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ABSTRACT

Visual working memory stores stimuli from our environment as representations

that can be accessed by high-level control processes. This study addresses a longstand-

ing debate in the literature about whether storage limits in visual working memory

include a limit to the complexity of discrete items. We examined the issue with a

number of change-detection experiments that used complex stimuli which possessed

multiple features per stimulus item. Some past research that used the same method-

ology as our experiments found that detection of changes in stimuli was unaffected

by how many features of the items participants were required to remember (Luck &

Vogel, 1997). However, in none of our eight experiments were we able to replicate

that result and instead found that participants were less able to detect changes when

they were required to remember more features of the items. We were unable to sup-

port the notion that items with multiple relevant features can be processed by visual

working memory without loss.
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Chapter 1

Introduction

Working memory (WM) is a capacity-limited store for information that is actively

in use or which must be maintained over a short interval (Baddeley, 2003; Cowan,

2001). One concern of WM researchers has been to specify how the constituent

features of objects are integrated in visual WM into coherent internal representations

of the external objects (Fougnie, Asplund, & Marois, 2010; Luck & Vogel, 1997;

Treisman, 1988; Wheeler & Treisman, 2002). This study is primarily focused on the

issue of whether there is a cost to processing (encoding, storing, and/or retrieving)

stimuli for which there is a high feature load. Feature load will be manipulated by

varying the number of task-relevant features of stimulus objects between different test

conditions.

Some have argued that the features of an object are effortlessly bound to the

representation of that object without any cost for additional features (Luck & Vogel,

1997; Zhang & Luck, 2008). An important piece of their evidence is the finding that

increasing feature load from one task-relevant feature per object to four task-relevant
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features had no effect on performance (Luck & Vogel, 1997). The model that came

out of this finding is often described as the slot model of WM, in which humans have

a limited number of slots which can be filled with discrete stimuli (i.e. individual

objects) until there are no more slots available (Zhang & Luck, 2008). The results of

Luck and Vogel have often been used as evidence that coherent objects with strongly

integrated features are the basic unit of storage in WM, with the implication that the

number and/or complexity of the features which make up an object can be ignored

when interpreting results; although possessing multiple features, a multi-featured

object still only takes up one slot in WM.

Another perspective on feature binding is that coherent objects are created by an

attentionally-demanding process that involves assembling objects from features that

are stored independently from one another (Treisman, 1988; Wheeler & Treisman,

2002). In this theoretical framework there exist separate feature maps for each feature

dimension (e.g. the color map only stores information about object colors) which are

capacity-limited within maps, but not between maps, which accounts for findings

showing that participants can remember a greater total number of features when

those features are drawn from different feature dimensions versus when the features

are all from the same dimension (Wheeler & Treisman, 2002). Once features are

stored in these feature maps, retrieval of a coherent object comes about by focusing

attention on a location, which causes the feature stored at the attended location in

each map to be combined with features from the attended location from other feature

maps (Treisman, 1988).

Although the results of Luck and Vogel (1997) are very striking, they are not

without controversy. Both Wheeler and Treisman (2002) and Delvenne and Bruyer
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(2004) failed to replicate the results of one of the feature-conjunction experiments

of Luck and Vogel (1997) in which bicolored squares were used. Although Luck and

Vogel found no deficit to performance when participants were held responsible for

both of the colors of each square, Wheeler and Treisman and Delvenne and Bruyer

both found just such a deficit. As far as we are aware, there have been no successful

replications of the feature-conjunction experiments of Luck and Vogel (1997). Given

the recent focus on problems with replicability of results in psychology and elsewhere

(Pashler & Wagenmakers, 2012), another attempt to replicate the results of Luck

and Vogel seems warranted.

Additionally, there have been a number of studies showing that there are storage

costs associated with features in visual WM (Alvarez & Cavanagh, 2004; Cowan,

Blume, & Saults, 2012; Fougnie et al., 2010), suggesting that if the results of Luck

and Vogel replicate, they may not generalize to other experimental conditions. If the

results of Luck and Vogel can be replicated, we could examine what features of their

methods allowed them to obtain such a result while others could not with different

methods.

Importantly, no experiments have attempted to replicate a critical result of Luck

and Vogel (1997), in which objects possessing four features drawn from different

feature dimensions were used (see Figure 2.1 for an example of the stimuli). Although

Wheeler and Treisman (2002) used two features per item, the features were from the

same feature dimension (color), which prevents their result from being generalized to

cases in which the features of the items are drawn from different feature dimensions.

Another reason for the focus on this four-feature experiment is that the use of more

than two independent features per object is uncommon in the literature. In order
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to help resolve the issue of feature integration in visual WM, we have attempted

to replicate this important result of Luck and Vogel (republished with additional

methodological detail as Experiment 14 in Vogel, Woodman, & Luck, 2001). In

this task, participants had to determine if a single feature of one object had changed

between a sample array and a test array. In single-feature trial blocks, participants

knew which one of the four features could change in that block, allowing them to

selectively attend to that feature at encoding. However, in the critical multi-feature

(or conjunction) block, participants did not know which feature might change and

had to attend to all four features.

The question is whether visual WM is limited solely by the number of objects that

can be held, or if it is also limited by the complexity of these objects (operationally

defined as the number of features of the object that must be known in order to

perform perfectly on the task). If strongly integrated objects are the basic unit of

storage in WM, it would be expected that, as long as the number of objects in the

array is the same, participant accuracy would not vary with the number of features

they are required to remember, which was the result observed by Luck and Vogel

(1997). In that study, no differences in accuracy were found between the single- and

multi-feature conditions or between any of the single-feature conditions. If object

complexity (i.e. feature load) matters, it would be expected that accuracy in the

multi-feature condition would fall below the average difficulty of the single-feature

conditions.

We tested these predictions by attempting to directly replicate the results of Luck

and Vogel (1997), which we did in Experiment 1. This experiment used the same

change-detection task, stimuli, timings, and secondary verbal load task as the original
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experiment. Then in Experiments 2 through 6 we performed several confirmatory

experiments using the same stimuli in order to rule out a variety of nuisance variables

that could have explained our results. Then in Experiment 7 we attempted to extend

our findings to somewhat different stimuli by attempting to replicate the results of

another experiment of Luck and Vogel.
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Chapter 2

Replication attempt and follow-up
experiments

2.1 Experiment 1

This experiment was our best attempt at a direct replication of the four-feature

experiment performed by Luck and Vogel (1997). The method is as similar as can

reasonably be expected, although some minor differences are mentioned.

2.1.1 Method

The experiments reported in this article involve a change-detection procedure with

a number of methodological features in common, for which reason some statements

about general methodological details are made in this section. Most of the experi-

ments hew closely to the method of this first experiment and details specific to each

experiment are described in that experiment’s method section.
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Participants

Participants were recruited from introductory psychology courses at the University

of Missouri – Columbia campus and received partial course credit for participation.

Unless stated otherwise, for all experiments participants were removed from the

sample if their accuracy fell below 55% accuracy on at least one trial block (see the

procedure for the definition of a trial block). This criterion was designed to remove

participants who were performing near chance in at least some conditions. The focus

on individual blocks was decided on because while overall accuracy on the tasks tended

to be relatively high, there was a distinct pattern of accuracy in many participants’

data that seemed to indicate that those participants were not making an attempt to

perform the task to the best of their abilities in a consistent manner (i.e. very good

performance on some trial blocks while performance on other trial blocks is at chance

level). This pattern generally involved at least one trial block on which accuracy was

very near chance, which informed our use of the 55% cutoff.

For this experiment, two participants were removed for meeting this low accuracy

criterion. An additional participant was removed for having a very high error rate on

the secondary verbal load task (37% of their responses were errors compared with a

6% overall average error rate). This left 19 participants (12 female; mean age 19.3)

who were used in the analysis.

Materials

The experiments were performed using E-Prime 2 experimental software (Psychology

Software Tools, Pittsburgh, PA) on PCs using CRT monitors running at a resolution

of 1024 x 768 pixels. For this experiment, the monitor used a refresh rate of 75
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Hz. Given that the monitor’s refresh period was 13.3 ms, it was not possible to use

presentation times in increments of 100 ms as used in the original experiment. The

most important timing difference was that the sample array was presented for only

93.3 ms. However, because each participant was presented with every combination of

conditions, there is little potential for this presentation time difference to affect the

differences between conditions, although overall accuracy may be slightly shifted. In

all other experiments, the refresh rate of the monitors varied between 60 Hz and 75

Hz. Again, because each participant completed all conditions on a single computer,

there is no potential for the conditions to be differentially affected by the variations

in refresh rate. In the procedure section, nominal presentation durations – as would

have been achieved by 60 Hz monitors – are given.

In each trial, participants were presented with a sample array of 2, 4, or 6 visual

objects about which they would be tested later. The objects possessed four features:

orientation (vertical or horizontal), color (red or green), length (short or long), and

the presence or absence of a black ”gap” in the middle of the rectangle. The objects

were rectangles with a length of 2.0° (long objects) or 1.0° (short objects) and a width

of 0.15° of visual angle. The gaps were the same width as each object and 0.25° long.

Objects were separated by at least 2.0° of visual angle center-to-center to reduce the

chance of objects touching. The objects were presented in an area of the screen taking

up 9.8° (horizontal) by 7.3° (vertical).

