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ABSTRACT 

This thesis investigates perception and human-robot interaction methods for a robot 

designed to perform a fetch task. Natural spatial language is studied to direct a mobile 

robot to navigate in an indoor environment, detect objects, and use them as reference 

landmarks in finding a target object. The perception focus is on Kinect-based furniture 

recognition which allows the robot to use furniture items as landmarks in the spatial 

language description. A two-step process is proposed to recognize furniture objects. 

Furniture samples are first classified using geometric features by a linguistic model; the 

second step uses color and texture for further discrimination into specific furniture items 

by a probability graphical model (PGM); both extrinsic and intrinsic confidence values 

are computed. Orientation is also captured to support intrinsic reference frames of 

furniture such as chairs and couches. A robot behavior model is proposed to improve 

recognition by changing the viewing perspective when the recognition confidence is low. 

Eight furniture items are used in experiments to test algorithms for furniture recognition, 

orientation detection and robot behavior. Human-robot interaction is further investigated 

through the translation of a processed fetch description into robot commands that execute 

the fetch task and use the furniture recognition when specified in the description. The 

approach utilizes natural language processing methods designed to tag and chunk raw 

descriptions (developed elsewhere). The processed spatial description is then used for 

translation into robot commands. A simulation experiment is presented to evaluate the 

method. The results show good performance of the perception and human-robot 

interaction algorithms.  
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Chapter 1 Introduction 

1.1 Motivation 

The methods presented in this thesis are used to investigate human-robot interaction 

using spatial language. The task context is the robot fetch task for an elderly user in a 

home-like setting. Thus, to support this task, a robot needs to have the capability of 

perception and natural interaction with a human user in an unstructured environment.  

For perceptual capabilities, the robot needs to detect and recognize furniture pieces in 

an indoor environment. It also needs the capability of detecting the position and the 

orientation of a furniture item so that it can use the furniture items it has detected as 

reference landmarks when interacting with the user via spatial language. In this thesis, a 

fast and robust object recognition algorithm is proposed, specially designed for a robot to 

recognize indoor furniture items. 

To interact with an elderly user, the robot should understand the spatial language 

description of a target object, given by the user. Natural language processing (NLP) 

methods developed elsewhere are used to tag and chunk the raw spatial descriptions. In 

this thesis, an approach is proposed to translate the processed (tagged and chunked) 

description into robot commands for executing the fetch task.  

1.2 Primary Goal 

The principle objectives of perception in this research include the following: 

1) Planning a general scheme for a robot to extract furniture samples from the 

background scene. 

2) Selecting proper features and classifiers to recognize furniture items. 
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3) Estimating the position and orientation of furniture items. 

4) Developing and testing a method to detect them. 

5) Developing and testing methods for robot behavior which allows the robot to 

improve furniture recognition performance by changing its position. 

The principle objectives of human-robot interaction in this research include the 

following: 

1) Building a NLP model to spatial language in an inroom environment. 

2) Building a robot behavior model for an inroom robot object fetching task which is 

a practical problem in elder care. 

1.3 Thesis Organization 

Chapter 2 is a review of related work on thesis topics. The perceptual part includes 

some early robotics navigation solutions based on vision. Then a general literature review 

covers the subject of object recognition, which includes achievements using images and 

3D data. Recent findings are also presented using RGB-Depth camera images to 

recognize objects. In addition, classifiers typically used for these problems are discussed. 

The human-robot interaction part includes work by colleagues of the thesis author in 

language tagging and chunking, which are utilized in the proposed methods. It also 

includes a discussion of recent work on spatial language and robot logic language for 

robot command representation. 

Chapter 3 introduces the hardware and software used in this research and shows how 

they were used to work together. 

Chapter 4 presents three objectives in perception. One is the development of an 

algorithm for furniture model building and classification. The second objective is the 
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definition and detection of the pose, especially as it pertains to the orientation of a 

furniture item. The third objective focuses on developing the behavior needed to 

reposition the robot to improve its furniture detection capabilities. 

Chapter 5 proposes an algorithm to convert (tagged and chunked) human spatial 

language commands to robot navigation instructions and then robot control factors for a 

robot fetch task. It builds a bridge between natural spatial language command and robot 

control. 

Chapter 6 shows the process and raw results of three perception experiments 

corresponding to the three objectives in chapter 4 and a robot simulation experiment 

which tested spatial language interpretation in chapter 5. 

Chapter 7 discusses what factors affected the results and explains unexpected results.  

Chapter 8 is the conclusion and perspective. 
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Chapter 2 Literature Review 

This chapter reviews object recognition and vision navigation. It includes information 

from articles that discuss both appearance and depth information. The first section 

focuses on some early work on object detection in the robotics field. The second section 

focuses on appearance of objects which are always RGB or gray images. Both global and 

local approaches will be introduced in this part. The third section includes information on 

using three-dimensional data for object recognition. This last section introduces recent 

work on using data from Kinect for object detection and recognition, and ends with a 

discussion of classifiers used in object recognition. Section 2.6 discusses some previous 

work of robot spatial language understanding. 

2.1 Early Works on Vision-Based Navigation in Robotics  

Intelligent robots are required to have the capability of object recognition so that they 

can react quickly to the surrounding environment with appropriate behavior [5].  

The object recognition task is realized by an optical camera. It is agreed that a camera 

is a vital sensor for a robot when it interacts with the outer world. The main function of 

such a perception module is to process the raw image and extract useful information. For 

robotics, object recognition not only means to determine the class of an object sample but 

also to use it for navigation. Prior research introduces complicated and robust recognition 

approaches based on pattern recognition, which enabled the robot to recognize some pre-

modeled objects for localization and manipulation [3].  

Usually the object recognition approach for a robot system designed for a specific 

purpose is not open, which means that the objects that need to be learned for recognition 
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are limited, and there are no other kinds of objects in the environment. A robotics task 

which has such a property is robot soccer. 

Robotics soccer is a competition that uses a robot hardware platform and artificial 

intelligence software to play soccer games [3]. It is a good platform to test the technology 

of artificial intelligence and robotics. Because of the limitation of technology at that time, 

the soccer playing field and rules are much simpler than the rules pertaining to human 

soccer. Moreover, the standard of illumination, field size and the color and texture of the 

markers is strictly prescribed. A typical robot soccer match is shown in the following 

figure. The early work for robot soccer navigation was based on color. 

 

Figure 1 Robot Soccer 

The most important stages and approaches of vision-based perception for robot soccer 

are introduced here. From Figure 1, it can be seen that the elements in a game, which 

included robots and a field, had obvious color markers designed for recognition. 

Therefore, analyzing color information from a raw image has become a popular design 

method utilized by many robotics competition teams. Without losing generality, a 

perception approach has two steps [3]: 
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1) Low-level vision, which takes as input, a raw image and outputs a set of region 

candidates. These candidates always list color blobs with information on each 

color, area and position on the raw image. 

2) High-level vision, which uses the regions to determine the 3D relative position of 

available objects. 

Despite their differences, many of the proposed techniques can be viewed 

conceptually in terms of these two stages of processing. 

In the low-level stage, a preprocessing of the image is performed, where image pixels 

are analyzed in order to extract useful information. This is generally the most 

computationally expensive task, and at each stage, the amount of information to be 

processed further is reduced. The first important step is color segmentation, which uses a 

color table to map pixels from raw image values to a class of symbolic colors 

considerably reducing the amount of information per pixel from 256 to the limited 

number of colors. The early robot developers always used manual calibration which was 

a time consuming task and prone to errors. Since lighting is always different on each 

testing field (even at different times of the day in the same place), robot competitions 

always establish illumination requirements in their rules [4][7]. Such rules led to teams 

developing automated vision calibration routines.  

On the other hand, the high-level vision module performs a top-down image analysis, 

using features provided by low-level vision. The main objective is to find objects of 

interest and estimate their properties. In this stage contextual information and 

expectations of objects that might be in the image can be used. Usually starting from a 

list of region candidates of the appropriate color, binary rules are applied to discard false 
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perception. Physical features such as size and shape are used to quickly filter wrong 

candidates. Subsequently deeper analyses are performed [6].  

Note that this review and further analysis is only restricted to regular cameras (e.g., 

single cameras or stereo cameras). For omnidirectional cameras or other kinds of sensor-

based technology, the algorithm will be different. 

2.2 Object Recognition by Image Data 

Object recognition based on images is also of great interest to researchers outside the 

robotics field. In recent years, several novel methods for object recognition based on 

image data have been developed bringing significant changes to this field. Object 

recognition utilizes both global and local approaches [1].  

2.2.1 Global Approach 

The global approach uses global features which use information of the whole image 

as the sample; this means that all the pixels are regarded [1]. The main idea is to convert 

an image to a vector feature. The method for generating features includes not only simple 

statistical measures (e.g., mean values or histograms of features) but also more 

sophisticated dimension reduction techniques, i.e., subspace methods, such as principle 

component analysis (PCA) [12], independent component analysis (ICA) [13], or non-

negative matrix factorization (NMF) [14]. 

Principal component analysis (PCA) is a mathematical procedure that uses an 

orthogonal transformation to convert a set of possibly correlated variables into a set of 

linearly uncorrelated variables called principal components [12]. The number of principal 

components is less than or equal to the number of original variables. In the conversion 

results, the first principal component has the largest possible variance. PCA is widely 
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used in image classification because it can convert a sample image to a vector which has 

a much smaller size thereby reducing computational complexity and saving time. The 

object of interest may then be easier to recognize. 

Independent component analysis (ICA) [13] is a computational method for separating 

a multivariate input into additive subcomponents supposing the mutual statistical 

independence of the non-Gaussian source inputs. It is a special case of blind source 

separation. ICA can also convert natural image data to smaller size features, which 

reduces the computation in object recognition [1]. 

Global approaches are often used in areas where the image or patch of interest can be 

easily obtained as in character recognition and face recognition. Character recognition 

includes optical character recognition (OCR) and intelligent character recognition (ICR). 

OCR and ICR convert the image that contains text information to an ASCII code that can 

be stored in the computer [8]. OCR appears early in the character recognition literature 

and can recognize only machine print. By using a pattern-matching algorithm, OCR 

translates the shapes and patterns of machine-made characters into corresponding 

computer codes. Though most advanced systems are able to recognize multiple fonts, 

they can process only standard fonts such as Times New Roman and Arial. Once all 

characters in a given word are recognized, the word is compared against a vocabulary of 

potential answers for the final result [9]. ICR was proposed later with the development of 

pattern recognition. Compared with OCR, ICR converts more scrawled handwriting 

characters to their machine print (ASCII) equivalents [9]. The ability to recognize 

handwriting significantly broadens the range of applications that benefit from automated 

http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Blind_source_separation
http://en.wikipedia.org/wiki/Blind_source_separation
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ICR solutions, saving time and increasing accuracy to levels not attainable by OCR or 

human intervention. 

Face recognition is another example of a global approach for recognition [10]. 

