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ABSTRACT 
 

Seniors increasingly live more independent lifestyles. This can come with certain safety 

hazards including deteriorating health, and major injuries from falling. A factor that has been 

researched and observed to have a relationship to fall risk is changes in walking speed. In an 

ongoing interdisciplinary research effort at the University of Missouri, one goal is to provide a 

non-intrusive methodology to perform fall risk assessment on a daily basis for elders. As 

mentioned, an integral component of fall risk assessment is the determination of walking 

speed. This thesis will cover methods of using pulse-Doppler radar to detect when walks occur 

in an elder’s apartment. In the future, these walks can then be used for gait analysis. The 

proposed method of finding walks was tested on data collected in a lab and in assisted living 

apartments at TigerPlace. 
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Chapter 1 - Introduction 
 

 More and more people in America, and around the world, are living longer and are 

having much more fulfilling lives. As part of a fulfilling life, they choose to live as independently 

as possible [1]. As people get older, living independently comes with some risks including 

weakening health that may be the result of insufficient care, and falls that could be debilitating. 

Actually, falls are the most common cause of injuries and hospitalizations for trauma in older 

adults and the leading cause of death due to injury[2]. To tackle these problems, researchers 

are developing ways to use sensor technologies so that residents can have their health 

automatically monitored in their own living environment [3].  There are also devices being 

developed that can improve residents’ safety while living independently. Having these 

technologies in place can help reduce injuries and have health declines detected early. 

 One of the keys to indicating an initial decline in health and functional abilities is to have 

an ongoing assessment of physical function [4].  There is now more of an emphasis on detecting 

changes in someone’s gait patterns in order to reduce their falling frequency [5].Detecting and 

assessing problems while they are still slight can provide an opportunity for proper 

interventions to keep these problems from becoming major. More so, identification of small 

changes in health conditions are crucial for early interventions when treatment is the most 

effective and when prevention of major changes are still possible. Because of the severity that 

falls can have in older adults, a problem that could also use continuous assessment is fall risk. 

There have been studies on falls, fall risk assessment and intervening to help prevent falls. The 

methods of assessing fall risk include research staff or clinicians doing a multi-factorial 
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assessment of fall risk, maintaining logs of when falls occur, and wearing devices that detect 

and measure changes in position which could potentially indicate when falls have occurred so 

that an alarm can be activated when assistance is needed [2]. However, another approach that 

can be used for detecting fall risk is to use passive sensors that could detect when a fall 

occurred or parameters, such as walking speed, of an elder’s physical functionality that can help 

in assessing fall risk.  These sensors do not have to be worn and would not impede on daily 

living activities.  Having falls or potential changes in fall risk detected earlier, these sensors can 

be used as a trigger for elders, family or health care providers so that physical functions can be 

improved, or illnesses that may cause falls could be better managed. 

 When assessing someone’s fall risk, one thing to consider is the changes in gait or 

changes in walking speed. Studies have shown that elderly who fall or who have a high risk of 

falling will have slower walking speeds, shorter lengths between steps, and a big inconsistency 

in the length of each step [6]. One of the best times to catch walks for assessment is when 

people are naturally walking around in their living environment. These walks won’t be 

influenced by someone changing their walk because they know they are being tested. Instead, 

these strolls would be their normal, everyday walks with their normal gait. A key component of 

a system to monitor gait parameters passively is the automated determination of when 

someone is walking in their own living facilities so that these walks can be used for assessing fall 

risk. To help solve this problem, we propose a method for finding walks that can be used for 

gait analysis with radar. By using radar, walks can be found passively throughout the day so that 

there is no interaction that may cause someone to change how they walk. Also, by getting a 

daily look at a resident’s gait information, a health care provider can have a fuller picture of the 
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resident’s gait changes and will have to ability assess the resident’s fall risk much faster. 

Moreover, having this data could lead to earlier intervention so that the resident’s fall risk can 

be kept to a minimal.  

 Because of how the radar works, walks must have certain specifications so that the gait 

information from the walk can be extracted from the radar data. The walk must be straight and 

directly toward or away from the radar[7]. Walks that are across the radar will not provide good 

gait information. In order to get the best gait analysis from the radar, that walk must contain at 

least 5 steps. This gives the radar enough information to get a better walking speed average 

and to have a better look at the step information in the gait analysis. It is preferred that more 

than seven steps be taken just to be sure that the information comes out as accurate as 

possible. Our proposed method of finding walks using the radar will take these specifications 

into consideration in order to find the most usable walks in the radar data. 

 In this thesis, we will present some previous work that has been done in the area of 

assessing health risks using technology. We will then discuss the type and specifications of the 

radar used in this project. With that, we will give the necessary modifications that were made 

to the radar unit so that it is able to be used for walk detection and have the ability to collect 

cleaner gait information. Next, we will give complete details of the algorithm and features that 

we use to detect when walks happens using radar. Finally, we will show some results provide a 

discussion of the results found and a conclusion. 
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Chapter 2- Literature Review 
 

2.1 Significance of Walking to Health 
 

 Many studies have been done on how someone’s walking speed relates to their fall risk. 

One study explored the correlation between walking speed, physical function, and disability 

status [8]. The study also considered how age, gender, and body mass index (BMI) enhanced 

the prediction of physical function over just looking at walking speed alone. Balance tests, sit-

to-stand tests, and a combination of both were used to measure physical function. The results 

show that there is significant correlation between walking speed and physical function, but the 

correlation was inadequate between walking speed and disability status. Age, gender, and BMI 

did not add any extra correlation. 

Another research paperhas said that the variability in someone’s walking speeds may 

help predict future falling more so than just looking at the person’s average walking speed [9]. 

It is believed that slower average walking speeds in older adults may be more correlated to the 

person’s fear of falling then it is to their actual fall risk.  Another paper agrees with this 

assessment saying that decreased walking speed, decreased stride length, and a prolonged 

double support may actually be a person’s adaptation for stabilization which comes from their 

fear of falling [10]. Being able to see how someone’s gait varies day to day, instead of just 

looking for a decrease in gait speed and stride length, could lead to quicker and more efficient 

fall risk assessments.  
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2.2 Similar Studies 
 

Other works have used webcams to extract gait and other fall risk features. One study 

uses two calibrated webcams to create silhouettes of the person that are used to create a 

1x1x1 inch resolution voxel person [11, 12]. In order to extract the silhouette of the person, an 

accurate model of the background must first be acquired. Anything that is in subsequent frames 

that have significantly different characterizations from the background is considered the 

foreground. Foreground data that is moving is considered to be the person. From the voxel 

person, gait features such as step length, step length and walking speed can be extracted. The 

walking speed is extracted using the centroid of the voxel person, the distance travel, the frame 

rate (5 fps), and the number of frames. For step time and distance, the voxels that are within 4 

inches from the ground plane are used to capture foot motion. As a person walks the number 

of voxels close to the ground increase and the decrease. The peak values for these voxels are 

considered to be the steps [12]. Average step time is calculated as the total walk time divided 

by the number of steps. The average step length is considered to be the distance traveled 

divided by the number of steps. Results show that this method is good for calculating walking 

speed and step length, but because of the frame rate, the step time showed a little less 

agreement with the ground truth.  

Another research uses the same camera setup to find and analyze the sit-to-stand 

transition of elderly [14]. The sit-to-stand transition has been seen as a good indicator of health 
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decline and balance deficits in elderly that may result in falling, so monitoring it could hopefully 

lead to care being provided quicker [13]. The sit-to-stand analysis is done using techniques of 

human motion analysis which uses body part analysis, tracking the person, and recognition of 

the sit-to-stand transitions [14]. Her results showed promising results for finding the sit-to-

stand time using the camera system which could help with the measure of physical decline in 

the elderly. 

Pulse-Doppler radar can be used to estimate the walking speed and stride rate of a 

person that is walking according to [7]. They were able to do this by using the short-time 

Fourier transform (STFT) and the spectrogram of the radar data. The reason for them using the 

STFT was to capture the dynamics of gait characteristics over short periods of time. To estimate 

the gait speed of the walker, they use the frequency with the highest peak energy level given by 

the spectrogram for a given time instant. They then take the mean of the gait speeds from each 

time instant over the course of the entire walk. For the estimation of the stride rate, they apply 

an averaging filter at each time instant and employ a peak selection to find the instances in 

time that corresponded to the leg swings. Experiments were done using 9 different types of 

walks that were simulated by one person. Each walk was done 3 times. A Vicon motion capture 

system was used for the ground truth. There results show that the gait speed and stride 

durations estimated from the radar were close to the results given from the Vicon for most 

cases. The case in which the results from the Vicon and the radar did not match up well was 

when the walk of a person that had a stroke was simulated. This result is believed to be 

because of the irregularity of this type of walk. 
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In [15], similar Pulse-Doppler radar to detect when falls occur. This study takes the radar 

signal and extracts the mel-frequency cepstral coefficients (MFCC) so that they can be used as 

features to classify falls and non-falls. Two different classifiers, the support vector machine 

(SVM) and K Nearest Neighbor, were used for the detection of falls. The results show that the 

MFCC features can be used to detect falls with very few false alarms. Most of the false alarms 

found had similar motions to falling such as kneeling down and bending over. They also show 

that the KNN classifier yields better results than the SVM for classifying falls. 
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Chapter 3 - Setup and Algorithm 
 

3.1.1 Type and Specifications 

 

For this project, we used Pulse-Doppler range control radar (RCR) (see Figure 3.1). The 

RCR’s that were employed in this project have a height of 13 cm, a width of 7.1 cm, and a depth 

of 5.7 cm [16]. The original purpose for this type of radar was to detect any type of motion in a 

room so that it could be used as a security device. A RCR will not pick up items in its range that 

are stationary. This is due to the fact that the reflections from stationary items do not cause any 

frequency shifts in the signal. The radar has a range of 50 ft. with a 90 degree viewing angle 

(Figure 3.2). The range of the radar can be set to 20, 30, 40, or 50 ft. depending on which range 

is needed. It utilizes a microwave carrier frequency of 5.8 Ghz, and it has a frequency of 10Mhz 

for its pulse repetition. Also, the radars have passive infrared (PIR) sensors built in to them. The 

radar has two separate modes that allow for the PIR sensor to be on or off. There is a LED light 

at the bottom of the radar, which can be turned on or off, that will be lit when the radar is 

receiving power and will change colors when something is detected inside of its range. The 

maximum voltage that the RCR’s can handle is 18VDC, and they can have a maximum current of 

35mA [16]. 
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Figure 3.1 A picture of a RCR radar that was used for collecting data. 

 

Figure 3.2 The viewing angle and viewing distances of the type of radar that was used [16]. 
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3.1.2 Setup 

 

In order to find walks and get the correct information and readings from the RCR’s, 

some of the settings had to be adjusted for our purposes, and modifications to the radar had to 

be made. The range of the RCR was set to 20ft (Figure 3.4). This range was chosen because 

walks longer than 13ftwill usually have enough gait information for an analysis, and by setting 

the range of the RCR lower, the chance of other unwanted motion being picked up by the radar 

is lowered as well. Since the PIR information is not being used, the PIR detection is turned off. 

