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1. INTRODUCTION 

1.1 Motivation 

As the largest domain of all living organisms on earth, bacteria are estimated to have 

more than five nonillion(1030) individuals worldwide [1], which are far more than 

previous estimations of the total number of bacteria [2]. These single-cell organisms can 

be found everywhere, e.g., deep sea, hot springs, human gut, and even in radioactive 

waste [3]. Due to close connections between bacteria and human life, we cannot live 

without them and actually benefit from the microorganisms in many cases, e.g. food 

production, human health [4], environmental sciences [5], and chemical industry [6, 7]. 

On the other hand, pathogenic bacteria are one of the most serious threats to human 

life. For example, tuberculosis, the most common fatal bacterial disease, kills about 2 

million people every year [8]. Since 1676, when Antonie van Leeuwenhoek first 

observed bacteria, scientists have never stopped exploring the micro-world. The task of 

identification and classification of bacteria remains challenging because bacteria are 

invisible to naked eyes and cannot be easily differentiated morphologically. During the 

past two decades, DNA sequencing technologies have become a powerful tool for 

scientists to take up the challenge.  

       In 1995, when John Craig Venter just started to sequence the first bacterial genome 

– Haemophilus influenza [9], DNA sequencing was extremely difficult and time 

consuming. The common thought at the time was that it would be sufficient to build a 

gene pool of the whole microbial community from just a few dozen representative 
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genomes. Today, thanks to new sequencing technologies, more than 1600 microbial 

whole genome sequences have been released and many more bacterial genome-

sequencing projects are ongoing [10]. With the accumulation of bacterial genomic data, 

the focus of microbial genomics (study of genomes of microorganisms including 

archaea, bacteria and fungi) is shifting from single genome to pan-genome (gene pool of 

a particular species) and meta-genome (environmental gene/species pool). However, 

the explosion of data has not answered all the questions of researchers in this field. It 

becomes evident that these data just revealed a tip of the iceberg for the bacterial 

world. In-depth analysis of these data is needed to help better understand the genome 

diversity and dynamics of bacteria, interactions between bacteria and their 

hosts/environments, and the pathogenicity of pathogens. Meanwhile, the 

unprecedented amount of genome data also poses major challenges for computational 

analysis, which is an essential tool for microbial genomics. In fact, computational 

methods for massive genomic sequence analysis have become a bottleneck of microbial 

genomics. 

1.2 About this dissertation 

In this dissertation, we will focus on computational methods for discovering the 

interactions between bacteria and hosts/environments and bacterial characterization 

(i.e. identification and classification), based on sequencing data with consideration of 

bacteria’s hosts and environments. While this topic has been brought up in recent 

publications [11-16], no in-depth review has been presented. Bacterial identification 

http://en.wikipedia.org/wiki/Archaea
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through detecting variations of genome sequences across different species/genus is a 

very important and essential step of analyzing genomic data, especially for 

metagenomic data. Thus, in chapter 2, we first review existing computational tools and 

their limitations for bacterial identification. As bacteria evolve rapidly in response to the 

environments, bacterial adaptations to different environments/hosts will reflect in their 

genome sequences. Many bacteria, even belonging to the same species, still show 

extensive genomic plasticity and diverse pathogenicity. For example, three different E. 

coli strains, laboratory strains E. coli MG1655, enterohemorrhagic E. coli EDL933, and an 

uropathogenic strain E. coli CFT073-), share only 39.2% common genes [17].Thus, 

chapter 3 of this dissertation, we will assess the practical computational methods for 

detecting the sequence variations of bacteria in different environments for a given 

species. In chapter 4, we will dissect the evolutionary dynamics of bacterial virulence 

and review the methods for identification of genetic markers in bacterial DNA 

sequences that are associated with a disease or host. In chapter 5, based on our 

observations and works in chapter 4, we predict some novel effectors for those known 

pathogens. The last chapter is the summary of this dissertation. 
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2. REVIEW OF GENERAL MICROBIAL IDENTIFICATION 

2.1 Microbial identification 

In the past, analysis of microbial communities was a complicated task due to their high 

diversity and inaccessibility via culturing. The emerging next-generation sequencing 

technologies provide a potential way for doing this analysis on a routine basis [12]. The 

Human Microbiome Project [18], which began in May 2007, aimed to survey the 

microbial communities that colonize the human body. Currently, over 100 similar 

metagenomic projects are ongoing, covering microbial communities of skin and several 

tracts, including gastrointestine, genitourinary tract, oral cavity, nasopharynx, and 

respiratory tract [12]. These studies will undoubtedly provide new insight into many 

aspects of complex microbial communities, such as metabolic capabilities of 

microorganisms, co-evolution of bacteria and host, communication of microbial cells 

and so on [16]. Although metagenomics is still in its early stage, this emerging field has 

already discovered many surprises in microbial genomics and microbiology [16]. Among 

the extensive genomic sequencing data of microbial communities generated by various 

metagenomic projects, approximately 62% of the bacteria that can be identified from 

the human intestine were previously unknown and 80% of them are not cultivatable 

[19]. Due to the explosion of metagenomic data, DNA sequence-based identification and 

classification are becoming more and more important in exploring microbial diversity. 

        In the 1970s, DNA-DNA hybridization was introduced to differentiate bacterial 

species. Any two bacterial strains with more than 70% DNA-DNA hybridization were 
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considered to be the same species. Later, with the development of new sequencing 

techniques, Carl Woese pioneered other criteria for bacterial identification[20]. For 

example, the 16S ribosomal RNA (rRNA) gene is highly conserved in bacteria and 

archaea, and was used for identification and discovery of pathogens starting from 1990 

[21]. Nowadays, 16S rRNA gene is also widely used for phylogenetic studies [22]. 

However, due to the limitations of 16S rRNA gene, other genetic markers have been 

employed for bacterial identification, e.g. multilocus sequence typing (MLST) [23]. 

Recently, whole genome-based methods have been developed for bacterial 

identification. Despite these advances, complete genome sequence is not easily 

obtained [24, 25]. 

        The 16S rRNA gene, a molecular clock, has a relatively slow evolutionary rate of 1% 

sequence divergence per 50 million years. It is around 1500 nucleotides in length and 

contains 9 hypervariable regions [26] (Figure 1) as well as conserved regions 

interspersed with the variable ones. In terms of similarity of 16S rRNA gene sequences, 

bacteria within the same genus and species usually share about 95% and 97% pairwise 

sequence identities, respectively [27]. Because of the consistency of sequences in 

bacteria, 16S rRNA gene sequencing has become the gold standard for characterization 

of bacterial communities.  
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Figure 1. The secondary structures of 16S rRNA gene of Escherichia coli. Generated by 

using XRNA (http://rna.ucsc.edu/rnacenter/xrna/xrna.html) with 9 hypervariable 

regions circled. 

http://rna.ucsc.edu/rnacenter/xrna/xrna.html
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2.2 Common factors affecting bacterial identification and classification 

Bacterial identification is based on a specific taxonomic scheme. There are several 

taxonomic schemes proposed by independent curators, e.g., the Ribosomal Database 

Project (RDP) (Bergey’s) [28], Norman Pace [29], Wolfgang Ludwig [30], Phil Hugenholtz 

[31], and the National Center for Biotechnology Information (NCBI). All major rRNA 

sequence databases, such as RDP (http://rdp.cme.msu.edu/) [32], Greengenes 

(http://greengenes.lbl.gov) [33], and ARB-SILVA (http://www.arb-silva.de) [34] were 

designed based on different taxonomic schemes. The variations among different 

taxonomic schemes have a direct impact on the identification results. For example, 

there are 31 phyla in the RDP database, 50 in Ludwig’s taxonomy, 68 in NCBI and 88 in 

the system proposed by Pace and Hugenholtz. Within each phylum, the number of sub-

groupings also varies. After 2005, the oldest and most traditional bacterial classification 

system - Bergey’s taxonomy – started to build taxonomy based on analyses of 

nucleotide sequences of ribosomal small subunit RNA rather than on phenotypic data 

[28]. Nevertheless, most classification systems are still based on structural and 

functional attributes of bacteria. Thus, 16S rRNA gene-based identification results may 

never match those taxonomies exactly. 

        Sequence alignment is a necessary step in 16S rRNA gene-based identification. 

Besides the multiple sequence alignment programs such as ClustalW [35], MEGA [36], 

NAST [37] and MUSCLE [38], some databases also include alignment programs, such as 

RDP II, Greengenes, and ARB-SILVA. It is shown that alignment quality has a significant 
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impact on sequence classification [39]. Incorporating the well-determined secondary 

structures of 16S rRNA gene with the pairwise or multiple sequence alignment will 

improve alignment quality [32], but the extra information will also significantly increase 

the computational complexity. Another recent research reveals that the longest totally 

conserved segment in 16S rRNA gene across all bacteria is only 11 bps and in most 

regions the longest absolutely conserved stretches are only 4 bps [12, 40]. This stark 

reality is a challenge for developing effective and accurate alignment algorithms, 

especially for those 16S rRNA gene fragments with less than half of their full lengths. 

         Different hypervariable (V) regions show different efficacies in identifying species, 

and no single hypervariable region can differentiate bacterial species among all bacteria. 

At the genus level, using 2-region set for identifications has become a standard 

approach, and about 90% of bacterial strains successfully identified by this approach 

cannot be identified through biochemical (phenotype) methods [41]. Chakravorty et al. 

proposed that the V2 and V3 regions were most suitable for universal genus 

identification of pathogenic bacteria [42]. The V5-V6 region set was reported to be the 

most useful in study of human oral microbiome [43, 44]. It is suggested that analyzing 

three different 2-region sets (V2–V3, V4–V5, and V6–V8) in parallel was effective in 

determining the bacterial consortia in maize rhizospheres [45]. Some studies also 

revealed that the V6-V9 set [46], especially the V6 region [47, 48], represented an 

outlier and might not be suitable to use directly for taxonomic assignment. Therefore, 

the choice of hypervariable regions is critical for bacterial identification [41]. There is 
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room for further computational algorithm development in designing an optimal 

hypervariable set for bacterial identification. 

        Due to their highly conserved nature, 16S rRNA gene sequences might not be a 

good genetic marker to distinguish the sub-populations within a species. Even different 

species within the same genus, such as Bacillus cereus, B. thuringiensis and B. anthracis 

[49], have only a few bases different in their 16S rRNA gene sequences. No matter what 

computational methods are used, there will be a theoretical upper limit of the average 

accuracy for species identification across all species. 

2.3 Major computational methods and their limitations 

Generally speaking, computational methods for bacterial identification can be divided 

into two major categories: homology- and composition-based [50, 51] as summarized in 

Figure 2. Homology-based approaches use traditional sequence alignment algorithms to 

compare sequences similarity. According to the techniques of alignment, it can be 

further divided into two subgroups, i.e., sequence search (especially using BLAST) and 

phylogeny. Composition-based methods build models based on the different features 

extracted from sequences, e.g., GC content [52], codon usage, and frequencies of 

motifs. The typical classifiers used in composition-based methods are naïve Bayes 

classifier, Markov model, and support vector machine (SVM).  
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Figure 2. Major algorithms used in bacterial identification. 

 

        BLAST: Basic Local Alignment Search Tool (BLAST) [53] is one of the most popular 

bioinformatics programs. It is most often used for comparing biological sequences, such 

as searching a query sequence against a sequence library. Thus, it naturally became the 

first choice of metagenomic studies in the early stage and has been shown to be 
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effective in many studies [54-56]. Due to the limitation of its algorithm, the closest 

BLAST hit may not be the nearest neighbor [57] and this approach can reach a high-

accuracy level only when the query reads have significant similarities to the matches in 

the sequence library [13]. Since the lengths of reads generated by next-generation 

sequencing technologies are still not long enough, short-reads are generally not unique 

and often cause ambiguous identification results. Recently, some researchers started to 

evaluate the performance of BLAST for analyzing metagenomic data [58, 59]. For some 

metagenomics datasets, the significant BLAST hits only accounted for 35% of the reads 

in the sample [54]. With the improvement of sequencing techniques, the length of reads 

are getting longer, and the reference genome libraries are becoming more 

comprehensive [18]. Extremely expensive computational complexity is another common 

drawback of alignment-based identification techniques. While BLAST is an efficient 

software tool, its capacity in handling of metagenomic data can barely satisfy the needs 

of current analyses. With the explosive increase of metagenomic data, further reducing 

the computational complexity becomes an important challenge of alignment-based 

identification methods. 

        Phylogeny: Because a significant proportion of short query reads hit more than one 

species with significant E-value in the BLAST, a simple algorithm, the Lowest Common 

Ancestor (LCA), has been employed to assign the ambiguous reads to the right taxa [47, 

60]. Instead of choosing the nearest neighbor, LCA assigns each reads to the ancestor 

taxa by computing means of the least common taxonomic ancestor of a suitable set of 

hits, and it can also reflect the level of conservation of the sequence. While this 
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approach is more sophisticated than BLAST, it has two drawbacks [50, 61]: first, LCA has 

a relatively low coverage, because for some reads with very few numbers of hits on the 

reference taxonomy, the least common taxon cannot be computed; second, many reads 

have been assigned to non-informative high taxonomic ranks. The first issue has been 

addressed by a modified method – multiple taxonomic ranks (MTR) [50]. Traditionally, 

LCA only uses local taxonomic information for matching reference sequences and treats 

each read independently. MTR proposes a two-step method to use global type of 

information: 1) clustering reads with the same taxon; and 2) selecting the ‘best’ subset 

of each cluster with a combinatorial optimization algorithm for LCA. The results of MTR 

experiments show a significant increase in coverage compared to the traditional LCA. 

The second drawback of LCA has been tackled by Clemente et al.[62]. By evaluating the 

number of mismatches between the read and the reference taxonomy to balance the 

relevance of precision and recall in the assignment, Clemente’s method assigns each 

read to the inner nodes (a rank lower or equal) of the taxon selected by the standard 

LCA.  

        Naïve Bayes classifier: In order to avoid the heavy computational expense, some 

composition-based methods have been proposed as alternatives to classic alignment for 

sequence comparison [63]. A typical method is naïve Bayes classifier (NBC) [51, 64]. In 

1997, Wang et al. [64] developed a NBC (RDP Classifier) with 8-mers (8 consecutive 

nucleotides) for using 16s rRNA gene sequences to classify bacteria into new taxonomy 

which has become one of the most popular classifiers in microbiology. As an extremely 

conserved gene, 16S rRNA gene has a much slower evolutional rate than other genes, 
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and partial 16s rRNA gene sequence has a different k-mer distribution to full-length 16s 

rRNA gene sequence. With incomplete 16s rRNA gene sequence, the accuracy of 

bacterial identification may drop dramatically. Due to the limitations of the method, 

RDP classifier only can provide taxonomic assignments from domain to the genus level, 

and it also needs users to provide full length of 16s rRNA gene sequence to obtain high 

classification accuracy. It does not work at either species level or sub-species level. One 

study [51] suggests that NBC works better on whole genome sequences than 16S rRNA 

gene sequence. The same study also tried to increase the length k to 15 to achieve 

better performance on short reads. When k equals 15, there are about 1 billion possible 

words and the longest bacterial genome is only around 26 million nucleotides; so an 

increase of k to 15 might cause the counting statistics insignificant. Furthermore, 

computational and storage expenses can be a concern. 

        Other models: Signal processing and machine-learning approaches are widely used 

to solve problems with the background noise, clutter, and jamming signals, and they 

also have been applied for bacterial identification. Phymm [65], a classifier based on 

interpolated Markov model (IMM), has been trained on 539 curated genomes. It 

constructs probability distributions representing observed patterns of nucleotides on 

chromosomes or plasmids. Phymm shows good performance at ranks Class and Phylum 

levels on metagenomic datasets with relatively long reads (800 bp and 1000 bp), but low 

accuracy for short reads (100 bp) [50]. Recently, an extensible Markov model (EMM) 

[66] was proposed to use a time-varying Markov chain model for bacterial identification. 

The sequence data can be considered as states representing clusters of similar sequence 



14 
 

segments and inter-state transition probabilities representing the implicit order within 

the sequences. This model outperformed the RDP classifier, but still did not show 

satisfactory accuracy at rank Species. PhyloPythia [67], a multiclass SVM based 

approach, examines oligonucleotide composition to characterize taxonomic groups. This 

method is effective for genomic fragments of 3000 bp and longer, but for 1000 bp 

sequences, its sensitivity drops drastically.  