The colors of the objects will be reported as an ordered triple of the red, green,

and blue components of the colors, which were 8-bits per component and so varied

from 0 to 255 for each component, where a higher number indicates a greater amount

of that component. In all experiments the background on which the objects were
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presented was a shade of grey and the gaps in the objects were always the darkest

black that the monitors we used were able to display (RGB: 0,0,0). For this experi-

ment, the background was a light grey (214,214,214) and the objects were either red

(255,21,37) or green (66,181,70). These values were identical to those used in Figure

1 of the digital version of Luck and Vogel (1997). However, as reported in Vogel

et al. (2001), originally the background was a dark grey with luminosity 8.2 cd/m2.

When measured on a representative monitor used for experiments in our lab using a

TSL2561 (Texas Advanced Optoelectronic Solutions, Plano, TX), the luminosity of

the background used in this experiment was 123 cd/m2. In Experiments 4 and 5, we

used a darker background and found no effect on the pattern of accuracy between

background luminosities.

A sample array and a test array were used on each trial (see Figure 2.1). The

test array was identical to the sample array on half of the trials. On the other half

of the trials, a single feature of a single object was changed to a different value. For

some trial blocks, only one of the four features was allowed to change (single-feature

blocks). In the critical multi-feature block, any of the features were allowed to change,

but it was still the case that only one feature of one object was allowed to change

on any given trial. Object location was held constant between sample array and test

array.

Procedure

Participants were tested in a sound-attenuated booth under observation of an exper-

imenter who read the instructions for the task to the participant. Once participants

had completed the first set of practice trials, the experimenter left the booth and mon-
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itored the rest of the session by way of a video camera and microphone in the booth.

The instructions informed the participants about the rules governing the presentation

of stimuli in order to assist them to perform optimally.

To begin each trial, participants fixated on a two-digit number presented centrally

for 500 ms before the screen was blanked for 1000 ms. Then the sample array was

presented for 100 ms before the screen was again blanked for 900 ms. After this reten-

tion interval, the test array was presented until participants made a same/different

response by pressing ”S” or ”D” on a standard US keyboard. After giving their re-

sponse, participants were cued to say the number they had seen at the beginning of

the trial, with responses coded correct or incorrect by the experimenter. This sec-

ondary verbal load task was intended to prevent verbal recoding of visual stimuli. The

effect of this verbal load task is further examined in Experiment 2. The procedure

for a single trial is shown in Figure 2.1.

The presentation of the test array in this experiment was slightly different than

the presentation used by Luck and Vogel (1997). In their experiments, the test array

was removed after 2000 ms, but the participant was still required to make a response.

In all of our experiments, the test array was presented until a response was made.

This is very unlikely to have had any effect because in this experiment, only 6%

of response times were longer than 2000 ms. This percentage is similar across our

experiments.

Participants performed four single-feature trial blocks and one multi-feature trial

block, the order of which was counterbalanced across participants using a Latin

square. Each trial block began with a screen of instructions indicating which fea-

ture or features of the objects should be attended in the coming trial block. Upon
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Figure 2.1: An example of a single trial in Experiment 1.

reading the instructions and indicating their intent to continue, participants were

given six practice trials after which they were presented with an indication that they

had finished the practice trials and were starting the main block. Within a trial block,

the number of objects in the arrays varied unpredictably from trial to trial but there

were always the same number of trials at each array size. In this experiment, there

were 96 trials per trial block. For all experiments, each participant’s experimental

session lasted no more than one hour.

2.1.2 Results

In keeping with the data analysis procedure of Luck and Vogel (1997), we removed

trials on which the spoken number was incorrect, which resulted in the removal of 6%
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of trials. Data were analyzed with a 5 (attended feature) X 3 (array size) univariate

within-participants ANOVA. In this experiment, there was a main effect of array size

on accuracy, F (2, 36) = 84.22, MSE = 0.0091, p < .001, η2p = .82. There was also a

main effect of attended feature , F (4, 72) = 21.94, MSE = 0.0169, p < .001, η2p =

.55. Finally, an interaction between array size and attended feature was found, F (8,

144) = 2.831, MSE = 0.0065, p < .01, η2p = .14.

The data for this experiment are summarized in Figure 2.2. Because most of the

experiments in this study are very similar in design, Figure 2.2 shows the data from

several experiments. The data are presented in a variety of ways. For each experiment,

accuracy in each attended feature condition is shown at each array size. Additionally,

hits and correct rejections are plotted for each attended feature condition at each array

size. Within the multi-feature condition, hits for trials on which the change was in

each feature dimension are also plotted by array size. Finally, a compound measure

of the difference in detection of changes when accounting for response bias is used to

compare each single-feature condition and the corresponding feature within the multi-

feature condition is plotted. This compound measure is a difference in hits minus false

alarms for each feature between the single- and multi-feature conditions. Hits minus

false alarms were calculated for each single-feature condition and separately for each

feature within the multi-feature condition. Finally, hits minus false alarms for the

features within the multi-feature condition were subtracted from the hits minus false

alarms for the single-feature conditions.

The interaction between array size and attended feature can be largely attributed

to a ceiling effect for some single features that is present at array size 2 but not at

other array sizes. This is supported by the strip chart of individual participants’ mean

12
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Figure 2.2: Plots of data from Experiments 1- 5, 7, and 8 (in numbered rows). The
X-axis shows array size. The values shown on the Y-axis are described by the headers
shown at the top of each column of plots, explained here. Proportion correct: Correct
response rate. Correct rejections: Rate of correct responses to trials on which there
was no change. Hits: Rate of correct responses to trials on which there was a changed
feature. Multi-feature hits: Hit rate for trials on which the given feature changed
within the multi-feature condition. H - F difference: Hits minus false alarms for each
of the single-feature conditions minus hits minus false alarms for the corresponding
feature within the multi-feature condition. Note that the scale of the Y-axis varies.
Error bars are SEM.
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Figure 2.3: Stripchart of individual participant accuracy for each attended feature
and array size for Experiment 1. The data are horizontally jittered and overlapping
points are represented with darker colors to show areas of high observation density.

accuracy by array size and attended feature shown in Figure 2.3. For this reason, the

interaction is not assumed to be the result of an interesting mental process and post

hoc analyses will proceed as if there were no interaction.

A Newman-Keuls post hoc analysis of attended feature collapsed across array size

showed that the multi-feature condition differed from orientation, color, and gap, but

not length. The color and gap conditions were also not different. All other conditions

were different from one another. All comparisons were made with a p < .05 criterion.

In order to assess the contribution of object load to performance on this task,

we would compare two conditions which differed in object load but were equated

in feature load (Wheeler & Treisman, 2002). If object load does not contribute to
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accuracy on the task, we might conclude that feature load determines accuracy. In

this experiment, we do not have a condition that allows us to do this direct compar-

ison. However, a comparison that gives useful information can be made between the

multi-feature condition at array size two (MF2) and the average of the single feature

conditions are array size six (SF6). The MF2 case has two objects with four features

each, resulting in eight features total and the SF6 case has six objects with one feature

each. In order to carry out this analysis in the most straightforward way, we would

like to have observed data in the single-feature condition at array size eight, but we

did not. However, we can still do a one-directional test of accuracy based on the as-

sumption that accuracy will not improve as array size increases. If accuracy in MF2

and SF6 are equivalent or accuracy in SF6 is better than MF2, we cannot conclude

anything without extrapolating in order to estimate what we might have observed in

SF8. We are unwilling to do this sort of extrapolation to specific values. If, on the

other hand, accuracy in the SF6 condition is worse than in the MF2 condition we can

fairly safely conclude that accuracy in the SF8 condition (unobserved) would have

been worse than in the MF2 condition. We are willing to believe that accuracy will

not increase as array size increases from six to eight in the single-feature conditions

because this kind of increase is not known in the literature. Accordingly, we will

restrict ourselves to only interpreting cases in which better accuracy was obtained in

MF2 than in SF6.

In order to make it possible to find evidence for the null hypothesis that there is

no difference between MF2 and SF6, we used a Bayesian t-test to compare those con-

ditions (Rouder, Speckman, Sun, Morey, & Iverson, 2009) in addition to a standard

t-test. The hypotheses were the standard point null that µ1 = µ2 and the alternative
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was µ1 6= µ2 (exactly the same as a standard t-test). For this experiment, accuracy in

the multi-feature condition at array size two (M = 0.85, SD = 0.09) and the average

accuracy of the single-feature conditions at array size six (M = 0.74, SD = 0.08)

were found to differ, t(36) = 3.66, p ¡ .001 (two-tailed). The Bayes factor for this

comparison was 5.34, which favors the alternative over the null.

2.1.3 Discussion

The results of this experiment were strikingly dissimilar from those of Luck and

Vogel (1997), who found no difference between any of the attended feature conditions.

Using the same stimuli and methods as the original experiment, we found differences

between many of the conditions. Most importantly, the post hoc tests showed that

accuracy in the multi-feature condition was lower than three of the four single-feature

conditions. Additionally, differences between the single-feature conditions were found

in this experiment but not by Luck and Vogel. This result contradicts the results of

Luck and Vogel and rejects the hypothesis that objects in visual WM are stored with

all features intact. It is not immediately obvious why we were unable to replicate the

results of Luck and Vogel. We made every attempt to bring our methods in line with

those reported by Luck and Vogel, even extracting additional methodological detail

from Vogel et al. (2001). Over the next several experiments, we attempt to replicate

our own result using a variety of minor (and major) changes to the method in order

to rule out the possibility that we obtained an unusual sample in this experiment or

that there was an error in our methods that caused us to fail to replicate the results

of Luck and Vogel.