Figure 3.5 shows the jumper used for turning the PIR sensor on and off. For power, the radar is 

connected to a 12VDC external adapter. This adapter is connected to the +12V pin and the 

ground pin of the radar.  

The external wire connection for sending the signal to our data acquisition unit (DAQ) is 

connected to the NC pin and the ground pin of the radar (Figure 3.3). The NC pin is an idle 

output pin that has a connection to the TP31 node so that the NC pin has the connection to the 

low gain baseband signal from the RCR [17]. The type of wire used for the external connection 

is a shielded wire that has a signal wire, a ground wire and a drain wire on the inside. The drain 

wire is connected to the ground of the DAQ to reduce noise as the signal passes through the 

wire. Also to reduce noise, the shielded wire is cut to about 1 ft. long. To ensure that the RCR is 

getting enough power and that motion is being detected, the LED indicator light is switched on 

(Figure 3.4). 
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Figure 3.3 A picture of what the inside of a RCR Radar looks like. On the right is the 

red wire that is used to connect the TP31 node to the NC pin. 
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Figure 3.4 A close up look at the where to set the maximum distance of the radar (box on the 

left) and where to enable the LED (box on the right) inside of the radar. 

 

 

Figure 3.5 A close up look at where the radar’s built in PIR detector can be enabled or 

disabled. 
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Even though the radar was made to view in a certain direction, the antenna on the radar 

is still somewhat omni-directional. When indoors, the antenna may cause saturation in the 

radar signal due to multi-path. In order to solve this problem, the radar is wrapped in aluminum 

foil with a small opening in front of the antenna. Figure 3.6 shows what the radar looks like with 

the aluminum wrapping. This makes the antenna more directional so that the antenna can only 

send and receive signals through the opening in the foil. In so doing, the effects of multi-path 

are significantly reduced [17]. Adding the foil around the radar also reduces the amplitude level 

of the signal. By reducing the amplitude of the signal, there is a chance that some of the radar 

information could be lost. The signal amplitude level should still be large enough so that a good 

analysis can be made. 

The foil around the radar has to be calibrated depending on the room that it is in, so 

when trying to get the best placement of the aluminum foil, there are certain aspects of the 

signal that require attention. The first part of the calibration was looking at the amplitude of 

the signal. When adjusting the foil, the amplitude of the signal should always be over 0.1V peak 

to peak. A signal with amplitude below this will result in lost gait information. To make sure that 

the signal saturation is being properly reduced by the foil, we view a spectrogram graph of the 

signal. By looking at the spectrogram, weare able to see if the power in the signal made by 

footsteps is too high or too low. If the power is high, there is still too much saturation in the 

signal, and if the power is too low, then the amplitude of the signal is probably too low. 
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To find the best placement and slot opening for the aluminum foil wrap around the 

radar, a calibration must be done. To calibrate, walks of 5-7 steps are collected by the radar 

with the wrap around it. The raw signal and the spectrogram of these walks are viewed to 

ensure that walking information can be extracted from signal. For the raw signal, the average 

amplitude should be above 0.1V peak to peak.If the amplitude is not high enough, the foil is 

moved up, or the opening for the antenna is opened up more. The slot should be opened along 

the height of the radar first, then along the width if the signal is still too weak. When looking at 

the spectrogram of the signal, the power at each of footsteps should be high enough that each 

footstep has a clear peak, but high enough that some of the power is being cut out of the 

 

Figure 3.6 Picture of a radar unit with the aluminum shielding around it. 
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spectrogram. If the power of the spectrogram is too high at the footsteps, then the opening in 

the foil should be closed some, and if the power is too low, the foil opening should be closed 

some. When opening and closing the slot in the foil, it should not be opened or closed more 

than 1 cm at one time. 

The height of the radar should be between 3 to 6 inches off of the ground. This height 

off of the ground allows for the radar to be able to detect leg and torso motion so that they 

both can be used in the gait analysis. When placing the radar in a room, the radar should be in a 

position that allows for a walk of at least 13ftto be able to take place directly towards or away 

from it. It should also be placed in a position so that outside noise can be kept to a minimal. 

Hence, if at all possible, the radar should not be facing any walls or doors where there may be 

lots of motion on the other side. For the best results, the walking path should be as clear as 

possible. Even if objects are not in the way of the walking path, some objects around the path 

may still cause interference in the signal due to multipath reflections.   

 

3.2 Data Acquisition Unit 
 

 To collect the radar data we used a DI-710 Series Data Logger from DATAQ Instruments. 

It comes equipped with 16 analog channels, 8 bidirectional digital ports, 2 digital and 2 analog 

grounds, and 2 +5V power ports. It has a maximum sampling rate of 4,800Hz when it is 

connected to the computer and a maximum rate of 10,000Hz when it is in stand-alone mode 

[18]. The analog to digital converter has a resolution of 14 bits. It can come with a USB interface 

for connecting to a computer and a SD card slot (2GB maximum) for stand-alone data 
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collection. It can also come equipped with an Ethernet port instead of a USB port. Both types 

were used for this project. Figure 3.7 shows pictures of what the front and back of the DAQ 

with the USB port looks like. 
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Figure 3.7 Picture of the front (top) and back (bottom) of a DATAQ unit with a USB 

interface and a spot for a removable SD card.  
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For the purposes of this experiment, the sampling rate was set to 960Hz. This sampling 

frequency was used because we believed that frequency was high enough to get all of the gait 

information that was needed and not too high to cause excess noise.When connecting the 

radar to the DAQ, the signal wire was always put in first analog port and the ground and drain 

wires were connected to analog ground port (Figure 3.8). To ensure the best signal, one radar 

unit was connected to a DAQ at any given time, and all other analog ports were turned off. The 

shielded wire used to connect the radar to the DAQ was cut to about a foot long to reduce 

signal interference. The signal had a maximum voltage of +5V and minimum voltage of 0V. 

 

 

Figure 3.8 Shows the ground and drain wire connected to the analog ground of the DAQ 

and the signal wire going into the first positive analog channel of the DAQ. 
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3.3 Radar analysis software 
 

 All of the calibrations for the radar systems were done using General Electric’s Radar 

Analysis Software (RAS) that is shown in Figure 3.9 [17]. RAS is a software interface created in 

Matlab that allows the raw signal and the spectrogram of the signal to be viewed at the same 

time. What the program does is take in a file made by the Dataq system. Once the file is 

selected, the RAS shows the beginning and ending times for the data that was collected. The 

RAS then allows a certain portion of the signal to be selected based on a beginning time and the 

time duration in minutes. The beginning time is the first time that will show on the graphs in 

the RAS interface. After this information is input into the system, the raw signal and the 

spectrogram appear in their respective boxes for the portion of the data selected. There are 

also some changeable variables that have to do with how the spectrogram is made. When we 

used the RAS for calibration, these variables are always left in their default settings. In addition 

to showing the different signal pictures, the RAR shows the calculated velocity of the walk, and 

the stepping cadence of the walker. Neither of these values were used during the calibration of 

the radar system. 
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3.4 Walk Detection Algorithm 
 

 The algorithm that we created to determine where walks happen in radar data was 

made to use different supervised learning techniques interchangeably. For this project, 

wepicked two of the many different classification techniques. We used the K Nearest Neighbor 

(KNN) classifier, and Bayes Decision Rule using the Maximum Likelihood Estimation (MLE) of a 

Gaussian distribution. For both of these methods to work as efficiently as possible,  a 

 

Figure 3.9 Screenshot of the Radar Analysis Software user interface. This software was 

written up by General Electric’s Global Research Center [20]. 
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largetraining set had to be collected. Thus, there were many radar sequences of walking and 

non-walking activities collected for training the algorithms. These activities will be covered in 

more detail in Chapter 4 of this thesis. After collecting the data for training, each activity is 

broken down into two second slices with the slices having a one second overlap. Each of the 

two second windows contain 1920 samples and will become a data point that is used in the 

training data.Therefore, there is one signal based feature vector for every second of an activity 

for both walks and non-walks.  

 Most of the training data that was collected was non-walk activities. There are two 

reasons for this. The first is that there are many more non-walk activities with variation than 

walk activities. With the walks, the only factors that can vary are how the person is walking and 

who is doing the walking. Non-walks are not bound to one certain activity therefore, there is a 

larger amount of data that should be collected. The other reason for having more non-walks is 

because of the fact that missing a walk is less important than misclassifying a non-walk activity 

as a walk. Most healthcare providers that were interviewed said that they would only need 1-3 

good walks a day to be found to do an assessment. Since most walking residents that are active 

will walk around their living area many more times a day than that, it is okay to miss a few 

walks throughout the day. At the same time, it is worse for some other type of activity other 

than walking to be seen as a walk because if that data is used for gait analysis, the gait 

information will be wrong which may cause a false alert to happen. False alarmsmust be kept to 

a complete minimal. 

 To help reduce the number of non-walk activities being seen as walks, the algorithm 

takes advantage of duration of the walk. Since each 2 second interval is classified as walk/non-
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walk, the algorithm uses the number of consecutive walk intervals in a potential walk sequence 

to reduce the number of non-walks that would be seen as walks. The number of consecutive 

windows of a walk needed before it is determined that walk found is a user-defined threshold.  

If at any time during an activity a window is not considered a walk and the threshold has not 

been met, then the beginning time and the length of the current walk sequence will be thrown 

away. This means that shorter walks and walks that have misidentified windows may get 

thrown away as well. As mentioned before, this is okay as long as too many parts of a walk are 

not being classified incorrectly.      

 

3.4.1 Features 

 

 Before extracting features from the radar signal, we first do some pre-processing of the 

signal. The first step is smoothing. By smoothing the signal, most of the high frequency noise 

will disappear. Each sample point is averaged with the point before it and the point after it. The 

average becomes the new value of that data point. This is done for each point in the 2 second 

window from beginning to end with the first point only being averaged with the following point 

and the last point only being averaged with the previous point. In order to allow the sample 

points to converge to a certain value, we run the smoothing on a window at least 10 times. 

After doing a complete smoothing of the window, we take the Fast Fourier Transform (FFT) of 

the window. The FFT allows me to look at the frequency information of the signal. Wehave seen 

that different activities may have different frequency information in the signal, so from that, 
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walks should look different from non-walks in the FFT information. The equation for getting the 

FFT from the raw signal is: 

 

        
     

 

    
      (1) 

where N is the number of samples (N = 1920 for our purposes), xn is the currents sample, and k 

is the number for the current FFT point [19]. For our purposes, the magnitude of the FFT is 

used. 

The next step is to smooth out the magnitude of the FFT. This is done in the same way it 

is done for the raw radar signal. After smoothing out the FFT, we take the derivative of the FFT. 

