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ABSTRACT 

In real world scenarios, a desired speech signal is often accompanied by various 

kinds of interferences, such as background noise, reverberation, and competing speech. 

These interferences not only degrade speech perceptual quality and intelligibility which 

cause listening fatigue, but also hamper speech technology applications in automatic 

speech recognition, speaker recognition, and hearing aid systems. Therefore, purifying 

corrupted speech has been a hot spot of research and development in academia and 

industry. 

Speech enhancement, aimed to improve the target speech quality from interferences, 

includes the topics of noise reduction, speech dereverberation, and blind speech 

separation, etc.. The goal of noise reduction is mostly to suppress background noises 

while keeping the speech signal free from processing distortions as much as possible. 

Due to the convenience in implementation, single channel noise reduction algorithms are 

often used. Classical single channel noise reduction methods include spectral subtraction, 

Wiener filter, minimum mean square error estimation, and so on. Speech reverberation is 

produced from convolving a clean speech signal with the impulse response of the sound 

propagation path of a reverberant room, and thus one enhancement solution is to find the 

inverse filter to reverse the convolution effect. If considering late reverberation as an 

additive noise, then another possible solution could come from the noise reduction 

algorithms. Blind speech separation is to separate the speech signals of different sources 

based only on the recorded convolutive mixtures of multiple speech signals. According to 

the number of receiving sensor microphones, BSS can be divided into over/critical 

determined methods, underdetermined methods, and single channel methods, where in 
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over/critical methods the number of sensors is more than or equal to the number of 

sources, in underdetermined methods the number of sensors is less than the number of 

sources, and in single channel methods only one sensor is used for the separation task, 

and it is therefore a special underdetermined case as well.  

In this work, we propose a novel spectral subtraction method for noisy speech 

enhancement. Instead of taking the conventional approach of carrying out subtraction on 

the magnitude spectrum in the acoustic frequency domain, we propose to perform 

subtraction on the real and imaginary spectra separately in the modulation frequency 

domain, where the method is referred to as MRISS. By doing so, we are able to enhance 

magnitude as well as phase through spectral subtraction. We conducted objective and 

subjective evaluation experiments to compare the performance of the proposed MRISS 

method against three existing methods, including modulation frequency domain 

magnitude spectral subtraction, nonlinear spectral subtraction, and minimum mean square 

error estimation. The objective evaluation used the criteria of segmental signal-to-noise 

ratio, PESQ, and average Itakura-Saito spectral distance. The subjective evaluation used a 

mean preference score with 14 participants. Both objective and subjective evaluation 

results have demonstrated that the proposed method outperformed the three existing 

speech enhancement methods. A further analysis has shown that the winning 

performance of the proposed MRISS method comes from improvements in the recovery 

of both acoustic magnitude and phase spectrum. 

We investigate applying the MRISS algorithm to the speech dereverberation task. 

Instead of estimating the background noise, we estimate the late reverberation spectral 

variance directly from the observed reverberant speech and subtracted it from the 
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reverberant speech. Our experimental results have shown that the proposed method beat 

the state-of-art method of single channel multi-step-linear prediction methods in the 

criteria of PESQ and segmental SNR. 

We investigate DOA based blind speech separation method under challenging 

conditions, e.g., close source directions, unbalanced source energies, reverberation, and 

background noises. We propose using ALMM to fit the subband IPD data to improve the 

DOA estimation, and prove that ALMM fit the asymmetric IPD data distribution better 

than the conventional GMM and LMM, especially when the multiple sources’ directions 

are close. We propose using a log likelihood criterion to estimate the source numbers. By 

forming a sequence of negated log likelihood scores of the mixture model and the 

corresponding component models where each score targets at a source number hypothesis, 

we determine the source number by minimizing the negated log likelihood scores. The 

proposed method obtained large improvements over AIC and BIC methods when source 

directions are close.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

Modern communication technology has brought us great convenience and flexibility 

in our daily life, for example, a teleconference system greatly saves business travel time 

and cost. However, new challenges are also introduced. Communicating in diverse 

environments often causes the desired target speech to be corrupted with varying levels 

and types of background noises; talking at a distance from microphones in small rooms 

makes the target speech reverberant. The corrupting interference sounds significantly 

degrade the intelligibility and perceptual quality of target speech, leading to listeners’ 

fatigue and frustration. Furthermore, most speech devices built on clean speech can 

hardly work for corrupted speech inputs. For example, the performance of automatic 

speech recognition would drop dramatically when dealing with corrupted speech instead 

of clean speech. Speech enhancement shows increasing importance in real world 

applications such as mobile communication, teleconferencing system, speech recognition, 

and hearing aids. For these reasons, much effort has been devoted over the last few 

decades towards developing efficient speech enhancement algorithms. 

Speech enhancement, by its name, is to improve the quality of target speech from the 

interference corruptions. Interference may refer to surrounding noise, reverberation, or 

competing speech, and according to which the enhancement topic can be divided into 

more detailed research problems, such as noise reduction, dereverberation, and blind 

speech separation. The goal of speech enhancement is to find a good tradeoff between 
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reducing interference and avoiding target speech distortion that may be introduced during 

the enhancement process. 

	

1.1.1	Speech	phase	spectrum	

 In conventional speech enhancement algorithms (especially in noise reduction), 

speech phase has been considered insignificant in perceptual speech quality, and so 

traditional noise reduction methods focus on magnitude spectrum enhancement and use 

noisy phase spectrum in reconstructing speech. When SNR is high, noisy speech phase is 

close to clean speech phase, and using noisy phase to replace clean phase would not 

introduce noticeable perceptual distortion. However, when SNR drops low, noisy phase 

shows a more apparent negative effect in the enhanced speech. It has been indicated that 

when the spectral SNR is lower than approximately 8 dB for all frequencies, a mismatch 

in phase might be perceived as “roughness” in speech quality [1], which means that under 

this condition, even if we had the exact clean speech magnitude spectrum, we would not 

be able to recover the clean speech signal with unperceivable distortion.  

Recently, more interests in speech phase have been reported in the literature. Phase 

information was used to generate features in automatic speech recognition [2-4], and 

phase information was applied to improve perceptual quality of enhanced speech. 

Shannan & Paliwal [5] investigated estimating the STFT phase spectrum independently 

from the STFT magnitude spectrum for speech enhancement applications and observed 

substantial improvements in noise reduction and speech quality. Wojcicki et al. [6] 

proposed phase spectrum compensation to control the amount of reinforcement or 

cancellation that occurs during the synthesis of the enhanced signal by adding an anti-
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symmetry function to the noisy speech signal in the frequency domain. Aarabi and Shi [7] 

proposed phase-error filtering based on the assumption that phase variations between 

multiple microphone channels after time delay compensation are due purely to the 

influence of the background noise, where the observed between-channel phase difference 

was used to filter noisy speech such that a larger phase difference results in a greater 

signal attenuation. Lu and Loizou [8] proposed a geometric spectral subtraction approach 

that addressed the shortcomings of spectral subtraction concerning musical noise and 

speech-noise cross-term issues, where they used the phase differences between the noisy 

signal and the noise to estimate the cross-terms. Fardkhaleghi and Savoji [9] investigated 

the role of phase spectrum in speech enhancement using Wiener filtering and minimum 

statistics and showed that better results are achieved using phase correction for different 

noise types.  Kleinschmidt et al. [10] proposed a novel method for acquiring phase 

information and used the phase information to complement the traditional magnitude-

only spectral subtraction in speech enhancement, and they obtained good results in a 15-

20dB SNR environment. 

 

1.1.2	Modulation	frequency	domain	processing	

Modulation frequency domain, or the second dimensional frequency domain, first 

proposed by Zadeh [11], is the transform of the time variation of the acoustic frequency. 

Later, Atlas et al. [12] defined the acoustic frequency as the axis of the first STFT of the 

input signal and modulation frequency as the independent variable of the second STFT 

transform. In other words, the acoustic spectrum is the STFT of the time domain speech 
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signal, while the modulation spectrum at a specified acoustic frequency bin is the STFT 

of the time series of the acoustic spectrum at that frequency. 

Atlas and Shamma [13] showed that the low frequency modulation was the 

fundamental carriers of information in speech. Drullman et al. [14] indicated that 

modulation frequencies between 4 and 16 Hz were important for speech intelligibility, 

where 4-5 Hz frequencies were the most significant. Arai et al. [15] showed that only 

preserving energy between modulation frequency of 1 to 16 Hz did not hamper speech 

intelligibility. 

Modulation domain processing has been widely used in speech techniques, such as 

speech coding [16], speech recognition [17], speaker recognition [18] and speech 

enhancement [19, 20]. 

 

1.2	Proposed	work	

In this work, we propose a new spectral subtraction approach for enhancing speech 

signal and investigate its applications on different tasks of noise reduction, 

dereverberation and blind speech separation. In the proposed method, the subtraction 

processing is performed on the real and imaginary spectra separately, and the separately 

enhanced spectra are used to recover the complex signal spectra. In the noise reduction 

task, we carry out the subtraction processing in the modulation frequency domain for the 

purpose of reducing musical noise as proposed in [20]. Differing from [20] where the 

noisy speech acoustic magnitude spectra that contain the cross-terms of speech and noise 

were transformed to the modulation frequency domain for spectral subtraction, our 

separate transformation of the real and imaginary acoustic spectra to the modulation 
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frequency domain does not carry the acoustic-domain speech-noise cross-terms. 

Furthermore, unlike many speech enhancement methods, our synthesis of speech signal 

from the modified acoustic spectra does not use the acoustic phase spectra of the noisy 

speech. All of the above factors bring a superior performance to the new method on noise 

reduction.  

Reverberation smears a clean speech signal in both temporal and frequency domains. 

Late reverberation represents the effect that the earlier speech casts on the current speech 

and it could be considered as an additive noise. Therefore, we proposed to use the MRISS 

algorithm for dereverberation with a modification on noise (late reverberation) estimation. 

We estimate the late reverberation spectral variance in the real and imaginary modulation 

domain, and subtract it from the reverberant speech. Our experimental results have shown 

that this processing in the modulation domain produced a better dereverberation 

performance than the state-of-art method of acoustic domain spectral subtraction and 

time domain multi-step linear prediction. 

For blind speech separation, we adopt a DOA based source separation approach and 

use ALMM to fit the IPD distribution instead of using the conventional GMM and LMM. 

This algorithm uses an array of two microphones and derives the DOAs of different 

speech sources from the phase information of the two channel inputs. The method works 

well under clean speech condition. However, when speech is corrupted by noise or 

reverberation, the phase information is destroyed and the DOA based method failed to 

work. Fortunately, we could enhance the phase estimation via enhancing the real and 

imaginary acoustic spectra separately under noisy or reverberant conditions. By doing so, 

we can obtain more accurate DOA estimation and use the DOA information to perform 
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blind source separation. Our experimental results have shown that the MRISS pre-

processing method produced a much more accurate estimation of the DOAs than that 

without pre-processing, and it improved the DOA based blind source separation 

performance under noisy or reverberant conditions in the criteria of PESQ, segmental 

SNR and SIR. Furthermore, we have proposed a log likelihood method for source 

number estimation for the scenarios where the source directions are close and the IPD 

distribution of different sources overlap heavily. The proposed method obtained better 

estimation results than conventional ITC methods such as AIC and BIC for 2 to 4 active 

sources in both anechoic and reverberant conditions.  

	

1.3	Outline	of	the	dissertation	

This dissertation is organized into the following six chapters. 

In Chapter one, the motivations and the scope of the proposed research are introduced. 

In Chapter two, an overview on speech enhancement is given. Background 

knowledge and state-of-art techniques are discussed under three subjects, (1) noise 

reduction, (2) dereverberation, and (3) blind speech separation. 

In Chapter three, the proposed MRISS algorithm is described, and its performance in 

noise reduction is evaluated by using objective and subjective measurements on the 

TIMIT dataset [21] which is corrupted by five different noises from NOISEX92 database. 

In Chapter four, the use of the proposed algorithm of MRISS on the dereverberation 

task is described and the performance is evaluated on the reverberant speech data 

generated from both simulated and real room impulse responses. 
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In Chapter five, the DOA based blind speech separation methods under clean, 

reverberant and noisy environments are described and the performances are evaluated in 

the criteria of PESQ, segmental SDR and SIR. The ALMM is introduced and its 

performance for fitting the IPD distribution is evaluated. In addition, a log likelihood 

criterion based source number estimation method is discussed, and its performance for 

source number estimation is evaluated.  

A conclusion and future work is discussed in Chapter six. 
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Chapter 2 

Speech Enhancement Techniques 

	

2.1	Noise	reduction	

Speech signals that carry the desired information are seldom recorded in a pure form 

since in a natural environment noise is inevitable and ubiquitous. Over several decades, a 

significant amount of research efforts has been focused on the signal processing 

techniques that can extract a desired speech signal and reduce the effects of unwanted 

noise. According to the number of sensors used, the noise reduction methods could be 

divided into two categories, single channel speech enhancement and multi- channel 

speech enhancement. 

In general, by using more hardware to acquire spatial information of a target speech 

source, multi-channel speech enhancement techniques [22, 23] can provide enhancement 

performance superior to single channel enhancement methods. However, due to its 

convenient implementations, single channel speech enhancement has remained a hot spot 

in speech research. Here we only discuss single channel speech enhancement, where 

some widely used methods include spectral subtraction, Wiener filtering, and MMSE, etc. 

 

2.1.1	Spectral	Subtraction	

Spectral subtraction is one of the most widely used speech enhancement techniques 

[24], and is widely adopted as a baseline for comparing novel speech enhancement 

algorithms. Spectral subtraction methods typically focus on signal magnitude spectrum 

and use noisy phase spectrum in signal reconstruction, where the signal magnitude 
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spectrum is estimated by subtracting an estimate of the noise magnitude spectrum from 

the noisy signal magnitude spectrum.  

The basis of spectral subtraction is the assumption that the noise and speech signals 

are statistically independent [25]. Noise is assumed to be additive to the clean speech 

signal. In the time domain the speech corruption model is    

ሺ݊ሻݔ ൌ ሺ݊ሻݏ	 ൅ ݀ሺ݊ሻ																																																																																				ሺ2.1ሻ  

where ݔሺ݊ሻ, ݏሺ݊ሻ and ݀ሺ݊ሻ are the noisy speech, clean speech, and additive noise, 

respectively.  

For speech processing, the noisy speech ݔሺ݊ሻ  is windowed and transformed into the 

discrete frequency domain via FFT to produce 

ܺሺ݇, ሻݐ ൌ 	ܵሺ݇, ሻݐ ൅ ,ሺ݇ܦ  ሺ2.2ሻ																																																																											ሻݐ

where ݇  and ݐ  are the frequency and window frame indices, respectively. ܺሺ݇, ሻݐ ൌ

|ܺሺ݇, ,ሻ|݁௝ఏ೉ሺ௞,௧ሻ is the complex acoustic spectrum of noisy speech, where |ܺሺ݇ݐ  ሻ| is theݐ

acoustic magnitude spectrum and ߠ௑ሺ݇, ,ሻ is the acoustic phase spectrum. ܵሺ݇ݐ  ሻ andݐ

,ሺ݇ܦ  .ሻ are the complex acoustic spectra of target speech and additive noise, respectivelyݐ

From formula (2.2), the squared magnitude spectrum is deduced as 

|ܺሺ݇, ሻ|ଶݐ ൌ 	 |ܵሺ݇, ሻ|ଶݐ ൅	 |ܰሺ݇, ሻ|ଶݐ ൅ 	2|ܵሺ݇, ,ሻ||ܰሺ݇ݐ |ሻݐ cos൫ߠ∆ሺ݇,  ሺ2.3ሻ												ሻ൯ݐ

where ߠ∆ሺ݇, ሻݐ ൌ ,௦ሺ݇ߠ ሻݐ െ ,௡ሺ݇ߠ ሻݐ , and 2|ܵሺ݇, ,ሻ||ܰሺ݇ݐ ,ሺ݇∆ߠሺ	ሻ|cosݐ ሻሻݐ  is called the 

cross-term in power spectrum. 

In conventional power spectral subtraction, the cross-term is assumed to be 0. Based 

on this assumption, a typical method of spectral subtraction performed in the acoustic 

frequency domain is the generalized frame-by-frame subtraction [24, 25] defined as: 
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ห መܵሺ݇, ሻหݐ
ఊ
ൌ ൝

|ܺሺ݇, ሻ|ఊݐ െ ሺ݇ሻหߙ ෡ܰሺ݇, ሻหݐ
ఊ
		݂݅|ܺሺ݇, ሻ|ఊݐ ൐ ሺߙሺ݇ሻ൅ߚሻ| ෡ܰሺ݇, ሻ|ఊݐ

หߚ ෡ܰሺ݇, ሻหݐ
ఊ
																																						݁ݏ݅ݓݎ݄݁ݐ݋																															

	ሺ2.4ሻ                  

where |ܺሺ݇, ሻ| is the noisy speech magnitude spectrum, หݐ ෡ܰሺ݇,  ሻห is the noise magnitudeݐ

spectral estimate, ห መܵሺ݇,  ሺ݇ሻ is anߙ ;ሻห is the reconstructed speech magnitude spectrumݐ

over-subtraction factor which is a function of segmental SNR [26], ߚ  is a spectral 

flooring factor that controls the effect of over-subtraction and avoids negative magnitude 

spectrum, and ߛ determines the type of spectrum that the subtraction is operated on, i.e., 

magnitude spectrum if ߛ ൌ 1 and power spectrum if ߛ ൌ 2. After the acoustic domain 

enhancement, the estimated speech spectrum ห መܵሺ݇, ሻหݐ
ఊ
 is inverse transformed to obtain 

the recovered speech signal ̂ݏሺ݊ሻ. 

In general, three kinds of errors are introduced into the conventional spectral 

subtraction as defined by (2.4), consisting of 1) error in noise estimation; 2) error caused 

by ignoring the speech-noise cross-term in magnitude (or power) spectrum; 3) error 

caused by using noisy phase spectrum with enhanced magnitude spectrum in signal 

reconstruction.  

These errors degrade the performance of speech enhancement. The first type of error 

has been widely studied, and several techniques [27-29] have been developed to track 

noise efficiently. When SNR is high, the cross-term is relatively small, and the noisy 

phase is close to the phase of clean signal, and thus conventional spectral subtraction 

methods do not suffer from these two types of errors. However, as SNR decreases, both 

the cross-term error and the noisy phase error become nonnegligible in signal 

reconstruction. Some efforts have been reported to address these two types of errors in 

speech recognition and speech enhancement. Yoma et al. [30] used a model of additive 
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noise to compute the uncertainty about the hidden clean signal so as to weight the 

estimation provided by spectral subtraction. The results showed that weighting the signal 

increased the spectral subtraction performance. Kitaoka and Nakagawa [31] took the 

average of estimated speech spectra over some adjacent frames as the spectral estimation 

for spectral subtraction, in order to reduce the effect of correlation between speech and 

noise estimation. The results on AURORA 2 database showed substantial improvement. 

Evans et al. [32] analyzed the fundamental sources of error in spectral subtraction. They 

indicated that the errors in the magnitude spectrum made the largest impact on ASR 

performance degradation. However, when the SNR dropped to 0dB, phase errors and 

correlation errors made apparent impact and could not be neglected. Lu and Loizou [8] 

proposed a geometric spectral subtraction approach that addressed the shortcomings of 

spectral subtraction concerning musical noise and speech-noise cross-term issues. They 

used the phase differences between the noisy signal and the noise to estimate the cross-

terms. 

 

2.1.2	Wiener	filter	

There is no solid theoretical basis in the approach of spectral subtraction, where it is 

only assumed that the noise is additive and can be subtracted from the noisy speech. 

Wiener filtering [33] is a different approach that aims at reducing noise by minimizing 

the mean square error between the estimated and the clean speech signals. 

According to the Wiener filter theory, the noisy speech can be recovered by a linear 

system with the impulse response ݄ሺ݊ሻ: 

ሺ݊ሻݏ̂   ൌ ݄ሺ݊ሻ⊛ ሾݏሺ݊ሻ ൅ ݀ሺ݊ሻሿ																																																													ሺ2.5ሻ 
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where ⊛ denotes convolution. 

The goal of the Wiener filter approach is to determine the optimal impulse response 

of ݄ሺ݊ሻ so as to recover the target speech via the inverse filter of ݄ሺ݊ሻ. The frequency 

response of the Wiener filter is derived in [34] as 

,ሺ݇ܪ ሻݐ ൌ ቆ
ܵሺ݇, ሻଶݐ

ܵሺ݇, ሻଶݐ ൅ ,ሺ݇ܦሻݐሺߙ ሻଶݐ
ቇ
ఉ

																																																													ሺ2.6ሻ 

where ߙሺݐሻ and ߚ  are used to alter the signal attenuation for each frame ݐ  [1]. When 

ߙ ൌ 1 and ߚ ൌ 1, Wiener filter produces the exactly same results as the power magnitude 

spectral subtraction. 

