
presented by:
Tim Haithcoat

University of Missouri
Columbia

with materials from:
Environmental Systems Research

Institute

2

3

• Creating and maintaining an efficient relational
database

• Modifying existing databases that were poorly
defined/implemented

• Subtopics
� Bits/bytes/item definitions
� Normalization
� ARC RELATE command
� Restructuring tricks - projecting files
� Minimal output overlays {NOJOIN}

4

Bits & Bytes & Item Definitions ~ Revisited

• Good database design begins with the proper item
definitions (“B” and “F” types as opposed to “I”
and “N” types).

• Once a database is built, changing item definitions
is very difficult

• Item definition especially important on larger files
(each extra byte in an item equals many kilobytes
on the file).

ad
de

d
ite

m
1

1024 records

1,1,I = 1 Kilobyte
6,6,I = 6 Kilobytes

5

Bits & Bytes & Item Definitions ~ Revisited

• Geographic operations (Spatial Joins/Overlays)
result in exponentially larger files. Poor item
definitions exasperate problems.

• Use “B” and “F” types whenever possible.
Know the range of data values for any
particular item (use MINMAX procedure on
existing databases).

6

• A computer science term to describe the relationship
of data and items within a file

• Understanding and applying normal forms to a
relational database is an absolute must in order to have
efficient databases.

• Normalization is mostly common sense and knowing
your data. It is an intuitive concept.

• Advantages:
� Flexibility of database is optimized
� Minimized redundancy; optimized INSERT, UPDATE, and

DELETE operations
� Forces database designer to understand data relationships

7

• Relations, or two-dimensional tables of rows
and columns, with 6 properties:
� Each column, termed an attribute, has a unique

name
� The left-to-right order of columns is irrelevant
� Each attribute entry is single valued; no repeating

groups or arrays are allowed
� Entries in any one column are of the same kind
� The top-to-bottom order of rows is also irrelevant
� Each row is unique

8

5 C Mary C 50 57 B 8 Cathy B
12 D Bob D 55 71 C 26 Ed L
8 B Cathy B 57 52 A 7 Bert A

19 G Jim G 82 57 T 14 Harpo T
26 L Ed C 71 49 M 6 Chris M
1 K Ernie K 61 55 D 11 Moe F
7 A Bert A 52 82 G 19 Jim G

11 F Moe D 55 55 D 12 Bob D
6 M Chris M 49 50 C 5 Mary C

14 T Harpo T 57 61 K 1 Ernie K
LEGAL LEGAL

9

PARCEL_OWNER

PARCEL_NUMBER

PARCEL_ADDRESS

OWNER_NAME

OWNER_ADDRESS

VALUE

DEFINE ALL ITEMS
DEFINE PROJ BC
SEL PARCEL OWNER RO
RELATE ALL ITEMB 1 BY B APP
CALL $NUM1=$NUM + 1
SEL ALL�ITEMB
SORT B

SEL ALLITEMB RO
RELATE PROJBC 1 BY B SUN
CALC $NUM2=$NUM2 + 1
SEL PROJBC
MOVE ____ TO C
SEL PARCEL_ OWNER RO
RELATE PROJBC 1 BY B OR
MOVE C TO $1C
DROP C FROM

PARCEL_OWNER

PARCEL-
OWNER

ALLITEMB

PROJBC

KEY A B C D

11

• Assessors Parcel Number
• Legal description
• Site address
• Owner_one_name
• Owner_one_address
• Percent_owner_one
• Owner_two_name

• Owner_two_address
• Percent_owner_two
• Type of use
• Type of zone
• Parcel area
• Property value

MULTI_OWNER_PARCEL

12

UNNORMALIZED
USER VIEW

Remove
non-key

dependencies

Remove
partial key

dependencies

Remove
repeating
groups

3NF2NFINF

MULTI_PARCEL_OWNER

Assessor’s Parcel Number

Legal description

Site address

Owner_one_name

Owner_one_address

Percent_owner_one

Owner_two_name

Owner_two_address

Type of zone

Parcel area

Property value

Type of use

Percent_owner_two

14

ORIGINAL
MULTI_OWNER_PARCEL

• Assessors Parcel Number
• Legal description
• Site address
• Owner_one_name
• Owner_one_address
• Percent_owner_one
• Owner_two_name
• Owner_two_address
• Percent_owner_two
• Type of use
• Type of zone
• Parcel area
• Property value