2.4 Challenges and future work 

As an indispensable step, most bacterial identification tools have been integrated into 

the metagenomic analysis systems. The drawbacks of the current metagenomic analysis 

systems are also the drawbacks of bacterial identification tools. Near half of the current 

metagenomic analysis software tools (Table 1) uses a ‘pipeline’ approach. Within a 

pipeline, a set of applications is connected in a sequential order and the output of one 

application becomes the input of the next application. As a double-edged sword, 

pipeline methods can significantly reduce the cost of time and labor of development 

process by using existing, stable and well-established applications. However, the 

pipeline approach usually does not have an efficient structure for a system to handle 

large data sets, which is the case for metagenomic data. Furthermore, at each step of 

the pipeline, some analysis results and resources are subject to re-computation and re-

allocation. This redundancy definitely affects the efficacy of using computational 

resources, hence decreasing the performance of the system. Another common problem 

of the pipeline approach is that the input/output within the pipeline could be time-
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consuming and error-prone. Thus, a cohesive public open-source development platform, 

such as Cytoscape [68], is in dire need of construction. Such a platform will not only 

significantly save the development time of individual researchers, but also speed up the 

potentially revolutionary improvement of this field. A similar open-source framework is 

necessary for bacterial identification and it will help this research area to rapidly 

improve. 

        A rapid growth in high-performance computing power is timely for analyzing 

dramatic rise in data volume. Different models of parallel computing, such as distributed 

computing, general-purpose computing on graphics processing units (GPUs), and cloud 

computing can be applied as bioinformatics tools to analyze these data. Open-source 

new bioinformatics software tools are being developed by exploiting web-based 

services to increase computing power provided by academic and commercial “cloud 

computing networks.” Some resources are already available, e.g. Science Clouds 

(http://workspace.globus.org/clouds), which allows researchers to have full control over 

using a leasing model. MG-RAST-CLOUD (http://metagenomics.anl.gov) is a 

metagenomics analysis server with capability of handling data from Gigabytes to 

Terabytes. CloudBurst [80] is a highly sensitive genome sequence mapping tool by using 

cloud computing. Soon, access to the Internet plus a pad or smartphone will be the only 

requirements for large-scale bioinformatics analysis. High-performance computing also 

makes it possible to implement algorithms with high computational complexities. Due to 

the size of large data, current bacterial identification systems tend to use simple 

algorithms with low computational complexity. Some of the computationally expensive



Table 1. Metagenomic analysis software 

Name and reference Type Open 
source 

Algorithm URL Last 
update 

OTUbase [69] R package Yes BLAST http://www.bioconductor.org/packages/release/bioc/html/OTUbase.html 2011 
CAMERA [70] Webserver No BLAST http://camera.calit2.net 2011 
MG-RAST [71] Pipeline/web Yes BLAST http://metagenomics.anl.gov/ 2011 
WebCARMA [72] Pipeline/web Yes BLAST http://webcarma.cebitec.uni-bielefeld.de 2011 
PANGEA [73] Pipeline Yes BLAST http://pangea-16s.sourceforge.net 2011 
MARTA [74] Pipeline Yes BLAST http://bergelson.uchicago.edu/software/marta 2010 
BIBI [75] Webserver No BLAST http://umr5558-sud-str1.univ-lyon1.fr/lebibi/lebibi.cgi 2010 
QIIME [76] Pipeline Yes BLAST/NB

C 
http://qiime.sourceforge.net/ 2010 

STAP [77] Pipeline Yes BLAST http://bobcat.genomecenter.ucdavis.edu/STAP/ 2008 
MEGAN [60] Pipeline No LCA http://ab.inf.uni-tuebingen.de/software/megan/ 2011 
Galaxy [78] Pipeline No LCA http://galaxy.psu.edu/ 2011 
MTR [50] Executables Yes LCA http://www.cs.ru.nl/~gori/software/MTR.tar.gz 2010 
TANGO [61] Perl script Yes LCA http://www.lsi.upc.edu/~valiente/tango/ 2010 
NBC [79] Webserver No NBC http://nbc.ece.drexel.edu/ 2011 
RDP [32] Pipeline No NBC http://rdp.cme.msu.edu/ 2011 
Phymm [65] Executables Yes Markov http://www.cbcb.umd.edu/software/phymm/ 2011 
EMM [66] Executables Yes Markov http://lyle.smu.edu/IDA/EMM/ 2010 
PhyloPythia [67] Webserver No SVM http://cbcsrv.watson.ibm.com/phylopythia.html 2007 
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algorithms are explored with high-performance computing. Supervised and 

unsupervised learning methods, e.g. language models, linear classifiers, and advanced 

Bayesian techniques are promising for bacterial identification with high accuracies. 

Another promising approach to improving identification accuracy is using mixed models 

or a meta-analysis technique to combine the identification results from different 

methods. For example, PhymmBL [65], a hybrid classifier, outperforms both BLAST and 

Phymm on the same dataset. 

        Although it is still in the early stage, metagenomics analysis has already been used 

in many research areas, e.g. clinical microbiology [81-83], bacteria-environment 

symbioses [84, 85], and host-microbial interactions [55, 86, 87]. Most of those 

applications are still using the two most traditional identification approaches - BLAST 

and the RDP classifier, since the newly developed methods still have some limitations 

and cannot significantly outperform them. Although all new algorithms are trying to 

overcome the common drawbacks, some issues remain unsolved. Generally, homology-

based approaches work well for long reads (>800 bp), while composition-based 

approaches can handle relatively short reads and partial gene sequence (down to 100 

bp for some datasets). No single algorithm can dominate the identification results across 

both cases and the performance will significantly drop with the decrease of the read 

length. Therefore, improving performance on bacterial identification with short reads 

(less than 400 bp) is still an open problem. 

        Because of its unique characteristics, 16s rRNA gene remains as the most commonly 

used genetic marker [88]. However, using partial 16S rRNA gene sequence for bacterial 
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identification is more difficult than using whole genome sequence or some other 

genetic markers, since the correlation of the sequence patterns between different 

hypervariable regions of 16S rRNA gene is relatively low and the variations of different 

hypervariable regions are species-specific. Thus, selection of hypervariable regions with 

a specific underlying database is tricky in bacterial identification and classification as it 

can significantly affect the identification results. To date, no matter what computational 

method is used, highly confident bacterial identification can only be achieved at rank of 

Genus, but many microbiology issues require higher resolution approaches to 

differentiate bacteria at the species level or even at sub-species level. For such 

differentiation, whole genome sequence-based and MLST [23] methods are the two 

approaches currently available. MLST is based on the partial sequences of seven 

housekeeping genes with around 450 bp each, but its resolution power is still limited by 

the little sequence variation among some bacterial species. Another possible approach 

is the use of single-nucleotide polymorphisms (SNPs) as genetic markers. This approach 

was originally developed for diagnosis of human genetic diseases, and now it has been 

used for the analyses of bacterial genomes [89, 90]. When multiple potential markers 

are available, selecting sequence markers for a classifier is even more challenging than 

developing a general classifier with a given marker. Until now there was no universal 

protocol for solving this problem. 
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3. HOST TRACKING BY USING INTERVENING SEQUENCES OF 
FAECALIBACTERIUM 16S RDNA 

3.1 Introduction 

Bacteria can mutate and adapt to the changing environments. Studies on bacteria-

host/environment interactions not only provide an opportunity to dissect the genetic 

basis of adaptive evolution, but also can be very useful on infectious disease prevention 

and environment-quality monitoring. Host- or host group-specific bacterial identification 

is an important step in studying bacteria-host interactions [91]. Unlike the general 

bacterial identification methods that we discussed in chapter 2, high identification 

accuracy at the species or sub-species level is necessary for this type of identification. 

Here, we use identification of fecal source in aquatic environments as an example to 

introduce a practical application of computational methods in identification of host-

specific bacteria. 

        Microbiological quality of water poses a risk to human health. During 2005-2006, 78 

waterborne-disease outbreaks were reported, which caused the sickness of 4,412 

people, 116 hospitalizations, and five deaths in the United States [92]. These recent 

outbreaks have highlighted the importance of microbiological water quality. Animal 

manures are the major cause for the impaired water quality. Animal gastrointestinal 

(G.I.) tract maintains a rich microbial community with specific mutualistic associations 

with different hosts [93]. Thus, the bacterial community in the G.I. system not only is 

used to model the evolutionary relationships between hosts and bacteria, but also 
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provides a reliable indicator in identification of the fecal pollution source in aquatic 

environments. Current regulations created to assure the microbiological quality of water 

are based on the numbers of fecal indicator bacteria (FIB), Escherichia coli (E. coli) or 

enterococci. The presence of FIB indicates fecal contamination of water, but it does not 

identify the source of pollution. To overcome this limitation, microbial source tracking 

(MST) methods have been developed [94-96]. It is essential to identify the sources of 

fecal pollution before best management practices can be applied to eliminate or 

mitigate the pollution sources. A variety of alternative fecal indicator microorganisms 

have been proposed and used in MST with varying degrees of success. Bacteria such as 

Bacteroides-Prevotella spp. [97], Bifidobacterium spp. [98], Clostridium perfringens [99], 

Lactobacillus spp. [100], Methanogens spp. [101], and Faecalibacterium [102] have been 

proposed and used for MST. If the pollution source is identified and located, the source 

can then be eliminated or mitigated to improve quality of water.  

        Methods applied to MST can be divided into two types. Library-dependent 

methods, such as antibiotic-resistance profiling [103], ribotyping [104], and rep-PCR 

[105], require construction of a library or database composed of phenotypic or 

genotypic fingerprints of FIB isolated from known fecal sources, that is a database or 

library of patterns constructed using isolates from known faecal sources. The other MST 

type is host-specific and library-independent. Both MST methods are based on detection 

of intestinal microorganisms or their biomolecules exclusively found in a particular host 

species. Library-independent methods are popular as they are more rapid and less 

costly than library-dependent MST methods [106]. Both types of MST methods would 
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not be indicative of current fecal pollution if the organisms they target can persist or 

grow in the environment; this is the case for the standard FIB, E. coli, and enterococci 

[107]. Most of the reported host-specific MST have been done using alternative fecal 

indicator microorganisms and has been thoroughly reviewed [106, 108, 109]. Currently 

there is no single MST that is able to identify the source of fecal pollution with absolute 

certainty. Using a combination of methods offers more reliability and validity to 

determine the fecal source [110-112]. 

        Human fecal pollution poses the highest risk to human health, but livestock waste 

can contribute to spread of zoonotic pathogens causing environmental contamination. It 

is estimated that over 99% of animal manure production is from three agriculturally 

important animals: swine, cattle, and poultry. Poultry litter, often used as fertilizer, can 

contain important water-/food-borne pathogens including Campylobacter jejuni, Listeria 

monocytogenes, and Salmonella enterica, presenting a significant fecal pollution source 

to surface waters [113]. Poultry fecal pollution in water can be caused by improper 

manure application on cropland, intentional pumping of manure onto the ground, 

malfunction or overflow of manure storage, uncontrolled runoff from feedlots or 

operations and intentional breeches of storage lagoons. 

        Recently, genetic markers associated with poultry feces or litter have been 

identified and are potentially useful for tracking poultry fecal pollution in environment. 

[91] used a metagenomic approach to identify chicken-specific fecal microbial DNA 

sequences, which mainly resulted in Bacteroidetes genes. [114] identified a genetic 

marker specific for the 16S rRNA gene of a Brevibacterium spp. for poultry litter. [115] 
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used mitochondrial DNA of epithelial cells of poultry intestinal tracts to track the poultry 

fecal pollution in water. The prevalence of these genetic markers in poultry feces varies 

from 6% to 75%, except for that of the poultry mitochondrial DNA marker, which is 

100% in theory. However, the amount of poultry mitochondrial DNA is significantly 

lower than bacterial DNA in poultry feces.  

        We and other researchers found Faecalibacterium to be among the dominant 

bacteria in the intestinal tract of major animals that are often found to be the sources of 

fecal pollution in water, which makes this bacterium a candidate as an alternative fecal 

indicator. Faecalibacterium is the newly established genus [116], composed of a single 

species Faecalibacterium prausnitzii [28] with the type strain being F. prausnitzii 

ATCC27768. F. prausnitzii, previously Fusobacterium prausnitzii, is phylogenetically 

distinct from known Fusobacterium species, based on the 16S rDNA sequence and G+C 

content [116]. Faecalibacterium is the dominating fecal bacterium in humans [102, 117], 

cattle [118], swine [119], and poultry [120]. 

3.2 Methods and materials 

3.2.1 Data sources 

A collection of 7,470 sequences of Faecalibacterium 16S rDNA associated with intestinal 

and fecal samples from different animal species was obtained from the public 

Ribosomal Database Project 10 (RDP 10, http://rdp.cme.msu.edu/). The host species 

include human (6,419 sequences), cattle (811 sequences), turkey (132 sequences), 

chicken (88 sequences), pig (16 sequences), dog (3 sequence) and sheep (1 sequence).  

http://rdp.cme.msu.edu/
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Figure 3. Sequences were aligned and an approximately maximum likelihood tree was 

created using FastTree2. The tree was visualized via MEGA 5. The values along branches 

indicate the evolution distance. The numbers in parentheses indicate numbers of 

sequences. 

 

3.2.2 Phylogenetic analyses 

Multiple sequence alignment (MSA) was applied to all collected sequences by using the 

MUSCLE [38]. Based on the multiple alignments, a phylogenetic tree was derived from 

an approximately maximum likelihood analysis by using FastTree 2 [121] and the tree is 

visualized using the Mega 5 [36], as shown in Figure 3. The topology of the poultry host 

branch is highly conserved, and the sequences from poultry host have higher similarity 

than those sequences from any other animal species.  
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3.2.3 Entropy analyses 

Based on the results of Phylogenetic analyses, we speculated that the 16S rDNA 

sequences from poultry host might carry some unique segments which can be used to 

distinguish stains from poultry and other hosts. In order to detect the exact locations of 

sequence markers, the aligned sequences were then divided into poultry and non-

poultry groups according to their hosts. For the sequences of two host groups, both 

combinatorial entropy (Eq. 1) [122] and background entropy (Eq. 2) were calculated for 

each site of the sequences and described as follows: 
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of nucleotides of type α  in the column i of group k; ,iNα  is the number of nucleotides 
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        Then the entropy difference of any two host-group sequences was measured as 

previously reported [123]. Three extreme cases are defined as in Figure 4. In case P1, 

the nucleotides are ‘randomly and uniformly distributed’ over all groups and there is no 

significantly conserved pattern for this position. Case P2 represents a ‘globally 

conserved’ pattern and all the nucleotides are the same across both groups. In case P3, 
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some specific nucleotides are only conserved in particular groups, and different groups 

have different nucleotides. We call this case ‘locally conserved’. According to the 

calculation results of the entropy difference for the three cases, the entropy difference 

is 0, 0 and the minimum value for the ‘randomly and uniformly distributed’ case, 

‘globally conserved’ case, and ‘locally conserved’ case, respectively. Hence, the entropy 

difference is a proper measurement for detecting a ‘locally conserved’ sequence 

pattern. According to the above illustration, we chose entropy difference as a feature to 

differentiate the two groups. The entropy differences of selected positions are used as 

the feature entropy in the identification step for distinguishing the host groups with the 

same species of bacteria. 

 

Figure 4. An example to present the different cases for the entropy calculation. 
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3.2.4 Sequences similarity and polymorphism analyses 

Based entropy calculation, V1 region and its extended segment have been detected as 

the sequence markers to identify strains from poultry. The extended segment of V1 

region has been called intervening sequence (IVS) and we found the proportion of gaps 

in IVS region is very high. Due to the incompleteness of data, it hardly for us to 

determine those are the real gaps or the unsequenced part of 16S rDNA. According to 

our selection criteria, we take V1 region as our first choice. 

 

 

Figure 5. Sequence logos of the 16s rRNA gene V1 regions of Faecalibacterium from 

chicken, turkey and other host species. The overall height of the stack indicates the 
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sequence conservation at that position, while the height of symbols within the stack 

indicates the relative frequency of each nucleic acid at that position. 

