# Numerical modeling of hydrogen/deuterium absorption in transition-metal alloys

Olga Dmitriyeva, Rick Cantwell, Matt McConnell Coolescence LLC Boulder, Colorado, U.S.A.



### QuantumEspresso

 Electronic structure calculations and material modeling based on density functional theory (DFT):

http://quantum-espresso.org

 APPLICATIONS: condensed matter physics, chemistry / pharmatheutical





#### Nuclear active environment (NAE)

1. High H:Pd loading ratio

**2.** Presence of dopants or impurities

**3.** Structural morphology: (voids, cracks, dislocations, surface morphology)



## Figures of merit

 Figures of merit to explore the variations in physical properties:

- Hydrogen adsorption energy
- Hydrogen-Hydrogen separation



#### Nuclear active environment (NAE)

1. High H:Pd loading ratio

Figure of merit: adsorption energy

**2.** Presence of dopants or impurities

Figure of merit: adsorption energy

**3.** Structural morphology: (voids, cracks, dislocations, surface morphology)

Figure of merit: **H-H separation** 



### Adsorption energy



 (100) Pd surface modeled as slab:





### Adsorption energy



 (100) surface modeled as slab:





### Adsorption energy



• (100) surface modeled as slab:





### Results: H loading ratio

 Loading of palladium with hydrogen reduces adsorption energy\*

\* Similar results reported by M. Johansson et al "Hydrogen adsorption on palladium and palladium hydride at 1 bar", Surf. Science 604 (2010) 718-729

• As a result: mobile atomic hydrogen weakly binded to the surface and available for reaction



### Results: H loading ratio

 Loading of palladium with hydrogen reduces adsorption energy\*

\* Similar results reported by M. Johansson et al "Hydrogen adsorption on palladium and palladium hydride at 1 bar", Surf. Science 604 (2010) 718-729

As a result: mobile atomic hydrogen weakly binded to the surface and available for reaction

...there is another way to lower adsorption energy



#### Nuclear active environment (NAE)

1. High H:Pd loading ratio

Figure of merit: adsorption energy

**2.** Presence of dopants or impurities

Figure of merit: adsorption energy

**3.** Structural morphology: (voids, cracks, dislocations, surface morphology)

Figure of merit: **H-H separation** 



# Presence of dopants (near-surface alloys - NSA)



- X/Y: X-solute, Y-host (Rh/Pd)
- Near surface solute concentration is different from bulk
- H<sub>2</sub> dissociation energy remains low
- Adsorption energy is reduced
  - Result: mobile atomic hydrogen weakly binded to the surface and available for reaction.

J.Greeley M.Mavrikakis, "Alloy catalyst designed from first principles", Nature Mat. Vol3,(2004) pp.810-812



#### Near-surface alloys



V Mo Fe Pd (111)

J.Greeley M.Mavrikakis, "Alloy catalyst designed from first principles", Nature Mat. Vol3,(2004) pp.810-812

#### Near-surface alloys



V

Mo

Fe

Pd (111)

Fe/Pd

Mo/Pd

V/Pd

J.Greeley M.Mavrikakis, "Alloy catalyst designed from first principles", Nature Mat. Vol3,(2004) pp.810-812

### Near-surface alloys



V H/Pd
Mo Li/Pd
Fe B/Pd
Pd (111) O/Pd
Fe/Pd F/Pd
Mo/Pd C/Pd
V/Pd Se/Pd
As/Pd
Cl/Pd



### Results: presence of dopants

- Substitutional or interstitial sublayer doping reduces hydrogen adsorption energy.
- If reaching high hydrogen loading ratios is impossible, sublayer doping can be used to reduce adsorption energy to allow hydrogen to move more freely along the surface



#### Nuclear active environment (NAE)

1. High H:Pd loading ratio

Figure of merit: adsorption energy

**2.** Presence of dopants or impurities

Figure of merit: adsorption energy

**3.** Structural morphology: (voids, cracks, dislocations, surface morphology)

Figure of merit: **H-H separation** 



## Structural morphology: monovacancy in bulk (P. Hagelstein, 2012)



- PdH fcc
- Pd is replaced with H
- H comes from octahedral site to form H<sub>2</sub> molecule
- Change H<sub>2</sub> position and H-H separation within the cell to find minimum of total energy
- H-H separation close to 1 Angstrom



#### Monovacancy in subsurface layer



- PdH fcc (100) plane
- Pd is missing in sublayer
- H<sub>2</sub> molecule comes into octahedral site from above and progresses towards the monovacancy
- H<sub>2</sub> separation is 0.72 A



#### Monovacancy in subsurface layer







# Monovacancy in subsurface layer case I – pure Pd





# Monovacancy in subsurface layer case II – PdH





# Monovacancy in subsurface layer case III – F/PdH





### Effect of electronegativity





### Results: surface morphology

 H-H separation can be decreased by high Pd:H loading or by doping the sublayer

 H-H separation at monovacancy depends on electronegativity of doping elements and can reach 0.72 Angstrom



#### Conclusions

- QantumEspresso allows quick scan of potential NAE in transition-metal alloys
- Hydrogen loading is confirmed to reduce adsorption energy in the same way as near-surface alloys.

High H:Pd ratio or NSA

Low adsorption energy

H is mobile

High probability of reaction

- H-H separation can be decreased by introducing:
  - defects
  - chemical dopants (electronegativity effect)