Assessor’s Parcel Number

Legal description

Site address

Type of use

Type of zone

Parcel area

Owner name

Owner address

Percent owned

Assessor’s Parcel Number

Property value

INTERIM STEP 1
ASR_PARCEL

OWNERSHIP

15

OWNERSHIP

ASR_OWNER

INTERIM STEP 1
ASR_PARCEL

• Assessor’s Parcel Number
• Legal description
• Site address
• Type of use
• Type of zone
• Parcel area
• Property value

OWNERSHIP
• Assessor’s Parcel Number
• Owner name
• Owner address
• Percent owned

FINAL STEP 2
ASR_PARCEL

Assessors Parcel Number
Legal description
Site address
Type of use
Type of zone
Parcel area
Property value

Owner name

Percent owned

Assessor’s Parcel Number

Owner address

Owner name

16

INTERIM STEP 2
ASR_PARCEL

• Assessor’s Parcel Number
• Legal description
• Site address
• Type of use
• Type of zone
• Parcel area
• Property value

OWNERSHIP
• Assessor’s Parcel Number
• Owner name
• Percent owned

ASR_OWNER
• Owner name
• Owner address

FINAL STEP 3
ASR_PARCEL

Assessor’s Parcel Number
Legal description
Site address
Type of use
Type of zone
Parcel area
Property value

OWNERSHIP

ASR_OWNER

Owner ID

Percent owned

Assessor’s Parcel Number

Owner name

Owner ID

Owner address

17

Assessor’s Parcel Number

Legal description

Site address

Type of use

Type of zone

Parcel area

Property value

ASR_PARCEL

Owner ID

Percent owned

Assessor’s Parcel Number

Owner name

Owner ID

Owner address

OWNERSHIP

ASR_OWNER

18

• Normalization is:
� The process of creating relational files which

preserve the appropriate dependence and
independence of the data items

• A file that has the appropriate dependence and
independence of data items is termed
normalized

• Three basic normal forms: first, second, third

19

In the first normal form, every item has a
value. In the un-normalized file, the u
means “unused”, which is not a data
value (cannot have an “unused” arc
connecting to a node). The file is un-
normalized because very item (e.g.,
ARC5#) does not have a data value. The
normalized file is in (at least) first normal
form form because every item has a value.

UN-NORMALIZED
NODE# ARC1# ARC2# ARC3# ARC4# ARC5#

123
124
125

10
27
20

20
134
15

u
18
u

u
u
u

u
u
u

FIRST NORMAL FORM
NODE# ARC#

123
123
124
124
124
125
125

10
20
27

134
18
20
15

20

• Given a relation R, attribute
Y of R is functionally
dependent on attribute X of
R if and only if, whenever
two tuples (records) of R
agree on their X-Value, they
also agree on their Y-Value.

• That is to say: a data item Y
is functionally dependent on
another data item X, if every
occurrence of X is associated
with the value of Y in that
record.

In this relation, NAME is
functionally dependent upon
CITY-ID. POPULATION is
functionally dependent on CITY#
(Consider that there may be
multiple occurrences of CITY-ID,
where a city was split by a county
line). CITY_ID is functionally
dependent on CITY#.

A
R

EA
PE

R
IM

ET
ER

C
IT

Y
#

C
IT

Y
-I

D
N

A
M

E
PO

PU
LA

TI
O

N

CITY.PAT EXAMPLE MAP
GISVILLE

ARCTOWN

21

• A table is said to be in
second normal form if
every non-key item is
fully dependent on the
primary key item.

• This file is NOT in the
second normal form.

• NAME is non-key, yet is
not dependent on the
primary key, CITY#.
NAME and CITY-ID are
functionally dependent.

CITY.PAT
AREA PERIMETER CITY# CITY-ID STATUS NAME
-23.2

4.3
2.4
2.4
2.3

11.1

-8989.1
345.1
234.5
234.6
321.2

7000.0

1
2
3
4
5
6

0
1
1
2
3
1

0
1
2
1
5
5

-
New Haven
New Haven
Batville
GISville
New Haven

22

CITY.PAT
AREA PERIMETER CITY# CITY-ID STATUS
-23.2

4.3
2.4
2.4
2.3

11.1

-8989.1
345.1
234.5
234.6
321.2

7000.0

1
2
3
4
5
6

0
1
1
2
3
1

0
1
2
1
5
5

CITY.NAME
CITY-ID NAME

0
1
2
3

-
New Haven

Batville
GISville

Both these tables are now in
Second Normal Form.

23

• Breaking apart a file
into normalized
relations is called
DECOMPOSITION.

