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A Vision of the distributed power

units

\,

Based on present power
density results

Assumes long run times and
control achievable
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Basis for pW

* Pu238; 540 W/kg
3 kW = 5.6kg; 0.28L

* LENR: 1kW/kg at 4 atm and room temperature (present data)
3kW = 3kg; 2.3 L nanoparticles

Thus on a weight basis LENR unit offers approximately
same power, but uses somewhat larger volume.
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LENR-Gen Module
\

* Conceptual design for modules for distributed power

illustrates how simple the configuration is, leading to

compactness for ease of location and reduced costs.
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LENR Gen Module

T'hermoelectric generator Nano-particle

Turbo-fan Motor Fin Reactor ho

A Hydride Gas-Loaded Nanoparticle Electrode Cell

one concept for 1.5 kW units for distributed power. Could be scaled to higher power
units with some thermal power handling modification. Alternately for some uses these

could be combined in parallel or series for higher powers a r.voltage-cursr
matching. rﬁf/i iLfi% O I S
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LENR for Household Pewer

i
* A7 kW thermal giving, after conversion to electricity.

* 1.5 kWe = our standard model for this market.
* Would use heat for co-generation applications.

* The cost analysis is based on this unit
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Capital Costs

the $2 / W range ,

* Estimated total unit cost = $3,000 or S 2/W installed.

* Comparison: 1/2 to 1/5 of the installed cost for equal size of
Solar, Wind or Fuel Cell.

* 2"d Generation of LENR units would lower price even more
due to continuing R&D.
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Operational Cost

* Replace nano-particles every 6-months, u
* S500 per reload of nano-particles.
* @as and Maintenance costs are low

- chamber components should not wear out for many years

thus particle reloading dominates the operational cost
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Operational Cost

household average. ,

* Note: nano-particle reloading costs are equivalent to the cost of

natural gas for high-temperature fuel cells, or the cost of energy
storage/electrical purchase for solar when the sun is down.
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* COE of 7 cents/kWh for first generation LENRs

— 3 year payback period, after which a cost savings/unit >
S 1000/yr is enjoyed.
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LENRs payback times

payback, and fuel cells even longer. "

* Future price reduction of 5~20% / yr are projected due to nano-

particle improvements.

* Historically, other renewable power has received government

and state incentives to off-set costs.

* But incentives may not be necessary for LENR .
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Market potential

| Compact size | /

(vs. other No greenhouse

renewable: gas emission
solar and wind)

3-yrs Initial
Investment
pay-back
period

operation
combined

marketable

100s of
| Dillions/year /4
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Major uncertainties

A,

nano-particle
“lifetimes” = ability for
6 month recycling

assumed \,! i

. objectives
- for the 2-
yr R&D
plan.
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Our recent LENR work and ultra dense H/D
cluster

 LENR Power Source Applicatic
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Earlier Experiments with

thin films leading to use of clusters
for reproducible reactions
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Dislocation-Loop-Cluster Studies with Thin Films.
Clusters of D or H Form the Nuclear Reactive Site for

d anodizing

- dislocation loop and cluster

formation




Understanding Clusters and Demonstrating their almost
Metallic Density Hydrogen Characteristic
Temperature Programmed Desorption (TPD)
and SQUID Measurements
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Alternate Studies with [Laser Aicceler:
ation - Initial Experiments at LANL

* Verify extraction from cluste

* Verify earlier estimate of accelerated deuterotr
energies
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* Pulse length 600 +/- 100 fs

* Energy 80 =/-10 J

* Center wavelength 1.054 microns

* Pre-pulse contrast >10710 (in intensity)
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More Parameters

* Pinhole diameter on R

* D cluster target
* 2X2mm, 12micrmeter thick, supported on glass fiber.
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Ti Filter

Magnets and
electrodes

SRIM calculation)

Thomson parabola

(Radiochromic Film) RCF
stack
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more target shots to study sce
obtain better quantitative data
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Laser Energy In 91.2J out 75.1J , Duration 559 fs
Bandwidth 2.31nm

Proton

/ Cb* and D*

CYand T*

Image Plate




Ion Trace of PdD Separated by Thomps
on Parabola WITH Ti Filter

Zoom In View

Image Plate
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Comments —Exp results

* Reduce contamination (p and C,

* QObtain more insight from ongoing supporl g
simulation studies.
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Concluision

In-chamber glow

§LLLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG



§LLLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG



Clusters mainly form in pores close to the surface.

Nano-Materials have more surface area, thus
have good ability to form abundant clusters.