The major shortcoming of the Wiener filter approach is the requirement of the a 

priori knowledge of the power spectrum of the clean speech, which is also the sought 

result of the enhancement. Several methods have been proposed to overcome this 

limitation, such as iterative Wiener filtering [35, 36]. In these implementations, the clean 

speech is estimated using an updated Wiener filter iteratively. 

 

2.1.3	MMSE	estimator	

The MMSE approach [37] uses a Bayesian estimation to determine the clean speech 

amplitude spectra assuming Gaussian distributions for the speech and noise magnitude 

spectra. The recovered magnitude spectrum is computed by multiplying the noisy 

magnitude spectrum with a gain function. The gain function in the MMSE is derived as 

,ሺ݇ܩ ሻݐ ൌ √గ

ଶ

ඥ௩ሺ௞,௧ሻ

ఊሺ௞,௧ሻ
݌ݔ݁ ቀെ ௩ሺ௞,௧ሻ

ଶ
ቁ ቂ൫1 ൅ ,ሺ݇ݒ ଴ܫሻ൯ݐ ቀ

௩ሺ௞,௧ሻ

ଶ
ቁ ൅ ,ሺ݇ݒ ଵܫሻݐ ቀ

௩ሺ௞,௧ሻ

ଶ
ቁቃ			ሺ2.7ሻ                

where ܫ଴ሺ∙ሻ and ܫଵሺ∙ሻ are the zeroth and the first order Bessel functions, ݒሺ݇,  ሻ is definedݐ

by 
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,ሺ݇ݒ ሻݐ ൌ
,ሺ݇ߝ ሻݐ

,ሺ݇ߝ ሻݐ ൅ 1
,ሺ݇ߛ  ሺ2.8ሻ																																																																																ሻݐ

and ߝሺ݇, ሻݐ ൌ ,ሼ|ܺሺ݇ܧ ,ሺ݇ܦ|ሼܧ/ሻ|ଶሽݐ ሻ|ଶሽݐ  and ߛሺ݇, ሻݐ ൌ ܧ ቄห መܵሺ݇, ሻหݐ
ଶ
ቅ ,ሺ݇ܦ|ሼܧ/  ሻ|ଶሽݐ

are the a priori and a posteriori SNRs, respectively, and ݇ and ݐ are the frequency and 

frame indices. When the a priori SNR is high, the MMSE estimator behaves similarly as 

the Wiener filter. 

Under the assumptions of MMSE, noisy speech phase was proved to be the optimal 

phase for the enhanced speech, and hence only the magnitude MMSE has been used in 

speech enhancement applications. 

 

2.2	Speech	dereverberation	

A speech signal captured by a distant microphone in an enclosed space usually 

contains a certain amount of reverberation artifact. Reverberation is the process of multi-

path propagation of an acoustic sound from its source to one or more microphones. A 

received microphone signal generally consists of a direct sound, reflections that arrive 

shortly after the direct sound (commonly referred to as early reverberation), and 

reflections that arrive after the early reverberation (commonly referred to as late 

reverberation). 

Although reverberations at a moderate level have less effect on human listening than 

noise, or even enhance speech intelligibility by increasing loudness [38], they indeed 

degrade the performance of speech technology applications, such as automatic speech 

recognition [39], speaker recognition systems [40], and hearing aids systems [41]. 
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Over recent years, dereverberation is becoming a more and more important issue and 

it attracts lots of attentions, and many effective algorithms have been proposed. Here, we 

divide these methods into the following three categories and discuss them in the 

following three subsections. 

 

2.2.1	Dereverberation	using	spatial	information	

Spatial information is often useful in blind source separation. By using a microphone 

array, one can separate mixed sources by using spatial information, such as DOA. 

Similarly, if we treat the direct signal and reflected signal as different sources, then such 

source separation algorithms can be used in dereverberation to estimate the direction of 

the direct signal components and enhance the signal components coming from the 

direction [42-45]. One disadvantage of this approach is that a large number of 

microphones is needed to obtain sufficient direction information. 

 

2.2.2	Reverberation	suppression	

Reverberation suppression algorithms do not need to estimate the room impulse 

response. The goal of reverberation suppression is to reduce the effect of late 

reverberation. Avendano and Hermansky [46] proposed a method to enhance speech from 

reverberation by using an envelope modulation function of the anechoic speech, which is 

pre-obtained from training data. A listening test showed that reverberation suppression 

was achieved but severe distortion was also introduced. Yegnanarayana and Murthy [47] 

assumed that speech signal energy fluctuates over a large dynamic range in short 

segments, and the SRR varies significantly over different segments of speech. They 
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enhanced the reverberant speech by identifying the high SRR regions and enhancing 

speech in such regions at both gross and fine levels. Gillespie et al. [48] proposed a 

method to reduce reverberation by maximizing the kurtosis of LP residual. Experiment 

results showed good performance in both reverberation reduction and spectral distortion 

improvement. Lebart and Boucher [49] proposed a single microphone spectral 

dereverberation method, where estimate of the late reverberation was obtained directly 

from the observed signal, and dereverberation was achieved by spectral subtraction. The 

method only requires an estimate of the reverberation time, which is calculated during 

silence period.  

Lollmann and Vary [50] proposed a method for joint noise suppression and 

dereverberation without any a priori knowledge. The reverberation time is estimated by a 

maximum likelihood approach and by an order statistics filtering. Their results were 

significantly better than the noise reduction systems without dereverberation. Nakatani et 

al. [51] proposed a speech enhancement method in noisy reverberant multi-talker 

environments. By exploiting a prior knowledge of room acoustics, they could reduce 

reverberation without knowing how many talkers were in the room. Kinoshita et al. [52] 

proposed a reverberation estimation method by using long term multi-step linear 

prediction, and enhanced speech signal via spectral subtraction for both single channel 

and multi-channels. Experiment results showed that both single channel and multi-

channel algorithms achieved good dereverberation and improved the ASR performance. 

Wu and Wang [53] proposed a two stage approach for multi microphone dereverberation. 

In the first sage, the LP residual enhancement technique was used to enhance the SRR. In 

the second stage spectral subtraction was used to reduce late reverberation. Erkelens and 
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Husdens [54] proposed a correlation based LRSV estimation method which estimates the 

LRSV blindly without having to estimate the RIR model parameters such as 

reverberation time or the SRR. It produced good performance when RIRs changed slowly, 

but it underestimated the LRSV in case of time varying RIRs. 

 

2.2.3	Reverberation	cancellation	

Reverberation cancellation algorithms often need to estimate the room impulse 

response and enhance a reverberant speech by passing it via an inverse filter. Roman and 

Wang [55] proposed a two stage monaural separation system that combines the inverse 

filtering of the room impulse response corresponding to the target location and a pitch-

based speech segregation method. The inverse filtering made the harmonicity of a signal 

arriving from a target direction partially restored while smearing the signals from other 

directions, which led to improved segregation of the target speech from interference 

speech. However, the performance was limited by the accuracy of the estimated inverse 

filter. Nakatani et al. [56] proposed a blind dereverberation approach based on the 

harmonicity of speech signals, which can learn a dereverberation filter that approximates 

the inverse filter of room acoustics. They showed that it is possible to blindly estimate a 

dereverberation filter that achieves precise dereverberation for reverberation time as long 

as 1 second. Nakatani et al. [57] proposed a statistical model based speech 

dereverberation approach to estimate an inverse filter for cancelling out the late 

reverberation under noise condition. Their results showed that the inverse system can be 

robustly estimated even in the presence of noise. 
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2.3	Blind	speech	separation	

BSS is an approach of estimating source signals by using only information about 

their mixtures observed in each input channel. The estimation is performed without 

information of each source, such as its spectral characteristics and spatial location, or the 

way the sources are mixed. BSS plays an important role in the development of 

comfortable acoustic communication channels between humans and machines. 

The blind source separation algorithms can be divided into three categories: 

over/critically determined BSS, underdetermined BSS, and single channel BSS. 

Over/critically determined BSS means that the number of sources is less than or equal to 

the number of sensors. In this scenario, ICA [58, 59], a statistical method for extracting 

mutually independent sources from the mixture, works well. Underdetermined BSS 

means that the number of sources is greater than the number of sensors. In this case, the 

ICA method would not work anymore. Hence, the sparsity property of speech sources is 

exploited, and the time-frequency diversity plays an important role. Single-channel BSS 

is also a case where the sensors are less than the sources, but in this case no spatial 

information is available. Instead, harmonicity and temporal structure of the sources are 

employed as a separation tool. 

 

2.3.1	BSS	categories	

2.3.1.1	Over/critically	determined	BSS	

When the number of sensors is no less than the number of sources, ICA [58] methods 

work well on scalar and convolutive mixtures. To separate the source signals from the 

mixtures, the ICA methods estimate a linear filter by minimizing the mutual information 
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of the estimated sources. According to the domain where the separation is performed, 

these ICA methods can be divided into time domain ICA and frequency domain ICA. 

Time domain ICA, where ICA is applied directly to the convolutive mixture model 

[60-63], achieves good separation once the algorithm converges. However, time domain 

processing needs large amount of computation due to the long FIR filters for convolution. 

Frequency domain ICA applies complex ICA in each frequency bin [64-71]. 

Compared to time domain ICA, this method is less computational demanding and can 

processed each frequency bin separately. However, one big issue in frequency domain 

ICA is the permutation problem, that is, how to align the separated components across 

frequency bins so that each separated output only contains the components from the same 

source signal. Several methods addressing the permutation problem have been proposed. 

One solution is to make separation matrices smooth in the frequency domain [64, 70, 71]. 

Another solution is based on the source direction information. By estimating the DOAs of 

the sources, one can align the separated components by the source directions [65, 66, 72].  

 

2.3.1.2	Underdetermined	BSS	

One kind of underdetermined BSS methods is based on MAP estimation, where the 

source signals and mixing matrix are estimated by maximizing the joint a posteriori 

probability of the source signal and the mixing matrix [73-76]. Another kind of 

underdetermined BSS methods is based on time-frequency masking [77, 78], which is 

derived from the sparsity assumption that the energies of independent speech signals 

rarely overlap in time-frequency domain and therefore the signal energy is dominated by 

one source at each time-frequency element. Under this assumption, the peaks in a 
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histogram of the frequency normalized phase differences between the sensors correspond 

to the clusters formed by the individual sources, and therefore we can separate each 

source signal from the others by selecting the observations at its associated time-

frequency components via a mask. 

 

2.3.1.3	Single	channel	BSS	

Single channel BSS is an extreme case of underdetermined BSS, where only 

observation from one microphone is available for the separation task. The lack of spatial 

information makes the separation task much more difficult. In this case, model based 

separation algorithms are preferred and different parametric and non-parametric signal 

models have been proposed. 

Roweis [79] used a factorial HMM to separate mixed speech. Jang and Lee [80] used 

independent component analysis to learn a dictionary for sparse encoding, which 

optimizes an independence measure across the encoding of the different sources.  

Pearlmutter and Olsson [81] generalized the results of Jang and Lee to overcomplete 

dictionaries, where the number of dictionary elements is allowed to exceed the 

dimensionality of the data. Researchers [82-84] learned spectral dictionaries based on 

different types of NMF. Various grouping cues of the human auditory system were 

incorporated in the separation algorithms [85, 86]. Ellis and Weiss [87] studied the 

representation of the audio signals to maximize the perceived quality in separated speech. 

Schmidt and Olsson [88] proposed to use the sparse nonnegative matrix factorization for 

sparse encoding separation. 
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2.3.2	BSS	in	noisy	or	reverberant	conditions	

The performance of BSS is significantly degraded when strong background noise is 

present. Several methods have been proposed to deal with noisy conditions for BSS. Hu 

and Zhao [89] proposed a noise compensation adaptive decorrelation filtering to remove 

noise induced bias in signal correction estimators, achieving significant improvements to 

speech separation and phone recognition accuracy in diffuse noises. Joho et al. [90] 

proposed a two-stage algorithm, where PCA was first applied to increase input SNR and 

ICA was then used for blind source separation. They showed good results by using 5-20 

sensors to separate a 5-source mixture at input SNR of 15 dB. Vu and Umbach [91] 

proposed a BSS algorithm for the condition of directional noise. They combined T-F 

sparseness with the generalized eigenvalue decomposition of the power spectral density 

of noisy speech, and were able to successfully separate 2 sources by using an 8-

microphone array at the input SNR of 0 dB and reverberation time of 0~500 ms. Choi 

and Cichocki [92] proposed a joint diagnoalisation of multiple time-delayed correlation 

matrices of the observed data to estimate the mixing matrix, and they achieved good 

results at the input SNR of 10-15 dB. Aichner et al. [93] presented a real-time 

implementation for separating convolutive mixtures by using a general BSS framework, 

obtaining a high separation performance in a noisy car condition at SNR of 0 dB. 

 

2.3.3	Sparsity	property	in	different	transform	domains	

The sparsity property of various signal representations has been actively investigated 

in the literature. Through different projections or transforms, signals show different 

sparsity properties in the transformed domains. Yamanouchi et al. [94] proposed an ICA 
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based BSS method by using a sliding window DFT. Araki et al. [95] proposed a subband 

BSS processing to deal with a drawback of frequency domain BSS, i.e., insufficient 

samples in each frequency bin. Khademul et al. [96] proposed a single channel BSS 

method by decomposing the Hilbert spectrum of a signal mixture into independent source 

subspaces. Ichir and Djafari [97] investigated BSS in the wavelet domain. Here, we 

propose to perform BSS in the modulation domain to alleviate a drawback of acoustic 

domain separation, i.e., musical tones, and to exploit the improved signal sparsity in the 

modulation domain.  
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Chapter 3 

Modulation domain Real and Imaginary Spectral Subtraction 

 

3.1	MRISS	

Our proposed spectral subtraction algorithm is described in the block diagram of 

Figure 3.1.  

 

Fig. 3.1 Block diagram of the proposed method 
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The noisy speech ݔሺ݊ሻ is first windowed by a Hamming window function ݓሺ݊ሻ into 

overlapped frames and each frame is then transformed into the acoustic frequency 

domain via a M-point fast Fourier transform (FFT) to produce the complex spectra 

 ܺሺ݊, ݇ሻ ൌ ∑ ሺ݈ݔ ൅ ݊ܲሻݓሺ݈ሻ݁ି
ೕమഏ೗ೖ
ಾெିଵ

௟ୀ଴ 																																																									ሺ3.1ሻ 

where ݇ ൌ 0,1, … ܯ, െ 1 is the frequency index, ݊ is the time index of the windowed 

frames, ܯ is the window length, and ܲ is the window shift. 

For each acoustic frequency bin, the real and imaginary spectrum ܺோሺ݊, ݇ሻ  and 

ூܺሺ݊, ݇ሻ are again first windowed by a Hamming window function ݒሺ݊ሻ across time into 

overlapped time frames, and each frame is then transformed into the modulation 

frequency domain via a N-point FFT 

      ܼሺ݇, ሻ݉,ݐ ൌ ∑ ܺሺ݊ ൅ ,ܦݐ ݇ሻݒሺ݊ሻ݁ି
ೕమഏ೙೘

ಿேିଵ
௡ୀ଴ 																																													ሺ3.2ሻ 

where ݉ ൌ 0,1,… ,ܰ െ 1 is the modulation frequency index, ݇ is the acoustic frequency 

index, ݐ is the time index, ܰ is the window length, and ܦ is the window shift. 

To facilitate spectral subtraction, we consider the noise estimation algorithm of [98], 

where the power spectral density of nonstationary noise is estimated from noisy speech 

signal without using explicit voice activity detection.  We apply this estimator to the real 

and imaginary acoustic spectra to obtain ෡ܰோሺ݊, ݇ሻ and ෡ܰூሺ݊, ݇ሻ, and then perform the 2nd 

FFT transform on ෡ܰோሺ݊, ݇ሻ and ෡ܰூሺ݊, ݇ሻ separately for each fixed ݇ as described above in 

Step-2 to obtain |ܯ෡ோሺ݇, ,ݐ ݉ሻ| and |ܯ෡ூሺ݇, ,ݐ ݉ሻ|,  which are used as noise estimates in the 

subsequent noise subtraction in the modulation domain. 
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    In carrying out spectral subtraction, we adopt the magnitude subtraction method 

proposed by Boll [24], and extend it into the modulation frequency domain for the 

separate enhancements of the real and imaginary spectra. 

The subtraction computation on the real spectrum is given below in Eq. (3.3), and that 

on the imaginary spectrum is defined in a similar way: 

ห መܼோሺ݇,  ሻห݉,ݐ

ൌ ቊ
|ܼோሺ݇, |ሻ݉,ݐ െ ,෡ோሺ݇ܯሻหݐሺߙ ,ݐ ݉ሻห						݂݅|ܼோሺ݇, ,ݐ ݉ሻ| ൐ ሺߙሺݐሻ ൅ ,෡ோሺ݇ܯሻหߚ ሻห݉,ݐ

,෡ோሺ݇ܯหߚ 																																																		݁ݏ݅ݓݎ݄݁ݐ݋																																			ሻห݉,ݐ
		ሺ3.3ሻ 

where the parameter ߙሺݐሻ ൌ 2 െ ଷ

ଶ଴
ܴܵܰሺݐሻ controls the amount of noise subtraction, the 

parameter ߚ ൌ 0.005  controls the spectral floor. The estimated modulation spectra 

መܼோሺ݇, ሻ݉,ݐ  is formed by the modified magnitude ห መܼோሺ݇, ሻห݉,ݐ  and noisy phase 

∠ܼோሺ݇, ,ݐ ݉ሻ, and in a similar way the መܼூሺ݇,  ሻ is formed. The estimated modulation݉,ݐ

spectra መܼோሺ݇, ,ሻ and መܼூሺ݇݉,ݐ ,ݐ ݉ሻ are inverse transformed back to the acoustic frequency 

domain by using the overlap-add method with synthesis windowing to produce ෠ܺோሺ݊, ݇ሻ 

and ෠ܺூሺ݊, ݇ሻ, from which a complex acoustic frequency spectrum ෠ܺሺ݊, ݇ሻ is composed. 

Finally, the time domain speech signal estimate ̂ݏሺ݊ሻ is obtained via the inverse Fourier 

transform and the overlap-add method. 

In the MSS method of [20], the sequence of acoustic magnitude spectra ܺሺ݊, ݇ሻ was 

transformed into the modulation frequency domain while the sequence of acoustic phase 

spectra was untouched. In the modulation frequency domain, a noise estimate was 

subtracted from the noisy speech magnitude spectra, and the modified speech magnitude 

spectra coupled with the noisy modulation phase spectra was then transformed back to 

the acoustic domain. The enhanced acoustic magnitude spectra and the noisy acoustic 
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phase spectra together were transformed back to the time domain to produce the 

enhanced speech signal. 

 

3.2	Properties	of	the	proposed	method	

Based on the algorithm description of Figure 3.1, several properties of our proposed 

MRISS method are apparently different from conventional spectral subtraction methods. 

The differences pertain to speech-noise cross-terms, modulation domain spectral 

subtraction, and the handling of phase spectra in speech signal reconstruction. These 

three aspects are discussed below. 

 

 (1) Speech-noise cross-term in the acoustic frequency domain 

For a speech signal corrupted by an additive noise, i.e., ܺሺ݊, ݇ሻ ൌ ܵሺ݊, ݇ሻ ൅ ܰሺ݊, ݇ሻ,  

the squared magnitude spectrum is given as 

|ܺሺ݊, ݇ሻ|ଶ ൌ 	 |ܵሺ݊, ݇ሻ|ଶ ൅	 |ܰሺ݊, ݇ሻ|ଶ ൅ 	2|ܵሺ݊, ݇ሻ||ܰሺ݊, ݇ሻ| cos൫ߠ∆ሺ݊, ݇ሻ൯													ሺ3.4ሻ 

where ݇ and ݊ are the frequency and time indices, ߠ∆ሺ݊, ݇ሻ ൌ ,௦ሺ݊ߠ ݇ሻ െ ,௡ሺ݊ߠ ݇ሻ. 