 

        We have analyzed the polymorphism of Faecalibacterium 16s rDNA sequences 

which have the highest variations, so it supports that V1 is the region where signature 

sequences of a particular host may be found. In fact, there is a significant difference in 

the nucleotide distributions in V1 between species with poultry (including chicken and 

turkey) and others as hosts (Figure 5). No significant difference has been found for all 

other variable regions between chicken and turkey hosts, and in any variable region 

among all the other hosts, including human, cattle, pig, dog, and sheep. We trimmed the 

V1 region in all 7470 sequences by splitting them into three groups according to the 

different hosts, 'chicken', 'turkey' and 'others'. First, the average sequence similarity 

within each group was calculated and the pairwise sequence similarity defined as 

follows:  

100%= ×
number of identical nucleotidesidentity

length of the alignment
   (3) 

        In Table 2, within the same host group of 'chicken', 'turkey' or 'others', the V1 

regions share 65.2%, 60.7% and 76.7% average pairwise sequence identities, 

respectively. Then we compared the average sequence identities between all groups. 

The 'chicken' group and the 'others' group only share 30.8% average identity, which is 

very close to the 30.2% identity between 'turkey' and 'others', while the 'chicken' group 

and 'turkey' group are very similar with 62.4% average identity.  
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Table 2. Sequence identities of the 16s rRNA gene V1 regions of Faecalibacterium 

between different host groups. 

 Chicken Turkey Others 

Chicken 65.2% 62.4% 30.8% 

Turkey  60.7% 30.2% 

Others   76.7% 

 

        The polymorphism of poultry vs. non-poultry Faecalibacterium 16S rDNA 

sequences, including the significant difference in V1 nucleotide distribution, has 

provided a foundation for identifying poultry host with using computational methods. 

We applied several simple learning methods on the sequences of V1 region and all of 

them can reach 100% accuracy to detect poultry host. However, no “signature 

sequence” of V1 region was identified to be used for design and development of a 

poultry feces-specific polymerase chain reaction (PCR) assay for the rapid determination 

of poultry fecal pollution in water. Thus we moved our focus to the IVS region from V1 

region. Interestingly, the alignment comparison identified four types of insertion 

sequences in IVS region of some poultry Faecalibacterium 16S rDNA (Table 3). All the 

four sequences can form stem-loop structures, as demonstrated by using the RNA/DNA 

folding program (http://kinefold.curie.fr/), a characteristic of IVSs defined by 

Evguenieva-Hackenberg [124]. The presence of IVS in rDNA is not common but 

http://kinefold.curie.fr/
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widespread in bacteria. The occurrence of IVS is more commonly found in 23S rDNA 

than in 16S rDNA of bacteria [125, 126]. 

 



Table 3. The IVSs and IVS -containing sequences 

IVS  IVS sequence (length in bp)  GenBank ID number of the 
retrieved sequence containing  
the IVS 

Host Sample site  

IVS-1 5’-gagtgatttt tctactccga gccttttgca 
   gcgtcaatca atgcgaagca ttgatttagg 
   cttatttagt aagctgacac atgcggatgg 
   ttgggagtag aaaaatcgct -3’  
   (110 bp) 
 

DQ456040.1 
AF376209.1 and AF376211.1 

Turkey  
Chicken 

Iowa, USA 
Delaware, USA 
 

IVS-2 5’-gaaagatttt tctactccga gttcttcgcg 
   ggtctttaag gagagcgtcg atcaatgcga 
   agcatcgaag atgcgagcat tgatccaggc 
   tttatttaga agactaacac aaaggtggag 
   cagagagctg ggagtaggaa aatctttt   
   -3’    
   (148 bp) 
 

DQ456203.1, DQ456153.1, 
DQ342331.1, DQ456303.1, 
DQ456188.1, DQ456182.1, 
DQ456167.1, DQ456161.1, and 
DQ342331.1 
AF376206.1 
JF781724.1 and JF781902.1 

Turkey 
 
 
 
 
Chicken 
Chicken  

Iowa, USA 
 
 
 
 
Jiangsu, China 
Kentucky, USA 

IVS-3 5’-tcgatcaatg cgaagcatcg aagatgcgag 
   cattgatcca ggctttattt agaagactaa 
   cacaaaggtg gagcagagag ctgggagtag 
   gaaaatcttt t-3’    
   (110 bp) 

DQ342331.1, DQ456459.1, 
DQ456303.1, DQ456209.1, 
DQ456203.1, DQ456188.1, 
DQ456182.1, DQ456167.1, 
DQ456161.1, and DQ456153.1 
AF376206.1 
JF781902.1 and JF781724.1 
 

Turkey 
 
 
 
 
Chicken 
Chicken 

Iowa, USA 
 
 
 
 
Jiangsu, China 
Kentucky, USA 

IVS-4 5’-ggaagatttt tctactccgg gttctttgct 
   tggctttaaa agagcgtcaa tcaatgcgga 
   gcattgattc aggcttttta aagaagacta 
   acacagagat ggagcggaga gctgggagta 
   ggaaaatctt tt-3’   
   (132 bp) 

EU009819.1 Turkey Iowa, USA 

30

http://www.ncbi.nlm.nih.gov/nucleotide/14289527?report=genbank&log$=nucltop&blast_rank=2&RID=01XNSPU701R
http://www.ncbi.nlm.nih.gov/nucleotide/14289529?report=genbank&log$=nucltop&blast_rank=3&RID=01XNSPU701R
http://www.ncbi.nlm.nih.gov/nucleotide/92087550?report=genbank&log$=nucltop&blast_rank=1&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087500?report=genbank&log$=nucltop&blast_rank=2&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/85062525?report=genbank&log$=nucltop&blast_rank=3&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087650?report=genbank&log$=nucltop&blast_rank=4&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087535?report=genbank&log$=nucltop&blast_rank=5&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087529?report=genbank&log$=nucltop&blast_rank=6&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087514?report=genbank&log$=nucltop&blast_rank=7&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/92087508?report=genbank&log$=nucltop&blast_rank=8&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/14289524?report=genbank&log$=nucltop&blast_rank=9&RID=01XX8P6W01R
http://www.ncbi.nlm.nih.gov/nucleotide/85062525?report=genbank&log$=nucltop&blast_rank=1&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087806?report=genbank&log$=nucltop&blast_rank=2&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087650?report=genbank&log$=nucltop&blast_rank=3&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087556?report=genbank&log$=nucltop&blast_rank=4&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087550?report=genbank&log$=nucltop&blast_rank=5&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087535?report=genbank&log$=nucltop&blast_rank=6&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087529?report=genbank&log$=nucltop&blast_rank=7&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087514?report=genbank&log$=nucltop&blast_rank=8&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087508?report=genbank&log$=nucltop&blast_rank=9&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/92087500?report=genbank&log$=nucltop&blast_rank=10&RID=01YTYBRS01P
http://www.ncbi.nlm.nih.gov/nucleotide/14289524?report=genbank&log$=nucltop&blast_rank=11&RID=01YTYBRS01P


Table 4. The prevalence and host specificity of IVSs 

Sample source Sample 
location* 

No. of sample 
sites 

No. of 
samples 
tested 

No. of positive samples (%) 
PCR-p1 (IVS-1) PCR-p2 (IVS-2) 
1 ng reaction-

1 
10 ng reaction-

1 
1 ng reaction-

1 
10 ng reaction-

1 
Feces        
   Chicken MO 1 farm 24 15 (62.5) 18 (75) 16 (66.7) 24 (100) 
   Turkey MO 2 farms 28 22 (78.5) 22 (78.5) 9 (32.1) 23 (82.1) 
   Beef cattle MO 3 farms 26 0 0 0 0 
   Dairy cattle MO 2 farms 26 0 0 0 0 
   Dog MO 4 locations 32 0 0 0 0 
   Goose MO 5 locations 21 0 0 0 0 
   Horse MO 3 farms 30 0 1 (3.3) 0 0 
   Human MO direct collection 32 0 0 0 0 
   Sheep MO 1 farm 26 0 1 (3.8) 0 0 
   Swine MO 3 farms 32 0 0 0 0 
        
Wastewater         
    Chicken lagoon MO 5 farms 10 ND ND 5 (50) 10 (100) 
    Turkey lagoon MO 5 farms 10 ND ND 3 (30) 10 (100) 
    Cattle lagoon MO 3 farms 3 ND ND 0 0 
    Cattle lagoon MS 2 farms 2 ND ND 0 0 
    Swine lagoon MO 5 farms 5 ND ND 0 0 
    Swine lagoon MS 5 farms 5 ND ND 0 0 
    Sewage MO 4 treatment plants 20 ND ND 0 0 
    Sewage MS 9 treatment plants 12 ND ND 0 0 
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Table 5. The PCR assays, targets, and primers 

PCR assay Target  Forward primer Reverse primer Annealing  
Temperature (°C) 

Amplicon  
size (bp) 

Reference 

PCR-p1 IVS-1 FaCH-F1:  
5’-tactccgagccttttgc-3’ 
 

FaCH-R1: 
5’-gcgatttttctactccca-3’ 

55 97 This study 

PCR-p2 IVS-2 FaCH-F2: 
5’-tactccgagttcttcgcg-3’ 
 

FaCH-R2: 
5’-gattttcctactcccagc-3’ 

55 132 This study 

PCR-p3 IVS-3 FaCH-F3: 
5’-tcgatcaatgcgaagcatcgaa-3’ 
 

FaCH-R3: 
5’-aagattttcctactcccagctctctg-3 

60 100 This study 

PCR-p4 IVS-4 FaCH-F4: 
5’-actccgggttctttgcttggct-3’ 
 

FaCH-R4: 
5’-actcccagctctccgctcca-3’ 

60 106 This study 

Control 
PCR 

16S 
rDNA 

Bac1070F:   
5’-atggctgtcgtcagct-3’  

Bac1392R:  
5'-gacgggcggtgtgta-3’ 

45  323 Ferris et al. 
1996 
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3.2.5 Experimental validation 

Twenty-four chickens, 28 turkeys, and 225 non-poultry fecal samples representing eight 

animal species were collected in Missouri (Table 4). Human stool specimens were 

obtained from healthy adult donors. Dog fecal samples were collected from private 

house pets. Farm animal and goose samples were collected as certainly as possible from 

separate individuals. Sewage was collected from inflow to waste treatment plants and 

sewage lines. Sixty-seven wastewater samples were collected from locations in Missouri 

and Mississippi (Table 4). All samples were stored at -80°C before use and DNA was 

extracted as previously described [102], using the PowerSoil® DNA extraction kit (MoBio 

Laboratories, Carlsbad, CA).  

        PCR primers used in this study are listed in Table 5 and were designed based on the 

sequences containing newly identified genetic markers, using the Primer-BLAST program 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Specificity of each potential PCR 

primer set was examined via corresponding PCR amplification, using pooled fecal DNA 

for each host type listed in Table 5. Each of the composite samples contains equal 

amount of fecal DNA extracted from 20 fecal samples collected from 20 individual 

animals. Ten ng of composite DNA was used for each PCR reaction. The PCR assays were 

performed using 40 cycles with the following thermocycle profile: initial denaturation at 

95°C for 4 minutes; denaturation at 94°C for 1 minute; annealing at the annealing 

temperature (Table 5) for 1 minute; elongation at 72°C for 30 seconds and final 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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elongation at 72°C for 7 minutes. Total PCR reaction volume was 50 µl. PCR products 

were separated by electrophoresis in a 2% agarose gel.  

        In order to test the specificity of the newly identified, the designed PCR assays has 

been validated by using 52 fecal samples from the target (poultry) species, 225 from the 

non-target animal/human species, and 67 wastewater samples, as detailed in the Table 

4. One ng and 10 ng of total DNA extracted from each sample were used as the 

template to run the PCR. PCR conditions were the same as those previously mentioned. 

PCR reaction, using the fecal DNA sample, confirmed to contain the target DNA 

sequences, which served as the positive control. PCR reaction without DNA template 

served as the negative control. All PCR assays were repeated at least in duplicate. To 

exclude potential false negative results due to the presence of PCR inhibitors in the 

samples, all DNA samples were tested using the Control PCR assay (Table 5) before use. 

3.3 Results and discussions 

3.3.1 Phylogenetically uniqueness of poultry Faecalibacterium 16S rDNA 

sequences and discovery of IVSs 

All Faecalibacterium 16S rDNA sequences associated with poultry are phylogenetically 

unique and clustered in one single branch of the phylogentic tree (Figure 3). IVSs have 

been discovered in some strains only from poultry and they show the highly conserved 

patterns. Reportedly, an IVS of 23S rDNA can be unique to a bacterial species and has 

been used for detection of Edwardsiella ictaluri, a member of Enterobacteriaceae [127]. 

The function of ribosomal IVSs remains unknown, but their formation may be the result 
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of bacterial adaption to a close working relationship with their host species [40]. In 

other words, a ribosomal IVS is potentially host specific. This leads to a new discovery 

which could add a new dimension to DNA-based MST methods leading to a better 

understanding of ribosomal IVs—their function and their effect on host species. If this is 

the case, ribosomal IVSs can be used as genetic markers for the development of new 

DNA-based MST methods. 

3.3.2 The newly identified IVSs are highly associated with poultry and unique 

to genus Faecalibacterium 

Using the four newly identified IVSs to run a BLAST search against the NCBI database 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) retrieved DNA sequences that contain 

these IVSs (Table 3). All the retrieved sequences are 16S rDNAs of uncultured bacteria 

from chicken or turkey intestinal or fecal samples and belong to genus Faecalibacterium 

of phylum Firmicutes, as classified by the Classifier program of RDP 10 

(http://rdp.cme.msu.edu/classifier/ classifier.jsp). Result of this in silico analysis suggests 

that the newly identified IVSs are highly associated with poultry and unique to genus 

Faecalibacterium. 

        To examine the host specificity and prevalence of the four IVSs, four PCR primer 

sets (Table 5) were designed based on the IVSs’ sequences (Table 3). Two PCR assays, 

PCR-p1 and PCR-p2, were developed, targeting at IVS-1 and -2 respectively. Based on 

the PCR-p1 assay, the IVS-1 could be detected in 75 % of the chicken and 78.5% of the 

turkey fecal samples, at the level of 10 ng fecal DNA per PCR reaction; by contrast, most 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://rdp.cme.msu.edu/classifier/%20classifier.jsp
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of the non-poultry fecal samples were negative with no PCR-p1 amplification except for 

one horse and sheep fecal sample tested; in a similar test using PCR-p2 assay, the IVS-2 

could be detected in 100% of the chicken and about 82.1% of the turkey fecal samples, 

but not in any non-poultry fecal samples (Table 4). Poultry-feces specificity of the IVS-2 

was further tested using 67 wastewater samples, where PCR-p2 was positive for all 

chicken and turkey lagoon samples, but negative for all other types of wastewater 

samples (Table 4). As a PCR quality control, the Control PCR (Table 5) assay was used in 

this study and generated the expected size of amplicon from all the fecal samples 

tested, excluding the possibility of false negative results due to significant PCR inhibitors 

that might be present in the fecal and wastewater DNA samples. DNA sequencing 

analysis of the amplicons of PCR-p1 and PCR-p2 confirmed that all the amplicons 

contained the expected IVS. 

        Thus, the prevalence of the IVS-1 and IVS-2 in poultry feces is higher than any 

previously reported poultry feces-specific genetic markers, where the prevalence varies 

from 6% to 75% [91, 114]. Although neither IVS-1 nor IVS-2 can distinguish chicken from 

turkey fecal materials, both can differentiate feces of chicken or turkey from that of 

geese (Table 4). Further experiments will be needed to determine if IVS-1 and -2 can 

distinguish feces of chicken or turkey from that of other wild birds. Interestingly, IVS-2 

appeared in feces of poultry reared in China and the United States, as demonstrated by 

previous (Table 3) and this study (Table 4), suggesting that this genetic marker may have 

a “global” distribution, a highly desired characteristic for use in MST. In conclusion, the 

IVS-2 may be a useful genetic marker for identification of poultry feces.  
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3.3.3 The potential use of Faecalibacterium and ribosomal IVSs in MST 

Bacteria of genera Bacteroides and Faecalibacterium are known to be dominant in feces 

tracts of animals that are the major sources of fecal pollution in water [118, 128]; they 

are both host-associated and obligate anaerobes, capable of little or no multiplication in 

the environment. Despite the similarity between Bacteroides bacteria and 

Faecalibacterium bacteria, much of the research has been focused on use Bacteroides 

bacteria as the alternative FIB [108, 109]. This research attempts to explore the 

potential of Faecalibacterium bacteria as a new alternative FIB for MST. Bacteria of 

Faecalibacterium have been found to be among the dominant genus of fecal bacteria at 

least in intestinal tract of humans[128], cattle, swine, and poultry; the host specificity of 

Faecalibacterium has been demonstrated previously by [102] and this study. 

