

PRECONDITIONED CONJUGATE GRADIENT SOLVER

FOR STRUCTURAL PROBLEMS

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

XIANGGE LI

Ye Duan, Thesis Supervisor

MAY 2013

The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled

“PRECONDITIONED CONJUGATE GRADIENT SOLVER FOR STRUCTRUAL

PROBLEMS”

Presented by Xiangge Li,

a candidate for the degree of Master of Science in Computer Science

and hereby certify that, in their opinion, it is worthy of acceptance.

 __

Dr. Ye Duan

 __

Dr. Jianlin Cheng

 __

Dr. Zhihai He

ii

ACKNOWLEDGEMENTS	

I would like to express the deepest appreciation to my advisor, Dr. Ye Duan, who

gave me a lot of research and financial support during my master program study. He

always respects and values my ideas and encourages me to follow my interests. Without

his help, I would not have been able to get this far in my master program. I would like to

thank Dr. P. Frank Pai for his support in sharing his structural mechanics knowledge and

sample applications and Dr. Michela Becchi for teaching me so much concerning GPU

architectures and performance tuning. My thanks also goes to Dr. Gordon Springer for

his support on GPU cluster and for teaching me a lot about parallel programming.

Finally, I would like to thank my committee members, Dr. Jianlin Cheng and Dr. Zhihai

He, who valued my research and were generously willing to take the time to evaluate my

thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii	

LIST OF FIGURES ... vi	

LIST OF TABLES ... viii	

ABSTRACT… ... ix	

Chapter 1.	
 Introduction ..1	

Chapter 2.	
 Background ..6	

2.1.	
 Matrix Computation .. 6	

2.1.1.	
 Storage Format for Vector and Matrix ... 6	

2.1.1.	
 Matrix/Vector Add/Subtract/Multiplication ... 7	

2.1.1.	
 Matrix Solver – Direct Method .. 8	

2.1.2.	
 Matrix Solver – Multiplication of Inverse Matrix .. 10	

2.2.	
 Sparse Matrix .. 10	

2.2.1.	
 Coordinate Format (COO) .. 11	

2.2.2.	
 Compressed Sparse Row/Column Format (CSR / CSC) 12	

2.2.3.	
 Ellpack-Itpack Format (ELL) ... 12	

2.2.4.	
 Diagonal Storage Format (DIA) ... 13	

2.2.5.	
 Hybrid Formats ... 13	

2.3.	
 Iterative Methods .. 14	

2.3.1.	
 Conjugate Gradient Method ... 15	

2.3.2.	
 Preconditioner .. 15	

2.3.2.1.	
 Jacobi, SGS, SOR and SSOR Preconditioners .. 17	

iv

2.3.2.2.	
 Incomplete Cholesky Preconditioner ... 18	

2.3.2.3.	
 Incomplete LU Preconditioners ... 19	

2.3.2 SSOR Approximate Inverse Preconditioner ... 21	

2.4.	
 Triangular Matrix Solver .. 22	

2.5.	
 GPU Computation ... 23	

2.5.1.	
 Bandwidth .. 24	

2.5.2.	
 Architecture Design .. 24	

2.5.3.	
 Program Structure ... 24	

2.5.4.	
 Threads System .. 25	

2.5.5.	
 Multi-Kernels & Multi-Devices Support ... 25	

2.5.6.	
 CUBLAS & CUSPARSE Libraries ... 25	

2.5.7.	
 Floating Point ... 26	

2.6.	
 Related Works ... 28	

Chapter 3.	
 Methodology ..32	

3.1	
 Implementation ... 32	

3.2	
 Convergence Impact by Condition Parameter ! in SSOR-AI 32	

Chapter 4.	
 Results and Discussions ...38	

4.1.	
 Convergence Reports for SSOR-AI .. 38	

4.2.	
 Wide Range Experiments ... 44	

Chapter 5.	
 Conclusion ...47	

Appendix A.	
 Reports in Detail ..48	

Appendix A-1.	
 Description of 125 Tested Matrices and Execution Time 48	

Appendix A-2.	
 Number of Iterations of all 125 Matrices in 10 Configurations 52	

v

BIBLIOGRAPHY ..57	

 	

vi

LIST	
 OF	
 FIGURES	

Figure 2-1 Dependency Graph Sample ... 23	

Figure 2-2 Calculation order in floating point context ... 27	

Figure 2-3 FMA extreme case .. 28	

Figure 3-1 Sparse pattern of offshore ... 33	

Figure 3-2 Sparse pattern of af_shell3 .. 33	

Figure 3-3 Sparse pattern of Parabolic_fem ... 34	

Figure 3-4 Sparse pattern of Apache2 .. 34	

Figure 3-5 Sparse pattern of ecology2 .. 34	

Figure 3-6 Sparse pattern of thermal2 .. 34	

Figure 3-7 Sparse pattern of G3_circuit .. 34	

Figure 3-8 Sparse pattern of Poisson .. 34	

Figure 3-9 Af_shell3 (1:100,1:100) pattern .. 35	

Figure 3-10 Af_shell3 (1:500,1:500) pattern .. 35	

Figure 3-11 Apache2 (1:100,1:100) pattern .. 35	

Figure 3-12 Apache2 (1:500,1:500) pattern .. 35	

Figure 3-13 Ecology2 (1:100,1:100) pattern .. 36	

Figure 3-14 Ecology2 (1:500,1:500) pattern .. 36	

Figure 3-15 Poisson (1:100,1:100) pattern ... 36	

Figure 3-16 Poisson (1:500,1:500) pattern ... 36	

Figure 4-1 Offshore convergence report ... 38	

vii

Figure 4-2 Af_shell3 convergence report ... 38	

Figure 4-3 Parabolic_fem convergence report .. 39	

Figure 4-4 Apache2 convergence report ... 39	

Figure 4-5 Ecology2 convergence report .. 40	

Figure 4-6 Thermal2 convergence report ... 40	

Figure 4-7 G3_circuit convergence report .. 41	

Figure 4-8 Poisson convergence report ... 41	

Figure 4-9 Percentage of iterations reduction for CG with SSOR-AI (0.01) to CG 46	

 	

viii

LIST	
 OF	
 TABLES	

Table 3-1 Description of Matrices .. 33	

Table 4-1 Execution time comparison of SSOR-AI (1.0) and other preconditioners 43	

Table 4-2 Convergence comparison for all CG with SSOR-AI preconditioners 44	

Table A-1 Description of tested matrices and execution time .. 48	

Table A-2 Number of Iterations .. 52	

ix

PRECONDITIONED CONJUGATE GRADIENT SOLVER

FOR STRUCTRUAL PROBLEMS

Xiangge Li

Dr. Ye Duan, Thesis Supervisor

ABSTRACT

Matrix solvers play a crucial role in solving real world physics problem. In

engineering practice, transition analysis is most often used, which requires a series of

similar matrices to be solved. However, any specific solver with/without preconditioner

cannot achieve high performance gain for all matrices. This paper recommends

Conjugate Gradient iterative solver with SSOR approximate inverse preconditioner for

general engineering practice instead of Conjugate Gradient alone. The author uses

experiments on 125 symmetric positive definite matrices derived from real structural

problems to endorse this recommendation. SSOR approximate inverse preconditioner

shows a competitive advantage to provide stable performance improvement (average

12.6x speedup to CG). And, a general setting (ω = 0.01) will effectively prevent the

failure of SSOR approximate inverse preconditioner among a wide range of data derived

from analysis of structural problems.

1

CHAPTER 1. INTRODUCTION

The solution to sparse linear systems plays a crucial role in such engineering fields as

physics based modeling and simulation, circuit simulation, mechanics of materials,

geophysics and many other application fields. For example, the matrix Geo_1438 (Davis

and Hu 2011) used in my experiments comes from a real geomechanical problem. The

matrix is used to calculate 3D discretized displacement of a deformed region of the earth

crust subject to underground force. In this linear system ! ! = ! , the unknown

vectors ! represent the 3D discretized displacement of an earth crust region, where

right side vectors ! represents the underground force inside and outside of this crust

region. The coefficient matrix ! is the model that couples relationship of the

deformation displacements of the crust and underground force.

Two categories of methods are used to solve linear systems: direct methods and iterative

methods. Direct methods are based on variants of Gaussian elimination, which is direct

and easy to understand. The unknowns will be solved one by one in continuous iterations.

However it does not show good scalability. On the contrary, iterative methods are

suggested for a sparse linear system especially when matrix size increases to a very large

scale.

The iterative methods exhibit better parallelism and then scale well on solving larger

problems. Many iterative methods have been proposed and analyzed from a mathematical

viewpoint. The non-stationary iterative methods derived from Krylov subspace have been

proved to be highly effective (Bai et al. 1987), especially for solving sparse linear

systems. This paper targets the Conjugate Gradient iterative method which is one of the

families designed for solving symmetric positive definite linear systems. Theoretically,

2

preconditioners, matrices used to transform a coefficient matrix to show a more favorable

spectrum property for converging, also are proved to be an efficient way to improve

performance of the iterative method. However, no silver bullet can be found to solve all

matrices quickly and easily. Each combination of an iterative method and a configured

preconditioner, which from hereon will be referred to as a method configuration in this

paper, has its limitations and only works efficiently for particular matrices. Engineering

practices expect a method configuration to facilitate solving matrices in a wide range.

In practice, applying a preconditioner into iterative methods introduces extra costs, both

for constructing the preconditioner during the initial step and when applying

transformation per iteration. A preconditioner with impressive improvement in

converging iterations may introduce heavy extra cost during the constructing step and

may eventually compromise the whole performance (Naumov 2011a). Too simple of a

preconditioner, like the Jacob preconditioner, brings too little impact on the performance

of iterative methods (Ament et al. 2010). And, if the coefficient matrix naturally shows

good spectral property, which directly fits well within the iterative method, applying a

preconditioner is unnecessary. One example of a good fit can be found in the superlinear

convergence scenario for the Conjugate Gradient (Concus and Golub 1976). Applying a

preconditioner requires solving two triangular matrices per iteration, which is hard to

parallel and is the bottleneck to applying preconditioners. To balance the performance

improvement by preconditioner and the overhead for applying the preconditioner,

approximate inverse preconditioners have been introduced into the world. By taking side

effect of accuracy and robustness loss in the approximation, the new approximate inverse

preconditioners can be directly applied by an easily paralleled matrix-vector

3

multiplication operation (Benzi, Cullum, and Tuma 2000; Benzi and Tuma 1999; Benzi

and Tuma 1998; Chow and Saad 1998; Cosgrove, Diaz, and Griewank 1992; Gravvanis

2002; Kolotilina and Yeremin 1993; Grote and Huckle 1997). General research suggests

that an approximate inverse preconditioner should be used on finite difference

discretization of boundary value problems, whose coefficient matrices tends to “more

diagonally dominant”(Benzi and Tuma 1999). However, since the approximation impairs

the robustness of the SSOR preconditioner, SSOR approximate inverse (SSOR-AI) is

more likely to cause convergence failure than SSOR preconditioner. This problem

requires an SSOR-AI method configuration that can successfully prevent convergence

failure for the majority of the time.