By adding and subtracting 2|ܵሺ݊, ݇ሻ||ܰሺ݊, ݇ሻ| on the right hand side of Eq. (3.4) to 

complete the square of ሺ|ܵሺ݊, ݇ሻ| ൅ |ܰሺ݊, ݇ሻ|ሻଶ , and then taking square root on both 

sides, we can deduce: 

|ܺሺ݊, ݇ሻ| ൌ ሺ|ܵሺ݊, ݇ሻ| ൅ |ܰሺ݊, ݇ሻ|ሻ ∙ ඨ1 ൅
,ሺ݊ߛ2 ݇ሻ

൫1 ൅ ,ሺ݊ߛ ݇ሻ൯
ଶ ൫cos൫ߠ∆ሺ݊, ݇ሻ൯ െ 1൯					ሺ3.5ሻ 

where  ߛሺ݊, ݇ሻ ൌ |ௌሺ௡,௞ሻ|

|ேሺ௡,௞ሻ|
.  
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In conventional magnitude spectral subtraction, the speech-noise cross-term 

ଶఊሺ௡,௞ሻ

ሺଵାఊሺ௡,௞ሻሻమ
ሺcos൫ߠ∆ሺ݊, ݇ሻ൯ െ 1ሻ  is assumed to be 0. This assumption depends on two 

factors: 1) ߛሺ݊, ݇ሻ → 0 or ߛሺ݊, ݇ሻ → ∞; 2) cos൫ߠ∆ሺ݊, ݇ሻ൯ → 1. 

Figures 3.2 (a) and (b) show the scatter plots of cross-term vs. SNR (averaged over 

cos൫ߠ∆ሺ݊, ݇ሻ൯ and cross-term vs. cos൫ߠ∆ሺ݊, ݇ሻ൯ (averaged over SNR), respectively from 

a speech sentence. It is easily seen that when SNR is far away from 0dB, the cross-term 

tends to 0; also, when cos൫ߠ∆ሺ݊, ݇ሻ൯ is close to 1, the cross-term is close to 0, too. 

    

Fig. 3.2 Relationship between cross-term and (a) SNR and (b) cosine of phase difference 
(summed over all frequency bins) 

 

In our proposed MRISS method, as shown in Step 1 of Figure 3.1, the real and 

imaginary spectra are separately transformed into the modulation frequency domain, and 

therefore the cross-term in |ܺሺ݊, ݇ሻ|  is avoided. Only in the modulation frequency 

domain MRISS produces cross-terms in |ܺோሺ݇, ,ݐ ݉ሻ| and | ூܺሺ݇,  ሻ|. In contrast, if the݉,ݐ

magnitude spectrum  |ܺሺ݊, ݇ሻ| is transformed into the modulation frequency domain as 

in the method of MSS, then the complex modulation spectra will contain the effect of the 

acoustic frequency domain cross-terms, and when the magnitude modulation spectra are 
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further computed, additional cross-terms will be produced in the modulation frequency 

domain. 

In Figure 3.3, we further compare the distribution of the cross-term (generated from 

the same sentence used in Figure 3.2), in the acoustic domain and modulation domain. 

We observe that the cross-term distribution in the real or imaginary modulation domain is 

slightly more concentrated on 0, which means moving the cross-term from acoustic 

domain to modulation domain at least did not degrade the performance.  

    

Fig. 3.3 Histogram of the cosine of phase difference in acoustic and modulation domains 
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and imaginary acoustic frequency spectra. For the real acoustic spectra, ܺோሺ݊, ݇ሻ ൌ

|ܺሺ݊, ݇ሻ|cos	ሼ߆ሺ݊, ݇ሻሽ, and so in the modulation domain ܼோሺ݇, ሻ݉,ݐ ൌ ܼெሺ݇, ,ݐ ݉ሻ⊛

ܼ஼ைௌሺ݇, ሻ݉,ݐ , with ܼ஼ைௌሺ݇, ,ݐ ݉ሻ ൌ ሺ߱௞݊	ሼcosܶܨܨ ൅ ߮௡,௞ሻሽ , and  ⊛   denotes 

convolution in m. Similarly, ܼூሺ݇, ሻ݉,ݐ ൌ ܼெሺ݇, ,ݐ ݉ሻ⊛ ௌܼூேሺ݇, ,ሻ. ܼ஼ைௌሺ݇݉,ݐ  ሻand݉,ݐ

ௌܼூேሺ݇,  ሻ are shown in Figure 3.4(b) and (d), where we can see that in each acoustic݉,ݐ

frequency subband k, cos	ሼ߆ሺ݊, ݇ሻሽ and sin	ሼ߆ሺ݊, ݇ሻሽ are quasi-sinusoidal signals (with 

limited bandwidth) and the frequency components vary with time n, which reflects the 

speech frequency variation. Compared with MSS, ܼோሺ݇, ሻ݉,ݐ  is a convolution of 

ܼெሺ݇, ,ݐ ݉ሻ in Figure 3.4(a) with ܼ஼ைௌሺ݇, ,ݐ ݉ሻ in Figure 3.4(b), which shifts and spreads 

the signal energy distribution in the modulation spectra, as shown in Figure 3.4 (c). 

 

Fig. 3.4 Modulation spectra of one acoustic frequency subband (a) ܼெሺ݇,  ሻ, (b)݉,ݐ
ܼ஼ைௌሺ݇, ,ܼோሺ݇	ሻ, (c)݉,ݐ ,ݐ ݉ሻ, (d) ௌܼூேሺ݇, ,ሻ and (e) ܼூሺ݇݉,ݐ  ሻ݉,ݐ
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The different characteristics in the modulation spectra of ܼெሺ݇, ,ݐ ݉ሻ, ܼோሺ݇, ,ݐ ݉ሻ and 

ܼூሺ݇,  ሻ thus have different impacts on the spectral subtraction outcomes of MSS and݉,ݐ

MRISS. 

 

(3) Phase recovery in acoustic frequency domain 

The instantaneous phase of a complex signal ݑሺݐሻ is ∅ሺݐሻ ൌ arg൫ݑሺݐሻ൯ , a function of 

the real and imaginary components of  ݑሺݐሻ. The energy of voiced speech concentrates on 

its harmonics, where the harmonic subband signals are each sinusoidal-like with 

structured phase. This characteristic of voiced speech is reflected in the narrowly peaked 

distribution of the temporal difference of the instantaneous phase in each speech 

harmonic subband signal, defined here as ∆∅ሺݐሻ ൌ ∅ሺݐሻ െ ∅ሺݐ െ 1ሻ  with t indexing 

speech frames. In contrast, wide band noises such as white, babble, pink noises have 

random phase and thus random instantaneous phase difference. Figure 3.5 shows the 

histogram of  ∆∅ሺݐሻ computed from an isolated vowal /a/ in a speech harmonic subband 

(centered at 600 Hz, with a 16 Hz bandwidth), and the histogram of  ∆∅ሺݐሻ of white noise 

of the same subband (the two subband signals were both 1.6 seconds long, the analysis 

window length was 25 ms, and the window shift was 2.5 ms). As expected, the 

distribution of the speech instantaneous phase difference has a sharp peak while that of 

the white noise is broad. From this perspective, voiced speech phase can be enhanced 

through denoising the real and imaginary components of the speech harmonic structure, 

and the obtained acoustic complex spectra can then be used in speech signal recovery. 
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Fig. 3.5 Histograms of instantaneous phase difference of voiced speech and white noise 

 

To illustrate the effect of the modulation-domain real-imaginary spectral processing 

on speech phase recovery, Figure 3.6 compare the modulation spectra  ܼெሺ݇,  ሻ and݉,ݐ
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dB). As in Fig. 3.4, the energy of ܼெሺ݇,  ሻ, for either speech or noise, concentrates in݉,ݐ

low frequency; in contrast,  the energy of  ܼோሺ݇, ,ݐ ݉ሻ  of speech concentrates in a narrow, 

time-varying  mid band, while that of the white noise spreads out. This suggests that the 

energies of speech and noise overlap less in ܼோሺ݇, ,ሻ than in ܼெሺ݇݉,ݐ  ,ሻ. Therefore݉,ݐ

for speech harmonics where SNR is higher than  other spectral regions,  the SNR is 

further improved in ܼோሺ݇,  .ሻ݉,ݐ
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Fig. 3.6 Modulation spectra of ܼெሺ݇, ,ሻ (left) and ܼோሺ݇݉,ݐ  ሻ (right) of vowel /a/ (top)݉,ݐ
and white noise (bottom) at the subband 600Hz 

 

To measure the difference in energy distributions of speech and noise corresponding 

to ܼோሺ݇, ,ݐ ݉ሻ of Figure 3.6, |ܼோሺ݇, ,ݐ ݉ሻ|	 is normalized by ∑ |ܼோሺ݇, ,ݐ ݉ሻ௧,௠ | to become 

a probability distribution over ሺݐ,݉ሻ, and such a normalized distribution of speech is 

referred to as ܵோሺ݇, ሻ݉,ݐ  and that of noise as ோܰሺ݇, ,ݐ ݉ሻ .  Kullback-Leibler (K-L) 

divergence is then computed for the two distributions as 

,௄௅ሺܵோܦ ோܰሻ ൌ෍ ෍ ܵோሺ݇, ሻ݈݊݉,ݐ
ܵோሺ݇, ,ݐ ݉ሻ

ோܰሺ݇, ሻ௠௧݉,ݐ
																																													ሺ3.6ሻ 

Since K-L divergence is asymmetric,  ܦ௄௅ሺ ோܰ, ܵோሻ is also computed. In a similar way, 

|ܼெሺ݇, 	|ሻ݉,ݐ  is normalized for speech and noise, respectively, referred to as 

ܵெሺ݇, ሻ݉,ݐ and ܰெሺ݇, ,ሻ݉,ݐ  and from the two distributions ܦ௄௅ሺܵெ,ܰெሻ  and  

,௄௅ሺܰெܦ ܵெሻ  are computed. The measured divergence values are 1.31 and 0.66 for 

,௄௅ሺܵோܦ ோܰሻ  and ܦ௄௅ሺܵெ, ܰெሻ , and 1.75 and 1.24 for ܦ௄௅ሺ ோܰ, ܵோሻ  and ܦ௄௅ሺܰெ, ܵெሻ , 

respectively, confirming less overlap between ܵோ	and ோܰ	 than that between 	ܵெ	and  ܰெ. 
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Since in high SNR regions noisy speech phase is close to clean speech phase and speech 

magnitude can be well recovered, the acoustic real and imaginary components of the 

speech harmonics can be recovered, and hence speech phase can be enhanced. 

 It is worth noting that unvoiced speech has unstructured phase in general, making its 

phase nondiscriminable from that of noise,  and MRISS processing is not targeting at 

recovering speech phase for this type of speech sounds. 

 

3.3	Experiment	results	

Table 3.1 Experimental parameter setting 

Acoustic domain 

window  Hamming 

window length  25ms 

frame shift  2.5ms 

FFT point  512 

Modulation domain

window  Hamming 

window length1 120ms 

frame shift  15ms 

FFT point  48 
 

We first illustrate the effectiveness of the proposed method in signal phase estimation. 

We then evaluate the performance of the proposed method in enhancing speech under 

five types of noise conditions with three commonly used criteria. A listening test was also 

conducted under a simplified setting. The MRISS processing parameters were given in 

Table 3.1. 

 

                                                            
1 We obtained best results for both MSS and MRISS when we chose modulation window length as 

120ms, instead of 180-256ms as suggested in [20]. 
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3.3.1	Phase	Estimation	

We investigated signal phase in noise for three tasks. One was to estimate the phase 

of a sinusoidal signal, another was to estimate the phase of a speech vowel, and the last 

was to estimate the direction of arrival (DOA) of two speech sources from two 

microphone recordings, which used complex time-frequency representations of the 

signals from the individual microphone recordings. 

The signal phase was estimated by ∠ߠ෠ሺ݊, ݇ሻ ൌ arctan	ሺ ෠ܺூሺ݊, ݇ሻ/ ෠ܺோሺ݊, ݇ሻሻ. The phase 

error before and after the enhancement processing was computed as ∆ߠሺ݊, ݇ሻ ൌ

,௖ሺ݊ߠ∠ ݇ሻ െ ߠ∠ ′ሺ݊, ݇ሻ, where ∠ߠ௖ሺ݊, ݇ሻ is the clean phase and ∠ߠ ′ሺ݊, ݇ሻ is the noisy or 

enhanced phase.  

 

 (1) Sinusoidal signal 

A 50-Hz sinusoidal signal was corrupted by an independent additive noise, producing 

the noisy signal ݔሺݐሻ ൌ ܣ ∙ ߨሺ2ݏ݋ܿ ଴݂ݐ ൅ ଴ሻߠ ൅ ݊ሺݐሻ, where ݊ሺݐሻ was white or pink noise 

with the SNRs ranging from -5dB to 15dB.  

 

Fig. 3.7 Phase errors in white noise (left) and in pink noise (right): (a)(c)(e) before 
processing; (b)(d)(f) after processing 
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Figure 3.7 shows the phase errors of a period (100 frames) of the sinusoidal signal 

before and after the proposed MRISS for the conditions of white and pink noises, 

respectively. To avoid crowding the figures, we only show the phase errors at SNRs of -5, 

5 and 15dB. For each noise type, the left column shows the difference between the noisy 

and the clean phases, and the right column shows the errors between the estimated and 

the clean phases. The horizontal axis represents signal sample indices and the vertical 

axis represents the phase errors. 

It is observed that when SNR was high, the noisy phase of ݔሺݐሻ was close to the clean 

signal phase ∠ߠ௖, and so the error of using noisy phase to approximate the clean signal 

phase was small. When SNR was low, the noisy phase of ݔሺݐሻ was similar to the noise 

phase, and the error of using noisy phase to approximate clean phase was large. The 

proposed method was able to recover the signal phase well for the sinusoidal signal in 

both white and pink noises at the different SNR levels. 

 

(2) Speech phase recovery 

An isolated vowel (/a/) signal of about 2 seconds long was corrupted by white and 

babble noises at SNR of 5 dB,  the sampling rate being 8000 Hz.  MRISS was performed 

on the noisy speech’s real and imaginary modulation spectra and the recovered acoustic 

phase was obtained by transforming the modulation spectra back into acoustic domain. 

We computed the errors of the estimated phase with reference to the clean speech phase, 

,ሺ݊ߠ∆ ݇ሻ,	from the time-frequency ሺ݊, ݇ሻ	elements with their SNRs in the range of -5 ~ 

15 dB.  The exclusion of the ሺ݊, ݇ሻ elements outside this SNR range is based on the 
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consideration that when SNR is very low, the speech phase is too noisy to be recovered, 

and when SNR is very high, the noisy speech phase is already sufficiently close to the 

clean speech phase. In Figure 3.8 we show the histograms of the phase errors thus 

generated in the two types of noises, and for reference, we also include the histograms of 

the phase errors from the noisy speech with reference to the clean speech. It is observed 

that in comparison with the noisy speech phase errors, the errors of the recovered phase 

are significantly more concentrated around 0, indicating that the recovered phase was 

closer to the true speech phase in the SNR range of -5 ~ 15dB, and thus confirming the 

phase enhancing effect of MRISS. 

 

Fig. 3.8 Histograms of phase errors in white (left) and babble (right) noises within the 
SNR ranges of -5dB ~15dB 
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simultaneous sources are distributed in different T-F elements. Expressing the signal 

arrival time delay ߬ଵଶ at the two microphones as a function of the sound speed c , the 

microphone spacing d , and the arrival angle ߠଵଶ leads to 

ଵܺሺ݊, ߱ሻ

ܺଶሺ݊, ߱ሻ
ൎ expሼ݆߱߬ଵଶሽ ൌ  ሺ3.7ሻ																																										ଵଶሽߠݏ݋ሼ݆߱ܿିଵ݀ܿ݌ݔ݁

where ଵܺሺ݊, ߱ሻ and  ܺଶሺ݊, ߱ሻ are the complex spectra of the signals acquired by the 

microphones 1 and 2, respectively, and ߠଵଶ is the direction angle of one of the signal 

sources that has dominant energy at the T-F element ሺ݊, ߱ሻ  [100]. From the T-F 

transforms ଵܺሺ݊, ߱ሻ and ܺଶሺ݊, ߱ሻ, a histogram is generated by counting the number of T-

F elements ሺ݊, ߱ሻ that satisfy (3.7) for each fixed angle ߠଵଶ, and the two largest peaks in 

the histogram are taken as the DOAs of the speech sources. 

 

Fig. 3.9 DOA experiment setup 

 

For this experiment, a two-source speech mixture was generated by using the 

anechoic room impulse responses in the RWCP database [101] with white and babble 

noises added to a speech mixture at 0dB SNR, where the inter-microphone distance was 

5.85cm and the speaker-to-microphone distance was about 2m. Figure 3.9 shows the 

experiment setup, where ߠଵଶ in eq.(3.7) is either ∠ߠଵ or ∠ߠଶ.  
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From Eq. (3.7), we can see that if frequency ߱ is very low, then the phase difference 

obtained between two microphone inputs is insignificant; on the other hand, if frequency 

߱ is very high, then phase wrapping is needed to confine phase in the range of ].,[   

In order to obtain a good resolution in the DOA histogram and to avoid the need for 

phase wrapping, a subband of frequency bins (from 2.5k to 2.9k Hz) was used to derive 

each DOA histograms from a block of 2.25 seconds speech (36000 samples) that 

corresponds to around 70 512-point FFT analysis frames. The histograms before and after 

the proposed processing are shown in Figure 3.10. Without the proposed enhancement 

processing, the DOA histograms (top) could not show two source directions, while after 

the processing, the DOA histograms (bottom) each showed two peaks clearly, from 

which one could easily distinguish the two source directions (the dotted lines represent 

the true source directions). The proposed method therefore holds a good potential of 

significantly improving DOA estimation of multiple speech sources to enable speech 

source separation in noisy environments.  

  

Fig. 3.10 DOA histogram (left: white noise, right: babble noise) 
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3.3.2	Speech	Enhancement	

We evaluated the speech enhancement performances of the proposed method using 

both subjective and objective measures. Objective measures include the segmental SDR, 

PESQ, and average Itakura-Saito spectral distance. The results were compared against 

three existing methods: MSS [20], NSS [102], and MMSE [37]. These three methods 

were chosen as comparison benchmarks since MSS applies magnitude spectral 

subtraction in modulation domain, NSS indirectly uses phase information in acoustic 

domain spectral subtraction, and MMSE is a commonly used method for speech 

enhancement. 

We used 40 sentences from the TIMIT dataset as the clean speech. The 40 sentences 

came from 2 male and 2 female speakers, and each speaker contributed 10 sentences. The 

clean speech was corrupted by five types of noises in the NoiseX92 database, consisting 

of white, babble, pink, car_volvo, and factory2 noises, and the noisy speech was sampled 

at 8000 Hz. In all these four methods, the same noise estimation algorithm in [98] was 

used to keep all methods on the same baseline, in NSS and MMSE, the noise estimation 

was implemented on acoustic magnitude spectrum, while in MSS and MRISS, the noise 

estimation was implemented on modulation magnitude spectrum. 

For each evaluation criterion and noise type, our proposed method delivered the best 

performance in almost all SNR conditions, as detailed below in the evaluation 

experiments (1) ~ (4). We therefore conducted a statistical significance test on the 

performance difference between the proposed method (best) and the second best 

performing method in the evaluation experiments (1) ~ (3), where the difference was 

assumed to be a Gaussian random variable with an unknown variance, and the 
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significance test was one-sided student-t test with n-1 = 39 degrees of freedom at the 

significance level of ߙ ൌ 0.05ሺݐఈ ൌ 1.686ሻ [103]. 

 

(1) Segmental SDR 

Segmental SDR is a criterion for measuring the distortion between the recovered 

signal and the reference signal. Segmental SDR is defined as the average SNR values 

calculated from short segments of speech [104]. 

ܴܵ݁݃ܵܰ ൌ
1
ܰ
෍ 10logଵ଴ ෍

,ሺ݊ݏ| ݇ሻ|ଶ

,ሺ݊ݏ| ݇ሻ െ ,ሺ݊ݏ̂ ݇ሻ|ଶ

௄ିଵ

௞ୀ଴

ேିଵ

௡ୀ଴

 

in which ݇ is the frequency index and ݊ is the segment index. In computing the SegSNR 

values, the segment length was set to be 32ms (512-point FFT). The larger the segmental 

SNR value, the better the recovery performance. 

From Table 3.2, we observe that the proposed method provided the largest segmental 

SNR in every case, and MSS was always the second best in all the cases. For white, 

babble, pink, and factory2 noises, the improvement of the proposed method over the 

second best is significant for all the SNR levels; for volvo noise, it is a significant 

improvement for the SNRs from -5 to 10 dB. 

