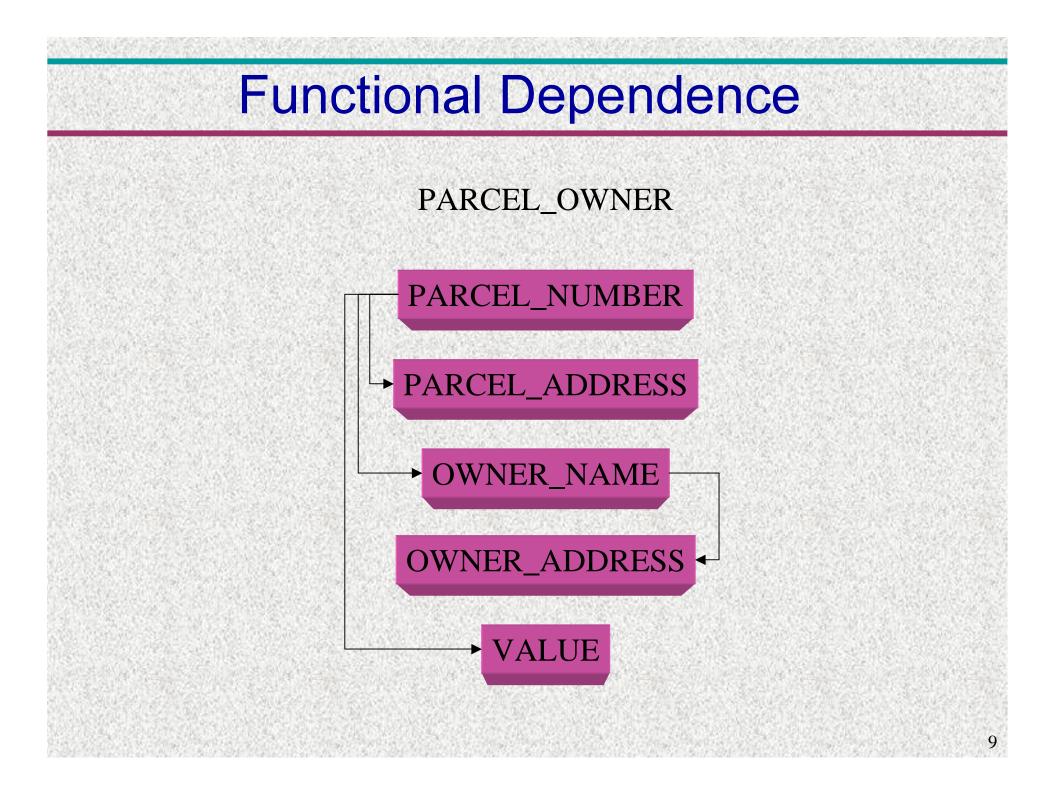
Bits & Bytes & Item Definitions ~ Revisited

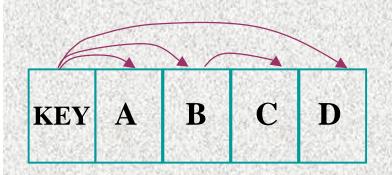
- Geographic operations (Spatial Joins/Overlays) result in exponentially larger files. Poor item definitions exasperate problems.
- Use "B" and "F" types whenever possible. Know the range of data values for any particular item (use MINMAX procedure on existing databases).

Intro to Normalization

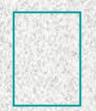
- A computer science term to describe the relationship of data and items within a file
- Understanding and applying normal forms to a relational database is an absolute must in order to have efficient databases.
- Normalization is mostly common sense and knowing your data. It is an intuitive concept.
- Advantages:
 - Flexibility of database is optimized
 - Minimized redundancy; optimized INSERT, UPDATE, and DELETE operations
 - Forces database designer to understand data relationships

Relations


- Relations, or two-dimensional tables of rows and columns, with 6 properties:
 - Each column, termed an attribute, has a unique name
 - The left-to-right order of columns is irrelevant
 - Each attribute entry is single valued; no repeating groups or arrays are allowed
 - Entries in any one column are of the same kind
 - The top-to-bottom order of rows is also irrelevant
 - Each row is unique


Equivalent Relations

	March 1			
5	С	Mary	C	50
	and the second	CONTRACTOR OF THE STATE		Contraction of the
12	D	Bob	D	55
8	В	Cathy	В	57
19	G	Jim	G	82
26	L	Ed	С	71
1	K	Ernie	K	61
7	Α	Bert	Α	52
11	F	Moe	D	55
6	М	Chris	Μ	49
14	Т	Harpo	Т	57