Our examination of object load while controlling feature load showed that it does
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not seem to be possible to support the idea that feature load by itself is able to fully

account for accuracy. This is in contrast to the finding of Wheeler and Treisman

(2002) that object load does not affect accuracy if feature load is equated, suggesting

that object load is irrelevant to performance. One caveat of this analysis is that in

the single-feature conditions object load and feature load are entirely confounded.

As such, we cannot tell if accuracy in the single-feature conditions drops off because

participants run out of object slots or because participants run out of feature-specific

storage space. It is possible that in the multi-feature condition at array size two,

participants are able to fill all four feature-specific stores with a small amount of

information relative to the capacity of the stores. However, in the single-feature

conditions they may run out of storage for that particular feature. This possibility

would allow our results to be interpreted without reference to object load. However,

this does not seem to be a complete explanation for our inability to find the same

substantive result as Wheeler and Treisman. In that study they used array size six

as a single-feature condition which they compared to a multi-feature condition with

fewer objects, showing that it should have been possible for us to find their result

with the array sizes we used. Another reason for the difference in findings is that

the experiment in which they found their result differed significantly from ours in

that their objects possessed two different colors. By drawing features from the same

feature dimension, they may be examining a different effect than we are. What we

will conclude is that it may not be generally true that feature load can wholly account

for WM behavior.

What we have found so far is that we can support neither objects nor features

as the sole determining factor of accuracy in visual WM tasks. However, we were
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unwilling to conclude with this as our only experiment and we continued forward

attempting to replicate our result in a variety of ways.

2.2 Experiment 2

The purpose of this experiment was to determine if the verbal load task has a signifi-

cant effect on accuracy in this particular task. Research by Morey and Cowan (2004)

showed that secondary verbal loads consisting of two digits do not have an effect on

accuracy in visual WM tasks similar to those used in this study. However, Morey

and Cowan did not investigate how verbal load affected accuracy in a task that re-

quired binding together features of visual objects. Binding information in visual WM

may be affected differently by secondary verbal loads than item information, perhaps

interacting with the type of memory required. If this is the case, the choice to use

secondary verbal loads and the nature of those loads must be carefully considered for

these confirmatory experiments. If not, the use of such a task may be discontinued,

benefiting both participant and researcher.

2.2.1 Method

In this experiment, data from all 16 participants (10 female, mean age 18.6 years)

were used.

This experiment differed from Experiment 1 by the removal of the verbal load task.

Instead of fixating on a number, participants in this experiment fixated on a small

cross in the center of the screen. The blank interval following fixation in Experiment

1 was important as it allowed time for participants to begin passively rehearsing the
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number. Because this experiment had no such secondary task, this blank interval was

removed in order to increase trial density. As the results will show, this manipulation

had no effect on the pattern of results. Because no secondary task was used, there

was no need for an experimenter to monitor participants during their session, so

the monitoring was discontinued for this and all following experiments. Because

participants did not need to be monitored for this and all further experiments, the

sessions no longer took place in a sound attenuated booth, but in a private testing

room. Participants performed 120 trials per attended feature condition.

2.2.2 Results

The analysis for the experiment was carried out in the same way as for Experiment 1.

There was a main effect of array size on accuracy, F (2, 30) = 144.2, MSE = 0.0049,

p < .001, η2p = .91. There was also a main effect of attended feature, F (4, 60) =

49.81, MSE = 0.0069, p < .001, η2p = .77. Finally, an interaction between array size

and attended feature was found, F (8, 120) = 9.945, MSE = 0.0042, p < .001, η2p =

.40. The data for this experiment are summarized in Figure 2.2.

To further analyze the differences between Experiments 1 and 2, we have the op-

tion of performing a 2 (experiment) X 5 (attended feature) X 3 (array size) mixed

ANOVA, where attended feature and array size are within-participant variables and

experiment is a between-participant variable. If there were a difference in accuracy

for attended feature conditions that changed between the experiments, that difference

would manifest itself in this analysis as a two-way interaction between experiment and

attended feature. If such an interaction were found, it would be necessary to specify

the nature of the interaction by performing tests of simple effects. One approach
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would be to test simple effects of attended feature within both levels of experiment.

The result of this test would be essentially equivalent to the post hoc tests already

conducted in each experiment. The main difference is that the mixed ANOVA ap-

proach would have significantly reduced power to detect differences, first because the

power to detect interactions is limited and second because a proper simple effects

analysis controls Type 1 error at a level below that used by the post hocs we have

used. Because the mixed ANOVA approach would be less likely to reject the null

hypothesis that the experiments are not different than an informal comparison of the

pattern of post hoc differences, we have chosen to simply compare the pattern of post

hocs from each experiment rather than carry out the mixed ANOVA in order to have

increased power to detect potential differences. This works against our desire to show

that when changing various details of the experiments we still find the same basic

pattern of results.

Accordingly, a Newman-Keuls post hoc analysis showed that the length and multi-

feature conditions were not different, that the gap and orientation conditions were

not different, but that all other conditions were different from one another. This

result differs from Experiment 1 only in the shifting of relationships between the

individual feature conditions. Specifically, color and gap were different in Experiment

1 whereas orientation and gap are different in this experiment. More importantly, the

relationship between the multi-feature condition and the single-feature conditions did

not change.

For this experiment, accuracy in the multi-feature condition at array size two (M

= 0.86, SD = 0.05) and the average accuracy of the single-feature conditions at array

size six (M = 0.75, SD = 0.06) were found to differ, t(30) = 5.66, p ¡ .001 (two-tailed).
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The Bayes factor for this comparison was 6.52.

2.2.3 Discussion

As our results show, the pattern of results in this experiment is qualitatively similar

to the pattern seen in Experiment 1 with the only difference being a change in the

pattern of accuracy in some of the single-feature conditions. However, these changes

are not central to the issue at hand, that issue being the question of whether verbal

load differentially affects binding and item information. It is clear that the multi-

feature and length conditions are still equivalently difficult and are both the most

difficult conditions, which is no departure from Experiment 1. This result indicates

that there is no reason to continue using the verbal load task in its current form in this

type of experiment, so we have chosen to discontinue the use of such a task for further

experiments. Although we had the option of increasing the verbal load and examining

the effects of such a manipulation, we chose instead to neglect the contributions of

verbal memory for this set of experiments with the possibility of continuing this line of

research in the future. Due to the rapid presentation of stimuli and short maintenance

period, it is questionable if verbal recoding is generally an effective strategy at all.

It is even more questionable whether any advantage in accuracy achieved through

verbal recoding would be worth the cost of the additional effort required in order to

enact such a strategy.
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2.3 Experiment 3

The purpose of this experiment was to determine what effect sample array presen-

tation time has on the pattern of results we have observed. Although sample array

presentation time was previously ruled out by Luck and Vogel (1997) as a significant

contributor to accuracy, because of the striking differences between our results and

theirs we were interested to see what effect it might have on the patterns of results

we were obtaining.

The relationship between accuracy in the multi-feature condition and the most

difficult single-feature condition (length) might be explained by the results of Vogel,

Woodman, and Luck (2006), who found that there was a minimum amount of time

needed to consolidate a WM representation. If the amount of time it takes to encode

an object is limited by the most-difficult-to-encode feature, it could be that when

participants are attempting to encode all the features of each object in the multi-

feature condition, their accuracy is limited by the amount of time it takes to encode

the lengths of the objects, length being the most difficult single feature in our exper-

iments. If participants are given a much longer encoding time, then encoding should

no longer be a bottleneck and accuracy in the multi-feature condition would not be

limited by the most difficult single feature if encoding time is in fact a limiting factor

of accuracy.

2.3.1 Method

This experiment differed from Experiment 2 by increasing the sample array presen-

tation time to 500 ms. The blank interval between sample and test was maintained
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at 900 ms.

Data from 15 participants (7 female, mean age 20.6 years) were used in this

experiment. Three additional participants’ data were removed for failing to meet the

single-block accuracy cutoff.

2.3.2 Results

There was a main effect of array size on accuracy, F (2, 28) = 72.93, MSE = 0.0044,

p < .001, η2p = .84. There was also a main effect of attended feature, F (4, 56) =

28.66, MSE = 0.0082, p < .001, η2p = .67. Finally, an interaction between array size

and attended feature was found, F (8, 112) = 9.99, MSE = 0.0047, p < .001, η2p =

.42. The data for this experiment are summarized in Figure 2.2.

A Newman-Keuls post hoc test showed that the multi-feature and length condi-

tions were not different and that the color and gap conditions were not different, with

all other pairwise comparisons showing differences between conditions. This pattern

of differences is identical to that found in Experiment 1.

For this experiment, accuracy in the multi-feature condition at array size two (M

= 0.9, SD = 0.07) and the average accuracy of the single-feature conditions at array

size six (M = 0.82, SD = 0.06) were found to differ, t(28) = 3.39, p ¡ .01 (two-tailed).

The Bayes factor for this comparison was 4.88.

2.3.3 Discussion

Increasing the encoding time fivefold did not meaningfully affect the pattern of accu-

racy on this task. This confirms that the sample array presentation time of 100 ms
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used in these experiments is sufficient for encoding, pointing to maintenance, retrieval,

or decision processes as limiting factors for accuracy on this task.

2.4 Experiment 4

This experiment was performed in order to determine if the background color on

which the objects are presented affects accuracy. As mentioned in the method for

Experiment 1, the background colors initially used by us differed from the values

reported by Vogel et al. (2001) because we based our color values on a figure in Luck

and Vogel (1997). Presumably, the figure was modified for better visibility in a print

format and did not reflect the actual color values that were used. The most important

difference was that the background color we used for Experiments 1 through 3 was

far brighter than was reported in Vogel et al. (2001). We performed this experiment

to determine what effect changing the brightness of the background would have. The

color values for the red and green objects were also changed somewhat in order to

maintain high contrast between the objects and the background.