 

Table 3.2 Comparison on Segmental SNR (dB) 

Input overall 
SNR 

Noisy NSS  MMSE MSS  MRISS 

White 

‐5 ‐7.48 0.49 ‐0.42 1.61 2.28 

0 ‐3.23 3.84 3.31 4.68 5.43 

5 0.71 6.85 6.81 7.59 8.04 

10 5.68 10.71 10.75 11.34 11.96 

15 8.48 14.90 14.88 15.48 16.07 

Babble 
‐5 ‐5.30 ‐1.00 ‐1.07 ‐0.62 0.33 

0 ‐2.35 3.30 3.26 3.93 4.20 
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5 0.98 5.46 5.29 6.29 6.88 

10 5.34 10.35 10.27 10.74 11.06 

15 8.10 13.02 12.99 13.51 13.91 

Pink 

‐5 ‐7.43 ‐0.29 ‐0.36 0.47 1.49 

0 ‐3.19 3.23 3.00 3.73 5.05 

5 0.68 6.58 6.56 7.20 7.98 

10 5.72 10.73 10.76 11.21 12.05 

15 8.51 15.17 15.10 15.77 16.45 

Volvo 

‐5 ‐7.81 6.67 6.57 8.13 9.71 

0 ‐3.49 11.47 11.51 12.18 13.66 

5 2.89 15.24 15.88 17.71 18.70 

10 7.56 20.26 20.12 20.69 21.37 

15 9.38 22.15 22.03 22.76 23.13 

Factory2 

‐5 ‐6.30 2.74 2.37 3.51 4.74 

0 ‐2.00 7.31 7.25 7.68 8.28 

5 2.02 10.29 10.04 11.18 12.27 

10 6.00 14.84 14.78 15.64 16.55 

15 9.81 18.00 17.97 18.64 19.21 

 

 

(2) PESQ 

PESQ is widely adopted for automated assessment of speech quality as experienced 

by a listener, and a higher PESQ value indicates a better speech quality. We used the 

PESQ routine of [105] in the experimental evaluation and the results are shown in Table 

3.3. 

Table 3.3 Comparison on PESQ 

input overall 
SNR 

Noisy NSS  MMSE MSS MRISS 

White 

‐5 1.56 2.15 2.17 2.27 2.39 

0 1.94 2.54 2.56 2.63 2.71 

5 2.35 2.88 2.92 2.94 2.99 

10 2.66 3.22 3.25 3.25 3.29 

15 2.96 3.31 3.30 3.31 3.31 

Babble 

‐5 1.60 2.12 2.16 2.26 2.30 

0 1.77 2.33 2.40 2.52 2.58 

5 2.22 2.76 2.82 2.87 2.93 

10 2.58 3.09 3.15 3.21 3.24 

15 2.91 3.28 3.27 3.30 3.30 
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Pink 

‐5 1.60 2.11 2.10 2.24 2.35 

0 1.94 2.46 2.48 2.63 2.72 

5 2.35 2.81 2.79 2.90 2.96 

10 2.72 3.10 3.15 3.20 3.23 

15 2.91 3.33 3.35 3.40 3.40 

Volvo 

‐5 3.34 3.66 3.69 3.71 3.72 

0 3.66 3.82 3.81 3.86 3.89 

5 4.00 4.12 4.13 4.12 4.15 

10 4.25 4.30 4.29 4.28 4.30 

15 4.33 4.33 4.34 4.32 4.32 

Factory2 

‐5 2.22 2.70 2.72 2.82 2.89 

0 2.64 3.12 3.15 3.22 3.26 

5 2.95 3.29 3.35 3.40 3.44 

10 3.33 3.60 3.65 3.68 3.68 

15 3.65 4.10 4.12 4.12 4.10 

 

The proposed method delivered the best performance in most cases. For conditions of 

white, babble and pink noises, the proposed method outperformed the MSS, NSS and 

MMSE. For the case of Volvo noise, MMSE delivered the best result at SNR 15dB, but 

note that the baseline is already extremely high in this case. For the factory2 noise, only 

at 15 dB MRISS dropped below MMSE and MSS, and in this case the PESQ for the three 

methods, including that of the baseline, were all high. It is noted that under the Volvo 

noise conditions, the differences in PESQ scores among the four methods were small 

since the base PESQ scores were high. For white noise, the improvement is significant 

for SNRs from -5 to 10 dB; for volvo noise, the improvement is significant for SNRs 

from -5 to 0 dB; and for the other three noises, the improvement is significant from -5 to 

5 dB. 

 

(3) ISD 

ISD is a measure of perceptual difference between an original spectrum ܲሺ߱ሻ and an 

approximation of that spectrum ෠ܲሺ߱ሻ, which is defined as: 
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ܦܵܫ ቀܲሺ߱ሻ, ෠ܲሺ߱ሻቁ ൌ 	
1
ߨ2

න ቈ
ܲሺ߱ሻ
෠ܲሺ߱ሻ

െ ݃݋݈
ܲሺ߱ሻ
෠ܲሺ߱ሻ

െ 1቉ ݀߱
గ

ିగ
 

A smaller ISD signifies a higher similarity between the recovered speech and the 

reference speech. Since the ISD is asymmetric, we used the average ISD instead, which is 

defined as 

,ሺܲ1ܦܵܫܣ ܲ2ሻ ൌ ሺܦܵܫሺܲ1, ܲ2ሻ ൅ ,ሺܲ2ܦܵܫ ܲ1ሻሻ/2 

and the averaged ISD is simply referred to as ISD. 

Table 3.4 Comparison on ISD 

input overall 
SNR 

Noisy NSS  MMSE MSS MRISS 

White 

‐5 11.15 4.02 3.71 2.87 2.67 

0 7.22 3.64 3.12 2.52 2.43 

5 5.64 2.16 1.96 1.80 1.74 

10 3.41 1.61 1.54 1.42 1.36 

15 2.66 1.45 1.38 1.05 0.86 

Babble 

‐5 10.20 4.66 4.57 4.42 4.37 

0 8.24 3.86 3.55 3.40 3.28 

5 6.09 2.78 2.52 2.25 2.19 

10 3.74 1.47 1.27 1.07 1.02 

15 2.82 1.12 1.01 0.88 0.85 

Pink 

‐5 10.74 4.21 3.84 3.53 3.40 

0 7.75 3.55 3.30 3.05 2.92 

5 5.20 1.95 1.74 1.25 1.17 

10 3.86 1.36 1.25 1.05 1.00 

15 2.65 0.98 0.90 0.74 0.69 

Volvo 

‐5 4.77 1.68 1.51 1.31 1.25 

0 1.67 0.80 0.78 0.72 0.71 

5 0.94 0.38 0.34 0.32 0.31 

10 0.65 0.21 0.20 0.20 0.20 

15 0.25 0.18 0.17 0.18 0.17 

Factory2 

‐5 9.54 4.30 3.86 3.43 3.23 

0 6.22 2.26 2.11 1.79 1.58 

5 4.74 1.43 1.35 1.30 1.23 

10 2.85 0.75 0.66 0.56 0.45 

15 2.17 0.48 0.45 0.42 0.42 
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As suggested in [106], the largest 5% ISD scores were discarded to exclude the 

unreliable high distance values. The results are shown in Table 3.4. Similar with the 

situation of the PESQ test, the Volvo and factory2 noises are less difficult and ISD scores 

were lower than the other three noise conditions. The proposed method still obtained the 

best results across the board. For white, pink and factory2 noises, the improvement is 

significant for SNRs from -5 to 0 dB; for babble and volvo noises, only -5 dB SNR cases 

have significant improvement. 

 

(4) Subjective evaluation 

The subjective evaluation was performed through a sentence-pair listening test. The 

listening materials included three noise types (white, pink, and babble) at two SNR levels 

(0dB, 5dB) for two speakers (one male and one female), with a total of 12 cases (3*2*2). 

For each case, one TIMIT speech sentence was used from a speaker (randomly taken 

from SA1, SA2, and one other sentence in TIMIT) as the dry source, and the three 

enhancement methods of MMSE, MSS, and MRISS were applied to enhance the speech 

from noise. The speech sentences enhanced by two different methods were combined 

pairwisely to generate totally 36 pairs of sentences, from which 4 groups (with overlap) 

were formed, with each group having 18 sentence pairs and each processing method 

being used in 12 sentences per group. The play back order of the three methods in each 

group was balanced, i.e., each of the six combinations of MMSE-MSS, MSS-MMSE, 

MMSE-MRISS, MRISS-MMSE, MSS-MRISS, MRISS-MSS occurred in three sentence 

pairs. Listeners were asked to mark one of the three choices for each sentence pair: prefer 

the first one, prefer the second one, and no preference.  Pairwise scoring was employed: a 
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score of +1 was awarded to the preferred method and +0 to the other, and for the no 

preference response each method was awarded a score of +0.5. 

Fourteen normal hearing, native English speakers participated in the experiment. The 

listening evaluation was conducted in a quiet room. The participants were familiarized 

with the task during a short practice session before the formal test. Each listener 

evaluated one of the 4 groups of sentence pairs. The normalized mean preference score 

from the subjective evaluation experiment is shown in Figure 3.11, where the order of 

preference is clearly MRISS (0.43), MSS (0.33), and MMSE (0.24). In general, the 

MRISS processed speech had less residual noise than MMSE, and it introduced less 

distortion than MSS. The detailed evaluation scores are shown in Table 3.5, where in 

each table entry, the first number is the total score that the 1st method was preferred to the 

2nd one, the second number is the total score that the 2nd method was preferred to the 1st 

one, and the last number is the total score that the two methods were considered similar. 

 

Table 3.5 Comparison on preference score (1st is preferred / 2nd is preferred /similar) 

1st\2nd MMSE MSS  MRISS 

MMSE ‐  30/41/13 17/56/11

MSS  ‐  ‐  24/35/25

MRISS ‐  ‐  ‐ 
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Fig. 3.11 Subjective evaluation of MMSE, MSS and MRISS 

 

3.3.3	Performance	analysis	

We experimentally studied the effects of each of the three factors related to the 

property of MRISS discussed in Section 3.3.2. Objective measurements were made in 

two domains: acoustic frequency domain and time domain. In order to evaluate the 

performance of modulation domain processing without the confounding factor of acoustic 

frequency phase, two quality measures on acoustic frequency magnitude spectrum were 

used, i.e., the ISD and LSD. In order to evaluate the effect of acoustic frequency phase, 

we used the measures of PESQ and segmental SNR for the time domain speech signal. 

The experimental conditions were white, pink and babble noises with the SNRs of -5dB, 

0dB, 5dB and 10dB. 

 

3.3.3.1	Modulation	domain	spectral	subtraction	

In this study, we evaluate the performances of modulation domain magnitude spectral 

subtractions for the MRISS method and the MSS method. In order to avoid confounding 

the subtraction evaluation by different use of phase, we set the modulation phase to be the 
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clean speech phase for both MRISS and MSS. For MSS, we evaluated two cases, one 

used the actual noisy acoustic magnitude spectra which included the speech-noise cross-

term, and another artificially removed the cross-term. 

 

Case 1: Without cross-term 

In the preprocessing step, we eliminated the cross-term from the acoustic frequency 

magnitude spectra for MSS (using the known speech and noise data) so that 

ห ෨ܺሺ݇, ሻหݐ ൌ 	 |ܵሺ݇, |ሻݐ ൅	 |ܰሺ݇,  |ሻݐ

And for each fixed k, ห ෨ܺሺ݇, ሻหݐ  were then transformed to the modulation frequency 

domain for subtractive enhancement. 

Case 2: With cross-term 

In this case, we simply used the noisy acoustic magnitude spectrum |ܺሺ݇,  ሻ| andݐ

transformed it to the modulation frequency domain for subtractive enhancement. 

 

Fig. 3.12 ISD and LSD evaluations on magnitude recovery 

 (Bars within a SNR group from left to right: MRISS, MSS (without cross-term), MSS) 
 

20
40
60
80

100
120

IS
D

 (
w

hi
te

)

20
40
60
80

100
120

IS
D

 (
ba

bb
le

)

-5dB 0dB 5dB 10dB

20
40
60
80

100
120

IS
D

 (
pi

nk
)

100

200

300

LS
D

 (
w

hi
te

)

100

200

300

LS
D

 (
ba

bb
le

)

-5dB 0dB 5dB 10dB
100

200

300

LS
D

 (
pi

nk
)



 
 

47 
 

The evaluation results are shown in Figure 3.12. We observe that the MRISS method 

produced better results than the MSS method with or without cross-term, and the fact that 

the quality of the acoustic frequency magnitude spectra recovered by MSS with the cross-

term artificially removed was better than that recovered from the actual magnitude 

spectrum with the cross-term shows that the cross-term degraded the MSS based 

enhancement performance. 

 

3.3.3.2	Overall	modulation	domain	processing	

 

Fig. 3.13 AISD and LSD evaluations on the modulation domain processing 

 (Bars within a SNR group from left to right: MRISS, MSS (without cross-term), MSS) 
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showed increased distortion, in comparison with Figure 3.12 where the clean speech 

phases were used. 

 

3.3.3.3	Acoustic	frequency	phase	spectra	

In this study, we compare the effect of using acoustic frequency phase recovered from 

the MRISS method with that of the noisy acoustic frequency phase in the recovered 

speech signal quality. We first estimated real and imaginary acoustic spectra using the 

MRISS method, from which the recovered phase was obtained. We then used the 

recovered phase and the clean acoustic frequency magnitude spectra to recover the time 

domain speech signal. In comparison, emulating the MSS method we used noisy acoustic 

frequency phase spectra and clean acoustic frequency magnitude spectra to recover the 

time domain speech signal. The results are shown in Figure 3.14. 

 

Fig. 3.14 PESQ and segmental SNR evaluations on the effect of acoustic frequency phase 
spectra in speech enhancement (Bars within a SNR group from left to right: MRISS, MSS) 
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In comparison with using noisy phase, using the MRISS recovered phase obtained an 

average of 0.1 point gain on PESQ and an average of 0.2dB gain on segmental SNR over 

the four SNR and three noise conditions. 

 

3.4	Summary	

We have proposed a novel spectral subtraction method for noise reduction in speech. 

The subtraction is performed in the modulation frequency domain on the real and 

imaginary spectra separately to preserve the phase information. Our results have shown 

the capability of the proposed method in estimating signal phase in noise, and in 

significantly improving the performance of speech enhancement measured by segmental 

SNR and PESQ in comparison with the existing methods of MSS, NSS and MMSE. A 

subjective evaluation also showed listeners’ preference for our proposed method. Based 

on our experimental evaluation results, we conclude that both the modulation frequency 

domain real and imaginary spectra enhancement and acoustic frequency phase spectra 

contributed to the better quality in the enhanced speech by the MRISS method, where the 

modulation domain processing played a larger role than the acoustic frequency phase 

under the studied conditions. The improved acoustic frequency magnitude spectra 

estimation as well as the enhanced acoustic frequency phase contributes to the superior 

performance of MRISS over the contrasted spectral subtractive speech enhancement 

methods. 
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Chapter 4 

Speech enhancement in reverberation 

 

4.1	Sound	propagation	and	reverberation	

We assume the reverberant speech signal ݕሺ݊ሻ  to be the convolution of a target 

speech signal ݏሺ݊ሻ and a time varying RIR ݄ 

ሺ݊ሻݕ ൌ ෍ ݄ሺ݊ െ ݈ሻݏሺ݈ሻ																																																																								

௅ೃିଵ

௟ୀ଴

ሺ4.1ሻ 

where ݊ is the discrete time index. ܮோ represents the length of ݄. 

The RIR ݄ generally consists of a number of impulses for the direct path and early 

reflections, and an exponentially decaying tail of the late reverberation. Figure 4.1 shows 

a RIR measured in a real room with a reverberation time RT60 being 1.3 second, where 

RT60 is defined as the time for the sound to die away to a level 60 decibels below its 

original level. 

 

Fig. 4.1 Room impulse response with RT60 1.3 second 
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The RIR can be further decomposed as early RIR ݄௘ and late RIR ݄௟, and thus the 

reverberant speech in (4.1) can be further decomposed into 

ሺ݊ሻݕ ൌ ෍ ݄௡ሺ݊ െ ݈ሻݏሺ݈ሻ	

௅೐ିଵ

௟ୀ଴

൅ ෍ ݄௡ሺ݊ െ ݈ሻݏሺ݈ሻ

௅ೃିଵ

௟ୀ௅೐

ൌ ݄௘ ⊛ ݏ ൅ ݄௟ ⊛  ሺ4.2ሻ																								ݏ

where ܮ௘ represents the length of the early impulse response, ݄௘ ⊛  is termed as early ݏ

reverberation, and ݄௟ ⊛  ௘ is chosen such thatܮ is termed as late reverberation. Usually ݏ

݄௘ only consists of the direct path and a few early reflections. In practice, ܮ௘ ranges from 

40 to 80 milliseconds. Here, we aim to eliminate the late reverberation, hence the early 

reflections are considered as target speech. 

Let ܻሺ݊, ݇ሻ, ௘ܻሺ݊, ݇ሻ and ௟ܻሺ݊, ݇ሻ be the short-time FFTs of ݕሺ݊ሻ, ݄௘ ⊛ and ݄௟ ݏ ⊛  .ݏ

We get 

ܻሺ݊, ݇ሻ ൌ ௘ܻሺ݊, ݇ሻ ൅ ௟ܻሺ݊, ݇ሻ																																																																ሺ4.3ሻ 

where ݊ and ݇ represents the frame and frequency indices, separately. Therefore, we can 

enhance the target speech ௘ܻሺ݊, ݇ሻ by eliminating ௟ܻሺ݊, ݇ሻ from the reverberant speech 

spectrum ܻሺ݊, ݇ሻ. 

 

4.2	LRSV	estimation	

We continue using the proposed MRISS algorithm as in Chapter 3, but we need to 

modify the estimation of ௟ܻሺ݊, ݇ሻ. Late reverberation is different from the background 

noise since reverberation is correlated with the target speech. For this purpose, we 

extended the LRSV estimation algorithm proposed by Erkelens and Heusdens [54] into 

the modulation domain. 
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The reverberant speech spectrum can be considered as following a MA model. In the 

modulation frequency domain, the relation between the reverberant real/imaginary 

spectrum ܻோ/ூሺ݇, ,ሻ and the source speech spectrum ܵோ/ூሺ݇݉,ݐ  :ሻ becomes݉,ݐ

ܻோ/ூሺ݇, ሻ݉,ݐ ൌ ܵோ/ூሺ݇, ሻ݉,ݐ ൅෍ߙோ/ூሺ݇, ݆,݉ሻܵோ/ூሺ݇, ݐ െ ݆,݉ሻ

௃

௝ୀଵ

																																ሺ4.4ሻ 

where the superscript ܴ/ܫ represents the real/imaginary acoustic spectra, ߙோ/ூሺ݇, ݆, ݉ሻ is 

the MA coefficients and ܬ is the MA model order, ݇ ݐ ,  and ݉ represents the acoustic 

frequency, time frame index, and modulation frequency index, respectively. The term 

∑ ,ோ/ூሺ݇ߙ ݆,݉ሻܵோ/ூሺ݇, ݐ െ ݆,݉ሻ௃
௝ୀଵ  is called the late reverberation ܼ௥

ோ/ூሺ݇,  .ሻ݉,ݐ

Since the source speech ܵோ/ூሺ݇, ሻ݉,ݐ  in (4.4) is the desired signal, we use the 

enhanced speech ܵܿோ/ூሺ݇,  ሻ instead. To be consistent with [54], we rewrite the late݉,ݐ

reverberation term in equation (4.4) as a weighted sum of ܬ previous modulation spectra 

that are spaced by P frames. 