GPU computing, which serves as a cheap massive parallel solution, has been widely used

in this field and has proven to be more efficient than CPU, especially for large sparse

matrices. Most existing research is focused on tuning the performance for a specific

matrix to claim a very high speed up. The Poisson equation has been used for analysis in

many papers (Helfenstein and Koko 2011; Gui and Zhang 2012; Michels 2011; Ament et

al. 2010), as the non-zero elements in the coefficient matrix of Poisson equations are

scattered into larger bands for applying iterative methods. A special preconditioner,

Incomplete Poisson (Ament et al. 2010), which evolved from sparse approximate inverse

algorithms, has been developed for solving Poisson equations only. Previous research

analyzed various preconditioners on GPU, such as Parallel Conjugate Gradient algorithm

combined with Jacobi (Georgescu and Okuda 2007; Ament et al. 2010), Incomplete

Cholesky (Gui and Zhang 2012), Incomplete LU (Gui and Zhang 2012), ILU (0)/SSOR

(Ament et al. 2010; Yu et al. 2012), and SSOR Approximate Inverse (Helfenstein and

4

Koko 2011) preconditioners. Although the studies mentioned above all claimed very high

speed up (up to 15x) for performance of GPU compared to CPU in solving linear systems,

papers from Intel researches (Lee et al. 2010) and (Gregg and Hazelwood 2011)

challenged previous reports of 10x to 1000x speed up reports on GPU stating that these

results were obtained only when comparing GPU with an insufficient CPU tuning code,

and the reasonable GPU performance speed up narrows to an average of 2.5x that of CPU.

Gui and Zhang (2012) claim more than 7x speed up in solving Poisson equations, but

their study only compares the GPU results with a single thread CPU implementation

without exploiting the intuitive performance improvement methods: multi-threading

technology or BLAS/LAPACK libraries. The paper from NVIDIA researchers (Naumov

2011b) also supports the low speed up results. The NVIDIA paper compares Conjugate

Gradient with multiple preconditioners among multiple matrices set to report only an

average speed up range from 2.07x to 2.69x. The reports are based on compatible

experimental environments with leading commercial linear algebra libraries, which are

NVIDIA CUBLAS & CUSPARSE libraries for GPU and the Intel MKL library for CPU.

Li and Saad (2013) also compared different preconditioners for Conjugate Gradient

method among a wide range of data. The overall performance reported in this study of

GPU to CPU was also less than 4x.

 A speed up cannot be guaranteed when applying GPU solver with the same

configuration among different matrices (Li and Saad 2013; Naumov 2011b). When

conducting continuous computation/simulation on several time sensitive matrices (Bolz

et al. 2003), preconditioner tuning is limited in its ability to adapt to continuous data sets.

Some previous research (Bolz et al. 2003) focusing on simulation of specific problem

5

provided approximately a 2x speed up on GPU, which is still a very impressive speedup

compared to CPU. Therefore solving matrices on GPU has proven to be efficient in

engineering practice.

On the other hand, method configuration with a higher speed up does not mean the

calculation time for this configuration is the best among all configurations (Yu et al.

2012). Preconditioners that are easier to be paralleled and show higher speed up on GPU

are not guaranteed to provide the best convergence improvement in calculation.

In this study, I chose SSOR approximate inverse preconditioner for Conjugate Gradient

solver to provide stable performance improvement to CG on GPU. SSOR preconditioner

has proven effective on improving convergence and is easy to construct. SSOR-AI

preconditioner keeps effective convergence improvement feature of SSOR and is also

easy to construct. Furthermore, the application of the SSOR-AI only needs an extra

matrix-vector multiplication in each iteration, so it is easy to be paralleled on GPU with

relatively low overhead. The robustness loss, which may deteriorate convergence, in the

approximation was the major problem encountered in this research. The following

research questions are addressed in this paper:

1. When applying SSOR approximate inverse preconditioner, will the convergence

rate suddenly deteriorate with a specific or range of ! value?

2. Are any patterns visible in the relationship of convergence rate to ! values?

3. Is there any method configuration which can be used to make sure applying

SSOR approximate inverse preconditioner gains universal advantages to

Conjugate Gradient solver without a preconditioner?

6

CHAPTER	
 2. BACKGROUND	

2.1. Matrix	
 Computation	

2.1.1. Storage	
 Format	
 for	
 Vector	
 and	
 Matrix	

Two categories of storage formats exist for vector and matrix: dense format and sparse

format. Dense format is a storage policy that linearly stores all elements of matrix/vector

in memory. On the contrary, sparse format is a storage policy that only stores non-zero

elements in memory along with position information of those elements. The common

used position indices are zero-based and one-based, whose index base respectively are

zero and one.

The following matrix is an M*N size zero-based indexing matrix:

A!,! A!,! ⋯ A!,!!!
A!,! A!,! … A!,!!!
⋮ ⋮ ⋱ ⋮

A!!!,! A!!!,! … A!!!,!!!

The following matrix is an M*N size one-based indexing matrix:

A!,! A!,! ⋯ A!,!
A!,! A!,! … A!,!
⋮ ⋮ ⋱ ⋮

A!,! A!,! … A!,!

In mathematics world, row vector and column vector are different. However, their

storage in memory are the same with extra explicit (some tag in structure) or implicit

(semantics in algorithm) information to identify them. Dense format vector is a single

data array linearly stored in memory. Sparse format vector is composed by a data array

stored all non-zero elements in the vector and an integer index array that stored positions

of those non-zero elements in equivalent dense format vector.

7

In solving linear systems, two dimensional matrices are used. Memory is linear structured,

so two dimensional matrixes have to be serialized into one dimensional memory

representation. Two major formats are used to represent two dimensional matrices: row-

major format and column-major format. In row-major format matrix, all elements in a

row are sequentially (column index from low to high) placed in memory before storing

any element in rows with higher row index. In column-major format matrix, all elements

in a column are sequentially (row index from low to high) placed in memory before

storing any element in columns with higher column index.

For example, a one-based M * N dense matrix A

A!,! A!,! ⋯ A!,!
A!,! A!,! … A!,!
⋮ ⋮ ⋱ ⋮

A!,! A!,! … A!,!

 will be serialized in memory as

[A!,! A!,! ⋯A!,! A!,! A!,!⋯A!,! ⋯A!,! A!,!⋯A!,!] (In Row-major format) or

 A!,! A!,! ⋯A!,! A!,! A!,!⋯A!,! ⋯A!,! A!,!⋯A!,! (In Column-major format).

Sparse matrix format will be discussed in Chapter 2.2.

2.1.1. Matrix/Vector	
 Add/Subtract/Multiplication	

It is easy to use block division or row/column division to distribute whole matrix

computation into multiple independent smaller matrix computation. This key feature of

these operations’ domain division is independent subdomain resolution. Any subdomain

problem can be solved independent without any interference of other subdomain

problems. So only one synchronization operation will be needed to make sure all

subdomain results are solved. That is the perfect fit for Single Instruction Multiple Data

(SIMD) parallel architecture: multiple data blocks will be processed homogeneously.

8

Element-wise operations for Matrix/Vector Addition and Subtraction are ! !, ! =

! !, ! ± ![!, !]. All operations to each element are independent, so it is easy to be

parallel.

Element-wise operations for matrix-vector multiplication is ! ! = (! !, ! ∗ ![!]!
!!!).

The operations for different ! ! is also independent, and it also easy to be parallel.

2.1.1. Matrix	
 Solver	
 –	
 Direct	
 Method	
 	

Direct method is typically derived from Gaussian elimination. Direct method Solver use

two steps to solve ! ! = ! :

1. Compute the factorization of coefficient matrix !

2. Use the factorization to solve ! ! = !

The first step is the most intensive part. After the first step, the second step can be easily

applied and cost only trivial effort comparing to first step. Many methods have been

developed to reuse the factorization result in step1 to solve many right side vectors ! .

Factorization step, or step 1, only need to be done once or fewer times than step 2, so

computation time would be saved.

In Gaussian elimination, an N*(N+1) augment matrix would be used to solve

! ! = ! . Initially the augment matrix will be initiated as ! ! , then multiple steps

of elimination will be applied to augment matrix. The final result in augment matrix

would be ! ! , where matrix ! is unit matrix.

For example, the augment matrix of equations

!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!

!!
!!
!!
!!

=

!!
!!
!!
!!

9

Would be

!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!

!!
!!
!!
!!

 (2.1.1)

Gaussian elimination will first eliminate all elements in lower triangular part of the

matrix to zeros.

!!,! !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 0 !!,! !!,!
0 0 0 !!,!

!!!
!!!
!!!
!!!

Upper triangular part of the matrix will be eliminated to zeros in next step.

!!,! 0 0 0
0 !!,! 0 0
0 0 !!,! 0
0 0 0 !!,!

!!!!
!!!!
!!!!
!!!!

And finally remaining matrix will be normalized with diagonal elements.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

!!
!!
!!
!!

Gauss-Jordon elimination is alternative algorithm to Gaussian elimination. Gauss-Jordon

elimination will eliminate all elements except the diagonal element in a column to zeros

and normalize the diagonal element to one in each step.

(2.2.1) =

1 !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 !!,! !!,! !!,!

!!!
!!!
!!!
!!!

=

1 0 !!,! !!,!
0 1 !!,! !!,!
0 0 !!,! !!,!
0 0 !!,! !!,!

!!!!
!!!!
!!!!
!!!!

=

1 0 0 !!,!
0 1 0 !!,!
0 0 1 !!,!
0 0 0 !!,!

!!!!!
!!!!!
!!!!!
!!!!!

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

!!
!!
!!
!!

10

These two algorithms require the same amount of calculation in total. However, Gauss-

Jordon Elimination processes the same amount of calculation in half of inter-dependent

iterations which are needed for Gaussian Elimination. By reducing number of iterations

to half, Gauss-Jordon Elimination requires less synchronization between iterations and

exposes more parallelism per iteration. By performing row elimination on all rows per

iteration, Gauss-Jordon Elimination redistributes homogenous loads to all iterations that

shows balanced job load among all iterations.