Kohonen’s face recognition system [11] demonstrates that a simple neural net can 

perform face recognition for aligned and normalized face images. The type of network he 

employed computed a face description by approximating the eigenvectors of the face 

image's autocorrelation matrix; these eigenvectors are now known as Eigenfaces. 

Kohonen's system was not a practical success, however, because of the need for precise 

alignment and normalization. In following years many researchers tried face recognition 

schemes based on edges, inter-feature distances, and other neural net approaches. While 

several were successful on small databases of aligned images, none successfully 

addressed the more realistic problem of larger databases where the location and scale of 

the face is unknown. 

2.2.2 Local Approach 

Local Approaches do not use information from the whole image but extract 

interesting regions from the samples and generate features from those [1]. Ideally, the 

features are invariant to image scaling, translation, and rotation, and at least partially 

invariant to illumination changes. Local approaches usually work on finding interesting 

regions in the image, and they are of great importance in detecting these kinds of regions 

and finding ways to represent them and use their information for recognition [1]. Figure 2 

shows how two images were matched by using local features. 

http://www.parascript.com/company2/ocr.cfm
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Figure 2 Local Approach Recognition Appliance –Recognizing the Target Book from an 

Image 

An ideal interesting region detector provides additionally both shape (scale) and 

orientation of it. There are currently three kinds of popular detectors [1]: (1) corner based 

detectors; (2) region base detectors, (3) other approaches. Corner based detectors define 

an interest point or regions with a lot of image structure (e.g., edges), but they are not 

suited for uniform and smooth transitions regions [1]. Region based detectors regard local 

blobs of uniform brightness as salient regions. Therefore they are more suited for the 

letter [1]. Other approaches for example entropy based salient regions detection try to 

imitate the human's way of visual attention [1]. The following table lists the popular 

detectors with their properties. 
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Table 1 Common Properties of Detectors of the regions of interest [1] 

Detector 
Assigned 

Category 
Invariance Runtime 

Repeat 

Ability 

Number of 

Detections 

Harris Corner None Very Short High High 

Hessian Region None Very Short High High 

Harris-Lap Corner Scale Medium High Medium 

Hessian-Lap Region Scale Medium High Medium 

DoG Region Scale Short High Medium 

Harris-Affine Corner Affine Medium High Medium 

Hessian-

Affine 
Region Affine Medium High Medium 

MSER Region Projective Short High Low 

EBSR Other Scale Very long Low Low 

EBR Corner Affine Very long Medium Medium 

IBR Region Projective Long Medium Low 

 

In Roth and Winter’s work [1], a feature descriptor has an invariance property in 

affine distortions, scale and rotation change, illumination change or compression artifacts. 

Its quality strongly depends on the power of the region detectors. For an instance, a very 

simple descriptor can be a pixel intensity vector in an interesting region which uses cross-

correlation to compute similarity. A detector should detect descriptors accurately in 

location and shape, or it will lead to changing of the appearance of the descriptor. 

Therefore, robustness is also an important property of efficient region descriptors. 

 

 

 

 

 

 

 

Table 2 Common Properties of Descriptors of the Region of Interest [1] 
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Descriptor 
Assigned 

Category 

Rotational 

Invariance 
Dimensionality Performance 

SIFT Distrib. No High Good 

PCA-SIFT Distrib. No Low Good 

GLOH Distrib. No High Good 

Spin images Distrib. Yes Medium Medium 

Shape Distrib. No Medium Good 

LBP Distrib. No Very High - 

Differential Inv. Filter Yes Low Bad 

Steerable Filters Filter Yes Low Medium 

Complex Filters Filter Yes Low Bad 

Cross 

Correlation 
Other No Very High Medium 

Color  

Moments 
Other Yes Low - 

Intensity 

Moments 
Other Yes Low - 

Gradient 

Moments 
Other Yes Low Medium 

 

The Local Approach uses the bag of words method [15] on matching for recognition 

and classification. The bag-of-words model was originally used in natural language 

processing (NLP) where the features were words. However, this model has been 

expanded to other topics like image processing. In image processing, the regions of 

interest are considered as "words" in a bag-of-word model.  

2.3 Object Recognition by Three-Dimensional Point Data 

Data that can be used for object recognition is not restricted to images. The stereo 

camera can collect depth information from an object sample—a practice which has been 

widely used in robotics. There are also other kinds of sensors, such as the laser scanner, 

which can get an accurate point cloud of an object sample. There are several existing 

techniques for feature extraction. 

These methods represent and classify objects by different approaches. Depending on 

the type of model, there are two approaches to 3D point cloud recognition. 
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One of the models uses a mesh-based feature extraction [16], which uses the mesh 

data to represent the sample’s geometry information. Diverse algorithms have been 

developed to build such a model. Mesh data are generated from the depth information of 

the sample. Then geometry features like corners or edges are extracted from the mesh 

data, after which recognition can be run based on those features. 

The other kind of feature is a point-based feature. Similar to the mesh approach, 

geometry feature extraction can be done using point-based models. Point feature 

histograms (PFH) and fast point feature histograms (FPFH) [17] are another approach 

which uses the region of interest rather than geometry features. As point feature 

representations go, surface normal and curvature estimates are somewhat basic in their 

representations of the geometry around a specific point. Though extremely fast and easy 

to compute, they cannot capture too much detail, as they approximate the geometry of a 

point’s k-neighborhood with only a few values. As a direct consequence, most scenes 

will contain many points with the same or very similar feature values, thus reducing their 

informative characteristics. PFH and FPFH are suitable to detect free-form shape objects 

and have high quality robustness. 

2.4 Object Recognition by Using RGB-Depth Image 

The research on object recognition using RGB-Depth image has generated a lot of 

interest in recent years, especially after Microsoft Kinect developed it for a daily life 

entertainment tool. Kinect is firstly used as a body sensor which can detect the human 

form and recognize a gesture so that people can use it to give commands to their 

entertainment devices. Microsoft and other research group have developed a series of 
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algorithms on human detection and action classification [32]. It has been widely used in 

Xbox games and other human detection fields. 

Even Kinect, first designed for human detection, is also used as a recognition tool in 

other fields. A team from the University of Washington investigated a method for object 

recognition by using a Kinect sensor [18]. Their research focus was on how to select 

good features from depth frames. Motivated by local descriptors on images, in particular 

kernel descriptors, they developed a set of kernel features on depth images that model 

size, 3D shape, and depth edges in a single framework. The features used in their 

experiments include Size Kernel DES, Kernel PCA, Spin KDES, Gradient KDES and 

LBP-KDES. They used pyramid efficient match kernels as the classifier on their 

experiment. The experiments also tested the performance of different features. The 

classifiers used in the experiment are Linear SVM, kernel SVM, RF and their own 

classifier as reported in their results [18]. In their experiment they used a discriminate 

model for all the tests. No model for the objects was built. The dataset they used in the 

experiment are small-size daily use objects. In their experiment, there is no large scale 

object used; thus, it is not clear how this approach would perform on detecting large scale 

objects such as furniture. 

2.5 Some Classifiers used in Object Recognition 

When the feature set is determined, the next step for object recognition is 

classification. There are various classifiers that can be used in this step. Each of the 

classifiers has different property.  
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Naïve Bayes Classifier 

 The Bayes Network (BN) Classifier is based on a probability graphical model (PGM). 

It can derive a classification decision based on the given observation and BN structure. A 

naive Bayes classifier assumes that there is no relation between the features in a sample 

which means they are independent distributions [19]. The class that labels a sample is 

based on the probability it belongs to the class. Depending on the precise nature of the 

probability model, a naive Bayes classifier can be trained very efficiently by a supervised 

learning process. Even though it is not a new theory, Naïve Bayes classifier is still widely 

used in object recognition. 

Decision Tree 

A decision tree is used as a visualization and analytical decision making tool, where 

the expected values of competing alternatives are calculated. Decision tree learning, 

which uses a decision tree as a predictive model can map observations about an item to 

conclusions about the item's target value [20]. The advantage of using a decision tree is: 

(1) it is simple to understand and interpret; (2) it is a white box model which is easy to 

explain the result. The limitations are: (1) decision tree learners can create over-complex 

trees that do not generalize the data well. (2) There are concepts that are hard to learn 

because decision trees do not express them easily, such as XOR, parity or multiplexer 

problems. 

Support Vector Machine 

Support vector machines (SVMs, also known as support vector networks) are 

supervised learning models with associated learning algorithms that analyze data and 

recognize patterns used for classification and regression analysis [21]. A basic SVM 
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process takes a set of input data and predicts for each given input which of two possible 

classes forms the output making it a non-probabilistic binary linear classifier. Given a set 

of training examples, each marked as belonging to one of two categories, an SVM 

training algorithm builds a model that assigns new examples into one category or the 

other. An SVM model is a representation of the examples as points in space, mapped so 

that the examples of the separate categories are divided by a clear gap that is as wide as 

possible. New examples are then mapped into that same space and predicted to belong to 

a category based on which side of the gap they fall on. 

K-Nearest Neighbor 

The k-nearest neighbor algorithm (k-NN) is a method for classifying objects based on 

closest training examples in the feature space [22]. K-NN is a type of instance-based 

learning or lazy learning where the function is only approximated locally and all 

computation is deferred until classification. The k-nearest neighbor algorithm is amongst 

the simplest of all machine learning algorithms: An object is classified by a majority vote 

of its neighbors, with the object being assigned to the class most common amongst its k 

nearest neighbors (k is a positive integer, typically small). 

Probabilistic Boosting-Tree 

Boosting is a machine learning meta-algorithm for performing supervised learning. 

The Probabilistic Boosting-Tree is based on the question posed by Kearns [23] , i.e., can 

a set of weak learners create a single strong learner? A weak learner is defined to be a 

classifier which is only slightly correlated with the true classification (it can label 

examples better than random guessing). In contrast, a strong learner is a classifier that is 

arbitrarily well-correlated with the true classification. 
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2.6 Review on Robot understanding Spatial Language 

Robot understanding of spatial language has been explored previously. Much of the 

work has focused on 2D navigation. For example, Gribble et al [24] proposed using the 

Spatial Semantic Hierarchy (SSH) [25] to represent and reason about space, using 

commands such as “go there” and “turn right”. The SSH can abstract an agent's spatial 

knowledge structure in a relatively independent way of the environment. 

The work by Skubic et al [26] investigated the use of spatial relationships to establish 

a natural communication mechanism between people and robots especially for non-

professional robot users. In their work they used the grid map to store and represent the 

surrounding environment of the robot and presented some algorithms to extract spatial 

information from the map and generate spatial language descriptions by using the 

histograms of forces [53]. Their experiments include the cases using a human, robot and 

objects as the reference. The result shows the possibility of robot interaction with human 

users by spatial language commands. There is a body of work on understanding 2D route 

instructions for guiding an agent or robot through an environment [27][28][29]. Tellex et 

al. also consider manipulative commands that move beyond the 2D ground plane, e.g., 

“put the pallet on the truck” [30]. In [30] Tellex and Kollar propose a model named 

Generalized Grounding Graphics (G
3
) to take natural language commands as input and 

then output robot control commands. In their work, they build the structure of the 

grounding graphical model by using Spatial Description Clauses (SDCs) [27]. The model 

is trained on a command corpus and their corresponding grounding. They test the model 

in a forklift robot. The G
3
 model dynamically generates a probability graphical model for 
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a natural language command by its semantic structure rather than other previous work 

which uses the likelihood method to find the grounding of a command. 

