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PRECONDITIONED CONJUGATE GRADIENT SOLVER  

FOR STRUCTRUAL PROBLEMS 

Xiangge Li 

Dr. Ye Duan, Thesis Supervisor 

ABSTRACT 

Matrix solvers play a crucial role in solving real world physics problem. In 

engineering practice, transition analysis is most often used, which requires a series of 

similar matrices to be solved. However, any specific solver with/without preconditioner 

cannot achieve high performance gain for all matrices. This paper recommends 

Conjugate Gradient iterative solver with SSOR approximate inverse preconditioner for 

general engineering practice instead of Conjugate Gradient alone. The author uses 

experiments on 125 symmetric positive definite matrices derived from real structural 

problems to endorse this recommendation. SSOR approximate inverse preconditioner 

shows a competitive advantage to provide stable performance improvement (average 

12.6x speedup to CG). And, a general setting (ω = 0.01) will effectively prevent the 

failure of SSOR approximate inverse preconditioner among a wide range of data derived 

from analysis of structural problems. 
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CHAPTER 1. INTRODUCTION 

The solution to sparse linear systems plays a crucial role in such engineering fields as 

physics based modeling and simulation, circuit simulation, mechanics of materials, 

geophysics and many other application fields. For example, the matrix Geo_1438 (Davis 

and Hu 2011) used in my experiments comes from a real geomechanical problem. The 

matrix is used to calculate 3D discretized displacement of a deformed region of the earth 

crust subject to underground force. In this linear system   ! ! = ! , the unknown 

vectors !  represent the 3D discretized displacement of an earth crust region, where 

right side vectors !  represents the underground force inside and outside of this crust 

region. The coefficient matrix !  is the model that couples relationship of the 

deformation displacements of the crust and underground force.  

Two categories of methods are used to solve linear systems: direct methods and iterative 

methods. Direct methods are based on variants of Gaussian elimination, which is direct 

and easy to understand. The unknowns will be solved one by one in continuous iterations. 

However it does not show good scalability. On the contrary, iterative methods are 

suggested for a sparse linear system especially when matrix size increases to a very large 

scale. 

The iterative methods exhibit better parallelism and then scale well on solving larger 

problems. Many iterative methods have been proposed and analyzed from a mathematical 

viewpoint. The non-stationary iterative methods derived from Krylov subspace have been 

proved to be highly effective (Bai et al. 1987), especially for solving sparse linear 

systems. This paper targets the Conjugate Gradient iterative method which is one of the 

families designed for solving symmetric positive definite linear systems. Theoretically, 
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preconditioners, matrices used to transform a coefficient matrix to show a more favorable 

spectrum property for converging, also are proved to be an efficient way to improve 

performance of the iterative method. However, no silver bullet can be found to solve all 

matrices quickly and easily. Each combination of an iterative method and a configured 

preconditioner, which from hereon will be referred to as a method configuration in this 

paper, has its limitations and only works efficiently for particular matrices. Engineering 

practices expect a method configuration to facilitate solving matrices in a wide range. 

In practice, applying a preconditioner into iterative methods introduces extra costs, both 

for constructing the preconditioner during the initial step and when applying 

transformation per iteration. A preconditioner with impressive improvement in 

converging iterations may introduce heavy extra cost during the constructing step and 

may eventually compromise the whole performance (Naumov 2011a). Too simple of a 

preconditioner, like the Jacob preconditioner, brings too little impact on the performance 

of iterative methods (Ament et al. 2010). And, if the coefficient matrix naturally shows 

good spectral property, which directly fits well within the iterative method, applying a 

preconditioner is unnecessary. One example of a good fit can be found in the superlinear 

convergence scenario for the Conjugate Gradient (Concus and Golub 1976). Applying a 

preconditioner requires solving two triangular matrices per iteration, which is hard to 

parallel and is the bottleneck to applying preconditioners. To balance the performance 

improvement by preconditioner and the overhead for applying the preconditioner, 

approximate inverse preconditioners have been introduced into the world. By taking side 

effect of accuracy and robustness loss in the approximation, the new approximate inverse 

preconditioners can be directly applied by an easily paralleled matrix-vector 
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multiplication operation (Benzi, Cullum, and Tuma 2000; Benzi and Tuma 1999; Benzi 

and Tuma 1998; Chow and Saad 1998; Cosgrove, Diaz, and Griewank 1992; Gravvanis 

2002; Kolotilina and Yeremin 1993; Grote and Huckle 1997). General research suggests 

that an approximate inverse preconditioner should be used on finite difference 

discretization of boundary value problems, whose coefficient matrices tends to “more 

diagonally dominant”(Benzi and Tuma 1999). However, since the approximation impairs 

the robustness of the SSOR preconditioner, SSOR approximate inverse (SSOR-AI) is 

more likely to cause convergence failure than SSOR preconditioner. This problem 

requires an SSOR-AI method configuration that can successfully prevent convergence 

failure for the majority of the time. 

GPU computing, which serves as a cheap massive parallel solution, has been widely used 

in this field and has proven to be more efficient than CPU, especially for large sparse 

matrices. Most existing research is focused on tuning the performance for a specific 

matrix to claim a very high speed up. The Poisson equation has been used for analysis in 

many papers (Helfenstein and Koko 2011; Gui and Zhang 2012; Michels 2011; Ament et 

al. 2010), as the non-zero elements in the coefficient matrix of Poisson equations are 

scattered into larger bands for applying iterative methods. A special preconditioner, 

Incomplete Poisson (Ament et al. 2010), which evolved from sparse approximate inverse 

algorithms, has been developed for solving Poisson equations only. Previous research 

analyzed various preconditioners on GPU, such as Parallel Conjugate Gradient algorithm 

combined with Jacobi (Georgescu and Okuda 2007; Ament et al. 2010), Incomplete 

Cholesky (Gui and Zhang 2012), Incomplete LU (Gui and Zhang 2012), ILU (0)/SSOR 

(Ament et al. 2010; Yu et al. 2012), and SSOR Approximate Inverse (Helfenstein and 
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Koko 2011) preconditioners. Although the studies mentioned above all claimed very high 

speed up (up to 15x) for performance of GPU compared to CPU in solving linear systems, 

papers from Intel researches (Lee et al. 2010) and (Gregg and Hazelwood 2011) 

challenged previous reports of 10x to 1000x speed up reports on GPU stating that these 

results were obtained only when comparing GPU with an insufficient CPU tuning code, 

and the reasonable GPU performance speed up narrows to an average of 2.5x that of CPU. 

Gui and Zhang  (2012) claim more than 7x speed up in solving Poisson equations, but 

their study only compares the GPU results with a single thread CPU implementation 

without exploiting the intuitive performance improvement methods: multi-threading 

technology or BLAS/LAPACK libraries. The paper from NVIDIA researchers (Naumov 

2011b) also supports the low speed up results.  The NVIDIA paper compares Conjugate 

Gradient with multiple preconditioners among multiple matrices set to report only an 

average speed up range from 2.07x to 2.69x. The reports are based on compatible 

experimental environments with leading commercial linear algebra libraries, which are 

NVIDIA CUBLAS & CUSPARSE libraries for GPU and the Intel MKL library for CPU. 

Li and Saad (2013) also compared different preconditioners for Conjugate Gradient 

method among a wide range of data. The overall performance reported in this study of 

GPU to CPU was also less than 4x. 

 A speed up cannot be guaranteed when applying GPU solver with the same 

configuration among different matrices (Li and Saad 2013; Naumov 2011b). When 

conducting continuous computation/simulation on several time sensitive matrices (Bolz 

et al. 2003), preconditioner tuning is limited in its ability to adapt to continuous data sets. 

Some previous research (Bolz et al. 2003) focusing on simulation of specific problem  
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provided approximately a 2x speed up on GPU, which is still a very impressive speedup 

compared to CPU. Therefore solving matrices on GPU has proven to be efficient in 

engineering practice. 

On the other hand, method configuration with a higher speed up does not mean the 

calculation time for this configuration is the best among all configurations (Yu et al. 

2012).  Preconditioners that are easier to be paralleled and show higher speed up on GPU 

are not guaranteed to provide the best convergence improvement in calculation.  

In this study, I chose SSOR approximate inverse preconditioner for Conjugate Gradient 

solver to provide stable performance improvement to CG on GPU. SSOR preconditioner 

has proven effective on improving convergence and is easy to construct. SSOR-AI 

preconditioner keeps effective convergence improvement feature of SSOR and is also 

easy to construct. Furthermore, the application of the SSOR-AI only needs an extra 

matrix-vector multiplication in each iteration, so it is easy to be paralleled on GPU with 

relatively low overhead. The robustness loss, which may deteriorate convergence, in the 

approximation was the major problem encountered in this research. The following 

research questions are addressed in this paper: 

1. When applying SSOR approximate inverse preconditioner, will the convergence 

rate suddenly deteriorate with a specific or range of ! value? 

2. Are any patterns visible in the relationship of convergence rate to ! values? 

3. Is there any method configuration which can be used to make sure applying 

SSOR approximate inverse preconditioner gains universal advantages to 

Conjugate Gradient solver without a preconditioner? 
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CHAPTER	
  2. BACKGROUND	
  

2.1. Matrix	
  Computation	
  

2.1.1. Storage	
  Format	
  for	
  Vector	
  and	
  Matrix	
  

Two categories of storage formats exist for vector and matrix: dense format and sparse 

format. Dense format is a storage policy that linearly stores all elements of matrix/vector 

in memory. On the contrary, sparse format is a storage policy that only stores non-zero 

elements in memory along with position information of those elements. The common 

used position indices are zero-based and one-based, whose index base respectively are 

zero and one.  