ܼ௥
ோ/ூሺ݇, ሻ݉,ݐ ൌ ටܤோ/ூሺ݇,݉ሻ෍ߙோ/ூሺ݇, ݆,݉ሻܵܿோ/ூሺ݇, ݐ െ ∆ െ ݆ܲ,݉ሻ

௃

௝ୀ଴

											ሺ4.5ሻ 

where ∆ is a positive offset introduced to skip the early reverberation part, ܵܿோ/ூሺ݇, ݐ െ

∆ െ ݆ܲ,݉ሻ  is the enhanced speech, ܤோ/ூሺ݇,݉ሻ  is an energy compensating factor and 

,ோ/ூሺ݇ߙ ݆,݉ሻ is the MA coefficient, and they are computed in the following way: (in the 

following equations we simply ignore the superscripts ܴ/ܫ for simplicity and conciseness) 

ሺ݇,݉ሻܤ ൌ
ܲ

∑ ,ሺ݆ߩ| ݇ሻ|ଶ௃
௝ୀ଴

																																																																													ሺ4.6ሻ 

,ሺ݇ߙ ݆,݉ሻ ൌ ,ሺ݇ߙߤ ݆, ݉ሻ ൅ ሺ1 െ ,ሺ݆ߩሻߤ ݇ሻ																																																		ሺ4.7ሻ 
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,ሺ݆ߩ ݇ሻ ൌ ,ሺ݇ߚ ሻ݉,ݐ
ܻሺ݇, ሻ݉,ݐ
|ܻሺ݇, |ሻ݉,ݐ

ܵܿ∗ሺ݇, ݐ െ ∆ െ ݆ܲሻ
|ܵܿሺ݇, ݐ െ ∆ െ ݆ܲሻ|

																																											ሺ4.8ሻ 

,ሺ݇ߚ ሻ݉,ݐ ൌ
തܻሺ݇, ሻ݉,ݐ

ܵܿതതതሺ݇, ,ݐ ݉ሻ
																																																																											ሺ4.9ሻ 

In (4.7) ~ (4.9), ߤ is an adaptation factor, ∗ represents complex conjugation. തܻሺ݇,  ሻ݉,ݐ

and ܵܿതതതሺ݇, ,ݐ ݉ሻ  are the recursively estimated long term mean of |ܻሺ݇, |ሻ݉,ݐ  and 

|ܵܿሺ݇,  ሻ| which are computed as݉,ݐ

തܻሺ݇, ሻ݉,ݐ ൌ ߳ തܻሺ݇, ሻ݉,ݐ ൅ ሺ1 െ ߳ሻ|ܻሺ݇, ,ݐ ݉ሻ|																																										ሺ4.10ሻ 

ܵܿതതതሺ݇, ,ݐ ݉ሻ ൌ ߳ܵܿതതതሺ݇, ,ݐ ݉ሻ ൅ ሺ1 െ ߳ሻ|ܵܿሺ݇, ,ݐ ݉ሻ|																																					ሺ4.11ሻ 

with ߳ set to 0.98. 

Finally, the estimate of the LRSV ߣሺ݇,  ሻ is updated recursively with a smoothing݉,ݐ

parameter ߟ: 

,ሺ݇ߣ ሻ݉,ݐ ൌ ,ሺ݇ߣߟ ݐ െ 1,݉ሻ ൅ ሺ1 െ ,ሻ|ܼ௥ሺ݇ߟ ,ݐ ݉ሻ|ଶ																															ሺ4.12ሻ 

where ߟ was set to 0.2. 

 

4.3	Experiment	

We used 40 sentences from the TIMIT dataset as the clean speech. The 40 sentences 

came from 2 male and 2 female speakers, and each speaker contributed 10 sentences. The 

RIRs came from two datasets: 1) real room collected RIRs from the RWCP, and 2) 

simulated RIRs by using the IMAGE method [107]. In the RWCP dataset, we used the 

RIR with the reverberation time of 1.3 seconds (E2B RIR); in the IMAGE method, we set 

the room dimension as 6 x 8 x 3 meters, and the distance between the source and the 

microphone was 1.5 meter. By adjusting the reflection coefficients of the four walls, 

ceiling and floor, we obtained four set of RIRs with the reverberation time of 0.27, 0.44, 
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0.62 and 0.95 second, respectively. The reflection coefficients for RIR simulation is 

given in Table 4.1. 

Table 4.1 Reflection parameter setting for RIR simulation 

RT60  wall ceil  floor

0.27 second 0.7  0.7  0.7 

0.44 second 0.8  0.8  0.8 

0.62 second 0.85 0.85 0.85 

0.95 second 0.9  0.9  0.9 
 

The parameters used in (4.5) and (4.10-4.12) for the dereverberation experiments are 

shown in Table 4.2. The parameters for the FFT and the windows remained the same as 

in Table 3.1. 

Table 4.2 Parameter setting 

ܬ ∆ ܲ ߳ ߤ ߟ
20 1 1  0.98 0.3 0.2

 

We selected two existing methods for comparison: the single channel MSLP [52] 

and the acoustic domain spectral subtraction using the same LRSV estimator (SS-LRSV) 

as defined in (4.12) [54]. These two methods were chosen due to the fact that both SS-

LRSV and MSLP used models to estimate the long term LRSV, and their difference is 

that SS-LRSV was implemented in acoustic frequency domain and MSLP was 

implemented in the time domain. The quality measures used in this experiment included 

segmental signal-to-reverberation ratio and PESQ. 

 (1) PESQ 

The PESQ results are shown in Figure 4.2. The proposed MRISS-LRSV method 

produced the best results over all the RIR cases and the SS-LRSV method is always the 

second best. The improvement became bigger when the reverberation was heavier. Note 
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that the PESQ for the reverberant speech baseline of RT60 = 1.3 seconds is higher than 

that of the RT60 = 0.95 second because these two RIRs were from different datasets. 

 

Fig. 4.2 PESQ results under different RT60 conditions 

 

(2) Segmental SRR 

The segmental SRR results are shown in Figure 4.3. The proposed MRISS-LRSV 

method obtained the best performance over all the RT60 conditions, and similarly as in 

the PESQ evaluation, the SS-LRSV method stayed as the second best in every RT60 

condition. 
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Fig. 4.3 Segmental SRR results under different RT60 conditions 

 

4.4	Summary	

In this chapter, we investigated performing dereverberation in the modulation 

frequency domain by integrating our proposed MRISS method with the LRSV method of 

[54]. We estimated the LRSV by using the correlation method, and subtracted the LRSV 

estimate from reverberant speech. We compared the results of our method with the SS-

LRSV and MSLP methods under five RT60 conditions, and the experiment results 

verified the superior performance of our proposed method over all the RT60 conditions 

under the criteria of PESQ and segmental SRR. The reason for MRISS-LRSV’s best 

results may be explained by the increased modulation domain discrimination between 

speech and reverberation that enabled more accurate LRSV estimation. Furthermore, both 

0.27s 0.44s 0.62s 0.95s 1.3s (RWCP)
-5

-4

-3

-2

-1

0

1

Reverberation time (RT60)

S
eg

m
en

ta
l S

R
R

 (
dB

)

 

 

Reverberation

MRISS-LRSV
SS-LRSV

MSLP



 
 

57 
 

SS-LRSV and MSLP methods subtracted the reverberation estimate in acoustic frequency 

domain while the MRISS-LRSV method subtracted the reverberation in the modulation 

domain, which helped reduce speech distortion caused by musical noise (similar reasons 

as in Chapter 3). 
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Chapter 5 

DOA based Blind Speech Separation in noisy or reverberant 
environments 

 

In the underdetermined BSS scenario, DOA based separation methods often work 

well for clean speech since DOA or the intersensor phase difference can be well 

measured to provide the source directions. However, when speech is corrupted by 

background noise or reverberation, the phase information is destroyed and the 

performance of DOA based separation dropped dramatically. In this Chapter, we first 

develop methods for speech separation in several challenging scenarios under the clean 

speech condition, and we then address the problem of improving the performance of 

DOA based separation under noisy or reverberant environments by employing the 

MRISS pre-processing method to enhance the phase information from noise or 

reverberation. At last, we propose a log likelihood criterion method for source number 

estimation. 

For the first part, the challenges of separating source speech from clean speech 

mixtures include the problems where the directions of the multiple sources are close, and 

the energy levels of the sources are unbalanced. To address these problems, we propose 

to use ALMM to fit the IPD data distribution that are long tailed and asymmetric, use 

subband IPD histogram to obtain high resolution for DOA analysis, devise a new 

initialization method for the EM estimation of ALMM to help obtain correct solutions, 

and implement the separation in the modulation frequency domain. The effectiveness of 
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these methods is shown through experimental evaluations on speech mixture data 

generated from real sound scenes of RWCP and the TIIMIT speech materials. 

For the second part, we use the MRISS pre-processing to enhance phase estimation 

under noisy or reverberant conditions. Accordingly, we obtain more accurate DOA 

estimation and use this information to perform blind source separation. Experiment 

results showed that the MRISS pre-processing method produced a much more accurate 

estimation of the DOAs than that without the pre-processing, and correspondingly the 

separation with the pre-processing obtained better results on the criteria of PESQ, 

segmental SDR and SIR than those without the pre-processing in both noisy and 

reverberation conditions.  

For the last part, we form a sequence of negated log likelihood scores with each score 

targeting a source number hypothesis, and from which we select the number that 

corresponds to the minimum of the negated log likelihood score. 

 

5.1	DOA	based	blind	speech	separation	in	acoustic	frequency	

domain	

5.1.1	Far	field	signal	model	

In a sound field of N simultaneous speech sources and two microphones, the signal 

received by the ݅th microphone is  

ሻݐ௜ሺݔ ൌ ෍෍ݏ௡ሺݐ െ ݈ሻ݄௜,௡ሺ݈ሻ,			݅ ൌ 1, 2
௟

ே

௡ୀଵ

																																																										ሺ5.1ሻ 

where ݏ௡ሺݐሻ denotes the ݊th source, and ݄௜,௡ሺ݈ሻ is the impulse response from the ݊th 

source to the ݅th microphone. 
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       In the far field model [108], a plane-wave is assumed for speech sound, and in the 

absence of reverberation and attenuation the impulse response is simplified as 

௜,௡ሺ߱ሻܪ ൎ exp	ሼെ݆߱߬௜,௡ሽ																																																																																		ሺ5.2ሻ 

where ߱ denotes angular frequency and ߬௜,௡ is the time delay from the ݊th source to the 

݅th microphone. Accordingly, the signals at the two microphones are: 

௜ܺሺݐ, ߱ሻ ൌ ෍ܵ௡ሺݐ, ߱ሻ
ே

௡ୀଵ

exp൛െ݆߱߬௜,௡ൟ ,									݅ ൌ 1,2																																															ሺ5.3ሻ 

 

5.1.2	DOA	Estimation	

In histogram based DOA estimation [109], the far field model and the sparseness 

property of speech are utilized. The sparseness property states that the energies of 

independent speech signals rarely overlap in time-frequency (T-F) domain, and therefore 

at each T-F element the signal energy is dominated by one source. Assume that a T-F 

element ሺݐ, ߱ሻ is dominated by the ݊th source. Expressing the inter-sensor time delay ߬௡ 

as a function of the speed of sound ܿ, the microphones’ spacing ݀, and the arrival angle 

 ௡ leads to [100]ߠ

ଵܺሺݐ, ߱ሻ
ܺଶሺݐ, ߱ሻ

ൎ expሼ݆߱߬௡ሽ ൌ exp ൜
௡ߠݏ݋݆ܿ݀߱

ܿ
ൠ																																							ሺ5.4ሻ 

where 2ߠݏ݋ܿ݀݇ߨ௡/ܿ  is referred to as the IPD, and 2ߠݏ݋ܿ݀ߨ௡/ܿ  is referred to as the 

frequency normalized IPD. A histogram can then be generated for the normalized IPD of 

the T-F elements over a block of time frames (in our study 70 frames corresponding to 

2.25 seconds were used). A two-speaker two-sensor sound scene is illustrated in Fig. 5.1, 

where the DOAs are ߠଵ and ߠଶ for the speech sources 1 and 2, respectively. 
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Fig. 5.1 Illustration of a two-speaker two-sensor sound scene 

 

5.1.3	Speech	Separation	

Speech separation can be performed based on a mixture density modeling of the 

clustering structure of the IPD data. Based on the model, the posterior probabilities that 

the energy at a T-F element is associated with the different source directions are 

computed to generate the T-F masks Ф
௡
ሺݐ, ݇ሻ for the source signal ݏ௡, ݊ ൌ 1,… ,ܰ . 

Speech separation can then be performed by extracting the source signals according to Eq. 

(5.5): 

መܵ௡ሺݐ, ݇ሻ ൌФ
௡
ሺݐ, ݇ሻܺሺݐ, ݇ሻ																																																												ሺ5.5ሻ 

 where መܵ௡ሺݐ, ݇ሻ is the extracted signal component of the source ݊, and ܺሺݐ, ݇ሻ is any one 

of the ௜ܺሺݐ, ݇ሻ, ݅ ൌ 1,2. The source speech signals are obtained by inverse transforming 

መܵ௡ሺ݇,  .ሻ into the time domainݐ

 

speaker 1 speaker 2 

sensor 1 sensor 2 

ଶߠ∠ଵߠ∠

d 
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5.2	Proposed	methods	

We first discuss the proposed methods for separating clean speech mixtures, and 

then we talk about the MRISS pre-processing in the reverberant or noisy conditions. At 

last, we introduce the log likelihood criterion based source number estimation method. 

 

5.2.1	Blind	speech	separation	under	clean	speech	condition	

Here, a suite of methods are proposed and integrated to improve speech separation. 

Upon obtaining the IPDs by STFT, a subband histogram is generated for estimating the 

DOAs, and a transformed histogram is used to initialize the source clusters. ALMM is 

then used to cluster the IPD data over the T-F domain. Finally, modulation domain T-F 

masks are obtained as the posterior probabilities of ALMM and they are applied to the 

speech mixtures to recover the source speech signals. The flowchart of the separation 

processing is shown in Figure 5.2. 

 

 

 

 

 

 

Fig. 5.2 Flowchart of DOA based blind source separation under clean condition 
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5.2.1.1	Modulation	domain	IPD	distribution	and	sparsity	

In deriving the source separation algorithm in the modulation domain, we make an 

assumption that at each acoustic frequency and within each modulation time window the 

dominant source is mostly consistent, and we refer this property as sparsity in time-

acoustic-modulation frequency domain (for simplicity, we refer this as sparsity in 

modulation domain in the subsequent discussions). When the sparsity property holds, 

exp൛െ݆2߬݇ߨ௜,௡ൟ is a constant within a modulation window at a fixed acoustic frequency 

bin ݇, since ߬௜,௡ is a constant when the source and the sensor are fixed. From Eq. (5.3), 

we then derive: 

ܼ௜ሺݐ, ݇,݉ሻ ൌ ,ݐሼܵ௡ሺܶܨܨ ݇ሻሽ exp൫െ݆2߬݇ߨ௜,௡൯ , ݅ ൌ 1, 2																	ሺ5.6ሻ 

which leads to 

ܼଵሺݐ, ݇,݉ሻ
ܼଶሺݐ, ݇,݉ሻ

ൎ expሼ݆2߬݇ߨ௡ሽ ൌ exp ൜
௡ߠݏ݋ܿ݀݇ߨ2݆

ܿ
ൠ																																	ሺ5.7ሻ 

where ߬௡ ൌ ߬ଶ,௡ െ ߬ଵ,௡  is the inter-sensor time delay. We utilize the source DOA 

information given by Eq. (5.7) to perform source separation in the modulation domain. 

To verify the validity of the above stated sparsity assumption, we carried out 

evaluations on speech mixtures of 2 to 3 sources in anechoic and reverberant conditions 

(RT60 = 0.3s). We first investigated the sparsity characteristics through the distribution 

of the log energy ratio of two source signals at each T-F component. For the acoustic 

frequency spectra, the ratio is defined as ݋݅ݐܽݎሺݐ, ݇ሻ ൌ log
|௑భሺ௧,௞ሻ|మ

|௑మሺ௧,௞ሻ|మ
, and for the 

modulation frequency spectra (real or imaginary spectra), the ratio is defined as 

,ݐሺ݋݅ݐܽݎ ݇,݉ሻ ൌ log
ห௓భ,ೃሺ௧,௞,௠ሻห

మ

ห௓మ,ೃሺ௧,௞,௠ሻห
మ or log

ห௓భ,಺ሺ௧,௞,௠ሻห
మ

ห௓మ,಺ሺ௧,௞,௠ሻห
మ. 
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Fig. 5.3 shows the log energy ratio distributions measured in the acoustic and 

modulation domains in the reverberant case, obtained from 40 TIMIT sentences. 

Acoustic domain histogram was generated by directly counting the number of ratio terms 

falling in each histogram bin. Modulation domain histogram was generated by a weighted 

average over the ratios in all modulation layers’ real and imaginary spectra, where the 

weight for the ݎ th layer was computed as, ݓሺݎሻ ൌ ∑/௥ܧ ௠ெܧ
௠ୀଵ , with ܧ௥ ൌ

∑ ∑ |ܼଵሺݐ, ݇, ሻ|ଶ௞௧ݎ , and the histogram value at bin ݑ  was 

ሻݑሺݐ݊ݑ݋ܥ ൌ ∑ ሻ௥௔௧௜௢ሺ௧,௞,௥ሻ∈௕௜௡ሺ௨ሻݎሺݓ . In Fig. 5.3, the x-axis represents the energy ratio of 

the two sources at each T-F component, where the further away the two peaks are, the 

higher the sparsity. We can observe that the modulation domain spectra with the 64 ms 

window have a better sparsity property than the acoustic domain spectra since the two 

peaks are better separated in the former than in the latter; the sparsity becomes weaker 

when the modulation window length increased to 256 ms due to the smearing effect of 

the long window.  

 

Fig. 5.3 Sparsity comparison between acoustic domain and modulation domain 
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We further used three measures to compare the speech sparsity properties in the 

acoustic domain and modulation domain, including entropy, Hoyer, and Gini [110]. In a 

ܰ source scenario, let the posterior probabilities of the source signals at a T-F element 

ሺݐ, ݇ሻ be represented as ሼܿ௧,௞
ଵ , … , ܿ௧,௞

௡ , … ܿ௧,௞
ே ሽ. The Entropy, Hoyer, and Gini scores are 

then computed as 

,ݐሺܧ ݇ሻ ൌ െ෍ ܿ௧,௞
௡ ௧,௞ܿ݃݋݈

௡
ே

௡ୀଵ
																																																																										ሺ5.8ሻ 

,ݐሺܪ ݇ሻ ൌ ቌ√ܰ െ෍ ܿ௧,௞
௡

ே

௡ୀଵ
ඨ෍ ൫ܿ௧,௞

௡ ൯
ଶே

௡ୀଵ
൘ ቍ ൫√ܰ െ 1൯

ିଵ
																			ሺ5.9ሻ 

,ݐሺܩ ݇ሻ ൌ 1 െ 2෍
ܿ௧,௞
௡

∑ ܿ௧,௞
௡ே

௡ୀଵ
ቌ
ܰ െ ݊ ൅ 1

2
ܰ

ቍ
ே

௡ୀଵ
																																									ሺ5.10ሻ 

When ሼܿ௧,௞
ଵ , … , ܿ௧,௞

௡ , … ܿ௧,௞
ே ሽ is 0-1, i.e., the probability of one source equals to one and 

the rest are all zeros, ܧሺݐ, ݇ሻ reaches its minimum while ܪሺݐ, ݇ሻ and ܩሺݐ, ݇ሻ reach their 

maxima, corresponding to the highest sparsity; when ሼܿ௧,௞
ଵ , … , ܿ௧,௞

௡ , … ܿ௧,௞
ே ሽ are uniform, 

,ݐሺܧ ݇ሻ  reaches its maximum while ܪሺݐ, ݇ሻ  and ܩሺݐ, ݇ሻ  reach their minima, 

corresponding to the lowest sparsity. 

The overall sparsity score in the acoustic domain is computed as 

Ф ൌ ଵ

்௄
∑ ∑ ,ݐሺ߆ ݇ሻ௧௞ , where ܶ and ܭ are the numbers of acoustic frequency bins and 

time frames, respectively, and ߆ሺݐ, ݇ሻ  is one of the Entropy, Hoyer, or Gini scores 

defined in Eq. (5.8)~(5.10). Similarly, the overall sparsity score in the modulation 

domain is computed as Ф ൌ ଵ

்௄ெ
∑ ∑ ∑ ,ݐሺ߆ ݇,݉ሻ௠௞௧ , where ܯ  is the number of 

modulation frequency bins. The results are shown below in Table 5.1. 
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Table 5.1 Sparsity measures in acoustic and modulation domains 

  Entropy Hoyer  Gini 

Acoustic domain  0.0612  0.9388 ‐0.0511 

Modulation domain 0.0522  0.9495 ‐0.0421 
 

From the table, we can see that the sparsity in the modulation domain is stronger than 

that in the acoustic domain, which indicates that speech source separation may be 

improved in the modulation domain.  

	

5.2.1.2	DOA	estimation	using	subband	T‐F	elements	

In the scenario of two microphones with a spacing ݀, it is known that spatial aliasing 

(phase wrapping) does not occur in the frequency range of 0 ൏ ݂ ൏ ௠݂௔௫, with ௠݂௔௫ ൌ

ܿ/2݀  (when ߠ ൌ 0), where ܿ  denotes the speed of sound (340 m/s). Here the spatial 

aliasing is referred as the acoustic phase wrapping happened in the high frequency range, 

and an example is shown in Figure 5.10.  Hence the IPDs in this range can be used 

directly to estimate DOA. However, when frequency is low, the computed IPDs are too 

small to be used for separation. Therefore we propose using a subband of frequency bins 

close to the upper limit ௠݂௔௫ for DOA estimation2. Since only a portion of T-F elements 

in a frame is included in the subband, to ensure sufficient T-F elements we can extend the 

frame length in generating the histogram.  

