
OPTIMAL DESIGNS FOR DOSE-FINDING IN
CONTINGENT RESPONSE MODELS

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A Dissertation
presented to

the Faculty of the Graduate School
University of Missouri - Columbia

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

by
HUWAIDA RABIE

Dr. Nancy Flournoy, Dissertation Supervisor

DECEMBER 2004





DEDICATION

To my family especially my mother who encouraged me to do the best always.



ACKNOWLEDGMENTS

I would like to express my gratitude and thanks to my advisor Dr. Nancy Flournoy for

all the help, support, and the time she spent supervising my dissertation. My thanks

are extended to my committee members for their suggestions, especially Dr. Farroll

Wright and Paul Speckman for the useful comments they provided when reviewing

my dissertation. My thanks to Dr. Leonard Hearne for the help in understanding the

Fortran program that used in finding the optimal designs.

I would like to thank my parents Salim and Rahma for the love, passion, and

encouragement during my study. Also my sincere appreciation to my sister Wafa

and my brothers George and Khalid for taking care of my parents and providing full

support to me.

Foremost, I thank God who makes everything possible and takes care of me

and my family.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND THEORY ON OPTIMAL DESIGNS . . . . . . . . . . . . . . . . . . . . 6

2.1 The Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 D−optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 DA−optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 A−optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 E−optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 c−optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.6 Bayesian Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Verifying the Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. THE CONTINGENT RESPONSE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



3.1 Fisher’s Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. LOCALLY D-OPTIMAL DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Unequal slopes β1 6= β2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Equal slopes β1 = β2 = β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Efficiency of D-Optimal Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. LOCALLY C-OPTIMAL DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Unequal slopes β1 6= β2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Equal slopes β1 = β2 = β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Efficiency of Locally c-optimal Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. LIMITING LOCALLY OPTIMAL DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Limiting Locally D-optimal Designs for Models with Unequal Slopes 75

6.1 Limiting Locally D-Optimal Designs for Models with Equal slopes . . 84

6.1 Efficiency of Limiting Locally D-optimal Designs . . . . . . . . . . . . . . . . . . . . 90

6.1 Limiting Locally c-optimal Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7. UP–AND–DOWN PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Up-and-Down Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.1 An Up-and-Down Procedure Targeting the Design Points . . . . . . 103

iv



7.1.2 Up–and–Down Procedure Balancing Failure Rates . . . . . . . . . . . . . 106

7.1.3 Kpamegan and Flournoy’s Up–and–Down Procedure . . . . . . . . . . 106

7.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Code for Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Code for Theorem 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Code of the trace function for the example used in Chapter 6 . . . . . . . . . . . 153

A.4 Code of the Trace function of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.1 The Directional Derivatives For D-Optimality Criterion Code . . . . . . . . . . . 166

B.2 The Directional derivative for c-Optimality Criterion Code . . . . . . . . . . . . . . 172

B.3 Up–and–Down Procedure Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C Fortran Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

v



LIST OF TABLES

Table Page

3.1 Fisher’s information for a single subject at xi(unequal slopes) . . . . 19

3.2 Fisher’s information for a single subject at xi (equal slopes) . . . . . 19

4.1 D-optimal designs for the positive-negative extreme value model r =

0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 D-optimal designs for the positive-negative extreme value model r = 1. 26

4.3 D-optimal designs for the positive-negative extreme value model for

r = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 D-optimal designs for the positive-negative extreme value model for r=3. 28

4.5 D-optimal designs for the positive-negative extreme value model for

r = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 D-optimal designs for the positive-negative extreme model when β1 =

β2 = β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Continued D-optimal designs for the positive-negative extreme model

when β1 = β2 = β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 c-optimal designs for the positive-negative extreme model for r = 0.5, 1, 2. 57

5.2 c-optimal designs for the positive-negative extreme model for r = 3, 4. 58

5.3 c-optimal designs for the positive-negative extreme model with equal

slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Efficiency’s dependence on ∆ . . . . . . . . . . . . . . . . . . . . . . 109

vi



7.2 Efficiencies with model misspecification . . . . . . . . . . . . . . . . . 111

7.3 Efficiency and expected number of toxicity, disease failure and success

for for canonical (µ, r) = (−1, 0.5) = (−3, 0.5) = (−1, 3). . . . . . . . 112

7.4 Efficiency and expected number of toxicity, disease failure and success

for canonical (µ, r) = (−3, 3) = (−5, 3) = (−7, 3). . . . . . . . . . . . 113

vii



LIST OF FIGURES

Figure Page

1.1 Positive-negative extreme value model for r = 1, µ = −20. . . . . . . 2

1.2 Positive-negative extreme value model for r = 0.5, µ = −3. . . . . . . 3

4.1 Directional derivatives of D-optimal designs for the positive-negative

extreme value model with different values of µ and r = 3, 4. . . . . . . 30

4.2 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 4. . . . . . . . . 31

4.3 Continued directional derivatives of D-optimal designs for the positive-

negative extreme value model for different values of µ and r = 4. . . 32

4.4 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 0.5. . . . . . . . 33

4.5 Directional derivatives of D-optimal designs for the positive-negative

extreme value model with different values of µ and r = 0.5, 1. . . . . . 34

4.6 Directional Derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 1. . . . . . . . . 35

4.7 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 1, 2. . . . . . . 36

4.8 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 2. . . . . . . . 37

viii



4.9 Continued directional Derivatives of D-optimal designs for the positive-

negative extreme value model for different values of µ and r = 2. . . 38

4.10 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 2, 3. . . . . . . 39

4.11 Directional derivatives of D-optimal designs for the positive-negative

extreme value model for different values of µ and r = 3. . . . . . . . 40

4.12 Directional derivatives for the positive-negative extreme model when

µ = 1, 2, 3, 4 for D-optimal designs. . . . . . . . . . . . . . . . . . . . 45

4.13 Directional derivatives for the positive-negative extreme model when

µ = −1,−2,−3,−5 for D-optimal designs. . . . . . . . . . . . . . . . 46

4.14 Directional derivatives for the positive-negative extreme model when

µ = −6,−7,−8,−10 for D-optimal designs. . . . . . . . . . . . . . . . 47

4.15 Directional derivatives for the positive-negative extreme model when

µ = −12,−20,−25,−30 for D-optimal designs. . . . . . . . . . . . . . 48

4.16 Efficiency plot for µ = −1. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.17 Efficiency plot for µ = −10. . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Efficiency plot for µ = −3, r = 0.5. . . . . . . . . . . . . . . . . . . . 53

5.1 Directional derivatives c-optimal design for the positive-negative ex-

treme model for (µ = −3.) . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Directional derivative for c-optimal design for the positive-negative ex-

treme model for selected values of µ and r = 0.5. . . . . . . . . . . . 60

ix



5.3 Directional derivative for the positive-negative extreme model for c-

optimal design for selected values of µ and r = 1. . . . . . . . . . . . 61

5.4 Directional derivative for the positive-negative extreme model for c-

optimal design for selected values of µ and r = 2, 3. . . . . . . . . . . 62

5.5 Directional derivative for the positive-negative extreme model for c-

optimal design for selected values of µ and r = 3. . . . . . . . . . . . 63

5.6 Directional derivative for c-optimal design for selected values of µ and

r = 3, 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Directional derivative for the positive-negative extreme model for c-

optimal design for selected values of µ and r = 4. . . . . . . . . . . . 65

5.8 Directional derivative for the positive-negative extreme model for c-

optimal design for selected values of µ. . . . . . . . . . . . . . . . . . 67

5.9 Continued directional derivative for the positive-negative extreme model

for c-optimal design for selected values of µ. . . . . . . . . . . . . . . 68

5.10 Directional derivative for Theorem 5 (µ = 0) . . . . . . . . . . . . . . 70

5.11 Directional derivative for Theorem 5 (µ = 1) . . . . . . . . . . . . . . 71

5.12 Efficiency Plot for c-optimal design when (µ = −3, r = 1.) . . . . . . 72

6.1 Figure a: trB = TrIGMB∗ and trA = TrIF M−
A∗1 for µ = −10,−15,−25.

Figure b: trA+trB = 2TrIF M−
A∗1 + 2TrIGMB∗ − 4) . . . . . . . . . 80

6.2 Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 0.5 91

6.3 Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 1 92

x



6.4 Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 2 93

6.5 Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 3 94

6.6 Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 4 95

6.7 Efficiency plot for limiting D-optimal design when β1 = β2 . . . . . . 96

6.8 Directional derivative for limiting c-optimal design when µ = −10,−15 97

6.9 Efficiency for limiting c-optimal design. . . . . . . . . . . . . . . . . 98

7.1 Treatment Distribution Targeting the Optimal Design Points of the

Canonical Model (−3, 2). . . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



OPTIMAL DESIGNS FOR DOSE-FINDING IN
CONTINGENT RESPONSE MODELS

Huwaida Rabie

Dr. Nancy Flournoy, Dissertation Supervisor

ABSTRACT

We study D and c optimal designs for dose–finding with opposing failure func-

tions. In particular, we study the contingent response models of Li, Durham and

Flournoy (1995). In the contingent response model, there are two opposing types of

failure. We call one failure type toxicity and the other disease failure, short for failure

due to disease. No disease failure is efficacy. No toxicity and no disease failure is a

success or cure. We assume disease failures are contingent on toxicity in that they

are only observed in the absence of toxicity. We also assume the probability of tox-

icity increases with the dose, and the probability of disease failure given no toxicity

decreases with dose.