        16S rDNA of gut bacteria is an important MST genetic marker. Many PCR-based 

MST methods have been developed based on 16S rDNA sequences [106, 108, 109], but 

cross-reactivity may occur since 16S rDNA sequences are highly conserved. As the 

alternatives, intergenic spacer region of 16S-23S rDNA [111, 129] and genes directly 

involved in host-microbe interactions [130, 131] have been proposed to be used in MST. 

Our study demonstrates that some ribosomal IVSs may be useful as MST genetic 

markers. 
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4. RISK ASSESSMENT AND SEQUENCE MARKERS DETECTION OF 
GASTRIC CANCER 

4.1 Introduction 

Immediately after birth, humans undergo a life-long process of colonization by foreign 

microorganisms. Although we benefit from some host-bacterial associations, bacterial 

pathogens have long been known to play important roles in the development of 

different diseases [132] including cancer [133]. The host-bacteria interactions include 

many complicated mechanisms, such as co-evolution, the response of the host immune 

system [134], the adaption of bacteria to the host and so on. There are challenges in 

discovering associations between bacteria and diseases. For example: given the same 

host and same bacterial species, why will different subspecies or strains cause different 

diseases and how can one differentiate the virulence by bacterial sequences? Although 

many publications have discussed the roles of bacterial pathogens in the development 

of diseases, a standard computational method for detecting disease-related sequence 

markers and identifying virulent strains is still lacking. Genus Helicobacter is a well-

studied model for its relationship between bacterial infection and cancer [135]. Here, 

we are using Helicobacter pylori (H. pylori) as an example to introduce a method for 

identification of disease-specific bacteria. 

        H. pylori is a Gram-negative helix-shaped bacterium inhabiting the human stomach 

and infecting more than half of the world’s population [136-138]. Recent studies have 

shown that it is associated with gastroduodenal diseases, including duodenal ulcers 
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[139], gastric ulcers [140] and chronic gastritis. More importantly, it is a significant risk 

factor for developing gastric cancer [141-143]. It has been classified as a Class 1 human 

carcinogen by the World Health Organization since 1994 [136]. 

        As a marker of H. pylori, the Cytotoxin-associated gene A (cagA) has been revealed 

by further analysis to be the major virulence factor. H. pylori strains carrying the cagA 

gene increase the risk factor of gastroduodenal diseases by three folds over cagA-

negative strains [141, 144, 145]. CagA, which is encoded by the cagA gene, is a 125-140 

kDa protein. It contains 1142-1320 amino acids and has a variable region at the C-

terminal region in which various short sequences (such as EPIYA motif) repeat 1-7 times. 

After H. pylori colonizing on the surface of the gastric epithelium, CagA can be 

translocated into the gastric epithelial cell through a type IV secretion system. Once 

injected into the host cell, CagA localizes to the plasma membrane and can be 

phosphorylated by Src-family tyrosine kinases on the specific tyrosine residues of a five-

amino-acid (EPIYA) motif [146-149]. Tyrosine-phosphorylated CagA then binds 

specifically to SHP-2 tyrosine phosphatase [146, 150] to activate a phosphorylase, which 

causes the cascade effect that interferes with the signal transduction pathway of the 

host cell, leading to a restructuring of the host cell cytoskeleton and formation of 

hummingbird phenotype [146, 151]. At the same time through activating mitogen-

activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) [152] and 

focal adhesion kinase (FAK), CagA also can cause cell dissociation and infiltrative tumor 

growth [153-156]. Such a process makes CagA a most important virulence factor in H. 

pylori [157]. 



40 
 

        Within the variable region of CagA, there are some different intervening sequences 

between those EPIYA motifs. One copy of EPIYA plus intervening sequence is identified 

as an EPIYA segment. Four unique types of EPIYA segments have been found in CagA, 

defined as EPIYA-A, -B, -C and -D [146]. The CagA isolated from East Asian countries, 

designated as East Asian CagA, contains EPIYA-A, EPIYA-B and EPIYA-D motifs. The CagA 

from Western countries, EPIYA-D, is replaced by EPIYA-C. Stronger phosphorylation 

motif binding activity of the EPIYA-D motif leads to greater morphological changes than 

what the EPIYA-C motif can cause in infected cells [146]. It is this EPIYA-D motif’s 

increased binding activity and resultant morphological changes that identifies it as a 

potential factor to explain the higher incidence of gastric cancer in East Asian countries 

[158, 159]. 

        Previous studies revealed a variation in the number of EPIYA motif repeats for both 

East Asian and Western CagA, which can affect biological activities. Yamaoka et al. [160] 

found that in Columbia and USA, the ability of cagA-positive H. pylori to cause gastric 

mucosal atrophy and intestinal metaplasia might be related to the number of EPIYA 

motifs in the CagA strain. Argent et al. [151] came to the same conclusion later. 

However, contrary opinions were published by Lai et al. [161] based on findings of no 

relationship between the number of EPIYA motifs in the CagA strain and clinical disease 

within 58 isolates from Taiwan. Considering the size and geographic limitation of these 

studies, the validity of this conclusion is questionable. Aside from the number of the 

EPIYA motif repeats, the sequence difference of strains in variable regions also could 
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cause a significant difference of virulence, which might relate to the different 

pathogenic abilities of H. pylori [162]. 

        Because of the complex and variant sequences in CagA, the relationships between 

the polymorphism of CagA and clinical diseases become a very interesting research 

problem. However, the molecular mechanisms that underlie different gastroduodenal 

diseases caused by cagA-positive H. pylori infection remain unknown. Until now most 

studies are still limited to the discovery or evaluation of the correlation between the 

number of CagA EPIYA motifs and diseases [163]. 

        In this chapter, we propose a systematic method to analyze not only the number of 

EPIYA motifs in CagA sequences but also the specific sequence patterns of intervening 

regions. First, we introduce entropy calculation to detect the residues within the 

variable region of CagA as the gastric cancer biomarkers. Then we employ a supervised 

learning procedure to classify cancer and non-cancer by using the information of 

detected residues in CagA as the features. We choose support vector machines (SVM) as 

a binary classifier and compare our method with others. Our approach not only proves 

our hypothesis that the sequence of variable region of CagA contains information to 

distinguish different diseases, but also provides a useful tool to predict the correlation 

between the novel CagA strains and diseases and to detect the biomarker as well. 
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4.2 Methods and materials 

4.2.1 Data sources 

We searched the National Center for Biotechnology Information (NCBI), the Swiss-

prot/Tremble and DDBJ protein database and obtained 535 strains of H. pylori CagA 

protein. Among them, there are 287 East Asian subtype strains and 248 Western 

subtype strains. In the East Asian subtype group, 47 out of 287 strains are from gastric 

cancer patients and the rest are from other diseases. In the Western subtype group, 

there are 37 strains from the gastric cancer patients, and the remainders are from other 

diseases or the normal controls, including 24 strains from volunteers whose health 

(disease) status was unknown. 

 

 

Figure 6. Profiles of the CagA repeat regions. 

 

4.2.2 Data preprocessing 

Based on the previous description in Ref. [150], we named the EPIYA motif and the 

following intervening regions R1, R2, R3, R3', R4 and R4' (Figure 6). Figure 7 shows the 
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position relation between the EPIYA motif (R1) and other intervening regions by using 

the CagA types A-B-D (East Asian subtype) and A-B-C (Western subtype) as examples. R2 

is relatively conserved across both subtypes, but there are significant differences 

between the intervening regions R3 and R3', as well as between R4 and R4'. The East 

Asian subtype and the Western subtype were treated as two independent groups. Their 

data was then processed and the results were analyzed within each group individually. 

 

 

Figure 7. Structure examples: A-B-D and A-B-C types of CagA sequences (not on a 

proportional scale to sequence length). 

 

        All intervening regions were extracted from the CagA sequences and put into the 

corresponding subtype groups, and then the multiple sequence alignments were applied 

for each group individually by using Clustal X version 2.0.3 [35]. The sequences profiles 

(Figure 6) was built by using the Weblogo 3 [164]. 

4.2.3 Workflow 

Figure 8 shows the workflow of the classification/prediction procedure: 

• Select one strain as the test strain. 
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• Apply a bootstrap procedure to the rest of the strains to get the training strains. 

• Calculate the feature entropy for the test strain based on training strains and 

save it as the test data. 

• Calculate the feature entropy for each strain in the training strain set based on 

training strains and save them as the training data. 

• Generate classification model by using the training data. 

• Classify the test data according to the classification model. 

• Repeat this procedure five times, and then calculate the average as the final 

result. 
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Figure 8. Workflow of classification/prediction procedure for one specific CagA 

sequence. 
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4.2.4 Bootstrapping 

A major issue in building a classification model in this case is the big difference of the 

sample sizes between cancer and non-cancer groups, which could cause bias in the 

classification results. A bootstrapping procedure was applied to address this issue. In 

each subtype group, for each training/test data sets, all non-cancer samples were 

included, and then strains were continuously drawn from the cancer group on a random 

basis until reaching the same size of the non-cancer group. In this case, all the available 

data were used although cancer samples were utilized multiple times given their smaller 

size compared to the non-cancer group. This procedure was applied five times to 

generate five independent training sets for each test sequence. The 

classification/prediction result is the average of those five independent results. 

4.2.5 Residue detection and feature-entropy calculation 

Since CagA is related to almost all gastroduodenal diseases and simple analysis of EPIYA 

motif repeats does not yield any statistically significant differences among those 

diseases, the information indicating a specific disease might be hidden in the intervening 

regions. This research assumes that there is a set of residues or residue combinations 

that could be useful as a marker of a specific disease. This study focuses on the gastric 

cancer and uses the cancer/non-cancer groups as the example. 

        We used the similar approach as presented in chapter 3. Based on the aligned 

sequences for each intervening region, specific residues were identified by comparing 
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the difference of combinatorial entropy [122] between the cancer and non-cancer 

groups. This procedure includes the following steps: 

        First of all, we divide the given multiple alignments for all intervening regions into 

two groups: gastric cancer group and non-cancer group. For each column of multiple 

alignments, we compute the background entropy (Eq. 1) and the combinatorial entropy 

(Eq. 2), described in chapter 3. 

        Then the entropy difference between the combinatorial entropy and the 

background entropy is calculated: 

∆ = −i iE C B       (3) 

        Considering the three extreme cases illustrated in Figure 4, according to the 

calculation results of the entropy difference for the above three cases, the 

combinatorial entropy is 0=iC  for both ‘globally conserved’ and ‘locally conserved’ 

cases. For ‘randomly and uniformly distributed’ case, iC  gets the maximum value. We 

can distinguish the ‘conserved’ and ‘randomly and uniformly distributed’ cases based on 

the combinatorial entropy, but it does not help pick ‘locally conserved’ case from all 

‘conserved’ cases. When we consider the background entropy at the same time, iB  gets 

the maximum value, 0 and medium value for the ‘randomly and uniformly distributed’ 

case, ‘globally conserved’ case, ‘locally conserved’ case, respectively. Finally, the 

differences for the above three cases are: 1 0∆ =E , 2 0∆ =E , and 3∆E  gets the minimum 

value. Hence, the entropy difference is a proper measurement for detecting a ‘locally 

conserved’ sequence pattern. 
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        Based on the above calculation, it can be determined that correct grouping can 

minimize the entropy difference for those residues belonging to the ‘locally conserved’ 

case. To perform a test, one sequence is selected while the rest of the sequences are 

divided into a gastric cancer group and a non-cancer group. For all selected residues, the 

selected sequence is placed into the gastric cancer group to calculate the entropy 

difference ∆ CAE , and then it is placed into non-cancer group to get the corresponding 

entropy difference −∆ NON CAE . Finally, ' −∆ = ∆ −∆CA NON CAE E E  is obtained for all selected 

residues that are used as the feature entropy. 

4.2.6 Cross-validation  

Because the data size is small, a leave-one-out (LOO) cross-validation procedure was 

performed. This is not only an assessment of the classifier performance on training/test 

data, but also an estimate of prediction power for novel cases. 

4.2.7 SVM 

We chose SVM as binary classifier and used the feature-entropy vectors to train and test 

the classifier. In the case of two-class soft margin classification, the decision function is a 

weighted linear combination defined as follows:  

( ) ( , )
i

i i ix S
f x y K x x bα

∈
= +∑      

(4) 

where ( , )iK x x  represents a user-defined kernel function that measures the similarities 

between the input feature vector x  and the feature vectors ix  in the training dataset 

S . iα  is the weight assigned to the training feature vector ix  and iy  indicates whether 
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a CagA strain has been labeled with the positive class (+1) or negative class (-1). The 

primal optimization problem takes the form: 

minimize    
2

1
1( , )
2

m
ii

Ct w w
m

ξ ξ
=

= + ∑                                                   (5) 

subject to  

( )( ) ( ), 1 0 1,...,i i i iy x w b and i mξ ξΦ + ≥ − ≥ =    (6) 

where ( ) ( ) ( , )T
i j i jx x K x xΦ Φ = . m is the total number of strains. iξ  is a slack variable 

which measures the degree of misclassification of the datum. C  is a cost parameter 

which allows for trading off training error against model complexity. w is the normal 

vector and b is the offset. 

        After comparing the results of polynomial, tanh and Gaussian radial basis kernels, 

the result obtained with the RBF kernel worked the best, where the Gaussian radial 

basis kernels (RBF: 
2

exp( )i jx xγ− − ) are for general-purpose learning when there is no 

prior knowledge about the data. The SVMLight package (http://svmlight.joachims.org/) 

[165] was employed to build our application. The parameters C  and γ  were tuned to 

get the best model for the training data as shown in the following. All other SVM 

parameters were set to their default values.  

4.2.8 Performance evaluation 

In order to evaluate the performance of classifier, a variety of performance measures 

are applied: accuracy, sensitivity and specificity. A true positive (TP) is a cancer-related 

sequence classified as such, while a false positive (FP) is a non-cancer related sequence 
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classified as cancer-related, a false negative (FN) is a cancer related sequence classified 

as non-cancer related and a true negative (TN) is a non-cancer related sequence 

classified as non-cancer related. The accuracy, sensitivity (Sn), specificity (Sp) and 

Matthews correlation coefficient (MCC) of classification is defined as follows: 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
     (7) 

TNSp
FP TN

=
+

       (8) 

TPSn
TP FN

=
+

        (9) 

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

  (10) 

        Since there are only two parameters ( ),C γ  for the RBF kernel and they are 

independent, we applied a grid-search to determine the optimal parameters of 

classifier. We used a harmonic means of sensitivity and specificity as the objective 

function to optimize the performance of the model for the training set, which is defined 

as follows: 

( )2 Sp Sn
F

Sp Sn
×

=
+

       (11) 
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4.3 Results 

4.3.1 Residue detection and feature calculation 

Table 6 lists all detected key residues by calculating the entropy difference in each 

intervening region for both Western and East Asian subtypes. Although there are some 

geographic variations of CagA sequences between the Western and East Asian subtypes, 

some common residues could still be found to distinguish the cancer and non-cancer 

groups. It suggests that those residues might be very important in determining the 

virulence of CagA and the relation between CagA and some specific diseases. 

 

Table 6. Detected residues by calculating entropy difference for each intervening region 

between Western and East Asian subtypes. 

Intervening regions Western subtype East Asian subtype 

R2 1, 8, 10, 12 1, 8, 10, 12 

R3'/R3 7, 8, 14, 35, 38 2, 4, 17, 31, 39, 48 

R4'/R4 9, 14 16 
 

        The residue positions are shown in Figure 9. A previous study [162] reveals that the 

different EPIYA segments can bind to the different kinases, e.g., EPIYA-R2 and EPIYA-

R3/R3' bind to the C-terminal Src kinase (Csk) while EPIYA-R4 and EPIYA-R4' bind to the 

SHP-2 kinase to cause the hummingbird phenotype. The CagA-Csk interaction down-

regulates CagA-SHP-2 signaling that perturbs cellular functions to control the virulence 

of CagA. It is found that most detected residues belong to R2 and R3/R3' regions and 
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few residues in R4/R4' regions have been detected. This may be because R4/R4' has 

more conserved sequence than R2, and R4/R4' is shorter than R3/R3'. We suggest that 

the different residue patterns in R2 or R3/R3' regions might change the ability of down-

regulating CagA-SHP-2 signaling, therefore changing the virulence of CagA. 

 

 

Figure 9. Comparison of sequence profiles between cancer and non-cancer groups and 

selected features (residues marked with arrows) based on entropy calculation in the 

R3'/R3 region. 
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        Ren et al. found that CagA multimerizes in mammalian cells [166]. This 

multimerization is independent to the tyrosine phosphorylation, but it is related to the 

“FPLxRxxxVxDLSKVG” motif which is named CM motif in the R3' intervening region. 

