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ABSTRACT: Energy efficient multiple-target tracking
is an important application of Wireless Sensor Networks
(WSNs). Most prior studies consider tracking multiple tar-
gets as an extension of executing a single target tracking
algorithm multiple times, and use a single parameter for
energy efficiency. We consider various factors such as mul-
tiple targets tracked by the sensor, remaining energy of the
sensor and relative location of the sensor with respect to a
target’s motion, in order to decide the tracking state of a
sensor in a distributed environment. Further, we explore
and identify the effective combination of these parameters
to optimize energy usage, depending on specific network
conditions. We then propose the Adaptive Multi-Target
Tracking (AMTT) algorithm that can recognize the network
condition based on local information without centralized
coordination, and uses effective parameters to achieve en-
ergy efficiency.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) find their use in ap-
plications like target tracking in battlefields, and monitoring
hazardous chemicals or wild life while they are in transit.
In target tracking applications, the sensors sense the targets
present in their sensing range, and send the collected tar-
get signatures to the base station where data collected by
all sensors is processed and used, for example, to estimate
the next position target might go to. These sensors how-
ever, have energy limitation as they typically stay on with
batteries. One way to mitigate this problem is to use sen-
sors responsibly as and when required and schedule them to
operate in different operational states to save their energy.

As the targets move around in the environment, it is dif-
ficult to keep monitoring them at all times with a limited
number of static sensors. Practically, sensors may be in-
crementally deployed and a limited portion of mobile sen-
sors may be used to improve the tractability. This leads us
to consider heterogeneity in sensor networks where partial
amount sensors are capable of being mobile. Having mo-
bility heterogeneity helps in keeping deployment costs low.
However, in terms of operation, mobility requires extra en-
ergy consumption of sensors. Thus, it is important to de-
cide carefully as to when and which mobile sensors should

be moved to track the targets.
In the target tracking problem we tackle, there are mul-

tiple targets in a network and each target is monitored by
at least n sensors (n ≥ 1), as required in many practi-
cal scenarios such as trilateration for target localization, or
corroborating results for better accuracy. The sensors can
change their operating state among SLEEP, READY, ON
and MOVE states, for better energy utilization.

Most of prior studies consider tracking multiple targets
as an extension of executing a single target tracking algo-
rithm multiple times, and consider a single or a few param-
eters such as a sensor’s remaining energy for energy effi-
ciency and/or network lifetime. Furthermore, to the best of
our knowledge, network density has not been considered.
In this paper, we investigate the impact of various factors
including multiple targets tracked by a sensor, remaining
energy of a sensor and relative location of the sensor with
respect to target’s motion, under different network condi-
tions. Further, we explore and identify the effective com-
bination of these parameters to optimize energy usage, de-
pending on specific network conditions. We then propose
the Adaptive Multi-Target Tracking (AMTT) algorithm that
can recognize the network condition based on local infor-
mation without centralized coordination, and uses effective
parameters to achieve energy efficiency. We validate each
step of our approach using extensive simulations.

The remainder of this paper is organized as follows. In
Section II we summarize the related work. We discuss our
approach in Section III with validation and evaluation. We
conclude the paper in Section IV.

II. RELATED WORK

A lot of research has being carried out in the field of tar-
get tracking using WSNs. Some of the significant works
that deal with target tracking include [2], [10], [6], [7], [9].
Many recent works aim at exploiting network heterogene-
ity in the wireless sensor network by introducing both static
and mobile sensors in the network [13], [4], [8], [11], [14].
In accordance with these works, we introduce mobility in
some of the sensors in our environment to facilitate bet-
ter target tracking and focus on making this activity as en-
ergy efficient as possible. Recently game theory approaches
have been taken for solving and strategizing mobility prob-
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(a)Considering multiple-targets tracked by a sen-
sor

(b)Considering remaining energy of a sensor (c)Relative location of a sensor

Fig. 1. Performance of individual factors

lems of sensors in the WSNs [3], [12], [5]. Below, we dis-
cuss some of the above mentioned in brief, with regards to
the contributions of these approaches, their shortcomings
and how our work helps in overcoming them.

In the work done by Abdelkader, et. al. [2], a multi-
target tracking framework is proposed that is based on use
of Voronoi tessellations. Two mobility models are proposed
to control the coverage degree according to target presence
[2]. Their goal is to allow the detection of targets using
multiple sensors and to discover redundant sensors. Their
approach helps them in determining the locations where the
probability of the occurrence of a target is more as com-
pared to rest of the area. They also propose a way to dis-
cover redundancies in the network to improve the cost ef-
fectiveness of the overall wireless sensor network. Sim-
ulations carried out by them are in favor of their approach.
The main drawback of this study is that it does not extend to
multiple targets and it fails to consider a very important cri-
terion while carrying out sensor motion - the battery power.
It is essential to consider this factor while moving sensors
because it consumes a lot of battery power and can lead to
leaving the sensors in a depleted energy state.