When walking, a person’s legs, torso and arms moves at different speeds.  Therefore, each of 

these body parts should give the radar different frequency information with the information 

from each body part being closely related. The fact that the frequency information from the 

different body parts are related makes the slopes around their peaks in a FFT look different 

than the slopes around the peaks for non-walk activities. Using this reasoning, the derivative of 

the FFT would be useful in creating more separation between walks and non-walks in feature 

space. The derivative of the FFT goes through the smoothing process as well. 

 After pre-processing, the first feature that we extract from the radar data is the highest 

peaks of the FFT. We use both frequency where the peak occurs and the value of the smoothed 

magnitude of the FFT at the peak. We only look at the peaks that happen beyond 5Hz to 

eliminate the DC bias. This feature gives the frequency that has the most power in a given 

window. Since some walks may have similar frequency information to non-walks, the value of 

the FFT at the peak is used to give that extra dimension of separation in feature space. 
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Furthermore, if the frequency of a peak from a walk is the same as one from a non-walk, the 

chances of them having them having the same or a close FFT value at that peak is less likely. 

 The next feature that is extracted is the FFT power for the whole 2 second window. The 

complete FFT power is computed by taking the integral of the FFT from the zero to the sampling 

frequency divided by two. This feature gives a look at how much overall frequency information 

is in the radar signal for a given window. Since walks have considerable motion for different 

body parts, they should have more frequency information in the FFT, making the FFT power 

higher for walks than it is for most non-walks. 

 Similar to what we did with the FFT, we extracted the highest peaks of the FFT’s 

derivative to be used as another feature. This feature gives us more separation in the feature 

space than just looking at the highest peak of the FFT alone. Since both the FFT and its 

derivative have been smoothed, high spikes due to noise should be non-existent and therefore, 

should not affect feature extraction from the derivative of the FFT. 

 The FFT peaks and the derivative of the FFT’s peaks both give the 2 dimensions to each 

of the data points. The power of the FFT adds one more dimension giving the feature data 

points 5 dimensions. 

 

3.4.2 Classifiers 

 

As stated before, the classifiers that we used to detect when walks occur were the KNN 

and Bayes Decision Rule classifiers [20]. These classifiers are interchangeable in the algorithm 

and only one of the classifiers is in use when the algorithm is running at a given time. The 



 
 

25 
 

purpose of using two different types of classifiers was to see which type was most efficient in 

finding walks in the radar data. For each of the classifiers, we will talk about how they work, 

what variables we change and how they may affect the outcome, and how we use them for the 

purposes of finding walks in the signal from the radar. 

 

3.4.2.1 KNearest Neighbor (KNN) 

 

 The KNN classifier uses a distance or dissimilarity measure in order to classify the 

incoming data based on the training data. This classifier is good for determining how the 

training data is distributed directly around the incoming data point. Furthermore, it is able to 

tell which part of the training data has more training data points around the incoming data 

point that needs to be classified. It is also good for making concise choice when there are only 

to different groups in the training data.  

 KNN works by calculating the distance between the point that needs to be classified and 

all of the points in the training data. Once all of these distances are measured, the training data 

is sorted based on how close each of the training points is to the incoming data point that 

needs to be classified. The order of the points should go from closest to furthest away.  After 

sorting, the classifier looks at the K closest training points to the data point being classified. If 

most of those K training points come from walking data, then the data point will be classified as 

a walk. If most of those training points come from non-walks, then it will classify the incoming 

point as a non-walk. In order to prevent a tie from happening with this data, K is selected as an 
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odd number. This way either walk or non-walk will win out and no special choice has to be 

made.  

 A problem that can be ran into when using the KNN classifier is different features having 

different scales. When different features are not on the same scale, one of the features may 

have more control over the distance measurement than the other features. For example, let us 

say that there are 2 features being used to classify something. One of the features may have 

values between 1 and 1000, while the other feature has values between 0 and 1. If this is the 

case, the first feature may cause the distance measurement to change much more than the 

second feature. It may even be the case that the second case that the second feature has so 

little control that the actual classification of a data point is not affected this feature at all even 

though there is a relatively large separation of the groups with that feature. To prevent one 

feature from having more control than the other, there are certain distance measures that have 

to be used. There are two separate distance measures that we used for detecting walks. 

 One of the distance measures that handle features having different scales is the 

Mahalanobis distance. This distance measure uses the covariance of the training data in order 

to make the scales of the different features have very little effect on the distance 

measurement. The equation for the Mahalanobis distance is: 

                                (2) 

where   and   are two points in a dataset and C is the covariance of the entire dataset[20]. 

When using this measurement for our purposes, a covariance is found for the walking training 

data, and one is found for the non-walk training data. There is not a common covariance matrix 

that is used for all of the training data. By having two separate covariance matrices for each of 
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the categories, the covariance will better represent the distribution of the category that it is 

being used for.  

 The other distance measure that was used is the standardized Euclidean distance. It is 

very similar to the Mahalanobis except that it does not use the covariance of the dataset. 

Instead it uses the variances at each of the different dimensions of the dataset. By doing this, 

the standardized Euclidean distance measure only looks at each of the dimension of the dataset 

separately. It does not look at all of the dimensions together as a whole.  It has the equation:   

d x ,y     (x -y )
T
S-1(x -y )   (3) 

where S is a diagonal matrix whose diagonal values are the variances of the dataset for each of 

the different dimensions [21].  

 

3.4.2.2 Bayes Decision Rule 

 

 Using Maximum Likelihood Estimations for classifications is a statistical approach to 

classifying the datathat tries to determine what the optimal parameters are for a certain type of 

dataset based on the sample or training data points and the type of distribution that the data 

has or is assumed to have. The maximum likelihood estimation can do a good job of having the 

parameters converge to a certain value as the number of training points increase. For the 

purposes of this project, the distribution of the data collected is assumed to be Gaussian. 

 To find the solution to the estimation, a training set D is taken. All of the data points in D 

are assumed to have been gathered independently from one another. With that, the equation 

for the likelihood function would look like this:  
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      (4) 

where θ is the unknown parameters that need to be estimated, and  xk is the is one of the data 

point in the dataset D [20]. The maximum likelihood estimation would be finding the 

parameters θ that maximizes p(D|θ). Since working with products is hard to do when trying to 

maximize, the natural log of the likelihood function is taken to simplify the derivations. Because 

of the properties of logs, taking the natural log, the parameters that maximize the likelihood 

will also maximize the natural log of the likelihood. By taking the log of the likelihood, we get 

                        
 
               

 
      (5) 

By using the log, the product gets changed to a summation and summation much easier to use 

for maximization. 

 The Gaussian distribution has two parameters that need to be estimated. They are the 

expected value of a data point, µ, and the covariance of the dataset, Σ. The equation for a 

Gaussian distribution given these parameters is 

         
 

             
 

 
                   (6) 

where d is the number of dimensions for the data point xk. Putting this equation into the log 

likelihood, we get 

         
 

             
 

 
                 

      (7) 

To find the maximum likelihood estimations for µ, and Σ, the partial derivatives of l(θ) with 

respect to µ and Σ are taken. Each of the partial derivatives are then set to equal zero and the 

corresponding parameter is solved for. The partial derivative with respect with to µ is 

     

  
             

      (8) 
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By setting this equation equal to 0 and solving for µ, we get the equation for estimating µ which 

is  

   
 

 
   

 
     (9) 

For the covariance, the partial derivative is 

     

  
                          

      (10) 

After setting it to zero and solving Σ, we get the equation 

   
 

 
               

      (11) 

These estimation equations for µ and Σ are what we used for estimating the 

distributions of the walks and the non-walks. When looking at the data, it looked as though the 

non-walk data created two separate clusters because of the FFT peak feature. One of the 

clusters had most training data, but the other cluster was just large enough and far enough 

away from the cluster that it was throwing off the maximum likelihood estimations for the non-

walks. For this reason, we decided to break down non-walk training data into two separate 

groups. After doing this, maximum likelihood estimation of the parameters looked to be much 

better. 

Now that we know what the Gaussian distribution parameters look like for the walks 

and the non-walks, we need a way to classify the incoming data when it comes in. This is where 

Bayes decisions rules come into play.  What the decision rules do is calculate the posterior 

probability of a data point being part of a certain class for all of the classes and then decides 

which class the point should classified by minimizing risk. To minimize the risk, it will simply 

choose the class that has the highest posterior probability. The posterior probability is 

calculated using Bayes formula which is 
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   (12) 

where x is the data point that is being looked at and ωi is one the i groups that the data point 

could be a member of [20]. Since p(x) is going to be the same for all of the groups, it is not 

needed or used when a decision on how to classify the point has to be made.  This gives us a 

decision equation of 

                      (13) 

The equation used for p(x|ωi) is the Gaussian equation using the estimated parameters µ and Σ 

base on which of the three groups from the training data is being looked at. The group that has 

the highest di for a point will be the group that point will be classified into. 

 To have some control over how strict the classifier is when it comes to classifying walks, 

we use the prior probability p(ωi) for the different groups in the training data. The probability 

p(ωi) is the prior probability that tells what the chances of an activity falling in a certain group 

based on prior knowledge.  Even though prior knowledge tells us that non-walk activities 

happen more of the time, setting the prior probabilities of the training data to be even for 

walks and non-walks could yield better results from the classifier. They may be worse as well. 

For these reasons, wetest the prior probabilities at different values to try and obtain good 

working priors for the classifier.  

 

3.4.3 Complete Algorithm 

 

 To start off, we need to determine the sampling frequency of the radar signal is. This 

information is important for finding the FFT which is used for finding some of the features. It 
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also affects how much the window should slide in order to slide over one second at a time. For 

the purposes of this project, the sampling frequency in which the radar captures data is always 

set to 960Hz. After finding the sampling frequency, the next step is to import the training data. 

The training data will be different based on which of the classifiers is being used. 

 Once all the information need for processing and classifying is gathered, put a window 

around 2 second of the signal and do all of the processing needed to extract the features from 

the window. The features are then given to the classifier, and the classifier will determine 

whether it believes the window has walking in it or not. If it is determined that this window is 

one with walking in it, then the algorithm will determine whether this window is the beginning 

of a series of continuous walk windows. When it is the beginning, the time for the beginning of 

the window will be saved, and the number of consecutive walk windows in the series will be set 

to one. When it is not the beginning of the series, the number of consecutive walk windows is 

incremented by one. Only the time of the first window in the series is saved because that 

window is to be considered the beginning of the walk while all of the following windows are to 

be considered part of that same walk. 

 If the classifier looks at the current window and determines that the activity in that 

window is not a walk, then the algorithm will look at the information that was collected from 

the windows that were directly before it.   If that information has a series of walk windows with 

the number of such windows greater or equal to a set threshold, the saved time from the 

beginning of that series will be put on a list of actual walk times and the number of windows in 

that series will be saved as well. The number of windows in the current series will then be set to 

zero. When the series’ window amount is less than the threshold, the saved beginning time of 
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that series will be thrown out and the number of windows in the series will be set to zero. If no 

walk information was before the current window, then the series information will remain blank. 