Thin film
][ I [ e N
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- Gas Loading S 3m

2.2c¢m inner diameter
25cm3 total volume
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&

Schematic View

experiments

Outer
D,or H, Gas

Chamber

31

Turbo-
molecular

chamber is replaced with insulation for ease of assembly

/ Sample
,' chamber
|
\ Sample
v RS :
W SET L b« Heating
) coil

Vacuum pump
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3 different types of alloys; 4~5 components are used
The alloys are milled and annealed to form nano-particles.
Details are covered in one of our. patents recently issued.

One Pdirich alloy; Alis for D loading:.

wo Nitrichralloys; B; € are for H> loading:
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Particle Type

Particle Composition
Pd-Zr
Pd-Zr-Ni (High Ni, Pd)
Pd-Zr-Ni (High Ni, Low Pd)
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Two types of experiments:
Kinetic and Adiabatic
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Note; dominate “input power” due to chemical
reaction contributions when loading, deloading.

—a— Side Mo 1
R =T
120 -
P
E 100 1 0, unloading
2 an SLarts
reaction & |eopsin, \
. - . . 5 loading starts
% Desorption: Endothermic chemical = 40 i
reaction 7
L1}
% Chemical reaction Energy = AHxXMD, 0os W0 % 20 00 350 A0

Time (saconds)

4

D)

L)

» AH = 35,100J per mole of D,
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ENergy analysis ortnis <

Vieasurement Snows
production attri

Absorption
Exothermic energy from chemical reaction --- 690J
Actual measured energy : 1479J — roughly double
the possible chemical contribution. Added energy Is

attributed to LENR reactions.

LENR (Nuclear) Power Density : ca. 1kW/kg at 4 atm.,
over short run 300 sec. time

Desorption

Endothermic chemical Reaction — should show rapid
temperature drop, but instead an increase is observed
— attributed to continuing LENRs produced by
Increased ion flow out of particle during desorption =

“life after death” 1 ILLINOTIS
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Our approach to temperature control for long ~ constant temperature runs — requires
control method — e.g. pressure variations to as shown in
earlier kinetic energy measurement. At the same time the control band will be set at
the highest possible temperature to achieve efficient energy conversion to electricity.
This maximum temperate will be limited by the need to avoid damage to the

nano-particle.

i
Temperature
(arbitrary units)

Lower limits

Press urizing;fl—DeprEEE urizing  Time (hrs)

Figure 14a !

Temperature ,':r
[arbitrary units)
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Very short run time experiments with
small particle weight loading, provide
adiabatic conditions: forcomparison of
nanoparticle performance
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ADIABATIC EX FOR CONMPARISON OF NANOPARTICLES!

, or the Initial Temperature Increase
Compared to Exothermic Energy from Chemical Reactions

Initial Peak Measured Peak
Nano Total Temp.to Power Energy minus
Run  Particle Mass Delta T Energy Total EnergyPeak Temp. Density Chemical Chemical
# Type (grams)  (Celsius) (Peak) density (J/g) (sec) (W/g) Energy (J) Energy (J) Gain
1 Type A 2.2 31.55 972.05 441.84 14.00 31.56 74.85 897.21 12.0
Type A
(same
particles
2 fromrun1l) 1.9 4.95 151.96 79.98 16.00 5.00 64.64 87.32 1.3
3 Type A 1.8 25.05 768.01 426.67 10.00 42.67 61.24 706.77 11.5
4 Type B 11.1 90.90 3588.88 323.32 95.00 3.40 271.29 3317.59 12.2
5 Type C 6.4 8490 2754.00 430.31 98.00 4.39 170.76 2583.24 15.1
Type C
(same
particles
6  fromrun5) 6.4 6.80 220.58 34.47 76.00 0.45 170.76 49.82 0.3
7 Type C 3.2 27.10 846.04 264.39 78.00 3.39 85.38 760.66 9.3

§LLLINOIS
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Particle A Particle B
Average starting
# temp (C) Run Peak Power (W/g) Peak Power (W/g)
1 23 1 2.76 2.40
2 100 1 N/A 14.20
3 150 1 1.56 14.41
4 150 2 N/A 3.65
5 200 1 2.93 14.18
6 200 2 0.79 14.62
7 250 1 7.05 2.94
8 250 2 0.56 14.92
9 300 1 2.25 12.84
10 300 2 0.56 11.85
42
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HIgn lemperature baking

high vacuum to drive off excess oxygel

* Two samples baked at 750 C for 3 hours prior to
pressurization

* TPD (temperature programmed desorption) used to
study oxygen concentration

* Samples then pressurized to determine effect of
baking temperature on peak power of particles
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Concentration