We find canonical c- and D-optimal designs and show that other designs in

the location–scale family can be obtained from a canonical design. For c-optimality,

interest is in finding designs for estimating the dose that maximizes the cure prob-

ability, which we call the optimal dose. We use the positive–negative extreme value

contingent response model to provide a specific illustration of the D and C optimal

designs. We examine the efficiency of relevant up–and–down procedures in the liter-

ature for estimating the optimal dose based on the maximum likelihood estimation.
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We show that these procedures are inefficient for estimating the optimal dose.
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Chapter 1

INTRODUCTION

An experimental design problem concerns the allocation of treatment(s) to

experimental units (subjects) for the purpose of investigating the nature of depen-

dency of a response variable(s) on these treatment(s). In a model-based statistical

procedure, the distribution of the response variable(s) is specified in terms of un-

known parameters and treatments. The goals of the experimental design could be

to efficiently estimate the unknown parameters or some function of them, and or to

efficiently test hypotheses about the parameters.

The theory of optimal experimental designs has been studied widely, but re-

search has largely focused on regression settings, especially on linear models with

normal errors. Many authors have contributed to this research including Elfving [10],

Wynn [40], Fedorov [14], Atkinson and Donev [2], Pazman [33] and Silvey [36]. With

linear models, Fishers information is independent of model parameters, and hence

finding the optimal designs gives the researcher an explicit procedure for allocating

1



treatments to subjects. In many applications, such as in a bio-assay or a phase II

clinical trial, the response variable(s) is modelled by a nonlinear function for which

Fisher’s information depends on the parameters of interest, which are unknown. Op-

timal designs for nonlinear models have been studied for a univariate response by,

for example, White [39], Silvey [36], Sitter [38], Atkinson and Donev [2], and He [42].

Optimal designs for linear models are well studied, but the same cannot be said for

nonlinear models. Multivariate responses have received little attention and more re-

search is needed in this field. Zocci and Atkinson [43] and Fan and Chaloner [11] have

studied some multivariate responses. In particular, they studied optimal designs for

the logistic continuation–ratio model.

In this dissertation, we study optimal designs for nonlinear response models.

In particular, we study D and c optimal designs for the contingent response models

of Li, Durham and Flournoy [29]. In the contingent response model, there are two

types of failure. We call one failure type toxicity and the other disease failure. No

disease failure is efficacy. No toxicity and no disease failure is a success or cure. We

assume disease failures are contingent on toxicity in that they can only be observed

in the absence of toxicity. We also assume the probability of toxicity increases with

dose, and the probability of disease failure given no toxicity decreases with dose. See

Figures 1.1 and 1.2.

Examples of data well fit by a contingent response model arise in many areas

of study. When a new drug is to be tested two concerns arise: the safety and the

2
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Figure 1.1: Positive-negative extreme value model for r = 1, µ = −20.

efficacy of a drug, that is, how toxic is the drug and how well the drug produces

the intended result. In many phase II clinical trials, a toxicity failure is fatal and so

severe as to stop the trial for these subjects. Then efficacy results are obtained only

in the absence of toxicity failures.

Finding an effective dose with little toxicity is important, and hence a good

experimental design is important. For example, the sooner a drug’s efficacy at a toler-

ate dose is established, the sooner a decision can be made whether or not to continue

development of the drug; an efficient determination that a drug is ineffective or too

toxic prevents wasted resources in the larger and more expensive phase III study;

when an effective dose is found efficiently approval time is shortened.
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Figure 1.2: Positive-negative extreme value model for r = 0.5, µ = −3.

The contingent response model is also useful in some stress testing situations.

For example, Hayes, Edie and Durham [25] describe testing the compressive strength

of fibers. A fiber may fail after it is stressed under tension to a predetermined level.

Only if the fiber does not break under the initial tension is a recoil test initiated. If

the initial stress level is sufficiently high (but not high enough to lead to a failure), the

fiber may then fail due to compressive stresses generated as the stored strain energy

is recovered. The goal is to find the stress level that maximizes the probability of a

recoil success without tensile failure.

Fan and Chaloner [12] found D and c-optimal designs for the continuation

ratio model which we show to be a special case of the contingent response model in

4



the next chapter. Zocchi and Atkinson [43] study the influence of gamma radiation of

the emergence of house flies. ”In this study, seven sets of 500 pupae were exposed to

one of several doses of radiation. Observations from each set of pupae after a period

of time included the number of flies that died before the opening (unopened pupae),

the number of flies that died before complete emergence, and the number of flies that

completely emerged from the set of 500 pupae. They found the D-optimal designs for

this application.

In Chapter 2, we give some background theory on optimal designs. In Chap-

ter 3, we define the contingent response model and give examples. In Chapter 4,

we present general theorems for D-optimal designs for the contingent response model

and find the optimal designs for the positive–negative extreme value model. In Chap-

ter 5, we find the c-optimal designs for the positive–negative extreme value model

and present some relative theorems. In Chapter 6, we define the limiting optimal de-

signs and find the limiting D-optimal designs for the positive–negative extreme value

model. In Chapter 7, we introduce an up–and–down designs for implementing the

optimal designs and we give some comparisons with other up–and–down designs that

are often used.

5



Chapter 2

BACKGROUND THEORY ON

OPTIMAL DESIGNS

When the distribution of an observable response(s) depends on control vari-

able(s), decisions must be made concerning what levels of the control variable(s) to

use and how to allocate treatments to experimental units. The decisions typically

depend on how many experimental units are available and the range of the control(s)

variable(s). Different criteria can be adopted based on the goals of the experiments.

In nonlinear models, Fisher’s Information depends on the parameters of the

underlying distribution of the response(s). This problem led Chernoff [5] to pro-

pose locally optimal designs which are produced by evaluating the optimal designs

at guessed parameter values. Estimating parameters with data from previous exper-

iments is an attractive alternative. The optimal design also can be approximated

by sequentially updating the maximum likelihood estimates of the parameters, and

6



reevaluating the optimal design after every subject, or group, is treated. Empiri-

cal Bayesian methods also can be used. Grovagnoli [20] proposed a nonparametric

sequential approximation to optimal designs using up and down designs.

2.1 The Design Problem

Let θ be the vector of the parameters in the distribution of the response(s)

variable, and let I(x,θ) be the per observation Fisher’s information matrix at control

variable value x. If a design puts ni independent observations at xi, i = 1, 2, ..., K for

fixed N = Σini, then Fisher’s information matrix is ΣiniI(xi,θ). The problem is to

find {xi}, {ni}, and K to maximize an optimality criteria (φ). This is the exact design

problem. Because of the discrete domain, calculus optimization techniques cannot be

implemented. Kiefer [27] suggested an approximate theory in which ni/N = ξi with

0 ≤ ξi ≤ 1. Fisher’s information becomes N M (ξ, θ), where M(ξ, θ)= ΣiξiI(xi, θ)

is the average Fisher’s information matrix with the measure ξ=




x1 . . . xK

ξ1 . . . ξK


 .

The problem now becomes finding ξ and K to maximize the optimality criteria. Exact

designs are found by integer approximation of continuous designs. In another words,

for any φ we want to find ξ∗ such that φ{ M(ξ, θ )} =maxξ∈Hφ{M(ξ, θ }, where H

is the set of all possible designs.

The following are some important properties of Fisher’s information matrix:

1) The Fisher’s information matrix is symmetric and positive definite.
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2) If the number of support points of the measure ξ is less than the number of

unknown parameters, then Fisher’s information is singular.

3) The set of Fisher’s information matrices over all possible designs ξ∈ H is the

convex hull of the family of information matrices for a given θ.

4) The number of support points for any design is at most p(p + 1)/2, where p is

the number of parameters in the model, by the Caratheodory’s theorem. For more

details, see (Silvey [37], p.72).

2.2 Optimality Criteria

In this section we describe some commonly used optimality criteria (cf. Silvey[37]

and Fedorov [14]). We give more details for the criteria used in our work, D and c

optimality.