The window will then slide over by one second and the next part of the radar signal will go 

through the same process that has been stated above. The window will continue to slide over 

by one second until a desired ending time is met, or until there is no more radar data left to be 

processed. Once the wanted radar data has been fully processed, a there will be a list of walk 

times that are in chronological order, and there will be a list of the corresponding lengths of 

those walks in the same order.  
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Here is the pseudo-code for the algorithm: 

Determine sampling frequency of the radar signal 

Import the classifying data needed for the classifier 

While there is still unprocessed radar signal 

 read in next 2 second portion of data 

 process the signal of the window 

 extract the features 

 classify this portion of data as a walk or non-walk  

if (walk) 

  if(no iteration of walk right before this portion) 

   save the beginning time of this section 

   # of back to back walk windows = 1 

  else 

   # of back to back walk windows  += 1 

  end 

 else 

  if(# of back to back walk windows > min # of window for good walk) 

   add the beginning time of the walk to the walk list 

save the # of windows back to back to the length list 

  else 

   throw out the saved time for beginning of walk 

  end 

   # back to back windows  = 0 

 End 

 Slide the window over by one second 

end 
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Chapter 4 - Data Collected 
  

 All of the data collected from the radar was collected at a sampling rate of 960Hz. There 

are two main categories of data that was collected with the radar. They are walks and non-

walking activities. The walks collected are varied by the speed of the walk and who is doing the 

walking. By collecting walks from different people, there will be different gaits in the data, 

giving the training data a wider array of walks. If the training data only had the gait of one 

person, the chances of that data working for multiple people would be much smaller. For non-

walks, the variability is in the amount of different type of activities that were collected. Some of 

the activities, such as standing still, did not look like walks, while other activities, like swinging a 

leg back and forth while sitting, had motions in them that closely resemble the motions of a 

walk. 

 

4.1   Lab Data 
 

 During a data collection, there were about 240 different walks collected with the radar. 

The walks were done by 15 different people. These people were of different ages and sizes. 

Each person did 15 or 16 walks which were divided into 8 walks at the person’s normal speed 

and 8 slower walks. For both the normal speed walks and the slower speed walk, half of the 

walks were toward the radar, and the other half were walks going away from the radar. The 

length of each of the walks was about 13ft long. Each of the normal speed walks lasted 

between 4 and 7 seconds while the slower walks varied between 5 and 12 seconds.  
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 Activities collected for non-walking data were activities that were likely to happen in 

most living arrangements of elderly people.  There are activities of standing with some 

movement, normal motions and movements while sitting, sitting to standing, standing to 

sitting, swaying, swinging legs while sitting, dropping objects on the floor, and picking objects 

up from the floor. Collecting data while no one was in the room was also added to this group of 

data. Each of the activities was done at varying positions with respect to the radar and they 

were done at varying speeds with all of the activities being done in at least 3 different positions. 

Swaying and the swinging of legs were done in different directions as well. Some had motion 

going towards and away from the radar,while others were done going across the radar. All of 

the non-walk radar data was collected for at least 30 seconds for each of the activities in the 

different positions and directions. 

 

4.2 TigerPlace Data 
 

In some of the apartments at TigerPlace, a radar system was installed. They were placed 

where an optimal walk could be collected based on the arrangement of the apartment. Each of 

the radar systems was wirelessly connected to a separate data collecting computer in the 

apartment. To make sure that the radar systems were not as visible, less intrusive, and less 

likely to be tampered with, the systems were put in special made boxes that could hold the 

radar unit, the DAQ and a wireless router. Figure 4.1 shows what this box looks like. Through 

testing, we found that having the radar unit inside of the box did not change the signal coming 
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from the radar. In most of the apartments, these boxes would sit out of the way of the 

residents next to a wall where it would be a tripping hazard. 

This data was collectedcontinuously with the data being saved to a separate file for each 

day. It was used to verify that walks could be detected by the radar in actual living 

environments. In addition, this data was used to see if enough walks were being collected 

throughout the day and the level of false positives being picked up by the algorithm. Since it 

does not matter if some of the walks were missed, this data was not used to see how many 

walks were missed. We just wanted to make sure that a good number of the straight, long, and 

clear walks with respect to the radar were being picked up. 

 

4.3 Training Data 
 

 Most of the data collected from the radar was used as training data. This was done in 

order to get a larger amount of training points in the training data for both walks and non-

walks. Having more training data means that training data will be more diverse which should 

help with the classification of walks and non-walks. Also, with more training data, there is a 

higher chance of having a statistical significance of the training data.  

 The walks from 12 of the 15 people were used for the purposes of training the 

classifiers. This gave the training data about 192 walks to work with. For each of the walks, the 

2 second window sliding at 1 second was used to get all of the data points for the training data. 

This means that for each of the walks, there are     data points that are extracted, were t is 
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time length of the walk in seconds. The time it took to finish a walk is rounded to the nearest 

second.  

 All of the non-walk data was collected in the lab for training. Since the activities for the 

non-walks were longer in time than any of the walks, each of the non-walks created more data 

vectors for the training than the walks. This resulted in the number of points in the training for 

the non-walk data being larger than the amount for the walking training data.  

 

4.4 Testing Data 
 

 To test whether or not the algorithm is able to pick up walks, 3 of the 15 people’s walks 

were used as testing data. The complete time interval that it took each of the people to 

complete all their walks was given to the program. This was to see if the program was able to 

pick out the beginning times and the length in time of each of the walks. Since there is no 

motion in the room when there is no walking during these time intervals, it is not a good test to 

make sure that non-walk activities are not being detected as walks. Web cameras were used to 

collect the ground truth determined the actual times of the walks. These cameras collected 

frames at about 7 frames per second and each of the frames had a timestamp.  

 The final data that was used for testing the algorithm was the data collected at 

TigerPlace. All of the TigerPlace data in our experiments was used for testing. Since the walkers 

in the lab were different from the walkers at TigerPlace, we wanted to see how well the walks 

from the lab data would coincide with detecting walks in the TigerPlace data. It also helped 
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with testing how well the radar data in one type of environment coincided with another type of 

environment. 

  

4.5 Ground Truth 
 

 During the data collection in the lab, all of the activities were recorded using webcams 

that were place on a wall in the lab about 8 ft. above the floor. The webcams collected frames 

 

Figure 4.1 Pictures of the inside (left) and outside (right) of the special made boxes that 

housed the DAQ, radar and wireless router. 
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at 7-8frames per second and were able to have all of the activities that happened in the lab in 

its view. Each of the frames had a timestamp that recorded the time to the nearest thousandth 

of a second. Using the frames collected by the webcam, weare able to see the times when 

walks and non-walks are happening. 

 To be able to see the type of activity when the algorithm believes that a walk was 

happening at TigerPlace, Microsoft Kinects that were installed in each of the apartments were 

used. The placements of the Kinects were usually near the front door of the apartment. 

Diagrams of the actual placement for each of the apartments used are given in Chapter 5. The 

Kinects collected depth images at a rate of 7-8frames per second when there is some type of 

motion in the room. These images are collected by the same computers that the radars are 

connected to. Each of the depth images are time stamped so that the radar times are synced 

with the image times. Depth images are used because the activity can be determined without 

being able to easily identify who the person is. 

 To test our algorithm with the TigerPlace data, we looked at a set amount of time on 

different days for different people. For each time sample we would run our algorithm on it and 

see what times our algorithm believes that it is collecting walks. We would also look at the time 

length of the walks as well. After getting the times, welooked the depth information to see if 

walks are actually happening at the times where the algorithm thought they were happening. If 

it is a walk, we would look to see if the walk picked up was a good walk for collecting gait 

information from the radar. 
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Chapter 5 - Results and Discussion 
 

5.1 KNN 

The first set of experiments was made to figure out what the best parameters for the 

KNN classifier for the radar data that was collected in February. In this experiment, the walks 

from the first 12 walkers are used for the training data. The walks from the last 3 subjects are 

used to test the classifier. The experimental sets are grouped based on which dissimilarity 

measure is being used. Each of the groups has times that were recorded using K with values of 

3, 5, 7, and 9. Since the turnaround times are less than a second long in many cases (see Figure 

5.1), a walking segment consists of a walk towards the radar, the turnaround, and a walk away 

from the radar. In order for a walk to be seen as a walk, the walk must have at least 3 

consecutive windows that are classified as walks. The actual start and end times for these 

segments are compared to the start and end times from the classifier based on the parameter K 

and the dissimilarity measurement. All of the actual start and end times for the walk segments 

are rounded to the nearest second. 
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5.1.1 Standardized Euclidean 

Standardized Euclidean is first dissimilarity measured that is used by the classifier. The 

results are shown in Tables 5.1 – 5.8. There were times when the classifier was able to see the 

turnaround time as not being a part of the walk. Those time segments will be highlighted blue 

in the tables. There were also times where walk windows in the middle a walk were 

misclassified causing one walk to be separated into 2 walks. Those times will be highlighted red, 

and the number of dropped frames will be given.  When windows during turnaround times are 

not classified as walks, the 2 walks during that segment were still classified as 1 segment.  

When K was set to 3, one of the walk segments had a time when a walking window was 

misclassified in the middle of a walk. This was walk from subject o. During the walk away from 

the radar, a window was not classified correctly. It was the window that started at time 

 

Figure 5.1 Raw radar signal of a walk towards and then away from the radar 
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17:29:24. Figure 5.2 shows the spectrogram and the Number of Nearest Neighbors for this 

walk. There was also one time when a window with the walker turning around was not 

classified as a walk. During this walk, person m had a turnaround time that was slightly longer 

than most of the other times. The classifier was able to get all of the start times within 1 second 

of the actual start times. All but 2 of the calculated end times were within 1 second of the 

actual times. TABLE 5.1 shows the actual times versus the classifier times for each of the 

walking segments. TABLE 5.2 gives some the statistics for those times.  
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TABLE 5.1 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 3) 

Walk Sets  start end start end start end start end 

R-m-7-1 

observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:54 14:14:00 14:14:16 14:14:20 14:14:35 14:14:42 14:14:57 

R-m-7-2 

observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:17:15 14:17:22 14:17:39 

segmented time 14:15:51 14:16:15 14:16:19 14:16:41 14:16:47 14:17:15 14:17:22 14:17:40 

R-n-7-1 

observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 

observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:29 15:16:49 15:16:53 15:17:15 

R-o-7-1 

observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 

observedtime 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:48 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

 TABLE 5.2  

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (STANDARDIZED EUCLIDEAN DISTANCE, K = 3) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual time 

end time 
within 1 sec 
of actual 
time 

m 8 0 2 2 8 8 

n 8 0 5 5 8 8 

o 8 1 7 2 8 6 

total 24 1 14 9 24 22 
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 The results for when K was set to 5, shown in Tables 5.3 and 5.4, were pretty similar to 

the results from when K=3. It had the same problem of misclassifying walk for one of the walks 

from o. During the walk segment starting at 14:16:48, the classifier was able to not classify one 

of the turnaround times as walk similar to when K equaled 3 (see Figure 5.3).  With K set to 5, 

the classifier was able to find one more exact start time then the classifier with K set to 3 (see 

TABLE 5.4), giving the setting of K=5 slightly better results.  