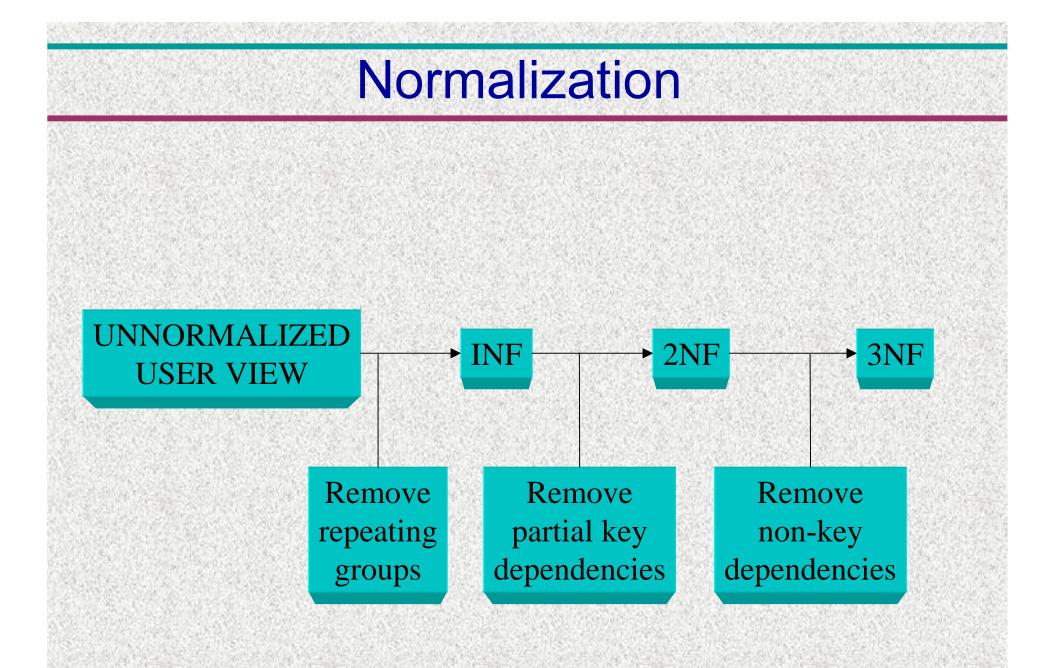

	D	0		D
57	B	8	Cathy	B
71	C	26	Ed	L
52	A	7	Bert	A
57	Т	14	Harpo	Т
49	Μ	6	Chris	M
55	D	11	Moe	F
82	G	19	Jim	G
55	D	12	Bob	D
50	С	5	Mary	C
61	K	1	Ernie	K

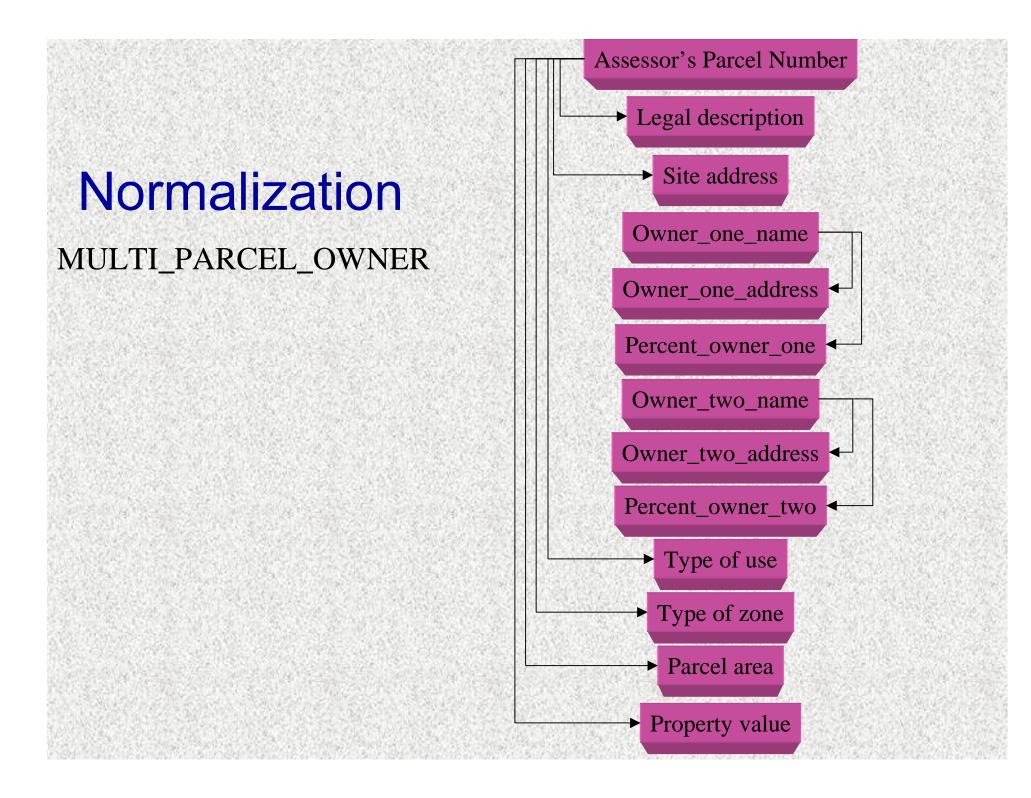
LEGAL

PARCEL-OWNER DEFINE ALL ITEMS DEFINE PROJ BC SEL PARCEL OWNER RO RELATE ALL ITEMB 1 BY B APP CALL \$NUM1=\$NUM + 1 SEL ALL ITEMB SORT B