2.2.1 D−optimality

The most intensively studied criterion is D-optimality. It is well known that

the asymptotic variance of the maximum likelihood estimates (MLE) can be approx-

imated by the inverse of Fisher’s information. The D-optimality criterion maximizes

the determinant of Fisher’s information, but it is usually expressed in terms of log-

arithm determinant of Fisher’s information to assure the concavity of the criterion.

This is instrumental for verifying the optimality of a candidate design. Define

φD = maxξ[log(|M(ξ, θ)|)] = min[log(|(M)−1(ξ, θ)|)].

8



If we are interested in estimating all the model’s parameters, D-optimality criteria is

used.

An advantage of this criterion is that the optimal designs do not depend on the

scale of the variables. In other words, non-degenerate linear transformations in the

space of the parameters estimates leave D-optimal designs unchanged, unlike A and

E optimality criterion described below. Some more properties of the D-optimality

criteria φD are given below:

1) φD is an increasing function of Fisher’s information matrices. That is, if ξ1, ξ2 are

two design measures then φD(M(ξ1, θ) + M(ξ2, θ)) > φD(M(ξ1, θ)).

2) φD is concave on the set of Fisher’s information matrices defined on all ξ ∈ H.

3) The D-optimal design need not to be unique. If ξ�1 and ξ�2 are D-optimal designs,

then the design ξ∗ = ε ξ1
∗ +(1− ε) ξ2

∗, 0 ≤ ε ≤ 1, is D-optimal.

In linear models when errors are assumed normal, the confidence ellipsoid for

θ is proportional to detM−1/2(x). The result is to make this ellipsoid as small as

possible, i.e. maximizing detM(x). In non-linear models, the confidence ellipsoid for

θ is not proportional to detM−1/2(x, θ). However, we still use detM−1/2(x, θ) as a

measure of variation.

2.2.2 DA−optimality

This criterion is used when we are interested in s linear combinations of the

parameters, that is, elements of AT θ, where A is a p× s matrix with s < p. The co-
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variance matrix for these linear combinations is AT (M−1(ξ, θ))A. Hence the criteria

minimizes log|ATM−1(ξ, θ))A|.

2.2.3 A−optimality

A optimality is used when we are interested in estimating the average of the

parameters. A-optimality minimizes the sum of the asymptotic variances of the pa-

rameter estimates. That is, A-optimality minimizes the trace of M−1(ξ, θ).

2.2.4 E−optimality

The E-optimality criterion minimizes the variance of the least well-estimated

contrast aT θ, with aT a = 1. That is, minimize the maximum eigenvalue of M−1(ξ, θ).

2.2.5 c−optimality

The c-optimality criterion, a special case of DA−optimality, is used when we

are interested in estimating a specific linear combination of θ, say cT θ where c is

a p × 1 vector, with minimum variance, that is proportional to cTM−1(ξ, θ)c. The

criterion is

φc =





max(−cTM−1(ξ, θ)c) if M(ξ, θ) is nonsingular

−∞ else.

A disadvantage of the c-optimality criterion is that the optimal designs are often
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singular. Hence φc is not continuous and the maximum might not exist. Silvey[37]

modified the definition to

φc =





max(−cTM−1(ξ, θ)c) if M(ξ, θ) is nonsingular

max(−cT M−(ξ, θ)c) if cT θ is estimable when M(ξ, θ) is singular

−∞ else,

where M−(ξ, θ) is a generalized inverse of M(ξ, θ). With Silvey’s modification,

the criterion becomes concave and continuous so the maximum exists and any local

maximum is a global maximum.

2.2.6 Bayesian Optimality Criteria

Bayesian optimal criteria average the optimality criteria described above with

respect to a prior distribution on θ.

2.3 Verifying the Optimality Criteria

The General Equivalence Theorem was developed by Kiefer [27] and used to

verify the optimality criteria. We define φ and state the General Equivalence Theorem

as they are stated in Silvey [37]. Before we restate Silvey’s [37] General Equivalence

Theorem 6.1.2, we define the directional derivative, which is used in this theorem.

Definition 2.3.1 The directional derivative of φ at a matrix M1 in the direction of

11



a matrix M2 is Fφ(M1,M2) = limε→0+
1
ε
[φ{(1− ε)M1 + εM2} − φ{M1}].

Theorem 2.3.1 ( The General Equivalence Theorem) If φ is concave and dif-

ferentiable at M(ξ�, θ), then ξ� is optimal if and only if Fφ{ M (ξ�, θ), I(x, θ) }

≤ 0 for all x in the domain of x. The supremum of Fφ over all possible values of x is

0 and it is attained at the optimal design points.

When a candidate optimal design produces a singular M(ξ, θ) another version of

the general equivalence theorem was proved by Silvey [37]. Let r be the rank of the

singular Fisher’s information matrix and p is the dimension of θ. Note that r < p.

Theorem 2.3.2 (General Equivalence Thm. for Singular Optimal Designs)

If φ is concave and differentiable at M(ξ, θ), then a sufficient condition that φ is op-

timal at Mr(ξ
∗, θ) is that there exist a matrix Hp×(p−r) of rank p− r such that

Fφ{[HHT + Mr(ξ
∗,θ), I(x, θ)} ≤ 0 over all possible of x in the domain of x. The

supremum of Fφ over all possible of x is 0 and it is attained at the design points.
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Chapter 3

THE CONTINGENT RESPONSE

MODEL

We now describe the contingent response model. Let

Y1j =





1 if the jth subject has a toxic response

0 else

Y2j =





1 if the jth subject has disease failure

0 else

for j = 1, . . . , N . Only three outcomes are possible, namely, {Y1j = 0, Y2j =

0, }, {Y1j = 0, Y2j = 1}, and {Y1j = 1}. We consider a location-scale family of para-

metric models: P{Y1j = 1 | x} = F (α1 + β1x) = Fx; and P{Y2j = 0 | Y1j = 0, x} =

G(α2 +β2x) = Gx, with F̄x = 1−Fx and Ḡx = 1−Gx; x is log dose. The probability
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of success is

Hx = P{Y1j = 0, Y2j = 0 | x} = F̄xGx; (3.1)

the probability of toxicity is Fx; and the probability of disease failure is P (Y1j =

0, Y2j = 1) = F̄xḠx.

The optimal dose is the maximum of Hx. Assuming the derivatives of F and

G exists, the optimal dose may be found by setting the derivative of (3.1) equal to

zero, i.e.,

H ′(·) = F̄ (·)G′(·)−G(·)F ′(·) = 0, (3.2)

where F ′ and G′ are the derivatives of F and G. See Figures 1 and 2.

When (3.2) does not have a closed form solution, numerical methods will yield a

practical solution. Conditions for H(·) to have a maximum are given by Li, Durham

and Flournoy [29]. These conditions are satisfied if F (x) and G(x) are probability

continuous distribution functions.

The continuation ratio model is a special case of the contingent response model

in which Fx and Gx are logistic. To see this, we follow Agresti ([1], p. 319) and

define π1(x) = P (toxicity|x) = Fx; π2(x) = P (cure|x) = F̄xGx; and π3(x) =

P (diseasefailure|x) = F̄xḠx. Continuation ratio logits are defined as Lj = logit

ρj(x), where ρj(x) = πj(x)/
∑

i>j πi(x), i = 1, 2, 3; j = 1, 2. Modeling Lj = αj +βjx is

equivalent to assuming Fx = exp(α1 + β1x)/(1 + exp(α1 + β1x)) and Gx = exp(α2 +

β2x)/(1 + exp(α2 + β2x)), β1, β2 > 0. Designs for continuation ratio model have been

studied by Zocchi and Atkinson [43]. They found optimal design for a particular
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application of the continuation ratio model. Fan and Chaloner ([11], [12]) studied

optimal designs for the continuation ratio model more generally. So this thesis is a

generalization of some of their work. They give the solution to (3.2) when β1 = β2.

For β1 6= β2, (3.2) does not have an explicit solution. In this case Fan and Chaloner

([12]) used the implicit function theory introduced by Atkinson and Haines [3] to find

the c-optimal designs. Melas [31] used the implicit function theory in finding the

E-optimal designs for polynomial regression on a segment.

Li, Durham and Flournoy [29] describe two contingent response models for

which the optimal dose does have an explicit solution:

1) The positive-negative extreme value contingent response model

(PNEV).

Let F̄x = exp(− exp(α1 + β1x)) and Gx = exp(− exp(−(α2 + β2x))), β1,

β2 > 0. Then the optimal dose for β1 6= β2 is ν = [log{β2/β1} − α1 − α2]/(β1 + β2).

For β1 = β2 = β, the optimal dose is ν = −(α1 + α2)/2β.

2) The logistic-exponential contingent response model (LE).

