CO-ORDINATED EXPRESSION OF *CRTB*, *At-VTE3*, AND *VTE4* TO ENHANCE PRO-VITAMIN A AND VITAMIN E IN TRANSGENIC SOYBEAN

Dung Thu Pham

Dr. Zhanyuan J. Zhang, Thesis Supervisor

ABSTRACT

Although soybean is an excellent general nutritional source, it is not very rich in particular vitamins. The main goal of this study is to enhance both pro-vitamin A (carotenoids) and vitamin E (tocopherols) content in soybean seeds. We have genetically engineered the carotenoid and the tocopherol biosynthetic pathways in soybean seeds by ectopically expressing three genes: Erwinia uredovora phytoene synthase (crtB) to increase carotenoid content, Arabidopsis 2methyl-6-phytylbenzoquinol methyl transferase (At-VTE3) and soybean γ-tocopherol methyl transpherase (VTE4) to increase α-tocopherol using the self-cleavage activity of FMDV 2A sequence to join two adjacent proteins. This 2A-polyprotein construct was introduced to soybean via Agrobacterium-mediated cotyledonary node transformation method. One inheritable transgenic event displayed "golden"- colored seeds. The presence and expression of the three genes were detected in golden soybean event HYX-7-1 by qRT-PCR analyses. HPLC analysis of individual golden soybean lines revealed that the seeds accumulated as high as 128µg/g of total carotenoids, approximately 25- fold higher than wild type and 45-fold higher than empty vector control seeds. Of total carotenoids, 98% was pro-vitamin A (β-carotene and β-carotene equivalents). By contrast, golden seeds showed a decrease of tochopherol and a significant change of fatty acid profile. Transgenic golden soybean lines also displayed a delay in germination with a decreased rate (50%) and dwarf phenotype at early developmental stage, but showed normal development later.