Kim, Mechitov, et. al. [10], study the feasibility in using
binary proximity sensors for tracking targets. They propose
a system in which the sensor output is used to estimate in-
dividual positions in the path of the target in the near past
and find a line that gives an estimate that best fits the path
points. This is, in turn, used to find out the current location
of the target. Though the approach used is novel and ef-
fective for single target tracking, the main drawback of this
work is its inability to track multiple targets. The ability to
track multiple targets by a single sensor goes a long way
in the efficient use of the network resources and helps, to a
great extent, in increasing the network lifetime and robust-
ness.

In [7], the authors propose two sleep-awake protocols
that help in achieving a high quality of surveillance and re-
ducing the overall power consumption in the components

of the network. They also suggest a set of pointers to effi-
ciently deploy sensors in target tracking applications. Their
approach of having the sensors operate in different working
modes is exploited by us in deciding which nodes need to
be in a ready state to track a target. Again, the major draw-
back of this study is that it does not take into consideration
target tracking for multiple targets.

In the work done by Xing, et. al. [13], the authors ex-
plore efficient use of mobile sensors to address limitations
of static WSNs for target detection. Their proposed data-
fusion based detection model allows static and mobile sen-
sors to collaborate in target detection. They also propose
an optimal sensor movement scheduling algorithm to min-
imize the total moving distance of sensors while achieving
a set of spatiotemporal performance requirements that in-
clude a high detection probability, low system false alarm
rates and a bounded detection delay. While scheduling their
sensors for moving to a new location their complete focus
is on minimizing the total distance traveled by the sensors.
Because of this, a node that lies in the path of the target’s
motion and that can potentially track a target in near fu-
ture is moved to a new location. It’s necessary to avoid
such scenarios. Our proposed algorithm specifically tries
to avoid moving a sensor that can possibly track a target at
later stage.

In [12] and [5], the sensors’ movement is used to im-
prove surveillance quality. However, the power consump-
tion of locomotion is not explicitly considered [3]. Chin, et.
al. [5], propose a coordinating protocol for sensors to col-
laboratively track targets in sensor networks. The sensors
form a cohort opportunistically to limit the target’s degree
of freedom in escaping detection. They also minimize the
overlap in the spatial coverage of this cohort’s members.
Though this technique is effective, it fails to extend to a
heterogeneous type of sensor network. Having all sensors
with mobility can be expensive and a heterogeneous model
can solve that problem. Also, the authors fail to consider
the cost of these operations in terms of energy consumed
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which is an important factor in such networks.
We can observe that efficient sensor scheduling for mulit-

target tracking has been less explored and energy efficiency
is considered from a single factor of sensors like the sen-
sor’s remaining energy or its relative location in the net-
work. Also network conditions like local density of sensors
and presence of multiple targets has not been considered.

III. OUR APPROACH

In this section, we first discuss various factors to be con-
sidered for a multi-target tracking problem. Secondly, we
investigate the impact of those factors on energy usage, in-
dividually as well as the combination of the factors. Then,
we develop an Adaptive Multi-Target Tracking (AMTT) al-
gorithm.

A. Factors for Energy Efficiency

Sensors may interact with neighbor sensors to decide
their tracking state: SLEEP, READY, ON or MOVE. Sen-
sors can be in a SLEEP state where no or minimal energy
is used and they awake from the state periodically. Sen-
sors in a READY state do not sense a target, but they can
communicate with neighbor sensors within a communica-
tion range. ON state is where sensors are sensing a target(s)
and actively collect target signatures. If sensors are mobile,
they may be in a MOVE state in which sensors move to a
new location closer to targets for sensing. Scheduling the
state of the sensors’ operational mode is the key issue to
save individual sensor’s energy as well as to maximize the
network lifetime.

We discuss various factors to make the decision on the
sensor state, such as multiple-targets tracked by the sensor,
the remaining energy in the sensor, and the relative location
of the sensor with respect to the targets path of motion.

