Abstract

The thesis begins with proving some theorems about Gauss sums and Jacobi sums. Using theorems the first chapter ends with a proof that if p is a prime such that $p \equiv 1 \pmod{4}$, then there are integers a and b such that $p = a^2 + b^2$. In the second chapter some useful results concerning the Dedekind zeta function are proven. Among these results are that the Dedekind zeta function is meromorphic with a simple pole at $s = 1$. The third chapter has a new result concerning Carmichael numbers. Specifically, let $\alpha, \beta \in \mathbb{R}$ be fixed with $\alpha > 1$, and suppose that α is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence $B_{\alpha, \beta} = (\lfloor \alpha n + \beta \rfloor)_{n=1}^{\infty}$. The chapter concludes with heuristic evidence via Dickson’s conjecture to support our conjecture that we obtain same result when α is an irrational number of infinite type. In the fourth chapter we show that for any finite Galois extension K of the rational numbers \mathbb{Q}, there are infinitely many Carmichael numbers composed solely of primes for which the associated class of Frobenius automorphisms coincides with any given conjugacy class of $\text{Gal}(K|\mathbb{Q})$. The result has three corollaries: for any algebraic number field K, there are infinitely many Carmichael numbers which are composed solely of primes that split completely in K; for every natural number n, there are infinitely many Carmichael numbers of the form $a^2 + nb^2$ with a, b integers; and there are infinitely many Carmichael numbers composed solely of primes $p \equiv a \pmod{d}$ with a, d coprime. Finally, in chapter five we prove a new result regarding Piatetski-Shapiro primes in relation to almost primes. We show that for any fixed $c \in (1, \frac{77}{76})$ there are infinitely many primes of the form $p = \lfloor n^c \rfloor$, where n is a natural number with at most eight prime factors (counted with multiplicity).