This work has informed our project; however, much of it is focused on the more 

general natural language processing (NLP) problem and is limited in addressing the 

perceptual and cognitive challenges of our fetch task in a 3D environment.  
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Chapter 3 Research Platform 

3.1 Robot Design 

To fulfill the fetch task requirements, the thesis author and colleagues developed a 

mobile robot with the intelligence to navigate in an indoor environment and interact with 

a human. The robot is a differential drive robot with an RGB-Depth camera. The details 

of the robot components are listed below. A picture of the robot is shown in Figure 3. 

 

Figure 3 Mobile Robot Used in this Project 

1) Robot Base: A Pioneer 3-DX (P3DX) robot was used as the robot base 

component [31]. The P3DX robot debuted in the summer of 2003. The robot is a 

small lightweight two-wheeled, two-motor differential drive robot that is suitable 

for indoor laboratory research. The complete version of a P3DX robot includes a 

front sonar array and a rear sonar array, each with eight sensors, three lead acid 

storage batteries, optical wheel encoders, an ARCOS firmware microcontroller, 

and the Pioneer SDK mobile robotics software development package [31]. The 
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payload of the P3DX is 17Kg, which is enough to load a heavy upper structure for 

robotics research [31]. It has moving maximum speed of 1.2m/sec and 3 hours of 

power to sustain cruising from the battery. The P3DX also has I/O expansion 

capabilities that make it easy to connect with other controllers, sensors and even 

the actuators’ load. Even though the P3DX is not an advanced and costly product; 

it is still the most suitable for this robotics research. 

 

Figure 4 P3DX Robot Base 

2) Tower Frame: The tower frame is made of light aluminum and holds a Kinect 

camera, an IBM laptop and a robot arm which is to be added in the future. 

3) Kinect RGB-Depth Camera: The RGB-Depth camera is popular because it can 

provide high quality synchronized color and depth data [32]. The RGB camera 

can return a 640×480 three-channel image. The depth image is an IR image which 

has the same resolution as the RGB image but in gray scale (representing depth) 

with its value from 0 to 1023. Usually its effective detection range is from 0.5 

meter to 8 meter which means it is appropriate for indoor use. The color and depth 

data from a Kinect camera will be used as the robot perception tool for furniture 

recognition, furniture pose determination and furniture searching tasks which will 
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be discussed in the following chapters. The Kinect camera rests on the top of the 

robot and is usually tilted between -31 degree and 30 degree. 

 

Figure 5 Kinect Camera Structure 

4) SICK Laser Range Finder: The laser scanner on this robot is used for emergency 

obstacle avoidance so that it will not hit a person or other objects on the ground. 

An LMS200 laser range finder was used on this robot [33]. The laser range finder 

works in a mode to receive 180 laser signals within 1 degree intervals. This means 

that it can scan the front nearly 180 degrees without a dead zone. The laser range 

finder can have a standard 10% reflectivity for 30 m which is quiet enough for 

indoor detection. The minimum error for the laser distance is 1 mm. 

 

Figure 6 SICK Laser Range Finder 

5) Controller: The controller of the robot is an IBM laptop. It is used for running the 

robot’s software which also guides the robot to interact with humans. It connects 

with other components through USB ports. The furniture recognition program is 

run on this computer. 
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3.2 Robotics Operating System (ROS) 

The Robot Operating System (ROS) [34][35], which has been developed and 

maintained by Willow-Garage, is a software framework for the development of robotics 

systems. ROS provides libraries and tools to help software developers create robot 

applications. ROS is completely open source (BSD) and is free for anyone to use and 

change [34]. The software package contains hardware abstraction, device drivers, 

libraries, visualizers, message-passing, package management, and more. The image 

processing software that was used to realize the algorithm in this paper was written by 

using the Open Computer Vision Library (OpenCV), a package of ROS. 

There are currently four versions of ROS in use [35]. They are ROS Box Turtle 

published in March 2010, ROS C Turtle published in August 2010, ROS Diamondback 

published in March 2011 and ROS Electric published in August 2011. The latest version 

Ubuntu 11.10 is the only operation system that perfectly supports ROS; this has been 

installed in the robot controller. 

The work of this research is represented as several ROS packages and then deployed 

on the robotics platform. 
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Chapter 4 Methodology of Furniture Detection 

This chapter consists of three parts--furniture recognition, furniture orientation 

detection and robot repositioning for recognition improvement. They work together to 

build a complete process that can collect enough information from a furniture sample for 

robot path planning. This information includes the category and the instance of a 

furniture sample and the pose of it. This information can help the robot on human-

machine spatial language interaction by providing the class and the pose of reference 

objects. 

Section 4.1 introduces how to get furniture samples and recognize them in an RGB-

Depth image scene. Section 4.2 introduces the definition of pose to different kinds of 

furniture items and how to detect them. Section 4.3 discusses a robot behavior scheme 

designed to enable a robot to detect a furniture sample and improve recognition 

performance when its recognition confidence is low. 

4.1 Furniture Items Recognition 

Furniture items are considered good landmarks for indoor environment robot 

navigation [49][50][51]. With good recognition capability, a robot can localize itself 

relative to furniture landmarks in an environment with known furniture. For use in the 

fetch task in a home environment, the object recognition algorithm for a robot should 

have the following prerequisites: 

(1) There are only a few samples needed for training. 

(2) High recognition accuracy is needed. 

(3) The recognition time should not be too long. A real-time recognition processing 

time should be less than 0.1s. 
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(4) The recognition should be able to tolerate some occlusion. 

(5) For a strategy is needed for category recognition in the case that a specific 

instance has not been trained. 

In this thesis the recognition algorithm is original, specific to this study, and it takes 

full advantage of the Microsoft Kinect Camera which is used as the main sensor of the 

robot. Both RGB information and depth information which are returned by the camera 

are used in recognition decisions. To better describe a furniture sample, a model is built 

based on the shape features. The information from this model is combined with 

discriminant classification features to determine the instance of a furniture sample. 

In the human-robot interaction experiments, there are eight furniture pieces used in 

the indoor environment which need to be recognized, as shown in Figure 7.  

 

Figure 7 Furniture items used  

The recognition of furniture items has 4 steps:  

1) Sample Extraction. 

2) Main Plane Extraction. 

3) Feature Generation. 

4) Classification.  
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The result of the recognition can be either the category or the instance name of the 

furniture sample. 

4.1.1 Sample Extraction 

The first step is sample extraction which segments data in the RGB-Depth Image to 

retrieve a furniture sample. The RGB-Depth image is collected by an ROS package 

program. It allows the computer on the robot to communicate with the Kinect to input the 

RGB-Depth raw images. The frame received by the robot contains a three-channel 640 × 

480 RGB image and a synchronous 640 × 480 gray depth image. The pixel value of the 

depth image can be converted to represent its distance from the camera. By distance 

information and the depth camera parameter, a 3D point cloud can be obtained from the 

raw image. By using the method in [37], the RGB image and the 3D point cloud data can 

be fused into a RGB-point cloud frame, which is a 3D color-scale scene. The samples are 

extracted from this RGB-point cloud scenario. 

The procedure to obtain samples has 5 steps: 

1) Obtain a RGB-point cloud scene and transform it from camera coordinates to 

robot coordinates. The robot coordinate frame is illustrated in Figure 5. The 

transformation matrix is: 

   {

  

  

  

}  {
   
         
          

}  {

  

  

  

}  {
 
 
 

}   (1) 

- Pr and xr yr zr are the position of point in robot coordinate 

- xc yc zc are the point position in camera reference 

- θ is the tilt angle 

- H is the camera height. 
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Figure 8 Changing the Coordinate to Robot Reference 

2) Eliminate all the points where z-axis values are smaller than 0.1 m so that the 

points belonging to the ground are ignored leaving only the points that represents 

furniture items. (Figure 9) 

 

Figure 9 Generating the Sample Map 

3) Plot a 2D grid map by projecting all the points to X-Y coordinate. The range of 

the coordinates is:                        . The 2D grid map has a 

resolution of          . If a point in the point cloud falls into the range of a 

grid cell, the cell will be set as occupied. Unoccupied cells are labeled as 

background. Finally, complete step 3 by recording the index of the cell a point 

belongs to. (Figure 9 Right) 
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4) Find the connected components in the grid map image by using the method in [38] 

Label all the components with indices above zero (1, 2, 3…). The 

back          ls which do not contain any points are labeled 0. Choose the 

points that belong to the same component to be a sample. Figure 10 shows the 

extraction process. The gray blob in the left figure represents the target object 

project to a 2-D map and the right one is the 3-D point belongs to that area. 

 

Figure 10 Target Extraction 

5) Ignore the samples if the height of the highest point is larger than 2 meters or the 

component has fewer than 10 cells because it may be the part of a piece of wall or 

a piece of clutter on the ground. An example of an original image and the 

segmented sample is shown in the Figure 11.  

 

Figure 11 An example of a raw image (left) and the segmented sample (right) 
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4.1.2 Plane Extraction 

One feature that most furniture items have in common is that they have a relatively 

flat horizontal plane. For example, a chair has a fairly flat and level plane designed to 

comfortably fit its occupant and a dinner table has a flat and level plane designed to 

accommodate plates and glasses. Such a plane, which is designated as the “main plane” 

in this thesis, enables a furniture item to realize its designed function for daily use. The 

advantage of using a main plane to extract features is that even when small objects enter 

the main plane area, which may lead to a change in furniture shape, the plane can still be 

extracted and its shape can be used for classification. This improves the robustness of the 

classifier. The RANSAC method is used to extract the plane part from a furniture sample. 

RANSAC 

Random Sample Consensus (RANSAC) is an iterative method to estimate parameters 

of a mathematical model from a set of observed data, and it is capable of interpreting or 

smoothing data containing a significant percentage of gross errors [36]. Rather than using 

data to obtain an initial solution and then trying to eliminate the invalid data, RANSAC 

uses the initial data as little as possible and enlarges this set by testing the candidate 

points [36]. RANSAC is effective for model fitting, particularly when a significant 

percentage of data are outliers [36]. In a RANSAC algorithm, a minimal set is the 

smallest number of points required to uniquely define a given type of mathematical 

model (usually a geometric primitive). Then the resulting candidate shapes are tested 

against all points in the data to vote how many of the points are well approximated by the 

primitive (called the score of the shape). After a given number of trials, the shape which 

http://en.wikipedia.org/wiki/Iterative_method
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approximates the most points is extracted and the algorithm continues on the remaining 

data. 