The following matrix is an M*N size zero-based indexing matrix: 

A!,! A!,! ⋯ A!,!!!
A!,! A!,! … A!,!!!
⋮ ⋮ ⋱ ⋮

A!!!,! A!!!,! … A!!!,!!!

 

The following matrix is an M*N size one-based indexing matrix: 

A!,! A!,! ⋯ A!,!
A!,! A!,! … A!,!
⋮ ⋮ ⋱ ⋮

A!,! A!,! … A!,!

In mathematics world, row vector and column vector are different. However, their 

storage in memory are the same with extra explicit (some tag in structure) or implicit 

(semantics in algorithm) information to identify them. Dense format vector is a single 

data array linearly stored in memory. Sparse format vector is composed by a data array 

stored all non-zero elements in the vector and an integer index array that stored positions 

of those non-zero elements in equivalent dense format vector. 
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In solving linear systems, two dimensional matrices are used. Memory is linear structured, 

so two dimensional matrixes have to be serialized into one dimensional memory 

representation. Two major formats are used to represent two dimensional matrices: row-

major format and column-major format. In row-major format matrix, all elements in a 

row are sequentially (column index from low to high) placed in memory before storing 

any element in rows with higher row index. In column-major format matrix, all elements 

in a column are sequentially (row index from low to high) placed in memory before 

storing any element in columns with higher column index. 

For example, a one-based M * N dense matrix A 

A!,! A!,! ⋯ A!,!
A!,! A!,! … A!,!
⋮ ⋮ ⋱ ⋮

A!,! A!,! … A!,!

 will be serialized in memory as  

[  A!,!    A!,!   ⋯A!,!  A!,!    A!,!⋯A!,!   ⋯A!,!    A!,!⋯A!,!  ]   (In Row-major format) or 

  A!,!    A!,!   ⋯A!,!  A!,!    A!,!⋯A!,!   ⋯A!,!    A!,!⋯A!,!    (In Column-major format). 

Sparse matrix format will be discussed in Chapter 2.2. 

2.1.1. Matrix/Vector	
  Add/Subtract/Multiplication	
  

It is easy to use block division or row/column division to distribute whole matrix 

computation into multiple independent smaller matrix computation. This key feature of 

these operations’ domain division is independent subdomain resolution. Any subdomain 

problem can be solved independent without any interference of other subdomain 

problems. So only one synchronization operation will be needed to make sure all 

subdomain results are solved. That is the perfect fit for Single Instruction Multiple Data 

(SIMD) parallel architecture: multiple data blocks will be processed homogeneously. 
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Element-wise operations for Matrix/Vector Addition and Subtraction are ! !, ! =

! !, ! ± ![!, !]. All operations to each element are independent, so it is easy to be 

parallel. 

Element-wise operations for matrix-vector multiplication is  ! ! = (! !, ! ∗ ![!]!
!!! ). 

The operations for different ! !  is also independent, and it also easy to be parallel. 

2.1.1. Matrix	
  Solver	
  –	
  Direct	
  Method	
  	
  

Direct method is typically derived from Gaussian elimination. Direct method Solver use 

two steps to solve   ! ! = ! : 

1. Compute the factorization of coefficient matrix   !  

2. Use the factorization to solve    ! ! = !  

The first step is the most intensive part. After the first step, the second step can be easily 

applied and cost only trivial effort comparing to first step. Many methods have been 

developed to reuse the factorization result in step1 to solve many right side vectors ! . 

Factorization step, or step 1, only need to be done once or fewer times than step 2, so 

computation time would be saved. 

In Gaussian elimination, an N*(N+1) augment matrix would be used to solve 

! ! = ! . Initially the augment matrix will be initiated as   ! ! , then multiple steps 

of elimination will be applied to augment matrix. The final result in augment matrix 

would be   ! ! , where matrix !  is unit matrix. 

For example, the augment matrix of equations 

!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!

!!
!!
!!
!!

=

!!
!!
!!
!!
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Would be  

!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!
!!,! !!,! !!,! !!,!

!!
!!
!!
!!

   (2.1.1) 

Gaussian elimination will first eliminate all elements in lower triangular part of the 

matrix to zeros. 

!!,! !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 0 !!,! !!,!
0 0 0 !!,!

!!!
!!!
!!!
!!!

 

Upper triangular part of the matrix will be eliminated to zeros in next step. 

!!,! 0 0 0
0 !!,! 0 0
0 0 !!,! 0
0 0 0 !!,!

!!!!
!!!!
!!!!
!!!!

 

And finally remaining matrix will be normalized with diagonal elements. 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

!!
!!
!!
!!

 

Gauss-Jordon elimination is alternative algorithm to Gaussian elimination. Gauss-Jordon 

elimination will eliminate all elements except the diagonal element in a column to zeros 

and normalize the diagonal element to one in each step. 

(2.2.1) =

1 !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 !!,! !!,! !!,!
0 !!,! !!,! !!,!

!!!
!!!
!!!
!!!

=

1 0 !!,! !!,!
0 1 !!,! !!,!
0 0 !!,! !!,!
0 0 !!,! !!,!

!!!!
!!!!
!!!!
!!!!

 

=

1 0 0 !!,!
0 1 0 !!,!
0 0 1 !!,!
0 0 0 !!,!

!!!!!
!!!!!
!!!!!
!!!!!

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

!!
!!
!!
!!

 



10 
 

These two algorithms require the same amount of calculation in total. However, Gauss-

Jordon Elimination processes the same amount of calculation in half of inter-dependent 

iterations which are needed for Gaussian Elimination. By reducing number of iterations 

to half, Gauss-Jordon Elimination requires less synchronization between iterations and 

exposes more parallelism per iteration. By performing row elimination on all rows per 

iteration, Gauss-Jordon Elimination redistributes homogenous loads to all iterations that 

shows balanced job load among all iterations. 

2.1.2. Matrix	
  Solver	
  –	
  Multiplication	
  of	
  Inverse	
  Matrix	
  

Another intuitive method to solve    A x = b  is   x = A !! b . By first calculating 

inverse matrix A !!of coefficient matrix   A , then right side vectors b   is left multiplied 

by inverse matrix   A !! to get vector result   x . This method can also be used to solve 

multiple right side vectors    b  to save computation time. However, the memory 

requirements for solving A !! are much larger than other methods. 

The inverse matrix A !! can be solved with following equation: 

A A !! = I  

The solving process also can use Gaussian/Gauss-Jordon elimination with an N*(2N) size 

augment matrix. 

2.2. Sparse	
  Matrix	
  	
  

In real world practice, the non-zero elements of the coefficient matrix are relative fewer 

to the zero elements of the matrix. Calculations that involved zero elements in the matrix 

can be ignored in most cases. This observation motivates the idea of sparse matrix format 

that only stores non-zero elements of the matrix with extra information to locate elements.  
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As the calculation of majority elements of matrix, zero elements, can be ignored, the 

complexity of algorithm is also dramatically changed. For example, Gauss-Jordon 

elimination in sparse matrix is typically worse than Gaussian elimination because the new 

non-zero elements along with new calculation based on them are introduced in upper 

triangular matrix in the column elimination process. The algorithm for dense matrix 

needs to be reanalyzed in sparse matrix context. 

There are varies of sparse matrix formats. Different formats facilitate different sparse 

matrix patterns and different algorithms.  

2.2.1. Coordinate	
  Format	
  (COO)	
  

In COO format representation, only non-zero elements in the matrix are recorded. COO 

format is composed by three equal elements arrays, respectively storing values of all non-

zero elements, their row indices and column indices along with the number of non-zero 

elements in the matrix. By default, row-major format would be used to serialize 2D 

matrix into value array. For example, the matrix below 

20 0 0 9
0 15 0 0
11 0 8 0
7 0 0 25

      (2.2.1) 

is presented in zero-based COO format as three arrays: 

Row Indices:       0 0 1 2 2 3 3  

Column Indices:  0 3 1 0 2 0 3  

Non-zero Values: 20 9 15 11 8 7 25  
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2.2.2. Compressed	
  Sparse	
  Row/Column	
  Format	
  (CSR	
  /	
  CSC)	
  

In many scenarios, we need to iterate all elements in a row or multiple rows. When using 

row-major COO format, an O (log (number of non-zero elements)) search process has to 

be done to locate the index range of a row’s data. If keeping track of the index range of 

each row’s data in serialized storage, only an O (1) complexity would be enough to locate 

the index range of each row’s data. That introduces row-major CSR format, which stores 

index range of each row’s data instead of storing row indices of all non-zero elements. 

Also for the same reason, we get the column-major CSC format. 

The zero-based CSR format of matrix (2.2.1) is 

Row Pointers:      0 2 3 5 7  

Column Indices:  0 3 1 0 2 0 3  

Non-zero Values:   20 9 15 11 8 7 25  

2.2.3. Ellpack-­‐Itpack	
  Format	
  (ELL)	
  

Ellpack-Itpack sparse matrix format (ELL) uses an N*K data matrix and an N*K indices 

matrix, which contains corresponding column indices of data matrix elements, to 

represent an N*N dense matrix. The K is at least the maximum number of non-zero 

elements per row in the original dense matrix. If the number of non-zero elements in a 

row is less than K, the padding elements of the row will be filled with 0 in data matrix. 