  

 

Figure 5.2 Spectrogram of the first walking sequence of R-o-7-2 with the number of 

nearest neighbors that are walks for each frame (blue line) with K = 3. In this case, a frame 

is misclassified in the middle of the walk away from the radar.  
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TABLE 5.3 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Walk Sets 
 

start end start end start end start end 

R-m-7-1 

Observed Time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

Segmented Time 14:13:38 14:13:54 14:14:00 14:14:16 14:14:20 14:14:35 14:14:42 14:14:57 

R-m-7-2 

Observed Time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:17:15 14:17:22 14:17:39 

Segmented Time 14:15:51 14:16:15 14:16:19 14:16:41 14:16:48 14:17:15 14:17:22 14:17:40 

R-n-7-1 

Observed Time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

Segmented Time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 

Observed Time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

Segmented Time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:29 15:16:49 15:16:53 15:17:15 

R-o-7-1 

Observed Time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

Segmented Time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 

Observed Time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

Segmented Time 17:29:14 17:29:28 17:29:33 17:29:48 17:29:52 17:29:07 17:30:13 17:30:26 

 

 

TABLE 5.4 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Subject #walk sequences Dropped 
frames in 
the 
middle of 
a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual time 

end time 
within 1 sec 
of actual 
time 

m 8 0 3 2 8 8 

n 8 0 5 5 8 8 

o 8 1 7 2 8 6 

total 24 1 15 9 24 22 
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After setting K to be 7, the classifier was no longer able to classify the turnaround as a 

non-walk. The results in TABLE 5.5 show that the classifier is still classifying a walking window of 

the segment starting at 17:29:14 as a non-walking window. Looking at TABLE 5.6, the classifier 

was able to find more of the actual end times but it faired a little worse the actual start times of 

the segments. The results for K equal 9 were pretty similar to the results for K equal to 7 except 

that with K set to 9, it had one less end time that was calculated correctly. Tables 5.7 and 5.8 

show these results. 

  

 

Figure 5.3 Spectrogram of the third walking sequence of R-m-7-2 with the number of nearest 

neighbors that are walks for each frame (blue line) with K = 5. In this case, the time that has 

the walker turning around is classified as a non-walk. 
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TABLE 5.5 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 7) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

Segmented time 14:13:38 14:13:54 14:14:00 14:14:15 14:14:20 14:14:35 14:14:42 14:14:47 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:17:15 14:17:22 14:17:39 

Segmented time 14:15:51 14:16:15 14:16:19 14:16:41 14:16:47 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

Segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

Segmented time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:29 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

Segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:30:08 17:30:13 17:30:27 

Segmented time 17:29:14 17:29:28 17:29:33 17:29:48 17:29:52 17:30:07 17:30:13 17:30:26 

 

TABLE 5.6 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (STANDARDIZED EUCLIDEAN DISTANCE, K = 7) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 2 3 8 8 

n 8 0 5 5 8 8 

o 8 1 7 3 8 7 

total 24 1 14 11 24 23 
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TABLE 5.7 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 9) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:54 14:14:00 14:14:14 14:14:20 14:14:35 14:14:42 14:14:47 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:17:15 14:17:22 14:17:39 

segmented time 14:15:51 14:16:15 14:16:19 14:16:41 14:16:47 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:29 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:30:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:48 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

TABLE 5.8 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (STANDARDIZED EUCLIDEAN DISTANCE, K = 9) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found start 
time is 
actual start 
time 

Found end time is 
actual end time 

start time 
within 1 sec 
of actual 
time 

end time 
within 1 sec 
of actual 
time 

m 8 0 2 2 8 8 

n 8 0 5 5 8 8 

o 8 1 7 3 8 7 

total 24 1 14 10 24 23 
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5.1.2 Mahalanobis Distance  

 

For the most part, the classifier performed well no matter what the value of K was. 

When K was set to 3 and 5, the classifier was able to find a pause in the walk for one of the 

walking sequences, with the classifier doing slightly better with finding the start times when K 

was set to 5. The classifier seemed to do the best with determining the starting and ending 

times when the value of K was 7. At the same time, the classifier was no longer able to see the 

pause in the one walk during the turnaround when K had a value of 7 or 9. It seems that if 

pauses in walks are wanted be found with the classifier still having good accuracy, using a value 

of 5 for K gives the best results.   

Mahalanobis 

The following results will be from the KNN classifier using the Mahalanobis distance and 

the dissimilarity measure between the features. The same values of 3, 5, 7, and 9 were used for 

K as in the previous experiment. The data used for testing and training is the same as well. 

When K was set to 3, the results showed 5 different segments in which a window from the 

segment containing the turnaround was classified as a non-walk. One of these times is shown in 

Figure 5.4. That is 4 more times that this classifier was able to this than any of the classifiers 

using the standardized Euclidean dissimilarity measure. Looking at Tables 5.9 and 5.10, this 

classifier was also slightly better at determining the actual start times of the walking segments.  

At the same time, it was slightly worse at determining the ending times. For the walking 

sequence starting at 17:29:28, this classifier was able to determine that the turnaround was not 

a walk, but it also misclassified 2 consecutive windows that contained walking.  
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TABLE 5.9 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(MAHALANOBIS DISTANCE, K = 3) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:53 14:14:00 14:14:14 14:14:20 14:14:35 14:14:42 14:14:57 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented time 14:15:52 14:16:13 14:16:19 14:16:41 14:16:48 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:06 15:16:26 15:16:29 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:47 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

TABLE 5.10 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (MAHALANOBIS DISTANCE, K = 3) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 4 2 8 7 

n 8 0 5 5 7 8 

o 8 2 7 1 8 6 

total 24 2 16 8 23 21 
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 After changing the value of K to 5, the number of turnaround times that were 

considered non-walks dropped from 5 to 1. The one turnaround time that it didn’t classify as a 

walk was the same time that found using the standardized Euclidean distance with K equaled to 

3 and 5. It did, however, do a marginally better job of obtaining the correct start times for the 

walks. Tables 5.11 and 5.12 show that the rest of the results were similar to what was found 

when K was set to 3. For K equal to 7, Tables 5.13 and 5.14 show that the results were pretty 

much the same as they were for K=5. When K was set to 9, the classifier did slightly better with 

determining the starting times, but it did a little worse when determining the end times (see 

Tables 5.15 and 5.16). The rest of the results were pretty much the same as when K was equal 

to 5 and 7. 

 

Figure 5.4 Spectrogram of the second walking sequence of R-m-7-2 with the number of 

nearest neighbors that are walks for each frame (blue line) with K = 3. In this case, the time 

that has the walker starts turning around is classified as a non-walk. 
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TABLE 5.11 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(MAHALANOBIS DISTANCE, K = 5) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:53 14:14:00 14:14:14 14:14:20 14:14:35 14:14:42 14:14:47 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:17:15 14:17:22 14:17:39 

segmented time 14:15:52 14:16:13 14:16:19 14:16:41 14:16:48 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:30:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:47 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

TABLE 5.12 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

(MAHALANOBIS DISTANCE, K = 5) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 4 2 8 7 

n 8 0 6 5 8 8 

o 8 2 7 1 8 6 

total 24 2 17 8 24 21 
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TABLE 5.13 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(MAHALANOBIS DISTANCE, K = 7) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:53 14:14:00 14:14:14 14:14:21 14:14:35 14:14:42 14:14:57 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented time 14:15:51 14:16:13 14:16:19 14:16:41 14:16:48 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:07 15:16:26 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:47 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

TABLE 5.14 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (MAHALANOBIS DISTANCE, K = 7) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 4 2 8 7 

n 8 0 6 5 8 8 

o 8 1 7 1 8 6 

total 24 1 17 8 24 21 
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TABLE 5.15 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING KNN 

(MAHALANOBIS DISTANCE, K = 9) 

Walk Sets  start end start end start end start end 

R-m-7-1 observed time 14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented time 14:13:38 14:13:53 14:14:00 14:14:14 14:14:21 14:14:35 14:14:42 14:14:57 

R-m-7-2 observed time 14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented time 14:15:51 14:16:13 14:16:20 14:16:41 14:16:48 14:17:15 14:17:22 14:17:40 

R-n-7-1 observed time 15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented time 15:14:08 15:14:22 15:14:27 15:14:39 15:14:45 15:14:58 15:15:02 15:15:16 

R-n-7-2 observed time 15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented time 15:15:46 15:16:04 15:16:06 15:16:26 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed time 17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented time 17:27:07 17:27:20 17:27:26 17:27:38 17:27:42 17:27:54 17:28:00 17:28:09 

R-o-7-2 observed time 17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented time 17:29:14 17:29:28 17:29:33 17:29:47 17:29:52 17:30:07 17:30:13 17:30:26 

 

 

TABLE 5.16 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING KNN 

 (MAHALANOBIS DISTANCE, K = 9) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 5 2 8 7 

n 8 0 6 5 7 8 

o 8 1 7 1 8 6 

total 24 1 18 8 23 21 
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5.2 Bayes Decision Rule 
 

The next set of experiments was used to test how well the classifier using Bayes’ 

decision is able to segment out the walks in the radar data. The same February data used to 

test the KNN classifier with the same walking segments was used for this experiment. We ran 

tests with this classifier with the prior probabilities of both the walks and non-walks being 

equal, the prior of the walks being higher (60%) than the non-walk prior, and the prior of the 

walks being  lower (40%) than the non-walk prior.  

 When the prior probabilities for both the walks and the non-walks were equal, there 

was only one time when frames were misclassified in the middle of a walk (see TABLE 5.17). 

However, the classifier did not do as good of a job determining the end of the walks when 

compared to the KNN classifiers. TABLE 5.18 shows that eight of the 24 walks did not have the 

end times calculated within 1 second of the actual end times. Of those times, 5 were off by 

more than 2 seconds. The classifier did do a better job with the start times than it did with the 

end times. Three of the start times were calculated more than a second off. 
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TABLE 5.17 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING BAYES DECISION RULE 

(WALK PRIOR = 0.5, NON-WALK PRIOR = 0.5) 

Walk Sets  start end start end start end Start end 

R-m-7-1 observed 
time 

14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented 
time 

14:13:39 14:13:53 14:14:01 14:14:14 14:14:21 14:14:35 14:14:42 14:14:58 

R-m-7-2 observed 
time 

14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented 
time 

14:15:52 14:16:12 14:16:20 14:16:41 14:16:47 14:17:14 14:17:22 14:17:41 

R-n-7-1 observed 
time 

15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented 
time 

15:14:09 15:14:21 15:14:27 15:14:39 15:14:46 15:14:57 15:15:02 15:15:16 

R-n-7-2 observed 
time 

15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented 
time 

15:15:46 15:16:04 15:16:06 15:16:26 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed 
time 

17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented 
time 

17:27:08 17:27:21 17:27:26 17:27:35 17:27:44 17:27:53 17:28:02 17:28:09 

R-o-7-2 observed 
time 

17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented 
time 

17:29:14 17:29:24 17:29:33 17:29:44 17:29:52 17:30:03 17:30:13 17:30:26 

 

TABLE 5.18 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING BAYES DECISION RULE 

(WALK PRIOR = 0.5, NON-WALK PRIOR = 0.5) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 0 5 2 8 6 

n 8 1 4 3 7 8 

o 8 0 4 1 6 2 

total 24 1 13 6 21 16 
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 After setting the priors to .6 for the walks and .4 for the non-walks, the overall 

performance of the classifier dropped. TABLE 5.19 shows more times when windows were 

misclassified in the middle of the walks. Less of the end times were calculated correctly as 

shown in TABLE 5.20. With these settings, the classifier did find one more start time that was 

correct to within one second of the actual time, but it found one less start time that was the 

actual start time. 