2.1.2. Matrix	
 Solver	
 –	
 Multiplication	
 of	
 Inverse	
 Matrix	

Another intuitive method to solve A x = b is x = A !! b . By first calculating

inverse matrix A !!of coefficient matrix A , then right side vectors b is left multiplied

by inverse matrix A !! to get vector result x . This method can also be used to solve

multiple right side vectors b to save computation time. However, the memory

requirements for solving A !! are much larger than other methods.

The inverse matrix A !! can be solved with following equation:

A A !! = I

The solving process also can use Gaussian/Gauss-Jordon elimination with an N*(2N) size

augment matrix.

2.2. Sparse	
 Matrix	
 	

In real world practice, the non-zero elements of the coefficient matrix are relative fewer

to the zero elements of the matrix. Calculations that involved zero elements in the matrix

can be ignored in most cases. This observation motivates the idea of sparse matrix format

that only stores non-zero elements of the matrix with extra information to locate elements.

11

As the calculation of majority elements of matrix, zero elements, can be ignored, the

complexity of algorithm is also dramatically changed. For example, Gauss-Jordon

elimination in sparse matrix is typically worse than Gaussian elimination because the new

non-zero elements along with new calculation based on them are introduced in upper

triangular matrix in the column elimination process. The algorithm for dense matrix

needs to be reanalyzed in sparse matrix context.

There are varies of sparse matrix formats. Different formats facilitate different sparse

matrix patterns and different algorithms.

2.2.1. Coordinate	
 Format	
 (COO)	

In COO format representation, only non-zero elements in the matrix are recorded. COO

format is composed by three equal elements arrays, respectively storing values of all non-

zero elements, their row indices and column indices along with the number of non-zero

elements in the matrix. By default, row-major format would be used to serialize 2D

matrix into value array. For example, the matrix below

20 0 0 9
0 15 0 0
11 0 8 0
7 0 0 25

 (2.2.1)

is presented in zero-based COO format as three arrays:

Row Indices: 0 0 1 2 2 3 3

Column Indices: 0 3 1 0 2 0 3

Non-zero Values: 20 9 15 11 8 7 25

12

2.2.2. Compressed	
 Sparse	
 Row/Column	
 Format	
 (CSR	
 /	
 CSC)	

In many scenarios, we need to iterate all elements in a row or multiple rows. When using

row-major COO format, an O (log (number of non-zero elements)) search process has to

be done to locate the index range of a row’s data. If keeping track of the index range of

each row’s data in serialized storage, only an O (1) complexity would be enough to locate

the index range of each row’s data. That introduces row-major CSR format, which stores

index range of each row’s data instead of storing row indices of all non-zero elements.

Also for the same reason, we get the column-major CSC format.

The zero-based CSR format of matrix (2.2.1) is

Row Pointers: 0 2 3 5 7

Column Indices: 0 3 1 0 2 0 3

Non-zero Values: 20 9 15 11 8 7 25

2.2.3. Ellpack-­‐Itpack	
 Format	
 (ELL)	

Ellpack-Itpack sparse matrix format (ELL) uses an N*K data matrix and an N*K indices

matrix, which contains corresponding column indices of data matrix elements, to

represent an N*N dense matrix. The K is at least the maximum number of non-zero

elements per row in the original dense matrix. If the number of non-zero elements in a

row is less than K, the padding elements of the row will be filled with 0 in data matrix.

And corresponding column indices of the row will be filled with -1.

For example, the zero-based ELL format of matrix (2.2.1) is

Data =

20 9
15 0
11 8
7 25

 Indices=

0 3
1 −1
0 2
3 −1

13

Comparing to COO or CSR format, the ELL format can be calibrated padded to meet

specific requirements of machine word alignment, cache line alignment, or memory page

boundary alignment. With the alignment, penalty of misaligned memory access can be

bypassed. However the memory spatial locality may be compromised due to the padding

operations. So the K value has to be chosen carefully.

2.2.4. Diagonal	
 Storage	
 Format	
 (DIA)	

Diagonal Storage Format (DIA) uses a data matrix and a distance vector to store all non-

zero elements that reduces the information needed for locating the non-zero elements. A

K band N*N size dense matrix will be represented as an N*K data matrix and a K

element distance vector. The elements from same diagonal band will be stored in same

column of data matrix and the elements from same row will also be stored in same row of

data matrix. Distance vector stores the distance of each diagonal to main diagonal. The

negative and positive distance value respectively represents diagonal in lower and upper

triangular part of matrix. It is particularly usefully for diagonal dominant sparse matrices,

which normally generated from finite element or finite difference discretization.

For example, the zero-based DIA format of matrix (2.2.1) is

Data =

0 0 20 9
0 0 15 0
0 11 8 0
7 0 25 0

Distance = −3 −2 0 3

2.2.5. Hybrid	
 Formats	

Many hybrid formats have been developed to use two sparse matrix format respectively

represented part in regular pattern and irregular part of non-zero elements of matrix.

14

Among all formats mentioned above, DIA and ELL are effective for sparse matrix-vector

multiplication, while COO and CSR are more flexible and easy to operate. So

combination formats of these two categories can be useful. The most widely used hybrid

format is HYB, a combination of ELL and COO format.

2.3. Iterative	
 Methods	

Unlike the direct methods, iterative methods use an iterative representation to converge to

the solution with more accurate result iteratively. The solution from iterative methods is

an approximation of exact solution. All unknowns are solved at the same iteration when

specified tolerance of residuals is reached. It is impossible to predict the amount of

iteration needed for convergence of the iterative methods except Jacobi method. However,

if converged, other iterative methods are converged faster than Jacobi method.

There are two types of Iterative methods: stationary methods and non-stationary methods.

Stationary methods are those iterative methods that can be expressed in iterative

form {!}! = !!{!}!!! + !! , where !! and !! are independent to iterative count k. If

converged with proper parameter configuration, solution error per iteration will gradually

downgrade. That is what the “stationary” refers to. Stationary methods are older and

simpler to implement and usually not as effective as non-stationary methods. Most non-

stationary methods are based on the idea of sequences of orthogonal vectors and can be

highly effective. The convergence rate of iterative methods substantially depends on the

spectrum of the coefficient matrix. So a transformation matrix (called preconditioner) that

transforms the coefficient matrix into one with more favorable spectrum would be crucial

to the iterative methods. Common preconditioners can be expressed in multiplication of

15

two triangular matrices (Barrett et al. 1987) and those two triangular matrices will be

solved in sequence.

Most of the non-stationary iterative methods are based on Krylov subspace. Conjugate

Gradient (CG) method is the one for solving symmetric positive definite matrices.

Positive definite is said to an N*N size symmetric matrix ! if for any N elements non-

zero vector ! , ! ! ! ! is positive.

2.3.1. Conjugate	
 Gradient	
 Method	

The Conjugate Gradient (CG) method is the oldest and effective non-stationary method

for solving symmetric positive definite systems. The conjugate gradient method consists

of three tightly coupled iterative vectors in any !!! iteration: iterates ! ! , residuals ! ! ,

and search directions/paths ! ! .

The Conjugate Gradient algorithm is:

Initial step: ! ! = ! ! = ! − !! !

Iterative steps: start from iteration 0, loop step 1 to step 4 until stop criteria meets.

Step 1: !! =
! ! !

!"#(! ! ,!! !)
= ! ! !! !

! ! !!! !

Step 2: ! !!! = ! ! + !!! ! !"# ! !!! = ! ! − !!!! !

Step 3: !!!! =
! !!! !

! ! ! = ! !!! !
! !!!

! ! !! !

Step 4: ! !!! = ! !!! + !!! !

2.3.2. Preconditioner	

The spectral properties of the coefficient matrix determines the convergence rate of

iterative methods (Hestenes and Stiefel 1952; van der Sluis and van der Vorst 1986). So

16

if we can transform the linear system into equivalent one that has the same solution but

with more favorable spectral properties, we may boost up the cost of solving process. The

matrix that served in the transformation is called preconditioner. In other word,

preconditioner matrix ! approximates the coefficient matrix ! , and spectral

properties of ! !! ! is more favorable than [A]. Then transformed system

! !! ! ! = ! !! !

has the same solution as the original system A x = b and iterative methods applied

in new transformed system will converge in less iterations than in original system (van

der Sluis and van der Vorst 1986).

For symmetric positive definite matrices, the spectral condition number κ is defined as

! =
!!"#
!!"#

with the maximum and minimum eigenvalues λ!"# and λ!"# . Note that the identity

matrix has a value of κ = 1. The objective of preconditioning is to transform the original

system into an equivalent system with the same solution, but a lower condition number.

So preconditioner M!! should approximate A!! to make new κ approximate to 1.

The above theoretical transformation will not be directly used in real world scenarios.

When original coefficient matrix A is symmetric, it is crucial to preserve the symmetry

for success of some iterative methods. However, transformed coefficient matrix M !! A

is not guaranteed to remain symmetric nor definite even if A and M are. That is why in

practice, the preconditioner M would be represented in the factored form:

! = !! !! ,

Where !! and !! are two triangular matrices. The transformed system will be

17

 [ML] -1 [A][MR] -1([MR]{x}) = [ML]-1{b}

and the preconditioned process will be split into two phase:

Phase 1: solving {y} from [ML] -1 [A][MR] -1 {y} = [ML]-1{b}

Phase 2: compute {x}=[MR] -1{y}.

If coefficient matrix A is symmetric and positive definite, transformed coefficient matrix

[ML] -1 [A][MR] -1 can preserve symmetric and positive definite properties with choosing

!! = !! !.

2.3.2.1. Jacobi,	
 SGS,	
 SOR	
 and	
 SSOR	
 Preconditioners	

One of the simplest ways to generate a preconditioner is performing incomplete

factorization of coefficient matrix A. There are multiple preconditioners.

First we decomposed coefficient matrix A as A = L + D + U, where D, L, U represents its

diagonal, strictly lower and strictly upper triangular part respectively.

Jacobi preconditioner (or diagonal scaling in Georgescu and Okuda (2007)) can be

expressed by

 !!"#$%& = !

Symmetric Gauss Seidel preconditioner can be expressed by

 MSGS = ([D]+[L]) * [D]-1([D]+ [U])

SOR preconditioner can be expressed by

 MSOR = ([D]+ω[L])/ω * ([D]+ ω[U])/ ω

SSOR preconditioner can be expressed by

 !!!"# ! = !
!!!

!
!
! + ! (!

!
!)!!(!

!
! + !)

18

SSOR preconditioner is a very useful preconditioner. It can be derived from the

coefficient matrix with minor work and the number of iterations can be reduced to a

lower order with the optimal ω value. However in practice, the spectral information

required for calculating the optimal ω is prohibitively expensive to compute.

optimal ω in SSOR preconditioner is attainable according to Axelsson and Barker (1987).