And corresponding column indices of the row will be filled with -1.  

For example, the zero-based ELL format of matrix (2.2.1) is 

Data = 

20 9
15 0
11 8
7 25

 Indices=

0 3
1 −1
0 2
3 −1
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Comparing to COO or CSR format, the ELL format can be calibrated padded to meet 

specific requirements of machine word alignment, cache line alignment, or memory page 

boundary alignment. With the alignment, penalty of misaligned memory access can be 

bypassed. However the memory spatial locality may be compromised due to the padding 

operations. So the K value has to be chosen carefully. 

2.2.4. Diagonal	
  Storage	
  Format	
  (DIA)	
  

Diagonal Storage Format (DIA) uses a data matrix and a distance vector to store all non-

zero elements that reduces the information needed for locating the non-zero elements. A 

K band N*N size dense matrix will be represented as an N*K data matrix and a K 

element distance vector. The elements from same diagonal band will be stored in same 

column of data matrix and the elements from same row will also be stored in same row of 

data matrix. Distance vector stores the distance of each diagonal to main diagonal. The 

negative and positive distance value respectively represents diagonal in lower and upper 

triangular part of matrix. It is particularly usefully for diagonal dominant sparse matrices, 

which normally generated from finite element or finite difference discretization. 

For example, the zero-based DIA format of matrix (2.2.1) is 

Data = 

0 0 20 9
0 0 15 0
0 11 8 0
7 0 25 0

 

Distance = −3 −2 0 3  

2.2.5. Hybrid	
  Formats	
  

Many hybrid formats have been developed to use two sparse matrix format respectively 

represented part in regular pattern and irregular part of non-zero elements of matrix. 
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Among all formats mentioned above, DIA and ELL are effective for sparse matrix-vector 

multiplication, while COO and CSR are more flexible and easy to operate. So 

combination formats of these two categories can be useful. The most widely used hybrid 

format is HYB, a combination of ELL and COO format. 

2.3. Iterative	
  Methods	
  

Unlike the direct methods, iterative methods use an iterative representation to converge to 

the solution with more accurate result iteratively. The solution from iterative methods is 

an approximation of exact solution. All unknowns are solved at the same iteration when 

specified tolerance of residuals is reached. It is impossible to predict the amount of 

iteration needed for convergence of the iterative methods except Jacobi method. However, 

if converged, other iterative methods are converged faster than Jacobi method.  

There are two types of Iterative methods: stationary methods and non-stationary methods. 

Stationary methods are those iterative methods that can be expressed in iterative 

form  {!}! = !!{!}!!! + !! , where !!  and !!  are independent to iterative count k. If 

converged with proper parameter configuration, solution error per iteration will gradually 

downgrade. That is what the “stationary” refers to. Stationary methods are older and 

simpler to implement and usually not as effective as non-stationary methods. Most non-

stationary methods are based on the idea of sequences of orthogonal vectors and can be 

highly effective. The convergence rate of iterative methods substantially depends on the 

spectrum of the coefficient matrix. So a transformation matrix (called preconditioner) that 

transforms the coefficient matrix into one with more favorable spectrum would be crucial 

to the iterative methods. Common preconditioners can be expressed in multiplication of 
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two triangular matrices (Barrett et al. 1987) and those two triangular matrices will be 

solved in sequence. 

Most of the non-stationary iterative methods are based on Krylov subspace. Conjugate 

Gradient (CG) method is the one for solving symmetric positive definite matrices. 

Positive definite is said to an N*N size symmetric matrix !  if for any N elements non-

zero vector ! , ! ! ! !  is positive. 

2.3.1. Conjugate	
  Gradient	
  Method	
  

The Conjugate Gradient (CG) method is the oldest and effective non-stationary method 

for solving symmetric positive definite systems. The conjugate gradient method consists 

of three tightly coupled iterative vectors in any !!! iteration: iterates  ! !   , residuals  ! ! , 

and search directions/paths  ! ! .  

The Conjugate Gradient algorithm is: 

Initial step:  ! ! = ! ! = ! − !! !   

Iterative steps: start from iteration 0, loop step 1 to step 4 until stop criteria meets. 

Step 1: !! =
! ! !

!"#(! ! ,!! ! )
= ! ! !! !

! ! !!! !
 

Step 2: ! !!! = ! ! + !!! !       !"#    ! !!! = ! ! − !!!! !      

Step 3:  !!!! =
! !!! !

! ! ! = ! !!! !
! !!!

! ! !! !
 

Step 4: ! !!! = ! !!! + !!! !  

2.3.2. Preconditioner	
  

The spectral properties of the coefficient matrix determines the convergence rate of 

iterative methods (Hestenes and Stiefel 1952; van der Sluis and van der Vorst 1986). So 
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if we can transform the linear system into equivalent one that has the same solution but 

with more favorable spectral properties, we may boost up the cost of solving process. The 

matrix that served in the transformation is called preconditioner. In other word, 

preconditioner matrix !  approximates the coefficient matrix    ! , and spectral 

properties of ! !! !  is more favorable than [A]. Then transformed system  

! !! ! ! = ! !! !   

has the same solution as the original system    A x = b   and iterative methods applied 

in new transformed system will converge in less iterations than in original system (van 

der Sluis and van der Vorst 1986). 

For symmetric positive definite matrices, the spectral condition number κ is defined as 

! =
!!"#
!!"#

 

with the maximum and minimum eigenvalues λ!"#  and λ!"# . Note that the identity 

matrix has a value of κ = 1. The objective of preconditioning is to transform the original 

system into an equivalent system with the same solution, but a lower condition number. 

So preconditioner M!! should approximate A!! to make new κ approximate to 1. 

The above theoretical transformation will not be directly used in real world scenarios. 

When original coefficient matrix A is symmetric, it is crucial to preserve the symmetry 

for success of some iterative methods. However, transformed coefficient matrix M !! A  

is not guaranteed to remain symmetric nor definite even if A  and M  are. That is why in 

practice, the preconditioner M would be represented in the factored form:    

! = !! !! ,  

Where !!  and !!  are two triangular matrices. The transformed system will be 
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 [ML] -1 [A][MR] -1([MR]{x}) = [ML]-1{b}  

and the preconditioned process will be split into two phase:  

Phase 1: solving {y} from [ML] -1 [A][MR] -1 {y} = [ML]-1{b}  

Phase 2: compute {x}=[MR] -1{y}.  

If coefficient matrix A is symmetric and positive definite, transformed coefficient matrix 

[ML] -1 [A][MR] -1 can preserve symmetric and positive definite properties with choosing 

!! = !!   !.  

2.3.2.1. Jacobi,	
  SGS,	
  SOR	
  and	
  SSOR	
  Preconditioners	
  

One of the simplest ways to generate a preconditioner is performing incomplete 

factorization of coefficient matrix A. There are multiple preconditioners.  

First we decomposed coefficient matrix A as A = L + D + U, where D, L, U represents its 

diagonal, strictly lower and strictly upper triangular part respectively. 

Jacobi preconditioner (or diagonal scaling in Georgescu and Okuda (2007)) can be 

expressed by  

 !!"#$%& = !  

Symmetric Gauss Seidel preconditioner can be expressed by  

 MSGS = ([D]+[L]) * [D]-1([D]+ [U]) 

SOR preconditioner can be expressed by  

 MSOR = ([D]+ω[L])/ω * ([D]+ ω[U])/ ω 

SSOR preconditioner can be expressed by  

 !!!"# ! = !
!!!

!
!
! + ! (!

!
!)!!(!

!
! + !) 
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SSOR preconditioner is a very useful preconditioner. It can be derived from the 

coefficient matrix with minor work and the number of iterations can be reduced to a 

lower order with the optimal ω value. However in practice, the spectral information 

required for calculating the optimal ω is prohibitively expensive to compute.  

optimal ω in SSOR preconditioner is attainable according to Axelsson and Barker (1987). 

However in practice, the effort for calculating matrix spectrum information that is 

required for finding the optimal ω is even harder than solving the matrix itself. The 

number of iterations to converge could be reduced to a lower order (Barrett et al. 1987). 

For symmetric positive definite coefficient matrix, SSOR preconditioner with parameter 

range in  0 < ω < 2 can make sure to converge (from Householder-John theorem). 

2.3.2.2. Incomplete	
  Cholesky	
  Preconditioner	
  

Incomplete Cholesky preconditioner cannot present in simple matrix form, the algorithm 

for generating it is: 

For k=0 to N-1 do   

     !!,! = !!,!; 

     For i=k+1 to N-1 do  

          !!,! =
!!,!
!!,!

; 

     end 

     For j=k+1 to N-1 do 

 For i=j to N-1 do 

      If  (!!,!==0)  then contineu 

     !!,! = !!,! − !!,!!!,!; 
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   end 

      end 

end 

2.3.2.3. Incomplete	
  LU	
  Preconditioners	
  

Incomplete LU (ILU) preconditioner is constructed using Incomplete LU (ILU) 

factorization process. The ILU factorization process computes two triangular matrices, 

sparse lower triangular matrix !  and sparse upper triangular matrix    ! , from 

coefficient matrix !  so that the residual matrix ! = ! ! − !  satisfies certain 

constrains(Saad 2003). 

ILU (0), the Incomplete LU factorization with no fill-in, presents same zero patterns with 

coefficient matrix A. The algorithm for building it is: 

For i=2 to N do 

     For k=1 to i-1 do 

 If !!,! == 0 then continue; 

            !!,! =
!!,!
!!,!