 When the priors were set so that the non-walks had a prior of .6 and the walks had a 

prior of .4, the results seemed to have overall improvements. Looking at Tables 5.21 and 5.22, 

the classifier improved with finding both the start times and the end times. It also improved 

over the previous results in misclassifying frames that are in the middle of a walk, but it was not 

better than with the priors being equal. There were walks with windows in the middle of a walk 

being misclassified as opposed to one with the first settings for the priors. 

 This classifier seemed to have the best results for the starting and ending times when 

the prior for the non-walks was set to .6. However, with this setting, the classifier also had an 

extra time when frames were dropped during a walking sequence. The setting with the priors 

being equal showed the best results for not misclassifying walk windows in the middle of walks. 

With that being said, there may be a setting for the prior of the non-walks between .5 and .6 

that will have good results for the starting and ending times while maintaining the lowest rate 

of not misclassifying the window in the middle of walks. 
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TABLE 5.19 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING BAYES DECISION RULE 

(WALK PRIOR = 0.6, NON-WALK PRIOR = 0.4) 

Walk Sets  start end start end start end Start end 

R-m-7-1 observed 
time 

14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented 
time 

14:13:39 14:13:51 14:14:01 14:14:14 14:14:21 14:14:35 14:14:42 14:14:57 

R-m-7-2 observed 
time 

14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented 
time 

14:15:53 14:16:12 14:16:20 14:16:41 14:16:48 14:17:14 14:17:22 14:17:41 

R-n-7-1 observed 
time 

15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented 
time 

15:14:09 15:14:21 15:14:28 15:14:39 15:14:46 15:14:57 15:15:02 15:15:16 

R-n-7-2 observed 
time 

15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented 
time 

15:15:46 15:16:04 15:16:07 15:16:25 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed 
time 

17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented 
time 

17:27:08 17:27:21 17:27:26 17:27:35 17:27:44 17:27:53 17:28:02 17:28:09 

R-o-7-2 observed 
time 

17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented 
time 

17:29:14 17:29:24 17:29:33 17:29:44 17:29:52 17:30:03 17:30:13 17:30:26 

 

 

TABLE 5.20 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING BAYES DECISION RULE 

(WALK PRIOR = 0.6, NON-WALK PRIOR = 0.4) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 1 5 0 8 5 

n 8 1 3 2 8 8 

o 8 1 4 1 6 2 

total 24 3 12 3 22 15 
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TABLE 5.21 

FOUND VS ACTUAL TIMES OF WALKS SEGMENTS USING BAYES DECISION RULE 

(WALK PRIOR = 0.4, NON-WALK PRIOR = 0.6) 

Walk Sets  start end start end start end Start end 

R-m-7-1 observed 
time 

14:13:39 14:13:53 14:14:00 14:14:15 14:14:21 14:14:36 14:14:43 14:14:58 

segmented 
time 

14:13:38 14:13:53 14:14:01 14:14:14 14:14:21 14:14:35 14:14:42 14:14:58 

R-m-7-2 observed 
time 

14:15:52 14:16:15 14:16:20 14:16:42 14:16:48 14:16:15 14:17:22 14:17:39 

segmented 
time 

14:15:52 14:16:13 14:16:20 14:16:41 14:16:47 14:17:15 14:17:22 14:17:41 

R-n-7-1 observed 
time 

15:14:08 15:14:22 15:14:27 15:14:40 15:14:45 15:14:58 15:15:02 15:15:17 

segmented 
time 

15:14:08 15:14:21 15:14:27 15:14:39 15:14:45 15:14:57 15:15:02 15:15:16 

R-n-7-2 observed 
time 

15:15:47 15:16:04 15:16:08 15:16:26 15:16:30 15:16:50 15:16:53 15:17:15 

segmented 
time 

15:15:46 15:16:04 15:16:06 15:16:26 15:16:30 15:16:49 15:16:53 15:17:15 

R-o-7-1 observed 
time 

17:27:07 17:27:21 17:27:26 17:27:38 17:27:42 17:27:56 17:28:00 17:28:14 

segmented 
time 

17:27:08 17:27:21 17:27:26 17:27:35 17:27:44 17:27:54 17:28:01 17:28:09 

R-o-7-2 observed 
time 

17:29:14 17:29:29 17:29:32 17:29:48 17:29:52 17:29:08 17:30:13 17:30:27 

segmented 
time 

17:29:14 17:29:24 17:29:32 17:29:44 17:29:52 17:30:03 17:30:12 17:30:26 

 

 

TABLE 5.22 

STATISTICS OF THE SEQUENCE CLASSIFICATIONS USING BAYES DECISION RULE 

(WALK PRIOR = 0.4, NON-WALK PRIOR = 0.6) 

Subject #walk 
sequences 

Dropped 
frames in 
the middle 
of a walk 

Found 
start time 
is actual 
start time 

Found 
end time 
is actual 
end time 

start time 
within 1 
sec of 
actual 
time 

end time 
within 1 
sec of 
actual time 

m 8 1 4 3 8 6 

n 8 0 6 3 7 8 

o 8 1 4 1 7 2 

total 24 2 14 7 22 16 
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5.3 TigerPlace Data 
 

The final experiment was check to see if walks could be detected in actual living 

environments. To test this, the data that was collected at TigerPlace from 4 different days in 3 

different apartments. For each day, the classifier was run on the data that was collected 

between the hours of 9:00 and 17:00. Since there will be lots of time when non-walks occurred 

in an apartment, this experiment is a good check to make sure that not too many false alarms 

are occurring. After running the classifier on the data, we checked only the times where the 

classifier believed there were walks against the Kinect depth image data. This means some 

walks may be missed during the course of the day. This test is to make sure that something that 

is being detected as a walk is actually a walk. Since the KNN classifier had better results in lab, 

the TigerPlacedata was classified using the KNN classifier. For the standardized Euclidean 

distance measure, a K of 5 was used. K was set to 3 for the Mahalanobis distance measure. In 

order for the walks to be saved, they must have 5 consecutive windows that are classified as 

walking windows. 

The first room considered was that of subject 3004. We looked at 2 days for this room. 

The first day was September 1, 2011, and the second day was January 11, 2012. In this room, 

the radar system was placed to the right of the front door on the ground. The Kinect was placed 

above and to the left of the front door. In the second apartment (3047), the radar was placed to 

the right of the kitchen’s bar that was a few feet in front of and to the left of the front door. The 

Kinect was above and to the left of the front door. September 15, 2011 was the day that was 

used for this room. The last apartment that we used was the apartment of 3038. There, the 
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radar system was placed in the bedroom between the nightstand and the dresser and the 

Kinect was above and to the right of the front door. The layouts of the three rooms are shown 

in Figures 5.5, 5.6, and 5.7. 
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Figure 5.5 Diagram of 3004’s apartment with the placement of the different sensor. The Key 

is as the top. 
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Figure 5.6 Diagram of 3047’s apartment with the placement of the different sensor. 
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Figure 5.7 Diagram of 3047’s apartment with the placement of the different sensor. 
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5.3.1 Standardized Euclidean 

 

 During the first day for 3004, 31 walk times were found by the classifier. Of those times, 

29 of the times were times of actual walks. TABLE 5.23 shows that there was a variety of 

different types of walks that were found. These walks include walks toward the radar, away 

from the radar, across the radar, multiple people walking, walks not in a straight path, and 

walks with small pauses in them. For some of the walks, the whole walk was not collected by 

the Kinect because the walks started in a separate room. For this reason, the 2 walks that were 

not confirmed by the Kinect could possibly still be walks in a different part of the apartment. 

 For the second day collected from 3004, as shown in TABLE 5.24, the classifier found 37 

walk times. Five of those walks were not confirmed to be walks looking at the Kinect video data. 

The walks found for this day were similar to the walks that were found during the first day. For 

some of the unconfirmed walks, a person was in the kitchen area which is not in the view of the 

Kinect camera. For these times, it could be possible that the person is moving back and forward 

in the kitchen which is causing the classifier to see it as a walk. Since the kitchen is small, these 

would still not be walks, but instead leg movements back and forth for maneuvering around the 

kitchen area. 

 In the apartment of 3047, 114 walks were found during the 8 hour period, and 107 of 

those times were the times of actual walks. Some of these walks are shown in TABLE 5.25. Since 

this was a larger apartment, it had many longer walks that were detected. Some of the non-

walks that were seen as walks were movements around the couch area and swaying back and 

forth near the radar. There were also classified walk times were there seemed to be no 

movements and the residents were sitting down on a couch. There may, in fact, be some 
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interference from movements outside of the room, but based on the place of the radar in the 

apartment, this is unlikely. 