The plane is another RGB-point cloud sample from which some features can be 

obtained. An obvious and common feature of a piece of furniture is that it has a large 

enough main plane to realize its designed function. For example, a bed should have a 

plane that allows people to lie down on it, a chair should have a plane that allows people 

to sit on it, and a desk should have a plane that allows people to use it as a level work 

surface. Therefore, by extracting the main plane and analyzing its property, different 

furniture items can be classified. 

 

Figure 12 A Main Plane Extracted from a Chair 

The procedure of using RANSAC to extract the main plane is shown in the following 

flow chart. 
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Start with a point 
set having N points

Randomly select 3 
points to build up 

the plane A

If the angle 
plane A to the 

horizontal plane 
is less than 3 

degree

No

Test the distance to 
plane A of a points 
in the point set. If 

the distance < 3cm, 
counter = 

counter+1. Add the 
points to plane A.

If counter > 0.2N

No

Set a counter = 0

Yes

Output the point set 
of plane A 

Yes

End

 

Figure 13 RANSAC Plane Extraction Procedure 

The points of plane A is the result of main plane extraction. After the main plane is 

extracted, an image of the main plane that eliminates any other point not belonging to the 

plane is extracted from the RGB-depth scenario image. The pixels that do not belong to 

the plane are then set to be zero for all three channels. Figure 14 shows the result of plane 
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extraction for a table. Both the vertical planes and small object clutter on top are 

subtracted. 

 

Figure 14 Plane Extracted from Cluttered Furniture 

4.1.3 Features 

A feature is an individual measurable heuristic property of a phenomenon being 

observed. Choosing discriminating and independent features is the key to any pattern 

recognition algorithm being successful in classification. In this thesis, a linguistic model 

was built to find the category of a furniture sample, and a probability graphical model 

(PGM) was built to determine the furniture sample’s instance class. To take full 

advantage of the RGB-Depth information from the Microsoft Kinect, features were 

generated from both appearance and geometry information. The following features were 

used for classification. 

Size 

The size feature equals the number of cells in a 2D grid map. The map is the 2D 

projection of the furniture sample to the ground. Size is a geometry property of a piece of 

furniture which is typically different for different kinds of furniture. The size of a bed is 

larger than a chair or a small table. However, the size differs when the orientation of a 

furniture item with respect to the robot camera changes. Thus, the sample feature’s size 

http://en.wikipedia.org/wiki/Classification_(machine_learning)
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based on camera orientation may be smaller than its actual size but cannot exceed its 

actual size.  

Main Plane Height 

The Plane height is represented by the mean of the highest and lowest height of a 

point in the plane point cloud. The main plane height is a good feature because each type 

of furniture often has a different height which rarely changes even when the furniture 

item is viewed from different angles. Height is a robust feature when defining and sorting 

furniture samples. For example, a dinner table is always much higher than the main plane 

of a chair so that these two types of furniture items can be easily separated by height. 

Furniture Shape 

The furniture items used in the experiment have two kinds of shape--table and chair 

shape. The value of this feature ranges from 0 to 1. The generation of this feature is 

shown below: 

1) Ignore all the RGB information of the furniture sample and the points where 

height is lower than the highest point of the main plane. 

2) Find the maximum distance for each angle (360 in total) of the furniture sample 

point cloud to the centroid of the furniture item. 

3) Compute the membership angle as part of the chair back by using Equation (2 

      ∑     
    

   
    

      (2) 

4) Find the proportion of the angles that belongs to the chair side to confirm that the 

sample belongs to a chair. The membership is shown by Equation 3.  

  
     

   
     (3) 
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 M is the membership value of a furniture sample, which in this case 

belongs to the chair shaped furniture items. The larger the value M is, the 

more likelihood a sample belongs to chair. 

Main Plane Texture 

Roughness rate is used to help describe the texture type of the main plane. Each of 

texture has a different roughness rate which can be used as a feature. For example, a 

mono-color surface has a very low roughness while a strip or grid texture has a high 

roughness. The feature is a one-dimensional value that ranges from 0 to 1determined by 

the following steps:  

1) Find the roughness rate. Use the image that contains the plane points only. 

Compute the rough rate of the plane by Equation 4-6: 

 (     )      (     )    (4) 

         {
      (        )      

      
 (5) 

  
∑   

 
   

 
      (6) 

 N is the number of the points of the plane. 

 P is the RGB vector of a pixel. 

 R is the roughness rate wanted. 

2) Find the texture type by using histograms. Define            which 

represent the histograms of eight directions from 0 to 315.    
∑    

 
   

 
 in which 

    means the jth point with the ith direction magnitude, and N is the number of 

points. If      , the ith direction can be seen as it has a gradient which means 

the color in this direction has an obvious change; then: 
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   (7) 

 P is the value that represents the texture style.  

 The higher the P, the more the texture tends to become like a grid as it 

takes on a striped appearance. 

RGB-Intensity of the Main Plane  

The RGB-Intensity feature is a three-dimensional vector which is used to make the 

final decision when the furniture type is determined. This feature has normalized 

proportions of the red, green and blue color components of the plane image. The 

computation to generate this feature vector F from the plane image is, 

            (8) 

  
∑    
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  (11) 

 N is the number of all the pixels belonging to the furniture sample.  

 The r, g, and b represent the red, green and blue values of the ith pixel of 

the sample value. 

 R and G are the Red and Green component of the plane image. 

  I is the intensity (grayscale of the plane image) 

The features extracted from a sample reflect the properties of color, texture and 

geometry. 

4.1.4 Furniture Model and Classifier Design 

The classifier in this thesis has a hierarchical structure. The first layer is a fuzzy logic 

classifier which determines the category of a furniture sample [42][43]. The second layer 
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is a discriminant classifier which finds the instance name after the category is determined. 

The first part discusses how to use fuzzy logic rules which are generated by a series of 

training steps to determine the type of furniture. These types are not simply the labels of 

similar furniture items but can also describe some properties of the furniture samples. 

After the type is determined, a probability graphical model is used to classify a furniture 

sample in a pre-trained scale set by using the RGB-Intensity feature and texture feature. 

Category Classification by Fuzzy Logic 

Category Classification uses a linguistic model for furniture classification with 

features from depth information, which are size, main plane height and furniture shape as 

described in Section 4.1.3. The classifier is built on a fuzzy logic machine with three 

linguistic variables and their corresponding membership functions. The three linguistic 

variables and the corresponding values are defined by their depth features. These are size, 

plane height and furniture shape. To find the values and membership functions of the 

linguistic variables, the K-means clustering [54] method is used on each feature data set. 

By finding centroids of clusters for each feature, it can be concluded that different 

furniture categories have a different tendency for each of their feature values. From the 

training, each linguistic variable has two to three membership functions of different 

values that define particular ranges to describe the properties of a type. After running the 

training, the data of all the furniture items are put together to find the clustering tendency 

of the whole set. Through training, all the furniture samples can be grouped into five 

categories, which are chair, small table, large table, couch and bed. The same category 

furniture items may vary in appearance but share the same geometry feature. 
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After training, the structure of the linguistic variables and their membership functions 

are shown in Figure 15: 

 

Figure 15 Linguistic Variables 

The membership that a sample belongs to a category is defined by  

          
            

                       
    (12) 

           
 is the membership value of the i category.  

       
,               

 and        
 are the corresponding membership values of 

the linguistic word in the rule that defines i category.  

It uses a winner-take-all rule to determine the category decision result. The category 

with the highest membership can be selected as the result. 

Furniture Instance Classification 

For the samples used in this thesis, if there is more than one furniture item included in 

a category, the instance name of the sample will be found by using the RGB-Intensity and 

texture features.  

For each category, a PGM is designed to discriminate each instance in each category 

set by using the RGB and texture features. Then, the instance name is determined. The 

small table and chair categories have more than one instance and their PGM for instance 

recognition is shown in Figure 16 and Figure 17. 
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Figure 16 PGM of Small Table 

 

Figure 17 PGM of Chair 

The two features use different models to compute their conditional probability. The 

RGB-Intensity features use a K-nearest-neighbor model (K-NN) [22] and the texture 

feature to uses a Gaussian model.  

In both the small table and chair categories K-NN model, the K parameter is chosen 

to be five which is considered to be optimal from several trials. The probability that a 

sample belongs to an instance by K-NN is:  
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       (13) 

- n is the number of ith training instances that are the five closest samples to the 

testing sample.  

The Gaussian model to compute the conditional probability of roughness in instances 

is:  

         |           
 

√    
 
 

 

 
(
    
  

)
   (  ) 

- r is the roughness value of the testing sample 

- ui is the mean of the ith instance roughness training data and σi is the deviation 

of the ith instance roughness training data. 

The probability a sample belongs to an instance by Bayes discriminant principle is: 

                    |                    |           (15) 

The result of N instances in a category is determined by Equation 16   

       (16: 

                  (                    )    (                  

  )           (16) 

Confidence of Recognition 

The confidence value measures the reliability of the recognition result. Usually, the 

confidence value of a recognition algorithm is related to the strength of a feature set in 

supporting a class. In this thesis, two factors are considered in determining the confidence. 

One is the intrinsic factor, and the other is the extrinsic factor. 

The intrinsic factor is a number ranging from 0 to 1, which is the combination of the 

membership values of linguistic variables and confidence due to the RGB and texture 

features. It is defined as  
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             (17) 

 M is the membership that the furniture sample belongs to its category by 

Equation 12. 

 F is the confidence from the instance recognition based on its corresponding 

RGB and texture features. 

The extrinsic factor is generated from three aspects, which are distance, direction and 

completeness, which means that the extrinsic confidence value is based on the relative 

position between the furniture sample and the robot. Unlike other static recognition cases, 

a robot can move to change its position which may result in improved recognition 

confidence. Defining the proper relationship between relative position and confidence 

can help to guide the robot to a better position so that it can get a more reliable 

recognition result.  

Equation 18-20 shows the method used to compute the extrinsic confidence 

parameters: 

              |     |    (18) 

               
|     |

  
    (19) 

                {
                                                

           
 (20) 

So that: 

                                                              (21) 

The extrinsic confidence of the recognition is defined as the Equation 21. 

4.2 The Detection of the Pose of Furniture Items 

The pose of a furniture item consists of 2 parts. One is furniture position, and the 

other is furniture orientation. 
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4.2.1 Position of Furniture Items 

Empirically, to simplify the definition of an object position, it is typically computed 

as the geometry centroid of its projection on the ground. However, because the size of the 

furniture is relatively large, the pose relationship between parts of the furniture items may 

not be same, which means their relative position cannot be defined by a single direction. 

Hence, a furniture samples cannot be considered as a mass point. In this thesis, the 

position of a sample is represented by its corresponding connected region in the grid map. 

The distance between two objects (including the robot) is then defined as the distance 

between their nearest points from each other. 

4.2.2 Orientation of Furniture Items 

Human subject experiments have shown that users sometimes reference the intrinsic 

frame of some furniture items (e.g., couch, chair) [49][50][51]. Even without an intrinsic 

frame, references such as front and back may depend on the orientation of the furniture 

item (e.g., rectangular tables) [49][50][51]. Thus, it is important for a robot to precisely 

detect the orientation of a furniture item. It is very challenging to find the orientation of a 

piece of furniture when depending on appearance information only. Therefore, 

orientation is detected by the depth information (shape) as defined in Figure 18.  