; 

 For j=k+1 to N do 

      If !!,! == 0 then continue; 

      !!,! = !!,! − !!,!!!,!; 

end 

            end 

end 

ILU (p), the Incomplete LU factorization with p level fill-in, keeps all fill-in elements 

whose level of fill does not exceed p. The algorithm for building it is: 
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Assume NZ is set of all nonzero elements in N*N size coefficient matrix A. 

For each !!,! ∈ !", !ℎ!"!  ! ∈ 1. .! , ! ∈ 1. .!     

     !"#"$!,! = 0 

end 

For i=2 to N do 

     For k=1 to i-1 do 

 If Level!,! > ! then continue; 

 !!,! =
!!,!
!!,!

; 

 For j=1 to N do  !!,! = !!,! − !!,!!!,!; 

 Level!,! = !"# Level!,! , Level!,! + Level!,! + 1  

     End 

     For each !!,!, where ! ∈ 1. .!  

 If Level!,! > ! then 

     !!,! = 0 

 end 

     end 

end 

There are many ILU variants with different dropping strategies applied. The details can 

be referred to (Saad 2003). 
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2.3.2	
  SSOR	
  Approximate	
  Inverse	
  Preconditioner	
  

Normal preconditioner requires a matrix solver process (normally overhead too heavy to 

apply except for very simple preconditioner) or two consecutive triangular solver 

processes per iteration in iterative method. The solver process is intensive calculation and 

hard to be parallel. Another group of preconditioner called approximate inverse 

preconditioner has been developed motivated by multiplication of inverse matrix idea 

that described in Chapter 2.1.2. By approximating the inverse matrix of normal 

preconditioner first, the approximated inverse matrix only need an extra matrix-vector 

multiplication per iteration to apply. The performance improvement by this 

transformation is dramatic, however along with accuracy or robustness loss in the 

approximation process, which compromise the effect of improvement of convergence 

rate. 

SSOR approximate inverse preconditioner is just a first order approximate inverse of 

SSOR preconditioner:  

! = !!!, where  ! = ! 2− ! !!! !!  –! ! 2− ! !!! !!!!! 

Strictly speaking, this preconditioner is not approximate inverse method; it can be regards 

as a hybrid of ILU and polynomial preconditioning techniques. And it is also called as 

truncated Neumann SSOR preconditioner(Benzi and Tuma 1999). 

We don’t have evidence to prove it still remaining convergence even for symmetric 

positive definite coefficient matrix. And due to the information loss in the approximation, 

condition parameter ! in SSOR-AI should show less impact on convergence rate to 

SSOR. 
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2.4. Triangular	
  Matrix	
  Solver	
  

Since most of the time preconditioner will be constructed as multiplication of two 

triangular matrices, a lower triangular matrix and an upper triangular matrix, triangular 

matrix solver plays a very important role for applying preconditioner. 

For triangular matrix solver, the solving process will be easier to analyze. Level 

scheduling (Saad 2003), derived from topological sorting, has been developed to reveal 

parallelism of forward/backward substitution. The idea is very simple, by grouping 

unknowns !!   into different levels so that all unknowns in same level can be solved 

simultaneously. If the solving of one unknown !! depends on results of set of other 

unknowns  !!, the level of !! will be one plus maximum level of any  !!   ∈ !!.  

To facilitate solving multiple right sides vectors, a two phases solver has been proposed 

and implemented in two phases in NVIDIA CUSPARSE library as standard Level-3 

functions (Naumov 2011a). Author builds a dependency graph based on coefficient 

matrix’s sparsity pattern and groups independent rows to levels. This dependency graph 

is a directed acyclic graph (DAG) that can be generated by a modified breadth-first-

search (BFS) algorithm.  

For example, a lower triangular matrix T involved in the ! ! = !  

!!,!
!!,!

!!,!
!!,!
!!,!

!!,!

!!,!
!!,!

!!,!
!!,!

!!,! !!,!
!!,! !!,!

!!,!
!!,!

!!,!

!!
!!
!!
!!
!!
!!
!!
!!
!!

=

!!
!!
!!
!!
!!
!!
!!
!!
!!
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Has dependency graph in Figure 2-1. 

From the dependency graph, initially !!, !!,!"#  !! have no any dependent on other 

variants, and they can be solved immediately in parallel. And the variants that depend on 

the result of  !!, !!,!"#  !!, that are !!, !!, !!,!"#  !! can be solved in parallel in next 

step. Finally after all dependent variants of   !!  !"#  !!  are solved, !!  !"#  !!  can be 

solved in parallel. In other words, variants/rows are solved from lowest level to highest 

level; no variants/rows will be solved until all their dependent variants/row are solved; all 

variants/rows in same level can be solved in parallel.  

2.5. GPU	
  Computation	
  

GPU computing is Single Instruction Multiple Data (SIMD) architecture, which executes 

identical operation/instruction on multiple data load simultaneously. SIMD is a light 

weight parallel architecture which has heavy penalties on synchronization and 

heterogeneous treatment on data (branch operations). I target on NVIDIA Compute 

Unified Device Architecture (CUDATM) for experiments. 

1 3 2 

4 5 6 7 

8 9 

Level 1 (rows 1,2,3) 

Level 2 (rows 4,5,6,7) 

Level 3 (rows 8,9) 

Figure 2-1 Dependency Graph Sample 
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2.5.1. Bandwidth	
  

For supporting massive threads running at the same times with very high floating point 

calculation capability, graphic chips requires enormous memory bandwidth to feed data 

into the processors. NVIDIA Tesla M2070 provide 384-bit memory I/O interface and up 

to 150Gbytes per second on-board memory bandwidth. The on-board memory bandwidth 

capability of GPU is significant larger than contemporary CPU, PCI Express (interface 

from Graphic card to main board) and fabric link in cluster (InfiliBand enhanced data rate 

is 25.78125 Giga bits/s).  

2.5.2. Architecture	
  Design	
  

CPU depends on sophisticated cores to achieve high calculation capability. Many 

advanced features such as out-of-order execution, branch prediction, help CPU 

successfully handle control logic and data dependency. GPU depends on massive 

lightweight cores and threads to accumulate high calculation capability. Without too 

many fancy features, fast thread switch help GPU bypass the effect of memory access 

stall. From specification, GPU can provide ten to thousands times floating point 

calculation capability to CPU. However, GPU high performance naturally can’t survive 

under complicated control logics and/or frequently/complicated synchronizations.  

2.5.3. Program	
  Structure	
  

The parallel massive threads capability and bandwidth requirements dominate the 

programming structure design for GPU. A host(traditional CPU), and one or more 

devices(Graphic cards) will cooperate to achieve the GPU-enabled computation: the 

required data will first be moved from main memory to GPU on-board memory, and 

GPU starts the computation with access only to its onboard memory, then the result will 
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be transferred back to main memory after calculation. GPUs only take responsible for 

code logic that shows rich amount of data parallelism, CPUs handle the rest. Due to 

intuitively parallel semantics of GPU threads, any function executed in GPU, called 

kernels, are within specific lightweight thread context to process data slices only with 

synchronization barrier supported.   

2.5.4. Threads	
  System	
  

GPU provides a two layers hierarchy thread system: Grids and Blocks. Block is 

composed of set of 3D indexed threads; Grid is composed of set of 3D indexed blocks. 

Preset variables threadIdx and blockIdx are respectively used to identify thread of a block 

and block of a grid; Preset variables blockDim and gridDim are respectively used to store 

number of threads in a block and number of blocks in a grid. Each of those four preset 

variables has three dimensional fields: field x, field y, and field z. All three fields in 

threadIdx and blockIdx are zero-based index values. 

2.5.5. Multi-­‐Kernels	
  &	
  Multi-­‐Devices	
  Support	
  

Due to algorithm limitation, not all the kernels can consume all resource provided by 

GPU. CUDA does support asynchronous execution mechanism on the same GPU device, 

which is called stream. Kernels resided in different streams can be executed parallel in a 

GPU device. CUDA also provides programming supports for multiple GPU devices. 

However, no direct access support from one device to another. 

2.5.6. CUBLAS	
  &	
  CUSPARSE	
  Libraries	
  

CUBLAS library implements BLAS (Basic Linear Algebra Subroutines) on NVIDIA 

CUDA runtime. CUSPARSE library implements a set of BLAS functions for sparse 
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matrices. Both of these two libraries are provided by NVIDA to facilitate calculation of 

matrices and vectors. Both of them cannot automatically parallelize across multiple GPU 

devices/cards. 

CUBLAS library is composed of three levels of functions and some helper functions. 

Level-1 functions perform scalar and vector based operations; Level-2 functions perform 

matrix-vector operations; Level-3 functions perform matrix-matrix operations. 

CUSPARSE library is also composed of three levels of functions and some helper 

functions. Level-1 functions perform operations between a sparse format vector and a 

dense format vector; Level-2 functions perform operations between a sparse format 

matrix and a dense format vector; Level-3 functions perform operations between a sparse 

format matrix and a set of dense format vectors. 

Each function in three levels from two libraries support four matrices element data types: 

single precision, double precision, single precision complex, and double precision 

complex. 

2.5.7. Floating	
  Point	
  

In engineering practice, implementation of floating point in different hardware varies a 

lot. And rounding approximation exists in every call for floating point calculation. 