A.1 Multiple-targets Tracked by an Individual Sensor

Unlike a single target tracking problem, there may be
multiple targets around a sensor. In practice, sensors spend
almost the same energy to track single or multiple targets.
We point out that if multiple targets can be tracked by a
single sensor, the total number of sensors to be turned ON
would be reduced, leading to significant savings of energy
compared to the case where each target is tracked sepa-
rately. It is illustrated in Figure 1(a). In the first (left) case,
the 3 sensors nearest to each of the 3 targets are turned ON
to track them. However, there is one sensor available that
can track all three of them at the same time. If we turn the
center sensor ON, the other three sensors can be just in a
READY state. We expect that the opportunity of a single
sensor tracking multiple targets would occur more often in
a dense network.

MaxPower 100 J
SensingEnergy 0.1 J
ReadyEnergy 0.01 J
TransmittingEnergy 0.12 J
ReceivingEnergy 0.12 J
MovingEnergy 0.1 J

TABLE I
ENERGY MODEL USED IN SIMULATIONS

A.2 Remaining Energy of a Sensor

The remaining energy of a sensor is often taken into ac-
count in order to extend a network’s lifetime. If a same
set of sensors is used again and again, those sensors will
die out much sooner as compared to other sensors. In a
sparse network environment, this can lead to empty holes
in the network where the target may be present and cannot
be tracked. The scenario is depicted in Figure 1(b). We
expect that the remaining energy would play an important
role especially in a sparse mode network in the aspect of a
network lifetime.

A.3 Sensor’s Relative Location

We note that it is important to have a target tracked by
sensors that lie the closest to its path of motion as well as
the closest to the target’s location. This way, the sensors
can track a target(s) for a maximum time possible, and the
overhead of turning sensors ON and OFF repeatedly can be
reduced. Also, while moving sensors to a new location to
track targets not tracked by enough sensors, the sensors that
lie farthest from target’s path of motion should be moved.
The reason for this is that if sensors that lie in the path of
the target are moved, those sensors could potentially track
the target at a later time, and may have to move back again
to track the target. This increases the amount of movement
carried out which is an expensive operation. It has been
illustrated in Figure 1(c).

B. Impact of the Factors

We investigate the impact of the factors on average en-
ergy used in sensors and network lifetime in Figures 2(a)
and 2(b), respectively, while varing network density. In Fig-
ure 2(a), it can be observed that using only the Remaining
Energy as an impacting parameter leads to worst perfor-
mance in terms of overall energy savings. Multiple-targets
tracked by a sensor gives an improved performance in the
mid to high sensor densities. The parameter Relative Loca-
tion of Sensor with respect to targets motion performs best
individually. However, the factor Remaining Energy cannot
be ignored as it is an important factor in improving the net-
work lifetime, especially at low network densities, as can
be seen from Figure 2(b).



4

50 100 150 200 250 300 350
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of Sensors

A
ve

ra
ge

 E
ne

rg
y 

U
se

d 
(J

)

 

 

RelLoc
MultiTgtTckd
RemEnr

(a)Average engergy used

50 100 150 200 250 300 350
4

5

6

7

8

9

10

Number of Sensors

Li
fe

tim
e 

O
f N

et
w

or
k 

(m
in

s)

 

 

RelLoc
MultiTgtTckd
RemEnr

(b)Network lifetime

Fig. 2. Performance of individual factors
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(a)Remaining Energy and Relative Location
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(b)Multi-target Tracked and Remaining Energy
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(c)Relative location and Multi-target Tracked

Fig. 3. Individual vs. combining factors

C. Impact of Combining the Factors

Next, we evaluate the performance when multiple factors
are combined using simulation. The simulations are carried
out in Matlab. The network is of 100 * 100 square units in
area. The number of sensors is varied from 50 to 350 with
increments of 25. If a sensor can contact 3 or more neigh-
bor sensors, it perceives the network as dense network or
else it perceives it as a sparse mode network. The number
of targets is 5. All the targets start at a random location
in the WSN with a linear movement pattern and have no
correlation with movement patterns of other targets. The
WSNs heterogeneity is set at 75%. This means that 75% of
the sensor nodes can be mobile. Depending on weather it
is a dense mode or a sparse mode network, the sensors ex-
change the following information with their neighbor sen-
sors: maximum number of targets the sensor can track, sen-
sors location and its remaining battery power. For the net-
work lifetime evaluation the standard energy model for CC
2420 has been used. The power consumed for locomotion
depends on the amount of distance traveled by the sensor.
As it is an expensive activity, we consider its value for one
unit distance of locomotion same as one sensing activity.
The energy consumption model can be found in the avail-
able data sheet [1]. The values used for energy consumption
is summarized in Table I.