                                                            
2 In our experiment, the distance between two microphones was 5.85cm, making 

maxf  2.9k Hz, and the subband 

was chosen as 2.5k ~2.9k Hz. 
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Fig. 5.4 Illustration of IPD histograms produced by using the proposed subband method 
(top) and the conventional full band method (bottom), where the two sources were 10  

apart 

 

Figure 5.4 shows an example where the DOAs of two speech sources are 10௢ apart. 

The histogram was generated by 512 point-FFT with a frame length of 70 from 36000 

speech samples. When the subband is used, the histogram clearly shows two peaks, while 

by using all frequency bins below ௠݂௔௫, only one peak is discernable. Due to its better 

resolution, the subband histogram is used in the subsequent processing. 

 

5.2.1.3	Asymmetric	Laplacian	mixture	model	

The distribution of IPD data often has long tails and is asymmetric around the modes, 

especially when the sources are close to each other. In such scenarios, the commonly 

used GMM [111] and LMM [112] are not a good fit to the IPD data. We propose to use a 

mixture of asymmetric Laplacian density function to model the distribution of IPD data 

instead, so as to better estimate the T-F masks for speech source separation. 
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       The PDF of an asymmetric Laplacian random variable ݔ௥	is defined as [113] 

;௥ݔሺ݌ ,ߤ ,ߪ ሻݍ ൌ
ሺ1ݍ െ ሻݍ

ߪ
݌ݔ݁ ቄെ

௥ݔ െ ߤ
ߪ

ሾݍ െ ௥ݔሺܫ ൑  ሺ5.11ሻ																								ሻሿቅߤ

where 0 ൏ ݍ ൏ 1 is the skew parameter, ߤ is the location parameter, ߪ ൐ 0 is the scale 

parameter, and ܫሺ∙ሻ is the indication function with ܫሺܣሻ ൌ 1 if A is true, and ܫሺܣሻ ൌ 0 if 

A is false. We extend this PDF into a mixture of G asymmetric Laplacian density 

functions as the following: 

ሻߣ|௥ݔሺ݌ ൌ ෍ߨ௚݌ሺݔ௥|ߤ௚, ,௚ߪ ௚ሻݍ

ீ

௚ୀଵ

																																														ሺ5.12ሻ 

where ߨ௚’s are the mixture weights with ߨ௚ ൒ 0 and ∑ ௚ீߨ
௚ ൌ 1. We derive a maximum 

likelihood parameter estimation algorithm for the ALMM based on EM [114]. The 

estimation procedure is given below (the derivation details are given in the Appendix). 

 

Step-1 Parameter initialization 

Presort the data such that ݔ௥ ൑ ,௥ାଵݔ ݎ ൌ 1,2, … , ܴ. Evenly partition the sorted data 

sequence into ܩ segments or groups ܩ௚, ݃ ൌ 1,… , ݎ݁ݐ݅ Set .ܩ ൌ 0. 

For ݃ ൌ 1,2, … ,  :initialize the model parameters as ,ܩ

௚௜௧௘௥ߤ ൌ ݉݁݀݅ܽ݊൫ܩ௚൯,						ߪ௚௜௧௘௥ ൌ ඨ
1
ܴ௚

෍ ൫ݔ௥ െ ௚௜௧௘௥൯ߤ
ଶ

௫ೝ∈ீ೒

, 

௚௜௧௘௥ݍ		 ൌ
1
2
௚௜௧௘௥ߨ																														, ൌ

ܴ௚
ܴ
																																				 

where ܴ௚ ൌ ܴ ௚|, andܩ| ൌ ∑ ܴ௚
ீ
௚ୀଵ . 

 

Step-2 Expectation 
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Compute the posterior probabilities for the component density ݃ given the observed 

IPD data sample ݔ௥ for ݃ ൌ 1,… , ,ܩ ݎ ൌ 1,… , ܴ: 

݄௚௜௧௘௥ሺݎሻ ൌ
,௚௜௧௘௥ߤ௥หݔ൫݌௚௜௧௘௥ߨ ,௚௜௧௘௥ߪ ௚௜௧௘௥൯ݍ

∑ ௝ߨ
௜௧௘௥݌൫ݔ௥หߤ௝

௜௧௘௥, ௝ߪ
௜௧௘௥, ௝ݍ

௜௧௘௥൯ீ
௝ୀଵ

																															ሺ5.13ሻ 

Step-3 Maximization 

Reestimate the location, scale, skew, and mixture weight parameters for ݃ ൌ 1,… ,  :ܩ

௚௜௧௘௥ାଵߤ ൌ argmin
ఓ

෍݄௚௜௧௘௥ሺݎሻሺݔ௥ െ ሻߤ ቀݍ௚௜௧௘௥ െ ௚ݔ൫ܫ ൑ 		൯ቁߤ

ோ

௥ୀଵ

																						ሺ5.14ሻ 

which leads to ݍ௚௜௧௘௥ ∑ ݄௚௜௧௘௥ሺݎሻோ
௥ୀଵ ൌ ∑ ݄௚௜௧௘௥ሺݎሻ௫ೝஸఓ೒

೔೟೐ೝశభ . To determine ߤ௚௜௧௘௥ାଵ , we 

compute the partial sum ܵሺݑሻ ൌ ∑ ݄௚௜௧௘௥ሺݎሻ௨
௥ୀଵ , and find ݎ∗ ൌ argmin௨หܵሺݑሻ െ

ݑ ௚௜௧௘௥ܵሺܴሻห using a sequential search forݍ ൌ 1,2, …, yielding ߤ௚௜௧௘௥ାଵ ൌ  .∗௥ݔ

௚௜௧௘௥ାଵߪ ൌ
∑ ݄௚௜௧௘௥ሺݎሻ൫ݔ௥ െ ௚௜௧௘௥ାଵݍ௚௜௧௘௥ାଵ൯ሺߤ െ ௥ݔሺܫ ൑ ௚௜௧௘௥ାଵሻሻோߤ
௥ୀଵ

∑ ݄௚௜௧௘௥ሺݎሻோ
௥ୀଵ

														ሺ5.15ሻ 

௚௜௧௘௥ାଵݍ ൌ ൞
௚ܤ ൅ ඥܤ௚ଶ െ ௚ܤ௚ܣ

௚ܣ
௚ܣ	݂݅								, ് 0

௚ܣ	݂݅												,												1/2												 ൌ 0
																																																			ሺ5.16ሻ 

where 

௚ܣ ൌ෍݄௚௜௧௘௥ሺݎሻ൫ݔ௥ െ ௚௜௧௘௥ାଵ൯ߤ

ோ

௥ୀଵ

, ௚ܤ ൌ ෍ ݄௚௜௧௘௥ሺݎሻ൫ݔ௥ െ ௚௜௧௘௥ାଵ൯ߤ
௫ೝஸఓ೒

೔೟೐ೝశభ

									ሺ5.17ሻ 

௚௜௧௘௥ାଵߨ ൌ
∑ ݄௚௜௧௘௥ሺݎሻோ
௥ୀଵ

ܴ
																																																																																											ሺ5.18ሻ 

      

Step-4 Termination 
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If |log ,ଵݔሺ݌ … , ௡ାଵሻߣ|ேݔ െ log ,ଵݔሺ݌ … , |௡ሻߣ|ேݔ ൏ ߜ  with ߣ ൌ ሼߤ, ,ߪ ,ݍ ሽߨ  the 

parameter set, 	ߜ a preset threshold, then stop the EM iteration; otherwise assign ݅ݎ݁ݐ ൅ 1 

to ݅ݎ݁ݐ, and return to Step-2. 

In Fig. 5.5, we compare the GMM, LMM, and ALMM fittings to an IPD histogram, 

where the directions of the two sources were at 1100 and 1300 in the anechoic condition. 

Due to the sharp and closely located peaks of the IPD distribution around the source 

directions, GMM failed to separate the two peaks and LMM fit poorly in between the two 

peaks. Overall, ALMM provided the best fit to the data distribution with the location 

parameters corresponding to the source DOAs. 

 

 

 

Fig. 5.5 GMM (top), LMM (middle) and ALMM (bottom) fittings to an IPD histogram 
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Figure 5.6 shows the convergence of the EM algorithm in estimating the ALMM 

parameters for the same case of Figure 5.5. We can see that the EM algorithm converged 

in about 8 iterations. 

 

Fig. 5.6 EM algorithm convergence 

 

In order to quantitatively compare the goodness of fit of GMM, LMM and ALMM to 

IPD data, we adopted the Kolmogorov-Smirnov (K-S) test statistic [115]. Kolmogorov-

Smirnov test is based on the distance between an empirical data distribution and the CDF 

defined by the model: 

ሻݐሺܵܭ ൌ ฬܨሺݔ௧ሻ െ
݈ሺݐሻ
ܰ
ฬ , ݐ ൌ 1,2, … , ܰ 

where ܨሺ∙ሻ is the CDF of the model being tested, and ݈ሺݐሻ is the number of samples 

up to ݔ௧, with ݔ௧ ൑ ,௧ାଵݔ ݐ ൌ 1,… ,ܰ 

The K-S test statistic is defined as 

௠௔௫ܵܭ ൌ max
ଵஸ௧ஸே

 ሻݐሺܵܭ
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    We further define an average statistic by averaging the ܵܭሺݐሻ’s, i.e., 

௠௘௔௡ܵܭ ൌ
1
ܰ
෍ܵܭሺݐሻ

ே

௧ୀଵ

 

Figure 5.7 shows the CDFs of GMM, LMM and ALMM fitting to the IPD data in the 

same case of Figure 5.5, where ALMM is seen to be closest to the empirical data 

distribution. 

      

Fig. 5.7 CDFs of GMM, LMM, ALMM and empirical distribution of IPD 

 

    In Table 5.2, we show the ܵܭ௠௔௫ and ܵܭ௠௘௔௡ for GMM, LMM and ALMM, with 

the results averaged over 12 cases, where each case had 2 sources that were 10 degrees 

apart, i.e., {ሺݕ, ݕ ൅ 10଴ሻ, ݕ ൌ 30଴, 40଴, … , 140଴} in the ANE conditions. 

Table 5.2 Kolmogorov-Smirnov test statistics 

 GMM LMM ALMM 
௠௔௫ 0.4472ܵܭ 0.1738 0.0825 

standard deviation 0.0265 0.0242 0.0186 

௠௘௔௡ܵܭ 0.0345 0.0273 0.0117 
standard deviation 0.0021 0.0018 0.0014 
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Since a large K-S test statistic value indicates a poor fitting between the model and 

data, we can see that ALMM fits the IPD distribution the best.  

 

5.2.1.4	Model	initialization	

Since a mixture density fitting to multimodal data based on maximum likelihood 

estimation can only find local optimal solutions, model initialization is important to the 

outcome. Initialization methods such as K-means or an even partition of ordered data 

samples do not always perform well, especially when speech energy is unbalanced or the 

sources are close to each other. Here we propose a histogram transformation method for 

improved model initialization. First, the IPDs without aliasing are sorted into ݔଵ
௣ ൑ ଶݔ

௣ ൑

⋯ ൑ ௡ݔ
௣ . Second, the sorted sequence is converted into a difference sequence of 

ሼݕ௡
௣: ௡ݕ

௣ ൌ ௡ݔ
௣ െ ௡ିଵݔ

௣ ሽ with ݕଵ
௣ ൌ 0. Third, ሼݖ௡

௣ሽ is formed by defining ݖ௡
௣ ൌ 1/ሺݕ௡

௣ ൅  ,ሻߚ

where ߚ is a tiny number used to prevent dividing by 0. Finally, a histogram is generated 

for the ݖ௡
௣’s and the boundaries of clusters are defined by seeking the valleys in the 

histogram. The rational of this procedure is that the differences of IPDs coming from the 

same cluster are smaller than that coming from different clusters. Taking the inverse of 

the differences is mainly for the purpose of showing clusters as peaks in an intuitive way.  

Figure 5.8 shows a comparison of the histograms of ݖ௡
௣  under the conditions of 

balanced (SIR=0dB) and unbalanced (SIR=-10dB) energies of three speech sources, 

where the target direction is 70଴, 90଴ and 110଴. When source energies are balanced, the 

peaks from different sources are relatively even, while when the target source energy is 

too low, the peak of the target speech is much lower than that of the other two sources. 

Here the transformed histogram still provides the correct cluster boundaries.  
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Fig. 5.8 Illustration of histograms of nz under speech energy balanced condition (top) and 

unbalanced condition (bottom) for 3 source directions. 

 

The cluster boundaries are used to initialize the parameters of the mixture of 

asymmetric Laplacian densities. For comparison, a K-means initialization is implemented 

by first evenly dividing the sorted IPDs for a given K to compute the mean parameters in 

each division, and K-means clustering is then iterated to provide the initialization for 

ALMM. Figure 5.9 shows the ALMM clustering results by using the K-means 

initialization and the proposed initialization under the condition of SIR=-10dB. In the 

figure, K-means initialization lost the target speech cluster due to its degeneration into an 

empty cluster, while the proposed method correctly found the target speech and separated 

it from two strong interference sources. 
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Fig. 5.9 Clustering results using K-means initialization (top) and proposed initialization 
(bottom), in both cases the cluster number was set to 3. 

        

5.2.1.5	Full‐band	clustering	

The full-band clustering is performed separately in each modulation layer. 

Specifically, in layer ݉, an ALMM is first estimated for the subband IPDs to provide the 

parameters ൛̂ߤ௚,௠, ,ො௚,௠ߪ ,ො௚,௠ݍ ,ො௚,௠ߨ ݃ ൌ 1,2,… ,  ൟ, and the parameter set is then used toܩ

compute the posterior probability of each T-F element belonging to different clusters in 

the full band. For the acoustic frequency ݇, a location parameter ො߮௚,௞,௠  is defined by 

multiplying ̂ߤ௚,௠  with the acoustic frequency ݇  and taking into account of phase 

unwrapping, i.e., ො߮௚,௞,௠ ൌ ௚,௠݇ߤ̂ േ ߨ2݊ , where േ2݊ߨ  are phase unwrapping terms 

needed for high frequency bins. The posterior probability that an IPD sample at ሺݐ, ݇,݉ሻ, 

,ݐሺܦܲܫ ݇,݉ሻ, belongs to the ݃th component density is computed as 

ܲሺ݃|ܦܲܫሺݐ, ݇,݉ሻሻ ൌ
,ݐሺܦܲܫ൫݌ො௚,௠ߨ ݇,݉ሻห ො߮௚,௞,௠, ,ො௚,௠ߪ ො௚,௠൯ݍ

∑ ,ݐሺܦܲܫ൫݌ො௝,௠ߨ ݇,݉ሻห ො߮௝,௞,௠, ,ො௝,௠ߪ ො௝,௠൯ݍ
ீ
௝ୀଵ

																			ሺ5.19ሻ 
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The posterior probabilities for each modulation layer are used as the T-F masks for 

source separation in the layer, i.e., Ф௚ሺݐ, ݇,݉ሻ ൌ ܲሺ݃|ܦܲܫሺݐ, ݇,݉ሻ and ෠ܻ௚ሺݐ, ݇,݉ሻ ൌ

Ф௚ሺݐ, ݇,݉ሻܼሺݐ, ݇,݉ሻ, ݃ ൌ 1,2,  .ܩ…

An illustration is given in Figure 5.10. 

 

Fig. 5.10 Illustration of full band clustering 

 

5.2.1.6	Experiment	results	

The proposed methods were evaluated for source separation in two challenging 

conditions. In the first condition, the source directions were close, while in the second 

condition, the energy of the target speech was much lower than those of the interference 

speech signals. Source speech data were taken from the TIMIT dataset, the sampling rate 

was 16k Hz. The room impulse responses were taken from the RWCP dataset, where 

each condition includes an anechoic room and a reverberant room with RT60 = 300ms. 

The speech mixture data were generated from the source speech and impulse responses 

by convolution and mixing. 

Two microphones on a circular array with a spacing of 5.85cm were used for speech 

recording. Talkers were over 2m away from the microphones. For details please refer 
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[101]. The number of talkers was two or three, and their directions were varied in 

different cases (see below). The SIR (dB) was defined as 

ܴܫܵ ൌ ݋10݈ ଵ݃଴ ቆ
∑ ்ݔ

ଶሺݐሻ௧

∑ ூݔ
ଶሺݐሻ௧

ቇ																																																			ሺ5.20ሻ 

The advantage of ALMM over GMM has been shown in Figure 5.5, thus here we 

only evaluate the contribution of the subband IPD histogram, model initialization and 

source number estimation. The baseline method was implemented by using a full band 

histogram and the K-means initialization. In order to compare the results directly, the true 

source number was given for the baseline. In both baseline and the proposed method the 

ALMM was used.  

 

Condition 1: Source directions were close. The input SIRs were approximately 0dB. It is 

noted that 10଴and 20଴  were the minimum degree separation in anechoic (ANE) and 

reverberant (REV) rooms respectively, provided by RWCP. 

Case 1: Two sources at 50଴ and 60଴ in an ANE room. 

Case 2: Three sources at 50଴, 60଴ and 70଴ in an ANE room 

Case 3: Two sources at 50଴ and 70଴ in a REV room 

Case 4: Three sources at 50଴, 70଴ and 90଴ in a REV room 
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Fig. 5.11 Comparison of SIR gains in condition 1 

 

Condition 2: Input SIRs were low. In this condition, the input SIRs were approximately -

10dB. Larger direction spacing was considered due to the increased difficulty at very low 

input SIR.  

Case 1: Two sources at 70଴ and 110଴ in an ANE room. 

Case 2: Three sources at 70଴, 90଴ and 110଴ in an ANE room 

Case 3: Two sources at 70଴ and 110଴ in a REV room 

Case 4: Three sources at 70଴, 90଴ and 110଴ in a REV room 

 

From Figures 5.11 and 5.12, the proposed method significantly outperformed the 

baseline in SIR gains. It is worth noting that if in the baseline the source number was not 

given and GMM was used instead of ALMM, then even larger margin in SIR gains 

would have been obtained by the proposed method over the baseline. 
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Fig. 5.12 Comparison of SIR gains in condition 2 

 

5.2.2	Blind	speech	separation	under	noisy	condition	

 

 

 

 

 

 

Fig. 5.131 Flowchart of DOA based blind source separation 

 

In real scenarios such as teleconference, speech signals obtained by microphones are 

often corrupted by background, and thus the signal phase information could not be used 

directly for determining the DOAs. In this section, we investigate using the MRISS based 

dereverberation methods to purify the phase information and then use the enhanced phase 

to estimate DOAs and separate speech. We employed the methods described in Section 

.
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5.3.1, including subband IPD histogram, ALMM, model initialization, and modulation 

domain T-F masking. Furthermore, we assume the number of sources was known in this 

experiment. The flowchart of the method is given in Figure 5.13. 

 

5.2.2.1	Experiment	setting	

We evaluated the performance of the proposed methods in noisy conditions of white, 

babble, pink, volvo and factory2 from the NOISEX92 database, the SNR ranged from 

0dB to 10dB. The number of sensors was 2, and the number of sources was 2 and 3. The 

anechoic (ANE) room impulse responses (RIR) and reverberant (REV) room impulse 

responses (RT60 = 0.3 s) in the RWCP dataset were used to generate the speech mixture 

data. The two sensors were on a circular array with a spacing of 5.85cm, and the speakers 

were about 2m away from the sensors. In the case of 2 sources, the sources were at the 

directions of 70଴ and 110଴, and in the case of 3 sources, the sources were at the direction 

of 70଴, 110଴ and 150଴. The target and interference speech source signals came from the 

TIMIT dataset with a sampling rate of 16k Hz. The target speech includes 40 sentences, 

from 2 male and 2 female speakers, and each speaker contributed 10 sentences. The 

interference speech also came from the TIMIT dataset. In 2 sources, the target and 

interference speech signals were of different genders, and in 3 sources the gender of one 

interference was different from the target. The input SIR was 0 dB in the 2 source case 

and -3 dB in the 3 source case. In generating the noisy speech mixtures, the source speech 

signals were first convolved with the RIRs and then corrupted by an additive noise, 

according to Eq. (5.20): 
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ሻݐ௜ሺݔ ൌ ෍෍ݏ௡ሺݐ െ ݈ሻ݄௜,௡ሺ݈ሻ
௟

ே

௡ୀଵ

൅ ݀௜ሺݐሻ, ݅ ൌ 1,2, ܰ ൌ  ሺ5.20ሻ													3	ݎ݋	2

where ݔ௜ሺݐሻ is the observed signal at the ݅th sensor, ݄௜,௡ሺݐሻ is the RIR from the ݊th source 

to the ݅th sensor, ݏ௡ሺݐሻ is the ݊th source, and ݀௜ሺݐሻ is the additive noise. The SNR was 

computed as the log ratio of the clean mixture power over the noise power.  