 

Figure 18 Furniture Orientation Coordinate 
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Figure 18 shows how all orientation values are based on the robot reference.). Figure 

5 also demonstrates how the camera views furniture as facing its lens when the 

orientation is around 270
o
, but when the orientation is around 90

o
, the camera assumes 

that it is behind the furniture. However, the definition and detection of orientation are 

both different for chair shaped furniture and table shaped furniture. 

Table Shape Furniture 

The shapes of tables always have a symmetrical structure for both the long axis and 

short axis, which can be rectangular, oval and round. This section will talk about 

furniture pieces with these three shapes. 

First the long axis is must be found and then the shorter one in the axis perpendicular 

to the long axis. The information that can be used for finding the long axis is the point 

cloud of the main plane. The reason that the other parts are not used for the task is that 

the parts under the plane may be hidden by the plane or the objects on the plane. To find 

the long axis, the following steps need to be followed. 

1) Draw the map by projecting all the points in the point cloud to X-Y plane. 

2) Set            sd the set of all the X-Y coordinate points in the first step. 

3) Find the angle of each point by using          (
   

   
) to build set  . Set the 

number in   to be integers. Find the set of points    which has the largest 

distance to the centroid compared with other points that have the same angle.    

is then the contour of the sample grid map. 

4) Find the center          of the point cloud, set line                  

‖     ‖  across the center. Change   from 1 to 360 degree. For each     , 

compute the distance values for all the    points to      and gathering them in 
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set        . For each  , find the average and standard deviation values of 

distances from   which are    and   . 

5) Find the   that minimize value in      . This angle is on the long side. The 

angle perpendicular to the long side and facing the robot is chosen to be the 

orientation of the table shaped furniture item.  

 

Figure 19 Table Shaped Furniture Item Orientation 

Chair Shaped Furniture 

The orientation of chair shaped furniture is defined as the angle that it faces to the 

robot camera reference. That is, the orientation is the direction the chair edge faces as 

shown in Figure 17.  

 

Figure 20 Chair Shaped Furniture Orientation 

 Chair shaped furniture has two main functional parts. One is the cushion which 

people sit on, and the other is the back of the chair. The key to finding the orientation is 

to accurately recognize the two parts and find the spatial relationship between them. 
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The procedure to find the chair back has four steps. 

1) First, select all the points above the main plane as set S. Draw an image 

representing an area of 360 × 200 pixels. Project all the points to the image. Label 

all the cells where at least one point falls as shown in the figure below. 

 

Figure 21 Upper Part Projection Image 

2) Set the geometry centroid as the center from the first point of set S, Determine the 

X value as the angle of the points and the Y value as Equation 22 

  
      

         
   (22) 

where 

 H is the Z value of the sample point.  

 Hmin and Hmax of the Z value in points set S. 

3) Label each pixel in the image with the value from the Equation 23 

    
     

 
    (23) 

where 

 i and j are the column and row index of a pixel, 

     and    are the portion shown as the labeled pixel in the corresponding 

row and column. 
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The pixels with         are then labeled as part of the chair back (Figure 19). 

 

Figure 22 Back Part Extracted 

4) Find the center of the back region. The angle of the back center is determined as 

the orientation of the furniture sample, e.g., the red line in the figure above. 

4.3 The Robot Repositioning Behavior for Improved Furniture 

Recognition 

When the robot is trying to classify a furniture sample in an experimental 

environment, it needs to have a good viewpoint of the furniture item. Because the training 

samples are limited and cannot allow a large variety of distances and orientations, it is 

necessary to give the robot the capability of moving to a proper pose where it can 

improve the recognition accuracy of furniture samples. 

Therefore, a robot behavior is needed to navigate the robot to such a position which 

can give the robot as complete information on the furniture sample as possible. 

This section describes how to drive a robot to find a target furniture item and improve 

the performance of furniture recognition by driving the robot to another place when the 

confidence of recognition is low. Based on the factors used to compute the confidence in 

Chapter 4, there are five reasons that lead to low confidence of recognition: 
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1) The distance between the furniture sample and robot camera is too large so that 

the sample image is not clear enough to present some details. 

2) The furniture sample is not in the center of view. 

3) The furniture sample is not completely in the Kinect view.  

4) The furniture sample is completely in the Kinect view but some of its parts are 

occluded. 

5) In addition, the result of the recognition experiments shows that orientation makes 

a difference in recognition performance. 

Therefore, to improve recognition performance, the robot needs to move to a proper 

position where it can have the highest probability to recognize the furniture item with 

high confidence. This kind of position needs to fulfill the following two requirements. 

1) The sample needs to be complete enough in the camera view which means that 

there are no depth points at the edge of the depth image except for large size 

furniture items. 

2) For the chair shaped furniture samples, the robot needs to move to the front of the 

furniture sample (in furniture coordinates) as much as possible. 

To determine the relative pose between the robot and a furniture sample, especially 

the direction relationship, the histograms of forces (HoF) method is used.  

4.3.1 Histograms of Forces 

The histograms of forces approach is used to compute the relative position between 

two objects. The objects used for this method can be either crisp or fuzzy. To measure the 

weight of spatial relation in an angle   that A to B, assuming       is a batch of vectors 
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of   that has an interaction with A and B. The disjoint segment of the interaction that 

      with A and       with B is the weight of angle  . 

 

Figure 23 Two Objects [39] 

Assuming a two objects A and B, for an angle θ, Hof shows the weight of how much 

“A is in direction θ of B”. A typical histogram of forces is shown in the Figure 24. 

 

Figure 24 Histograms of Forces [40] 

The histograms of constant (dark gray) and gravitational (light gray) forces for 

objects A and B are shown in Figure 23. By the histograms of forces the weight of each 

direction can be computed and then the direction of the robot to a furniture sample can be 

determined. 
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Figure 25 Directions from Histograms of Forces 

Defining four main directions, which are front, left, back and right, as shown in 

Figure 25, 0 rad means 100 percent right, π/2 rad means 100 percent front, π rad means 

100 percent left and 3π/2 means 100 percent back. To simplify the computation of 

direction, a Gaussian kernel is used for each angle to generate the weight of a direction. 

The equation to compute the weight of a direction is:  

   
∫             
  

 

∫      
  

 

   (24)  

where 

-    is the value of the histogram for x rad and 

-        is the membership value that x belongs to direction A. In 

       
 

√     ⁄
 
 

 

 
(
      
 

 ⁄
)
 

  (25)  

- D(x,A) is the distance between x and the core angle of direction A. 

By using histograms of forces, the relative position between the robot and furniture 

sample can be easily represented and quantified. 
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4.3.2 Robot Behavior 

The behavior model of the robot when running this task is a three-tier structure 

[44][45] shown in Figure 26. The first tier is the perception tier which collects the sensor 

information including the target furniture sample. The second tier is the Intelligence tier. 

By using these recognition methods, the robot detects the class and pose of the samples 

and the corresponding confidences. These methods also enable the robot to plot the action 

scheme and determine the state of the machine. The third tier is the motor actions tier. In 

this tier, the scheme is converted to motor parameters to control robot movement. 

 

Figure 26 Robot Behavior Diagram 

By using a finite state machine (FSM) [46], a strategy for robot behavior that can 

improve the recognition confidence is to navigate the robot to a place where higher 

extrinsic recognition confidence can be achieved. 

A finite state machine is a mathematical model of computation used to design 

sequential logic circuits. The name represents an abstract machine that can be in one of a 
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finite number of states. The machine can only be in one state at a time. An FSM can 

change from one state to another when triggered by a conditional change which is called 

a transition. A particular FSM is defined by a list of its states and the triggering 

conditions for each transition. In the robotics domain, the FSM is used most often when 

building models of robotic behavior [45]. 

Figure 27 shows an FSM model. The robot is navigated by odometry when moving 

from the original pose to the target pose. To improve recognition performance, there is no 

need for the robot to move to a perfectly accurate position. When the robot detects the 

position of the furniture item as “front”, the robot can stop and try to recognize the 

sample again. The FSM strategy’s process steps are:  

1) If the robot detects both low extrinsic confidence and low intrinsic confidence 

when performing recognition on a furniture sample, the recognition result is not 

reliable which means the robot needs to move to a better viewpoint to update the 

recognition result, thereby improving the reliability of the recognition. 

2) Allow the robot to make a 90
o
 turn to the other side of the furniture sample. 

3) Turn back to face to the furniture sample and repeat #2 again. If the robot is in 

“front” of the furniture sample, move an optimized distance from the sample (1.5 

to 2 meters). 

4) If the extrinsic confidence and intrinsic confidence increase which means the 

robot has moved to a good viewing place, navigate the robot closer until an ideal 

place is reached for detection. 
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Figure 27 FSM for Robot Action 

A typical scenario of these steps is shown in Figure 28. In this figure each image 

corresponds to one of the four steps in the steps of the FSM strategy for better navigation 

and positioning. 

 

Figure 28 Robot Task Steps 
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Chapter 5 Translating Spatial Language into Robot Commands 

In this research, the thesis author and colleagues designed a robot fetch task 

experiment to investigate the use of spatial language for human robot interaction. A set of 

human subject experiments was conducted in which spatial language descriptions were 

collected from younger and older adult subjects. The collected corpus was analyzed in 

[47] and templates were constructed to characterize the spatial language patterns for 

different test conditions. These templates provide a spatial language corpus that is used 

here to investigate the automatic translation of natural spatial language into robot 

commands. The mechanism includes two parts. The first step is to build a human-robot 

spatial language model which is used to tag words based on part of speech and then 

segment them into meaningful chunks; this step was accomplished by a colleague [48] 

but is briefly described here to show the output of this step. The second step uses the 

chunked description to generate robot navigation instructions which can be understood by 

a robot; the second step is part of the contribution of this thesis. 

5.1 Semantic Chunks 

The first step to interpret a human spatial language command is tagging and chunking 

into meaningful semantic chunks. It is done using a statistical natural language model. 

This work is done by my colleague. There are five steps in building a semantic chunk 

structure from a spatial description: (1) adding part-of-speech (POS) tags—(word, tag) 

tuples, (2) filtering out some “noise”, (3) generating semantic chunks —(word, tag, chunk) 

triples and filtering out some “noise” is again possible if new chunk types are introduced, 

(5) building a tree structure.  
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Table 3 Chunk and POS Types 

Chunk Type Explanation 

ORMTP Outside Room Target Phrase 
ORMRP Outside Room Reference Phrase 
FURTP Furniture Target Phrase 
FURRP Furniture Reference Phrase 
OBTP Object Target Phrase 
OBRP Object Reference Phrase 
IRMRP Inside Room Reference Phrase 

POS Type Explanation 

DT The Word 
NN Noun Word 

VBZ Verb Word 
IN In Word 
RM Room Word 
ON On Word 
DIR Direction Word 
TO To Word 

FUR Furniture Word 

There are seven kinds of high level chunks which can then be used to extract 

navigation instructions. They are shown in Table 3. Figure 29 shows an example of the 

interpretation and translation of the description “the statue is in the room on the left on 

the table ahead to the left” into a tree structure. The different kinds of chunks can be 

classified to eight types which work in different steps in the fetch task. 