ALLITEMB

PROJBC

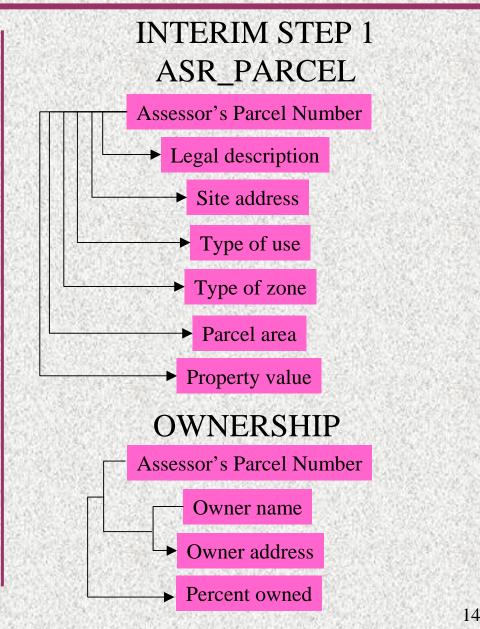

SEL ALLITEMB RO RELATE PROJBC 1 BY B SUN CALC \$NUM2=\$NUM2 + 1 SEL PROJBC MOVE ____ TO C SEL PARCEL_ OWNER RO RELATE PROJBC 1 BY B OR MOVE C TO \$1C DROP C FROM PARCEL_OWNER


Functional Dependence

MULTI OWNER PARCEL

- Assessors Parcel Number
 Owner_two_address
- Legal description
- Site address
- Owner_one_name
- Owner one address
- Percent_owner_one
- Owner_two_name

- Percent_owner_two
- Type of use
- Type of zone
- Parcel area
- Property value

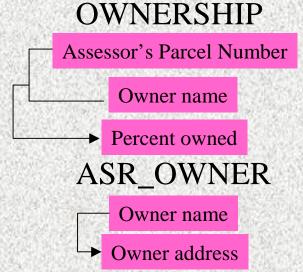


Normalization

ORIGINAL MULTI_OWNER_PARCEL

- Assessors Parcel Number
- Legal description
- Site address
- Owner_one_name
- Owner_one_address
- Percent_owner_one
- Owner_two_name
- Owner_two_address
- Percent_owner_two
- Type of use
- Type of zone
- Parcel area
- Property value

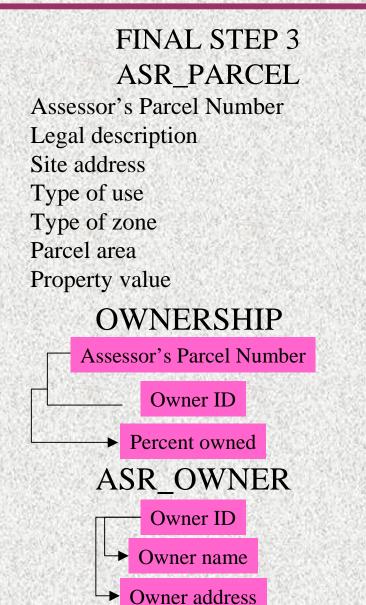
Normalization

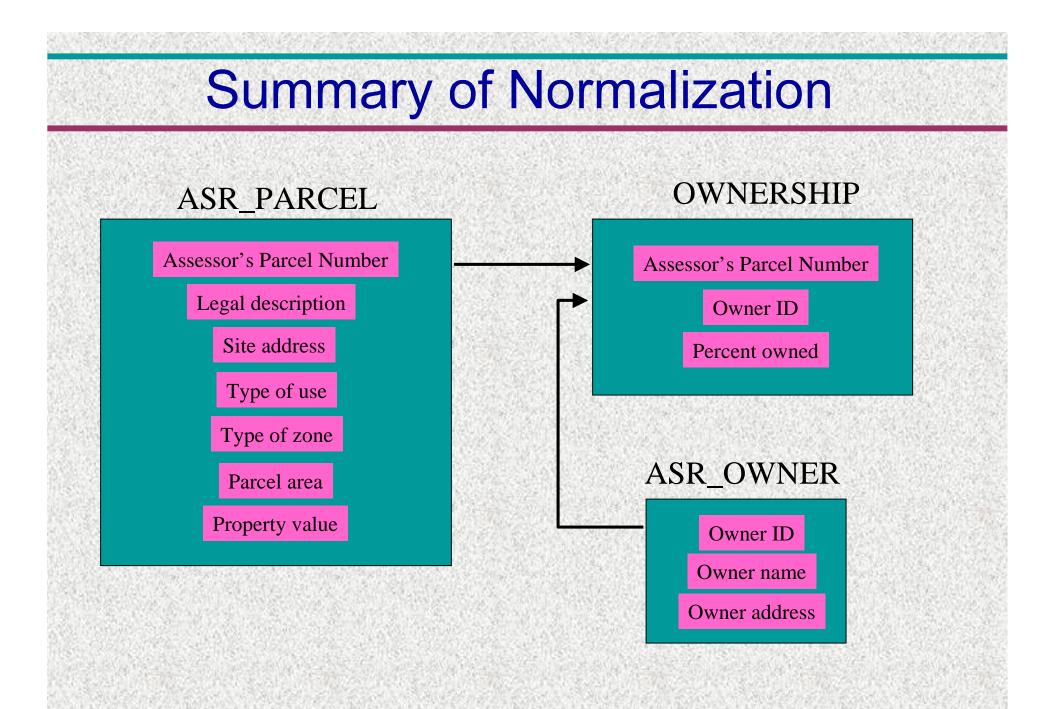

INTERIM STEP 1 ASR_PARCEL

- Assessor's Parcel Number
- Legal description
- Site address
- Type of use
- Type of zone
- Parcel area
- Property value