Let Fx = exp(α1 + β1x)/1 + exp(α1 + β1x) and Gx = exp(α2 + β2x), β1, β2 > 0,

x ∈ (−∞, −α2

β2
). For β1 > β2, the optimal dose is ν = [log{β2/(β1−β2)}−α1)]/β1. No

solution to (3.2) exists for β1 ≤ β2, but in that case the optimal dose is x = −α2/β2.
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3.1 Fisher’s Information

Assume we have ni independent observations taken at xi, i = 1, . . . , K. Let

ri be the number of toxic responses, mi the number of cures and (ni −mi − ri) the

number of disease failures at dose level xi. Define v(x) = F
′2
x /(FxF̄x) and w(x) =

F̄xG
′2
x /(GxḠx). The likelihood function is proportional to

K∏
i=1

F ri
xi

(F̄xi
Gxi

)mi(F̄xi
Ḡxi

)ni−ri−mi .

Lemma 3.1.1 If β1 6= β2, then Θ = (α1, β1, α2, β2) and I4×4(x,Θ) = diag(A,B),

where

A2×2 = v(x,Θ)




1 x

x x2


 ;B2×2 = w(x,Θ)




1 x

x x2


 .

If β1 = β2 = β, then Θ = (α1, β, α2) and

I3×3(x,Θ) = v(x,Θ)




1 x 0

x x2 0

0 0 0




+ w(x,Θ)




0 0 0

0 x2 x

0 x 1




. (3.3)

Proof: The likelihood function for a single design point is proportional to

F r
x (F̄xGx)

m(F̄xḠx)
n−r−m = F r

x (Gx)
m(F̄x)

n−r(Ḡx)
n−m−r.

So the loglikelihood function at x is proportional to

L = {rlog(Fx) + mlog(Gx) + (n− r)log(F̄x) + (n−m− r)log(Ḡx)}.
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For β1 6= β2, define θ = (θj) = ((α1, β1, α2, β2), j = 1, . . . , 4, ), z1 = α1 + β1x and

z2 = α2 + β2x. Then

∂L/∂θj =





∂z1

∂θj
{rF ′z1

Fz1
− (n− r)

F ′z1
F̄z1
} j = 1, 2

∂z2

∂θj
{mG′z2

Gz2
− (n−m− r)

G′z2
Ḡz2
} j = 3, 4,

(3.4)

where
∂z1

∂θ1

= 1,
∂z1

∂θ2

= x,
∂z2

∂θ3

= 1 and
∂z2

∂θ4

= x. For j = l = 1, 2,

∂L2

∂θj∂θl

=
∂z1

∂θj

∂z1

∂θl

{rFz1F
′′
z1
− F ′2

z1

F 2
z1

− (n− r)
F̄z1F

′′
z1

+ F ′2
z1

F̄ 2
z1

}. (3.5)

Now the aij element of the matrix A2×2 is

−E
∂L2

∂θj∂θl

=
∂z1

∂θj

∂z1

∂θl

{−nFz1

Fz1F
′′
z1
− F ′2

z1

F 2
z1

+ nF̄z1

F̄z1F
′′
z1

+ F ′2
z1

F̄ 2
z1

}

= (
∂z1

∂θj

∂z1

∂θl

){−nF̄z1(Fz1F
′′
z1
− F ′2

z1
) + nFz1(F̄z1F

′′
z1

+ F ′2
z1

)

Fz1F̄z1

}

= (
∂z1

∂θj

∂z1

∂θl

)
nF ′2

z1

Fz1F̄z1

, (3.6)

and the upper block sub-matrix of Fisher’s information matrix can be written as

A =




1 x

x x2




nF̄ ′2
z1

Fz1F̄z1

.

For j, l = 3, 4,

∂L2

∂θj∂θl

=
∂z2

∂θj

∂z2

∂θl

{mGz2G
′′
z2
−G′2

z2

G2
z2

− (n−m− r)
Ḡz2G

′′
z2

+ G′2
z2

Ḡ2
z2

}. (3.7)

The bij element of the matrix B2×2 is given by

−E
∂L2

∂θj∂θl

=
∂z2

∂θj

∂z2

∂θj

{−nF̄z1Gz2

Gz2G
′′
z2
−G′2

z2

G2
z2

+ nF̄z1Ḡz2

Ḡz2G
′′
z2

+ Gz′2

Ḡ2
z2

}

=
∂z2

∂θj

∂z2

∂θl

{−nF̄z1Ḡz2(Gz2G
′′
z2
−G′2

z2
) + nF̄z1Gz2(G

′′
z2

+ Gz′2)

Gz2Ḡz2

}

=
∂z2

∂θj

∂z2

∂θl

nF̄z1Gz2

′2

Gz2Ḡz2

, (3.8)
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and the lower block sub-matrix of Fisher’s information matrix can be written as

B =




1 x

x x2




nF̄z1Ḡ
′2
z2

Gz2Ḡz2

.

Note that ∂L2/(∂θl∂θj) = 0 for l = 1, 2, j = 3, 4 and l = 3, 4, j = 1, 2. So the Fishers

information matrix for a single subject at x is

I(x, Θ) =




A 0

0 B


 .

For β1 = β2, define θ = (θj)= (α1, β, α2), z1 = α1 + βx and z2 = α2 + βx. For

∂L

∂β
=

∂z1

∂θj

{rF ′
z1

Fz1

− (n− r)
F ′

z1

Fz1

}+
∂z2

∂θj

{mG′
z2

Gz2

− (n−m− r)
G′

z2

Gz2

},

−E
∂L2

∂β2
=

∂z1

∂θj

∂z1

∂θl

nFz1

′2

Fz1F̄z1

+
∂z2

∂θj

∂z2

∂θl

nF̄z1Gz2

′2

Gz2Ḡz2

,

with j = l = 2. For j = l = 1, 2, both ∂L/∂θj and −E(∂L2/(∂θj∂θl)) are given by

(3.4) and (3.6), respectively. For j = l = 2, 3, ∂L/∂θj and −E(∂L2/(∂θj∂θl)) are

given by (3.4) and (3.8), respectively. Note that ∂L2/(∂θj∂θl) = 0, (j, l) = (1, 3) and

(j, l) = (3, 1). So the Fishers’s information matrix for a single subject is

I3×3(x, Θ) =
F
′2(x, Θ1)

F (x, Θ1)F̄ (x, Θ1)




1 x 0

x x2 0

0 0 0




+
F̄ (x, Θ1)G

′2(x, Θ2)

G(x, Θ2)Ḡ(x, Θ2)




0 0 0

0 x2 x

0 x 1




.

¤
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Tables 3.1 and 3.2 give the components of Fishers information for PNEV and

LE for unequal slopes and equal slopes, respectively.

Component Positive-Negative Extreme Value Logistic-Exponential

A11 exp(2α1 + 2β1xi)F̄i/Fi F̄iFi

A12 xi exp(2α1 + 2β1xi)F̄i/Fi xiF̄iFi

A22 x2
i exp(2α1 + 2β1xi)F̄i/Fi x2

i F̄iFi

B11 exp(−2α2 − 2β2xi)F̄iGi/Ḡi F̄iGi/Ḡi

B12 xi exp(−2α2 − 2β2xi)F̄iGi/Ḡi xiF̄iGi/Ḡi

B22 x2
i exp(−2α2 − 2β2xi)F̄iGi/Ḡi x2

i F̄iGi/Ḡi

Table 3.1: Fisher’s information for a single subject at xi(unequal slopes)

Component Positive-Negative extreme Value Logistic-Exponential

I11 exp(2α1 + 2βxi))F̄i/Fi F̄iFi

I12 xi exp(2α1 + 2βxi)F̄i/Fi xiF̄iFi

I22 x2
i exp(2α1 + 2βxi)F̄i/Fi+ x2

i [F̄iFi + F̄iGi/Ḡi]
x2

i exp(−2α2 − 2βxi)F̄iGi/Ḡi

I23 xi exp(−2α2 − 2βxi)F̄iGi/Ḡi xiF̄iGi/Ḡi

I33 exp(−2α2 − 2βxi))F̄iGi/Ḡi F̄iGi/Ḡi

Table 3.2: Fisher’s information for a single subject at xi (equal slopes)
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Chapter 4

LOCALLY D-OPTIMAL

DESIGNS

The D-optimality criterion, used when we are interested in estimating the

model parameters, is the maximum of the determinant of Fisher’s Information. Since

there is no closed form solution for the optimal designs we study, the NPSOL [19] al-

gorithm was used to find designs that maximize the optimality criterion (see appendix

C ); then the General Equivalence theorem was used to verify global optimality (see

Silvey [37]).