Different calculation order of a same equation may produce slightly different results. 

Those errors may accumulate to finally compromise the entire calculation result. For 

example, direct method especially suffered from rounding error that is error made in one 

step spreads in all following steps. That is also one reason why direct method does not 

suit for calculation in large scale matrix. 
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(Whitehead and Fit-Florea 2011) shows many examples of impact of calculation in 

different order and in different round options/orders. For example, the following figure 

from Whitehead and Fit-Florea (2011) shows the (A+B)+C does equal A+(B+C) in 

floating point calculation. 

 

Figure 2-2 Calculation order in floating point context 

A common standard IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-

1985) is widely adopted by mainstream computing systems to provide compatible 

behaviors among each other. (Whitehead and Fit-Florea 2011) describes the NVIDIA 

CUDA compliance to IEEE 754 standard. 

Single precision:  1  bit 8  bits 23  bits
sign exponent fraction      

Double precision:   1  bit 11  bits 52  bits
sign exponent fraction      

The difference of single precision and double precision affect not only the accuracy but 

also the memory bandwidth requirements and cache locality. The application choice 

between double precision and single precision may somehow manipulate the performance 

and result. (Georgescu and Okuda 2007) shows “single precision GPUs make very good 

accelerators for the CG method if and only if the matrix is well behaved, meaning that its 

condition number, computed after preconditioning, should be below 10! . For ill-

conditioned matrices, in the current solver setting, double precision is necessary.” 
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IEEE 754 defines four rounding modes: round towards negative, round towards positive, 

round towards zero and round-to-nearest. CUDA explicitly supports all four modes in its 

basic floating point functions. However IEEE 754 standard does not require all common 

mathematical functions to be correctly rounded. For example, denormal numbers, small 

numbers close to zero, will be flushed to zero in single precision floating point from 

CUDA compute capability 1.2 and below. 

Fused multiply-add operation (FMA) was included in 2008 of the IEEE 754 standards to 

increase the accuracy for (X * Y + Z). The two round steps normally will be applied in 

this operation: result rounding of multiplication and result rounding of addition. Only one 

round operation will be applied to this FMA operation. In some extreme case, computing 

one multiply followed by one addition may lose all bits of precision. The following 

example from Whitehead and Fit-Florea (2011) shows the case in single precision: 

 

Figure 2-3 FMA extreme case 

2.6. Related	
  Works	
  

The University of Florida sparse matrix collection (Davis and Hu 2011) is widely used as 

matrices source for analysis (Georgescu and Okuda 2007; Naumov 2011b; Li and Saad 

2013). There are 231 symmetric positive definite matrices in the collection, 125 of them 

come from structural problems. 

The CG method was introduced by Hestenes and Stiefel (1952). Superlinear phenomenon 

was first observed by Concus and Golub (1976). Van der Sluis and van der Vorst (1986) 
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proved the condition when the superlinear phenomenon will show up. Many 

preconditioners have been analyzed in previous research. Preconditioned CG method has 

been proven effective by Knyazev and Lashuk (2007). The Jacobi preconditioner for CG 

method has been studied by Georgescu and Okuda (2007). The research proved that the 

Jacobi preconditioner could not work for most of matrices from the University of Florida 

sparse matrix collection (Davis and Hu 2011). Gui and Zhang (2012) solved the 

Incomplete Cholesky preconditioner for CG with parallelized Jacobi iterative methods 

and applied a new sparse storage format. However, the Preconditioned CG method 

outperformed the CG method for only the smallest matrices in the eight matrices from 

Poisson equations; in fact, even the iterations for convergence of PCG are less than ¼th 

iterations of CG. The overhead cost of applying Incomplete Cholesky preconditioner is 

still too high. Li and Saad (2013) compared multiple preconditioners and sparse storage 

format. Their recent Journal of Supercomputing article stated that the sparse triangular 

solver in GPU can only attain a very low speed up to CPU, and may be even lower than 

serial implementation in CPU. The overall performance speed up for Incomplete 

Cholesky and ILU preconditioner in GPU can only outperform CPU implementation for 

up to 3 and 4 times respectively. 

Applying approximate inverse of a normal preconditioner is a tradeoff between 

performance gain and cost overhead of preconditioner. Benzi and Tuma (1999) 

summarized all approximate inverse techniques stating that an SSOR approximate 

inverse preconditioner cannot be better than SSOR preconditioner and none-diagonal 

dominant coefficient matrices will suffer from degradation of rate of convergence due to 

robustness loss in the first or second order of approximation. Ament et al. (2010) derived 
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a SSOR based heuristic approximate inverse preconditioner from regular grid (finite 

difference method) called Incomplete Poisson Preconditioner M!! = (I− LD!!)(I−

D!!L!). This preconditioner is only designed for solving Poisson equations. Helfenstein 

and Koko (2011) determined that an SSOR approximate inverse preconditioner is derived 

by using first order approximation of SSOR and is for more general usage. 

Not much effort was put on general preconditioners for a wide range of data. Domain-

specific preconditioners showed stable relative improvements in the following research. 

Georgescu and Okuda (2007) tested the CG with Jacobi preconditioner on all symmetric 

positive definite matrices with more than 10,000 rows from the University of Florida 

sparse matrix collection (Davis and Hu 2011). And though an average 3-5x speed up has 

been achieved, the solver does not work for majority of the test matrices. 

Yu et al. (2012) tested the GMRES GPU solver with block ILU (0) preconditioner in 

nonlinear simulation for 100 days. From the comparison in this study, 

solver/preconditioner with a higher speed up definitely does not mean the calculation 

time would also be better. The 10x speed up is just comparison to serial implementation 

of CPU. And it should be highlighted that the relative tolerance for the experiments (2 

million square matrices) is too low, only 1e-3. Comparing to mostly 1e-6 of other 

research, the low relative tolerance cannot provide convincing results. 

Chou et al. (2011) developed a domain-specific preconditioner, SEVA, for power grid 

simulation and achieved a 43% iterations reduction and 23% speed up over CG without 

preconditioner and CG methods with universal preconditioners Jacobi and ILU 

respectively. 
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Approximate inverse preconditioners almost have the least application overhead as they 

only need an extra matrix-vector multiplication instead of solving two triangular matrices. 

SSOR has proven very effective on convergence improvement. A combination of SSOR 

preconditioner and approximate inverse technology, that is SSOR approximate inverse 

preconditioner, can be expected to operate efficiently and effectively. The only problem 

is the robustness loss introduced in the approximation process.  
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CHAPTER	
  3. METHODOLOGY	
  

3.1 Implementation	
  

I implemented Conjugate Gradient iterative solver with SSOR approximate inverse 

preconditioner using CUBLAS and CUSPARSE. Based on commercial linear algebra 

libraries on GPU, I can show the results with only general tuning for no preset knowledge 

of input matrices. 

I conducted the experiments in a GPU cluster node. The Linux cluster node is built with 

Shared Memory Processor (SMP) architecture equipped with twelve Intel Xeon X5650 @ 

2.67 GHz CPUs, 48Gbytes memory and two NVIDIA Tesla M2070 448 Cores 1.15GHz 

GPU cards with 6Gbytes GDDR5 onboard memory.  

3.2 Convergence	
  Impact	
  by	
  Condition	
  Parameter	
  !	
  in	
  SSOR-­‐AI	
  	
  

To answer the first and second research questions in chapter 1, I used eight symmetric 

positive definite matrices. The first seven of them are from the University of Florida 

sparse matrix collection (Davis and Hu 2011), which were chosen in the analysis of paper 

by Naumov (2011b); the eighth matrix comes from Helfenstein and Koko  (2011). Those 

eight matrices cover matrices encountered in real world practice from many application 

fields and show very unique sparse patterns. 

The eight matrices in Table 3-1 come from real world problems in different application 

fields, which represent matrices’ requirements of different fields. And the non-zero 

element distribution patterns that come from the same application fields are dramatically 

different. Figures from Figure 3-1 to Figure 3-8, respectively show their non-zero 

element distribution patterns (Davis and Hu 2011). 
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Table 3-1 Description of Matrices 

# Matrix Rows/Cols NNZ Application Field 
1 offshore 259,789 4,242,673 electromagnetics problem 
2 af_shell3 504,855 17,562,051 subsequent structural problem 
3 parabolic_fem 525,825 3,674,625 computational fluid dynamics problem 
4 apache2 715,176 4,817,870 structural problem 
5 ecology2 999,999 4,995,991 landscape ecology problem 
6 thermal2 1,228,045 8,580,313 steady state thermal problem 
7 G3_circuit 1,585,478 7,660,826 circuit simulation 
8 Poisson 130,009 908,357 computational fluid dynamics problem 

 

 

Figure 3-1 Sparse pattern of offshore 

 

Figure 3-2 Sparse pattern of af_shell3 
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Figure 3-3 Sparse pattern of Parabolic_fem 

 

Figure 3-4 Sparse pattern of Apache2 

 

Figure 3-5 Sparse pattern of ecology2 

 

Figure 3-6 Sparse pattern of thermal2 

 

Figure 3-7 Sparse pattern of G3_circuit 

 

Figure 3-8 Sparse pattern of Poisson 
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The sparse pattern in [2][4][5][8] in coarse scale looks similar, however in fine scale it 

still shows different patterns. The following figures show sparse patterns of top left 

100*100 and 500*500 contents of those matrices. 