OWNERSHIP

- Assessor's Parcel Number
- Owner name
- Owner address
- Percent owned


FINAL STEP 2 ASR_PARCEL Assessors Parcel Number Legal description Site address Type of use Type of use Parcel area Property value



Normalization

INTERIM STEP 2 ASR_PARCEL

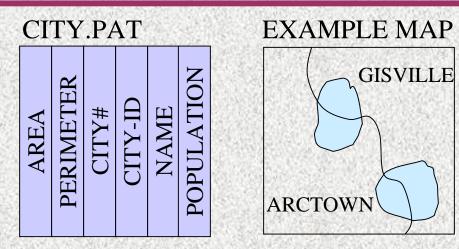
- Assessor's Parcel Number
- Legal description
- Site address
- Type of use
- Type of zone
- Parcel area
- Property value
 OWNERSHIP
- Assessor's Parcel Number
- Owner name
- Percent owned ASR_OWNER
- Owner name
- Owner address

INTRO to NORMALIZATION

• Normalization is:

- The process of creating relational files which preserve the appropriate dependence and independence of the data items
- A file that has the appropriate dependence and independence of data items is termed normalized
- Three basic normal forms: first, second, third

First Normal Form


UN-NOF	RMALIZ	ED			
NODE#	ARC1#	ARC2#	ARC3#	ARC4#	ARC5#
123	10	20	и	и	и
124	27	134	18	и	и
125	20	15	и	и	и

FIRST NORMAL FORM					
NODE#	ARC#				
123	10				
123	20				
124	27				
124	134				
124	18				
125	20				
125	15				

In the first normal form, every item has a value. In the un-normalized file, the *u* means "*unused*", which is not a data value (cannot have an "*unused*" arc connecting to a node). The file is unnormalized because very item (e.g., ARC5#) does not have a data value. The normalized file is in (at least) first normal form form because every item has a value.

Functional Dependence

- Given a relation R, attribute Y of R is functionally dependent on attribute X of R if and only if, whenever two tuples (records) of R agree on their X-Value, they also agree on their Y-Value.
- That is to say: a data item Y is functionally dependent on another data item X, if every occurrence of X is associated with the value of Y in that record.

In this relation, NAME is functionally dependent upon CITY-ID. POPULATION is functionally dependent on CITY# (Consider that there may be multiple occurrences of CITY-ID, where a city was split by a county line). CITY_ID is functionally dependent on CITY#.

Second Normal Form

- A table is said to be in second normal form if every non-key item is fully dependent on the primary key item.
- This file is NOT in thesecond normal form.
- NAME is non-key, yet is not dependent on the primary key, CITY#.
 NAME and CITY-ID are functionally dependent.

	CITY.	РАТ				
	AREA	PERIMETER	CITY#	CITY-ID	STATUS	NAME
	-23.2	-8989.1	1	0	0	÷
	4.3	345.1	2	1	1	New Haven
	2.4	234.5	3	1	2	New Haven
8	2.4	234.6	4	2	1	Batville
	2.3	321.2	5	3	5	GISville
	11.1	7000.0	6	1	5	New Haven
			13.00		C. Section	

Second Normal Form

CITY.	PAT			
AREA	PERIMETER	CITY#	CITY-ID	STATUS
-23.2	-8989.1	1	0	0
4.3	345.1	2	1	1
2.4	234.5	3	1	2
2.4	234.6	4	2	1
2.3	321.2	5	3	5
11.1	7000.0	6	1	5

CITY.NAME

CITY-ID	NAME			
0	-			
1	New Haven			
2	Batville			
3	GISville			

Both these tables are now in Second Normal Form.

Jargon

- Breaking apart a file into normalized relations is called DECOMPOSITION.
- The new files

 resulting from a
 decomposition are
 called

 PROJECTIONS of

 the original file.

CITY.	PAT				
AREA	PERIMETER	CITY#	CITY-ID	STATUS	NAME
-23.2	-8989.1	1	0	0	-
4.3	345.1	2	1	1	New Haven
2.4	234.5	3	1	2	New Haven
2.4	234.6	4	2	1	Batville
2.3	321.2	5	3	5	GISville
11.1	7000.0	6	1	5	New Haven

CITY.NA	CITY.NAME				
CITY-ID	NAME				
0					
1	New Haven				
2	Batville				
3	GISville				

"CITY.NAME" is a projection of "CITY.PAT". We decomposed "CITY.PAT"

Second Normal Form

FIRST

S#	STAT	CITY	P#	QTY
S1	20	London	P1	300
S1	20	London	P2	200
S1	20	London	P3	400
S1	20	London	P4	200
S1	20	London	P5	100
S1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S 3	10	Paris	P2	200
S4	30	Athens	P2	200
S4	30	Athens	P4	300
S4	30	Athens	P5	400

This table is NOT in second normal form. The items STAT and CITY (both NON-KEY) are functionally dependent on s#. What is the primary key?