Since the multimerization is a prerequisite for the CagA-SHP-2 signaling complex and 

subsequent deregulation of SHP-2, the CM motif plays an important role in cagA-

positive H. pylori-mediated gastric pathogenesis. With multiple CM motifs H. pylori 

strains are much likely associated with severe gastroduodenal diseases [166, 167], but 

this observation cannot explain why different gastroduodenal diseases can be 

developed with the exact same number of CM motifs. Our study detected two residues 

in the CM motif of R3' intervening region, which might lead to the change of 

multimerization, thus changing the virulence of CagA. This is in consistent with a 

previous discovery [168] that the sequence difference between the East Asian CM and 

the Western CM determines the binding affinity between CagA and SHP-2.  

        While the key residues detected can reveal some difference between cancer and 

non-cancer groups, no single residue can be a marker for cancer as shown in Figure 9. 

This research predicts that one special combination of all or partial detected residues 

could have a high correlation with one particular disease. To verify, several linear 

statistical models, e.g. linear regression and logistic regression, were applied to the 

detected features to evaluate the importance of each residue and the correlation 

between selected residues and cancer. However, none of above models were able to 

produce a statistically significant result. Since the features cannot be fitted by simple 
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linear models for predicting cancer, applying a machine learning method to analyze and 

classify these data becomes necessary. 

4.3.2 Parameter training for classification 

Using the Western subtype group as the example, a loose grid-search was first 

performed on 5 102 ,..., 2C −=  and 10 52 ,..., 2γ −=  (Figure 10A) and found that the best 

( ),C γ  is around ( )2 52 , 2−  to get the highest F value with the LOO cross-validation rate 

76%. Then a finer grid search was conducted on the neighborhood ( )2 52 , 2−  and a 

better F value was obtained with 79.7% LOO cross-validation at ( )2.25 4.752 , 2− . The same 

procedure was utilized for the East Asian subtype group and the best LOO cross-

validation rate 72.6% was reached at ( )2.25 4.752 , 2− . 

        Since there are no previous studies or computational methods on the same topic, 

evaluating the performance of this research’s new method is difficult. To assess the 

information content of the sequences in terms of their discerning power to predict 

cancer, a random shuffling procedure was employed to build the control group.  First, all 

sequences from the Western subtype were placed together to build a sequence pool. 

Second, we randomly picked the same number of sequences as cancer group from the 

sequence pool and treated the rest of the sequences as the non-cancer group. Then, the 

whole training procedure was applied to newly shuffled data to find the best ( ),C γ . 

The above steps were repeated five times to generate five independent shuffled data 

sets. The one with the highest F value, which equals 46.6% was selected and its contour 
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plot is shown in Figure 10B. This randomly shuffling evaluation was also applied to the 

East Asian subtype data and the best F value was at 54.3%. Comparing the two plots 

shows the significant difference of F values between the data with correct grouping of 

cancer and non-cancer cases in training and the best randomly shuffled data. The result 

suggests that the intervening regions are informative to distinguish between the cancer 

and non-cancer groups and our method can use the information effectively. 

 

 

Figure 10. Grid-search for determining the optimal parameters ( ),C γ  of classifier, with 

color indicating the F value. (A) The contour plot of F value resulting from a loose grid-

search on a hyper parameter range for the Western subtype group. (B) The contour plot 

of F value resulting from a loose grid-search on a hyper parameter range for a randomly 

shuffled Western subtype group with the highest F value. 
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4.3.3 Classification performance 

There are mainly three categories of sequence classification methods: feature based, 

sequence distance based and model based. The method that we described in this 

dissertation belongs to the feature-based category. We selected two of the most 

popular sequence classification tools as the representative methods of other two 

categories for comparison. BLAST [53] was chosen for the sequence distance based 

category, since it is the most widely used sequence comparison tool. For the model-

based category, the hidden Markov model is the typical method for sequence analysis 

and its widely used tool, HMMER [169], was selected. For the classification procedure of 

both BLAST and HMMER, we used the default parameters of the tools, applied the same 

LOO cross-validation as our method, and used the same evaluation formulas listed in 

the Method section. 

 

Table 7. Classification performance 

Subtype No. of cancer 

cases 

No. of non-

cancer cases 

Method Sn Sp Accuracy F value MCC 

Western 37 211 Entropy-SVM 0.86 0.74 0.76 0.80 0.45 

BLAST 0.22 0.77 0.69 0.34 -0.01 

HMMER 0.94 0.005 0.14 0.009 -0.16 

East 

Asian 

47 240 Entropy-SVM 0.74 0.71 0.71 0.73 0.35 

BLAST 0.17 0.75 0.65 0.28 -0.07 

HMMER 1 0.003 0.19 0.05 0.06 

 

 



57 
 

        Table 7 lists the classification results for all three methods. The SVM method 

performs significantly better than the other two approaches. BLAST achieved close 

accuracy to the Entropy-SVM method, but it predicted many false negatives with low 

sensitivity. HAMMER achieved high sensitivity but with little specificity. Considering F 

values and MCC values, the prediction results from BLAST and HAMMER are almost 

random.  

        The classification result and the contour plot (Figure 10) strongly support our 

hypothesis, i.e., the information of the selected residues in intervening regions can be 

used to classify the relation between CagA sequences and gastric cancer, although the 

difference between the profiles of cancer and non-cancer groups is not very strong. 

Comparison among different diseases 

 

Table 8. Number of strains in each disease 

 

GC AG CG GU DU Other Total 

East Asian 47 49 45 47 79 20 287 

Western 37 8 44 14 50 95 248 

GC: Gastric cancer; AG: Atrophic gastritis; CG: Chronic gastritis; GU: Gastric ulcer; DU: 

Duodenal ulcer 

 

        H. pylori infection is associated with most gastroduodenal diseases, among which 

gastric cancer is the most severe one causing more than 700,000 deaths worldwide 

every year [170]. Since H. pylori is a main risk factor of gastric cancer (GC), discovery of 
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the mechanism of H. pylori mediating GC becomes a top priority task in this field. 

Comparing to other diseases, the diagnosis information of GC from public data is 

relatively accurate, and it is another important reason to focus on GC in this chapter. 

Our studies are not limited to GC, though. We also tried to evaluate the relations 

between the variance of CagA sequences and different diseases. 

        Since most data were collected from public databases without accurate diagnosis 

information, before applying our method to CagA data, we manually curated the disease 

annotations for all strains by reviewing the literature. Table 8 lists the distributions of 

major diseases for both the Western and the East Asain subtype groups. Due to the 

limitation of strain numbers of some diseases, such as atrophic gastritis (AG) and gastric 

ulcer (GU), we eventually picked chronic gastritis (CG) and duodenal ulcer (DU) as the 

control groups for evaluation. The DU group in the East Asian subtype contains 79 

strains, and a bootstrapping procedure was applied to all other groups to make the 

same number of strains as the East Asian DU group. This step guarantees all 

comparisons on the same scale, since the value of combinatorial entropy depends on 

the number of sequences. We used Formula (3) to calculate the entropy difference of 

each position between GC and CG/DU groups, and then added up all entropy differences 

as the total difference between GC and CG/DU groups, as shown in Table 9. By 

comparing results between two groups within the same geographic subtype (East Asian 

or Western subtype), it is consistent with the clinical view that gastritis has stronger 

relations to cancer than to DU [171] (generally, gastritis cases might contain some 

unreported or undiagnosed chronic atrophic gastritis and intestinal metaplasia cases, 
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with which patients have a high risk to develop GC). By considering the same disease-

pair between two geographic subtypes, it also explained the virulent difference 

between the East Asian and the Western subtypes. In addition, due to the high similarity 

between different disease groups of the East Asian subtype, even with more data, we 

still cannot reach the same classification accuracy as the Western subtype group. 

 

Table 9. Total entropy difference between gastric cancer and two other diseases groups 

 
GC vs CG GC vs DU 

Western -166.65 -536.42 

East Asian -57.18 -244.03 

GC: Gastric cancer; CG: Chronic gastritis; DU: Duodenal ulcer 

 

        Based on the above results, CagA sequences show potential to distinguish multiple 

gastroduodenal diseases. In order to evaluate the classification performance, we used 

DU group to replace non-Cancer group, and then applied the whole classification 

procedure again without bootstrapping, since those two diseases groups have 

comparable sizes. Table 10 shows the classification results. Although from the clinical 

point of view, DU has the negtive correlation with GC among all gastroduodenal 

diseases [172], the classification performance of two subtype groups was only slightly 

improved. Thus cancer-related CagA strains might have some unique sequence patterns 

comparing to all other gastroduodenal diseases. Hence, tuning a subset of the control 

group may not be able to improve the classification accuracy. 
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Table 10. Classification performance between gastric cancer and duodenal ulcer groups 

for both the Western and the East Asian subtypes 

Subtype No. of GC cases No. of DU cases Sn Sp Accuracy F value MCC 

Western 37 50 0.86 0.82 0.84 0.84 0.68 

East Asian 47 79 0.68 0.73 0.71 0.71 0.41 

 

4.4 Discussion 

Although research indicates that there are sequence markers to differentiate between 

cancer group and non-cancer group, the major profiles of those two groups are too 

similar to distinguish by using traditional methods since the CagA sequences are overall 

highly conserved. Therefore, we focused on identifying the informative residues, 

quantifying information of these selected residues, and then using it to design a 

classifier that can predict whether a new sequence belongs to the cancer group or the 

non-cancer group. This method not only sheds light on the relations between CagA 

sequences and gastric cancer, but also may provide a useful tool for gastric cancer 

diagnosis or prognosis.  

        One possible explanation of the performance difference between the Western subtype 

group and the East Asian subtype group is that there is no real ‘control’ group for the East 

Asian subtype, and that all strains are from the patients with other diseases. In contrast, the 

Western subtype group contains 24 strains from volunteers (the normal controls). The 

mechanisms of H. pylori causing the different gastroduodenal diseases are still unclear, 
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however it is likely that various gastroduodenal diseases caused by H. pylori infection 

share some sequence patterns in the intervening regions. Small variations of amino 

acids in those important residues might lead to the virulence variance of CagA strains 

resulting in different gastroduodenal diseases. While CagA could be a marker for 

detecting potential cancer risk, using CagA alone to distinguish all gastroduodenal 

diseases is not realistic. As a future study, we will develop new models that differentiate 

various gastroduodenal diseases from cagA and other genes. 
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5. EFFECTOR PREDICTION IN HOST-PATHOGEN INTERACTION 

5.1 Introduction  

As a complex and interesting relation between organisms in ecology and evolution, 

host-pathogen interaction is a basis of infectious diseases [173]. Pathogens span a broad 

spectrum of biological species, including viruses, bacteria, fungi, protozoa, and 

multicellular parasites. In all these cases, a pathogen causing an infection usually 

exhibits an extensive interaction with the host during pathogenesis. The cross-talks 

between a host and a pathogen allow the pathogen to successfully invade the host 

organism, to breach its immune defence, as well as to replicate and persist within the 

organism. One of the most important and therefore widely studied groups of host-

pathogen interactions is the interaction between pathogen protein (effector) and host 

cells. Effectors are secreted from pathogens’ secretion systems. So far five types of 

secretion systems have been identified (Type I-V). Among them, T3SS (Type III Secretion 

System) and T4SS (Type IV Secretion System) can cross bacterial cell walls and host 

eukaryotic cell membranes to deliver effectors into host cells directly without going 

through extracellular matrix [174]. Those effectors can manipulate host cell functions 

once entering host cell [174]. Identifying effectors and exploring their molecular 

mechanisms not only are critical to understand the disease mechanisms but also 

provide theoretical foundations for infectious disease diagnosis, prognosis and 

treatment [175, 176]. 
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        Besides to be an important virulence factor of H. pylori, as a well-studied effector, 

CagA one of the major pathogens of upper gastrointestinal diseases (e.g., peptic ulcer 

and gastric cancer) [177]. CagA can be delivered into gastric epithelial cells by the T4SS 

of H. pylori. Recent studies of CagA sequences found that they have a variable region 

within which the EPIYA (glutamic acid-proline-isoleucine-tyrosine-alanine) motif repeats 

from once to seven times. Tyrosine in the EPIYA motif can be phosphorylated in the host 

cell. The phosphorylated CagA protein binds to a phosphatase SHP-2, which will 

interfere with the signal transduction pathway of the host cell and manipulate cell 

growth, differentiation and apoptosis [150, 162, 178]. This interference causes a 

restructure of the host cell cytoskeleton, cell scattering as well as invasive growth of 

cells, and formation of hummingbird phenotype with gastric epithelial cells. Such a 

process not only is considered an important strategy of interaction between H. pylori 

and host cell, but also is the most significant mechanism of pathogenesis and 

carcinogenesis of H. pylori [179-181]. 

        In recent years, studies have discovered other pathogens that can also secrete 

effectors to manipulate the host cells through phosphorylation during the interaction 

process between hosts and pathogens (e.g. Anaplasma phagocytophilum [182, 183] and 

Bartonella henselae [184-186]). These effectors cause rearrangements of host cell 

cytoskeleton, NF-kB activation and apoptosis inhibition [187]. Table 11 lists eight 

effectors from six pathogens. They contain 28 experimentally identified phosphorylation 

sequences, all of which have the similar pattern to the EPIYA motif in CagA [185]. This 

finding leads to our hypothesis that the EPIYA-like motif and its phosphorylation, 
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together with its interference of host cells, may be a general mechanism of 

pathogenesis. Based on this novel hypothesis, we used the effectors in Table 11 to build 

an EPIYA-motif-based hidden Markov model (HMM), and then searched the current 

protein database to identify more proteins with the EPIYA motif. Through studying the 

distribution and features of EPIYA motif in different species and genuses, we attempted 

to better understand the function of EPIYA motif, especially the role of EPIYA motif 

during the interaction process between pathogens and hosts. 

 

Table 11. Experimentally determined tyrosine-phosphorylated effectors and their motifs 

Effector Pathogen Locus of 
protein Motif (phosphorylated Y position)  

CagA H.Ppylori NP_207343 EPIYAKVNK   Y-899 EPIYTQVAK   Y-918 EPIYATIDD   Y-972 

Ankyrin 
Anaplasma 

phagocytophilum 
ABB84853 

ESIYEEIKD   

EDLYATVGA   
EPIYATVKK   

Y-940 
Y-1028 

Y-1098 

ESIYEEIKD    
ESIYADPFD   

Y-967 
Y-1056 

ESIYEEIKD  

ESIYADPFA  

Y-994 
Y-1074 

BepD Bartonella henselae YP_034066 
EPLYAQVNK  

EPLYAQVNK   

Y-32 
Y-211 

NPLYEGVGG   
NPLYEGVGG   

Y-114 
Y-293 

NPLYEGVGS  

NPLYEGVGP   

Y-176 
Y-355 

BepE Bartonella henselae YP_034067 EPLYATVNK   Y-37 ETIYTTVSS   Y-91   

BepF Bartonella henselae YP_034068 
TPLYATPSP   

EPLYATAAP   

Y-149 
Y-297 

EPLYATPLP   
EPLYATPLP   

Y-213 
Y-269 

EPLYATPLP   Y-241 

Tir Escherichia Eoli AAC38390 EHIYDEVAA    Y-474     

Tir Citrobacter rodentium AAL06376 EPIYDEVAP    Y-468     

Trap Chlamydie trachomatis YP_001654788 ENIYENIYE   Y-136 ENIYENIYE   Y-238 ENIYENIYE   Y-390 

 

CagA: cytotoxin associated gene A [146, 148-150, 178, 180, 188, 189]; BepD: Bartonella 

henselae protein D [184-186, 190]; BepE: Bartonella henselae protein E [184-186, 190]; 

BepF: Bartonella henselae protein F [184-186, 190]; Tir: translocated intimin receptor 
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[191-193]; Trap: Translocated actin-recruiting protein [194-196]. The first five amino 

acids of the listed sequences in the table correspond to the EPIYA motif. 

 

5.2 Methods and materials 

Figure 11 shows the whole work flow for this project. The major modules and steps are 

described as follows: 
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Figure 11. Work flow of the whole project 
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5.2.1 Data sources 

Protein sequence data: We used the NR (non-redundant) protein database at the 

National Center for Biotechnology Information (NCBI) in this study. All protein 

sequences in the FASTA format were downloaded from the NCBI site 

(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz; as of July 6th 2009; 9,216,047 sequences). 

We excluded “other” sequences and “unclassified” sequences” in the database (as 

labelled in http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Root). 