 

Figure 29.An example of a chunked spatial description. Chunk types are shown in Table 

3 
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5.2 Interpreting Spatial Language 

5.2.1 Modeling Spatial Relationships 

When people communicate with each other about spatially oriented tasks, they 

typically choose relative spatial references rather than precise quantitative terms, e.g., the 

eyeglasses are in the living room on the table in front of the couch [52]. Although natural 

for people, it is not easy for a robot to follow such a description. Providing robots with 

the ability to understand and communicate with these spatial references has great 

potential for creating a more natural approach for human-robot interaction [49]. In 

previous work [26], the histogram of forces (HoF) [53] is used to model spatial 

relationships and, thus, provide a method for interpreting spatial language references in 

human-robot interaction. The HoF can quantize the spatial relationship between two crisp 

or fuzzy objects by providing weights of different directions [53]. By providing a 

quantitative model of these relationships, the HoF can be used to translate qualitative 

spatial relationships into robot instructions. 

5.2.2 Modeling the Fetch Task  

The environment of the fetch task investigated here is a two-room home with a 

hallway between the rooms, which is modeled after the physical lab space. The robot 

stands at the end of the hallway to wait for instruction before starting the task. To 

simplify the fetch task, the process is divided into three sub-tasks: (1) determine the 

target room and move to enter the room through the doorway, (2) move within the room 

to the place where the target object is located by following the spatial description, (3) 

search for the object around the goal location as specified in the spatial description. In the 

fetch task, the target objects are assumed to be on the surface of furniture items so that 
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the robot does not need to search inside the furniture. The robot uses its local perception 

for navigation in this task. 

5.2.3 Reference-Direction-Target Model 

Because the robot has no prior information about the furniture and object placement 

inside the room, it needs to use the information provided by the spatial language 

description. Therefore, a Reference-Direction-Target (RDT) model is proposed to 

translate the spatial description into navigation information that can be used directly as a 

navigation command for the robot. The RDT model includes three parts: Reference, 

Direction and Target. These components together comprise a RDT node. The three RDT 

components represent all types of navigation instructions a robot may need in an indoor 

environment. 

Reference refers to the object or structure that is used in a relation. In the RDT model, 

the reference also provides a label that tells the robot what kind of behavior it should 

perform. The behavior can either be a basic action like spinning and moving forward or a 

complex action like searching or following a path. Several types of references are used in 

the fetch task, as described below. 

NONE – No reference object is mentioned in the instruction, i.e., the robot action is 

not dependent on the objects around the robot. For example, “turn right” or “go forward”. 

There is no target object for this reference type. 

ROOM – The room is used as a reference for navigation, e.g., “move halfway in” or 

“to the left of the room”. The Direction component determines which part of the room is 

the destination. Using a sense of direction, e.g. from a compass, and prior knowledge of 

the room structure, the robot can move to the target area and search for the target object. 
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It is assumed that the robot has a map of the environment structure, but it does not know 

where the furniture items are located within the rooms of the structure. 

WALL – A wall is used as the reference, e.g., “to the back wall”. The robot navigates 

close to a wall and may search for the target object. 

ROBOT – The robot itself is used as the reference. The reference object does not 

directly appear in the description, but rather ego-centric references are used, e.g., “to the 

left” or “in front of you”. These mean “to the left of the robot” or “in front of the robot” 

which uses the robot’s local reference frame. 

FURNITURE – A furniture item is used as the reference object. The reference frame 

that defines the direction differs for different types of furniture. These have been defined 

based on the results of spatial language experiments. For example, “in front of the couch” 

is typically defined using the intrinsic frame of the couch. The front side refers to the 

seating side of the couch independent of viewing angle. 

Direction represents the position relationship between objects and tells the robot 

where it should move to search for the target. For the different references described 

above, the meaning of a direction is different. For NONE, the direction tells the robot the 

angle for motion. For other reference types, direction shows where the robot should move, 

relative to the specified reference. For different types of navigation instructions, the 

reference frame for direction may be defined differently [50]. The direction may not be 

defined by the intrinsic reference of the reference object. For example in the Couch 

reference shown in Figure 30, the directions are inversed to the couch’s intrinsic 

reference because the current on is more likely to match human habit. The directions used 

in robot fetch commands include: front, left, right, back, central, side, and between. Table 
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4 shows the combinations of references and their corresponding directions and Figure 30 

shows the pose relationship of them. 

The Target component indicates the target furniture in the navigation instruction or 

can also be used as the reference of the target object. If there is not a target in a RDT 

node, the target is defaulted to be a table type furniture item. This is a natural assumption 

for the fetch task, as people usually put small objects on table-like furniture. 

Table 4.References and Corresponding Directions 

Reference Category Corresponding Direction 

NONE Dynamic Front, Left, Right 
ROOM Dynamic Left, Right, Back 
WALL Dynamic Left, Right, Back, Side 
ROBOT Static Front, Left, Right, Back 

FURNITURE Static Front, Left, Right, Back, Between 

 

 

Figure 30 Reference Direction Map 

5.2.4 Translating Chunks into Navigation Commands 

For the fetch task, a dictionary of spatial language phrases is manually built for 

translating the words and phrases in the chunks to navigation commands that can be 

understood by the robot. The knowledge to build this dictionary is based on some human-
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robot spatial language experiments [49][50][51]. From the 3 parts of the RDT model 

described above, the information also has three classes: (1) target room, (2) inside-room 

navigation command, and (3) target object. They can be extracted by searching the words, 

phrases and their corresponding tags in the chunks from the dictionary of spatial language 

phrases. In the fetch task, the target room is extracted directly from the ORMTP and 

ORMRP chunks, and target object is extracted from the OBTP chunk. FURRP chunks, 

FURTP chunks and IRMRP chunks provide navigation instructions within rooms. 

The translation is a traversal process along the leaves of the parse tree. For the 

example shown in Figure 29, the parse tree is converted to a robot behavior model by 3 

steps. 

1) Preorder traverse the parse tree. List the phrases of the corresponding chunks 

sequentially. The phrases are: (1) OBTP: “the fork is in”, (2) ORMTP: “the living 

room”, (3) ORMRP: “on the right”, (4) FURTP: “on the table”, (5) IRMRP: “to 

the right side”. (6) FURRP: “behind the couch”. 

2) Extract room information and target object information from ORMTP, ORMRP 

and OBTP using the dictionary. The room is bedroom and the target object is the 

monitor. 

3) Generate navigation instructions by building the RDT nodes. The result is “robot-

left-table”. In a complex command, there may be more than one phrase that can 

be translated to a RDT node. Connect them sequentially to build a RDT chain 

(Figure 31). 
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Figure 31 RDT Chain Model for the spatial description in Figure 1. 

5.2.5 Robot Behavior Model 

After translating the spatial descriptions into robot commands, the robot behavior 

model can be instantiated, and the robot is then ready to execute the command. The robot 

behavior model has a two-tier structure. The higher tier is a global model of the whole 

task which is the 3-subtask model. The lower tier is the robot actions as lead by the RDT 

nodes. The dynamic instructions and static instructions have different strategies which 

can be represented by state machines. The dynamic model is not as dependent on 

perception and recognition abilities but rather relies on sequential movement commands. 

However, the static command strategy requires the robot to search and recognize the 

reference and target items. The behavior model used for static commands is shown in 

Figure 32. 

 

Figure 32 Robot Behavior Model in an RDT node  
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Chapter 6 Experiments and Results 

This chapter discusses the experiments designed for testing the algorithms introduced 

in chapter 4 and chapter 5. In Section 6.1, 6.2 and 6.3, three experiments are run to verify 

the performance of the methods in chapter 4. The first one is a static experiment of 

furniture recognition performance in category and instance. The second one is detection 

of furniture pose including position and orientation. The third experiment is the behavior 

of the robot which includes navigation of the robot to a place that can improve 

recognition performance. Section 6.4 tests the performance of the robot interpretation by 

running a robot simulation experiment. 

6.1 Furniture Recognition 

To reduce the effect of any other factors that may disturb experimental results, a static 

experiment is run for furniture recognition. The robot acts like a stationary platform in 

this experiment. The dataset for the recognition experiment includes 12 kinds of furniture 

items which are different in size, color and shape. These furniture items are used to build 

up an indoor environment for the human-robot interaction experiments.  

6.1.1 Database and Procedure 

Building a Model of Furniture  

As discussed in chapter 4, the furniture category model is built based on fuzzy logic. 

The method to define the membership functions of values for each linguistic variable 

used K-means clustering on the training data. Building this model consisted of two steps: 

1) Use the data of each feature for K-mean clustering. Because the data is one-

dimensional, it can also be seen as making histograms of data. Then, after finding 
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the centroid of each cluster, the membership functions are defined for the 

linguistic variables. 

2) Find the differences in the different categories of furniture samples. By using 

clustering results and experience, five categories are determined--small table, 

large table, chair, couch and bed. 

 

Table 5 and Table 6 show the linguistic variables and corresponding membership 

functions that are used as the model definition of each category of furniture. There are 

eight instances used for building this model. The values and membership functions of 

each linguistic variable are shown in the following table. 
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Table 5 Membership Functions for the Linguistic Rules 

Size (s) 

(dm
2
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Plane Height (p) 
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(Chair Shape 
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Figure 33 shows the values of each linguistic variable. The units used of each 

abscissa axis from top to bottom are dm
2
, meter and non-unit. 

 

Figure 33 Linguistic Variable Values 
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The fuzzy rules that determine the category of a sample is shown in Table 4. There 

are five fuzzy logic rules that represent five categories of daily life furniture. 

Table 6 Fuzzy Rules and Furniture types 

Fuzzy Rules Category Furniture instances included 

If Size is SMALL or MIDDLE 

and Plane Height is LOW and 

Shape is TABLE, THEN 

Category Name is SMALL 

TABLE. 

1 – Small Table 

Round Table 

Hexagon Table 

Coffee Table 

If Size is SMALL or MIDDLE 

and Plane Height is LOW and 

Shape is CHAIR, THEN 

Category Name is CHAIR. 

2 – Chair 
Blue Chair 

Wood Chair 

If Size is LARGE and Plane 

Height is HIGH and Shape is 

TABLE, THEN Category 

Name is Large Table. 

3 - Large Table Dinner Table 

If Size is LARGE and Plane 

Height is LOW and Shape is 

CHAIR, THEN Category 

Name is COUCH. 

4 - Couch Couch 

If Size is LARGE and Plane 

Height is LOW and Shape is 

Table, THEN Category Name 

is BED. 