4.1 Unequal slopes β1 6= β2

Consider the contingent response model with distribution functions Fx =

F (α1+β1x) and Gx = G(α2+β2x). Reparameterize Θ = (α1, β1, α2, β2) to θ=(α2, β2, µ, r),
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where µ = α1 − rα2 and r = β1/β2. Following the idea of Ford, Torsney, and Wu

[18], we say we have the canonical (µ, r) model when θ= (0, 1, µ, r). Let ξ� be the

D-optimal design for the canonical (µ, r) model. Theorem 4.1.1 tells us that the op-

timal designs for all other models with parameters (α2, β2, µ, r) can be generated by

a linear transformation of the canonical optimal designs.

Theorem 4.1.1 If ξ∗0=




x∗1 . . . x∗K

ξ∗1 . . . ξ∗K


 is locally D-optimal for θ0= (0, 1, µ, r),

then ξ∗=




x∗1−α2

β2
. . . . . . ,

x∗K−α2

β2
)

ξ∗1 . . . ξ∗K


 is locally D-optimal for θ0= (α2, β2, µ, r).

Proof: Recall that v(x) = F
′2
x /(FxF̄x), w(x) = F̄xG

′2
x /(GxḠx), vi = v(xi, θ0) =

v(x, θ) |x=(xi−α2)/β2 and wi = w(xi,θ0) = w(x, θ)|x=(xi−α2)/β2 . It can be seen from

Lemma 3.1.1 that det I(x, θ)) = det(A(x, θ)))× det(B(x, θ))). This implies that

det M(ξ, θ) =

det
∑K

i ξiI(xi, θ) = det
∑K

i ξiA(xi,θ)× det
∑K

i ξiB(xi,θ).

detA(θ, ξ) = det




k∑
i

ξivi




1 xi−α2

β2

xi−α2

β2
(xi−α2

β2
)2







=
1

β2
2

det




∑K
i ξivi

∑K
i ξivi(xi − α2)

∑K
i ξivi(xi − α2)

∑K
i ξivi(xi − α2)

2




=
1

β2
2

{(
K∑
i

ξivi){
K∑
i

ξivi(x
2
i − 2α2xi + α2

2)} − (
K∑
i

ξivi(xi − α2))
2}

=
1

β2
2

{(
K∑
i

ξivi)
K∑
i

ξivix
2
i − 2α2(

K∑
i

ξivi)
K∑
i

ξivixi +
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α2
2(

K∑
i

ξivi)
2 −

K∑
i

K∑
j

ξiviξjvj(xi − α2)(xj − α2)}

=
1

β2
2

{(
K∑
i

ξivi)
K∑
i

ξivix
2
i − 2α2(

K∑
i

ξivi)
K∑
i

ξivixi

+α2
2(

K∑
i

ξivi)
2 +

K∑
i

K∑
j

(−ξiviξjvjxixj

+α2ξiviξjvjxj + α2ξiviξjvjxi − α2
2ξiviξjvj)}

=
1

β2
2

(
(

K∑
i

ξivi)
K∑
i

ξivix
2
i −

K∑
i

K∑
j

ξiviξjvjxixj

)

=
1

β2
2

(
(

K∑
i

ξivi)
K∑
i

ξivix
2
i − (

K∑
i

ξivixi)
2

)

=
1

β2
2

det




∑K
i ξivi

∑K
i ξivixi

∑K
i ξivixi

∑K
i ξivix

2
i




=
1

β2
2

det

K∑
i

ξivi




1 xi

xi x2
i


 =

1

β2
2

detA(ξ0, θ0).

In a similar way it can be shown that detB (ξ, θ) = 1/β2
2 detB(ξ0, θ0). So

detM(ξ, θ) = detA(ξ, θ) detB(ξ, θ)

=
1

β2
2

detA(ξ0, θ0)
1

β2
2

detB(ξ0, θ0)

=
1

β4
2

M(ξ0, θ0).

(4.1)

Now consider the one-to-one onto transformation τ(ξ0) = ξ defined on the designs:

ξ∗0=




x∗1 . . . x∗K

ξ∗1 . . . ξ∗K


 ; ξ∗=




x∗1−α2

β2
. . . . . . ,

x∗K−α2

β2
)

ξ∗1 . . . ξ∗K


 . Then τ−1 is well defined.
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Now

ξ∗ = argmaxξ det(M(ξ, θ)) definition of ξ∗

= argmaxξ β4
2 det(M(ξ, θ) β4

2 is constant

= argmaxξ det(M(ξ0, θ0)) by (4.1)

= argmaxτ(ξ0) det(M(ξ0, θ0)) τ(ξ0) = ξ

= argmaxτ−1τ(ξ0) det(M(ξ0, θ0)) τ is1− 1 onto

⇒

ξ0
∗ = argmaxξ0 det(M(ξ0, θ0)) definition of ξ0

∗

and τ−1(ξ) = ξ0.

Maximizing detM(ξ, θ) is the same as maximizing log detM(ξ, θ) over all possible

designs ξ. Therefore, if ξ0
∗ is locally D-optimal for θ0, then ξ� is locally D-optimal

for θ. ¤

Locally D-optimal designs for several canonical (µ, r) positive-negative extreme

value models are given in Tables 4.1–4.5. For each model, we give the optimal dose,

the optimal design points and their weights, and the probabilities of toxicity, disease

failure, and success. All optimal designs were verified by the General Equivalence

Theorem given by Theorem 2.3.1. Figures 4.1 - 4.11. show that these designs’ direc-

tional derivatives are nonpositive and attain their maxima at the design points (see

Appendix B.1 for directional derivative code.) It can be seen that the optimal designs

consist of two, three, four points for small, moderate and large negative values of µ,
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respectively. For positive values of µ, the optimal designs consist of two and three

design points depending on the value of r. For the many combinations of r, µ values

we studied, the number of optimal design points for the positive-negative extreme

value model is the same as the number of optimal designs points for the analogous

logistic-logistic model found by Fan and Chaloner [12].

The D-optimal design for a single negative extreme value model F (α1 + β1x),

with α1 = 0, β1 = 1, was found by Ford, Torsney, and Wu [18] to be ξ∗NE =

−1.338 0.980

0.5 0.5


 . This is the optimal design for F̄α1+β1x also. The optimal design

for the single positive extreme value model G(α2 + β2x) with α2 = 0, β2 = 1 is found

using NPSOL [19] to be ξ∗PE=




1.3377 −0.9796

0.5000 0.5000


 which reflects the points of

ξ∗NE around the origin. This is the same optimal design for Ḡx. For the positive-

negative model, one sees from Table 4.1 and Figure 1.1 that Fx and Ḡx become

quite separate when −µ gets larger, the optimal designs tend toward having four

equally weighted points which are the optimal design points for the separate Fµ+rx

and Ḡx combined: ξ∗PNE =



−1.338 −0.980 0.980 1.338

0.25 0.25 0.25 0.25


. This is analogous

to findings by Fan and Chaloner [12] for logistic-logistic model. As µ → −∞, we

show in Section 6.1 that the limiting optimal design for the canonical (µ, r) positive-

negative extreme value model does indeed have four equally weighted points of the

form [x1, x2, (−x1−µ)/r, (−x2−µ)/r], with (x1, x2) equal to the optimal design points

(x∗1, x
∗
2) of ξ∗PE.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

0.5 0 0.46 -1.2752 0.4720 0.41 0.57 0.02
0.5985 0.3382 0.74 0.11 0.15
1.9480 0.1898 0.93 0.01 0.06

-1 1.13 -1.0982 0.4005 0.19 0.77 0.04
0.8243 0.3635 0.43 0.20 0.37
3.9569 0.2360 0.93 0.00 0.07

-3 2.46 -0.9329 0.3312 0.03 .89 0.08
1.4913 0.4200 0.10 0.18 0.72
7.6891 0.2488 0.90 0.00 0.10

-5 3.80 -0.9101 0.2931 0.00 0.91 0.08
1.6895 0.3729 0.02 0.17 0.82
7.6511 0.0948 0.27 0.00 0.73

11.6989 0.2392 0.90 0.00 0.10
-10 7.13 -0.9778 0.2509 0.00 0.93 0.07

1.3465 0.2524 0.00 0.23 0.77
17.3336 0.2473 0.23 0.00 0.77
21.955 0.2493 0.93 0.00 0.07

-15 10.46 -0.9796 0.2500 0.00 0.93 0.07
1.3379 0.2500 0.00 0.23 0.77

27.3247 0.2500 0.23 0.00 0.77
31.9592 0.2500 0.93 0.00 0.07

Table 4.1: D-optimal designs for the positive-negative extreme value model r = 0.5.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

1 3 1.50 -4.2496 0.2350 0.25 0.75 0.00
-2.0621 0.4262 0.92 0.08 0.00
-1.4308 0.3388 0.99 0.01 0.00