In MRISS, we used the modulation window length of 120 ms to optimize speech 

enhancement. For speech separation, we found the optimal modulation window length to 

be around 60 ms. Based on this consideration, we used different modulation window 

lengths in MRISS and speech separation to optimize speech separation in noise. Table 5.3 

shows the empirically chosen parameters for the experiment. 

 

Table 5.3 Experimental parameter setting 

 MRISS pre-processing separation 

Acoustic domain 

window Hamming window Hamming 
window length 25 ms window length 25ms 

frame shift 2.5 ms frame shift 2.5ms 
FFT points 512 FFT points 512 

Modulation domain 

window Hamming window Rectangular
window length 120ms window length 64ms 

frame shift 15ms frame shift 8ms 
FFT points 48 FFT points 32 

 

 

Since the advantage of ALMM over GMM and LMM for IPD distribution fitting has 

been discussed in Section 5.2.1.3, in the source separation experiments we used ALMM 

in all the cases, and put our focus on the performance contributions of the MRISS 

enhancement, subband IPD histogram, and modulation domain separation. The baseline 

was the DOA based source separation without enhancement pre-processing, using full-
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band IPD histogram and ALMM to estimate DOA, all implemented in the acoustic 

frequency domain [100]. It is worth noting that the baseline is higher than the 

conventional one due to the use of ALMM. The proposed method used the MRISS 

enhancement, the subband IPD histogram, all implemented in the modulation frequency 

domain, and again used ALMM. The number of sources was assumed to be known. In the 

following section, the observed speech mixture is referred to as ‘mix,’ the baseline 

method is referred to as ‘baseline,’ and the proposed method is referred to as ‘proposed.’ 

For each evaluation criterion, each noise type and each SNR condition, We conducted 

a statistical significance test on the performance difference between the proposed method 

and the baseline method, where the difference was assumed to be a Gaussian random 

variable with an unknown variance, and the significance test was one-sided student-t test 

with n-1 = 39 degrees of freedom at the significance level of ߙ ൌ 0.05ሺݐఈ ൌ 1.686ሻ. 

 

5.2.2.2	Experiment	results	and	discussion	

In the experiment, we compared the proposed BSS method with the baseline under 

the criteria of PESQ, segmental SDR, and SIR gain. 

 

5.2.2.2.1 Overall performance 

All the results were averaged over those from the two channels. In order to save space 

and simplify the discussions, we only present the results from the white noise conditions. 

The results from all the five noise conditions are given in Tables A1, A2, and A3 in the 

Appendix. 
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(1) PESQ 

 

Fig. 5.14 PESQ results of ‘mix’, ‘baseline’ and ‘proposed’ in white noise: 

 (a) 2-source ANE (b) 2-source REV (c) 3-source ANE (d) 3-source REV 
 

From Fig. 5.14 and Table A1, we see that the proposed method outperformed the 

baseline in every noise condition. In the case of two sources in white noise at 0 dB SNR, 

the baseline failed while the proposed method still gained 0.5 point in PESQ. In the case 

of 3 sources, the proposed method provided consistent improvements in all SNRs. Note 

that at 0 dB SNR, the ‘baseline’ worked better in the 3-source case than in the 2-source 

case is due to the fact that the DOA estimation of both sources were incorrect in the 2-

source case while 1 source direction was detected correctly in the 3-source case. Other 

than this, the performance in the 2-source case was always better than in the 3-source 

case. When SNR was low, the improvement of the proposed method over the baseline 

was larger, demonstrating the robustness of the proposed method. The proposed method 

obtained significant improvement over the baseline method in white noise at all SNRs. 
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(2) Segmental SDR 

 

Fig. 5.15 Segmental SDR results of ‘mix’, ‘baseline’ and ‘proposed’ in white noise: 

 (a) 2-source ANE (b) 2-source REV (c) 3-source ANE (d) 3-source REV 
 

In Figure 5.15 and Table A2, we observed similar trends as in Figure 5.14 and Table 

A1. The proposed method was consistently the best at every SNR in every noise 

condition. When SNR was high, both the baseline and the proposed method worked well, 

but when SNR decreased, the baseline degraded much faster than the proposed method 

did. Again, the improvement of the proposed method against the baseline is significant 

for white noise at every SNR level. 

 

(3) SIR gain 
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Fig. 5.16 SIR gain results of ‘baseline’ and ‘proposed’ in white noise: 

 (a) 2-source ANE (b) 2-source REV (c) 3-source ANE (d) 3-source REV 
 

The SIR gain results are shown in Fig. 5.16. The proposed method produced 

consistent SIR gains with the SNR varied from 0 to 10 dB, and the improvements over 

the baseline were all significant. The baseline method produced good results when SNR 

was high, but at low SNR it was ineffective. Again, this shows that the proposed method 

is more robust to the studied noise conditions than the baseline method. 

 

5.2.2.2.2 Analysis of performance contribution factors 

As discussed above, the robust performance of the proposed method was contributed 

from (1) MRISS pre-processing, (2) subband IPD histogram, (3) ALMM, and (4) 

modulation domain separation. Since the effects of (2) and (3) have been shown in Fig. 

5.4 and Fig. 5.5, here we examine the contributions of the factors (1) and (4). To save 
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space, we only evaluate the two factors for the 2-source ANE case, where the 3-source 

and the REV cases can be shown to have similar behaviors. 

 

(A) MRISS pre-processing 

We study the effect of MRISS by comparing the results from performing separation 

without MRISS (‘sep’) with the proposed method of performing separation after MRISS 

(‘proc+sep’), where both cases used subband IPD histogram and modulation domain 

separation. Experimental results were obtained in five noise cases and were again 

measured by PESQ, SegSDR, and SIR gain. 

  

(1) PESQ 

Table 5.4 PESQ results under different noise conditions 

Noise (SNR dB) sep proc+sep 

white 
0 1.363 1.859 
5 1.941 2.082 
10 2.167 2.267 

babble 
0 1.741 1.890 
5 2.115 2.160 
10 2.279 2.339 

pink 
0 1.822 1.960 
5 2.108 2.168 
10 2.288 2.336 

volvo 
0 2.534 2.600 
5 2.615 2.672 
10 2.652 2.697 

Factory2 
0 2.123 2.203 
5 2.320 2.378 
10 2.472 2.486 

 

The PESQ results are given in Table 5.4. The proposed ‘proc+sep’ obtained the best 

results over all the studied conditions of noises and SNRs. 

 



 
 

87 
 

(2) Segmental SDR 

Table 5.5 Segmental SDR results under different noise conditions 

Noise (SNR 
dB) 

sep proc+sep 

white 
0 -6.553 1.130 
5 4.384 4.773 
10 6.571 7.202 

babble 
0 -1.126 0.762 
5 3.412 4.491 
10 6.435 7.004 

pink 
0 -0.512 1.100 
5 3.415 4.770 
10 6.462 7.189 

volvo 
0 -0.311 2.290 
5 3.832 5.536 
10 6.379 7.676 

Factory2
0 -0.618 1.566 
5 3.730 5.054 
10 6.553 7.329 

 

The segmental SDR results are shown in Table 5.5. The performance of the proposed 

method was again always the best.  

 

(3) SIR gain 

The SIR gain results from speech source separation with and without the pre-

processing are shown in Table 5.6. We can see that the pre-processing improved the 

separation performance over all the noise conditions, and the improvement was more 

significant when the SNR was lower. The performance of the ‘sep’ method in different 

noise conditions varied significantly, and the white and babble noises were more difficult 

than pink, volvo and factory2 noises.  
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Table 5.6 SIR gain results under different noise conditions 

Noise (SNR 
dB) 

sep proc+sep

white 
0 1.301 17.336 
5 14.434 17.332 
10 16.514 17.289 

babble 
0 11.553 15.870 
5 16.424 17.573 
10 16.848 17.362 

pink 
0 14.268 17.740 
5 16.516 17.577 
10 16.796 17.513 

volvo 
0 16.948 17.211 
5 16.965 17.159 
10 16.970 17.136 

factory2 
0 16.484 17.394 
5 16.839 17.373 
10 16.943 17.288 

  

(B) Modulation domain separation 

In this study, we compare the performances of acoustic domain and modulation 

domain speech separations, where both methods used subband IPD and ALMM. We used 

the clean speech mixtures without noise to focus on the separation processing, where the 

‘mix’ case of without separation processing is also included for reference. The results are 

shown in Table 5.7. 

 

Table 5.7 Comparison between acoustic domain and modulation domain speech 
separation 

 PESQ segSDR (dB) SIR gain (dB) 
mix 1.68 -5.42 0 

Acoustic domain 3.07 -0.11 13.88 
Modulation domain 3.14 0.09 14.56 

 

While performing speech separation in either acoustic or modulation domains has 

led to large improvements in the three measures, the modulation domain separation 
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performed better for every measure. An informal listening evaluation showed that the 

modulation domain separated speech had less musical tones, which may have benefited 

the PESQ improvement.  

 

5.2.2.2.3 Effect of modulation window length 

To compare the effects of using different and using identical modulation window 

lengths in MRISS and speech separation, we include the results of both cases under the 

condition of white noise at 5dB SNR, where in the former case, the window lengths were 

optimized independently for MRISS and BSS, and in the latter case, the window length 

was taken to be that for speech separation. 

 

Table 5.8 Effect of modulation window lengths on separation performance 

Modulation window lengths
PESQ

SegSDR
(dB) 

SIR gain 
(dB) MRISS BSS 

120 ms 64 ms 2.082 4.773 17.332 
64 ms 64 ms 2.047 4.724 17.016 

 

 

When the longer window length of 120 ms for MRISS was used, the separation 

performance was better than using the shorter window length of 64 ms for MRISS. 

However, the required additional transforms for handling the mismatched window 

lengths in MRISS and speech separation also increased computation complexity. This 

performance-cost tradeoff and the window length of MRISS can be chosen depending on 

the needs in different application systems. 
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5.2.3	Blind	speech	separation	under	reverberant	condition	

5.2.3.1	Experiment	setting	

Due to the limited number of RIRs in the RWCP dataset, we used the IMAGE 

method to simulate the RIRs instead. In our simulation, the room dimension was 6 x 8 x 3 

meters. There were two microphones and two sources, the sources positioned at 60଴ and 

120଴ corresponded to the microphone pair, and the distances from the sources to the 

microphones were 1.5 meters. The detailed setting is shown in Figure 5.17. 

 

 

 

 

 

 

 

Fig. 5.17 Simulated room configuration with the IMAGE method 

 

By adjusting the reflection coefficients of the four walls, ceiling and floor, we 

generated 4 sets of RIRs at the sampling rate of 16k Hz with the RT60 of 0.27s, 0.44s, 

0.62s, and 0.95s. The lengths of the RIRs were 20000 points (or 1.25 sec.). An example 

RIR is shown in Figure 5.18. The target and interference speech waves came from the 

TIMIT dataset and their energies were equalized to the same level (SIR = 0 dB). All the 

other conditions were the same as described in Section 5.2.1.6. We evaluated the speech 

separation performance using the objective criteria of PESQ, segmental SDR, and SIR. 
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We compared our results (referred to as ‘Proc+Sep’) with three cases: (1) the baseline 

(the original speech mixture, ‘Mix’); (2) separation without pre-processing (‘Sep’) and (3) 

dereverberation (the same process as pre-processing) after separation (‘Sep+Proc’). The 

PESQ, segmental SDR and SIR results were computed by averaging over those of the 

two channel outputs. The reference clean speech was generated by convolving the clean 

speech with a unit impulse response whose peak is located at the same position as the 

peak of the RIRs. An illustration of RIR and the unit impulse response is shown in Figure 

5.19. 

 

Fig. 5.18 RIR generated by the IMAGE method (RT60 = 0.62s) 
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Fig. 5.19 Illustration of the unit impulse response (bottom) corresponding to the RIR (top) 

 

(1) PESQ 

Figure 5.20 shows the PESQ results of the ‘Mix’, ‘Sep’, ‘Proc+Sep’ and ‘Sep+Proc’ 

under four different RT60 conditions. The proposed ‘Proc+Sep’ improved the PESQ the 

most in all four RT60 conditions. When reverberation is light, the difference between 

‘Proc+Sep’ and ‘Sep’ is not apparent; when reverberation is heavy, the ‘Proc+Sep’ 

method produced a significant improvement over the ‘Sep’ only method. Interestingly, 

the ‘Sep+Proc’ method showed a worse result than the ‘Sep’ only method. This may be 

explained by the fact that the separation performance was poor due to the reverberation, 

and the separation output signals therefore included components from several sources; as 

the result the LRSV estimation was inaccurate which caused the target speech to be 

eliminated during the dereverberation process. The PESQ scores here were much lower 

than those in Chapters 3 and 4 due to the challenging nature of this task where both 
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reverberation and interference speech degraded the PESQ scores. Nevertheless, an 

informal listening test evaluation showed that the interference speech was suppressed 

much more by the method of separation with pre-processing than that without pre-

processing. 

  

Fig. 5.20 PESQ under four RT60 conditions 

 

(2) Segmental SDR 

In Figure 5.21, we observe that the ‘Proc+Sep’ method produced the best segmental 

SDR performance under the four RT60 conditions. The ‘Sep+Proc’ method performed 

better than the ‘Sep’ only method, and so it seems that the dereverberation after 

separation is helpful in improving the segmental SDR. 
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Fig. 5.21 Segmental SDR under four different RT60 conditions 

 

The controversial PESQ and segmental SDR results between ‘Sep’ and ‘Sep+Proc’ 

may be explained by the difference of the two criteria. PESQ is more tolerant to the 

remaining interference sound and is more sensitive to the sound distortion, thus the 

output signal without post processing produced a higher PESQ score; on the other hand, 

segmental SDR focuses on the difference between the recovered speech spectrum and the 

reference speech spectrum, and the post processed speech spectrum was closer to the 

reference speech spectrum due to the elimination of reverberation. 

  

(3) SIR 

The SIR of the ‘Sep’ method can be directly computed since we can obtain all the 
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processing modifies the target and interference speech received by the microphones. 

Therefore, we need to first get the target and interference speech after the dereverberation 

by viewing the spectral subtraction processing as applying a mask on the reverberant 

speech, where the mask is the ratio of the processed spectrum over the original spectrum. 

We used this mask to obtain the target and the interference components from the 

reverberant speech.  

 

Fig. 5.22 SIR gain under four different RT60 conditions 

 

In Figure 5.22, we can see that the SIR gain performance dropped when the 

reverberation became heavier. Our proposed method of dereverberation pre-processing 

brought about a 3dB ~ 4dB SIR gain improvement under the four RT60 conditions.  

 

0.27s 0.44s 0.62s 0.95s
4

6

8

10

12

14

16

18

Reverberation time (RT60)

T
IR

 g
ai

n 
(d

B
)

 

 

Sep

Proc+Sep



 
 

96 
 

5.2.4	Log	likelihood	criterion	for	source	number	estimation		

5.2.4.1	Introduction	

Source number estimation is an important problem in source DOA estimation. The 

number of sources is assumed known in most DOA estimation algorithms, but in real 

scenario it is often unknown [116]. Inaccurate source number estimation would cause the 

miss or false alarm of the sources and lead to errors in DOA estimation. 

In recent years, much research has been undertaken in the source number estimation 

field. The source number estimation methods can be categorized as: non-parametric, 

semi-parametric and parametric methods [117]. Semi-parametric [117, 118] and 

parametric methods [116, 119] utilize partial and full knowledge of the sensor array 

geometry to estimate the source number. These methods produce more accurate 

estimation compared with non-parametric methods, but they require a priori information 

of sensor array, and need intensive computation. 

Non-parametric methods do not assume knowledge of the array structure. One kind of 

method determines the source number from the eigenvalues of the data sample 

covariance matrix [120]. Another kind of method is called ITC [121], including AIC [121, 

122], BIC [123, 124], MDL [125, 126], and so on, where the number of source is 

determined by minimizing the information criteria. The ITC methods deploy a penalty 

function which is based on the independent model parameter size, to compensate the cost 

of using larger models. These methods work well when the sources are sufficient 

separated. However, when the sources overlap much, the above methods tend to 

overestimate or underestimate the number of sources. 



 
 

97 
 

An information theoretic criterion is commonly used for choosing the order of a 

model among several competing orders of a parametric model family. Given a family of 

probability densities, ௑݂ሺܺ|߆௄,ܯ௄ሻ, where ܺ is the data sample set, ܯ௄ is a mixture of ܭ 

components with the parameter set ߆௄ , an ITC estimator selects ෠݇  according to the 

following criterion [15]: 

෠݇
ூ்஼ ൌ argmin௞ሼെ݈݃݋ሾ ௑݂ሺܺ|߆௞,ܯ௞ሻሿ ൅  ሺ݇ሻሽ                                          (5.21)ݕݐ݈ܽ݊݁݌

where ߆௞ is the MLE of the model parameters obtained from ܺ given the ݇th distribution 

in family of distributions, and ݕݐ݈ܽ݊݁݌ሺ݇ሻ is some general penalty function associated 

with the particular ITC used. For example, Akaike [121, 122] proposed the AIC penalty 

function as 

ሺ݇ሻݕݐ݈ܽ݊݁݌ ൌ  ሺ5.22ሻ																																																																																																									௞|߆|

with |߆௞| the total number of parameters of ߆௞. Schwarz [123, 124] proposed a BIC 

penalty function as 

ሺ݇ሻݕݐ݈ܽ݊݁݌ ൌ
|௞߆| logଶ ܰ

2
																																																																																										ሺ5.23ሻ 

with ܰ the data sample size. Rissanen [125, 126] proposed to select the model that yields 

the minimum description length, and in the large sample limit, it turned out to be the 

same as BIC [123, 124]. 

In this current work, we propose a log likelihood criterion method to estimate the 

source number in anechoic and reverberant speech mixtures. We use the ALMM to fit the 

IPD distribution, form a sequence of negated log likelihood scores with each score 

targeting a source number hypothesis and from which selecting the number that 

corresponds to the minimum negated log likelihood score. The experiment results 
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indicate the improvement of the proposed method in source number estimation over 

conventional AIC and BIC methods when the source directions are close. 

 

5.2.4.2	Log	likelihood	criterion	method	

It is well known that a large mixture model always fits the training data better than a 

small mixture model. Therefore, purely maximizing the likelihood of a mixture model on 

training data by increasing the model size can lead to overfitting. In AIC and BIC, the 

model parameter size is used to penalize overfitting. These penalties work well when the 

data distributions from different sources are well separated. However, if the data 

distributions from different sources overlap heavily, such as the IPD data distribution 

when the source directions are close, the performance of such penalties drops 

dramatically. The reason can be explained as follows. When the overlap of different 

mixture component densities changes, the negated log likelihood score of the mixture 

model (the first term in Eq. (5.21)) changes as well; however, the penalty function (the 

second term) is independent of the overlap, and thus with the same source number 

hypothesis, the ITC scores for different levels of overlap will vary a lot, causing the 

underestimation and overestimation problems.  

    To address this issue, we propose to use the log likelihood criteria of a mixture 

model together with the component models of the hypothesized sources for source 

number estimation. The log likelihood criterion targeting ܭ sources is defined as 

௄ݎ ൌ െ෍݈݌݃݋ሺݔ௧|ߠ௄,ܯ௄ሻ
ே

௧ୀଵ

െ෍෍ߨ௞݈݌݃݋൫ݔ௧
௞หߴ௞,݉௞൯

௄

௞ୀଵ

ே

௧ୀଵ

																											ሺ5.24ሻ 
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where ܯ௄ is a mixture of ܭ asymmetric Laplacian densities with the parameter set ߠ௄, 

 ௞is the weight of the ݇th component, ݉௞ is the ݇th component density function in theߨ

mixture with the parameter set ߴ௞ ൌ ሼߤ௞ , ௞ߪ , ௞ݍ ሽ , and ݔ௧
௞ is the data sample satisfying 

݇ ൌ argmax௞′ ሺ݇݌ ,௧ݔ|′ ሺ݇݌ ௞,݉௞ሻ, whereߴ ,௧ݔ|′  ௞,݉௞ሻ is the posterior probability of theߴ

source ݇′ given the sample ݔ௧ . For simplicity, we refer the first term in Eq. (5.24) as 

‘TERM1’ and the second term as ‘TERM2’ in the subsequent discussions. 

Figure 5.23 shows the TERM1 and TERM2 over two sets of IPD samples for 

hypotheses ranging from 1 to 50 sources, (in practice, the source number would not be 

too large). The true number of active sources is 2 in Figure 5.23 (a) with the direction 500 

and 600, and the true number of sources is 3 in Figure 5.23 (b) with the direction 400, 600, 

and 800, both in anechoic condition. The speech data were 2 seconds long and taken from 

the TIMIT dataset. 