However in practice, the effort for calculating matrix spectrum information that is

required for finding the optimal ω is even harder than solving the matrix itself. The

number of iterations to converge could be reduced to a lower order (Barrett et al. 1987).

For symmetric positive definite coefficient matrix, SSOR preconditioner with parameter

range in 0 < ω < 2 can make sure to converge (from Householder-John theorem).

2.3.2.2. Incomplete	
 Cholesky	
 Preconditioner	

Incomplete Cholesky preconditioner cannot present in simple matrix form, the algorithm

for generating it is:

For k=0 to N-1 do

 !!,! = !!,!;

 For i=k+1 to N-1 do

 !!,! =
!!,!
!!,!

;

 end

 For j=k+1 to N-1 do

 For i=j to N-1 do

 If (!!,!==0) then contineu

 !!,! = !!,! − !!,!!!,!;

19

 end

 end

end

2.3.2.3. Incomplete	
 LU	
 Preconditioners	

Incomplete LU (ILU) preconditioner is constructed using Incomplete LU (ILU)

factorization process. The ILU factorization process computes two triangular matrices,

sparse lower triangular matrix ! and sparse upper triangular matrix ! , from

coefficient matrix ! so that the residual matrix ! = ! ! − ! satisfies certain

constrains(Saad 2003).

ILU (0), the Incomplete LU factorization with no fill-in, presents same zero patterns with

coefficient matrix A. The algorithm for building it is:

For i=2 to N do

 For k=1 to i-1 do

 If !!,! == 0 then continue;

 !!,! =
!!,!
!!,!

;

 For j=k+1 to N do

 If !!,! == 0 then continue;

 !!,! = !!,! − !!,!!!,!;

end

 end

end

ILU (p), the Incomplete LU factorization with p level fill-in, keeps all fill-in elements

whose level of fill does not exceed p. The algorithm for building it is:

20

Assume NZ is set of all nonzero elements in N*N size coefficient matrix A.

For each !!,! ∈ !", !ℎ!"! ! ∈ 1. .! , ! ∈ 1. .!

 !"#"$!,! = 0

end

For i=2 to N do

 For k=1 to i-1 do

 If Level!,! > ! then continue;

 !!,! =
!!,!
!!,!

;

 For j=1 to N do !!,! = !!,! − !!,!!!,!;

 Level!,! = !"# Level!,! , Level!,! + Level!,! + 1

 End

 For each !!,!, where ! ∈ 1. .!

 If Level!,! > ! then

 !!,! = 0

 end

 end

end

There are many ILU variants with different dropping strategies applied. The details can

be referred to (Saad 2003).

21

2.3.2	
 SSOR	
 Approximate	
 Inverse	
 Preconditioner	

Normal preconditioner requires a matrix solver process (normally overhead too heavy to

apply except for very simple preconditioner) or two consecutive triangular solver

processes per iteration in iterative method. The solver process is intensive calculation and

hard to be parallel. Another group of preconditioner called approximate inverse

preconditioner has been developed motivated by multiplication of inverse matrix idea

that described in Chapter 2.1.2. By approximating the inverse matrix of normal

preconditioner first, the approximated inverse matrix only need an extra matrix-vector

multiplication per iteration to apply. The performance improvement by this

transformation is dramatic, however along with accuracy or robustness loss in the

approximation process, which compromise the effect of improvement of convergence

rate.

SSOR approximate inverse preconditioner is just a first order approximate inverse of

SSOR preconditioner:

! = !!!, where ! = ! 2− ! !!! !! –! ! 2− ! !!! !!!!!

Strictly speaking, this preconditioner is not approximate inverse method; it can be regards

as a hybrid of ILU and polynomial preconditioning techniques. And it is also called as

truncated Neumann SSOR preconditioner(Benzi and Tuma 1999).

We don’t have evidence to prove it still remaining convergence even for symmetric

positive definite coefficient matrix. And due to the information loss in the approximation,

condition parameter ! in SSOR-AI should show less impact on convergence rate to

SSOR.

22

2.4. Triangular	
 Matrix	
 Solver	

Since most of the time preconditioner will be constructed as multiplication of two

triangular matrices, a lower triangular matrix and an upper triangular matrix, triangular

matrix solver plays a very important role for applying preconditioner.

For triangular matrix solver, the solving process will be easier to analyze. Level

scheduling (Saad 2003), derived from topological sorting, has been developed to reveal

parallelism of forward/backward substitution. The idea is very simple, by grouping

unknowns !! into different levels so that all unknowns in same level can be solved

simultaneously. If the solving of one unknown !! depends on results of set of other

unknowns !!, the level of !! will be one plus maximum level of any !! ∈ !!.

To facilitate solving multiple right sides vectors, a two phases solver has been proposed

and implemented in two phases in NVIDIA CUSPARSE library as standard Level-3

functions (Naumov 2011a). Author builds a dependency graph based on coefficient

matrix’s sparsity pattern and groups independent rows to levels. This dependency graph

is a directed acyclic graph (DAG) that can be generated by a modified breadth-first-

search (BFS) algorithm.

For example, a lower triangular matrix T involved in the ! ! = !

!!,!
!!,!

!!,!
!!,!
!!,!

!!,!

!!,!
!!,!

!!,!
!!,!

!!,! !!,!
!!,! !!,!

!!,!
!!,!

!!,!

!!
!!
!!
!!
!!
!!
!!
!!
!!

=

!!
!!
!!
!!
!!
!!
!!
!!
!!

23

Has dependency graph in Figure 2-1.

From the dependency graph, initially !!, !!,!"# !! have no any dependent on other

variants, and they can be solved immediately in parallel. And the variants that depend on

the result of !!, !!,!"# !!, that are !!, !!, !!,!"# !! can be solved in parallel in next

step. Finally after all dependent variants of !! !"# !! are solved, !! !"# !! can be

solved in parallel. In other words, variants/rows are solved from lowest level to highest

level; no variants/rows will be solved until all their dependent variants/row are solved; all

variants/rows in same level can be solved in parallel.

2.5. GPU	
 Computation	

GPU computing is Single Instruction Multiple Data (SIMD) architecture, which executes

identical operation/instruction on multiple data load simultaneously. SIMD is a light

weight parallel architecture which has heavy penalties on synchronization and

heterogeneous treatment on data (branch operations). I target on NVIDIA Compute

Unified Device Architecture (CUDATM) for experiments.

1 3 2

4 5 6 7

8 9

Level 1 (rows 1,2,3)

Level 2 (rows 4,5,6,7)

Level 3 (rows 8,9)

Figure 2-1 Dependency Graph Sample

24

2.5.1. Bandwidth	

For supporting massive threads running at the same times with very high floating point

calculation capability, graphic chips requires enormous memory bandwidth to feed data

into the processors. NVIDIA Tesla M2070 provide 384-bit memory I/O interface and up

to 150Gbytes per second on-board memory bandwidth. The on-board memory bandwidth

capability of GPU is significant larger than contemporary CPU, PCI Express (interface

from Graphic card to main board) and fabric link in cluster (InfiliBand enhanced data rate

is 25.78125 Giga bits/s).

2.5.2. Architecture	
 Design	

CPU depends on sophisticated cores to achieve high calculation capability. Many

advanced features such as out-of-order execution, branch prediction, help CPU

successfully handle control logic and data dependency. GPU depends on massive

lightweight cores and threads to accumulate high calculation capability. Without too

many fancy features, fast thread switch help GPU bypass the effect of memory access

stall. From specification, GPU can provide ten to thousands times floating point

calculation capability to CPU. However, GPU high performance naturally can’t survive

under complicated control logics and/or frequently/complicated synchronizations.

2.5.3. Program	
 Structure	

The parallel massive threads capability and bandwidth requirements dominate the

programming structure design for GPU. A host(traditional CPU), and one or more

devices(Graphic cards) will cooperate to achieve the GPU-enabled computation: the

required data will first be moved from main memory to GPU on-board memory, and

GPU starts the computation with access only to its onboard memory, then the result will

25

be transferred back to main memory after calculation. GPUs only take responsible for

code logic that shows rich amount of data parallelism, CPUs handle the rest. Due to

intuitively parallel semantics of GPU threads, any function executed in GPU, called

kernels, are within specific lightweight thread context to process data slices only with

synchronization barrier supported.

2.5.4. Threads	
 System	

GPU provides a two layers hierarchy thread system: Grids and Blocks. Block is

composed of set of 3D indexed threads; Grid is composed of set of 3D indexed blocks.

Preset variables threadIdx and blockIdx are respectively used to identify thread of a block

and block of a grid; Preset variables blockDim and gridDim are respectively used to store

number of threads in a block and number of blocks in a grid. Each of those four preset

variables has three dimensional fields: field x, field y, and field z. All three fields in

threadIdx and blockIdx are zero-based index values.

2.5.5. Multi-­‐Kernels	
 &	
 Multi-­‐Devices	
 Support	

Due to algorithm limitation, not all the kernels can consume all resource provided by

GPU. CUDA does support asynchronous execution mechanism on the same GPU device,

which is called stream. Kernels resided in different streams can be executed parallel in a

GPU device. CUDA also provides programming supports for multiple GPU devices.

However, no direct access support from one device to another.

2.5.6. CUBLAS	
 &	
 CUSPARSE	
 Libraries	

CUBLAS library implements BLAS (Basic Linear Algebra Subroutines) on NVIDIA

CUDA runtime. CUSPARSE library implements a set of BLAS functions for sparse

26

matrices. Both of these two libraries are provided by NVIDA to facilitate calculation of

matrices and vectors. Both of them cannot automatically parallelize across multiple GPU

devices/cards.

CUBLAS library is composed of three levels of functions and some helper functions.

Level-1 functions perform scalar and vector based operations; Level-2 functions perform

matrix-vector operations; Level-3 functions perform matrix-matrix operations.

CUSPARSE library is also composed of three levels of functions and some helper

functions. Level-1 functions perform operations between a sparse format vector and a

dense format vector; Level-2 functions perform operations between a sparse format

matrix and a dense format vector; Level-3 functions perform operations between a sparse

format matrix and a set of dense format vectors.

Each function in three levels from two libraries support four matrices element data types:

single precision, double precision, single precision complex, and double precision

complex.

2.5.7. Floating	
 Point	

In engineering practice, implementation of floating point in different hardware varies a

lot. And rounding approximation exists in every call for floating point calculation.

Different calculation order of a same equation may produce slightly different results.

Those errors may accumulate to finally compromise the entire calculation result. For

example, direct method especially suffered from rounding error that is error made in one

step spreads in all following steps. That is also one reason why direct method does not

suit for calculation in large scale matrix.