1 -0.50 -1.566 0.5000 0.43 0.56 0.01
-0.2085 0.5000 0.89 0.08 0.03

0 0.00 0.4755 0.5000 0.80 0.09 0.11
-1.2808 0.5000 0.24 0.74 0.02

-1 0.50 -1.1222 0.41 0.11 0.85 0.04
0.4647 0.3447 0.44 0.26 0.30
1.8528 0.2466 0.90 0.01 0.08

-3 1.50 -0.9414 0.3092 0.02 0.91 0.08
1.2863 0.4393 0.17 0.20 0.63
3.8610 0.2515 0.91 0.00 0.09

-5 2.50 -0.8454 0.2717 0.00 0.90 0.10
2.2797 0.477 0.06 0.09 0.85
5.8125 0.2513 0.90 0.00 0.11

-10 5.00 -0.973 0.25 0.00 0.93 0.07
1.362 0.2515 0.00 0.23 0.77

8.6396 0.2793 0.22 0.00 0.77
10.9725 0.2491 0.93 0.00 0.07

-15 7.50 -.9795 0.2500 0.00 0.93 0.07
1.3381 0.2500 0.00 0.23 0.77

13.6618 0.2500 0.23 0.00 0.77
15.9795 0.2500 0.93 0.00 0.07

-20 10.00 -0.9796 0.2500 0.00 0.93 0.07
1.3378 0.2500 0.00 0.23 0.77

18.6623 0.2500 0.23 0.00 0.77
20.9796 0.2500 0.93 0.00 0.07

Table 4.2: D-optimal designs for the positive-negative extreme value model r = 1.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

2 3 -1.23 -1.8656 0.5000 0.38 0.62 0.00
-1.0637 0.5000 0.91 0.07 0.01

1 -0.56 -1.3831 0.5000 0.16 0.83 0.02
-0.2548 0.5000 0.81 0.14 0.05

0 -0.23 -1.2158 0.4391 0.08 0.89 0.03
-0.1719 0.2660 0.51 0.34 0.15
0.3417 0.2945 0.86 0.07 0.07

-1 0.10 -1.1287 0.3566 0.04 0.92 0.04
0.0812 0.3725 0.35 0.39 0.26
0.9055 0.2708 0.90 0.04 0.07

-3 0.77 -1.0136 0.2810 0.01 0.91 0.06
0.7675 0.4573 0.21 0.30 0.50
1.9332 0.2618 0.91 0.00 0.08

-5 1.435618 -0.9256 0.2584 0.00 0.92 0.08
1.5614 0.4831 0.14 0.16 0.70
2.9311 0.2585 0.91 0.01 0.09

-7 2.10 -0.8520 0.2521 0.00 0.90 0.10
2.4150 0.4913 0.11 0.08 0.82
3.9240 0.2566 0.90 0.00 0.10

-10 3.10 -0.8987 0.2418 0.00 0.91 0.09
1.3106 0.1511 0.00 0.24 0.76
4.0744 0.3544 0.15 0.01 0.84
5.4483 0.2526 0.91 0.00 0.09

-15 4.77 -0.9709 0.2476 0.00 0.93 0.07
1.3222 0.2385 0.00 0.23 0.77
6.7937 0.2635 0.22 0.00 0.78

7.98 0.2505 0.93 0.00 0.07
-20 6.44 -0.9784 0.2496 0.00 0.93 0.07

1.3352 0.2485 0.00 0.23 0.77
9.3257 0.2519 2.30 0.00 0.77

10.4889 0.2501 0.93 0.00 0.07

Table 4.3: D-optimal designs for the positive-negative extreme value model for r = 2.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

3 3 -1.03 -1.5878 0.5000 0.16 0.84 0.01
-0.8112 0.5000 0.83 0.15 0.02

1 -0.53 -1.2783 0.4145 0.06 0.92 0.03
-0.5062 0.26675 0.45 0.45 0.11
-0.1083 0.3188 0.86 0.09 0.05

0 -0.28 -1.2187 0.3374 0.03 0.94 0.03
-0.2938 0.3749 0.34 0.49 0.17
0.2638 0.2878 0.89 0.06 0.05

-1 -0.03 -1.1701 0.2956 0.01 0.95 0.04
-0.0434 0.4275 0.28 0.47 0.26
0.6136 0.2769 0.90 0.04 0.06

-3 0.48 -1.081 0.2621 0.00 0.95 0.05
0.5085 0.4702 0.21 0.36 0.44
1.2903 0.2676 0.91 0.02 0.07

-5 0.98 -0.9980 0.2530 0.00 0.93 0.07
1.0965 0.4838 0.17 0.24 0.60
1.9570 0.2632 0.91 0.01 0.08

-10 2.23 -0.8393 0.25 0.00 0.90 0.10
2.6464 0.4912 0.12 0.06 0.82
3.618 0.2588 0.91 0.00 0.10

-15 3.48 -0.9263 0.2409 0.00 0.92 0.08
1.2348 0.1719 0.00 0.25 0.75
4.4443 0.3336 017 0.01 0.82
5.3069 0.2536 0.921 0.00 0.08

-20 4.72 -0.9663 0.2464 0.00 0.93 0.07
1.3088 0.2310 0.00 0.24 0.76
6.1891 0.2716 0.21 0.00 0.79
6.9873 0.2510 0.93 0.00 0.07

Table 4.4: D-optimal designs for the positive-negative extreme value model for r=3.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

4 3 -0.88 -1.3721 0.5000 0.08 0.90 0.02
-0.6477 0.5000 0.78 0.19 0.04

1 -0.48 -1.2976 0.308 0.02 0.96 0.03
-0.4986 0.3971 0.31 0.56 0.13
-0.0501 0.2949 0.89 0.07 0.04

0 -0.28 -1.2558 0.2796 0.01 0.96 0.03
-0.2914 0.4365 0.27 0.54 0.19
0.2099 0.2839 0.90 0.06 0.04

-1 -0.08 -1.2133 0.2649 0.00 0.96 0.04
-0.07508 0.4578 0.24 0.50 0.26

0.4649 0.2773 0.91 0.04 0.05
-3 0.32 -1.1278 0.2534 0.00 0.95 0.05

0.3732 0.4768 0.20 0.40 0.40
0.9683 0.2698 0.91 0.03 0.06

-5 0.72 -1.0481 0.2505 0.00 0.94 0.06
0.8347 0.4838 0.17 0.29 0.54
1.4682 0.2657 0.91 0.02 0.07

-7 1.12 -0.9786 0.2500 0.00 0.93 0.07
1.3053 0.4869 0.16 0.20 0.64
1.9671 0.2632 0.91 0.01 0.08

-10 1.72 -0.8149 0.2499 0.00 0.90 0.11
2.02326 0.489 0.14 0.11 0.76
2.7155 0.2611 0.91 0.01 0.09

-20 3.72 -0.9337 0.2413 0.00 0.92 0.08
1.2397 0.1814 0.00 0.25 0.75
4.6004 0.3235 0.18 0.01 0.81
5.2322 0.2538 0.92 0.00 0.08

-30 5.72 -0.9732 0.2481 0.00 0.93 0.07
1.3236 0.2411 0.00 0.23 0.77
7.1552 0.2603 0.00 0.58 0.43
7.7428 0.2506 0.93 0.00 0.07

Table 4.5: D-optimal designs for the positive-negative extreme value model for r = 4.
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Figure 4.1: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model with different values of µ and r = 3, 4.
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Figure 4.2: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model for different values of µ and r = 4.
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Figure 4.3: Continued directional derivatives of D-optimal designs for the positive-
negative extreme value model for different values of µ and r = 4.
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Figure 4.4: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model for different values of µ and r = 0.5.
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Figure 4.5: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model with different values of µ and r = 0.5, 1.

34



x

Di
re

cti
on

al 
De

riv
at

ive

-30 -20 -10 0 10 20 30

-4
-3

-2
-1

0
u = 3 , r = 1

x
Di

re
cti

on
al 

De
riv

at
ive

-30 -20 -10 0 10 20 30

-4
-3

-2
-1

0

u = -1 , r = 1

x

Di
re

cti
on

al 
De

riv
at

ive

-30 -20 -10 0 10 20 30

-4
-3

-2
-1

0

u = -3, r = 1

x

Di
re

cti
on

al 
De

riv
at

ive

-30 -20 -10 0 10 20 30

-4
-3

-2
-1

0
u = -5 , r = 1

Figure 4.6: Directional Derivatives of D-optimal designs for the positive-negative
extreme value model for different values of µ and r = 1.
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Figure 4.7: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model for different values of µ and r = 1, 2.
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Figure 4.8: Directional derivatives of D-optimal designs for the positive-negative ex-
treme value model for different values of µ and r = 2.
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Figure 4.9: Continued directional Derivatives of D-optimal designs for the positive-
negative extreme value model for different values of µ and r = 2.
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Figure 4.10: Directional derivatives of D-optimal designs for the positive-negative
extreme value model for different values of µ and r = 2, 3.
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Figure 4.11: Directional derivatives of D-optimal designs for the positive-negative
extreme value model for different values of µ and r = 3.
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4.2 Equal slopes β1 = β2 = β

Consider the contingent response model with Fx = F (α1 + βx) and Gx =

G(α2 + βx). Reparameterize Θ = (α1, β, α2) to θ = (α2, β, µ), where µ = α1 − α2.