5 - Bed Bed 

 

Dataset 

The dataset used for the recognition experiment includes 228 RGB-Depth images 

taken with the Kinect for eight furniture items. The numbers of samples for each instance 

are shown in Table 7. 
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Table 7 Dataset 

Instance Name Category Total Number 
Training 

Samples Number 

Testing Samples 

Number 

Round Table Small Table 32 8 32 

Blue Chair Chair 24 8 24 

Hexagon Table Small Table 36 8 36 

Wood Chair Chair 24 8 24 

Coffee Table Small Table 32 8 32 

Dinner Table Large Table 32 8 32 

Couch Couch 24 8 24 

Bed Bed 24 8 24 

 

The training images and testing images are taken from different distances and 

directions. These distances and directions cover all the positions where a sample could be 

positioned in the Kinect detection scale. For each instance, it took eight RGB-Depth 

images as training images. The distance of the robot from the furniture items was about 

1.5 meters when doing the tests and the directions were 0
o
, 45

o
, 90

o
, 135

o
, 180

o
, 225

o
, 

270
o
 and 315

o
 which were the same as the training. The distance of the sample from the 

camera was selected so that it could give the robot a complete view of the furniture 

samples with as much detail as possible. That is, the training samples were selected so 

that the furniture model could be as accurate as possible. The testing samples were 

selected from different distances and directions. They were collected from a distance 

from 1 m to 4 m which is the maximum distance realistically permitted by the Kinect 

camera. In this experiment, all the RGB-Depth images (including training samples) were 

selected as the testing samples. 
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Figure 34 Test Samples 
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6.1.2 Result 

Category Recognition Experiment  

In this experiment, eight samples are used for training and all the samples (including 

training samples) were used for testing. The results of category recognition are shown in 

Table 8 and Table 9. 

Table 8 Category Recognition Results 

 

 

Category 

 

Furniture items 

included 

 

 

Data 

 

 

Accuracy 

Accuracy with 

clutter on top 

(only for table) 

Small Table 

Round Table 

Hexagon Table 

Coffee Table 

32 

36 

32 

100% 

66.7% 

100% 

100% 

66.7% 

100% 

Chair 
Blue Chair 

Wood Chair 

24 

24 

100% 

100% 

N/A 

N/A 

Large Table Dinner Table 32 87.5% 75% 

Couch Couch 24 50% N/A 

Bed Bed 24 62.5 N/A 

 

Table 9 Category Recognition Confusion Matrix 

 

Instance 
Small Table Chair Large Table Couch Bed 

Round Table (ST) 32     

Blue Chair (Chr)  24    

Hexagon Table (ST) 24 12 24   

Wood Chair (Chr)  24    

Coffee Table (ST) 32     

Dinner Table (LT)   28 4  

Couch (Cch)  12 12   

Bed (Bd)   9  15 
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Instance Recognition Experiment  

The result of instance recognition is shown in Table 10, Table 11 and Table 12. 

Table 10 Instance Recognition Results 

 

Instance 

 

Data 

 

Accuracy 

Accuracy with 

clutter on top 

(only for table) 

Round Table 32 100% 100% 

Blue Chair 24 100% N/A 

Hexagon Table 36 58.3% 50% 

Wood Chair 24 91.6% N/A 

Coffee Table 32 90.6 % 87.5 

Dinner Table 32 87.5% 75% 

Couch 24 50% N/A 

Bed 24 62.5 N/A 

 

Table 11 Confusion Matrix of Instance Recognition in Small Table 

 

Ground Truth 
Round Table Hexagon Table Coffee Table 

Round Table  32   

Hexagon Table  21 3 

Coffee Table  3 29 

 

Table 12 Confusion Matrix of Instance Recognition in Chair 

 

Ground Truth 
Blue Chair Wood Chair 

Blue Chair 24  

Wood Chair 2 22 

 

6.2 Furniture Orientation Detection 

6.2.1 Procedure 

A specially designed dataset that had 144 RGB-Depth images was used for the 

orientation detection experiment. It included six furniture instances and 24 samples for 

each of them. The 24 images included eight directions and three distances. Samples with 

clutter on top are not used in these tests. In the test, the directions of the furniture items 
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were assigned with 0
o
, 45

o
, 90

o
, 135

o
, 180

o
, 225

o
, 270

o
, 315

o
. The 3 directions were set as 

“near”, “middle” and “far”. The “near” distance was around 0.9m ~1.2m which meant 

that the robot was too close to the furniture sample. The middle range was around 

1.8m~2.2m and the “far” was 3.2m~3.5m. The result of the furniture orientation test was 

shown by measuring the difference of the value to the ground truth. For Round Table and 

Hexagon Table their orientations are not computed because their round shape and 

orientation are not defined by its own coordinate. For the other table shape furniture 

items, it is assumed that they are facing toward the robot because they are symmetrical to 

the long axis so that they do not have orientation from 180 to 315 degree. Those positions 

are replaced by the data of 0 to 135 degree but with clutter on top. 

6.2.2 Results 

The results are shown from Table 13, Table 14 and Table 15, as the absolute 

difference between the ground truth orientation and the estimated orientation.  

Table 13 Result of Furniture Orientation Experiment (Degree) (Near) 

Instance 0
 

45 90 135 
180/0 

clutter 

225/45 

clutter 

270/90 

clutter 

315/135 

clutter 

Blue Chair 7 11 76 9 9 3 0 3 

Wood Chair 8 10 46 8 5 4 0 3 

Coffee Table 3 4 12 6 2 5 7 9 

Dinner Table 3 4 12 6 8 6 11 3 

Couch 21 74 143 65 27 15 0 12 

Bed 3 4 12 6 × × × × 

 

Table 14 Result of Furniture Orientation Experiment (Degree) (Middle) 

Instance 0
 

45 90 135 
180/0 

clutter 

225/45 

clutter 

270/90 

clutter 

315/135 

clutter 

Blue Chair 1 8 45 9 4 1 0 2 

Wood Chair 5 6 33 5 4 2 0 1 

Coffee Table 1 2 5 6 2 8 3 7 

Dinner Table 2 5 6 4 9 4 6 11 

Couch 28 65 112 55 62 18 0 13 

Bed 2 1 7 4 × × × × 
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Table 15 Result of Furniture Orientation Experiment (Degree) (Far) 

Instance 0
 

45 90 135 
180/0 

clutter 

225/45 

clutter 

270/90 

clutter 

315/135 

clutter 

Blue Chair 3 9 65 10 5 2 4 1 

Wood Chair 7 18 24 11 15 11 3 4 

Coffee Table 2 5 8 9 4 8 9 8 

Dinner Table 5 11 9 7 6 5 3 7 

Couch 30 59 132 47 72 29 6 19 

Bed 6 2 8 7 × × × × 

 

6.3 Furniture Searching  

6.3.1 Procedure 

The robot experiment consisted of 24 trials for all eight kinds of furniture items. 

There are three kinds of furniture classified by shapes. Different starting states are set 

separately to them. For round shape furniture, there were two trials from different places 

where the confidence was low. The starting distance for running the trial was 3.5 m. The 

round shape tables does not have orientation so they are settled at the place where cannot 

be completely taken by camera. One is on the left side and the other is on the right side. 

The table shape furniture samples are placed at 3.5 m far with orientations were 0, 45 and 

90 degree in the three trials when the robot start. The chair shape furniture samples are 

placed at 3.5 m far with orientations were 0, 90 and 180 degree in the three trials when 

start the robot. The maps below show the typical starting direction for each furniture 

piece. The condition that a trial is “successful” is that the robot moves to the optimal 

position in three minutes and gives the accurate instance recognition result with the 

extrinsic confidence > 0.5 and the intrinsic confidence > 0.75. 

 

 



70 

 

6.3.2 Result 

The results of the trials are shown in Table 16, Table 17 and Table 18. 

Table 16 Result of Robot Action Experiment (Round Shape Furniture) 

Instance 
Place 1 (Incomplete View Left, 

3.5M) 

Place 2 (Incomplete View Right, 

3.5M) 

Round Table Y Y 

Hexagon Table Y Y 

 

Table 17 Result of Robot Action Experiment (Chair Shape Furniture) 

Instance Place 1 (3.5M, 0
o
) Place 2 (3M, 90

o
) Place 3 (3M, 180

o
) 

Blue Chair Y Y Y 

Wood Chair Y Y Y 

Couch Y N N 

 

Table 18 Result of Robot Action Experiment (Table Shape Furniture) 

Instance Place 1 (3.5M, 0
o
) Place 2 (3.5M, 45

o
) Place 3 (90

o
) 

Coffee Table Y Y × 

Dinner Table Y Y Y 

Bed Y N Y 

 

Y means the robot successfully reached a position properly aligned with the furniture 

sample in the center view and reached the goal where extrinsic confidence > 0.5 and the 

intrinsic confidence > 0.75. N means the robot failed to finish the task and × means no 

experiment in this setting. The figure below shows some photos taken while running the 

experiment. 
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Figure 35 Furniture Searching Experiment 

6.4 Robot Command Interpretation Experiment 

The methods described in chapter 5 have been evaluated experimentally by executing 

robot spatial descriptions in a simulation environment and comparing the results to 

human performance (also in a simulation environment) using the same descriptions. 

6.4.1 Simulation Environment and Experiment Design 

Microsoft Robotics Studio is used for the simulation experiment environment. The 

virtual environment is a two-room home with a hallway between rooms, as shown in 

Figure 36. The robot starts at the back of the hallway. The robot used in this experiment 

is a differential drive Pioneer 3DX mobile robot with a Kinect mounted at a height of 1m. 

For the physical robot, RGB and depth images are used to recognize the furniture and 

small objects inside the room [50]. For the simulation experiment, the robot uses the 
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Kinect viewing cone and distance to determine when perception is likely to succeed. That 

is, if a furniture item or small object is in the viewing cone and at a close enough distance, 

the robot assumes that perception is successful. To simplify the problem, the viewing 

angle is not considered in the experiment. This method is used to approximate the robot’s 

performance in a physical setting, which will be tested in future work. It also serves to 

test the spatial language methods independent of the perceptual challenges. 

 There are 6 scenarios in the experiment. Each has a unique target object, which are 

fork, glasses case, laptop, monitor, statue, and mug. In each scenario, the furniture 

positions are fixed while the object placement is different. Figure 36 shows the furniture 

and object locations in the scene. There are 149 template spatial language descriptions for 

the 6 robot fetch scenarios. The descriptions are converted to tree structures and 

translated to robot commands as described in section 5.1. In this experiment, the 

descriptions have been manually chunked so that they are reliable as ground truth for 

future NLP work. 

For the human data, 48 undergraduates are asked to navigate through the virtual 

environment to arrive at a target specified in a spatial description. Each participant 

performed 12 trials, each with a template description; 576 trials were tested in total which 

were taken from the 149 unique spatial descriptions. Target objects were specified in the 

spatial descriptions, and subjects navigated until they reached the target location. For the 

robot, the same 149 descriptions were used; however, the target object was not included 

in the descriptions so that the robot had to determine the target based on the description 

structure and content. Each robot trial ended when the robot arrived at the position of the 

target furniture (as determined through the robot’s reasoning processes) and turned its 
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viewing cone on the target furniture item, i.e., the furniture that held the small target 

object.  