Concentration of various molecules as a function of temperature

.0E+00
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.0E-02
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.OE-07

.OE-08

.0E-09

.OE-10

during baking process

Temperature (Celcius)

—H2

—H20
N2

—02
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HIgN Iemperature Baking

e

: . ~ealig
* Most oxygen is driven off at temperatures above
650 C

* Pressurization after baking at theses high
temperatures had reduced power generation

* Indicates deactivation of particles at these high
temperature bakes

* Optimum temperature for cleaning w/o deactivation
about 4-500 C
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Heat of absorption
Metal Hydride Reference
kd/mol-H, kJ/g-metal

R. Griessen, T. Riesterer, in: L. Schlapbach (Ed.), Hydrogen in

Z[‘H2 106 1 16 Intermetallic Compounds I, Springer-Verlag, Berlin, 1988. p.
266

P. Dantzer, W. Luo, Ted B. Flanagan, And J.D. Clewley,
ZI’H 17 4 1 43 Calorimetrically Measured Enthalpies for the Reaction of Ha (g)
1.5 - with Zr and Zr Alloys, Metallurgical Transactions A, volume
24A, july 1993. p. 1471

ZrO.QTiO.lcrl.lFe 32.6 0.18 LG Electronics + KAIST joint research
0.9

Nano-Alloy-A n/a 13.15 Lenuco

Nano-Alloy-B n/a 19.01 Lenuco

cf. H, combustion by O, = 10 J/cc
Assume 20cc of H, + 5cc of O, = 0.2 kJ from 25 cc reactor
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Summary ol the Nanoparticle

comparison

* Type C has hlghestgam\/

* Type B has a higher peak power compared to Type
A (W/g)

* Regeneration after runs for Type B is encouraging
— relatively consistent peak power output

* Particle A — increased power with increased initial
temperature

* Particle B — no clear temperature dependence on
peak power

* High temperature baking (750C) causes possible
deactivation of particles
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aded Nanog
SIMS m

* Gold ion beam ionizes the surface of &
lons that are directed to strike a target

* Evaluates mass of atoms/molecules and creates a spectrum

* Quantitative results are only obtained by comparison
between two or more samples

Preliminary remarks on pressurized particles

* The nanoparticles are suspected to have contamination
from the stainless pressure vessel

* New elements detection : Ca, Na
* Possible contamination from environment
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Sample of

0.7 — Dblank
alloys
Noise or
hydrocarbonates
Increasing 12,6% Sample of
A - .
of the ratio 15.6% pressurl_zed
nanoparticles
03/11/13 Pressurized sample —

Ratios over main isotope of Palladium
Ratios over main isotope of Zirconium 49
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SEM image of the nanoparticles A before (left) and
after (right) deuterium gas loading experiment
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PIOPOSEN METNOAS 1O [
aglomeration or rlrlrlOOrlf’fl(,l

nigner C OI'II'I'OI OOII’][ [rjffl()r‘fﬁ

* Increase surface oxide layer thickness
* Changes in composition
* Embed particles in substrate

* Control reactor temperature profile to avoid
hot spots
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rrsimulations using Comsol

Miultipnysics

Reference simulation

A 315.96

Time=20 Surface: Temperature (degC) ||

{ 280

* Geometrical model of the chamber

* It is being calibrated to determine accurate
heat transfer coefficients

* Comsol will give access to internal
temperatures field and more accurate .
values for energy and power generation '~ Lon

260

220
200
180
xlOo":’-r;ltf/ xdlog 160

140

e Thermocouples in
experimental set up

¥ 12259
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STENR SImulations using €Comsaol
Viultipnysics

We are on the process to reach a quadratic error between experimental
data and simulation of less than 6% for all thermocouples.

Curve that the model has to match

T°C

150 + Experimental bottom
thermocouple
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—

* Experimental results with cluster loaded materials
are very encouraging

* Work concentrating on run time and control issues
IS needed to develop a commercial unit

* Vision and goal — distributed power units in wide
use for co-generation.

* Negotiating with several companies for early
demonstration units.

§LLLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

54




Thanks for your attention

% Recent results from gas loaded nanoparticle-type cluster pt ,
Patel, T., Miley, G., Osouf, A., Stunkard, B., Kyu-Jung, K., & Ziehm, E
(2013, July) Poster session. ICCF 18, Umversﬂy ofMlssouri, Columbia.

+ Study of Composition of Nanoparticles during Gas Loaded LENR Power Cell
Operation. Osouf, A., Miley, G., Patel, T., Stunkard, B., Kyu-Jung, K., & Ziehm, E
(2013, July). Poster session. ICCF-18, University of Missouri, Columbia.
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