 

Figure 3-9 Af_shell3 (1:100,1:100) pattern 

 

Figure 3-10 Af_shell3 (1:500,1:500) 
pattern 

 

Figure 3-11 Apache2 (1:100,1:100) pattern 

 

Figure 3-12 Apache2 (1:500,1:500) pattern 
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Figure 3-13 Ecology2 (1:100,1:100) 
pattern 

 

Figure 3-14 Ecology2 (1:500,1:500) 
pattern 

 

Figure 3-15 Poisson (1:100,1:100) pattern 

 

Figure 3-16 Poisson (1:500,1:500) pattern 

I ran Conjugate Gradient iterative method with SSOR-AI preconditioner in GPU for all 

the choice of  ! values in range  [0.01,1.99] with a 0.01 interval, which included 199 

samples per matrix. The stop criteria were either error tolerance reached to 1e-7 or 

maximum of 20,000 iterations reached. And for each sample, I collected three data: 
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number of iterations for convergence, execution time for iterative method, and time for 

data transfer from CPU to GPU.  
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CHAPTER	
  4. RESULTS	
  AND	
  DISCUSSIONS	
  

4.1. Convergence	
  Reports	
  for	
  SSOR-­‐AI	
  

Figures from Figure 4-1to Figure 4-8 are the results that reveal the relationship of number 

of iterations to converge and ω values in SSOR approximate inverse preconditioner. 

 

Figure 4-1 Offshore convergence report 

 

Figure 4-2 Af_shell3 convergence report 
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Figure 4-3 Parabolic_fem convergence report 

 

Figure 4-4 Apache2 convergence report 
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Figure 4-5 Ecology2 convergence report 

 

Figure 4-6 Thermal2 convergence report 
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Figure 4-7 G3_circuit convergence report 

 

Figure 4-8 Poisson convergence report 

From the figures above, I found out that bad convergence behavior shows for some ! 

values. In other words, the convergence rate will deteriorate for some ! values. And 
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those ! values are grouped in an area instead of shown as isolated points on the axle. 

Offshore and af_shell3 both show these behaviors. 

Also from the data, the convergence rate (or number of iterations needed for convergence) 

does show very clear trends to the change of ! values. The change rate of convergence 

rate, or slope of convergence rate to  !, can be considered as continuous most of the time. 

Only thermal2 show some spike data. 

The number of iterations’ difference for optimal ! and worst ! are huge enough, that at 

least 50% iterations for worst cases can be saved for optimal cases.  

The ! value range with minor convergence difference to optimal convergence is grouped 

around the optimal ! value and the area is large enough to be easy identified. Hitting the 

suboptimal range is relatively easy in 0.01 unit. 

I cannot reproduce the experiments in exact same environment settings with Naumov  

(2011b). Those GPU settings in my experiments are almost equivalent with GPU settings 

in Naumov  (2011b). And I use CPU construction time for ILU (0) preconditioner in 

Naumov  (2011b) as approximation of CPU construction time for SSOR-AI 

preconditioner. 

Table 4-1 shows execution time of SSOR-AI (! = 1.0) compared to the minimum 

execution time of all preconditioners tested in the study by Naumov  (2011b). The 

execution time for GPU implementation includes construction time for preconditioner on 

CPU, copy time for preconditioner from CPU to GPU, and solving time on GPU. The 

execution time for CPU implementation includes construction time for preconditioner on 

CPU and solving time on CPU. 
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Compared to Naumov (2011b), my implementation of CG with SSOR-AI preconditioner 

can almost defeat any preconditioner settings on GPU with the simple set ! = 1.0. And 

my implementation of SSOR-AI preconditioner can defeat all preconditioner settings on 

CPU. The average speed up to best execution time of CPU is 2.05x. The data proved the 

SSOR-AI preconditioner can provide very stable impressive performance improvement 

with low overhead for applying it. 

 

Table 4-1 Execution time comparison of SSOR-AI (1.0) and other preconditioners 

Name CPU Execution Time 
Minimum (seconds) 

GPU Execution Time 
Minimum (seconds) 

GPU Execution Time 
SSOR-AI (! =1.0) 

offshore 1.1 1.92  0.846 
af_shell3 40.12 34.14 26.417 
parabolic_fem 12.91 7.05 4.902 
apache2 23.82 12.93 8.706 
ecology2 29.55 55.4 16.238 
thermal2 50.59 54.82 18.863 
G3_circuit 14.79 8.79 9.048 

 

However, the default choice ! = 1.0 for SSOR approximate inverse preconditioner may 

not be a good idea for general usage. The af_shell3 and offshore reveals a potential risk 

for convergence a breakdown with ! less than 1.0. 

Two patterns exists for relationship of convergence and  !. One pattern is a U style 

pattern where the optimal ! is in the middle of range (0, 2) and the iterations for 

convergence in approximate optimal ! value are almost half the value of the worst ! 

choice iterations. The other pattern is an ascendant style pattern where the optimal !  is 

located near the leftmost extreme of range (0, 2). In this pattern, the iterations for 
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convergence in approximate optimal ! value are only 1/10 to 1/1000 of the worst ! 

choice iterations. 

4.2. Wide	
  Range	
  Experiments	
  

I ran all positive definite matrices for all structural problems  in the University of Florida 

sparse matrix collection (Davis and Hu 2011). A total 125 matrices were tested. CG 

method and CG with SSOR-AI preconditioner with ω = [0.01, 0.25, 0.5, 0.75, 1, 1.25, 

1.5, 1.75, 1.99] were tested. The stop criteria were either a maximum 500,000 iterations 

reached or relative residual reached to 1e-7. Matrices “x104” and “thread” from same 

group “DNVS” will not converge using CG without a preconditioner or CG with SSOR-

AI preconditioners, so these two matrices were excluded from the report. Table 4-2 is the 

convergence report for these 10 method configurations. It is easy to see that when the 

SSOR approximate inverse preconditioner’s condition parameter ω equals 0.01, which is 

the best setting among all 123 tests. Instead of the commonly used condition parameter 

ω=1.0, an extreme minimum ω value closer to the lower bound of range (0, 2) showed 

very good performance among a wide range of data sets and effectively prevented most 

of the convergence failures. 

Table 4-2 Convergence comparison for all CG with SSOR-AI preconditioners 

Method Configuration # of failing to converge # of reach min iterations 

CG 8 7 

CG+SSOR-AI(0.01) 1 75 

CG+SSOR-AI(0.25) 16 35 

CG+SSOR-AI(0.50) 23 29 
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CG+SSOR-AI(0.75) 34 31 

CG+SSOR-AI(1.00) 43 24 

CG+SSOR-AI(1.25) 50 17 

CG+SSOR-AI(1.50) 51 16 

CG+SSOR-AI(1.75) 59 16 

CG+SSOR-AI(1.99) 62 16 

 

Figure 4-9 presents the iterations relationship of CG and CG with SSOR-AI (0.01) 

preconditioner. The difference of number of iterations for each sample is normalized by 

larger number of iterations in the comparison of CG and CG with SSOR-AI 

preconditioner, so that the percentage of iteration reduction maps to (-100%, 100%). The 

detailed reports are put in Appendix A. For all tests, 90.9% tested matrices had better 

convergence with SSOR approximate inverse (ω =0.01) preconditioner when applied and 

an average 57.6% iterations reduction was achieved from all test matrices. For those test 

matrices with positive iteration reduction value, average 67.9% iteration reduce was 

achieved. An average 12.6x speed up can be achieved for CG with SSOR-AI (ω =0.01) 

preconditioner over CG performance without preconditioner among all test matrices. 
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Figure 4-9 Percentage of iterations reduction for CG with SSOR-AI (0.01) to CG 
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CHAPTER	
  5. CONCLUSION	
  

It was amazing to observe that SSOR approximate inverse preconditioner works well for 

general usage in solving structural problems on an extreme minimal ω  value, which is 

close to a lower bound of range (0, 2). The risk of convergence failure increased with 

increment of ω  value. The experiments on 125 matrices from structural problems showed 

that applying SSOR approximate inverse preconditioner with ω = 0.01 reduced the 

convergence failure and obtained the best convergence behaviors. The report also showed 

where 90.9% of the test matrices had better convergence with SSOR approximate inverse 

(ω  = 0.01) preconditioner applied and an average 67.9% iterations reduction was 

achieved from those positive cases. An average 12.6x speed up was achieved for CG with 

SSOR-AI (ω =0.01) preconditioner when compared to CG without a preconditioner.  