2.4.1 Method

Data from 13 participants (12 female; mean age 18.4 years) who took part in this

experiment were used in the analysis. Three additional participants failed to meet

the accuracy criterion and their data were removed from the analysis.

The method of this experiment was identical to 2 except for which stimulus color

values were used. The RGB values of the colors used in this experiment were as

follows: background (50, 50, 50), red (255, 0, 0), and green (0, 255, 0).
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2.4.2 Results

There was a main effect of array size on accuracy, F (2, 24) = 109.6, MSE = 0.0041,

p < .001, η2p = .90. There was also a main effect of attended feature, F (4, 48) =

55.64, MSE = 0.0049, p < .001, η2p = .82. Finally, an interaction between array size

and attended feature was found, F (8, 96) = 9.525, MSE = 0.0032, p < .001, η2p =

.44. The data for this experiment are summarized in Figure 2.2.

A Newman-Keuls post hoc analysis showed that the length and multi-feature con-

ditions were not different, that the gap and orientation conditions were not different,

but that all other conditions were different from one another. This pattern is the

same found in Experiment 2 and is not meaningfully different than that found in

Experiment 1.

For this experiment, accuracy in the multi-feature condition at array size two (M

= 0.89, SD = 0.06) and the average accuracy of the single-feature conditions at array

size six (M = 0.78, SD = 0.04) were found to differ, t(24) = 5.24, p ¡ .001 (two-tailed).

The Bayes factor for this comparison was 4.03.

2.4.3 Discussion

The results of this experiment are very similar to the previous experiments, indicating

that our results were not dependent on the specific lightness of the background that

were used. However, there still exists the possibility that another color combination

would result in a different outcome.
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2.5 Experiment 5

In this experiment, we modified the procedure by having participants make a change-

detection judgment about a single object, rather than the whole array. Finding the

same basic pattern of results while significantly modifying the way in which partici-

pants’ memory was tested would strengthen our previous results. One advantage of

this experiment is that the absolute number of decisions that participants are required

to make is reduced when participants are responding to a single item probe versus

a full array probe (Luck & Vogel, 1997). However, in this experiment participants

are still required to make four times as many decisions in the multi-feature condition

versus the single-feature conditions, so this experiment only goes part of the way to

controlling for decisions at test between conditions.

2.5.1 Method

Of the 26 participants who participated in this experiment, eight were removed for

falling below the 55% single-block accuracy criterion, leaving 18 (10 female; mean age

18.9 years) to be used in the analysis.

This experiment is identical to Experiment 4 except for the way in which par-

ticipants were tested. The method used to present a single object to participants

at test was to replace irrelevant objects with a location placeholder. This was done

by replacing all but one of the objects in the test array with an unfilled white circle

in the location of the original object that was presented in the sample array. The

presentation of location information about the irrelevant objects would allow partic-

ipants to identify the target object in the context of the array. This was important
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because features were allowed to repeat within a given array, leaving location as the

only unique identifier of each object. On any given trial, there was a 50% probability

that one feature of the probed object would change.

2.5.2 Results

There was a main effect of array size on accuracy, F (2, 34) = 117.8, MSE = 0.0057,

p < .001, η2p = .87. There was also a main effect of attended feature, F (4, 68) =

25.03, MSE = 0.0106, p < .001, η2p = .60. Finally, an interaction between array size

and attended feature was found, F (8, 136) = 4.607, MSE = 0.0044, p < .001, η2p =

.21. The data for this experiment are summarized in Figure 2.2.

A Newman-Keuls post hoc analysis showed that the multi-feature and length

conditions were not different and that the orientation and length conditions were not

different, with all other conditions different from one another. This pattern is again

very similar to that found in Experiment 1, with the only difference being a shift in

the relationships between the single-feature conditions.

For this experiment, accuracy in the multi-feature condition at array size two (M

= 0.84, SD = 0.09) and the average accuracy of the single-feature conditions at array

size six (M = 0.73, SD = 0.09) were found to differ, t(34) = 3.65, p ¡ .001 (two-tailed).

The Bayes factor for this comparison was 8.17

2.5.3 Discussion

Although in this experiment there was a constraint on the number of decisions that

had to be made, the results are very similar to all of the preceding experiments.
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However, as stated before, the participants were still required to make more decisions

in the multi-feature condition, so this experiment does not wholly control for decision

errors. This issue will be explored in more detail in Experiment 6.
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Chapter 3

Decision error and estimating the
total number of objects in mind

3.1 Experiment 6

This experiment was intended to extend the results of the previous experiments by

using a different method of controlling which features of the objects participants

were required to attend to. The method is similar to that used by Cowan et al.

(2012) in which participants are cued at test to a specific feature dimension in which

a change may have occurred. In this experiment we will sometimes present cues

at test and sometimes before presentation of the sample array, which will allow for

a direct comparison of accuracy between conditions in which participants are able

to use information about the target feature at encoding versus conditions in which

participants are only made aware of the target feature at test. This comparison is a

direct test of whether or not objects are the basic unit of storage in visual WM. If
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objects are the basic unit of storage, there would be no advantage for the condition in

which participants are cued before seeing the sample array because the same number

of objects would be stored regardless of when the cue is given. However, objects

are not the basic unit of storage, it is expected that selective attention to the target

feature at encoding would allow more information about that feature to be stored,

resulting in improved accuracy.

We have chosen to use a single-item probe as it has the advantage of limiting the

number of decisions that a participant must make when giving a response. By cuing

both a feature and an item, only a single decisions will have to be made. A benefit

of this design is that it allows us to examine the possibility that the limiting factor

in the multi-feature conditions was that participants had to perform a feature-by-

feature search of the test array. If participants did not know what feature might have

changed, they may have needed to perform this serial search of the test array for a

difference from the representation they held, which would result in reduced accuracy

if the search was slow enough for the representation to lose fidelity before search

terminated. If this were the case, the difference between the single- and multi-feature

conditions could have been due to memory search, not storage.

3.1.1 Method

Participants

Thirty participants (19 female; mean age 18.4 years) who participated in this experi-

ment were used in the analysis. Two additional participants were removed for falling

below the accuracy criterion.
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Materials

The stimulus objects in Experiment 6 were the same as those used in Experiments

1 through 3. Like in Experiment 5, only a single object was presented at test and all

other objects were replaced with white, unfilled circles.

The placement of the stimulus objects in arrays were changed in order to reduce

collisions between objects, with a new distance of 2.25° between the centers of objects.

Collisions were possible using the previous settings because although the objects were

at most 2.0° long and center-to-center distance was held at 2.0°, the long rectangles

were greater than 2.0° corner-to-corner. This lead to some occurrences of overlapping,

touching, or nearly touching objects.

Procedure

Once given instructions, participants performed a short practice block of 18 trials

with the experimenter observing. The practice trials included two trials with each

combination of cued feature and cue presentation point (discussed further below) with

array size selected randomly. Participants then completed five trials blocks with rest

periods in between. Each trial block had identical instructions and within each block

there were trials of each cue type at each array size.

The sequence of a single trial in this experiment differed from past experiments

by the addition of textual cues that indicated which feature was allowed to change

on that trial. The feature cues were a single word (e.g., ”Color”). If the participant

was not cued to a specific feature at a given point, they were shown a neutral cue,

which was a series of dashes (”−−−−−−−−−−”). Cues (including neutral cues)

were presented at fixation and test on all trials and were presented 4.65° below the
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Color

--------

Fixation
1000 ms

Sample array 
100 ms

Blank
900 ms

Test array

Fixation-cue Test-cue No-cue

Blank
500 ms

Color --------

Figure 3.1: Example of the task used in Experiment 6. The three cuing conditions
are demonstrated by showing the combinations of cues shown at fixation and at test
for each condition. The post-fixation blank, sample array, and retention interval were
the same for each condition.
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center of the screen. Participants were to interpret the cue words as a fragment of the

phrase ”The [cue word] of this object is ” and to fill in the blank by responding

”the same” or ”different” using the same keys as our previous experiments.

On some trials, which we will call fixation-cue trials, participants were presented

with a feature-specific cue at fixation, which allowed participants have full knowledge

of the feature that would later be tested while they were encoding the test array.

These trials will be similar to trials in the single-feature trial blocks of our previ-

ous experiments in that participants will have full knowledge of the target feature

throughout the trial. In order to be clear, for fixation cue trials the same cue word

was always presented again at test. On other trails, participants were given a neu-

tral cue at fixation and another neutral cue at test, which we will call the no-cue

condition. This condition is similar to the trials in the multi-feature blocks in prior

experiments due to the fact that any feature may change and the participant has no

information about which feature may have changed. We will call these no-cue trials.