        Taxonomy data: The taxonomy data was obtained from the NCBI website 

(http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi; as of July 6th 2009). 

5.2.2 Hidden Markov model 

A hidden Markov model was built by using Hmmer 2.3.2 [169] 

(http://hmmer.janelia.org). We used selected sequences to run the command 

hmmbuild.exe for building and calibrating the HMM. We then used the HMM to run the 

command hmmsearch.exe for searching protein sequences. We used a natural cutoff of 

HMM score such that the last of the all known motifs is retrieved. 

5.2.3 Data analysis 

We used Perl (release ActivePerl 5.8.8) as the programming language to analyse the 

data and build the database. We applied SAS 9.0 (http://www.sas.com) as the statistic 

analysis tool and chose p<0.01 as the significant threshold. 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Root
http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi
http://hmmer.janelia.org/
http://www.sas.com/
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5.2.4 Sequences comparison 

BioEdit 7.0 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html), Lasergene 7 

(http://www.dnastar.com/products/lasergene.php), and Blast [53] 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to compare and analyse the protein 

sequences. Sequence logos were constructed using Weblogo[164]. 

5.3 Results and discussion  

5.3.1 Building and using hidden Markov model 

Using the 28 experimentally identified phosphorylated motif sequences in Table 11, we 

built the sequence logo as shown in Figure 12. In this logo, the fourth position of the 

EPIYA motif is always tyrosine (Y), which can be phosphorylated. The first and third 

positions have small variations. The amino acids in the first position are primarily 

glutamic acid (E), together with asparagines (N). Most residues in the third position are 

isoleucine (I) and leucine (L), two very similar amino acids. The second and fifth 

positions have big variations. The second position varies from proline (P), serine (S) to 

asparagines (N). The fifth position mainly contains alanine (A), glutamic acid (E) and 

aspartic acid (D). These 28 sequences were used to build and calibrate the HMM by 

applying Hmmer 2.3.2 (http://hmmer.janelia.org). We then employed the HMM to 

search the protein non-redundant (NR) database, which contains 9,216,047 protein 

sequences. The search yielded 107,231 sequences containing at least one copy of EPIYA 

motif and 3115 sequences with multiple repeats of the EPIYA motif, where the highest 

number of repeats in a single protein is 29 (see Table 12). 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
http://www.dnastar.com/products/lasergene.php
http://hmmer.janelia.org/
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Table 12. Distribution of protein sequences containing the EPIYA motif  

 

Expected frequency is the expected probability if the combination of the motif in a 

protein sequence is random. 

 

        We found that the repeats of EPIYA motif in a protein are highly non-random. As 

the probability of one protein sequence having a copy of EPIYA motif is 1.13E-02 

(104,116/9,216,047), the expected probabilities of one protein sequence containing 2-4 

copies of EPIYA motif are (1.13E-02)2=1.28E-04, (1.13E-02)3=1.44E-06, and (1.13E-

02)4=1.63E-08, respectively, assuming the combination of the motif in a sequence is 

random. The observed probabilities of one sequence containing multiple copies of EPIYA 

motif are much larger than the expected probabilities as shown in Table 12. Hence, the 

repeats of the EPIYA motif may have been resulted from evolution with biological 

significance. This is also reflected in Table 11, where most effectors with known EPIYA 

Number of motif 
repeats in one protein 

Number of protein 
sequences Observed Frequency Expected 

Frequency 

29 1 1.09E-07 3.44E-57 

14 2 2.17E-07 5.52E-28 

13 2 2.17E-07 4.88E-26 

12 1 1.09E-07 4.32E-24 

10 1 1.09E-07 3.39E-20 

9 3 3.26E-07 3.00E-18 

8 6 6.51E-07 2.65E-16 

7 10 1.09E-06 2.35E-14 

6 32 3.47E-06 2.08E-12 

5 55 5.97E-06 1.84E-10 

4 173 1.88E-05 1.63E-08 

3 916 9.94E-05 1.44E-06 

2 1913 2.08E-04 1.28E-04 

1 104116 1.13E-02 1.13E-02 
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motif have 2-7 motif repeats. Thus, we suggest that multiple copies of EPIYA motif in the 

same protein are more likely to be functional than single motif occurrence. 

 

 

Figure 12. Work flow of the whole project 

 

5.3.2 Distribution pattern of EPIYA motif among species 

The NR database contains proteins sequences from 27,432 genuses and 121,718 

species. Among them the sequences from 2675 genuses and 4646 species contain at 

least one copy of EPIYA motif, and 368 genuses and 587 species have proteins 

containing at least two copies of EPIYA motif. The proteins with the EPIYA motif are 

mainly distributed in lower organisms. As shown in Table 13, the probability of a 

genuses/species containing proteins with the EPIYA motif in archaea, viruses or bacteria 

is much higher than that in eukaryotes. This indicates that with evolution advanced 

species mostly lost the EPIYA motif together with its functions for host-pathogen 

interactions. 
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Table 13. Distribution of EPIYA-motif containing proteins at genus and species levels (as 

of July 6th 2009) 

Groups 

Number of genuses Number of species 

total With copies of 
motif≥1 (%) 

With copies of 
motif≥2 (%) total With copies of 

motif≥1 (%) 
With copies of 
motif≥2 (%) 

 Archaea 109 49 44.95% 19 17.43% 330 90 27.27% 28 8.48% 

 Viruses 623 221 35.47% 18 2.89% 6443 433 6.72% 30 0.47% 

 Bacteria 1198 560 46.74% 209 17.45% 6291 1398 22.22% 360 5.72% 

 Eukaryota 35499 1828 5.15% 122 0.34% 108654 2725 2.51% 169 0.16% 

-Protista 1263 109 8.63% 18 1.43% 3747 186 4.96% 32 0.85% 

-Fungi 1509 121 8.02% 40 2.65% 5772 206 3.57% 52 0.90% 

-Metazoa 22309 662 2.97% 49 0.22% 62097 826 1.33% 68 0.11% 

     -Viridiplantae 10418 936 8.98% 15 0.14% 37038 1507 4.07% 17 0.05% 

 total 37429 2658 7.10% 368 0.98% 121718 4646 3.82% 587 0.48% 

Data in this table presents the numbers of genuses/species with proteins containing the 

EPIYA motif versus total number of genuses/species in NR. The Eukaryota group is 

divided into protista, fungi, metzoa and viridiplantae. 

 

        We listed top 10 species and genuses with most EPIYA-motif containing proteins for 

the groups of archaea, viruses, bacteria, protista, fungi, metazoa and viridiplantae (Table 

14). In archaea, Methanococcus is the genus that includes the most EPIYA-motif 

containing proteins. In viruses, Potyvirus is the highest in number of EPIYA-motif 

containing proteins among genuses while Bovine Viral Diarrhea Virus is the highest 

among species. The top four genuses (and the corresponding species) in bacteria are 

Helicobacter (H. pylori), Clostridum (Clostridum botulinum, Clostridum perfringens), 
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Bacillus (Bacillus cereus) and Anaplasma (Anaplasma phagocytophilum). Plasmodium 

(Plasmodium falciparum) and Tetrahymena (Tetrahymena thermophila) are the top 

genuses in protista. In fungi and viridiplantae, the corresponding top genuses are 

Candida (Candida tropicalis) and Oryza (Oryza sativa), respectively. Two well-studied 

genuses Drosophila (Drosophila melanogaster) and Homo (Homo sapiens) take the top 

two in metazoa. It should be noted that the data in Table 14 are biased, with widely 

studied species such as H. pylori having the same gene sequenced many times, while 

some other species have incomplete proteomes. Nevertheless, this table provides some 

interesting reference for known and putative pathogens with effectors. 

 

Table 14. Top 10 genuses and species containing most proteins with at least two copies 

of EPIYA motif for each group 

Group rank by genus occurrence rank by species occurrence 

A
rc

ha
ea

 

Methanococcus 11 Methanococcus maripaludis 9 

Methanocaldococcus 6 Aciduliprofundum boonei 4 

Aciduliprofundum 4 Halogeometricum borinquense 4 

Halogeometricum 4 Methanocaldococcus jannaschii 4 

Methanobrevibacter 3 Methanobrevibacter smithii 3 

Methanosarcina 3 Halorubrum lacusprofundi 2 

Thermococcus 3 Hyperthermus butylicus 2 

Haloferax 2 Methanosarcina barkeri 2 

Halorubrum 2 Methanospirillum hungatei 2 

Hyperthermus 2 Archaeoglobus fulgidus 1 

V
ir

us
es

 

Potyvirus 14 Bovine Viral Diarrhea Virus 11 

Pestivirus 11 Zucchini yellow 8 

Orthopoxvirus 5 Bean common 5 

Simplexvirus 5 Grapevine virus 5 

Vitivirus 5 Cowpox virus 3 

Capripoxvirus 4 Lumpy skin 2 
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Yatapoxvirus 3 Papiine herpesvirus 2 

Alphabaculovirus 2 Tanapox virus 2 

T4-likeviruses 2 Acidianus filamentous 1 

Alphapapillomavirus 1 Aeromonas phage 1 

B
ac

te
ri

a 
Helicobacter 1024 Helicobacter pylori 1021 

Bacillus 133 Bacillus cereus 78 

Clostridium 102 Anaplasma phagocytophilum 46 

Anaplasma 48 Bacillus thuringiensis 28 

Bacteroides 23 Clostridium botulinum 28 

Vibrio 17 Clostridium perfringens 20 

Lactobacillus 16 Cyanothece sp. 11 

Cyanothece 11 Bacteroides sp. 10 

Ureaplasma 11 Lactococcus lactis 10 

Campylobacter 10 Chlamydia trachomatis 9 

Pr
ot

is
ta

 

Plasmodium 103 Plasmodium falciparum 47 

Tetrahymena 35 Tetrahymena thermophila 35 

Paramecium 26 Paramecium tetraurelia 26 

Entamoeba 14 Plasmodium yoelii 19 

Leishmania 14 Trichomonas vaginalis 14 

Trichomonas 14 Plasmodium vivax 12 

Cryptosporidium 11 Plasmodium knowlesi 11 

Giardia 9 Entamoeba dispar 8 

Monosiga 8 Giardia lamblia 8 

Theileria 7 Monosiga brevicollis 8 

Fu
ng

i 

Candida 21 Candida tropicalis 9 

Aspergillus 15 Paracoccidioides brasiliensis 9 

Pichia 12 Candida albicans 8 

Paracoccidioides 9 Pichia stipitis 6 

Ajellomyces 7 Vanderwaltozyma polyspora 6 

Vanderwaltozyma 6 Ajellomyces capsulatus 5 

Coccidioides 5 Cryptococcus neoformans 5 

Filobasidiella 5 Saccharomyces cerevisiae 5 

Saccharomyces 5 Aspergillus terreus 4 

Debaryomyces 4 Candida dubliniensis 4 

M
et

az
oa

 Drosophila 178 Homo sapiens 69 

Homo 69 Mus musculus 58 

Mus 58 Drosophila melanogaster 41 

Pan 30 Pan troglodytes 29 

Branchiostoma 27 Branchiostoma floridae 27 
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Caenorhabditis 21 Rattus norvegicus 21 

Rattus 21 Canis lupus 20 

Canis 20 Danio rerio 17 

Danio 17 Drosophila pseudoobscura 17 

Macaca 16 Drosophila persimilis 15 
V

ir
id

ip
la

nt
ae

 
Oryza 24 Oryza sativa 23 

Physcomitrella 12 Physcomitrella patens 12 

Arabidopsis 10 Arabidopsis thaliana 10 

Populus 7 Populus trichocarpa 7 

Sorghum 7 Sorghum bicolor 7 

Ricinus 6 Ricinus communis 6 

Vitis 6 Vitis vinifera 6 

Micromonas 3 Micromonas pusilla 3 

Huperzia 2 Huperzia lucidula 2 

Ostreococcus 2 Zea mays 2 

 

        Bacterial pathogens can be divided to two types. Some can enter host cells, e.g., 

Chlamydia and Anaplasma. They are known as intracellular pathogens and most of them 

have T3SS or T4SS. Some other bacteria are extracellular pathogens with T3SS or T4SS, 

such as H. pylori and Campylobacter. As shown in Table 14, numerous bacteria 

containing multiple copies of EPIYA motif belong to pathogens, such as Anaplasma 

(Anaplasma phagocytophilumn, ranking 4th in the species list) and Chlamydia 

(Chlamydia trachomatis, ranking 10th in the species list), both of which are intracellular 

pathogens. Helicobacter (ranking 1st in both genus and species list) and Campylobacter 

(ranking 10th in the genus list) contain T4SS [197]. Some other T4SS-containing species 

are not listed in Table 14, such as Wolbachia (ranking 13th in the genus list), Escherichia 

(ranking 18th in the genus list), Mycobacterium (ranking 23rd in the genus list) and 

Bartonella (ranking 27th in the genus list). Furthermore, we also found that in protista 
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most top 10 species are unicellular parasites that can live in host cells to survive and 

reproduce by subverting of signalling pathways and inhibiting apoptosis of host cells 

[198]. However, the pathogens mediators responsible for this modulation are still 

unknown [199]. Those intracellular protozoan parasites include Plasmodium (ranking 1st 

in the genus list), Leishmania, Trichomonas, Cryptosporidium and Giardia 

(correspondingly ranking 5-8th in the genus list). Table 15 lists most known pathogens 

including intracellular bacteria (Mycobacteriaceae, Legionellales, Chlamydiales, 

Rickettsiales and Listeriaceae), extracellular bacteria with T3SS or T4SS 

(Enterobacteriaceae, Campylobacterales and Rhizobiales) and intracellular protozoan 

parasites (Apicomplexa and Kinetoplastida), representing 1319 species in total with and 

without the EPIYA motif. We analyzed the distribution of EPIYA motif in the potential 

effectors in these pathogens in Figure 13. 310 out of 4646 species with the EPYIA motif 

belong to such pathogens, and the percentage (310/4646=6.67%) is much higher than 

that of such pathogens (with and without the EPIYA motif) in all species 

(1319/121,718=1.08%) (p-value<0.0001, odds ratio=6.54). We also found that the 

percentage of species with the EPYIA motif belonging to pathogens increases 

significantly with the increase of EPIYA motif repeats in a protein sequence. 
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Table 15. Known intracellular bacterial pathogens or bacteria containing III/IV type 

secretion system, and intracellular parasitic protozoan 

Bacteria Protista 

Genus Type Number of 
species Genus Type Number of 

species 
Enterobacteriaceae  245 Apicomplexa  187 
Salmonella T3SS  Babesia IPP  
Yersinia pestis T3SS  Cryptosporidium IPP  

Shigella T3SS  Plasmodium IPP  
Escherichia T3SS  Isospora  IPP  

Campylobacterales  76 Toxoplasma IPP  
Campylobacter T4SS  Theileria IPP  

Helicobacter T4SS     
Wolinella T4SS     

Rhizobiales  346 Kinetoplastida  120 
Brucella IPB  Leishmania IPP  

Bartonella IPB  Trypanosoma IPP  
Agrobacterium T4SS     

Rickettsiales  83    
Anaplasma IPB     

Ehrlichia IPB     
Wolbachia IPB     
Rickettsia IPB     
Chlamydiae  23    

Chlamydia IPB     

Legionellales  62    
Legionella IPB     
Coxiella IPB     

Rickettsiella IPB     

Mycobacteriaceae  168    
Mycobacterium IPB     

Listeriaceae  9    

Listeria IPB     

IPB: intracellular parasitic bacteria; IPP: intracellular parasitic protozoan; T3SS: type III 

secretion system; T4SS: type IV secretion system. 

http://en.wikipedia.org/wiki/Babesia
http://en.wikipedia.org/wiki/Yersinia_pestis
http://en.wikipedia.org/wiki/Plasmodium
http://en.wikipedia.org/wiki/Escherichia_coli
http://en.wikipedia.org/wiki/Isospora_belli
http://en.wikipedia.org/wiki/Leishmania
http://en.wikipedia.org/wiki/Ehrlichia
http://en.wikipedia.org/wiki/Wolbachia
http://en.wikipedia.org/wiki/Rickettsia
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Figure 13. Relationship between number of EPIYA motif copies and number of species in 

known pathogens 

 

 

 

 

 



78 
 

Table 16. Distribution of top 40 protein sequences containing at least two copies of 

EPIYA motif 

Protein Name 
Number of proteins (number of genuses) 

Total Archaea Viruses Bacteria Protista Fungi Metazoa Viridiplantae 

CagA 1015(1)   1015(1)     

hypothetical protein 689(186) 15(10) 10(6) 242(88) 162(19) 78(28) 127(25) 55(11) 