27

(Whitehead and Fit-Florea 2011) shows many examples of impact of calculation in

different order and in different round options/orders. For example, the following figure

from Whitehead and Fit-Florea (2011) shows the (A+B)+C does equal A+(B+C) in

floating point calculation.

Figure 2-2 Calculation order in floating point context

A common standard IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-

1985) is widely adopted by mainstream computing systems to provide compatible

behaviors among each other. (Whitehead and Fit-Florea 2011) describes the NVIDIA

CUDA compliance to IEEE 754 standard.

Single precision: 1 bit 8 bits 23 bits
sign exponent fraction

Double precision: 1 bit 11 bits 52 bits
sign exponent fraction

The difference of single precision and double precision affect not only the accuracy but

also the memory bandwidth requirements and cache locality. The application choice

between double precision and single precision may somehow manipulate the performance

and result. (Georgescu and Okuda 2007) shows “single precision GPUs make very good

accelerators for the CG method if and only if the matrix is well behaved, meaning that its

condition number, computed after preconditioning, should be below 10! . For ill-

conditioned matrices, in the current solver setting, double precision is necessary.”

28

IEEE 754 defines four rounding modes: round towards negative, round towards positive,

round towards zero and round-to-nearest. CUDA explicitly supports all four modes in its

basic floating point functions. However IEEE 754 standard does not require all common

mathematical functions to be correctly rounded. For example, denormal numbers, small

numbers close to zero, will be flushed to zero in single precision floating point from

CUDA compute capability 1.2 and below.

Fused multiply-add operation (FMA) was included in 2008 of the IEEE 754 standards to

increase the accuracy for (X * Y + Z). The two round steps normally will be applied in

this operation: result rounding of multiplication and result rounding of addition. Only one

round operation will be applied to this FMA operation. In some extreme case, computing

one multiply followed by one addition may lose all bits of precision. The following

example from Whitehead and Fit-Florea (2011) shows the case in single precision:

Figure 2-3 FMA extreme case

2.6. Related	
 Works	

The University of Florida sparse matrix collection (Davis and Hu 2011) is widely used as

matrices source for analysis (Georgescu and Okuda 2007; Naumov 2011b; Li and Saad

2013). There are 231 symmetric positive definite matrices in the collection, 125 of them

come from structural problems.

The CG method was introduced by Hestenes and Stiefel (1952). Superlinear phenomenon

was first observed by Concus and Golub (1976). Van der Sluis and van der Vorst (1986)

29

proved the condition when the superlinear phenomenon will show up. Many

preconditioners have been analyzed in previous research. Preconditioned CG method has

been proven effective by Knyazev and Lashuk (2007). The Jacobi preconditioner for CG

method has been studied by Georgescu and Okuda (2007). The research proved that the

Jacobi preconditioner could not work for most of matrices from the University of Florida

sparse matrix collection (Davis and Hu 2011). Gui and Zhang (2012) solved the

Incomplete Cholesky preconditioner for CG with parallelized Jacobi iterative methods

and applied a new sparse storage format. However, the Preconditioned CG method

outperformed the CG method for only the smallest matrices in the eight matrices from

Poisson equations; in fact, even the iterations for convergence of PCG are less than ¼th

iterations of CG. The overhead cost of applying Incomplete Cholesky preconditioner is

still too high. Li and Saad (2013) compared multiple preconditioners and sparse storage

format. Their recent Journal of Supercomputing article stated that the sparse triangular

solver in GPU can only attain a very low speed up to CPU, and may be even lower than

serial implementation in CPU. The overall performance speed up for Incomplete

Cholesky and ILU preconditioner in GPU can only outperform CPU implementation for

up to 3 and 4 times respectively.

Applying approximate inverse of a normal preconditioner is a tradeoff between

performance gain and cost overhead of preconditioner. Benzi and Tuma (1999)

summarized all approximate inverse techniques stating that an SSOR approximate

inverse preconditioner cannot be better than SSOR preconditioner and none-diagonal

dominant coefficient matrices will suffer from degradation of rate of convergence due to

robustness loss in the first or second order of approximation. Ament et al. (2010) derived

30

a SSOR based heuristic approximate inverse preconditioner from regular grid (finite

difference method) called Incomplete Poisson Preconditioner M!! = (I− LD!!)(I−

D!!L!). This preconditioner is only designed for solving Poisson equations. Helfenstein

and Koko (2011) determined that an SSOR approximate inverse preconditioner is derived

by using first order approximation of SSOR and is for more general usage.

Not much effort was put on general preconditioners for a wide range of data. Domain-

specific preconditioners showed stable relative improvements in the following research.

Georgescu and Okuda (2007) tested the CG with Jacobi preconditioner on all symmetric

positive definite matrices with more than 10,000 rows from the University of Florida

sparse matrix collection (Davis and Hu 2011). And though an average 3-5x speed up has

been achieved, the solver does not work for majority of the test matrices.

Yu et al. (2012) tested the GMRES GPU solver with block ILU (0) preconditioner in

nonlinear simulation for 100 days. From the comparison in this study,

solver/preconditioner with a higher speed up definitely does not mean the calculation

time would also be better. The 10x speed up is just comparison to serial implementation

of CPU. And it should be highlighted that the relative tolerance for the experiments (2

million square matrices) is too low, only 1e-3. Comparing to mostly 1e-6 of other

research, the low relative tolerance cannot provide convincing results.

Chou et al. (2011) developed a domain-specific preconditioner, SEVA, for power grid

simulation and achieved a 43% iterations reduction and 23% speed up over CG without

preconditioner and CG methods with universal preconditioners Jacobi and ILU

respectively.

31

Approximate inverse preconditioners almost have the least application overhead as they

only need an extra matrix-vector multiplication instead of solving two triangular matrices.

SSOR has proven very effective on convergence improvement. A combination of SSOR

preconditioner and approximate inverse technology, that is SSOR approximate inverse

preconditioner, can be expected to operate efficiently and effectively. The only problem

is the robustness loss introduced in the approximation process.

32

CHAPTER	
 3. METHODOLOGY	

3.1 Implementation	

I implemented Conjugate Gradient iterative solver with SSOR approximate inverse

preconditioner using CUBLAS and CUSPARSE. Based on commercial linear algebra

libraries on GPU, I can show the results with only general tuning for no preset knowledge

of input matrices.

I conducted the experiments in a GPU cluster node. The Linux cluster node is built with

Shared Memory Processor (SMP) architecture equipped with twelve Intel Xeon X5650 @

2.67 GHz CPUs, 48Gbytes memory and two NVIDIA Tesla M2070 448 Cores 1.15GHz

GPU cards with 6Gbytes GDDR5 onboard memory.

3.2 Convergence	
 Impact	
 by	
 Condition	
 Parameter	
 !	
 in	
 SSOR-­‐AI	
 	

To answer the first and second research questions in chapter 1, I used eight symmetric

positive definite matrices. The first seven of them are from the University of Florida

sparse matrix collection (Davis and Hu 2011), which were chosen in the analysis of paper

by Naumov (2011b); the eighth matrix comes from Helfenstein and Koko (2011). Those

eight matrices cover matrices encountered in real world practice from many application

fields and show very unique sparse patterns.

The eight matrices in Table 3-1 come from real world problems in different application

fields, which represent matrices’ requirements of different fields. And the non-zero

element distribution patterns that come from the same application fields are dramatically

different. Figures from Figure 3-1 to Figure 3-8, respectively show their non-zero

element distribution patterns (Davis and Hu 2011).

33

Table 3-1 Description of Matrices

Matrix Rows/Cols NNZ Application Field
1 offshore 259,789 4,242,673 electromagnetics problem
2 af_shell3 504,855 17,562,051 subsequent structural problem
3 parabolic_fem 525,825 3,674,625 computational fluid dynamics problem
4 apache2 715,176 4,817,870 structural problem
5 ecology2 999,999 4,995,991 landscape ecology problem
6 thermal2 1,228,045 8,580,313 steady state thermal problem
7 G3_circuit 1,585,478 7,660,826 circuit simulation
8 Poisson 130,009 908,357 computational fluid dynamics problem

Figure 3-1 Sparse pattern of offshore

Figure 3-2 Sparse pattern of af_shell3

34

Figure 3-3 Sparse pattern of Parabolic_fem

Figure 3-4 Sparse pattern of Apache2

Figure 3-5 Sparse pattern of ecology2

Figure 3-6 Sparse pattern of thermal2

Figure 3-7 Sparse pattern of G3_circuit

Figure 3-8 Sparse pattern of Poisson

35

The sparse pattern in [2][4][5][8] in coarse scale looks similar, however in fine scale it

still shows different patterns. The following figures show sparse patterns of top left

100*100 and 500*500 contents of those matrices.

Figure 3-9 Af_shell3 (1:100,1:100) pattern

Figure 3-10 Af_shell3 (1:500,1:500)
pattern

Figure 3-11 Apache2 (1:100,1:100) pattern

Figure 3-12 Apache2 (1:500,1:500) pattern

36

Figure 3-13 Ecology2 (1:100,1:100)
pattern

Figure 3-14 Ecology2 (1:500,1:500)
pattern

Figure 3-15 Poisson (1:100,1:100) pattern

Figure 3-16 Poisson (1:500,1:500) pattern

I ran Conjugate Gradient iterative method with SSOR-AI preconditioner in GPU for all

the choice of ! values in range [0.01,1.99] with a 0.01 interval, which included 199

samples per matrix. The stop criteria were either error tolerance reached to 1e-7 or

maximum of 20,000 iterations reached. And for each sample, I collected three data:

37

number of iterations for convergence, execution time for iterative method, and time for

data transfer from CPU to GPU.

38

CHAPTER	
 4. RESULTS	
 AND	
 DISCUSSIONS	

4.1. Convergence	
 Reports	
 for	
 SSOR-­‐AI	

Figures from Figure 4-1to Figure 4-8 are the results that reveal the relationship of number

of iterations to converge and ω values in SSOR approximate inverse preconditioner.

Figure 4-1 Offshore convergence report

Figure 4-2 Af_shell3 convergence report

39

Figure 4-3 Parabolic_fem convergence report

Figure 4-4 Apache2 convergence report

40

Figure 4-5 Ecology2 convergence report

Figure 4-6 Thermal2 convergence report

41

Figure 4-7 G3_circuit convergence report

Figure 4-8 Poisson convergence report

From the figures above, I found out that bad convergence behavior shows for some !

values. In other words, the convergence rate will deteriorate for some ! values. And

42

those ! values are grouped in an area instead of shown as isolated points on the axle.

Offshore and af_shell3 both show these behaviors.