Finally, in the test-cue condition, participants were given a neutral cue at fixation

but a feature-specific cue at test. This condition, when compared to the fixation-cue

condition, will allow us to determine if knowledge about the target feature at encod-

ing causes an increase in accuracy, a finding which would not be predicted if objects

are the basic unit of storage. In each of the five trial blocks, there were four trials of

each trial type at each array size, so there were 4 ∗ 9 ∗ 3 = 108 trials per block and a

total of 540 trials per participant.
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3.1.2 Results

First, all cuing conditions were compared with a 3 (cuing condition) X 3 (array size)

univariate ANOVA. The fixation-cue and test-cue conditions were collapsed across

cued feature for this analysis. There was no interaction between cue presentation

point and array size, F (4, 116) = 1.937, MSE = 0.0049, p = .11, η2p = .06. Pre-

dictably, there was a main effect of array size, F (2, 58) = 119.92, MSE = 0.0059,

p < .001, η2p = .81. There was also a main effect of cuing condition, F (2, 58) =

41.31, MSE = 0.0062, p < .001, η2p = .59. A Newman-Keuls post-hoc analysis of

the effect of cuing condition showed that all three conditions were different from one

another. Accuracy was the best in the fixation-cue condition and worst in the no-cue

condition. A plot of the data used in this analysis can be found in Figure 3.2, panel

A.

An additional analysis of accuracy on the individual features was performed in

order to determine if the pattern of accuracy found for the individual features was sim-

ilar to our previous experiments. In this analysis, the no-cue condition was removed,

allowing the data to be analyzed with a 2 (cuing condition) X 4 (cued feature) X 3

(array size) ANOVA. There was no three-way interaction, F (6, 174) = 1.283, MSE

= 0.0116, p = .27, η2p = .04. There was a two-way interaction between feature and

array size, F (6, 174) = 3.216, MSE = 0.0083, p < .01, η2p = .10. There was also a

two-way interaction between cuing condition and array size, F (2, 58) = 4.075, MSE

= 0.0109, p < .05, η2p = .12. The was also a two-way interaction between cuing con-

dition and feature, F (3, 87) = 4.663, MSE = 0.0084, p < .01, η2p = .14. There was

a main effect of array size, F (2, 58) = 141.40, MSE = 0.0143, p < .001, η2p = .83.

There was a main effect of feature, F (3, 87) = 24.14, MSE = 0.0191, p < .001, η2p =
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.45. Finally, there was a main effect of cuing condition, F (1, 29) = 26.85, MSE =

0.0184, p < .001, η2p = .48. Plots of the data can be seen in Figure 3.2, panels D and

E.

The interactions between array size and both cuing condition and feature appear

to both be driven by the fact that there is a relatively small decrease in accuracy for

the color and gap features as array size increases in the fixation-cue condition. Thus,

when we collapse across features, there would be an increasingly large delta between

the fixation-cue and test-cue conditions at larger array sizes for some features, as

can be seen in Figure 3.2, panel F. Similarly, if we were to collapse across cuing

condition, there would be a similar pattern of increasing delta between the color and

gap features and the two other features. Although this interpretation sounds like a

three-way interaction and no such interaction was found by the ANOVA, it could

be that such an interaction was simply not found due to reduced power to detect

interactions in ANOVA. The number of participants used for the experiment was

chosen to allow for detection of main effects, not high-order interactions.

The interaction of cuing condition and feature was examined with a Newman-

Keuls post hoc test. We first tested for differences between features within each cuing

condition. For the fixation-cue condition, accuracy for the gap feature did not differ

from accuracy for the length feature, but accuracy for all other features differed from

one another. Accuracy for the color feature was the best and accuracy for the length

feature was the worst. This pattern is comparable to that observed in the single-

feature blocks of previous experiments. A slightly different pattern was found in the

test-cue condition, for which gap did not differ from length or orientation, with all

other comparisons showing differences. The only difference in the relative accuracy for
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Figure 3.2: Plots of data from Experiment 6. (A) Proportion of correct responses
by cuing condition collapsed across features. (B) Response times by cuing condition
collapsed across features. (C) Proportion of correct responses by changed feature
within the no-cue condition. Proportion of correct responses by cued feature in the
fixation-cue (D) and test-cue (E) conditions. (F) Differences in proportion correct by
feature between the fixation-cue and test-cue conditions. Error bars for panels A, D,
and E are 95% repeated measures confidence intervals (Hollands & Jarmasz, 2010),
others are standard error.
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the features between the cuing conditions is that gap is not different from orientation

in the test-cue condition. The last set of comparisons is between each feature in one

cuing condition and the same feature in the other cuing condition, showing a change

in accuracy for the feature between conditions. In this comparison, only accuracy

for orientation did not change between the fixation-cue and test-cue conditions while

accuracy for all other features was diminished in the test-cue condition relative to

fixation-cue. The two-way interactions involving array size were not of interest to the

research question and are not reported here.

Given that the fixation-cue and test-cue conditions should be as similar as possible

in order to allow for clear interpretation of the results, we examined response time

data for this experiment in order to determine if there were response time differences

between the cuing conditions. The cuing conditions were analyzed with a 3 (cuing

condition) X 3 (array size) ANOVA. There was a main effect of cuing condition,

F (2, 58) = 13.1, p ¡ .001. A Newman-Keuls post hoc showed that the fixation-cue

condition had a shorter response time than either the test-cue or no-cue conditions.

Response times fixation-cue condition averaged across array sizes were 227 ms faster

than response times in the test-cue condition. Response time data is plotted in Figure

3.2, panel B.

Testing for an effect of object load was conducted in a slightly different way than

in the previous experiments. In this experiment, the fixation-cue condition should

offer us data about accuracy when participants only attend to a single feature of

the objects and the test-cue condition offers data about accuracy when participants

have to attend to all of the features of the objects. These two cuing conditions

were averaged across cued feature for this analysis. Average accuracy in the test-cue
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condition at array size two (M = 0.85, SD = 0.10) and the average accuracy in the

fixation-cue condition at array size six (M = 0.72, SD = 0.11) were found to differ,

t(58) = 4.94, p = 0 (two-tailed). The Bayes factor for this comparison was 14.1.

3.1.3 Discussion

The design used in this experiment allowed for a direct test of the hypothesis that

feature load has no effect on accuracy. By comparing accuracy on fixation-cue and

test-cue trials, it can be determined if participants can improve their accuracy by using

information about which feature they will be tested on. If participants have unlimited

feature storage capacity, it would not matter whether they are cued before encoding

or at test. However, as the results clearly show, it does matter when participants are

cued. In particular, accuracy was worse when, at the time of encoding, participants

did not know which feature of the objects they were to be tested on. This result

is predicted very clearly if it is assumed that feature storage is capacity-limited. If

participants do not know which feature they will be tested on at the time of encoding,

they have to be able to store information about every feature in order to perform

optimally. Given that accuracy in such a case is reduced relative to a case in which

participants only needed information about one feature, it is reasonable to think that

feature storage is capacity-limited.

One possible explanation for the results that still allows for unlimited-capacity

feature storage is that in the fixation-cue condition participants know which feature

they will be tested on before they are shown which object they are being tested

on. However, in the test-cue condition, participants have to determine both which

object and which feature they must make a decision about at test. This added
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time in the test-cue condition could allow the WM representation to degrade slightly,

reducing accuracy for reasons unrelated to storage. Given that participants took

more time to respond in the test-cue condition relative to the fixation-cue condition,

this explanation is plausible. The reason why participants tool longer in the test-cue

condition could simply be that at test, they were presented with the cue word and

the test object simultaneously, which would require them to look at both the cue

word and the test object before making their decision. In the fixation-cue condition,

the cue word presented at test was always the same as the cue presented at fixation,

participants did not need to look at the cue word presented at test in order to perform

the task. An experimental manipulation that might rule out this possibility would

be to move the presentation time of the cue word presented at test in the current

experiment forward in the trial in order to have the word be presented slightly before

the test object is presented. This would allow participants in the test-cue condition

to know which feature they should be making their decision about as soon as the test

object was presented, just as in the fixation-cue condition.

The finding that accuracy in the no-cue condition was worse than that in the

test-cue condition indicates the importance of performing this experiment. The only

difference between those two conditions was that the number of features which par-

ticipants were tested on differed. This means that there is a factor which affects

accuracy when participants are required to make decisions about multiple features of

an object at once. One possibility is that participants scan each feature in serial order

when making a decision, which would force some features to wait longer before they

are scanned. This would allow the quality of the stored representation to degrade,

causing errors on later features. Alternatively, there could be a component of decision
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error that results from the difficulty of integrating information about multiple features

when making a decision. Whatever the factor that caused the difference between the

no-cue and test-cue conditions is, it was likely also present in the multi-feature con-

dition of our previous experiments and may have led to an underestimate the ability

of WM to store multi-feature objects in those experiments. This experiment helps to

control for this problem and allows for a more clearly-interpretable result than our

previous experiments.

3.1.4 Estimation of total number of objects in WM in test-
cue condition

In order to extend the results of Experiment 6, we performed a further analysis of

that experiment’s data. The purpose of the analysis was to determine the number

of objects held in WM for which at least one feature was known when participants

were required to attend to all of the features of the objects in the test-cue condition.

By using data from the test-cue condition of Experiment 6 it is possible to get an

estimate of the number of objects in WM for which the cued feature was known by

using Cowan’s k (Cowan, 2001). This capacity estimate is not necessarily the total

number of objects in WM, just those objects for which the cued feature was known.

It is easily possible that a participant could have additional objects in WM for which

the cued feature was not known, but a test on knowledge of only a single feature

would be unable to determine the presence of knowledge of those other objects.

Although we can get estimates for the number of objects in WM for which each

individual feature is known, these estimates cannot be combined into an overall es-

timate of the number of objects in WM without knowledge about the probability of
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knowing one feature of an object given that other features of the object are known.

By making the assumption that knowledge of one feature is independent from knowl-

edge of other features, it becomes possible to combine together the separate estimates

of objects for which each individual feature was known into an estimate of the total

number of objects held in mind in the test-cue condition. Conveniently, some recent

evidence suggests that the features of an object are wholly independent from one

another (Vul & Rich, 2010). This allows the analysis to be not only possible without

having to guess at the relationship, but also mathematically straightforward.