Figures 3(a), 3(b), and 3(c) show that combining the two

impacting factors leads to the energy savings in most cases,
and at least as good as using the best performing individual
factor. From Figure 3(a), we find that combining Relative
Location and Multiple-targets tracked by sensor gives the
best performance in mid to high network densities. Mean-
while, from Figure 3(b), it can be seen that using Relative
Location and Remaining Energy gives the best performance
in low to mid network densities.

Comparing the performance of different combinations,
Figure 4(a) shows that Relative location and Remaining En-
ergy perform the best for low to mid network densities and
Relative Location and Multiple-targets tracked by sensor
performs the best for mid to high network densities. So to
achieve optimal performance across all network densities,
we have to bridge this transition.

In summary, we find that using a combination of these
can result in a better performance in terms of energy savings
as compared to using single parameters, or the performance
is at least similar to that of the best performing parameter
for different network densities. For low to mid dense net-
works, a combination of Remaining Energy and Relative
Location of Sensor performs optimally while in the mid to
high density networks, a combination of Multiple Targets
a Sensor can track and Relative Location of Sensor per-
forms optimally. This leads us to conclude that to obtain
an overall optimal performance, the designed algorithm has
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to select the correct combination of parameters based on its
local network conditions.

D. Adaptive Multi-Target Tracking (AMTT) Algorithm

Based on the observations above, we develop Adaptive
Multi-Target Tracking (AMTT) algorithm, where all the
factors discussed above are used with adaptive weights as
below.

Priority = αM + βS × T cos(θ) + γR (1)

where M is the number of targets tracked by the sensor, S is
a Sensor Vector, T is a Target Vector, θ = TargetAngle−
SensorAngle, and R is the Remaining Energy. All the
values are normalized between 0 and 1, so that the weights
would be comparative. The main factors to choose sensors
to track targets are adaptively decided based on the local
network condition - dense or sparse mode. The sensors lo-
cally choose their operational mode, either dense or sparse,
based on the number of neighbor sensors they can contact.
If a sensor can contact many neighbor sensors above a cer-
tain threshold, the sensor perceives the network as a dense
one. Otherwise, the sensor operates on a sparse mode. Af-
ter extensive simulations, we found the value of this thresh-
old as 3 for our environment. In a dense mode, AMTT
uses high weights on the combination of Relative Location
of a sensor and Multiple Targets a sensor to determine its
tracking state, and puts high weights on the Remaining En-
ergy and Relative Location of a sensor in a sparse mode.
As can be seen from Figure 4(b), AMTT achieves its de-
sired performance pattern achieving the best performance
throughout the network condition.

E. Evaluation

In order to compare the performance AMTT, we consider
a baseline system. This baseline system also is a distributed
system to track multiple targets where each target is tracked
by n sensors. The main difference from our proposed algo-
rithm is that random sensors are chosen to track the targets
without specific criteria. In case n sensors are not avail-
able to track the targets, the required numbers of mobile
READY sensors move in to track the targets in a random
fashion.

Figure 5(a) shows that the AMTT performs better than
the baseline system in the average energy used. Especially
as the execution time increases, the performance benefit of
AMTT becomes higher significantly. The performance of
network lifetime is exhibited in Figure 5(b). The definition
that we consider for network lifetime is as the time from
the start time to the time of the first instance when any of
the targets is not monitored by n sensors. There are vari-
ous definitions for network lifetime in the literature. Our
consideration for the above definition is based on the need
for the target to be at least tracked during the lifetime of the
network.

IV. CONCLUSIONS

We have proposed and an energy efficient algorithm,
called AMTT to track multiple targets in a heterogeneous
wireless sensor network. We have identified different fac-
tors that affect the performance and energy consumptions
in heterogenous WSNs based on different network condi-
tions. These factors are the multiple-targets tracked by a
sensor which is significant in high network densities, the
remaining energy in the sensor which is significant in the
low network densities, and the relative location of the sen-
sor which is significant across all network densities. Also
the combination of these parameters can show better perfor-
mance or is at least as good as the best performing individ-
ual parameter. The proposed AMTT algorithm can identify
the optimal combination of impacting parameters based on
the local network conditions of a sensor and lead to signifi-
cant energy savings and a longer network lifetime.

As for future work, we plan to include existing prediction
models for targets’ movement in our algorithm and have
more realistic constraints on sensor’s movements. We plan
to explore more thorough metrics to identify the correct net-
work threshold and find the optimal percentage of sensor
heterogeneity required.
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Fig. 4. Finding optimal factors to consider - AMTT
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