Also from the data, the convergence rate (or number of iterations needed for convergence)

does show very clear trends to the change of ! values. The change rate of convergence

rate, or slope of convergence rate to !, can be considered as continuous most of the time.

Only thermal2 show some spike data.

The number of iterations’ difference for optimal ! and worst ! are huge enough, that at

least 50% iterations for worst cases can be saved for optimal cases.

The ! value range with minor convergence difference to optimal convergence is grouped

around the optimal ! value and the area is large enough to be easy identified. Hitting the

suboptimal range is relatively easy in 0.01 unit.

I cannot reproduce the experiments in exact same environment settings with Naumov

(2011b). Those GPU settings in my experiments are almost equivalent with GPU settings

in Naumov (2011b). And I use CPU construction time for ILU (0) preconditioner in

Naumov (2011b) as approximation of CPU construction time for SSOR-AI

preconditioner.

Table 4-1 shows execution time of SSOR-AI (! = 1.0) compared to the minimum

execution time of all preconditioners tested in the study by Naumov (2011b). The

execution time for GPU implementation includes construction time for preconditioner on

CPU, copy time for preconditioner from CPU to GPU, and solving time on GPU. The

execution time for CPU implementation includes construction time for preconditioner on

CPU and solving time on CPU.

43

Compared to Naumov (2011b), my implementation of CG with SSOR-AI preconditioner

can almost defeat any preconditioner settings on GPU with the simple set ! = 1.0. And

my implementation of SSOR-AI preconditioner can defeat all preconditioner settings on

CPU. The average speed up to best execution time of CPU is 2.05x. The data proved the

SSOR-AI preconditioner can provide very stable impressive performance improvement

with low overhead for applying it.

Table 4-1 Execution time comparison of SSOR-AI (1.0) and other preconditioners

Name CPU Execution Time
Minimum (seconds)

GPU Execution Time
Minimum (seconds)

GPU Execution Time
SSOR-AI (! =1.0)

offshore 1.1 1.92 0.846
af_shell3 40.12 34.14 26.417
parabolic_fem 12.91 7.05 4.902
apache2 23.82 12.93 8.706
ecology2 29.55 55.4 16.238
thermal2 50.59 54.82 18.863
G3_circuit 14.79 8.79 9.048

However, the default choice ! = 1.0 for SSOR approximate inverse preconditioner may

not be a good idea for general usage. The af_shell3 and offshore reveals a potential risk

for convergence a breakdown with ! less than 1.0.

Two patterns exists for relationship of convergence and !. One pattern is a U style

pattern where the optimal ! is in the middle of range (0, 2) and the iterations for

convergence in approximate optimal ! value are almost half the value of the worst !

choice iterations. The other pattern is an ascendant style pattern where the optimal ! is

located near the leftmost extreme of range (0, 2). In this pattern, the iterations for

44

convergence in approximate optimal ! value are only 1/10 to 1/1000 of the worst !

choice iterations.

4.2. Wide	
 Range	
 Experiments	

I ran all positive definite matrices for all structural problems in the University of Florida

sparse matrix collection (Davis and Hu 2011). A total 125 matrices were tested. CG

method and CG with SSOR-AI preconditioner with ω = [0.01, 0.25, 0.5, 0.75, 1, 1.25,

1.5, 1.75, 1.99] were tested. The stop criteria were either a maximum 500,000 iterations

reached or relative residual reached to 1e-7. Matrices “x104” and “thread” from same

group “DNVS” will not converge using CG without a preconditioner or CG with SSOR-

AI preconditioners, so these two matrices were excluded from the report. Table 4-2 is the

convergence report for these 10 method configurations. It is easy to see that when the

SSOR approximate inverse preconditioner’s condition parameter ω equals 0.01, which is

the best setting among all 123 tests. Instead of the commonly used condition parameter

ω=1.0, an extreme minimum ω value closer to the lower bound of range (0, 2) showed

very good performance among a wide range of data sets and effectively prevented most

of the convergence failures.

Table 4-2 Convergence comparison for all CG with SSOR-AI preconditioners

Method Configuration # of failing to converge # of reach min iterations

CG 8 7

CG+SSOR-AI(0.01) 1 75

CG+SSOR-AI(0.25) 16 35

CG+SSOR-AI(0.50) 23 29

45

CG+SSOR-AI(0.75) 34 31

CG+SSOR-AI(1.00) 43 24

CG+SSOR-AI(1.25) 50 17

CG+SSOR-AI(1.50) 51 16

CG+SSOR-AI(1.75) 59 16

CG+SSOR-AI(1.99) 62 16

Figure 4-9 presents the iterations relationship of CG and CG with SSOR-AI (0.01)

preconditioner. The difference of number of iterations for each sample is normalized by

larger number of iterations in the comparison of CG and CG with SSOR-AI

preconditioner, so that the percentage of iteration reduction maps to (-100%, 100%). The

detailed reports are put in Appendix A. For all tests, 90.9% tested matrices had better

convergence with SSOR approximate inverse (ω =0.01) preconditioner when applied and

an average 57.6% iterations reduction was achieved from all test matrices. For those test

matrices with positive iteration reduction value, average 67.9% iteration reduce was

achieved. An average 12.6x speed up can be achieved for CG with SSOR-AI (ω =0.01)

preconditioner over CG performance without preconditioner among all test matrices.

46

Figure 4-9 Percentage of iterations reduction for CG with SSOR-AI (0.01) to CG

47

CHAPTER	
 5. CONCLUSION	

It was amazing to observe that SSOR approximate inverse preconditioner works well for

general usage in solving structural problems on an extreme minimal ω value, which is

close to a lower bound of range (0, 2). The risk of convergence failure increased with

increment of ω value. The experiments on 125 matrices from structural problems showed

that applying SSOR approximate inverse preconditioner with ω = 0.01 reduced the

convergence failure and obtained the best convergence behaviors. The report also showed

where 90.9% of the test matrices had better convergence with SSOR approximate inverse

(ω = 0.01) preconditioner applied and an average 67.9% iterations reduction was

achieved from those positive cases. An average 12.6x speed up was achieved for CG with

SSOR-AI (ω =0.01) preconditioner when compared to CG without a preconditioner.

With the extreme minimal ω value, applying SSOR approximate inverse preconditioner

showed very stable performance improvement and prevented most of the robust loss

issues introduced by approximation of inverse preconditioner.

48

APPENDIX	
 A. REPORTS	
 IN	
 DETAIL	

Appendix	
 A-­‐1. Description	
 of	
 125	
 Tested	
 Matrices	
 and	
 Execution	

Time	

Table A-1 Description of tested matrices and execution time

Name Group rows/cols nonzeros CG
(ms)

SSOR-AI
(ω =0.01)

(ms)
Emilia_939

Janna

923,136 40,373,538 932,624.00 154,408.00
Fault_639 638,802 27,245,944 649,916.00 63,224.20
Flan_1565 1,564,794 114,165,372 212,482.00 197,786.00
Geo_1438 1,437,960 60,236,322 235,213.00 33,213.90
Hook_1498 1,498,023 59,374,451 102,279.00 132,079.00
Serena 1,391,349 64,131,971 245,220.00 21,877.40
apache2

GHS_psdef

715,176 4,817,870 10,766.40 14,380.60
audikw_1 943,695 77,651,847 1,100,240.00 179,709.00
inline_1 503,712 36,816,170 607,391.00 460,681.00
ldoor 952,203 42,493,817 146,561.00 82,885.20
Kuu

MathWorks
7,102 340,200 222.03 292.21

Muu 7,102 170,134 28.79 18.39
af_0_k101

Schenk_AFE

503,625 17,550,675 86,021.60 84,727.80
af_1_k101 503,625 17,550,675 93,619.30 81,683.40
af_2_k101 503,625 17,550,675 69,447.80 69,938.40
af_3_k101 503,625 17,550,675 39,255.40 36,887.20
af_4_k101 503,625 17,550,675 70,608.00 70,378.10
af_5_k101 503,625 17,550,675 67,370.90 67,364.20
apache1 GHS_psdef 80,800 542,184 822.18 1,476.38
bcsstk01

HB

48 400 46.22 23.11
bcsstk02 66 4,356 19.65 23.04
bcsstk03 112 640 106.78 53.38
bcsstk04 132 3,648 130.99 36.12
bcsstk05 153 2,423 100.36 61.23
bcsstk06 420 7,860 903.92 84.59
bcsstk08 1,074 12,960 841.35 57.45
bcsstk09 1,083 18,437 70.77 76.98
bcsstk10 1,086 22,070 808.63 163.07
bcsstk11 1,473 34,241 944.53 449.81
bcsstk14 1,806 63,454 1,479.11 116.62

49

bcsstk15 3,948 117,816 2,257.90 220.28
bcsstk16 4,884 290,378 115.51 99.27
bcsstk17 10,974 428,650 4,850.44 1,471.53
bcsstk18 11,948 149,090 6,750.03 312.94
bcsstk19 817 6,853 510.80 393.18
bcsstk20 485 3,135 86.52 188.36
bcsstk21 3,600 26,600 1,652.66 126.41
bcsstk22 138 696 113.71 54.90
bcsstk23 3,134 45,178 654.35 4,537.62
bcsstk24 3,562 159,910 2,273.14 757.14
bcsstk25 15,439 252,241 5,876.04 547.27
bcsstk26 1,922 30,336 3,720.88 442.80
bcsstk27 1,224 56,126 252.06 98.61
bcsstk28 4,410 219,024 5,156.26 2,366.56
bcsstk34

Boeing
588 21,418 209.76 48.43

bcsstk36 23,052 1,143,140 291,432.00 143,855.00
bcsstk38 8,032 355,460 1,981.24 2,329.15
bcsstm02

HB

66 66 5.69 2.26
bcsstm05 153 153 12.21 6.82
bcsstm06 420 420 44.10 9.97
bcsstm07 420 7,252 88.09 22.38
bcsstm08 1,074 1,074 31.00 9.84
bcsstm09 1,083 1,083 9.53 9.76
bcsstm11 1,473 1,473 18.23 9.76
bcsstm12 1,473 19,659 1,087.48 169.59
bcsstm19 817 817 99.63 5.67
bcsstm20 485 485 79.67 9.79
bcsstm21 3,600 3,600 7.43 6.99
bcsstm22 138 138 23.95 6.80
bcsstm23 3,134 3,134 1,308.53 6.66
bcsstm24 3,562 3,562 3,842.09 6.95
bcsstm25 15,439 15,439 2,114.48 7.70
bcsstm26 1,922 1,922 837.74 9.75
bcsstm39 Boeing 46,772 46,772 133.32 12.39
bmw7st_1