With the extreme minimal ω  value, applying SSOR approximate inverse preconditioner 

showed very stable performance improvement and prevented most of the robust loss 

issues introduced by approximation of inverse preconditioner. 
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APPENDIX	
  A. REPORTS	
  IN	
  DETAIL	
  

Appendix	
  A-­‐1. Description	
   of	
   125	
   Tested	
   Matrices	
   and	
   Execution	
  

Time	
  

Table A-1 Description of tested matrices and execution time 

Name Group rows/cols nonzeros CG 
(ms) 

SSOR-AI  
(ω =0.01) 

(ms) 
Emilia_939 

Janna 

923,136 40,373,538 932,624.00 154,408.00 
Fault_639 638,802 27,245,944 649,916.00 63,224.20 
Flan_1565 1,564,794 114,165,372 212,482.00 197,786.00 
Geo_1438 1,437,960 60,236,322 235,213.00 33,213.90 
Hook_1498 1,498,023 59,374,451 102,279.00 132,079.00 
Serena 1,391,349 64,131,971 245,220.00 21,877.40 
apache2 

GHS_psdef 

715,176 4,817,870 10,766.40 14,380.60 
audikw_1 943,695 77,651,847 1,100,240.00 179,709.00 
inline_1 503,712 36,816,170 607,391.00 460,681.00 
ldoor 952,203 42,493,817 146,561.00 82,885.20 
Kuu         

MathWorks 
7,102 340,200 222.03 292.21 

Muu         7,102 170,134 28.79 18.39 
af_0_k101   

Schenk_AFE 

503,625 17,550,675 86,021.60 84,727.80 
af_1_k101   503,625 17,550,675 93,619.30 81,683.40 
af_2_k101   503,625 17,550,675 69,447.80 69,938.40 
af_3_k101   503,625 17,550,675 39,255.40 36,887.20 
af_4_k101   503,625 17,550,675 70,608.00 70,378.10 
af_5_k101   503,625 17,550,675 67,370.90 67,364.20 
apache1     GHS_psdef 80,800 542,184 822.18 1,476.38 
bcsstk01    

HB 

48 400 46.22 23.11 
bcsstk02    66 4,356 19.65 23.04 
bcsstk03    112 640 106.78 53.38 
bcsstk04    132 3,648 130.99 36.12 
bcsstk05    153 2,423 100.36 61.23 
bcsstk06    420 7,860 903.92 84.59 
bcsstk08    1,074 12,960 841.35 57.45 
bcsstk09    1,083 18,437 70.77 76.98 
bcsstk10    1,086 22,070 808.63 163.07 
bcsstk11    1,473 34,241 944.53 449.81 
bcsstk14    1,806 63,454 1,479.11 116.62 
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bcsstk15    3,948 117,816 2,257.90 220.28 
bcsstk16    4,884 290,378 115.51 99.27 
bcsstk17    10,974 428,650 4,850.44 1,471.53 
bcsstk18    11,948 149,090 6,750.03 312.94 
bcsstk19    817 6,853 510.80 393.18 
bcsstk20    485 3,135 86.52 188.36 
bcsstk21    3,600 26,600 1,652.66 126.41 
bcsstk22    138 696 113.71 54.90 
bcsstk23    3,134 45,178 654.35 4,537.62 
bcsstk24    3,562 159,910 2,273.14 757.14 
bcsstk25    15,439 252,241 5,876.04 547.27 
bcsstk26    1,922 30,336 3,720.88 442.80 
bcsstk27    1,224 56,126 252.06 98.61 
bcsstk28    4,410 219,024 5,156.26 2,366.56 
bcsstk34    

Boeing 
588 21,418 209.76 48.43 

bcsstk36    23,052 1,143,140 291,432.00 143,855.00 
bcsstk38    8,032 355,460 1,981.24 2,329.15 
bcsstm02    

HB 

66 66 5.69 2.26 
bcsstm05    153 153 12.21 6.82 
bcsstm06    420 420 44.10 9.97 
bcsstm07    420 7,252 88.09 22.38 
bcsstm08    1,074 1,074 31.00 9.84 
bcsstm09    1,083 1,083 9.53 9.76 
bcsstm11    1,473 1,473 18.23 9.76 
bcsstm12    1,473 19,659 1,087.48 169.59 
bcsstm19    817 817 99.63 5.67 
bcsstm20    485 485 79.67 9.79 
bcsstm21    3,600 3,600 7.43 6.99 
bcsstm22    138 138 23.95 6.80 
bcsstm23    3,134 3,134 1,308.53 6.66 
bcsstm24    3,562 3,562 3,842.09 6.95 
bcsstm25    15,439 15,439 2,114.48 7.70 
bcsstm26    1,922 1,922 837.74 9.75 
bcsstm39    Boeing 46,772 46,772 133.32 12.39 
bmw7st_1    

GHS_psdef 
141,347 7,318,399 1,379.86 34,953.20 

bmwcra_1    148,770 10,641,602 24,893.20 24,314.00 
bodyy4      

Pothen 
17,546 121,550 57.85 51.12 

bodyy5      18,589 128,853 135.75 88.85 
bodyy6      19,366 134,208 305.96 149.61 
cbuckle     TKK 13,681 676,515 1,422.49 547.02 
crankseg_1  GHS_psdef 52,804 10,614,210 4,857.00 1,964.24 
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crankseg_2  63,838 14,148,858 8,121.08 2,844.22 
ct20stif    Boeing 52,329 2,600,295 5,740.07 73,150.30 
hood        GHS_psdef 220,542 9,895,422 26,354.00 11,870.70 
lund_a      

HB 
147 2,449 110.48 43.07 

lund_b      147 2,441 126.48 29.82 
m_t1        DNVS 97,578 9,753,570 149,628.00 997,938.00 
mesh1e1     

Pothen 

48 306 9.48 8.72 
mesh1em1    48 306 13.33 13.26 
mesh1em6    48 306 9.07 9.25 
mesh2e1     306 2,018 31.15 29.83 
mesh2em5    306 2,018 30.59 31.17 
mesh3e1     289 1,377 14.20 13.82 
mesh3em5    289 1,377 13.18 12.87 
msc00726    

Boeing 

726 34,518 275.77 57.35 
msc01050    1,050 26,198 7,376.73 484.92 
msc01440    1,440 44,998 417.70 188.70 
msc04515    4,515 97,707 1,487.28 1,388.02 
msc10848    10,848 1,229,776 4,450.60 1,850.33 
msc23052    23,052 1,142,686 299,498.00 124,719.00 
msdoor      INPRO 415,863 19,173,163 191,588.00 237,997.00 
nasa1824    

nasa 

1,824 39,208 1,525.69 598.28 
nasa2146    2,146 72,250 103.11 98.55 
nasa2910    2,910 174,296 2,486.12 712.06 
nasa4704    4,704 104,756 5,675.62 2,205.69 
nasasrb     54,870 2,677,324 23,045.90 9,470.15 
nos1        

HB 

237 1,017 686.47 170.06 
nos2        957 4,137 9,702.24 1,452.95 
nos3        960 15,844 91.66 94.28 
nos4        100 594 30.58 34.27 
nos5        468 5,172 145.41 83.14 
oilpan      GHS_psdef 73,752 2,148,558 28,315.50 24,384.80 
olafu       Simon 16,146 1,015,156 17,846.90 17,632.20 
plbuckle    TKK 1,282 30,644 645.89 86.00 
pwtk        Boeing 217,918 11,524,432 1,549,860.00 186,571.00 
raefsky4    Simon 19,779 1,316,789 563.86 216.64 
s1rmq4m1    

Cylshell 

5,489 262,411 1,379.77 353.54 
s1rmt3m1    5,489 217,651 1,617.91 388.86 
s2rmq4m1    5,489 263,351 6,169.27 867.26 
s2rmt3m1    5,489 217,681 8,508.76 1,156.27 
s3dkq4m2    

GHS_psdef 
90,449 4,427,725 668,155.00 188,462.00 

s3dkt3m2    90,449 3,686,223 558,995.00 331,401.00 
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s3rmq4m1    
Cylshell 

5,489 262,943 24,709.30 11,712.40 
s3rmt3m1    5,489 217,669 33,483.40 16,997.90 
s3rmt3m3    5,357 207,123 52,018.90 19,536.40 
ship_001    

DNVS 

34,920 3,896,496 36,991.00 39,336.60 
ship_003    121,728 3,777,036 635,500.00 752,947.00 
shipsec1    140,874 3,568,176 219,107.00 27,991.60 
shipsec5    179,860 4,598,604 259,165.00 1,341,540.00 
shipsec8    114,919 3,303,553 158,141.00 227,646.00 
smt         TKK 25,710 3,749,582 9,807.78 5,910.60 
sts4098     Cannizzo 4,098 72,356 4,198.82 183.63 
vanbody     GHS_psdef 47,072 2,329,056 8,713.63 35,287.80 

 

 



 
 

Appendix	
  A-­‐2. Number	
  of	
  Iterations	
  of	
  all	
  125	
  Matrices	
  in	
  10	
  Configurations	
  