Second Normal Form

SECOND					
S#	STAT	CITY			
S!	20	London			
S2	10	Paris			
S 3	10	Paris			
S4	30	Athens			

These relations are in second normal form, because very non-key item is fully dependent on the primary key item. QTY in relation SP is dependent on the S#,P# key. STAT and CITY are dependent on S# in SCEOND. (But what is CITY *really* dependent on?)

SP		State of
S#	P#	QTY
S 1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S 3	P2	200
S 4	P2	200
S4	P4	300
S 4	P5	400

25

Date, C.J., An introduction to database systems, Addison-Wesley Systems Programming Series, 1981.

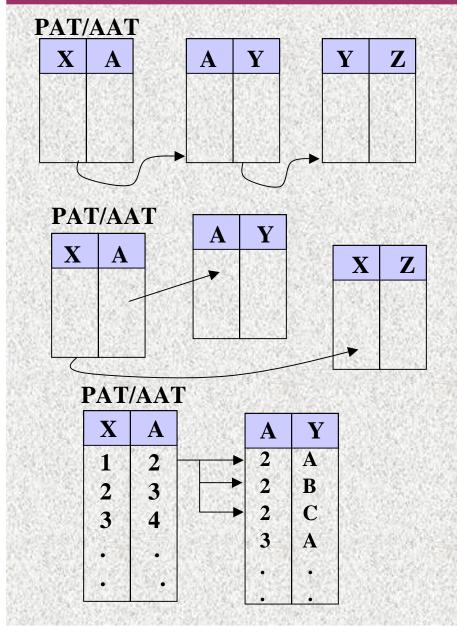
Third Normal Form

FIRST				
S#	STAT	CITY	P#	QTY
S 1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S 2	10	Paris	P1	300
S 2	10	Paris	P2	400
S 3	10	Paris	P2	200
S4	30	Athens	P2	200
S 4	30	Athens	P4	300
S4	30	Athens	P5	400

SECON	D	
S#	STAT	CITY
S!	20	London
S 2	10	Paris
S 3	10	Paris
S 4	30	Athens

A relation (table) R is in third normal form (3NF) if and only if, for all time, each record of R consists of a primary key value that identifies some entity, together with a set of mutually independent attribute values that describe that entity in some way.

SP /				sc	
S#	P#	QTY		S#	CITY
S 1	P1	300		S 1	London
S1	P2	200	Colored and	S2	Paris
S1	P3	400		S 3	Paris
S1	P4	200		S4	Athens
S 1	P5	100	1. Alesta		/
S1	P6	100			/
S 2	P1	300		CS 🖌	
S2	P2	400		CITY	STAT
S 3	P2	200		London	20
S 4	P2	200		Paris	10
S 4	P4	300		Athens	30
S4	P5	400			


Date, C.J., An introduction to database systems, Addison-Wesley Systems Programming Series, 1981.

REVIEW

- Normalization is common sense. It requires intuition and knowledge of the database.
- Know your data well enough to recognize functional dependence of one item to another.
- Decompose all functionally dependent items into separate projections.
- Normalized databases are more flexible and minimize redundancy. They are faster to access that one large, un-normalized file.
- Most relations (files) in an ARC database have COVER# as the primary key.

ARC RELATE

allows access to normalized databases

- Chained relates are supported (unless the last file in the chain is a symbol lookup table).
- Multiple relates are supported.
- One to many relationships supported. The returned value of Y might be A,B, or
 C. Info would return first occurrence - A.

Restructuring Files

- Restructuring includes:
 - Changing item definitions
 - Decomposing files into different projections
- Neither ARC nor INFO provides straight-forward utilities to restructure files.
- Foreign data is usual source of unwieldy files.
 - Supplier joins relations together into one file before transmitting to minimize errors in copying and need for documentation
 - Usual transfer format "card image" which translates to I- and N-TYTE definitions in INFO with lots of blank padding.

Restructuring Files

- Determine which items need their definitions changed.
 - Determine range for B-TYPES (2-byte or 4-byte).