• The new files
resulting from a
decomposition are
called
PROJECTIONS of
the original file.

CITY.PAT
AREA PERIMETER CITY# CITY-ID STATUS NAME
-23.2

4.3
2.4
2.4
2.3

11.1

-8989.1
345.1
234.5
234.6
321.2

7000.0

1
2
3
4
5
6

0
1
1
2
3
1

0
1
2
1
5
5

-
New Haven
New Haven
Batville
GISville
New Haven

CITY.NAME
CITY-ID NAME

0
1
2
3

-
New Haven

Batville
GISville

“CITY.NAME” is
a projection of
“CITY.PAT”.

We decomposed
“CITY.PAT”

24

• This table is NOT in
second normal form.
The items STAT and
CITY (both NON-
KEY) are functionally
dependent on s#. What
is the primary key?

FIRST
S# STAT CITY P# QTY
S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

20
20
20
20
20
20
10
10
10
30
30
30

London
London
London
London
London
London
Paris
Paris
Paris
Athens
Athens
Athens

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

300
200
400
200
100
100
300
400
200
200
300
400

25

These relations are in second normal
form, because very non-key item is fully
dependent on the primary key item.
QTY in relation SP is dependent on the
S#,P# key. STAT and CITY are
dependent on S# in SCEOND. (But what
is CITY really dependent on?)
Date, C.J., An introduction to database systems, Addison-Wesley Systems Programming Series, 1981.

SECOND SP
S# STAT CITY S# P# QTY
S!
S2
S3
S4

20
10
10
30

London
Paris
Paris
Athens

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

300
200
400
200
100
100
300
400
200
200
300
400

26

A relation (table) R is in third
normal form (3NF) if and only if,
for all time, each record of R
consists of a primary key value
that identifies some entity,
together with a set of mutually
independent attribute values that
describe that entity in some way.

Date, C.J., An introduction to database systems, Addison-Wesley Systems Programming Series, 1981.

FIRST
S# STAT CITY P# QTY
S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

20
20
20
20
20
20
10
10
10
30
30
30

London
London
London
London
London
London

Paris
Paris
Paris

Athens
Athens
Athens

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

300
200
400
200
100
100
300
400
200
200
300
400

SECOND
S# STAT CITY
S!
S2
S3
S4

20
10
10
30

London
Paris
Paris

Athens

SP SC
S# P# QTY S# CITY

S1
S2
S3
S4

London
Paris
Paris

Athens

CS
CITY STAT

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

300
200
400
200
100
100
300
400
200
200
300
400

London
Paris

Athens

20
10
30

27

•• Normalization is common sense. It requires Normalization is common sense. It requires
intuition and knowledge of the database.intuition and knowledge of the database.

• Know your data well enough to recognize
functional dependence of one item to another.

• Decompose all functionally dependent items into
separate projections.

• Normalized databases are more flexible and
minimize redundancy. They are faster to access
that one large, un-normalized file.

• Most relations (files) in an ARC database have
COVER# as the primary key.

28

ARC RELATE
allows access to normalized databases

• Chained relates are
supported (unless the last file
in the chain is a symbol
lookup table).

• Multiple relates are
supported.

• One to many relationships
supported. The returned
value of Y might be A,B, or
C. Info would return first
occurrence - A.

PAT/AAT

PAT/AAT

PAT/AAT

X A A Y Y Z

X A
A Y

X Z

X A
1 2
2 3
3 4
. .
. .

A Y
2 A
2 B
2 C
3 A
. .
. .

29

• Restructuring includes:
� Changing item definitions
� Decomposing files into different projections

• Neither ARC nor INFO provides straight-forward
utilities to restructure files.

• Foreign data is usual source of unwieldy files.
� Supplier joins relations together into one file before

transmitting to minimize errors in copying and need for
documentation

� Usual transfer format “card image” which translates to I- and
N-TYTE definitions in INFO with lots of blank padding.

30

• Determine which
items need their
definitions changed.

• Determine range for
B-TYPES (2-byte or
4-byte).