ATP* 81(21) 2(2)  68(11) 6(4) 4(3)  1(1) 

Ankryin 55(7)   51(3)   4(4)  

DNA* 52(34) 3(3)  40(25) 7(4) 1(1)  1(1) 

Kinase 43(28) 5(2)  23(15) 4(3)  11(8)  

zinc finger protein 43(11)      43(11)  

TPR repeat protein 33(15)   33(15)     

Polyprotein 24(2)  24(2)      

SecA 23(14)   23(14)     

Peptidase 19(12) 1(1)  16(9) 1(1)  1(1)  

dynein heavy chain 17(13)    4(2) 1(1) 11(9) 1(1) 

elongation factor 2 15(7)    10(2) 1(1) 4(4)  

Palmdelphin 14(9)      14(9)  

tRNA* 14(11) 2(1)  10(8) 1(1) 1(1)   

glycogen synthase 13(1)   13(1)     

GTP-binding 13(3)   12(2) 1(1)    

transcriptional regulator 13(8) 1(1)  9(4)  3(3)   

unc-119 homolog 13(6)      13(6)  

FAT tumor suppressor homolog 3 12(9)      12(9)  

nuclear ribonucleoprotein 12(9)    1(1) 10(7)  1(1) 

4-alpha-glucanotransferase 9(1)   9(1)     

paternally expressed 3 8(6)      8(6)  

Striatin 8(7)      8(7)  

Tarp 8(1)   8(1)     

nuclear autoantigen 7(6)      7(6)  

putative mannosyltransferase 7(1)   7(1)     

Ubiquitin 7(6)    5(4) 2(2)   

26S proteasome regulatory subunit 6(3)       6(3) 

cell division protein 6(4) 3(3)  1(1)     

centaurin, delta 3 6(5)      6(5)  

fat tumor suppressor homolog 2 6(5)      6(5)  

glycosyl transferase 6(5)   6(5)     

guanine nucleotide exchange factor 6(6)      6(6)  

cytochrome c oxidase subunit VI 5(4)    5(4)    

PEG3 5(5)      5(5)  

polyketide synthase 5(4)   3(3) 2(1)    

polysaccharide biosynthesis protein 5(3)   5(3)     

TatD-related deoxyribonuclease 5(1)   5(1)     

translation initiation factor 5(4)   2(2) 2(1) 1(1)   
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ATP* includes ATPase, ABC transporter, ATP-binding protein, and ATP-dependent 

helicase; DNA* includes DNA photolyase, DNA primase, DNA repair protein, DNA-

binding protein, and DNA mismatch repair protein; kinases* includes histidine kinase, 

protein kinase, hexokinase, serine kinase, and fyn-related kinase; tRNA* includes tRNA 

synthetase, tRNA formyltransferase, and tRNA ligase. 

 

5.3.3 Distribution pattern of EPIYA-motif containing proteins 

In our search result, there are totally 3115 protein sequences with at least two EPIYA 

motif repeats. Among them, most are CagA of H. pylori as this protein has been 

extensively studied, and 689 out of 3115 are hypothetical proteins whose functions 

have not been identified. Based on protein functions, the top 40 proteins ranking by 

occurrence under each protein function type are widely distributed. They not only exist 

in achaea, viruses and bacteria, but also are found in protista, metazoa and viridiplantae. 

Besides the known EPIYA-motif containing effectors ankryin and Tarp, they also involve 

enzymes related to DNA, ATP and tRNA, transcription regulators, tumor suppressors, 

different types of kinases, zinc-finger proteins, ubiquitin and various metabolic enzymes 

(Table 16).  

        Although many of these predicted effectors are false positives and the EPIYA motif 

may not be functional in them, a significant portion of them is likely to be true effectors. 

As known effectors, ankyrin and TPR (tetratricopeptide repeat) are related to protein-

protein interaction [200, 201]. Considering the sequence similarity of the above 
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proteins, 44 sequences of ankryin are highly similar among each other and come 

exclusively from Anaplasma phagocytophilum, Wolbachia endosymbiont and Ehrlichia 

sp., all of which belong to Rickettsiales. Except the sequences from Haliangium 

ochraceum (ZP_03879805 and ZP_03880192), other sequences of TPR repeat-containing 

proteins are also similar and they are from Trichodesmium erythraeum, Stigmatella 

aurantiaca, Acaryochloris marina, Cyanothece sp. and Microcoleus chthonoplastese. For 

the 20 hypothetical proteins, YP_034066 and YP_001610012 (Bartonella), YP_153762 

and YP_002563468 (Anaplasma), XP_001623017 and XP_001636029 (Nematostella), 

ZP_01620341 and ZP_01622571 (Lyngbya), XP_001468598 and XP_001686356 

(Leishmania) are similar pairs in sequences (with more than 30% sequence identity in 

each pair), and two proteins in a pair come from the same genus. The EPIYA motif in 

these proteins is highly conserved during evolution, and it may play similar roles as the 

motif in CagA. 

        Among proteins containing at least four copies of EPIYA motif with 286 sequences 

in total, most of them are from bacteria, especially from intracellular bacterial 

pathogens or extracellular bacterial pathogens with T3SS or T4SS, and some are from 

protist, e.g., intracellular protozoan parasites. Four out of eight known effectors (CagA, 

Ankyrin, BepD, and Tarp) are found in these sequences, and thus other proteins from 

bacteria and protista may also be effectors. An interesting observation is that the 

percentage of protein sequences having the EPIYA motif in archaea is the highest among 

all groups (see Table 13), but none of these archaeal proteins contain four or more 

copies of EPIYA motif. Previous studies revealed that CagA sequences with more EPIYA-
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motif occurrences are more virulent [162]. Since archaea and other organisms have 

relationships of either mutualism or commensalsim and till now there is no clear 

evidence for the existence of archea parasites [202, 203], it is unlikely that the archaeal 

proteins containing the EPIYA motif act as pathogen effectors. Compared to other 

groups, archaea is not well studied, but we can still find some interesting examples, such 

as Methanobrevibacter smithii (ranking 5th in the species list in Table 14). It is the most 

common commensal archaea in the human gut and plays an important role in digesting 

polysaccharides, while it may not benefit the host directly. We speculate that EPIYA-

motif containing proteins of Methanobrevibacter smithii may have some biological 

functions in this commensal interaction. 

        Many functions listed in Table 16 may reflect the fact that these proteins may have 

multiple functions other than phosphorylation-induced signalling control in the host cell. 

Some of these proteins may mimic host protein functions. For example, it was suggested 

that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder 

(Gab) adaptor protein [204]. Some of the predicted effectors may mimic singling 

proteins, such as HPK (histidine protein kinase) listed in Table 16, which is an important 

part of two-component signal transduction system that recognizes and transmits 

environmental signals [205]. Some known effectors induce protein expressions with 

increased expression of RNA polymerase [206]. It is not surprising to see a significant 

number of proteins in Table 16 are related to protein synthesis, such as RNA polymerase, 

elongation factor, and helicase. It is noted that CagA itself also contains an RNA 

polymerase domain based on a BLAST search. These connections also suggest the 
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ancestor proteins of the predicted effectors. Many of the proteins listed in Table 16 are 

ancient house-keeping genes. The predicted effectors might have evolved from these 

house-keeping genes by mimicking the host genes. Furthermore, over evolution some of 

the effectors or their ancestors might have evolved into genes with different functions 

unrelated to host-pathogen interactions, such as EPIYA-motif containing proteins in 

archaea and metazoan. 

5.3.4 Building HMM based on KK, R4, Tarp and Tir motifs 

It is known that biological effects of CagA induced by phosphorylation depend on the 

binding to the SH2 domain. Different combinations of the five amino acids after 

phosphorylated tyrosine (pY) will bind different SH2 domains and cause different 

downstream effects. There are two known motifs in CagA that could bind to SH2 domain 

- EPIYAKVNK and EPIYATIDD(F), which are referred to as KK motif and R4 motif [151, 

207], respectively. For the Tir protein, we retrieved all sequences in Escherichia coli and 

Citrobacter rodentium with the pattern of EHIYDEVAA(P) and built a motif (named as Tir 

motif). We did the same for Tarp protein, yielding the motif ENIYENIYE (named as Tarp 

motif). We extracted sequences of known KK, R4, Tir and Tarp motifs in proteins CagA, 

Tir and Tarp (including their variants), and then built HMMs one by one. Figure 14 shows 

the sequence logo of each motif. Comparing with the sequence logo in Figure 12, the 9-

mer motifs are more conserved and specific. This will help reduce the false positive rate 

in identifying putative effectors, while the downstream SH2 binding partners are also 

predicted at the same time. 
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Figure 14. Sequence logos for KK, R4, Tir and Tarp motifs 

A: the logo was built with 1705 KK motif sequences extracted from 842 CagA protein 

sequences; B: the logo was built with 979 R4 motif sequences extracted from 842 CagA 

protein sequences; C: the logo was built with 20 Tir motif sequences extracted from 20 

Tir protein sequences of Escherichia Eoli and Citrobacter rodentium; D: the logo was 

built with 16 Tarp motif sequences extracted from 7 Tarp protein sequences of 

Chlamydie trachomatis. 

 

5.3.5 Search results by using HMMs based on KK, R4, Tarp, and Tir motifs 

Using HMMs based on KK, R4, Tarp and Tir motifs to search the protein sequences 

containing the EPIYA motif as described above, we found that the results are 

widespread in many species. In this chapter we only focus on the results in bacteria and 

protista. As shown in Table 17, CagA KK (EPIYAKVNK) motif exists in some known 

phosphorylation effectors, e.g., Beps (BepD, BepE, BepH) and Tir. CagA R4 (EPIYATIDD) 
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motif exists in Tarp. Both KK and R4 motifs exist in ankyrin. Among 8 proteins for 

building our EPIYA-motif based HMM, BepF is the only one containing neither KK nor R4 

motif. The Tir protein just have one motif -Tir motif in Table 11, while BAF52548 (Tir of 

E. coli) contains two motifs, i.e., Tir (EHIYDEVAA) motif and EPIYAKIQR, similar to the KK 

motif. Tarp protein (YP_001654788) of Chlamydia trachomatis contains not only the 

Tarp motif (ENIYENIYE), but also another motif ENIYESIDD, which is similar to the R4 

motif. 

 

Table 17. Sequences containing KK and R4 motifs in known effectors 

KK Motif Species Protein pY prosition Locus 
EPIYAKVNK H.pylori cagA Y-899 NP_207343  

EPIYTQVAK H.pylori cagA Y-918 NP_207343   

EPIYAKIQR E.coli Tir Y-477 BAF52548  

EPIYATVKK Anaplasma phagocytophilum  Ankyrin Y-1094 ABB84853   

EPLYAQVNK Bartonella henselae BepD protein Y-28 YP_034066   

EPLYATVNK Bartonella henselae BepE protein  Y-33 YP_034067   

EDLYATVGA Anaplasma phagocytophilum Ankyrin Y-1024 ABB84853  

R4 Motif Species Protein pY prosition Locus 
EPIYATIDD  H.pylori cagA  Y-972 NP_207343  

ENIYESIDD Chlamydia trachomatis Tarp Y-189 YP_001654788 

ESIYEEIKD  Anaplasma phagocytophilum Ankyrin Y-990 ABB84853 

 

        It reveals that although these proteins are not similar in global sequences (weak 

similarity exists between Beps sequences), they share the same or similar motifs with 

significant functional relationships. 
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5.3.6 Prediction of new effectors 

Based on the above HMMs of KK, R4, Tir and Tarp motifs, we predicted some new 

pathogen effectors and we assessed them based on the literature. The details of 

predicted effectors have been listed as follow. 

        (1) Bartonella tribocorum: Since BepH contains the EPLYAQVNK (YP_001610013, Y-

8) motif (KK motif), we predicted it as a phosphorylation effector like BepD-F secretory 

proteins. 

        (2) Lawsonia intracellularis: Lawsonia intracellularis is an obligate intracellular 

bacterial pathogen, which infects a wide range of animals, mainly pigs, and causes 

proliferative enteropathy - a type of contagious diseases [208, 209]. Its symptoms are 

acute, including diarrhea, loss of appetite and stunting. After an initial close association 

with the cell membrane of the enterocytes, Lawsonia intracellularis is endocytosed into 

host cell [210]. Infected host cells are inhibited in maturation, continue to undergo 

mitosis and proliferation, and at last form hyperplastic crypts, but the mechanism is 

unknown [211]. The genome sequence of Lawsonia intracellularis indicates that it may 

possess a type III secretion system, which may assist the bacterium during cell invasion 

and evasion of the host’s immune system and could be a mechanism for inducing 

cellular proliferation [212, 213], but its effectors secreted by T3SS was never reported. 

Current database contains 20 proteins of Lawsonia intracellularis with the EPIYA motif 

and all of them are from strain PHE/MN1-00. The maximum sequence identity between 

any two of these 20 proteins is 22% and most of them are enzymes, e.g. ATP synthase. 

Among them, in the HMM search result by using the R4 motif, we found that 
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hypothetical protein LI0666 (YP_595041) contains two copies of EPIYA motif (EPIYAEIKT 

Y-149, EPIYAEIKT Y-186), which are similar to the R4 and Tir motifs, respectively. Thus, 

we speculate that this protein might be the effector of Lawsonia intracellularis to 

interact with intestinal epithelial cells. 

        (3) Ehrlichia sp.: It belongs to the same family Ehrilichiaceae as Anaplasma [214]. 

Ankyrin of Ehrlichia sp. and ankyrin of Anaplasma share 89% sequence identity. Ankyrin 

(T08612) of Ehrlichia sp. contains six copies of 9-mer motifs including the KK and R4 

motifs, and thus it is a likely effector of Ehlichia to interact with host. 

        (4) Wolbachia: Wolbachia belongs to Rickettsiales. Wolbachia is a symbiotic 

bacterium existing in the sex organ of many insects. Though ankyrin (AAY54257) of 

Wolbachia and ankryin of Anaplasma share only 15% sequence identity, they contain 

almost exactly the same motifs. Hypothetical protein WD0942 (NP_966676), which is 

not similar to ankyrin in sequence, has two motifs, and one of them is EPIYATVPK(Y-318) 

similar the KK motif. EsorChan1 (AAP34173) contains the motif EPIYDEVYD (Y-77) similar 

to the Tir motif. Therefore, the above three proteins, especially the first two, are 

potential effectors of Wolbachia [215]. 

        (5) Pasterurella multocida: As the major pathogen to cause swine infectious 

atrophic rhinitis, it secretes toxin filamentous hemagglutinin containing six copies of 

EPIYA motif. Based on the BLAST search results, we found that the filamentous 

hemagglutinin (AAK61595) of Pasterurella multocida, filamentous hemagglutinin of 

Bordetella pertussis and Bordetella Parapertussis share ~30% sequence identity [216-

218]. Filamentous hemagglutinin, the major virulence factor of Bordetella pertussis, not 
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only has adhesion function, but also plays a critical role in immunomodulation. Since 

filamentous hemagglutinin has the sequences EDIYATINK (Y-2792), which is similar to 

the KK motif, EHIYADIRD (Y-2550) and ENLYAEISD (Y-2651), both of which are similar to 

the R4 motif, and EHLYAEINE (Y-2387), which is similar to the Tir motif, we suggest that 

filamentous hemagglutinin being the effector of Pasterurella multocida and it might be 

secreted by the TPS (Two-Partner Secretion) system [217]. PfhB2 (NP_244996) has four 

sequences that are similar to KK, R4 and Tir motifs, and thus it might be another 

candidate of effector in Pasterurella multocida. 

        (6) Haemophilus ducreyi: Haemophilus ducreyi is a facultative anaerobic Gram-

negative coccobacillus and could cause the sexually transmitted disease chancroid. 

Large supernatant protein2 (NP_873623) of Haemophilus ducreyi has six copies of EPIYA 

motif. Its sequence and filamentous hemagglutinin of Bordetella pertussis share 41% 

sequence identity. Its sequence EPVYADLHF and EPVYADLRF are similar to the R4 motif. 

Hence, we suggest large supernatant protein2 (NP_873623) is a potential effector of 

Haemophilus ducreyi and it could be secreted by T4SS [219]. The effector can lead to 

immunosuppression, inhibition of proliferation, and permanent changes in host cells 

[220-222]. 

