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Figures of merit

Figures of merit to explore the variations
In physical properties:

e Hydrogen adsorption energy
e Hydrogen-Hydrogen separation
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Adsorption energy
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(100) Pd surface modeled
as slab:




Adsorption energy

(100) surface modeled as

Pd - 0%H
slab:
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Pd:H - 4:1 - surface+sublayer

-04 -0.3 -0.2 -0.1 0
Energy (eV)

ICCF - 18, Columbia, Missouri 7



Adsorption energy

Pd - 0%H

(100) surface modeled as

slab:
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Results: H loading ratio

Loading of palladium with hydrogen reduces
adsorption energy”*

* Similar results reported by M. Johansson et al “Hydrogen adsorption on palladium and
palladium hydride at 1 bar”, Surf. Science 604 (2010) 718-729

As a result: mobile atomic hydrogen weakly
binded to the surface and available for reaction
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Results: H loading ratio

Loading of palladium with hydrogen reduces
adsorption energy”*

* Similar results reported by M. Johansson et al “Hydrogen adsorption on palladium and
palladium hydride at 1 bar”, Surf. Science 604 (2010) 718-729

As a result: mobile atomic hydrogen weakly

binded to the surface and available for reaction

..there is another way to lower adsorption
energy
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Nuclear active environment (NAE)

[1. High H:Pd loading ratio]
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Presence of dopants

(near-surface alloys - NSA)

X/Y: X-solute, Y-host
(Rh/Pd)

Near surface solute
concentration is different from
bulk

H, dissociation energy
remains low

Adsorption energy is reduced

Host (Pd) Result: mobile atomic

Solute (Rh)  hydrogen weakly binded to
the surface and available for
reaction.
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J.Greeley M.Mavrikakis, “Alloy catalyst designed from first principles”,

Nature Mat. Vol3,(2004) pp.810-812 @
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Near-surface alloys
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Near-surface alloys
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Near-surface alloys
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Results: presence of dopants

Substitutional or interstitial sublayer doping
reduces hydrogen adsorption energy.

If reaching high hydrogen loading ratios is
Impossible, sublayer doping can be used to
reduce adsorption energy to allow hydrogen to
move more freely along the surface

c

ICCF - 18, Columbia, Missouri 16



Nuclear active environment (NAE)

[1. High H:Pd loading ratio]

Figure of merit: adsorption energy

2. Presence of dopants
or impurities
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Structural morphology: monovacancy in

bulk (P. Hagelstein, 2012)

PdH fcc
Pd is replaced with H

H comes from octahedral site to
form H, molecule

Change H, position and H-H
separation within the cell to find
minimum of total energy

H-H separation close to 1
Angstrom

monovacancy
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Monovacancy in subsurface layer

PdH fcc (100) plane
Pd is missing in sublayer

H, molecule comes into
octahedral site from
above and progresses
towards the
monovacancy

H, separation is 0.72 A
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Monovacancy in subsurface layer
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Monovacancy in subsurface layer

case I — pure Pd
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Monovacancy in subsurface layer

case II - PdH
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Monovacancy in subsurface layer

case III - F/PdH
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Effect of electronegativity
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Results: surface morphology

H-H separation can be decreased by high
Pd:H loading or by doping the sublayer

H-H separation at monovacancy depends on
electronegativity of doping elements and can
reach 0.72 Angstrom
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Conclusions

QantumEspresso allows quick scan of potential NAE
In transition-metal alloys

Hydrogen loading is confirmed to reduce adsorption
energy in the same way as near-surface alloys.

High H:Pd ratio Low adsorption High probability

or NSA energy of reaction

H-H separation can be decreased by introducing:
o defects

e chemical dopants (electronegativity effect)

@
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