Possibility of Tachyon Monopoles Detected in Photographic Emulsions

Keith A. Fredericks
keith@restframe.co
regular periodic structure

photographic emulsion

PdD cathode

MDS
periodic, curvature, vertexes, correlation
differential deflection

$\theta_s \propto \frac{1}{p_i}$

p_{min} at vertex

2-tailed vertex
correlated random motion

suggestive of entanglement
bundles - ζ-correction

\[\zeta = \frac{w}{w_0} \]
Energy deposition

track length = 13.3 mm
track radius = 0.01 mm

grain size = 0.34 μm
AgBr/gelatin = 0.85
ergy/energy/grain = 600 eV

$E_{track} = 69$ GeV
$S_{linear} = 52$ GeV/cm
parabolic curvature

\[x = y^2 \]

momentum

\[p_i = \sqrt{\frac{g|B|x^2}{2y/E}} \]

\[\bar{p} = \frac{1}{n} \sum_{i=1}^{n} p_i \]

R-squared: 0.999847585926

\[y = \frac{-b + (b^2 - 4a(c - x))^{0.5}}{2a} + \text{Offset} \]
signature 1.

$$\bar{p} = 34.63 \, eV$$

$$\bar{E}_k = 4.55 \times 10^8 \, eV$$

but,

$$m = \frac{p^2 - E_k^2}{2E_k}, \beta$$

Kinetic Energy vs. Momentum ($g = -e$)
signature 2.

\[f \xrightarrow{SLT} f' \]

\[m' = -\frac{p'^2 - E_k'^2}{2E_k'} \]

\[\beta' = \frac{1}{\beta} \]
signature 3.

parabolic curvature in a magnetic field is unique to a monopole (but...it is in the wrong plane)
signature 4.

\[
\begin{align*}
H_z \xrightarrow{SLT} E_y' \\
\text{transcendent SLT}
\end{align*}
\]
tachyon shape via SLT

frame f'

SLT

frame f
helical trajectories model
periodic tracks
implications

exotic particle approach

tachyon monopole
research objectives

1. Verify $v>c$ result
 - calibrate EM fields and detector response
 - high-precision microscopes

2. Analysis
 - mass, sign, direction, helicity
 - particle source, annihilation points, entanglement

3. Control
 - particle behavior, material interactions
More information:
http://restframe.com

Keith A. Fredericks
keith@restframe.com
same particles observed in multiple studies

track properties: curvature, length, width, periodicity, random motion, correlation, splitting, vertexes

\[E_k \text{ vs. } p \]

four signatures

- SLT mass and velocity
- parabolic curvature
- SLT plane of curvature

→ tachyon
→ tachyon
→ monopole
→ tachyon/monopole

exotic particle approach to LENR theory
real particle effect

This image shows what **can only be** a group of “identical” correlated particles going through a series of quantum transitions in a non-uniform magnetic field.
unknown particle

“69mm”
\[\zeta = 18.0 \]
\[E_{dep} = 402.9 \text{ GeV} \]

continuous, very long, very wide, with no “usual” delta ray structure with periodic structure