 The apartment of 3038 had 14 walk times found during the day (see TABLE 5.26). Two of 

those times were not confirmed by the Kinect. In both of those cases, the resident was in the 

bedroom, out of the view of the Kinect. With that, it is a strong possibility that those times 

could indeed be walks. Most of the walks found in this room were walks going in and out of the 

bedroom. 
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TABLE 5.23 
WALKS FOUND IN 3004’S APARTMENT USING KNN DAY 1 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 
Time Length (s) Description 

9/1/2011 09:02:01 14 walks in with someone else 

9/1/2011 09:35:48 5 walking outside the door 

9/1/2011 09:50:28 6 side room to front door 

9/1/2011 10:14:17 6 walks in and right back out 

9/1/2011 10:35:40 9 walks from side room to the bed room 

9/1/2011 10:37:12 6 walk from bedroom to side room 

9/1/2011 10:38:08 6 walks from side room to outside the apartment 

9/1/2011 11:13:45 5 2 people take a few steps, then stop 

9/1/2011 11:13:59 5 2 people walk into the bedroom 

9/1/2011 11:14:28 8 two people walk from bedroom to front door 

9/1/2011 11:14:57 6 walks from front door to outside door 

9/1/2011 11:20:57 10 walks in to middle of the room, stops for 1 sec, then walks to 
side room 

9/1/2011 11:21:13 7 nothing in the video 

9/1/2011 11:23:05 8 walks from room to outside the front door (best so far) 

9/1/2011 13:13:30 6 walks in and walks into the kitchen area 

9/1/2011 13:17:12 7 walk from side room to bedroom 

9/1/2011 13:18:27 8 bedroom to front door 

9/1/2011 13:19:15 7 walks in from door to the bed room  (good walk as well) 

9/1/2011 13:19:23 7 nothing in the video 

9/1/2011 13:23:48 6 from bedroom to sideroom 

9/1/2011 13:32:49 13 walks from side room to outside the door 

9/1/2011 13:33:20 6 walks in the door to kitchen area, and then right back out 

9/1/2011 14:36:26 7 walk from side room to bedroom 

9/1/2011 14:37:54 6 walk from bedroom to side room 

9/1/2011 15:51:23 8 walks from side to outside back door 

9/1/2011 15:53:18 9 walks from outside back door to the bar outside kitchen area 

9/1/2011 15:54:07 9 walks from bar area to outside back door 

9/1/2011 15:55:18 10 walks from outside  back door to the bedroom 

9/1/2011 15:57:16 5 walk from bedroom to side room 

9/1/2011 16:47:26 8 side room to bedroom 
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TABLE 5.24 
WALKS FOUND IN 3004’S APARTMENT USING KNN DAY 2 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Time Length (s) Description 

01/11/2012 11:48:08  15 walk from back to front of room then back 

01/11/2012 11:49:24  7 walk from back to front of room 

01/11/2012 11:49:33  5 walk from front to back of room 

01/11/2012 11:49:44  5 nothing 

01/11/2012 11:50:40  6 walk from back side to front 

01/11/2012 11:58:48  10 walk from front door to the back 

01/11/2012 11:59:55  14 walk from the back room to the front door 

01/11/2012 12:04:38  5 walk from front door to right side room 

01/11/2012 12:04:56  7 walk from bar area to the back of the room (side room) 

01/11/2012 12:05:29  14 walk from back left to the front door 

01/11/2012 12:12:28  5 moving around in the kitchen 

01/11/2012 12:14:06  5 nothing 

01/11/2012 12:15:53  7 walk from kitchen to the side room 

01/11/2012 12:29:29  7 walk from the side room to the  bar area 

01/11/2012 12:31:55  5 nothing might be in the kitchen 

01/11/2012 12:34:05  9 walking from kitchen to the side room 

01/11/2012 12:57:21  7 nothing  

01/11/2012 13:00:03  5 nothing 

01/11/2012 13:00:57  5 walk from out of the kitchen  and round the bar 

01/11/2012 13:02:01  7 walk from the bar to the side room 

01/11/2012 14:10:22  8 nothing 

01/11/2012 14:26:26  8 walk from side room to the back of the room  

01/11/2012 14:46:05  7 walk from the back to the side room 

01/11/2012 15:48:40  8 walk from side room to the back of the room  

01/11/2012 15:50:06  9 walk from back of the room to the side room 

01/11/2012 16:04:27  8 walk from side room to the back of the room  

01/11/2012 16:06:35  7 walk from back of the room to the side room 

01/11/2012 16:16:55  11 walk from side room to the back of the room  

01/11/2012 16:17:28  10 walk from back of the room to the side room 

01/11/2012 16:23:53  7 walk from the side room to the back of the room 

01/11/2012 16:27:52  
6 walk from back room to couch in the back then back in to the 

back room 

01/11/2012 16:28:46  6 walk from the back room to the couch 

01/11/2012 16:29:05  9 walk from the back couch to the bar area 

01/11/2012 16:46:06  10 walk from the front door to the back room 

01/11/2012 16:46:47  19 walk from the back room to the front door 

01/11/2012 16:48:49  8 moving around at the front door 
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TABLE 5.25 
WALKS FOUND IN 3047’S APARTMENT USING KNN DAY 1 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Time Length (s) Description 

9/15/2011 9:04:28 10 walks from side room toward and across radar 

9/15/2011 9:10:25 5 walk from side room to side room 

9/15/2011 9:20:00 9 walks from in front of radar to the back 

9/15/2011 9:20:56 12 walks from back to front along the right wall 

9/15/2011 9:24:47 5 side room to side room 

9/15/2011 9:26:33 5 walks just outside of right side room, then stops  

9/15/2011 9:26:59 8 walks from just outside of the room to the kitchen 

9/15/2011 9:30:05 6 walks from left room to the back and out the patio door 

9/15/2011 9:31:47 12 walk from behind radar to the back of the room 

9/15/2011 9:32:07 16 walk from back to in front of radar 

9/15/2011 9:33:14 5 walk from back right to just in front of the couch 

9/15/2011 9:36:30 9 walk from kitchen to the back of the room 

9/15/2011 9:37:13 5 walk from the couch to the kitchen 

9/15/2011 9:40:14 11 walk from kitchen from side room (right) 

9/15/2011 9:44:35 7 walks out of the right side room 

9/15/2011 9:44:46 5 walk from the middle of the room to the back 

9/15/2011 9:50:42 10 walk from back of the room to the kitchen 

9/15/2011 9:59:21 5 walks from the side of the couch to the front of the couch 

9/15/2011 10:02:53 7 could not tell 

9/15/2011 10:25:34 10 walk from side room to the middle of the room 

9/15/2011 10:25:56 5 walks into the right side room 

9/15/2011 10:27:05 6 could not tell 

9/15/2011 10:35:28 
5 walks from right side to the front of the couch, and then back 

between the couch and left side 

9/15/2011 10:55:47 
5 walks on the right side from in front of the right side room towards 

the front 

9/15/2011 10:55:54 6 walk from the couch to to the middle of open area, then stops 

9/15/2011 10:57:34 9 multiple people walking 

9/15/2011 10:59:09 7 walks from the kitchen to the left side room 

9/15/2011 10:59:52 
7 2 people walk from the open area to the back. One stops closer to 

the front then the other 

9/15/2011 11:00:47 5 takes a few steps to the back of the room 

9/15/2011 11:01:52 
7 one person walks from the left to the middle while one walks one 

the right side towards the patio and then back 

9/15/2011 11:02:52 6 walk from the left side room to the back of the room 

9/15/2011 11:03:00 5 walk from the back of the room to the left side room 

9/15/2011 11:03:58 7 walks from the middle of the room to the left side room 

9/15/2011 11:04:37 6 walk from the middle of the room towards the bar 
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TABLE 5.26 

WALKS FOUND IN 3038’S APARTMENT USING KNN 
(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Time Length (s) Description 

2/5/2012 11:54:05 7 walk 

2/5/2012 11:56:34 8 can not tell 

2/5/2012 13:09:55 9 walk 

2/5/2012 13:16:24 6 can not tell 

2/5/2012 13:16:49 7 walk 

2/5/2012 13:30:36 10 walk 

2/5/2012 13:31:37 7 walk 

2/5/2012 14:27:40 7 walk 

2/5/2012 14:28:46 8 walk 

2/5/2012 14:29:09 7 walk 

2/5/2012 14:29:33 10 walk 

2/5/2012 16:02:40 6 walk 

2/5/2012 16:11:32 7 walk 

2/5/2012 16:38:10 5 walk 

 

 

TABLE 5.27 
TOTAL WALKS FOUND FOR EACH OF THE APARTMENTS 

(STANDARDIZED EUCLIDEAN DISTANCE, K = 5) 

Room # of Days Walks detected Actual Walks 

3004 2 68 61 

3047 1 114 107 

3038 1 14 12 
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The overall performance of the classifier using the standardized Euclidean distance was 

pretty good with 91.8% of the walks found being confirmed as walks. TABLE 5.27 shows the 

performance of the classifier for each room. Some of the times found were confirmed to not be 

walks while other times could not be confirmed as walks. This means that the accuracy of the 

classifier may be better than 91.8%. There are times where the classifier missed walks. Since it 

is okay that walks are missed during the day, the accuracy is based on when the classifier 

determines that a walk has occurred.  

 

5.3.2 Mahalanobis Distance 

 

 The classifier found 32 walks in 3004’s apartment using the Mahalanobis distance 

measure on September 01, 2011. Two of the times for this classifier were different from the 

times given by the classifier using the standardized distance. For one of the times, nothing was 

seen in the video while the other time was of two people walking into apartment from the front 

door. There are times when the beginning and ending times of the two classifiers did not match 

up. In most of those cases, the classifiers were within one second of each other. 

 For the second day used in 3004’s apartment, 40 walks were found. From this day, 30 of 

the walk times could be confirmed by the Kinect video data (see TABLE 5.29). This classifier 

picked up more false alarms than the previous classifier did for this room. 
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TABLE 5.28 
WALKS FOUND IN 3004’S APARTMENT USING KNN DAY 1 

(MAHALANOBIS DISTANCE, K = 3) 

Time Length 
(s) 

Description 

9/1/2011 9:02:01 14 walks in with someone else 

9/1/2011 9:35:48 5 walking outside the door 

9/1/2011 9:50:28 6 side room to front door 

9/1/2011 10:14:17 6 walks in and right back out 

9/1/2011 10:16:04 5 Nothing in video 

9/1/2011 10:35:40 8 walks from side room to the bed room 

9/1/2011 10:37:12 6 walk from bedroom to side room 

9/1/2011 10:38:08 6 walks from side room to outside the apartment 

9/1/2011 11:13:19 5 2 people walk into the door 

9/1/2011 11:13:45 5 2 people take a few steps, then stop 

9/1/2011 11:13:59 5 2 people walk into the bedroom 

9/1/2011 11:14:28 8 two people walk from bedroom to front door 

9/1/2011 11:14:57 6 walks from front door to outside door 

9/1/2011 11:20:57 
9 walks in to middle of the room, stops for 1 sec, then walks to 

side room 

9/1/2011 11:21:14 6 nothing in the video 

9/1/2011 11:23:05 8 walks from room to outside the front door (best so far) 

9/1/2011 13:13:30 10 walks in and walks into the kitchen area 

9/1/2011 13:17:12 7 walk from side room to bedroom 

9/1/2011 13:18:27 8 bedroom to front door 

9/1/2011 13:19:15 7 walks in from door to the bed room  (good walk as well) 

9/1/2011 13:19:23 7 nothing in the video 

9/1/2011 13:23:47 7 from bedroom to sideroom 

9/1/2011 13:32:49 13 walks from side room to outside the door 

9/1/2011 13:33:20 6 walks in the door to kitchen area, and then right back out 

9/1/2011 14:36:26 7 walk from side room to bedroom 

9/1/2011 14:37:54 6 walk from bedroom to side room 

9/1/2011 15:51:22 9 walks from side to outside back door 

9/1/2011 15:53:18 9 walks from outside back door to the bar outside kitchen area 

9/1/2011 15:54:08 8 walks from bar area to outside back door 

9/1/2011 15:55:18 10 walks from outside  back door to the bedroom 

9/1/2011 15:57:16 5 walk from bedroom to side room 

9/1/2011 16:47:26 8 side room to bedroom 
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TABLE 5.29 
WALKS FOUND IN 3004’S APARTMENT USING KNN DAY 2 

(MAHALANOBIS DISTANCE, K = 3) 