• METHOD 1:
� ARC ADDITEM to

add temporary item
� INFO to CALCulate
� ARC DROPITEM
� INFO ALTER

ENTER COMMAND>SELROAD. AAT
26119 RECORD(S) SELECTED

ENTER COMMAND>I T
DATAFI LE NAME: R OAD. AAT
28 I TEMS: STARTI NG I N POSI TIO N 1

COL I TEM NAME WDTH OPUT TYP N. DEC
1
5
9

13
17
21
25

*29
*35
*41
*47

53
57

*62
67
71
75

*77
*82

FNODE#
TNODE#
LPOLY#
RPOLY#
LENGTH
ROAD#
ROAD-I D
MAJ OR1
MI NOR1
MAJ OR2
MI NOR2
OLDCOVI D
QUAD#
TETC-I D
ORI GFNODE
ORI GTNODE
STATUS
ALK- ID
OWNER- NEW

4
4
4
4
4
4
4
6
6
6
6
4
5
5
4
4
2
5
4

5
5
5
5

12
5
8
6
6
6
6
5
5
5
5
5
2
5
4

B
B
B
B
F
B
B
I
I
I
I
B
C
I
B
B
C
I
I

-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-

* = it e ms we w is h t o r ef or mat i nto B- ty pe

ALTERNATE METHOD

ENTER COMMAND> RENAME ARCnnn ROAD. BI GAAT
ENTER COMMAND> SELECT ROAD. BI GAAT
ENTER COMMAND> MODI FY ROAD. AAT
 (modi f y i ns tr uct i ons)
ENTER COMMAND> SELECT ROAD. AAT
ENTER COMMAND> I TEMS

DATAFI LE NAME: R OAD. AAT 28 IT EMS: STARTI NG I N POSI TI ON 1
COL I TEM NAME WDTH OPUT TYP N. DEC

1
5
9

13
17
21
25

*29
*33
*37
*41

45
49

*54
58
62
66

*68
*72

FNODE#
TNODE#
LPOLY#
RPOLY#
LENGTH
ROAD#
ROAD-I D
MAJ OR1
MI NOR1
MAJ OR2
MI NOR2
OLDCOVI D
QUAD#
TETC-I D
ORI GFNODE
ORI GTNODE
STATUS
ALK- ID
OWNER- NEW

4
4
4
4
4
4
4
4
4
4
4
4
5
4
4
4
2
4
2

5
5
5
5

12
5
8
6
6
6
6
5
5
5
5
5
2
5
4

B
B
B
B
F
B
B
B
B
B
B
B
C
B
B
B
C
B
B

-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-

* = ne w i te m de f i nt i ons

32

Restructuring Files

ALTERNATE METHOD (continued)

• Move over one item to get 26119 records into ROAD.AAT.
ENTER COMMAND> SEL ROAD.BIGAAT

ENTER COMMAND> REL ROAD.AAT1 BY FNODE# APPEND

ENTER COMMAND> CALC $1TNODE# = TNODE#

• We could have used a “block move” for a shortcut. A
“block move” is where many items are moved over at
once.
�Redefined item”.BLOCK.”, starting in Column 1, 28,28,C
�Item on both ROAD.BIGAAT and ROAD.AAT
ENTER COMMAND> SEL ROAD.BIGAAT

ENTER COMMAND> REL ROAD.AAT 1 BY. BLOCK. APPEND

ENTER COMMAND> CALC $NUM1 + 1

33

Restructuring Files

ALTERNATE METHOD (continued)

• Complete the transfer of data in an even numbered
program section
ENTER COMMAND> SEL ROAD.BIGAAT

ENTER COMMAND> REL ROAD.AAT1 BY $RECNO LINK

• If file was external, first save data to external file
ENTER COMMAND> SEL ROAD.BIGAAT

ENTER COMMAND> SAVE (pathname)?AAT INIT

FILE CREATED

ENTER COMMAND> PURGE

This command will delete selected records. OK?> Y

0 RECORDS SELECTED

ENTER COMMAND? EXTERNAL
Enter Complete File Name of External File (pathname)>AAT

ENTER COMMAND> SEL ROAD.BIGAAT

ENTER COMMAND> DELE ROAD.BIGAAT

This command will erase the specified DF

Do you wish to Continue (Y or n) ? Y

34

Restructuring Files

Decompose and Project

• These items are functionally dependent:
OLDCOVID
ORIGFNODE
ORIGTNODE
TETC-ID
ALK-ID

• This is because the cover ROAD was
derived from the cover OLDCOV.

• Items are functionally dependent on the
non-key item OLDCOVID. The primary
key to ROAD.AAT is ROAD#.

• There are multiple occurrences of
OLDCOVID because arcs have been split.

Multiple occurrences of
OLDCOVID on coverage

ROAD because of arc
splitting (perhaps from

an overlay).

OLD COV

ROAD

ORIGTNODE

ORIGFNODE

OLDCOVID

10

10 10 10 10

35

Restructuring Files

Decompose and Project

• Define a temporary file,
T$0000, and copy
OLDCOVID into it.