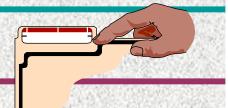
METHOD 1:

- ARC ADDITEM to add temporary item
- INFO to CALCulate
- ARC DROPITEM
- INFO ALTER

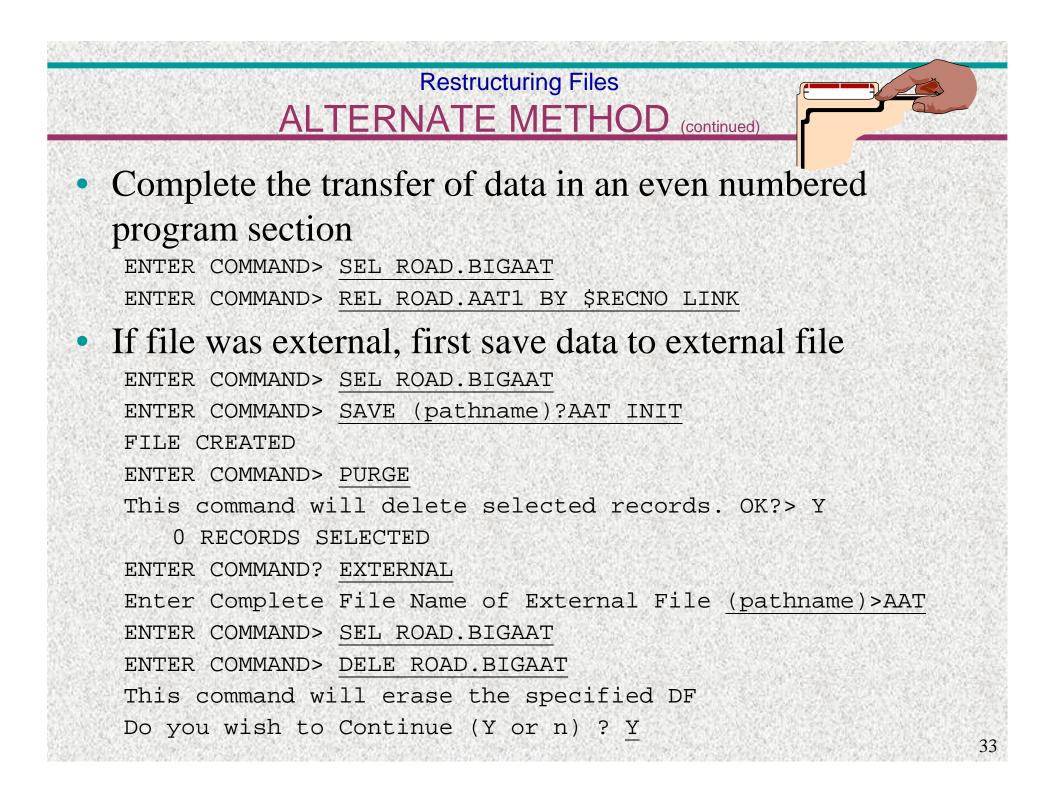
ENTER COMMAND><u>SELROAD AAT</u> 26119 RECORD(S) SELECTED

ENTER COMMAND>IT					
DATAFI LE	E NAME: R OA	D. AAT	Adda an a'		
28 I TEMS	: STARTI NG I	N POSI T	ION1		
COL	I TEM NAME	<u>WDTH</u>	<u>OPUT</u>	TYP	N. DEC
1	FNODE#	4	5	В	
5	TNODE#	4	5	В	
9	LPOLY#	4	5	В	
13	RPOLY#	4	5	В	
17	LENGTH	4	12	F	3
21	ROAD#	4	5	В	1997 - 1997
25	ROAD-I D	4	8	В	4404-1815
*29	MAJ OR 1	6	6	Ι	-
*35	M NOR1	6	6	Ι	
*41	MAJ OR2	6	6	Ι	-
*47	M NOR2	6	6	Ι	
53	OLDCOM D	4	5	В	200 <u>2</u> 20 m
57	QUAD#	5	5	С	
*62	TETC-I D	5	5	Ι	2010 - 1997
67	ORI GFNODE	4	5	В	
71	ORI GTNODE	4	5	В	-
75	STATUS	2	2	С	
*77	ALK- ID	5	5	Ι	
*82	OWNER-NEW	4	4	Ι	3.41
		11500.00	等的力能有效	Test Steel?	The second

30

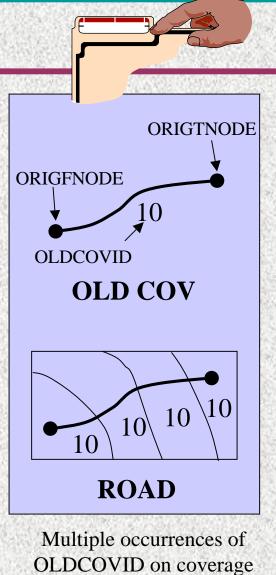

* = it ems we wish tor eformat into B-type

ENTER COMMAND> RENAME ARCnnn ROAD BI GAAT ENTER COMMAND> SELECT ROAD BI GAAT ENTER COMMAND> MODIFY ROAD AAT (modify instructions) ENTER COMMAND> SELECT ROAD AAT ENTER COMMAND> I TEMS