Time Length (s) Description 

1/11/2012 9:03:56 5 nothing in video 

1/11/2012 10:21:06 5 nothing in video 

1/11/2012 11:48:08 5 walk from the back to the front of the room 

1/11/2012 11:48:14 9 walk from the front to the back of the room 

1/11/2012 11:49:23 8 walk from the back door to the kitchen bar 

1/11/2012 11:49:33 5 walk from front to back of room 

1/11/2012 11:49:44 5 nothing 

1/11/2012 11:50:40 6 walk from back side to front 

1/11/2012 11:58:48 10 walk from front door to the back 

1/11/2012 11:59:55 14 walk from the back room to the front door 

1/11/2012 12:04:56 7 walk from bar area to the back of the room (side room) 

1/11/2012 12:05:29 14 walk from back left to the front door 

1/11/2012 12:12:28 5 moving around in the kitchen 

1/11/2012 12:12:36 5 bends over then walks from just outside to inside the kitchen 

1/11/2012 12:13:26 5 nothing in video 

1/11/2012 12:14:06 5 nothing 

1/11/2012 12:15:53 7 walk from kitchen to the side room 

1/11/2012 12:29:27 7 walk from the side room to the  bar area 

1/11/2012 12:31:55 5 nothing might be in the kichen 

1/11/2012 12:34:05 8 walking from kitchen to the side room 

1/11/2012 12:57:21 7 nothing  

1/11/2012 13:00:03 5 nothing 

1/11/2012 13:02:01 7 walk from the bar to the side room 

1/11/2012 14:10:22 8 nothing 

1/11/2012 14:26:26 8 walk from side room to the back of the room  

1/11/2012 14:45:21 5 nothing in video 

1/11/2012 14:46:04 8 walk from the back to the side room 

1/11/2012 15:48:40 8 walk from side room to the back of the room  

1/11/2012 15:50:06 9 walk from back of the room to the side room 

1/11/2012 16:04:27 8 walk from side room to the back of the room  

1/11/2012 16:06:35 7 walk from back of the room to the side room 

1/11/2012 16:16:55 10 walk from side room to the back of the room  

1/11/2012 16:17:27 12 walk from back of the room to the side room 

1/11/2012 16:23:53 7 walk from the side room to the back of the room 

1/11/2012 16:27:52 
6 walk from back room to couch in the back then back in to the back 

room 

1/11/2012 16:28:46 6 walk from the back room to the couch 

1/11/2012 16:29:06 8 walk from the back couch to the bar area 
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1/11/2012 16:46:06 10 walk from the front door to the back room 

1/11/2012 16:46:47 8 walk from the back room to the front door 

1/11/2012 16:48:50 7 moving around at the front door 

 

 During the data collection day for 3047, 101 walks were found in the apartment. Some 

of these walk times are shown in TABLE 5.30. Of those times, 3 of them were not confirmed to 

be walks and 1 of those times was confirmed to be a non-walk. This classifier missed more 

walks than the previous classifier, but it also has less than half of the times where walking was 

not confirmed. Most of the times using the Mahalanobis distance classifier were found using 

the standardized Euclidean classifier.  

  

 For 3038, the classifier using the Mahalanobis distance found the same walksthat were 

found by the classifier using the standardized Euclidean Distance, except the classifier using the 

Mahalanobis distance missed one. TABLE 5.31 shows the results from room 3038. The classifier 

did not find any different walks with this setting as well, but some of the starting times and 

lengths did vary between the two sets of results from the classifier. 

 Overall, the classifier had an accuracy of 90.3% for the walks that it found when using 

the Mahalanobis distance. In comparison to the results from the standardized Euclidean 

distance classifier, this classifier missed more of the walks overall. TABLE 5.32 shows the overall 

results for each room. In 3004’s apartment, the Mahalanobis classifier seemed to pick up more 

times when there were not walks, but in the apartment of 3047, the classifier seemed to pick 

up fewer times when there wasn’t any walking. 
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TABLE 5.30 
WALKS FOUND IN 3047’S APARTMENT USING KNN 

(MAHALANOBIS DISTANCE, K = 3) 

Time 
Length 
(s) 

Description 

9/15/2011 9:01:41 5 walk from side room to the side of the bar 

9/15/2011 9:04:28 8 walks from side room toward and across radar 

9/15/2011 9:10:25 5 walk from side room to side room 

9/15/2011 9:18:23 5 walk from right side close to the door,  to the bar 

9/15/2011 9:20:00 9 walks from in front of radar to the back 

9/15/2011 9:20:56 12 walks from back to front along the right wall 

9/15/2011 9:24:47 5 side room to side room 

9/15/2011 9:26:33 5 walks just outside of right side room, then stops  

9/15/2011 9:26:59 6 walks from just outside of the room to the kitchen 

9/15/2011 9:30:05 5 walks from left room to the back and out the patio door 

9/15/2011 9:31:49 10 walk from behind radar to the back of the room 

9/15/2011 9:32:08 15 walk from back to in fron of radar 

9/15/2011 9:33:14 5 walk from back right to just in front of the couch 

9/15/2011 9:36:30 8 walk from kitchen to the back of the room 

9/15/2011 9:37:13 5 walk from the couch to the kitchen 

9/15/2011 9:40:13 12 walk from kitchen from side room (right) 

9/15/2011 9:44:35 7 walks out of the right side room 

9/15/2011 9:44:46 5 walk from the middle of the room to the back 

9/15/2011 9:50:43 10 walk from back of the room to the kitchen 

9/15/2011 10:02:55 5 could not tell 

9/15/2011 10:25:34 10 walk from side room to the middle of the room 

9/15/2011 10:25:56 5 walks into the right side room 

9/15/2011 10:27:06 5 could not tell 

9/15/2011 10:55:55 5 walk from the couch to to the middle of open area, then stops 

9/15/2011 10:57:34 8 multiple people walking 

9/15/2011 10:59:08 8 walks from the kitchen to the left side room 

9/15/2011 10:59:53 
6 2 people walk from the open area to the back. One stops closer to the front 

then the other 

9/15/2011 11:00:47 5 takes a few steps to the back of the room 

9/15/2011 11:01:53 
6 one person walks from the left to the middle while one walks one the right 

side towards the patio and then back 

9/15/2011 11:02:03 5 walks around the front of the couch from the right of it to the left of it 

9/15/2011 11:02:52 6 walk from the left side room to the back of the room 

9/15/2011 11:02:59 6 walk from the back of the room to the left side room 

9/15/2011 11:03:58 7 walks from the middle of the room to the left side room 

9/15/2011 11:04:12 6 two people walk in from left side room to the middle of the room 

9/15/2011 11:04:37 6 walk from the middle of the room towards the bar 
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TABLE 5.31 
WALKS FOUND IN 3038’S APARTMENT USING KNN 

(MAHALANOBIS DISTANCE, K = 3) 

Time Length (s) Description 

2/5/2012 11:54:05 7 walk 

2/5/2012 11:56:34 8 can not tell 

2/5/2012 13:09:55 9 walk 

2/5/2012 13:16:24 6 can not tell 

2/5/2012 13:16:49 7 walk 

2/5/2012 13:30:37 9 walk 

2/5/2012 13:31:38 6 walk 

2/5/2012 14:27:40 7 walk 

2/5/2012 14:28:46 8 walk 

2/5/2012 14:29:09 6 walk 

2/5/2012 14:29:33 10 walk 

2/5/2012 16:02:40 6 walk 

2/5/2012 16:11:31 8 walk 

 

TABLE 5.32 
TOTAL WALKS FOUND FOR EACH OF THE APARTMENTS 

(MAHALANOBIS DISTANCE, K = 3) 

Room # of Days Walks detected Actual Walks 

3004 2 72 59 

3047 1 101 98 

3038 1 13 11 
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Chapter 6 – Conclusion 
 

The results show promise in being able to extract useful walk segments from normal 

daily activity using radar. In both the lab and in actual living environments, walks were detected 

with very few false alarms. Results from the lab data show that walks are able to be detected 

within one second of their actual start time. Most of the walk time lengths were within a 

second as well. This one second time differences may be due to the fact that a two second time 

window is being used. Even though the whole window does not have walking data, there may 

be enough walk information in it so that the whole window is seen as a walk. Also, with the lab 

data, there were not many false alarms that were picked up by the radar. This is a promising 

result that shows that if non-walk activities do not have movements resembling walking 

motions, it is very unlikely that it will be seen as a walk.  

Of the two different types of classifiers that were used on the lab data, the KNN 

classifier did a better job of determining the beginnings and the lengths of the walks. The 

classifier using Bayes decision rule had more times when windows in the middle of a walk 

would be misclassified as non-walking windows. When testing the KNN, the classifier using the 

Standardized Euclidean distanced got the best results when K was equal to 5 or 7. When K was 

equal to 5, the classifier had a slightly better chance of being able to see small pauses in walks, 

while the classifier had better performance in determining the actual start and end times when 

the value of K was 7. When using the Mahalanobis distance for the KNN classifier, the best 

performance happened when K was set to 3. Some of the other values of K showed slightly 

better performance with getting the correct starting and ending times, but when K was set to 3, 
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the classifier did a much better job of classifying the turnaround and pauses during the walk 

sequence. The classifier was able to see the turnaround time for 5 of the walks as non-walks 

when K was 3. With any other value of K, the number of times that happened dropped down to 

one. 

The results from the TigerPlace senior apartments show that walks that are detected by 

the radar system have 91.8% accuracy when using standardized Euclidean distance and setting 

K equal to 5. When the classifier used the Mahalanobis Distance and a K of 3, the accuracy of 

the system became 90.3%. Most of the non-walks that were detected as walks did have some 

leg motions or movements. Throughout the day, some of the walks were not detected no 

matter which distance measure was used. In all of the rooms, the classifier using the 

Mahalanobis distance missed more of the walks. Recall that it is okay that some walks are 

missed since only a few walks a day would be needed to do a good gait analysis for the given 

person. In future work, the classifier should somehow be adjusted so that the number of false 

positives goes down to zero even if that means losing additional walks. 

Overall, the KNN classifier using the standardized Euclidean distance and a K of 5 

showed the best results. These settings had the better accuracy for the walks that it found in 

TigerPlace, and the classifier was able to pick up more walks. The classifier using the 

standardized Euclidean distance also showed marginally better results in finding the correct end 

times with the lab data. The classifier with both of the distance measures showed similar results 

for the starting times.  

 The next step in the research and development of the system is to enhance the 

algorithm so that only walks that are useable for good gait analysis are detected. Any walks 
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across the radar and walks that are not straight toward the radar should not be detected. Walks 

that are shorter in time length should be dismissed as well. Also, an algorithm needs to be 

developed to determine whether each found walk is likely to have been completed by the 

person of interest. Walks from visitors, pets or other family members should be discarded. 

When looking at the daily analysis over a longer period of time, the trends of the person’s gait 

can then be collected. These trends can be used to alert caregivers of an increasing fall risk for 

the resident which could lead to quicker treatment or intervention. A system like this could be 

promising in reducing falls and fall risk in elderly. 
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