GHS_psdef
141,347 7,318,399 1,379.86 34,953.20

bmwcra_1 148,770 10,641,602 24,893.20 24,314.00
bodyy4

Pothen
17,546 121,550 57.85 51.12

bodyy5 18,589 128,853 135.75 88.85
bodyy6 19,366 134,208 305.96 149.61
cbuckle TKK 13,681 676,515 1,422.49 547.02
crankseg_1 GHS_psdef 52,804 10,614,210 4,857.00 1,964.24

50

crankseg_2 63,838 14,148,858 8,121.08 2,844.22
ct20stif Boeing 52,329 2,600,295 5,740.07 73,150.30
hood GHS_psdef 220,542 9,895,422 26,354.00 11,870.70
lund_a

HB
147 2,449 110.48 43.07

lund_b 147 2,441 126.48 29.82
m_t1 DNVS 97,578 9,753,570 149,628.00 997,938.00
mesh1e1

Pothen

48 306 9.48 8.72
mesh1em1 48 306 13.33 13.26
mesh1em6 48 306 9.07 9.25
mesh2e1 306 2,018 31.15 29.83
mesh2em5 306 2,018 30.59 31.17
mesh3e1 289 1,377 14.20 13.82
mesh3em5 289 1,377 13.18 12.87
msc00726

Boeing

726 34,518 275.77 57.35
msc01050 1,050 26,198 7,376.73 484.92
msc01440 1,440 44,998 417.70 188.70
msc04515 4,515 97,707 1,487.28 1,388.02
msc10848 10,848 1,229,776 4,450.60 1,850.33
msc23052 23,052 1,142,686 299,498.00 124,719.00
msdoor INPRO 415,863 19,173,163 191,588.00 237,997.00
nasa1824

nasa

1,824 39,208 1,525.69 598.28
nasa2146 2,146 72,250 103.11 98.55
nasa2910 2,910 174,296 2,486.12 712.06
nasa4704 4,704 104,756 5,675.62 2,205.69
nasasrb 54,870 2,677,324 23,045.90 9,470.15
nos1

HB

237 1,017 686.47 170.06
nos2 957 4,137 9,702.24 1,452.95
nos3 960 15,844 91.66 94.28
nos4 100 594 30.58 34.27
nos5 468 5,172 145.41 83.14
oilpan GHS_psdef 73,752 2,148,558 28,315.50 24,384.80
olafu Simon 16,146 1,015,156 17,846.90 17,632.20
plbuckle TKK 1,282 30,644 645.89 86.00
pwtk Boeing 217,918 11,524,432 1,549,860.00 186,571.00
raefsky4 Simon 19,779 1,316,789 563.86 216.64
s1rmq4m1

Cylshell

5,489 262,411 1,379.77 353.54
s1rmt3m1 5,489 217,651 1,617.91 388.86
s2rmq4m1 5,489 263,351 6,169.27 867.26
s2rmt3m1 5,489 217,681 8,508.76 1,156.27
s3dkq4m2

GHS_psdef
90,449 4,427,725 668,155.00 188,462.00

s3dkt3m2 90,449 3,686,223 558,995.00 331,401.00

51

s3rmq4m1
Cylshell

5,489 262,943 24,709.30 11,712.40
s3rmt3m1 5,489 217,669 33,483.40 16,997.90
s3rmt3m3 5,357 207,123 52,018.90 19,536.40
ship_001

DNVS

34,920 3,896,496 36,991.00 39,336.60
ship_003 121,728 3,777,036 635,500.00 752,947.00
shipsec1 140,874 3,568,176 219,107.00 27,991.60
shipsec5 179,860 4,598,604 259,165.00 1,341,540.00
shipsec8 114,919 3,303,553 158,141.00 227,646.00
smt TKK 25,710 3,749,582 9,807.78 5,910.60
sts4098 Cannizzo 4,098 72,356 4,198.82 183.63
vanbody GHS_psdef 47,072 2,329,056 8,713.63 35,287.80

Appendix	
 A-­‐2. Number	
 of	
 Iterations	
 of	
 all	
 125	
 Matrices	
 in	
 10	
 Configurations	

Table A-2 Number of Iterations

Name CG ω(0.01) ω(0.25) ω(0.5) ω(0.75) ω(1) ω(1.25) ω(1.5) ω(1.75) ω(1.99)
Emilia_939 ∞ 8,501 5,492 4,764 5,241 ∞ ∞ ∞ ∞ ∞
Fault_639 ∞ 5,074 3,260 3,410 11,580 ∞ ∞ ∞ ∞ ∞
Flan_1565 8,960 4,196 3,121 3,246 ∞ ∞ ∞ ∞ ∞ ∞
Geo_1438 16,730 1,194 854 702 669 721 1,017 18,161 ∞ ∞
Hook_1498 6,958 4,553 3,233 2,674 2,910 3,494 4,127 5,177 7,380 30,778
Serena 16,335 724 529 651 1,148 2,430 6,328 13,286 ∞ ∞
apache2 4,453 3,662 2,874 2,370 2,198 2,176 2,223 2,309 2,432 2,579
audikw_1 65,164 5,350 18,410 136,720 ∞ ∞ ∞ ∞ ∞ ∞
inline_1 70,735 27,179 20,267 ∞ ∞ ∞ ∞ ∞ ∞ ∞
ldoor 14,260 4,095 3,488 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Kuu 531 493 394 339 353 538 4,141 106,178 ∞ ∞
Muu 57 19 15 14 17 27 45 90 566 5,248
af_0_k101 20,626 10,570 8,334 6,653 6,388 6,545 7,250 8,205 9,431 11,513
af_1_k101 22,466 10,190 8,049 6,567 6,270 6,631 7,448 8,213 9,307 11,407
af_2_k101 16,650 8,719 5,962 4,594 4,351 4,584 5,540 6,122 6,833 9,441
af_3_k101 9,391 4,590 3,517 2,861 2,686 2,699 2,890 3,314 5,507 7,685
af_4_k101 16,928 8,775 6,877 5,346 4,942 5,254 5,600 6,128 6,535 5,214
af_5_k101 16,147 8,397 6,506 5,276 4,855 5,042 5,392 5,771 6,691 5,718
apache1 1,553 1,889 1,789 1,521 1,428 1,412 1,475 1,521 2,006 2,179
bcsstk01 125 46 71 90 110 137 163 186 208 232
bcsstk02 47 44 60 53 54 61 72 84 92 100
bcsstk03 301 119 322 580 897 1,242 1,446 1,866 2,172 2,423

52

bcsstk04 362 67 71 99 158 216 290 367 468 559
bcsstk05 273 128 97 102 125 167 228 307 375 431
bcsstk06 2,614 183 1,027 2,030 2,965 4,471 7,129 15,671 25,498 40,839
bcsstk08 2,431 116 537 898 1,266 1,808 2,455 3,228 4,383 5,719
bcsstk09 193 172 184 197 255 358 510 660 1,027 1,572
bcsstk10 2,337 376 257 271 432 1,106 2,638 15,035 212,167 ∞
bcsstk11 2,712 1,008 1,378 4,631 13,219 40,740 240,913 ∞ ∞ ∞
bcsstk14 4,305 243 2,147 7,788 17,420 37,819 91,922 262,680 ∞ ∞
bcsstk15 6,337 456 2,593 7,289 16,260 32,545 71,428 250,915 ∞ ∞
bcsstk16 276 167 118 94 95 109 274 1,057 6,635 183,503
bcsstk17 11,424 2,359 2,532 8,084 91,023 ∞ ∞ ∞ ∞ ∞
bcsstk18 17,974 607 24,491 115,184 339,025 ∞ ∞ ∞ ∞ ∞
bcsstk19 1,428 931 38,959 79,667 144,059 218,940 304,379 423,082 ∞ ∞
bcsstk20 243 446 33,885 64,150 90,612 148,623 213,657 312,902 434,665 ∞
bcsstk21 4,769 285 239 228 260 295 361 436 519 704
bcsstk22 311 116 100 113 130 165 200 247 300 350
bcsstk23 1,871 10,169 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
bcsstk24 6,276 1,568 159,671 ∞ ∞ ∞ ∞ ∞ ∞ ∞
bcsstk25 14,405 964 162,506 ∞ ∞ ∞ ∞ ∞ ∞ ∞
bcsstk26 10,748 1,010 12,876 52,273 134,597 456,027 ∞ ∞ ∞ ∞
bcsstk27 713 203 429 2,580 17,155 86,830 ∞ ∞ ∞ ∞
bcsstk28 13,547 4,565 2,970 3,969 18,586 ∞ ∞ ∞ ∞ ∞
bcsstk34 592 97 67 69 99 286 807 2,539 6,352 16,131
bcsstk36 ∞ 153,547 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
bcsstk38 4,401 3,447 78,272 366,004 ∞ ∞ ∞ ∞ ∞ ∞
bcsstm02 12 1 1 1 1 1 1 1 1 1
bcsstm05 18 1 1 1 1 1 1 1 1 1

53

bcsstm06 102 1 1 1 1 1 1 1 1 1
bcsstm07 235 36 347 1,223 2,237 3,578 5,133 6,859 9,676 12,988
bcsstm08 65 1 1 1 1 1 1 1 1 1
bcsstm09 2 1 1 1 1 1 1 1 1 1
bcsstm11 26 1 1 1 1 1 1 1 1 1
bcsstm12 3,159 385 222 698 5,570 41,689 ∞ ∞ ∞ ∞
bcsstm19 275 1 1 1 1 1 1 1 1 1
bcsstm20 206 1 1 1 1 1 1 1 1 1
bcsstm21 3 1 1 1 1 1 1 1 1 1
bcsstm22 53 1 1 1 1 1 1 1 1 1
bcsstm23 3,770 1 1 1 1 1 1 1 1 1
bcsstm24 11,110 1 1 1 1 1 1 1 1 1
bcsstm25 5,783 1 1 1 1 1 1 1 1 1
bcsstm26 2,397 1 1 1 1 1 1 1 1 1
bcsstm39 319 1 1 1 1 1 1 1 1 1
bmw7st_1 668 9,502 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
bmwcra_1 10,027 5,014 2,923 4,108 106,348 ∞ ∞ ∞ ∞ ∞
bodyy4 134 87 72 63 62 67 75 84 107 373
bodyy5 337 160 137 125 130 141 158 185 233 1,419
bodyy6 801 285 261 247 262 298 329 369 568 4,499
cbuckle 2,918 669 2,226 4,925 14,475 300,286 ∞ ∞ ∞ ∞
crankseg_1 2,086 423 1,510 58,794 ∞ ∞ ∞ ∞ ∞ ∞
crankseg_2 2,716 473 2,683 125,089 ∞ ∞ ∞ ∞ ∞ ∞
ct20stif 6,251 45,160 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
hood 10,161 2,370 1,520 15,792 ∞ ∞ ∞ ∞ ∞ ∞
lund_a 277 84 111 212 300 384 492 582 748 985
lund_b 301 53 57 102 173 313 481 680 871 1,064