This type of analysis has been done before by Cowan et al. (2012) with a task

that used objects with a color and a shape. By taking advantage of the independence

assumption, they were able to show that participants were able to remember the

same number of objects when they knew which feature of the object would be cued

at test as when they knew that either feature could be tested. The purpose of our

analysis is to attempt to extend this finding of Cowan et al. to a situation in which

participants are required to know either one or four features of the objects. It appears

that our participants are able to preferentially allocate resources to a specific feature

when they know that they will be tested on that feature (fixation-cue performance is

better than test-cue performance). However, the flexibility of this resource allocation

is not clear from our existing analysis. To be specific, based on our current results we

cannot tell if participants encode more objects in the fixation-cue condition than in

the test-cue condition or if they encode the same number of objects in either case, but

have a higher probability of encoding the cued feature of the remembered objects in

the fixation-cue condition. If the number of objects held in mind in the test-cue and

fixation-cue conditions is the same, then an object limit in WM would be supported.
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Given the independence assumption, a general purpose equation can be used to

find the number of objects for which any given combination of features was known,

given that we know the number of objects for which each of the features was known.

This equation is

Kcombination = N
∏
i

(
ki
N

)∏
j

(
1− kj

N

)
, i ∈ {Known features}, j ∈ {Unknown features}

where Kcombination is the number of objects in the array for which the given com-

bination of features was known, N is the number of objects in the sample array, and

Ki and Kj are the number of objects for which the ith or jth feature was known. The

ratio Ki/N represents the proportion of the objects in the sample array for which the

ith feature was known (and the same is true for Kj). The expression 1−Kj/N rep-

resents the proportion of the sample array for which the jth feature was not known.

By taking the product of the proportions of the sample array for which some features

were known and other features were not known, we are given the proportion of the

sample array for which the given combination of known and unknown features held.

Multiplying this proportion by N simply gives the number of objects for which the

combination of features was known. For example, if there are 4 objects in the sam-

ple array and the following features are known for the respective number of objects:

color, 3; orientation, 2; gap, 2; length, 1. We calculate the number of objects for

which color and orientation are known (gap and length are not known) as follows:

Kcolor,orientation = 4(3/4)(2/4)(1− 2/4)(1− 1/4) = 9/16.
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By using this equation to calculate every possible combination of known and

unknown features and then summing across all cases where at least one feature is

known, we can estimate the total number of objects in mind for which at least one

feature is known. We will use data from each participant in the test-cue condition

and denote the number of objects for which at least one feature was known KtestAny

(”any” meaning that any feature or combination of features of the KtestAny objects

was known). This estimate will be compared to the maximum number of objects for

which the cued feature was known in the fixation-cue condition (denotedKfixationMax).

KfixationMax can be thought of as an object (or slot) limit that does not depend on

which feature was attended. Although it may not be possible for different features to

equally fill the available slots, the easiest feature for each participant in the fixation-

cue condition is our best estimate of the number of object slots they have available.

Thus, by comparing KfixationMax and KtestAny we are testing to see if there is an

invariance in the number of objects that participants store. If the number of stored

objects is identical, the number could be interpreted as a limit to the number of

objects which could be stored in WM.

At array size four, the average of the estimated number of objects for which at least

one feature was known in the test-cue condition (KtestAny) was 3.39 (SD 0.68) and

the average of the maximum number of objects for which the cued feature was known

in the fixation-cue condition (KfixationMax) was 3.10 (SD 0.74). A standard paired

t-test was unable to distinguish these conditions, t(58) = 1.60, p = .11. The Bayes

factor for the alternative versus the null was 1.75, slightly favoring the alternative

to the null. The correlation between KtestAny and KfixationMax at array size four was

.55 (p ¡ .001). At array size six, the average of KtestAny was 4.45 (SD 1.15) and
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Figure 3.3: Scatterplots of each participant’s maximum K-value obtained for any
single feature in the fixation-cue condition (KfixationMax; X-axis) by the estimated
number of objects for which at least one feature was known (KtestAny; Y-axis). Array
size four is shown in the left panel and array size six is shown in the right panel. The
solid line is the correlation between KfixationMax and KtestAny. The dashed line is a
line with slope 1 and intercept 0.

the average of KfixationMax was 4.46 (SD 1.08). A standard paired t-test was unable

to distinguish these conditions, t(58) = -0.046, p = .96. A Bayesian t-test gave a

Bayes factor of 0.14, suggesting that the null is approximately seven times as likely as

the alternative. The correlation between KtestAny and KfixationMax was .30 but non-

significant, p = .056. Scatterplots of the data used in these analyses with correlations

marked are shown in Figure 3.3. The noise that is apparent in these plots can be

at least partially attributed to the low number of trials from which each data point

was generated: There were only 20 trials in each array size X cuing condition X cued

feature cell for each participant.

Array size two was not analyzed because most participants were assumed to be at
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ceiling performance on those trials. Similarly, array size six is assumed to be a better

data set than array size four due to the possibility that many participants were still at

ceiling performance at array size four. To put numbers to it, at array size six, 20 out

of the 30 participants had a KfixationMax greater than four, suggesting that most of

the participants would have been at ceiling at array size four. Given that KfixationMax

was less than KtestAny at array size four and that most of the participants were at

ceiling in that condition, it is possible that the difference between the K values should

be diminished if participants were not at ceiling, which is exactly what we observed

at array size six. Accordingly, although the some of the analyses of data from array

size four are reported, array size six is the focus from here on.

Averaging KtestAny across all participants and using only data from array size six,

the number of objects for which no features were known was 1.55, for which one

feature was known was 2.26, for which two features were known was 1.45, for which

three features were known was 0.58, and for which all four features were known was

0.15. These summary data were drawn from the data shown in Table 3.1. We can

use these numbers of features known per object to calculate the number of features

known in the sample array (again at array size six) by taking a weighted sum, giving

a result of 7.51 features known. By dividing by the number of objects for which at

least one feature was known we get the number of features known per object for which

at least one feature was known, which is 1.69.

This analysis suggests that regardless of whether participants are attending to

a single feature of visual objects (fixation-cue condition) or some combination of

features of those objects (test-cue condition), they still load the same number of

objects into mind. When only raw accuracy in the two conditions is compared (not
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Table 3.1: Number of Objects Held in Mind at Array Size Six for each Combination
of Features in Experiment 6
#a Colorb Gapb Lengthb Orientationb Kc

0 - - - - 1.55
1 X - - - 0.83
1 - X - - 0.46
1 - - X - 0.38
1 - - - X 0.59
2 X X - - 0.30
2 X - X - 0.25
2 X - - X 0.35
2 - X X - 0.14
2 - X - X 0.27
2 - - X X 0.13
3 X X X - 0.12
3 X X - X 0.22
3 X - X X 0.13
3 - X X X 0.12
4 X X X X 0.15

a The number of known features.
b For each feature, an X indicates that the feature was known and a dash indicates that the
eature was not known
c The number of objects for which the indicated combination of features was known.
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using the results of this analysis), participants seem to be holding less information

specific to the cued feature in mind in the test-cue condition. However, it could

be that in the test-cue condition participants are holding more information in mind

overall, but less information about the cued feature due to there being no reason to

preferentially attend to that feature. Provided that our assumptions are correct, this

analysis provides evidence for a model of visual WM that has a limit to the number

of objects which can be held in mind. This in no way conflicts with the results of

our other experiments, which we believe show that objects are not the only limiting

factor in WM performance, not that they are not a limiting factor.

According to this analysis, it is a rare event for all of the features of an object

to be known, with on average only 0.15 objects out of 6 having all four features of

their features known. This conflicts with the original slot model proposed by Luck

and Vogel (1997) which posits that all of the features of a stored object are known.

On the other hand, it is still compatible with a model that has an object limit, as

long as the objects are allowed to be stored without all features intact. Such a model

could be the slots plus resources model (Zhang & Luck, 2008).

It is possible that some of the assumptions of our analysis are wrong. Although

there is some evidence that the features of visual objects are independent (Vul & Rich,

2010), this is only a recent finding that has not withstood the test of time. Cowan et al.

(2012) were not able to reject the hypothesis of independent encoding of the features

of objects, which indicates that the finding of Vul and Rich (2010) might be generally

applicable to WM research. However, Fougnie and Alvarez (2011) were unable to

support the idea that features of objects are completely independent. They found

that for color and orientation, memory for the features was largely independent, but
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not wholly. Additionally, Fougnie and Alvarez found that knowledge of the width and

height of rectangles (ostensibly two separate features) were closer to being inseparable

than independent. For the features used in this experiment, is seems likely that length

and orientation might not be very separable, but the other combinations of features

should be fairly separable. If Fougnie and Alvarez are correct, assuming independence

of our features might lead us to a result that approximates the true state of the world,

but in order to properly carry out this analysis we would need precise information

about the separability of our features.