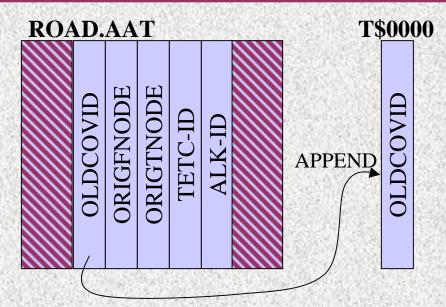

DATAFI LE NAME: R	OAD. AAT	28 IT EMS:	START	ING IN POS	SITION 1
COL	<u>I TEM NAME</u>	<u>WDTH</u>	<u>OPUT</u>	<u>TYP</u>	<u>N. DEC</u>
line is the statistic state of the state of the	FNODE#	4	5	В	
5	TNODE#	4	5	В	-
9	LPOLY#	4	5	В	
13	RPOLY#	4	5	В	
17	LENGTH	4	12	F	3
	ROAD#	4	5	В	
Restructuring ²¹	ROAD-I D	4	8	В	
*29	MAJ OR 1	4	6	В	alva i s te da la
Eiloo *33	MINOR1	4	6	В	- 4
Files *33 *37	MAJ OR2	4	6	В	and the states of the
	MI NOR2	4	6	В	-
ALTERNATE METHOD 45	OLDCOM D	4	5	В	
49	QUAD#	5	5	С	
*54	TETC-I D	4	5	В	-
58	ORI GFNODE	4	5	В	al an
62	ORI GTNODE	4	5	В	-
66	STATUS	2	2	С	n en de la constante
*68	ALK- ID	4	5	В	1999 - 1999
*72	OWNER-NEW	2	4	В	-

* = ne wi te m defint ions

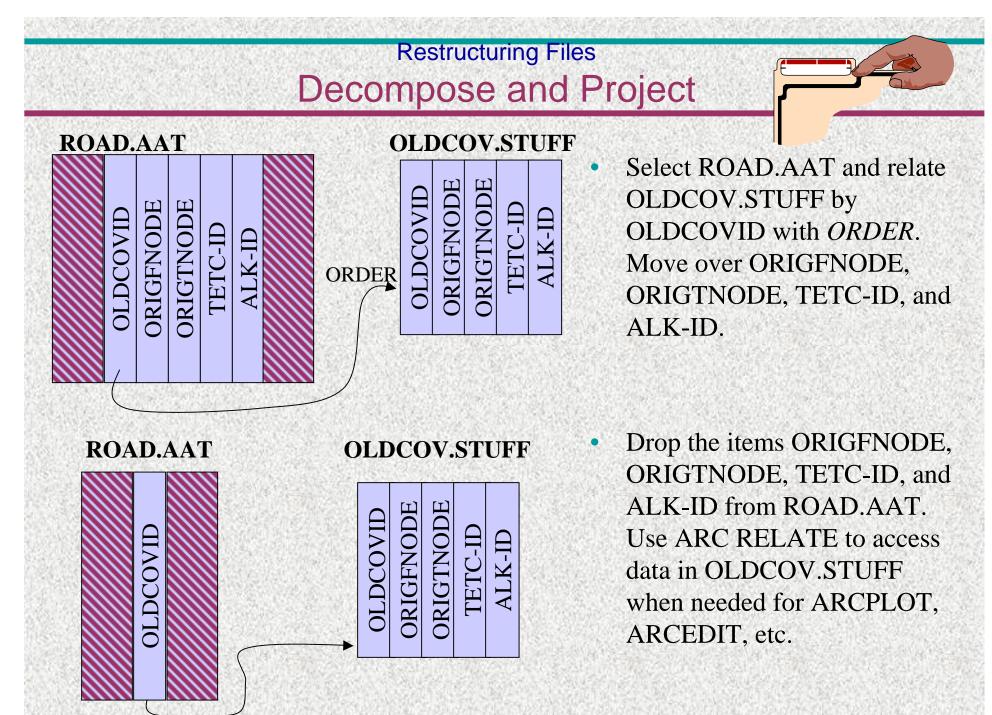
Restructuring Files ALTERNATE METHOD (continued)