54

m_t1 68,035 232,229 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mesh1e1 16 12 10 9 8 9 11 14 17 21
mesh1em1 27 21 17 15 14 15 17 20 24 29
mesh1em6 16 13 11 9 9 9 9 11 13 16
mesh2e1 70 55 45 39 41 50 66 91 141 197
mesh2em5 56 59 46 40 39 44 56 75 96 127
mesh3e1 17 14 11 10 10 10 11 15 21 29
mesh3em5 12 12 11 9 9 9 10 11 14 16
msc00726 759 115 80 75 109 289 668 1,749 4,139 8,943
msc01050 20,863 1,015 947 1,924 3,790 7,807 17,580 37,819 66,239 118,431
msc01440 1,138 405 946 3,542 8,435 15,831 27,799 39,595 62,475 88,644
msc04515 4,086 3,118 2,962 5,495 11,016 173,760 ∞ ∞ ∞ ∞
msc10848 7,530 1,814 21,489 92,396 ∞ ∞ ∞ ∞ ∞ ∞
msc23052 ∞ 129,259 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
msdoor 40,058 25,881 17,836 ∞ ∞ ∞ ∞ ∞ ∞ ∞
nasa1824 4,403 1,308 2,227 5,200 13,812 34,225 95,589 356,728 ∞ ∞
nasa2146 264 200 155 201 703 5,389 ∞ ∞ ∞ ∞
nasa2910 6,589 1,333 1,296 2,301 4,985 14,065 42,805 195,105 ∞ ∞
nasa4704 15,753 4,670 49,977 190,616 ∞ ∞ ∞ ∞ ∞ ∞
nasasrb 25,529 5,978 21,850 82,679 ∞ ∞ ∞ ∞ ∞ ∞
nos1 1,934 379 652 1,339 2,012 2,695 3,514 4,263 4,909 5,114
nos2 27,362 3,458 52,454 103,177 132,011 161,595 187,044 211,297 243,428 300,669
nos3 245 214 159 127 117 117 165 344 1,026 3,476
nos4 78 72 59 49 45 44 48 55 69 90
nos5 368 180 145 122 115 114 119 146 167 187
oilpan 32,080 16,253 7,197 185,774 ∞ ∞ ∞ ∞ ∞ ∞
olafu 32,141 20,369 69,267 452,639 ∞ ∞ ∞ ∞ ∞ ∞

55

plbuckle 1,775 188 166 184 213 338 529 1,328 3,582 9,621
pwtk ∞ 32,872 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
raefsky4 920 203 705 1,099 4,174 132,824 60,931 182,062 ∞ ∞
s1rmq4m1 3,470 666 7,570 23,643 89,030 ∞ ∞ ∞ ∞ ∞
s1rmt3m1 4,252 755 3,831 9,582 17,779 253,661 ∞ ∞ ∞ ∞
s2rmq4m1 16,167 1,668 92,631 308,464 ∞ ∞ ∞ ∞ ∞ ∞
s2rmt3m1 22,614 2,312 50,580 169,851 ∞ ∞ ∞ ∞ ∞ ∞
s3dkq4m2 ∞ 79,292 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
s3dkt3m2 ∞ 167,138 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
s3rmq4m1 56,464 21,364 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
s3rmt3m1 81,987 31,297 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
s3rmt3m3 127,235 36,912 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
ship_001 32,581 18,652 430,440 ∞ ∞ ∞ ∞ ∞ ∞ ∞
ship_003 ∞ 333,512 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
shipsec1 175,059 12,713 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
shipsec5 171,899 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
shipsec8 138,202 112,060 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
smt 9,429 3,141 2,014 11,130 146,509 ∞ ∞ ∞ ∞ ∞
sts4098 10,392 296 616 1,291 2,339 5,214 14,081 45,126 146,108 ∞
vanbody 10,457 24,415 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

56

57

BIBLIOGRAPHY	

1. Ament, Marco, Gunter Knittel, Daniel Weiskopf, and Wolfgang Strasser. 2010.
“A Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on
a Multi-gpu Platform.” In Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference On, 583–592.

2. Axelsson, Owe, and Vincent Allan Barker. 1987. Finite Element Solution of
Boundary Value Problems: Theory and Computation. Vol. 35. Society for
Industrial and Applied Mathematics.

3. Bai, Zhaojun, James Demmel, Jack Dongarra, Axel Ruhe, and Henk Van Der
Vorst. 1987. Templates for the Solution of Algebraic Eigenvalue Problems: a
Practical Guide. Vol. 11. Society for Industrial and Applied Mathematics.

4. Barrett, Richard, Michael Berry, Tony F. Chan, James Demmel, June Donato,
Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der
Vorst. 1987. Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. 43. Society for Industrial and Applied Mathematics.

5. Benzi, Michele, Jane K. Cullum, and Miroslav Tuma. 2000. “Robust
Approximate Inverse Preconditioning for the Conjugate Gradient Method.” SIAM
Journal on Scientific Computing 22 (4): 1318–1332.

6. Benzi, Michele, and Miroslav Tuma. 1998. “A Sparse Approximate Inverse
Preconditioner for Nonsymmetric Linear Systems.” SIAM Journal on Scientific
Computing 19 (3): 968–994.

7. ———. 1999. “A Comparative Study of Sparse Approximate Inverse
Preconditioners.” Applied Numerical Mathematics 30 (2): 305–340.

8. Bolz, Jeff, Ian Farmer, Eitan Grinspun, and Peter Schröoder. 2003. “Sparse
Matrix Solvers on the GPU: Conjugate Gradients and Multigrid.” In ACM
Transactions on Graphics (TOG), 22:917–924.

9. Chou, Chung-Han, Nien-Yu Tsai, Hao Yu, Che-Rung Lee, Yiyu Shi, and Shih-
Chieh Chang. 2011. “On the Preconditioner of Conjugate Gradient method—A
Power Grid Simulation Perspective.” In Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference On, 494–497.

58

10. Chow, Edmond, and Yousef Saad. 1998. “Approximate Inverse Preconditioners
via Sparse-sparse Iterations.” SIAM Journal on Scientific Computing 19 (3): 995–
1023.

11. Concus, Paul, and Gene H. Golub. 1976. A Generalized Conjugate Gradient
Method for Nonsymmetric Systems of Linear Equations. Springer.

12. Cosgrove, J. D. F., J. C. Diaz, and A. Griewank. 1992. “Approximate Inverse
Preconditionings for Sparse Linear Systems.” International Journal of Computer
Mathematics 44 (1-4): 91–110.

13. Davis, Timothy A., and Yifan Hu. 2011. “The University of Florida Sparse
Matrix Collection.” ACM Transactions on Mathematical Software (TOMS) 38 (1):
1.

14. Georgescu, Serban, and Hiroshi Okuda. 2007. “Conjugate Gradients on Graphic
Hardware: Performance & Feasibility.”

15. Gravvanis, G. A. 2002. “Explicit Approximate Inverse Preconditioning
Techniques.” Archives of Computational Methods in Engineering 9 (4): 371–402.

16. Gregg, Chris, and Kim Hazelwood. 2011. “Where Is the Data? Why You Cannot
Debate CPU Vs. GPU Performance Without the Answer.” In Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International Symposium
On, 134–144.

17. Grote, Marcus J., and Thomas Huckle. 1997. “Parallel Preconditioning with
Sparse Approximate Inverses.” SIAM Journal on Scientific Computing 18 (3):
838–853.

18. Gui, Yechen, and Guijuan Zhang. 2012. “An Improved Implementation of
Preconditioned Conjugate Gradient Method on GPU.” Journal of Software 7 (12):
2695–2702.

19. Helfenstein, Rudi, and Jonas Koko. 2011. “Parallel Preconditioned Conjugate
Gradient Algorithm on GPU.” Journal of Computational and Applied
Mathematics.

20. Hestenes, Magnus Rudolph, and Eduard Stiefel. 1952. Methods of Conjugate
Gradients for Solving Linear Systems. NBS.

59

21. Knyazev, Andrew V., and Ilya Lashuk. 2007. “Steepest Descent and Conjugate
Gradient Methods with Variable Preconditioning.” SIAM Journal on Matrix
Analysis and Applications 29 (4): 1267–1280.

22. Kolotilina, L. Yu, and A. Yu Yeremin. 1993. “Factorized Sparse Approximate
Inverse Preconditionings I. Theory.” SIAM Journal on Matrix Analysis and
Applications 14 (1): 45–58.

23. Lee, Victor W., Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
and Per Hammarlund. 2010. “Debunking the 100X GPU Vs. CPU Myth: An
Evaluation of Throughput Computing on CPU and GPU.” In ACM SIGARCH
Computer Architecture News, 38:451–460.

24. Li, Ruipeng, and Yousef Saad. 2013. “GPU-accelerated Preconditioned Iterative
Linear Solvers.” The Journal of Supercomputing 63 (2): 443–466.

25. Michels, Dominik. 2011. “Sparse-matrix-CG-solver in CUDA.” In Proceedings of
the 15th Central European Seminar on Computer Graphics.

26. Naumov, Maxim. 2011a. “Parallel Solution of Sparse Triangular Linear Systems
in the Preconditioned Iterative Methods on the GPU”. NVIDIA Technical Report,
NVR-2011-001.

27. ———. 2011b. “Incomplete-LU and Cholesky Preconditioned Iterative Methods
Using CUSPARSE and CUBLAS.” Nvidia White Paper.

28. Saad, Yousef. 2003. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics.

29. Van der Sluis, Abraham, and Henk A. van der Vorst. 1986. “The Rate of
Convergence of Conjugate Gradients.” Numerische Mathematik 48 (5): 543–560.

30. Whitehead, Nathan, and Alex Fit-Florea. 2011. “Precision & Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs.” Rn (A+ B) 21: 1–
1874919424.

31. Yu, Song, Hui Liu, Zhangxin John Chen, Ben Hsieh, and Lei Shao. 2012. “GPU-
based Parallel Reservoir Simulation for Large-scale Simulation Problems.” In
SPE Europec/EAGE Annual Conference.

	MU_Master_Thesis_2013-05-15_SecondSubmit
	MU_Master_Thesis_2013-05-15_SecondSubmit.2
	MU_Master_Thesis_2013-05-15_SecondSubmit.3