When θ = (0, 1, µ), we say we have a canonical (µ) model. Let ξ∗ be the D-optimal

design for the canonical (µ) model. Theorem 4.2.1 tells us that the optimal designs

for all other (µ) models can be generated by a linear transformation of the canonical

optimal designs.

Theorem 4.2.1 If the design ξ0
∗=




x∗1 . . . xK∗

ξ∗1 . . . ξ∗K


 is locally D-optimal for θ0=

(0, 1, µ), then the design ξ∗ =




(
x∗1−α2

β
, . . . ,

x∗K−α2

β
)

ξ∗1 , . . . , ξ∗K


 is locally D-optimal for

θ0= (α2, β2, µ).

Proof: We show that detM(θ, ξ) = 1/β2 detM(ξ0, θ0). Recall from Lemma 3.1.1

that

I3×3(x,Θ) = v(x,Θ)




1 x 0

x x2 0

0 0 0




+ w(x,Θ)




0 0 0

0 x2 x

0 x 1




.

Thus

detM(θ, ξ) = det




K∑
i

ξi




vi vi
(xi−α1)

β
0

vi
(xi−α1)

β
(vi + wi)

(xi−α1)2

β2 wi
(xi−α1)

β

0 wi
(xi−α1)

β
wi
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=
1

β2
det

K∑
i

ξi




vi vi(xi − α1) 0

vi(xi − α1) (vi + wi)(xi − α1)
2 wi(xi − α1)

0 wi(xi − α1) wi




=
1

β2
[(

K∑
i

ξivi){
K∑
i

ξiwi(
K∑
i

ξi(vi + wi)(xi − α1)
2)

−(
K∑
i

ξiwi(xi − α1))
2}

−(
K∑
i

ξivi(xi − α1))[
K∑
i

ξiwi

K∑
i

ξivi(xi − α1)]]

=
1

β2
(

K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivix
2
i

+(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivi(−2α1xi + α2
i )

+(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξiwix
2
i

+(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξiwi(−2α1xi + α2
i )

−(
K∑
i

ξivi){
K∑
i

K∑
j

ξiwiξjwj(xi − α1)(xj − α1)} − {
K∑
i

ξivixi

−α1

K∑
i

ξivi}{(
K∑
i

ξiwi)
K∑
i

ξivixi − α1(
K∑
i

ξiwi)
K∑
i

ξivi}

=
1

β2
(

K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivix
2
i + (

K∑
i

ξivi)(
K∑
i

ξiwi)

K∑
i

ξivi(−2α1xi + α2
i ) + (

K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξiwix
2
i

+(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξiwi(−2α1xi + α2
i )
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−(
K∑
i

ξivixi)
K∑
i

K∑
i

ξiwiξjwjxixj

+
K∑
i

ξivixi)
K∑
i

K∑
i

ξiwiξjwj{α1xj − α1xi + α2
i }

−
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivixi − 2α1(
K∑
i

ξivi)(
k∑
i

ξiwi)
K∑
i

ξivixi

+α2
1(

K∑
i

ξivi)(
k∑
i

ξiwi)
K∑
i

ξivi

=
1

β2
(

K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivix
2
i

+(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξiwix
2
i − (

k∑
i

ξivi)(
K∑
i

ξiwixi)
2

−(
K∑
i

ξivi)(
K∑
i

ξiwi)
K∑
i

ξivixi

=
1

β2
det







∑K
i ξivi

∑K
i ξivixi 0

∑K
i ξivixi

∑K
i ξi(vi + wi)x

2
i

∑K
i ξiwixi

0
∑K

i ξiwixi ξiwi







=
1

β2
det




k∑
i

ξi(




1 vixi 0

vixi (vi + wi)x
2
i wixi

0 wixi wi







=
1

β2
detM(θ0, ξ0).

¤

Locally D-optimal designs for several canonical (µ) positive-negative extreme

value models are given in Tables 4.6 and 4.7. All optimal designs were verified by

the General Equivalence Theorem given by Theorem 2.3.1. Figures 4.12–4.15 show
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D-optimal designs to consist of two, three and four points for small, moderate and

large negative values of µ, respectively. For positive values of µ, the optimal designs

consist of two points. For large negative values of µ, the optimal designs are not

the same as the optimal designs for the separate Ḡx and Fµ+rx models concatenated.

However, they still have four point designs:

ξPNE2
� =




0.8537 −1.0773 (−0.8537− µ) (1.0773− µ)

0.2900 0.2100 0.2900 0.2100


.

We will show in Section 6.2 that the limiting locally D-optimal designs is ξ∗PNE2.

Having four design points is consistent with the results of Fan and Chaloner [12] for

the logistic-logistic model, but it is different in having unequal weights. This may be

because the extreme value function is asymmetric.
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Figure 4.12: Directional derivatives for the positive-negative extreme model when
µ = 1, 2, 3, 4 for D-optimal designs.
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Figure 4.13: Directional derivatives for the positive-negative extreme model when
µ = −1,−2,−3,−5 for D-optimal designs.
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Figure 4.14: Directional derivatives for the positive-negative extreme model when
µ = −6,−7,−8,−10 for D-optimal designs.
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Figure 4.15: Directional derivatives for the positive-negative extreme model when
µ = −12,−20,−25,−30 for D-optimal designs.
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4.3 Efficiency of D-Optimal Designs

In this section we investigate the efficiency of the optimal designs under several

alternatives. We illustrate with two examples, one when the location parameter µ

is relatively small and the other when µ large. We want to explore how efficient a

design is if the points used are not the optimal ones. Following Atkinson and Donev

[3], define the D-efficiency of an arbitrary design ξ as

Deff = { |M(ξ)|
|M(ξ∗)|}

1/p,

where p is the number of the model parameters. The ratio of the determinants of any

arbitrary design ξ and the optimal design ξ∗ is proportional to the design size when

raised to the power 1/p, irrespective of the dimension of the model.

The optimal design when β1 = β2 and µ = −1 is ξ∗PNE2=



−0.5911 1.8519

0.6496 0.3504


 .

Figure 4.16 shows the efficiency of a design when x1 = −0.5911 is fixed and x2 varies

away from 1.8519. By using a point less than the optimal point 1.8519 and keeping

the same weights, we see the that the efficiency decreases with the distance from

1.8519 while the probability of success increases to reach its maximum 0.297 at the

point 0.5. Using the optimal dose, i.e. x2 = 0.5, reduces efficiency of parameters

estimators to less than 60% of the optimal design. Similarly for µ = −10, the optimal

design is ξ�=




10.8483 8.9041 1.0914 −.8462

0.2906 0.2113 0.2084 0.2897


 . Figure 4.17 shows the efficiency

of designs using a point less than the optimal x1 = 10.8483, while x2, x3, x4 are fixed
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Figure 4.16: Efficiency plot for µ = −1.

at the optimal levels with same weights. The efficiency decreases with the distance

from 10.8483 while the probability of success increases towards its maximum 0.9866

at the point 5.

The optimal designs are not always usable. This is true for example, when

the optimal designs put large positive weight on points that have high toxicity. One

needs to decide how much efficiency to compromise in order to reduce the toxicity

probability. Plots such as 4.16-4.18 may help in making this tradeoff.
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Figure 4.17: Efficiency plot for µ = −10.