The rational of the proposed method can be explained as follows. TERM1 represents 

the negated log likelihood score of the mixture model, it decreases when the model size 

grows and the decrease rate reduces with the increase in model size, as shown by the 

circles in Figure 5.23 (a) and 5.23 (b). TERM2 represents the negated log likelihood 

score of the product of the component models. With the mixture size increasing before 

the true size, TERM2 decreases initially because the samples are fitted better by the 

component model of the true size. On the other hand, when the hypothesized number 

becomes larger than the true size, TERM2 rises since each sample is more likely to 

belong to multiple mixture component densities, while only the largest contribution of a 

mixture component density is kept for the sample. TERM2 is shown as the triangles in 

Figure 5.23 (a) and 5.23 (b). 



 
 

100 
 

  
(a)  

   
(b) 

Fig. 5.23 Negated log likelihood scores of a mixture model and the correspondingly 
component models where the true source number is (a) 2 and (b) 3 
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In analogy with Eq. (5.21) of ITC, we name the TERM2 in Eq. (5.24) as a “penalty 

function”. Compared with the penalty functions in AIC and BIC, TERM2 also shows an 

increasing trend for small source number hypotheses deviating from the true number and 

then fluctuates for large number hypotheses. The proposed penalty function shows a dip 

(a sharp dip in Fig. 5.23 (b)) when the hypothesized number is the true source number, a 

highly desirable characteristic for a penalty function. In contrast, the penalty functions in 

AIC and BIC are both monotonically increasing with model size. 

For the scenario in Figure 5.23 (b), we further extended the hypothesized source 

number to 500, and the result is shown in Figure 5.24. From Figure 5.24, we see that the 

TERM2 fluctuates similarly in the range from 20 to 500 as it does in the hypothesis range 

from 20 to 50.  

 

Fig. 5.24 Negated log likelihood scores of a mixture model and the corresponding 
component models where the true source number is 3 
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5.2.4.3	EXPERIMENTS	

5.2.4.3.1 Experiment setting 

In this experiment, we used a microphone array of 2 sensors with a 5.85 cm distance 

in between. The speech sources were about 2 meters away from the microphone array. 

The true active source number ranged from 2 to 4, and the hypothesis source number 

ranged from 1 to 5. The speech sentences came from the TIMIT dataset, and the speaker 

genders were randomly chosen. The anechoic (ANE) and reverberant (REV, RT60 = 0.3 

seconds) RIR were taken from the RWCP dataset. Because the AIC, BIC and the 

proposed methods all work well when source directions are sufficiently apart, here we 

only considered the scenarios where the source directions were close. 

In RWCP, the minimum source direction difference is 100 for ANE RIR (e.g., 100, 

200,…, 1700), and 200 for REV RIR (e.g., 100, 300,…, 1700). We used the RIRs with 

adjacent directions to generate the speech mixtures, e.g., for a 3 sources case with 

direction difference 10଴ , we used the RIR directions: ሼݕ െ 10଴, ,ݕ ݕ ൅ 10଴ሽ, ݕ ൌ

20଴, … , 160଴. For ANE RIR, we tested 58 cases for 2 active sources, 48 cases for 3 

active sources, and 38 cases for 4 active sources, with direction differences ranging from 

100 to 400; for reverberant RIR, we tested 21 cases for 2 active sources, 15 cases for 3 

active sources, and 9 cases for 4 active sources, with direction differences ranging from 

200 to 600. The details of the total 189 cases are shown in Table 5.8. 

From Fig. 5.5, we see that GMM does not fit the IPD distribution well, and thus in this 

experiment, ALMM was used in the AIC, BIC, and the proposed methods. Although the 

AIC and BIC methods were formulated based on the GMM assumption, the results of 

AIC and BIC with ALMM were higher than those with GMM. 
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5.2.4.3.2 Experimental results 

The experimental results are given in Table 5.9. From Table 5.9 we see that the 

proposed method produced the best performance in estimating source numbers, and BIC 

method obtained the second best results. With the source direction difference increasing, 

the performance of all the three methods improved. 

From the above table, we can see that the proposed method worked much better than 

AIC and BIC methods in the scenarios where the data distribution has heavy overlap. 

Table 5.9 Source number estimation results 

RIR 

true source 
number\ 
direction 

difference\ 
number of cases 

correctly 
 determined cases 

AIC BIC proposed 

ANE 

2 

100 16 2 4 9 
200 15 3 4 11 
300 14 5 6 10 
400 13 7 9 10 

3 

100 15 4 7 10 
200 13 6 9 10 
300 11 4 7 9 
400 9 6 7 8 

4 

100 14 3 5 7 
200 11 5 8 8 
300 8 5 5 6 
400 5 3 3 3 

REV 

2 
200 8 1 3 4 
400 7 1 2 4 
600 6 1 2 3 

3 
200 7 2 3 4 
400 5 1 1 2 
600 3 2 2 3 

4 
200 6 0 0 1 
400 3 0 1 1 

total cases 189 61 88 123 
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5.3	Summary	

In this chapter, we discussed the DOA based blind speech separation method and its 

performance under the clean, noisy, and reverberant conditions. In the clean speech 

scenario, we considered several challenging problems including close source directions 

and unbalanced input SIRs. We proposed using subband IPD histogram to obtain higher 

resolution of source directions, using ALMM to fit the long tailed and asymmetric IPD 

distribution, and implementing the separation process in the modulation domain. 

Experimental results showed that the proposed methods obtained large improvement of 

the separation performance under these challenging conditions. 

In the noisy and reverberant speech scenario, we proposed using the MRISS-based 

pre-processing method to first enhance the corrupted speech phase and then used the 

enhanced phase to further perform blind speech separation. Experiment results showed 

that the MRISS pre-processing succeeded in both reverberant and noisy speech 

separation tasks in improving PESQ, segmental SDR and SIR. 

In addition, we proposed a log likelihood criterion based source number estimation 

method. By forming a sequence of negated log likelihood scores with each score 

targeting a source number hypothesis, we select the number that corresponds to the 

minimum negated log likelihood score. The experiment results indicate a large 

improvement in source number estimation by the proposed method over conventional 

AIC and BIC methods when the source directions are close. 
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Chapter 6 

Conclusion and Future work 

 

In this dissertation, we have investigated the speech enhancement problems of noise 

reduction, dereverberation, and blind speech separation. We studied the weakness of 

conventional spectral subtraction method, and proposed a phase enhancing spectral 

subtraction method for noise reduction and speech dereverberation. We investigated the 

problem of DOA based blind speech separation under clean, reverberant, and noisy 

environments. The main contribution of this current work includes the following aspects. 

(1) We proposed a modulation frequency domain spectral subtraction method which 

is performed on the real and imaginary spectra separately. By enhancing the real and 

imaginary spectra separately, we avoid the cross-term in the acoustic frequency domain, 

and thus we can improve the magnitude spectra and phase spectra at the same time. The 

experiment results on the TIMIT dataset proved that the proposed method beat several 

state-of-art methods in both subjective measurement of listeners’ opinion score and 

objective measurements such as PESQ, segmental SNR and average Itakura-Saito 

distance. 

(2) We extended the LRSV estimation into the modulation frequency domain. The 

real and imaginary modulation spectra provide a finer resolution between speech and 

reverberation in comparison with acoustic spectra and magnitude spectra in modulation 

domain. Dereverberation in the modulation domain through real and imaginary LRSV 

subtractions showed a promising performance in comparison with acoustic domain or 

time domain processing. 
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(3) We investigated the DOA based blind speech separation in clean, reverberant and 

noisy environments. In the clean speech condition, we addressed the challenging 

problems of close source direction and unbalanced input SIR, and proposed several 

solutions including using subband IPD histogram to increase the direction resolution, 

using the asymmetric Laplacian mixture density to fit the IPD data distribution, and 

implementing the separation process in the modulation domain. In the noisy and 

reverberant speech conditions, we proposed using the MRISS pre-processing to enhance 

the corrupted speech phase spectra, and based on which the DOA based blind speech 

separation would work correctly in these scenarios. Experiment results showed that the 

pre-processing method improved the separation performance in the reverberant and noisy 

conditions in the criteria of PESQ, segmental SDR, and SIR gain.  

(4) We proposed a log likelihood criterion based source number estimation method. 

We use the ALMM to fit the IPD distribution, form a sequence of negated log likelihood 

scores with each score corresponds to a source number hypothesis, and from which we 

select the number that corresponds to the minimum negated log likelihood score. The 

experiment results showed that the proposed method outperformed the ITC methods such 

as AIC and BIC on source number estimation when the source directions are close. 

 

Modulation frequency domain processing is a very promising direction in speech 

enhancement. Compared with acoustic frequency domain processing, it has apparent 

advantage in speech quality improvement. It can be potentially combined with many 

existing speech enhancement techniques implemented in acoustic frequency domain, and 

obtain further improvement. Modulation domain spectrum offers us additional 
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information of the sound sources’ characteristics, which can be used in several 

applications. Some potential research topics for further study are listed as follows. 

(1) Real time modulation domain processing implementation. The real time 

implementation of modulation domain processing has not been well studied yet. Spectral 

subtraction methods are computationally inexpensive, but it has less industrial 

applications than adaptive filtering methods due to the speech distortion introduced by 

spectral subtraction. One notable advantage of modulation domain processing is the 

speech distortion reduction, and it would have wide applications if its real time 

implementation can be achieved. One possible real time solution would be the block-wise 

processing [127]. 

(2) Modulation domain spectrum provides very useful information for speech and 

sound signal processing. For example, the correlation between real and imaginary spectra 

can be used to detect voiced speech, since voiced speech is closely related to a collection 

of sinusoidal signals, whose real and imaginary waves in a period are similar except for a 

phase difference. Also, modulation domain spectrum describes the style of sound 

production [12], which is useful in music separation. Sounds from different instruments 

lead to different modulation domain spectral patterns, and machine learning techniques 

can be applied to separate these sounds, which make the single channel source separation 

achievable.  

(3) The goals of speech enhancement for human listening and for ASR are not exactly 

the same, where the former emphasizes on the speech sound perceptual quality and 

intelligibility, the latter relies more on the speech magnitude spectrum. One may further 
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investigate potential applications of the proposed method in improving noise robust ASR 

performance and noise robust speaker identification. 
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Appendix A 

Derivation of asymmetric Laplacian mixture model 

 

Within the framework of EM algorithm, the complete data consist of the observed 

data X ൌ ሼݔ௧, ݐ ൌ 1, . . . , ܰሽ and the hidden data ܼ ൌ ሼݖ௧, ݐ ൌ 1,… ,ܰሽ with ݖ௧ ∈ ሾ1,… ,  ሿܭ

indicating the component density sources of ݔ௧ . The objective function ܬ  for model 

parameter estimation is the expected log likelihood of the complete data with respect to 

the posterior distribution of ܼ, i.e.,  

ܬ ൌ ∑ ∑ ݄௜ሺݐሻሼlog ௜ߨ ൅ log ,௜ߤ|௧ݔሺ݌ ,௜ߪ ௜ሻሽݍ
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 is the posterior probability ݌ሺݖ௧ ൌ ,௧ݔ|݅ ௜ߤ
′ , ௜ߪ

′, ௜ݍ
′ሻ. 

Maximizing ܬ with respect to ߤ௜, ߪ௜,  ݍ௜, and ߨ௜, we obtain the following estimation 

equations for ݅ ൌ 1,… ,  :ܭ
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Setting 
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 to zero, we obtain ߪො௜ ൌ
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Setting 
డ௃

డగ೔
 to zero, we obtain ߨ௜ ൌ

ଵ

ఊ
∑ ݄௜ሺݐሻே
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௄
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get ߛ ൌ ܰ, therefore, ߨ௜ ൌ
ଵ

ே
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ଶ  on both sides of equation, and 

rearranging the terms, we obtain 
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Solving for the roots, we obtain ݍ௜ ൌ
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Note that ܤ௜ ൏ 0 and ܣ௜ ൐ ௜ܤ ௜, thusܤ
ଶ െ ௜ܤ௜ܣ ൐ 0. 

We first prove that ݍො௜ ൌ
஻೔ିට஻೔

మି஺೔஻೔

஺೔
 is not a correct solution. Since ܤ௜ െ

ටܤ௜
ଶ െ ௜ܤ௜ܣ ൏ 0, if ܣ௜ ൐ 0, then ݍො௜ ൏ 0, and if ܣ௜ ൏ 0, then 

஻೔
஺೔
൐ 1, and hence ݍො௜ ൐ 1, 

both cases are meaningless for ݍො௜. 

We next prove that ݍො௜ ൌ
஻೔ାට஻೔

మି஺೔஻೔

஺೔
 is a correct solution. If ܣ௜ ൐ 0 , then the 

distribution skews to the left, and ݍො௜ should be in the range ሺ0, 0.5ሻ. 

Because ܤ௜ ൅ ටܤ௜
ଶ െ ௜ܤ௜ܣ ൐ 0 , we have ݍො௜ ൐ 0 ; Since ܤ௜
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െ ො௜ݍ ௜, which leads toܤ ൏ 0.5. 

If ܣ௜ ൏ 0, then the distribution skews to the right, and ݍො௜  should be in the range 

ሺ0.5, 1ሻ. 
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Using the same argument in ሺ∗∗ሻ  and apply ܣ௜ ൏ 0 , we have ݍො௜ ൐ 0.5 . Since 

௜ሻܤ௜െܣ௜ሺܣ ൏ 0 , we have ܤ௜
ଶ െ ௜ܤ௜ܣ ൐ ௜ܤ

ଶ െ ௜ܤ௜ܣ ൅ ௜ሻܤ௜െܣ௜ሺܣ , or equally 

ටܤ௜
ଶ െ ௜ܤ௜ܣ ൐ ො௜ݍ ௜, which givesܤ௜െܣ ൏ 1. 

Therefore, the correct solution is ݍො௜ ൌ
஻೔ାට஻೔

మି஺೔஻೔

஺೔
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Appendix B 

Complete results of blind source separation in Section 5.2.2 

 

The complete experimental results on speech source separation are given below in 

Tables A1-A3, where ‘mix’ is the observed speech mixture, ‘base’ is the baseline method, 

and ‘props’ is the proposed method. 

Table A1 PESQ results under different noise conditions 

Noise 
(SNR dB) 

2-source ANE 2-source REV 3-source ANE 3-source REV 
mix base props mix base props mix base props mix base props 

white 
0 1.351 1.323 1.859 1.291 1.266 1.789 1.086 1.223 1.788 1.047 1.204 1.658 
5 1.517 1.922 2.082 1.453 1.902 2.032 1.199 1.715 2.023 1.140 1.538 1.780 

10 1.641 2.147 2.267 1.602 2.111 2.244 1.256 1.873 2.230 1.207 1.661 1.879 

babble 
0 1.504 1.715 1.890 1.450 1.671 1.812 1.142 1.590 1.716 1.112 1.469 1.538 
5 1.622 2.137 2.160 1.561 2.107 2.146 1.226 1.836 2.000 1.193 1.574 1.777 

10 1.691 2.261 2.339 1.655 2.233 2.306 1.258 2.074 2.212 1.231 1.724 1.908 

pink 
0 1.476 1.802 1.960 1.446 1.750 1.919 1.140 1.660 1.810 1.104 1.540 1.706 
5 1.617 2.084 2.168 1.562 2.044 2.128 1.230 1.935 2.012 1.197 1.684 1.918 

10 1.703 2.270 2.336 1.670 2.242 2.306 1.258 2.137 2.221 1.220 1.817 2.036 

volvo 
0 1.770 2.511 2.600 1.720 2.458 2.561 1.284 2.304 2.526 1.251 2.211 2.413 
5 1.786 2.601 2.672 1.731 2.569 2.642 1.288 2.369 2.549 1.256 2.282 2.440 

10 1.793 2.629 2.697 1.753 2.596 2.660 1.291 2.393 2.552 1.261 2.304 2.451 

Factory 
0 1.645 2.101 2.203 1.600 2.029 2.167 1.187 1.862 2.074 1.145 1.681 1.889 
5 1.717 2.302 2.378 1.671 2.252 2.337 1.239 2.031 2.271 1.177 1.929 2.178 

10 1.755 2.457 2.486 1.710 2.414 2.452 1.267 2.159 2.399 1.215 2.074 2.316 

 

Table A2 Segmental SDR results under different noise conditions 

Noise 
(SNR dB) 

2-source ANE 2-source REV 3-source ANE 3-source REV 
mix base props mix base props mix base props mix base props 

white 
0 -8.622 -6.541 1.130 -9.242 -6.843 0.903 -9.601 -7.013 0.775 -10.002 -7.401 0.390 
5 -3.383 4.342 4.773 -3.637 4.024 4.375 -4.032 3.864 4.062 -4.310 2.490 3.673 
10 1.433 6.548 7.202 1.114 6.180 6.902 0.855 5.990 6.780 0.541 5.438 6.402 

babble 
0 -8.592 -1.163 0.762 -9.442 -1.639 0.312 -9.720 -1.933 0.188 -9.962 -2.255 -0.410 
5 -3.336 3.378 4.491 -3.706 2.900 4.019 -3.927 2.659 3.862 -4.246 2.361 3.583 
10 1.348 6.403 7.004 0.811 5.830 6.604 0.682 5.579 6.490 0.389 5.268 6.248 

pink 
0 -8.604 -0.551 1.100 -9.234 -1.010 0.809 -9.541 -1.314 0.649 -9.844 -1.775 0.370 
5 -3.378 3.375 4.770 -3.765 3.005 4.410 -4.008 2.882 4.062 -4.491 2.490 3.686 
10 1.438 6.436 7.189 1.018 6.160 6.849 0.932 5.803 6.699 0.672 5.583 6.391 

volvo 
0 -8.477 -0.360 2.290 -8.807 -0.905 1.980 -9.107 -1.180 1.666 -9.524 -1.528 1.294 
5 -3.321 3.804 5.536 -3.711 3.534 5.136 -3.914 3.223 4.937 -4.317 2.714 4.676 
10 1.430 6.345 7.676 1.000 5.957 7.367 0.850 5.745 7.061 0.529 5.280 6.698 

Factory 0 -8.562 -0.654 1.566 -9.062 -1.102 1.222 -9.523 -1.442 0.974 -9.812 -1.740 0.597 
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5 -3.324 3.710 5.054 -3.614 3.324 4.603 -4.045 3.017 4.271 -4.440 2.789 3.989 
10 1.370 6.531 7.329 1.056 6.266 7.083 0.770 5.842 6.691 0.315 5.660 6.269 

 

Table A4 SIR gain results under different noise conditions 

Noise 
(SNR dB) 

2-source ANE 2-source REV 3-source ANE 3-source REV 
base props base props base props base props 

white 
0 1.031 17.336 0.838 17.014 0.551 15.766 0.316 15.239 
5 14.013 17.332 13.657 17.024 13.514 16.132 13.044 15.747 
10 16.142 17.289 15.822 17.019 15.221 16.284 14.827 15.768 

babble 
0 10.935 15.870 10.521 15.605 10.244 15.356 9.752 14.939 
5 16.012 17.573 15.817 17.265 15.232 17.070 14.724 16.256 
10 16.518 17.362 16.224 17.249 15.446 16.958 14.638 16.148 

pink 
0 13.764 17.740 13.447 17.535 13.055 17.260 12.640 16.650 
5 16.163 17.577 15.708 17.322 15.437 17.062 14.937 16.483 
10 16.246 17.513 15.957 17.347 15.582 17.145 15.064 16.445 

volvo 
0 15.987 17.211 15.846 17.036 15.443 16.853 15.057 16.234 
5 16.155 17.159 16.062 17.089 15.571 16.783 15.132 16.380 
10 16.047 17.136 15.973 17.051 15.537 16.879 15.075 16.442 

Factory 
0 1.031 17.336 15.532 17.068 15.162 16.984 14.258 16.394 
5 14.013 17.332 15.987 17.164 15.384 17.058 14.289 16.559 
10 16.142 17.289 16.068 17.079 15.479 17.066 14.313 16.676 

 

The outcomes of the statistical significance test for the results in the three tables are 

as the following: 

PESQ: at 0dB SNR, the improvements were significant in all the cases; at 5dB SNR, 

the improvements were all significant except for the cases of 2-source (ANE and REV) in 

babble noise; at 10dB SNR, the improvements were significant except for the cases of 2-

source (ANE and REV) in babble and factory noises. 

SDR: the improvements were significant in all the cases. 

SIR gain:  the improvements were significant in all the cases. 
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