A different potentially problematic assumption is that KfixationMax may not be

an appropriate estimate of the number of slots that participants have available to

them. It could be that participants are distracted by the irrelevant features of the

objects in the fixation-cue condition and cannot effectively fill their object slots with

the relevant feature. In that case, a task in which objects possess only a single feature

could be used to estimate the number of slots that participants have available. This

would create another problem by creating clear differences between the stimuli used

to estimate object slots and the stimuli used to estimate the number of objects for

which each feature was known.
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Chapter 4

Extension to fewer feature
dimensions with more states

4.1 Experiment 7

In this experiment we attempted to replicate the results of another experiment from

Luck and Vogel (1997) in which participants were only required to remember at

most two features, in this case the color and orientation of long rectangular bars

like those used in the four-feature experiments. In addition to reducing the feature

dimensions from four to two, in keeping with Luck and Vogel we allowed each of the

feature dimensions we used to take on any of four values on any given trial. We

have shown that requiring participants to remember all of the features of a certain

type of visual object composed of four features results in reduced accuracy when

compared to some of the individual features which make up the object. How well

our finding extends to stimulus objects with fewer features or features drawn from
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different feature dimensions is, however, unclear. It is possible that having four

features per object overloads our ability to organize each object in such a way that it

can be reliably remembered. If participants are only held responsible for two features

in the multi-feature condition, the overload may not occur and accuracy might only

be related to array size and not feature load. Alternately, it could be that the specific

feature dimensions we used for our stimuli are responsible for our results, which

this experiment partially addresses by removing two feature dimensions. Finally,

allowing each feature dimension to vary between only two values (for example, objects

could only be red or green) may have allowed participants to do a very good job of

chunking objects in single-feature blocks, an ability that might have been reduced in

effectiveness in the multi-feature condition because attention was more likely to be

spread between a number of feature dimensions in that condition.

This experiment will also provide evidence related to the question of whether

feature load can predict accuracy without reference to object load. Wheeler and

Treisman (2002) found that participants could just as easily remember six colors

when those colors were in six separate objects as when the colors were displayed with

two colors per object in three separate objects. In this experiment we can compare

conditions which are matched in terms of feature count but differ in object count.

4.1.1 Method

Data from 21 participants (8 female, mean age 19.9 years) were used. One additional

participant was removed for falling below 55% accuracy on two trial blocks. Three

of the participants in this experiment were recruited from the community and were

paid $15 for their participation.
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Figure 4.1: Diagram of the task used in Experiment 7. This figure shows how the
stimuli for this experiment can take on a greater range of feature values than stimuli
in the earlier experiments while also reducing the feature load in terms of the number
of feature dimensions per object.

The materials used in this experiment differed from those of other experiments in

that each object could possess any of four colors and orientations. The orientations

were 0, 45, 90, and 135 degrees. The rectangles were the same dimensions as the

long rectangles used in the other experiments and did not have a gap. The colors

used in this experiment were red (255,0,0), green (0,246,0), cyan (0, 254, 255), and

magenta (255, 0, 255) for the objects and background (60, 60, 60). These were not

the same colors used by Luck and Vogel (1997), who used red, green, blue, and black.

Our stimuli were still easily discriminable, so we find it unlikely that the colors would

have an effect of the results. The increased center-to-center spacing of objects of
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2.25° introduced in Experiment 6 was used in this experiment as well. There was no

secondary verbal load task in this experiment. See Figure 4.1 for a diagram of the

method for this experiment. In this experiment, there were two-single feature trial

blocks and one multi-feature trial block, each with 180 trials.

4.1.2 Results

There was a main effect of array size on accuracy, F (2, 40) = 81.85, MSE = 0.0044,

p < .001, η2p = .80. There was also a main effect of attended feature, F (2, 40) = 3.876,

MSE = 0.0089, p < .05, η2p = .16. In this experiment, only a marginally significant

interaction was found, F (4, 80) = 2.284, MSE = 0.0022, p = .0674, η2p = .10. The

data for this experiment are summarized in Figure 2.2.

A Newman-Keuls post hoc test revealed that the color condition was different

from both the orientation and multi-feature conditions. However, the orientation and

multi-feature conditions were not different from one another.

For this experiment, accuracy in the multi-feature condition at array size two (M

= 0.93, SD = 0.08) and the average accuracy of the single-feature conditions at array

size four (M = 0.89, SD = 0.05) were not found to differ, t(40) = 2.02, p = 0.0504

(two-tailed). The Bayes factor for this comparison was 0.07, providing substantial

evidence for the null hypothesis of no difference.

4.1.3 Discussion

The results of Experiment 7 are similar to what we have found before, namely that

there is a cost to remembering multiple features of visual objects. The use of feature
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sets that included more than two possible feature values helps to reduce the likelihood

that our previous results were solely caused by an artifact of using feature sets that

possessed only two of the many possible values. As a result of this change, in this

experiment participants were less able to chunk objects together by common features.

However, they were also able to rely more on memory for which features values were

presented than in previous experiments due to the reduced repetition of feature values

resulting from a larger sample of possible values. There are a wide variety of possible

stimulus sets we could have used in this experiment, so although some questions were

answered by this experiment, they have only been answered for a narrow range of

possible features.

We again found that accuracy in the multi-feature condition was equivalent to

that in the most difficult single-feature condition. This is notable because in this

experiment orientation was the most difficult single feature, whereas length was the

most difficult single feature in previous experiments. It was previously hypothesized

that there was something about the length feature of the objects that was limiting

accuracy on the multi-feature condition. However, we see here that accuracy on the

multi-feature condition is generally limited by the most difficult single feature in the

set of salient features, not by a specific feature dimension.

This is the first experiment in this study that has conditions that are exactly

matched on feature load but differ in object load. We were able to directly compare

the multi-feature condition at array size two to the single-feature conditions at array

size four. Unlike our four-feature experiments, we did not find any difference in

accuracy when we carried out this analysis. This result supports the similar finding

of Wheeler and Treisman (2002) for the stimuli used in this experiment.
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4.2 Experiment 8

In Experiment 7 we once again found that the multi-feature condition was as difficult

as the most difficult single-feature condition. In this experiment we attempted to

examine this effect in a case where the difficulty of the features used was equated

(thanks to Klaus Oberaurer for suggesting this experiment). In Experiment 7, ac-

curacy for color was better than accuracy for orientation, so in this experiment we

changed the colors to be less discriminable in order to decrease accuracy for color.

4.2.1 Method

In this experiment, data from 33 participants (25 female; mean age 18.5 years) were

used. One additional participant was removed from the sample due to falling below

the accuracy cutoff.

The colors of the stimuli used in this experiment were dark pink (235,76,90), pale

violet red (210,94,140), medium purple (165,108,214), and light slate blue (120,116,253).

The method was otherwise identical to Experiment 7.

4.2.2 Results

There was a main effect of array size on accuracy, F (2, 64) = 246.77, MSE = 0.0036,

p < .001, η2p = .89. There was also a main effect of attended feature, F (2, 64) = 7.54,

MSE = 0.0082, p < .01, η2p = .19. In this experiment, no interaction was found, F (4,

128) = 0.31, MSE = 0.0023, p = .87. The data for this experiment are summarized

in Figure 2.2.

A Newman-Keuls post-hoc test showed that accuracy in the multi-feature condi-
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tion was lower than in either the color or the orientation conditions. It also showed

that the color and orientation conditions were not different from one another.

For this experiment, accuracy in the multi-feature condition at array size two

(M = 0.89, SD = 0.06) and the average accuracy of the single-feature conditions at

array size four (M = 0.84, SD = 0.05) were found to differ, t(64) = 2.96, p ¡ 0.005

(two-tailed). The Bayes factor for this comparison was 3.46.

4.2.3 Discussion

With this experiment we were able for the first time to separate the multi-feature

condition from all single-feature conditions. This shows that our previous finding

that the multi-feature condition is as difficult as the most difficult single feature does

not hold in all cases.

Unlike Experiment 7 but in keeping with earlier experiments, we found differences

between conditions equated in feature load but differing in object load. An explana-

tion for this difference from Experiment 7 is that with the increased difficulty of the

colors used, participants were unable to store as many objects in WM in the color

single-feature condition. In the multi-feature condition at array size two, participants

may have been able to distinguish the colors more easily due to the small number of

objects they were required to encode.
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Chapter 5

Summary and concluding remarks

5.1 General Discussion

The initial purpose of this series of experiments was to determine if a commonly-cited

result supporting objects as the fundamental unit of storage in visual WM (Luck &

Vogel, 1997) could be replicated under a variety of conditions – including a direct

replication. Our results so far have consistently failed to replicate the results of Luck

and Vogel in experiments using two or four features per object. These failures to

replicate consist of seven experiments with a total of 165 participants, with a very

clear and strongly significant pattern of results that is strongly opposed to the pattern

of results observed by Luck and Vogel. Given how well our results have replicated

across a number of experimental manipulations and different participant samples, we

believe our results are reliable and should be taken as a strong refutation of the results

of Luck and Vogel. When our failures to replicate the results of Luck and Vogel are
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combined with earlier failed replications (Delvenne & Bruyer, 2004; Wheeler &

Treisman, 2002), it becomes clear that every feature conjunction experiment of Luck

and Vogel has failed to replicate. It should be noted that our results and the results of

the cited failures to replicate all show the same pattern of results: an effect of feature

load. It should also be noted that Luck and Vogel observed their pattern of results

(no effect of feature load) with a sample size of only 10 participants who performed

no more trials than our participants, indicating that they may have had too little

power to detect an effect present in their data.

Although we have shown that the results of Luck and Vogel do not replicate, simply

failing to replicate a result does not necessarily invalidate a theory supported by that

result. One must seek to eliminate confounds in order to allow for unambiguous

interpretation of results with respect to a theory. In particular, the theoretical issue we

are interested in is storage in visual WM, so we should attempt to remove confounds

related to the encoding and retrieval of stimuli in order to verify that our effects are

due to the behavior of visual WM storage.