Table A-2 Number of Iterations 

Name CG ω(0.01) ω(0.25) ω(0.5) ω(0.75) ω(1) ω(1.25) ω(1.5) ω(1.75) ω(1.99) 
Emilia_939 ∞ 8,501 5,492 4,764 5,241 ∞ ∞ ∞ ∞ ∞ 
Fault_639 ∞ 5,074 3,260 3,410 11,580 ∞ ∞ ∞ ∞ ∞ 
Flan_1565 8,960 4,196 3,121 3,246 ∞ ∞ ∞ ∞ ∞ ∞ 
Geo_1438 16,730 1,194 854 702 669 721 1,017 18,161 ∞ ∞ 
Hook_1498 6,958 4,553 3,233 2,674 2,910 3,494 4,127 5,177 7,380 30,778 
Serena 16,335 724 529 651 1,148 2,430 6,328 13,286 ∞ ∞ 
apache2 4,453 3,662 2,874 2,370 2,198 2,176 2,223 2,309 2,432 2,579 
audikw_1 65,164 5,350 18,410 136,720 ∞ ∞ ∞ ∞ ∞ ∞ 
inline_1 70,735 27,179 20,267 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
ldoor 14,260 4,095 3,488 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
Kuu         531 493 394 339 353 538 4,141 106,178 ∞ ∞ 
Muu         57 19 15 14 17 27 45 90 566 5,248 
af_0_k101   20,626 10,570 8,334 6,653 6,388 6,545 7,250 8,205 9,431 11,513 
af_1_k101   22,466 10,190 8,049 6,567 6,270 6,631 7,448 8,213 9,307 11,407 
af_2_k101   16,650 8,719 5,962 4,594 4,351 4,584 5,540 6,122 6,833 9,441 
af_3_k101   9,391 4,590 3,517 2,861 2,686 2,699 2,890 3,314 5,507 7,685 
af_4_k101   16,928 8,775 6,877 5,346 4,942 5,254 5,600 6,128 6,535 5,214 
af_5_k101   16,147 8,397 6,506 5,276 4,855 5,042 5,392 5,771 6,691 5,718 
apache1     1,553 1,889 1,789 1,521 1,428 1,412 1,475 1,521 2,006 2,179 
bcsstk01    125 46 71 90 110 137 163 186 208 232 
bcsstk02    47 44 60 53 54 61 72 84 92 100 
bcsstk03    301 119 322 580 897 1,242 1,446 1,866 2,172 2,423 
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bcsstk04    362 67 71 99 158 216 290 367 468 559 
bcsstk05    273 128 97 102 125 167 228 307 375 431 
bcsstk06    2,614 183 1,027 2,030 2,965 4,471 7,129 15,671 25,498 40,839 
bcsstk08    2,431 116 537 898 1,266 1,808 2,455 3,228 4,383 5,719 
bcsstk09    193 172 184 197 255 358 510 660 1,027 1,572 
bcsstk10    2,337 376 257 271 432 1,106 2,638 15,035 212,167 ∞ 
bcsstk11    2,712 1,008 1,378 4,631 13,219 40,740 240,913 ∞ ∞ ∞ 
bcsstk14    4,305 243 2,147 7,788 17,420 37,819 91,922 262,680 ∞ ∞ 
bcsstk15    6,337 456 2,593 7,289 16,260 32,545 71,428 250,915 ∞ ∞ 
bcsstk16    276 167 118 94 95 109 274 1,057 6,635 183,503 
bcsstk17    11,424 2,359 2,532 8,084 91,023 ∞ ∞ ∞ ∞ ∞ 
bcsstk18    17,974 607 24,491 115,184 339,025 ∞ ∞ ∞ ∞ ∞ 
bcsstk19    1,428 931 38,959 79,667 144,059 218,940 304,379 423,082 ∞ ∞ 
bcsstk20    243 446 33,885 64,150 90,612 148,623 213,657 312,902 434,665 ∞ 
bcsstk21    4,769 285 239 228 260 295 361 436 519 704 
bcsstk22    311 116 100 113 130 165 200 247 300 350 
bcsstk23    1,871 10,169 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
bcsstk24    6,276 1,568 159,671 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
bcsstk25    14,405 964 162,506 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
bcsstk26    10,748 1,010 12,876 52,273 134,597 456,027 ∞ ∞ ∞ ∞ 
bcsstk27    713 203 429 2,580 17,155 86,830 ∞ ∞ ∞ ∞ 
bcsstk28    13,547 4,565 2,970 3,969 18,586 ∞ ∞ ∞ ∞ ∞ 
bcsstk34    592 97 67 69 99 286 807 2,539 6,352 16,131 
bcsstk36    ∞ 153,547 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
bcsstk38    4,401 3,447 78,272 366,004 ∞ ∞ ∞ ∞ ∞ ∞ 
bcsstm02    12 1 1 1 1 1 1 1 1 1 
bcsstm05    18 1 1 1 1 1 1 1 1 1 
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bcsstm06    102 1 1 1 1 1 1 1 1 1 
bcsstm07    235 36 347 1,223 2,237 3,578 5,133 6,859 9,676 12,988 
bcsstm08    65 1 1 1 1 1 1 1 1 1 
bcsstm09    2 1 1 1 1 1 1 1 1 1 
bcsstm11    26 1 1 1 1 1 1 1 1 1 
bcsstm12    3,159 385 222 698 5,570 41,689 ∞ ∞ ∞ ∞ 
bcsstm19    275 1 1 1 1 1 1 1 1 1 
bcsstm20    206 1 1 1 1 1 1 1 1 1 
bcsstm21    3 1 1 1 1 1 1 1 1 1 
bcsstm22    53 1 1 1 1 1 1 1 1 1 
bcsstm23    3,770 1 1 1 1 1 1 1 1 1 
bcsstm24    11,110 1 1 1 1 1 1 1 1 1 
bcsstm25    5,783 1 1 1 1 1 1 1 1 1 
bcsstm26    2,397 1 1 1 1 1 1 1 1 1 
bcsstm39    319 1 1 1 1 1 1 1 1 1 
bmw7st_1    668 9,502 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
bmwcra_1    10,027 5,014 2,923 4,108 106,348 ∞ ∞ ∞ ∞ ∞ 
bodyy4      134 87 72 63 62 67 75 84 107 373 
bodyy5      337 160 137 125 130 141 158 185 233 1,419 
bodyy6      801 285 261 247 262 298 329 369 568 4,499 
cbuckle     2,918 669 2,226 4,925 14,475 300,286 ∞ ∞ ∞ ∞ 
crankseg_1  2,086 423 1,510 58,794 ∞ ∞ ∞ ∞ ∞ ∞ 
crankseg_2  2,716 473 2,683 125,089 ∞ ∞ ∞ ∞ ∞ ∞ 
ct20stif    6,251 45,160 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
hood        10,161 2,370 1,520 15,792 ∞ ∞ ∞ ∞ ∞ ∞ 
lund_a      277 84 111 212 300 384 492 582 748 985 
lund_b      301 53 57 102 173 313 481 680 871 1,064 
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m_t1        68,035 232,229 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
mesh1e1     16 12 10 9 8 9 11 14 17 21 
mesh1em1    27 21 17 15 14 15 17 20 24 29 
mesh1em6    16 13 11 9 9 9 9 11 13 16 
mesh2e1     70 55 45 39 41 50 66 91 141 197 
mesh2em5    56 59 46 40 39 44 56 75 96 127 
mesh3e1     17 14 11 10 10 10 11 15 21 29 
mesh3em5    12 12 11 9 9 9 10 11 14 16 
msc00726    759 115 80 75 109 289 668 1,749 4,139 8,943 
msc01050    20,863 1,015 947 1,924 3,790 7,807 17,580 37,819 66,239 118,431 
msc01440    1,138 405 946 3,542 8,435 15,831 27,799 39,595 62,475 88,644 
msc04515    4,086 3,118 2,962 5,495 11,016 173,760 ∞ ∞ ∞ ∞ 
msc10848    7,530 1,814 21,489 92,396 ∞ ∞ ∞ ∞ ∞ ∞ 
msc23052    ∞ 129,259 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
msdoor      40,058 25,881 17,836 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
nasa1824    4,403 1,308 2,227 5,200 13,812 34,225 95,589 356,728 ∞ ∞ 
nasa2146    264 200 155 201 703 5,389 ∞ ∞ ∞ ∞ 
nasa2910    6,589 1,333 1,296 2,301 4,985 14,065 42,805 195,105 ∞ ∞ 
nasa4704    15,753 4,670 49,977 190,616 ∞ ∞ ∞ ∞ ∞ ∞ 
nasasrb     25,529 5,978 21,850 82,679 ∞ ∞ ∞ ∞ ∞ ∞ 
nos1        1,934 379 652 1,339 2,012 2,695 3,514 4,263 4,909 5,114 
nos2        27,362 3,458 52,454 103,177 132,011 161,595 187,044 211,297 243,428 300,669 
nos3        245 214 159 127 117 117 165 344 1,026 3,476 
nos4        78 72 59 49 45 44 48 55 69 90 
nos5        368 180 145 122 115 114 119 146 167 187 
oilpan      32,080 16,253 7,197 185,774 ∞ ∞ ∞ ∞ ∞ ∞ 
olafu       32,141 20,369 69,267 452,639 ∞ ∞ ∞ ∞ ∞ ∞ 

55 



 
 

plbuckle    1,775 188 166 184 213 338 529 1,328 3,582 9,621 
pwtk        ∞ 32,872 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
raefsky4    920 203 705 1,099 4,174 132,824 60,931 182,062 ∞ ∞ 
s1rmq4m1    3,470 666 7,570 23,643 89,030 ∞ ∞ ∞ ∞ ∞ 
s1rmt3m1    4,252 755 3,831 9,582 17,779 253,661 ∞ ∞ ∞ ∞ 
s2rmq4m1    16,167 1,668 92,631 308,464 ∞ ∞ ∞ ∞ ∞ ∞ 
s2rmt3m1    22,614 2,312 50,580 169,851 ∞ ∞ ∞ ∞ ∞ ∞ 
s3dkq4m2    ∞ 79,292 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
s3dkt3m2    ∞ 167,138 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
s3rmq4m1    56,464 21,364 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
s3rmt3m1    81,987 31,297 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
s3rmt3m3    127,235 36,912 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
ship_001    32,581 18,652 430,440 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
ship_003    ∞ 333,512 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
shipsec1    175,059 12,713 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
shipsec5    171,899 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
shipsec8    138,202 112,060 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
smt         9,429 3,141 2,014 11,130 146,509 ∞ ∞ ∞ ∞ ∞ 
sts4098     10,392 296 616 1,291 2,339 5,214 14,081 45,126 146,108 ∞ 
vanbody     10,457 24,415 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
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