• Sort T$0000 on
OLDCOVID. Initialize
OLDCOV.STUFF using
a summary relate.

O
LD

C
O

V
ID

O
R

IG
FN

O
D

E
O

R
IG

TN
O

D
E

TE
TC

-I
D

A
LK

-I
D

O
LD

C
O

V
ID

O
LD

C
O

V
ID

O
LD

C
O

V
ID

O
R

IG
FN

O
D

E
O

R
IG

TN
O

D
E

TE
TC

-I
D

A
LK

-I
D

ROAD.AAT T$0000

T$0000 OLDCOV.STUFF

APPEND

SUMMARY

36

Restructuring Files

Decompose and Project

• Select ROAD.AAT and relate
OLDCOV.STUFF by
OLDCOVID with ORDER.
Move over ORIGFNODE,
ORIGTNODE, TETC-ID, and
ALK-ID.

• Drop the items ORIGFNODE,
ORIGTNODE, TETC-ID, and
ALK-ID from ROAD.AAT.
Use ARC RELATE to access
data in OLDCOV.STUFF
when needed for ARCPLOT,
ARCEDIT, etc.

O
LD

C
O

V
ID

O
R

IG
FN

O
D

E
O

R
IG

TN
O

D
E

TE
TC

-I
D

A
LK

-I
D

O
LD

C
O

V
ID

ROAD.AAT OLDCOV.STUFF

ORDER

O
LD

C
O

V
ID

O
R

IG
FN

O
D

E
O

R
IG

TN
O

D
E

TE
TC

-I
D

A
LK

-I
D

ROAD.AAT OLDCOV.STUFF

O
LD

C
O

V
ID

O
R

IG
FN

O
D

E
O

R
IG

TN
O

D
E

TE
TC

-I
D

A
LK

-I
D

37

AREA
PERIMETER

POLY#
POLY-ID

ITEM1
ITEM2
ITEM3
ITEM4

FNODE#
TNODE#
LPOLY#
RPOLY#
LENGTH
LOOP#

LOOP-ID
RT-ID

NEXT-ARC

CUM-IMPED
CUM-DMNO

A
R

C
 ID

EN
ITY

 LO
O

P PO
LY

 O
V

R
C

O
V

ER
 LIN

E

PO
LY

.PA
T

LO
O

P.A
A

T

O
V

ER
C

O
V

ER
.A

A
T

FNODE#
TNODE#
LPOLY#
RPOLY#
LENGTH

OVRCOVER#
OVRCOVER-ID

LOOP#
LOOP-ID

RT-ID
NEXT-ARC

CUM-IMPED
CUM-DMNO

POLY#
AREA

PERIMETER
POLY-ID

ITEM1
ITEM2
ITEM3
ITEM4

38

• ARC 5.0 supports a NOJOIN option on all overlay
commands that makes this method obsolete. Use this
method until you have ARC 5.0.

• PRE-ARC 5.0 Method:
� Use INFO to rename the two input coverages’ feature attribute

tables to something besides the default AAT or PAT.
ENTER COMMAND>DIR LOOP.AAT

TYPE NAME INTERNAL NAME NO.RECS LENGTH EXTERNAL

DF LOOP.AAT ARC005DAT 6 44 XX

ENTER COMMAND>RENAME ARC005 LOOPAAT

(Do the same for POLY.PAT, renaming it POLYPAT.)

� Issue the OVERLAY COMMAND.

39

A
R

EA
PE

R
IM

ET
ER

PO
LY

#
PO

LY
-I

D
IT

EM
1

IT
EM

2
IT

EM
3

IT
EM

4

FN
O

D
E#

TN
O

D
E#

LP
O

LY
#

R
PO

LY
#

LE
N

G
TH

LO
O

P#
LO

O
P-

ID
R

T-
ID

N
EX

T-
A

R
C

C
U

M
-I

M
PE

D
C

U
M

-D
M

N
O

ARC IDENITY LOOP POLY OVRCOVER LINE

POLYPAT LOOPAAT

OVERCOVER.AAT

FN
O

D
E#

TN
O

D
E#

LP
O

LY
#

R
PO

LY
#

LE
N

G
TH

O
V

R
C

O
V

ER
#

O
V

R
C

O
V

ER
-I

D
LO

O
P#

PO
LY

#

Be sure to name
LOOPAAT and POLYPAT
back to LOOP.AAT and
POLY.PAT

The result of the identity is to create a third normal form output file.