Experiment 3 controlled for the possibility that participants’ ability to perform

the task was limited by an encoding time bottleneck. Experiment 5 controlled for

the number of objects about which a decision must be made at test, suggesting

that our pattern of results observed in experiments with a full-array probe are not

due to accumulated decision error across multiple objects. However, it is possible

that accuracy in the multi-feature condition of Experiment 5 was limited by the fact

that participants were required to make four decisions, one for each feature of the

object. Experiment 6 extended the results of Experiment 5 by further controlling the

number of decisions that participants were required to make. This showed that when
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participants are only required to make a single decision at test, there is an advantage

if participants are able to selectively encode information about the feature of interest,

just as they were able to do in the single-feature conditions of previous experiments.

This confirms that the results of Experiments 1 - 5 were not entirely due to decision

error. We also verified that precise stimulus characteristics do not significantly affect

our results by using different stimulus and background colors in Experiments 4 and

5 than we used in Experiments 1 to 3. In Experiments 7 and 8, we further verified

that we were able to find an effect of feature load in experiments in which only two

features were allowed to vary, but were able to vary between a greater number of

feature values per feature dimension than were used in the four-feature experiments.

When combined, these experiments clearly support the argument that feature load

has an effect on WM performance.

We do not argue that object load is unimportant, simply that it is not the sole

factor contributing to WM performance. In all of our experiments we tested con-

ditions which were equated or nearly equated in feature load but which differed in

object load. In seven out of eight experiments, we found an effect of object load. The

reason why we did not find the same effect in one of the experiments (Experiment 7)

is unclear and may warrant further study. Nevertheless, it seems clear from our data

that we cannot ignore the importance of object load in our experiments.

A result that might appear to conflict with ours is that of Awh, Barton, and

Vogel (2007). They found that the reduction in accuracy that appears when mul-

tiple complex stimuli are remembered should be attributed to difficulty comparing

insufficiently-precise representations of sampled stimuli to test objects, not to a re-

duction in the number of stored representations. Although our analysis of the total
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number of objects in mind in Experiment 6 suggests that there may be reduction in

the number of stored objects, that results of that analysis are constrained by the mod-

eling assumptions that were used. The high-threshold model that we used (Cowan,

2001) assumed that objects or features must be known well enough in order to pass

some high threshold that allows participants to make a high-confidence response on a

trial. This model does not make a provision for imprecise representations and would

underestimate the number of objects in mind if some of those representations were

fairly imprecise. Most importantly, we make the claim that storage of the features

of a visual item is not without cost, which is not really different from the Awh et al.

claim that when a number of complex objects are stored, the quality of the represen-

tations suffers. It could be the case that our participants were able to hold the same

number of objects in mind in both single- and multi-feature conditions, but have their

performance suffer in the multi-feature condition due to an inability to store all of

the features of the objects they had in mind, which is suggested by the analysis of

total number of objects held in mind in Experiment 6.

One pattern in our results for which we have no explanation is the fact that

accuracy in the multi-feature conditions is equivalent to the most difficult single-

feature condition in most of our experiments. We found this pattern in Experiments

1 through 5, where the most difficult single feature was length and also in Experiment

7, where the most difficult single feature was orientation. Because the effect occurs

regardless of which feature dimension is the most difficult, it is unlikely to be caused by

a limitation in visual processing of certain attributes of objects, but rather a limitation

of WM. We were able to create a situation in which the multi-feature condition was

more difficult than either of the single-feature conditions in Experiments 8 by equating
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the difficulty of the single-feature conditions. If the most difficult single feature was

the limitation to multi-feature accuracy, then accuracy in the multi-feature condition

would be the same as accuracy in all of the matched-difficulty single-feature conditions

in Experiment 8. This is not what we found in that experiment, showing that accuracy

in the multi-feature condition is not strictly limited by the difficulty of the most

difficult single feature.

5.1.1 Analysis of high performers

One difference between our data and the data of Luck and Vogel (1997) was that our

participants did not seem to perform as well as the participants of Luck and Vogel.

Averaging across feature conditions at array size six, their participants achieved ap-

proximately 82% accuracy, whereas our participants in Experiment 1 only achieved

73% accuracy. It could be that many of the participants used by Luck and Vogel

were at ceiling performance and that the pattern of results we observed only occurs

when most participants are not at ceiling performance. To investigate this possibil-

ity, we chose to examine high performers from our three most similar experiments:

Experiments 1, 2, and 4. These experiments were the same expect for the use of a

secondary verbal load task in Experiment 1 and a different set of stimulus colors in

Experiment 4. We collapsed across experiments in order to get a large enough sample

of high performers.

When we took the top quartile of our participants (N = 12 from a set of 48

participants), average accuracy at array size six was 79%. As can be seen in Figure

5.1 (left panel), the basic pattern of results that we observed in our general population

was still present in the data of our high performers. An effect of attended feature
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Figure 5.1: Plots of accuracy for the top performing participants in Experiments 1, 2,
and 4. Data from the top quartile of participants is presented in the left panel. Data
from the top four participants, whose average accuracy is matched to the accuracy of
the participants of Luck and Vogel (1997), is presented in the right panel. Error bars
are standard error.

on accuracy was found in the high performers, F (4, 44) = 38.37, MSE = 0.0055,

p < .001, η2p = .78. Given the effect size, this effect appears to be even stronger

in the high performers than in the general population, although this interpretation

must be tempered by the fact that these data are from three different experiments

with somewhat different methods. A Newman-Keuls post hoc found that only the

length and multi-feature conditions did not differ from one another, much like in the

general population. In order to get a set of participants who had an average accuracy

of 82% at array size six, we selected only the top four participants from Experiments

1, 2, and 4. Although this sample is too small to meaningfully analyze with ANOVA,

the data are plotted in Figure 5.1 for reference. Although this sample of participants

is very small, the same basic pattern of results that we have observed elsewhere is
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beginning to appear. It appears that although the participants of Luck and Vogel

(1997) performed significantly better than our participants, this difference is not the

reason that we were unable to replicate their results.

5.1.2 Potential chunking confound

It seems likely that participants were able to engage in a significant amount of chunk-

ing in our experiments due to the type of objects we used. In our four-feature ex-

periments, features could take on only one of two values, meaning that feature value

repetitions in multiple adjacent objects could lead participants to encode those fea-

tures as a chunk that may exist separately from the underlying objects. That is to say,

that a region of the array may take on a value for a specific feature and any objects

in the region are considered to have the same value. Since there were only two values

available for each feature, it was fairly common that there were easily chunked sec-

tions of the array. Perhaps the most clear evidence for this chunking is in Experiment

3 where the color and gap features seemed to suffer very little performance decrement

as array size increased. In fact, in a number of the four-feature experiments accuracy

for color only decreased slightly as array size increased. The major difference between

Experiment 3 and the other experiments was that participants were given 500 ms to

encode the sample array in Experiment 3 versus 100 ms in the other experiments. It

is possible that participants were better able to chunk in Experiment 3 than in the

other experiments because they had more time to actively form chunks while viewing

the sample array.

If chunking is an active process that requires attention and participants were

relying heavily on chunking, our finding that the multi-feature condition was more
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difficult than most single-feature conditions could be an artifact of the stimuli we used.

To explain: In the multi-feature condition, in order to chunk well enough to ”keep

up” with the single-feature conditions, participants would have had to form chunks

which contained information about all four features. They might have had to create

separate chunks for each feature dimension, which except in unusual circumstances

would be located in different spatial regions. This task is clearly much more difficult

than creating chunks for only one feature dimension at once. Alternately, participants

might have been able to create a chunk from objects which shared the same value

for most or all feature dimensions, allowing them to effectively store information

about all feature dimensions in a single chunk. That nearby objects would share

most or all feature values is, however, quite unlikely compared to the probability

that nearby objects would share a feature value for just a single feature dimension,

making chunking objects that shared multiple features a strategy that would only be

effective on a small number of trials. It seems plausible that if participants were using

an attention-demanding chunking strategy, they would be limited in their ability to

form chunks in the multi-feature condition relative to the single-feature conditions

due to the added attentional demands of attempting to chunk in multiple feature

dimensions at once. Given this, the differences we found between the single- and

multi-feature conditions may be due to difficulty creating chunks in the multi-feature

condition, and not directly due to difficulties storing multi-feature objects. This issue

could be addressed by an experiment in which feature values are not allowed to repeat

in a given array, preventing identical features from being placed in chunks.

One piece of evidence that suggests that chunking may not be the only expla-

nation for our results comes from Experiments 7 and 8. In those experiments, each
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feature dimension was allowed to take on any of four values, which should reduce

the ability of participants to chunk objects together relative to the four feature ex-

periments. In spite of reduced chunking potential, we still found an effect of feature

load, suggesting that chunking may not be entirely driving the effect. That said, a

specific manipulation to control for chunking would still be required to rule out that

explanation for our results.

5.1.3 Final conclusions

Although more experiments are required to account for some potential confounds,

our results so far are still evidence that storage in visual WM is limited in part

by the number of features of stored objects, not just the number of objects. We

have consistently observed a pattern of results that does not support the belief that

the number of objects which can be stored in visual WM is the sole determinant of

accuracy. Neither have we found evidence that feature load is the sole determinant

of performance in our data. We believe that claiming either that objects or that

features are the single facet of WM that mediates visual WM performance in all

cases is unreasonable in light of these data. We suggest that rather than attempting to

specify the most important individual factor which mediates visual WM performance,

we would be better served by improving our understanding of the contributions of all

of the factors which meaningfully impact visual WM performance.
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