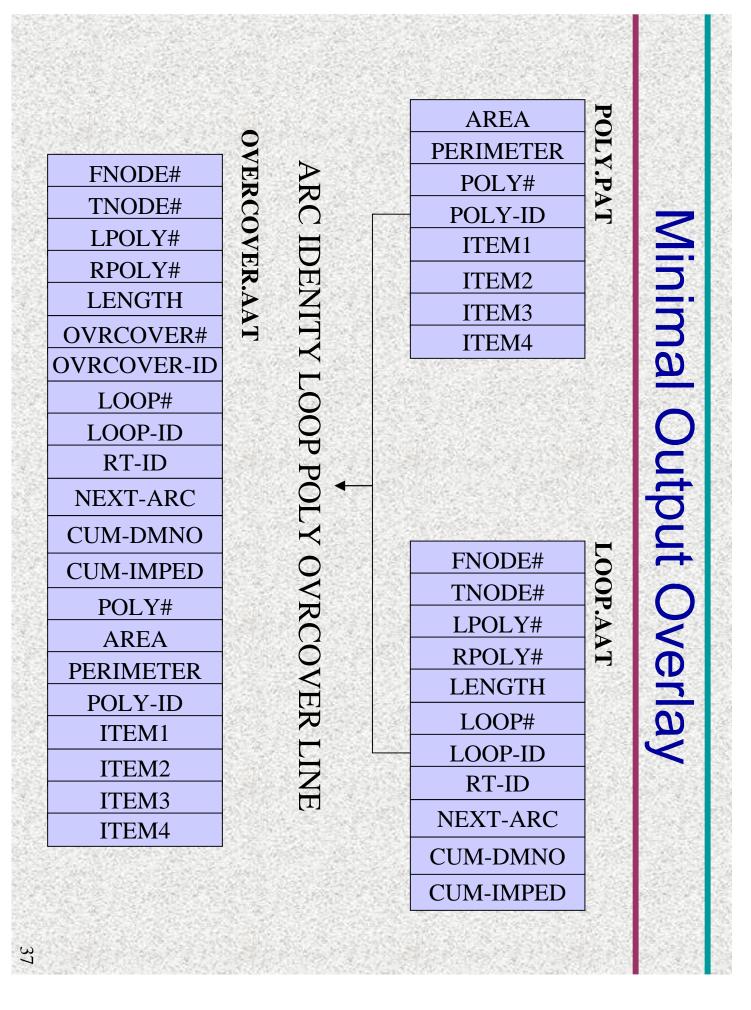

- Move over one item to get 26119 records into ROAD.AAT.
 ENTER COMMAND> <u>SEL ROAD.BIGAAT</u>
 ENTER COMMAND> <u>REL ROAD.AAT1 BY FNODE# APPEND</u>
 ENTER COMMAND> CALC \$1TNODE# = TNODE#
- We could have used a "block move" for a shortcut. A "block move" is where many items are moved over at once.
 - Redefined item".BLOCK.", starting in Column 1, 28,28,C
 Item on both ROAD.BIGAAT and ROAD.AAT
 ENTER COMMAND> <u>SEL ROAD.BIGAAT</u>
 ENTER COMMAND> <u>REL ROAD.AAT 1 BY. BLOCK. APPEND</u>
 ENTER COMMAND> <u>CALC \$NUM1 + 1</u>

Restructuring Files Decompose and Project

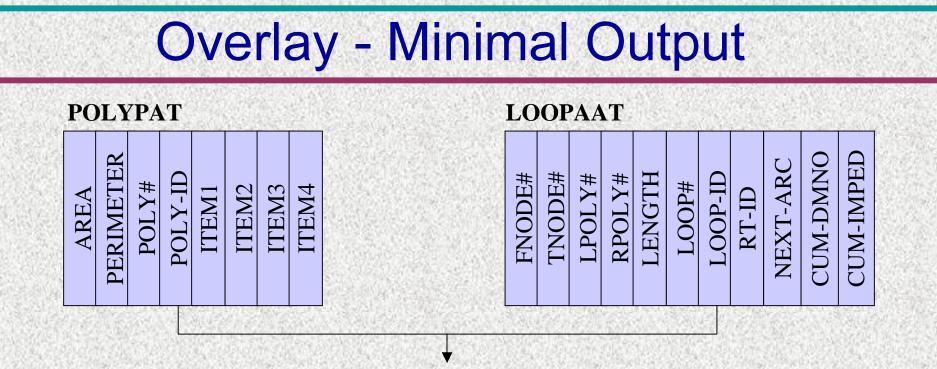

These items are functionally dependent:
 OLDCOVID
 ORIGFNODE
 ORIGTNODE
 TETC-ID
 ALK-ID

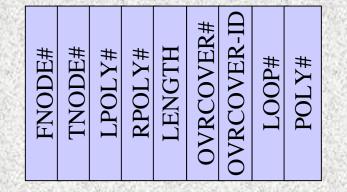
- This is because the cover ROAD was derived from the cover OLDCOV.
- Items are functionally dependent on the non-key item OLDCOVID. The primary key to ROAD.AAT is ROAD#.
- There are multiple occurrences of OLDCOVID because arcs have been split.


DLDCOVID on coverage ROAD because of arc splitting (perhaps from an overlay).


Restructuring Files Decompose and Project

 Define a temporary file, T\$0000, and copy OLDCOVID into it.


- T\$0000 OLDCOV.STUFF
- Sort T\$0000 on
 OLDCOVID. Initialize
 OLDCOV.STUFF using a summary relate.


Minimal Output Overlay

- ARC 5.0 supports a NOJOIN option on all overlay commands that makes this method obsolete. Use this method until you have ARC 5.0.
- PRE-ARC 5.0 Method:
 - Use INFO to rename the two input coverages' feature attribute tables to something besides the default AAT or PAT.
 ENTER COMMAND>DIR LOOP.AAT
 TYPE NAME INTERNAL NAME NO.RECS LENGTH EXTERNAL
 DF LOOP.AAT ARC005DAT 6 44 XX
 ENTER COMMAND>RENAME ARC005 LOOPAAT
 (Do the same for POLY.PAT, renaming it POLYPAT.)
 - Issue the OVERLAY COMMAND.

ARC IDENITY LOOP POLY OVRCOVER LINE

OVERCOVER.AAT

Be sure to name LOOPAAT and POLYPAT back to LOOP.AAT and POLY.PAT

The result of the identity is to create a third normal form output file.