 

Figure 36 Simulation Experiment Environment 

6.4.2 Result 

In the experiment the robot state in each frame for each trial is recorded (Figure 37) 

and snapshots of the robot’s sensor are taken at the end of the trials (Figure 38). To 

analyze the results of the robot experiment, several metrics are tested. Significant results 

were found for the following metrics: path length, percent spin time, percent stop time, 

and success rate. Path metrics are generated from the robot state record and compared to 

the human performance using the same metrics. The success rate is analyzed for the robot 

only, as all paths in the human subject data ended with the specified target object. To 

determine whether the trial was successful, it is checked whether the target object was in 

view in the sensor snapshot taken at the end of the trial.  

The template description can be classified as “How” and “Where” types depending on 

the instructions. “How” descriptions were overwhelmingly dynamic, following a 

sequential, direction-like structure such as [Move] + [Direction] + [Move] + [Direction] + 

[Goal]. For example, “Go forward, turn left, go straight, and you’ll find the target. 
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“Where” descriptions were more split, with a significant number of static descriptions, 

following a structure such as [Target] + [In] + [Room] + [Room Reference]. For example, 

“The book was in the living room, against the back wall.” 

The templates were also generated for different landmark conditions. The No-

Landmark templates were unaltered. Goal-Landmark templates included a description of 

the table where the target object was located. For example, the Older-How-Robot 

description for the glasses case would read, “Take a right through the door. Go forward 

and turn right and you’ll find the glasses case on the table.” Path-landmark templates 

included a description of a furniture item in the environment in addition to the table 

where the target was located. For example, a path-landmark description for the glasses 

case would read, “Take a right through the door. Go forward and turn right and you’ll 

find the glasses case on the table behind the couch.” 

Table 19 to Table 23 show the significant results of the experiment based on an items 

analysis using the 149 unique template descriptions. Mean values and standard deviations 

are included for each path metric. To better compare robot and human path metrics, only 

robot trials that were successful in determining the correct target are included in analysis. 

There are 123 successful robot trials out of the total 149 unique descriptions tested. The 

robot success rates are then analyzed for the how/where and different landmark test 

conditions. The overall success rate for the robot was 85%. 

0.001678, 10.997830, 269.870789, 0.000000, 0.000000, 23245412, -1, -1 

0.001679, 10.997820, 269.870789, 0.179898, 0.000509, 23245443, -1, -1 

0.001672, 10.992640, 269.872803, 0.179900, 0.000499, 23245474, -1, -1 

0.001666, 10.989810, 269.873199, 0.179901, 0.000497, 23245506, -1, -1 

0.001654, 10.984500, 269.874298, 0.179901, 0.000493, 23245537, -1, -1 

0.001642, 10.979010, 269.875305, 0.179902, 0.000488, 23245568, -1, -1 

Figure 37 Robot State Log 
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Figure 38 Some Snapshots of Robot Local View When a trial finished 

 

Table 19 Path Length for Human vs. Robots (Meter) 

 Landmark Mean SD 

Human 

Goal 9.71 1.95 

None 9.82 2.26 

Path 9.22 2.08 

Total 9.54 2.10 

Robot 

Goal 8.66 2.30 

None 8.89 2.39 

Path 7.58 2.03 

Total 8.28 2.28 

 

Table 20 Path Length for How vs. Where (Meter) for Robot Only 

 Mean SD 

How 9.30 0.21 

Where 8.42 0.28 
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Table 21 Percent Spin Time for Human vs. Robot (%) 

 Landmark Mean SD 

Human 

Goal 17.82 6.78 

None 17.97 4.03 

Path 18.12 6.79 

Total 17.98 6.08 

Robot 

Goal 6.68 7.70 

None 6.20 7.54 

Path 28.24 25.69 

Total 15.31 20.36 

 

Table 22 Percent Stop Time for Human vs. Robot (%) 

 Type Mean SD 

Human 
How 10.25 4.95 

Where 7.43 4.41 

Robot 
How 0.22 0.42 

Where 1.15 7.14 

 

Table 23 Successful Rate Result (%) for Robot Only 

Types and 

Landmarks 

How vs. Where Goal vs. Path vs. None 

How Where Goal Path None 

Successful 

Rate 
89.4 73.4 89.5 40.0 98.0 
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Chapter 7 Discussion on Results 

This chapter discusses the results of the four experiments described in Chapter 6. The 

experiments in Chapter 6 showed the performance of the robot on furniture recognition, 

furniture orientation detection and robot furniture searching and ….  

Experiment 1: Furniture Recognition 

The first experiment showed the result of recognition by using the Kinect camera at 

different distances and in different orientations. From the results in chapter 6, it can be 

concluded that the recognition results were affected by both furniture category and pose.  

The following four conclusions are made: 

1) The chair shaped furniture items have nearly the same accuracy in recognition as 

table shaped furniture items.  

2) The larger-sized furniture items were more difficult to recognize than smaller 

sized furniture items in either shape.  

3) For the chair shaped furniture items, it was easier to make accurate decisions 

when they were facing the Kinect camera which means the orientation interval 

favored between 180
o
 and 360

o
. Accurate navigation was almost impossible when 

the furniture sample (especially chair shape) had its back to the camera. 

4) For the table shaped furniture items, it was easier to make accurate decisions 

when there was no clutter on the surface. However, clutter did not have a great 

effect.  
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Experiment 2: Furniture Orientation Detection 

The results obtained in chapter 6 show the factors that affect performance of the 

orientation detection. 

In Table 13, the following three conclusions were obtained: 

1) For chair shaped furniture items, it is much easier for the system to make accurate 

decisions when the real orientation ranges from 180
o
 to 360

o
 (0

o
). 

2) The orientation of chair shaped furniture items was more difficult to detect than 

table shaped furniture items. 

3) Clutter does not significantly affect the furniture orientation detection results of 

table shaped furniture items when using the method chosen for this study’s 

experiments. 

Experiment 3: Furniture Searching 

This chapter discusses results obtained from the robot searching experiment. The 

following three conclusions describe the effect caused by the different factors in furniture 

detection. 

1) The detection strategy robustly gave low confidence scores which triggered robot 

action when the robot was not in a good view point for recognition. 

2) The recognition of chair shaped furniture items does not lend itself to high 

confidence when chairs are placed with their backs toward the robot Kinect 

camera, and this recognition hindrance made it difficult for the robot go to the 

right place when working with chair shaped furniture items.  

3) Large size furniture item were not easily recognized when using the robot 

behavior. 
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Experiment 4: Robot Fetch Simulation 

For experiment 4, several observations can be made from the experimental results. 

From the path length metric, it could be found that the robot has a shorter path than the 

human subjects in all command types and all landmark types. Thus, the approach allows 

the robot to achieve a more efficient path than the humans. It is also observed that the 

“Where” type command results in a shorter path length than the “How” type command 

across all robot and human trials.  

Considering percent spin time, the robot takes less spin time in the Goal and None 

landmark cases than the humans but considerably more spin time than humans in the Path 

landmark cases. This demonstrates that giving the robot more information may not 

necessarily help.  

The percent stop time results show that the robot spends much less stop time 

compared to the human trials in all command types and landmark cases, because the 

robot does not need to stop and hesitate on the next step. 

When looking at the success rate results for the robot, “How” type commands have a 

higher success rate than “Where” type commands. Also, the commands with “Path” 

information show a much lower success rate when compared to other landmark cases. 

Several of the “Path” landmark cases were intentionally designed to include an 

ambiguous phrase, in an effort to observe how the human subjects would handle such 

situations. For example, the region “in front of the couch” might refer to the seating side 

of the couch if the couch’s intrinsic frame is used, or it might refer to the opposite side 

depending on the robot position and a different reference frame being used. In many of 

these ambiguous cases, the robot assumed an intrinsic reference frame by default, and got 
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it wrong, because it was constrained from using any perceptual abilities to confirm the 

location as a person would. In spite of these ambiguities, the overall success rate was 

85%, which indicates that performance is likely to improve if additional perceptual and 

reasoning capabilities are included. 
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Chapter 8 Conclusions and Perspectives 

Several achievements were obtained in this project, which include the following: 

1) Designed an intelligent robot that uses the Microsoft Kinect as a vision sensor for 

home-like scenarios. 

2) Developed and tested a fast furniture recognition approach which uses both color 

and geometry information as features. This method had good performance even 

when there was clutter on top of furniture items. 

3) Developed and tested a furniture orientation detection approach. 

4) Developed and tested an approach that can improve the robot’s recognition 

performance when recognition confidence is low. 

5) Developed a framework to interpret natural spatial language command and tested 

it in a robot simulation fetch task. 

The key difficulties that needed to be conquered in this project included the following:  

1) First, it is challenging to calibrate the Kinect camera so that the RGB-Depth 

image can be properly converted to RGB-point cloud data.  

2) Second, selecting appropriate features in recognition is difficult when furniture 

items are similar in shape or color although the Microsoft Kinect can capture 

color and depth information. Moreover, the features should not be affected by 

clutter on furniture items.  

3) It is challenging to estimate the orientation of chair shaped furniture items. 

Originally, only the RGB part of the image was used for this task. However, that 

method was so unreliable that finally, only depth information was used for 

furniture orientation detection.  
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4) In the spatial language translation part, the language model needs a lot of data for 

training, and the training dataset must be manually edited.  

In the results chapter, the experiments are presented in the order discussed in Chapter 

4. The fuzzy logic system parameters were selected by computing statistics on all the 

training data. The best parameters were used in the test with several demonstrations. The 

strategy for the robot action to improve confidence and performance of recognition were 

built from recognition test data. It can be concluded that the detection performance is 

strongly dependent not only on intrinsic factors but also on extrinsic factors. It is verified 

that recognition quality can be improved by not only the recognition algorithm but also 

the reaction of the robot to the extrinsic environment. The spatial language parsing 

experiment shows the validity of the RDT model proposed in the thesis, which can be 

further developed later. 

Although some progress has been made in these tasks, there is still room for 

improvement and some problems that need to be solved. The problems include: 

1) The training process is too complex. It takes a lot of time to train a robot which 

means the adaptability of the robot to a new environment is weak. An online 

training algorithm is needed to reduce the work of training and improve the 

adaptability of the robot to the new environment. 

2) Except for the plane, the other parts of the furniture sample, especially the part 

under the plane, are not used in recognition. Experiments focusing on other 

furniture parts led to inaccurate results, i.e., unreliable data from samples. 
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3) The orientation results of furniture samples were falsely returned by the system 

when results came from the same directions where the furniture samples were not 

well detected. The system need to be improved to deal with these situations. 

4) In the robot furniture searching experiment, the robot sometimes failed in its task. 

A more elaborate robot behavior model is needed. 

5) The spatial language model needs a larger corpus of human-robot spatial language 

commands for training and testing in more complex environments. 
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