        (7) Haemophilus somnus: Haemophilus somnus can survive in host cells and is the 

cause of a variety of systemic diseases in cattle, including thrombotic-

meningoencephalitis, pneumonia, arthritis, myocarditis, septicemia and other 

reproductive diseases [223, 224]. Cysteine protease domain YopT-type (YP_001784809) 

and filamentous hemagglutinin of Bordetella pertussis share 42% sequence identity. The 
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sequence EPIYATLDK (Y-2933) in YP_001784809 is similar to the KK motif, EHIYEQIGE (Y-

2358) similar to the Tarp motif, and EPVYDKVSA (Y-2287) similar to the Tir motif. Thus, 

YP_001784809 might be the effector of Haemophilus somnus to cause 

immunosuppression [225]. 

        (8) Chlamydophila pneumonia: Hypothetical protein CPj0472 (NP_300527) contains 

three copies of EPIYA motif. EPIYANTPE (Y-647) is similar to the KK motif, EPIYEEIGG (Y-

346) is similar to the Tir motif and EPIYDEIPW (Y-681) is similar to the R4 motif. Although 

we did not find any similar protein through BLAST search, hypothetical protein CPj0472 

(NP_300527) is a good candidate for the effector of Chlamydophila pneumonia. 

        (9) Leishmania major: Leishmania major could parasitize into phagocyte of human 

or other mammals and is responsible for the disease leishmaniasis, which is a serious 

zoonosis. Leishmania major have 6 proteins containing at least two copies of EPIYA 

motif and 4 of them are proteins with unknown functions. Among these 6 proteins, 

Cytochrome C oxidase subunit VI (XP_001683136) contains two copies of EPIYA motif. 

One is at position Y-107 with sequence EPLYQPVKK, which is similar to the KK motif. 

Another one is at position Y-130 with sequence EPLYDVDAA, which is similar to the Tir 

motif. Hence, XP_001683136 might be an effector. Hypothetical protein 

(XP_001686159) has three copies of EPIYA motif and the sequences are all EPLYAVTIE, 

which is similar to KK and R4 motifs. Hypothetical protein (XP_001686160) also has 

three copies of EPIYA motif and the sequences are all EPLYAVTID, which is similar to the 

R4 motif. In addition, hypothetical protein XP_001686159 and XP_001686160 share 43% 

sequence identity. Hypothetical protein (XP_001686356) has 29 copies EPIYA motif (the 
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one with most EPIYA motifs in our data) and all sequences are the same as EPLYAVTLE, 

which is similar to the R4 motif. Microtubule-associated protein (XP_001687515) 

contains two copies of EPIYA motif. One is at Y-1543 and another is at Y-1589. The 

sequences for both of them are ESIYAKDYK, which is similar to the KK motif. Thus, we 

predict Hypothetical protein (XP_001686159), hypothetical protein (XP_001686160), 

hypothetical protein (XP_001686356) and Microtubule-associated protein 

(XP_001687515) might also be the effectors of Leishmania major. For another potential 

effector hypothetical protein (XP_001683914), although it contains two copies of EPIYA 

motif (ESLYE is at Y-1006 and EHLYD is at Y-1047), they are not similar to KK, R4, Tarp or 

Tir motif and hence less likely to be an effector than the above five proteins. 

        (10) Plasmodium falciparum: Plasmodium falciparum can invade human liver cells 

and RBC to cause dangerous infection malaria. It contains many proteins with the EPIYA 

motif and 47 proteins with at least two copies of EPYIA motif. Among them, Plasmodium 

exported protein (XP_001347309) has three copies of motif which are all similar to the 

Tarp motif. The sequences and the corresponding pY sites are ESIYKNKLK (Y-331), 

ESIYKNKLK (Y-359), and ESIYKNKLE (Y-387). Thus we predict it as the effector of 

Plasmodium falciparum. Conserved Plasmodium protein (XP_001347469) has eight 

copies of EPIYA motif, RNA pseudouridylate synthase (XP_001350676) has nine copies of 

EPIYA motifs and hypothetical protein (XP_001351018) has three copies of EPIYA motif, 

but none of them contains any of KK, R4, Tir and Tarp motifs, and therefore is less likely 

to be the effector than Plasmodium exported protein (XP_001347309). 
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5.3.7 Protein subcellular localization prediction 

Based on our effectors prediction results, we applied the subcellular localization 

prediction for all bacteria effectors by using CELLO v.2.5 [226] 

(http://cello.life.nctu.edu.tw). First, we chose ‘Gram negative’ as the organisms to 

perform the prediction, since those effectors are all from Gram-negative bacteria. 9 out 

11 effectors were predicted as extracellular or outermembrane (Table 18). Then we 

reapplied the prediction by choosing ‘Eukaryotes’ as the organisms and the results of all 

11 effectors are nuclear (Table 18). The above results show that most our predicted 

effectors have the same attributes as the real effectors.  

 

http://cello.life.nctu.edu.tw/


Table 17. Subcellular localization prediction results of predict bacteria effectors 

Species Effector 
Gram-negative Eukaryotes 

1st Prediction 2nd Prediction 3rd Prediction 1st 
Prediction 

2nd 
Prediction 

3rd Prediction 

Bartonella 
tribocorum 

BepH (YP_001610013, Y-8) Cytoplasmic 
1.669  * 

Periplasmic 
1.432  * 

Extracellular 
1.363  * 

Nuclear 
4.119  * 

Extracellular 
0.637 

Cytoplasmic 
0.115 

Lawsonia 
intracellularis 

hypothetical protein LI0666 
(YP_595041) 

Extracellular 
2.545  * 

Periplasmic 
1.335 

OuterMembrane 
1.335 

Nuclear 
3.154  * 

Mitochondrial 
0.943 

Cytoplasmic 
0.485 

Ehrlichia sp. ankyrin (T08612) Periplasmic     
2.003  * 

OuterMembrane 
1.214 

Extracellular 
1.131 

Nuclear 
1.419  * 

Cytoplasmic 
1.373  * 

Mitochondrial 
0.941 

Wolbachia 

ankyrin (AAY54257) Extracellular 
2.511  * 

OuterMembrane 
1.723 

Periplasmic 
0.42 

Nuclear 
3.542  * 

Cytoplasmic 
0.566 

Mitochondrial 
0.248 

Hypothetical protein WD0942 
(NP_966676) 

Extracellular 
1.709  * 

OuterMembrane 
1.471  * 

Periplasmic 
1.275  * 

Nuclear 
4.265  * 

Mitochondrial 
0.439 

Cytoplasmic 
0.192 

EsorChan1 (AAP34173) Cytoplasmic 
3.122  * 

Periplasmic 
0.727 

Extracellular 
0.585 

Nuclear 
2.181  * 

Cytoplasmic 
1.470 

Extracellular 
0.646 

Pasterurella 
multocida 

filamentous hemagglutinin 
(AAK61595) 

OuterMembrane 
2.344  * 

Extracellular 
1.723  * 

InnerMembrane 
0.594 

Nuclear 
2.622  * 

Cytoplasmic 
0.996 

PlasmaMembrane 
0.479 

PfhB2 (NP_244996) OuterMembrane 
2.182  * 

Extracellular 
1.632  * 

InnerMembrane 
0.6 

Nuclear 
2.374  * 

Cytoplasmic 
0.990 

PlasmaMembrane 
0.482 

Haemophilus 
ducreyi 

Large supernatant protein2 
(NP_873623) 

Extracellular 
2.318  * 

OuterMembrane 
1.802  * 

InnerMembrane 
0.593 

Nuclear 
2.638  * 

Cytoplasmic 
0.550 

PlasmaMembrane 
0.484 

Haemophilus 
somnus 

Cysteine protease domain 
YopT-type (YP_001784809) 

Extracellular 
2.245  * 

OuterMembrane 
1.844  * 

InnerMembrane 
0.593 

Nuclear 
2.551  * 

Cytoplasmic 
0.944 

PlasmaMembrane 
0.482 

Chlamydophila 
pneumonia 

Hypothetical protein CPj0472 
(NP_300527) 

OuterMembrane 
2.415  * 

Extracellular 
1.224 

Periplasmic 
0.577 

Nuclear 
3.099  * 

Cytoplasmic 
0.949 

PlasmaMembrane 
0.286 

91
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5.4 Conclusions  

In this charpter, we showed that the EPIYA motif might be a ubiquitous functional site 

for effectors that play an important role in pathogenicity for mediating host-pathogen 

interactions. Most known effectors have more than one copy of EPIYA motif. The 

predicted effector sequences of pathogens from the same genus are likely homologous, 

and those from different genuses are rarely homologous although they often share 

common motifs. Most pathogens are intracellular bacteria or long-term chronic 

infection of extracellular bacteria, e.g., H. pylori. Usually effectors are secreted by T3SS 

or T4SS to enter host cells, and then interfere signal transduction pathway of the host 

cell to disturb host cell functions, which mainly involve actin polymerization, cell 

proliferation, apoptosis and immunosuppression, so as to improve the abilities of 

survival and propagation of microorganism with host-pathogen interaction. 

        Our study predicted many putative effectors. We grouped the phosphorylated 

EPIYA motifs into four types, KK, R4, Tir and Tarp based on the sequence features of the 

five amino acids after Y, and then we used them individually to build the HMM. After 

using the HMMs to search our database and considering the known pathogenic 

characteristics of pathogens, we predicted some effectors of bacteria and also 

suggested that using our method will discover more effectors with the EPIYA motif. 

Besides the discovery in bacteria, we also found that there were many protein 

sequences containing the EPIYA motif in protist pathogens. Intracellular protozoan 

parasites can live in host cells to survive and reproduce by subverting of host cell 
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signalling [198], to induce downstream effects, e.g., inhibiting apoptosis of host cells, 

restructuring of the host cell cytoskeleton, and so on. However, the pathogen mediators 

responsible for this modulation are still unknown [199]. Based on this study, we 

hypothesize that during the interaction process between protist and host, there is a 

secretion system that can secrete effectors to disturb the signal transduction pathway 

of infected host and to control the apoptosis of host cells. 

        Our predictions provide useful hypotheses for further studies on exploring 

pathogenic mechanisms in the host-pathogen interactions. It also has the scientific and 

clinical implications for prevention and treatment of infectious diseases, as it may 

provide some guidance for vaccine/drug development. Having said that, it is noted that 

the EPIYA-motif containing protein does not exist in all intracellular bacteria, and 

therefore EPIYA-motif mediating interaction is only one type of various host-pathogen 

mechanisms. Furthermore, our prediction result is based on computation and definitely 

contains false positives, and thus it requires further experimental validations. 
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6. SUMMARY AND FUTURE WORK 

6.1 Conclusions 

In the post-genome era, as an exciting new field, metagenomics offers a powerful lens 

to explore the world of microorganisms. With the explosion of metagenomic data, it 

brings many surprises in microbial genomics and microbiology, and is becoming the 

standard way to help better understand the genome diversity and bacteria dynamics, 

interactions between bacteria and their hosts/environments, and the pathogenicity of 

pathogens. The unprecedented amount of genome data not only provides new insights 

into many aspects of complex microbial communities, but also poses major challenges 

for computational analysis. In fact, computational methods for massive genomic 

sequence analysis have restricted the development of microbial genomics. 

        Among computational problems in metagenomic data analysis, bacterial 

characterization (i.e. identification and classification) is a very important and essential 

step of analyzing genomic data. In this dissertation, we systematically studied most 

computational methods for general bacteria identification. Due to the limitations in 

theory, most of them only can be successfully applied at genus level identification. 

However, many practical problems demand high accuracy at species level, sub-species 

level, sometime even at ecotype level. Furthermore we propose two challenging 

problems and introduce possible solutions with our methodologies. And we also present 

some extension work on effector prediction based on our study of H. pylori. 
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        In chapter 2, we have reviewed the most widely used bacterial identification 

algorithms, e.g. sequence search, phylogeny, frequencies of length-N motifs, naïve 

Bayes classifier, Markov model and SVM. With the improvement of new tools, the 

accuracy is getting improved. However, the significant drop of identification 

performance with the decrease of the read length and the lacking of accuracy on 

species-level identification are the two common drawbacks for all current algorithms. It 

is crucial to improve the performance in using short reads for bacterial identification on 

the species or sub-species level. 

        In chapter 3, we have addressed a specific bacterial identification problem, 

detections of host-specific bacteria. It means that we are trying to identify the different 

subtypes/subspecies of one particular bacterium. While current algorithms cannot solve 

it, we provided promising examples for tackling these issues, which may point a helpful 

direction to pursue for future studies. In this case, we used entropy difference to detect 

host-specific genetic markers for Faecalibacterium. Then two primers designed based on 

detected markers have been successfully validated by experiments. The discovery of 

Faecalibacterium 16S rDNA IVS has provided a foundation to design and develop of a 

poultry feces-specific PCR assay for the rapid determination of poultry fecal pollution in 

water. 

        Identification of host-specific bacteria is not only a special issue of bacterial 

identification, but also a way to discover bacteria-host interaction. In terms of bacteria-

host interaction, the mechanism of same pathogen causing different diseases is a very 

common and challenging problem. Detection of disease-associated sequence markers in 
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pathogenic bacteria, discussed in chapter 4, requires an even higher differentiation 

power requires even more accuracy in differentiation than in identification of host-

specific bacteria. The clinical importance of differentiating disease-associated strains 

from the nonpathogenic ones calls for more computer scientists to develop new 

computational methods, inference algorithms, and standard tools to solve these 

challenging problems. 

        In chapter 5, based on our knowledge of H. pylori, we speculate that the EPIYA-like 

motif and its phosphorylation, together with its interference of host cells, may be a 

general mechanism of pathogenesis. Then we used EPIYA-motif-based HMM to search 

the current protein database, further identify more proteins with the EPIYA motif. 

Through studying the distribution and features of EPIYA motif in different species and 

genuses, we could better understand the function of EPIYA motif. Our predictions not 

only provide useful hypotheses for further studies on exploring pathogenic mechanisms 

in the host-pathogen interactions, but also have the scientific and clinical implications 

for prevention and treatment of infectious diseases, as it may provide some guidance 

for vaccine/drug development. 

6.2 Limitations and future works 

6.2.1 General 16S rRNA-based classifier 

According to our previous research in chapter 3 and 4, the result shows that our method 

has the potential ability to achieve high identification accuracy on sub-species level or 
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ecotype level. Besides the better accuracy, our approach also has the following 

advantages:  

• We can utilize partial 16s rRNA sequence for classification, and the accuracy will 

not be affected dramatically.  

• We can assign bacterial sequence to new taxonomy at species level, and for 

some species we can even identify sub-species.  

• For two groups of sequences, e.g. from two genera or two species, our approach 

can tell the most important sites to distinguish those sequence groups.  

        But as a position-related method, multiple sequence alignment is a necessary pre-

processing step and the alignment quality has a significant impact on identification 

accuracy. As we known, large scaled MSA has the extremely expensive computational 

complexity Therefore, finding a high-efficient MSA algorithm or modify current 

algorithm to reduce the computational complexity will be the high priority task for 

making our method practical. 

6.2.2 Fecal pollution tracking with using host-specific genetic markers 

Although we successfully detected a genetic marker which is specific for 

Faecalibacterium strains from poultry hosts, it cannot solve the fecal pollution tracking 

problem completely. We have to find other new markers to distinguish other hosts in 

practice. At first, we applied the method presented in chapter 3 to E. coli genes, but 

unfortunately the variation between strains from different hosts is not as significant as 

Faecalibacterium. We speculate that the host-specific difference of E. coli might be at 
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genome level rather than gene level, so a new method is necessary to introduce more 

information in genetic marker detection, such as, gene rearrangement. With the 

dramatic increasing of metagenomic data, another possible solution to find new host-

specific markers is that screening all possible bacteria by using an automatic pipeline. 

6.2.3 Gastric cancer marker identification and further research on host-

pathogen interactions 

We already did some studies on host-pathogen interactions and trying to find the 

cancer-related sequence marker on CagA sequences of H. pylori. We know that the 

molecular mechanism of development of gastric cancer is very complicated and only 

one pathogen gene cannot dominate the disease. Due to the limitation of data, we have 

to start our research from the most studied gene, CagA. With the increasing of cancer 

genome data and improvement of studies of other genes of H. pylori, the following 

further researches become possible and they will help us to better understand the host-

pathogen interactions and molecular mechanisms of H. pylori-mediated gastric cancer:  

• Analyze another important virulence factor, VacA, by using the similar method as 

we applied to CagA, and detect the cancer-related residues for VacA gene.  

• Use both VacA and CagA sequence data for analysis.  

• Use both gastric cancer and H. pylori genome data for analysis.  
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