51



µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

5 -2.50 -6.3369 0.3316 0.23 0.77 0.00
-4.0204 0.3305 0.93 0.07 0.00
-2.5862 0.3379 1.00 0.00 0.00

3 -1.50 -4.1760 0.3333 0.27 0.74 0.00
-1.7889 0.6667 0.97 0.04 0.00

2 -1.00 -3.5131 0.3334 0.20 0.80 0.00
-1.2554 0.6667 0.88 0.12 0.00

1 -0.50 -1.3120 0.6164 0.52 0.47 0.01
0.0031 0.3836 0.94 0.04 0.02

-1 0.50 -0.5911 0.6496 0.18 0.68 0.13
1.8519 0.3504 0.90 0.01 0.08

-2 1.00 -0.6450 0.4091 0.07 0.79 0.14
0.5111 0.2675 0.20 0.36 0.44
2.7947 0.3233 0.89 0.01 0.10

-5 2.50 -0.6986 0.3367 0.00 0.86 0.13
2.101 0.3407 0.05 0.11 0.84

5.6449 0.3226 0.85 0.00 0.15
-6 3 -0.7635 0.3141 0.00 0.88 0.12

1.4694 0.2286 0.01 0.20 0.79
4.5993 0.1539 0.22 0.01 0.77
6.7238 0.30335 0.87 0.00 0.13

-7 3.50 -0.8060 0.3012 0.00 0.89 0.10
1.2547 0.2178 0.00 0.25 0.75
5.7817 0.1869 0.26 0.00 0.74
7.7862 0.2942 0.89 0.00 0.11

Table 4.6: D-optimal designs for the positive-negative extreme model when β1 = β2 =
β.
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µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

-8 4.00 -0.8299 0.2949 0.00 0.90 0.10
1.1613 0.2140 0.00 0.27 0.73
6.8574 0.2001 0.27 0.00 0.73
8.8203 0.2910 0.90 0.00 0.10

-10 5.00 -0.8462 0.2897 0.00 0.90 0.10
1.0914 0.2084 0.00 0.29 0.72
8.9041 0.2113 0.28 0.00 0.72

10.8483 0.2906 0.90 0.00 0.10
-12 6.0 -0.8522 0.2595 0.00 0.90 0.10

1.080 0.2101 0.00 0.29 0.71
10.9189 0.2107 0.29 0.00 0.71
12.8526 0.2897 0.90 0.00 0.10

-20 10.00 -0.8537 0.28958 0.00 0.91 0.10
1.0773 0.2105 0.00 0.29 0.71

18.9227 0.2105 0.29 0.00 0.71
20.8537 0.2895 0.91 0.00 0.10

-25 12.50 -0.8537 0.2895 0.00 0.91 0.10
1.0773 0.2105 0.00 0.29 0.71

23.9227 0.2105 0.29 0.00 0.71
25.8537 0.2895 0.91 0.00 0.10

-30 15.00 -0.8537 0.2895 0.00 0.91 0.10
1.0773 0.2105 0.00 0.29 0.71

28.9223 0.2105 0.29 0.00 0.71
30.8537 0.2895 0.91 0.00 0.10

Table 4.7: Continued D-optimal designs for the positive-negative extreme model when
β1 = β2 = β.
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Figure 4.18: Efficiency plot for µ = −3, r = 0.5.
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Chapter 5

LOCALLY C-OPTIMAL

DESIGNS

Our interest is to find the c-optimal design for estimating the optimal dose

ν = g(Θ). For non-linear models, the c-optimal criterion is to minimize

φc(Θ, ξ) = ġT(Θ)M−1(ξ,Θ)ġ(Θ),

where ġ is the gradient vector of g(Θ). The optimal designs for the positive-negative

extreme model are verified using the General Equivalence Theorem. Singular optimal

designs occur. In this case, Silvey’s Theorem was used to verify optimality (See Silvey

[37] page 16).
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5.1 Unequal slopes β1 6= β2

We find c-optimal designs for the optimal dose for the positive-negative ex-

treme model, namely, ν = g(Θ) = (log(β2/β1) − α1 − α2)/(β1 + β2). The gradient

vector is ∂g(Θ)/∂Θi =
(

−1
β1+β2

; −1
β1(β1+β2)

− log(β2/β1)−α1−α2

(β1+β2)2
; −1

β1+β2
; 1

β2(β1+β2)
− log(β2/β1)−α1−α2

(β1+β2)2

)T

.

We reparameterize as in Section 4.1, that is Θ = (α1, β1, α2, β2) to θ= (α2, β2, µ, r).

It follows from Theorem 5.1.1 that once the locally c-optimal designs are found for a

canonical (µ, r) model, the locally c-optimal designs for all other models in the family

can be found from the canonical design.

Theorem 5.1.1 ξ�0=




x∗1 . . . x∗K

ξ∗1 . . . ξ∗K


 is locally c-optimal for θ0= (0, 1, µ, r), then

ξ�=




x∗1−α2

β2
. . . . . . ,

x∗K−α2

β2
)

ξ∗1 . . . ξ∗K


 is locally c-optimal for θ0= (α2, β2, µ, r).

Proof: It can be shown that φc(θ, ξ) = (1/β2
2)φc(θ0, ξ0) using Maple software and

simplifying. See Appendix A1. The rest of the proof is analogous to that of Theo-

rem 4.1.1. ¤

Tables 5.1 and 5.2 give c-optimal designs for the canonical (µ, r) positive-negative ex-

treme model. All the optimal designs consist of two points. For large positive values

of µ the probability of success is negligible and not of interest. All optimal designs

were verified by the General Equivalence Theorem and their directional derivatives

are shown in Figures 5.1- 5.7. These directional derivatives are non-positive and
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achieve their maximum at the optimal design points.

5.2 Equal slopes β1 = β2 = β

If β1 = β2 = β, the solution to (3.2) is ν = g(Θ) = −(α1 + α2)/2β with

gradient ∂g(Θ)/∂Θi =

(
−1
2β

α1+α2

2β2
−1
2β

)T

. We reparameterize as in Section (4.2)

on page 41, that is Θ = (α2, β, α1) to θ=(α2, β, µ). It follows from Theorem 5.2.1 that

once the locally c-optimal designs are found for the canonical (µ) model, the locally

c-optimal designs for all other models in the family can be found from the canonical

(µ) design.

Theorem 5.2.1 If the design ξ∗0=




x∗1 . . . xK∗

ξ∗1 . . . ξ∗K


 is locally c-optimal for θ0=

(0, 1, µ), then the design ξ∗=




(
x∗1−α2

β
, . . . ,

x∗K−α2

β
)

ξ∗1 , . . . , ξ∗K


 is locally c-optimal for θ=

(α2, β2, µ).

Proof: The proof is analogous to that of Theorem 5.2.2. See Appendix A2. ¤

Table 5.3 gives two point c-optimal designs for some canonical (µ) positive-

negative extreme models. All optimal designs were verified by the General Equiv-

alence Theorem and their direction derivatives are shown in Figures 5.1-5.4. These

directional derivatives are non-positive and achieve their maximum at the optimal

design points. When Fx and Ḡx are quite separate, the optimal design points are
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

0.5 0 0.46 -0.5830 0.5265 0.53 0.40 0.08
2.3137 0.4735 0.96 0.00 0.04

-1 1.13 0.1037 0.6005 0.32 0.40 0.28
3.8163 0.3995 0.92 0.00 0.08

-3 2.46 1.4519 0.7756 0.10 0.19 0.71
6.4685 0.2244 0.72 0.00 0.28

1 1 -0.500 -1.4536 0.6030 0.47 0.52 0.01
0.1765 0.3970 0.96 0.02 0.02

0 0.0 -1.0323 0.5435 0.30 0.66 0.04
1.0106 0.4565 0.94 0.02 0.05

-1 0.50 -0.5643 0.5437 0.19 0.67 0.14
1.7731 0.4563 0.89 0.02 0.10

-3 1.50 0.3817 0.5890 0.07 0.46 0.47
2.9918 0.4110 0.63 0.02 0.35

2 1 -0.57 -1.4635 0.6294 0.14 0.85 0.01
-0.0542 0.3706 0.91 0.06 0.03

0 -0.23 -1.2133 0.5842 0.88 0.06 0.06
0.3745 0.4158 0.09 0.88 0.03

-1 0.10 -0.9531 0.5489 0.05 0.87 0.07
0.7419 0.4512 0.80 0.08 0.12

-3 0.77 -0.5054 0.4444 0.02 0.80 0.19
1.3595 0.5556 0.52 0.11 0.36

-5 1.44 -0.1536 0.3206 0.01 0.69 0.31
1.9746 0.6794 0.30 0.09 0.61

-7 2.10 0.2305 0.2370 0.00 0.55 0.45
2.6208 0.7631 0.16 0.06 0.78

-9 2.77 0.7077 0.1910 0.00 0.39 0.61
3.2801 0.8090 0.08 0.03 0.88

Table 5.1: c-optimal designs for the positive-negative extreme model for r = 0.5, 1, 2.
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r µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

3 1 -0.5247 -1.4163 0.6336 0.04 0.95 0.02
-0.1217 0.3664 0.85 0.10 0.05

0 -0.2747 -1.2376 0.5923 0.024 0.95 0.03
0.1390 0.4077 0.78 0.13 0.09

-1 -0.0247 -1.0712 0.5415 0.02 0.93 0.05
0.3743 0.4585 0.68 0.16 0.16

-3 0.48 -0.8121 0.4184 0.00 0.89 0.15
0.8361 0.5816 0.46 0.19 0.35

-5 0.98 -0.6112 0.3081 0.00 0.84 0.16
1.3181 0.6919 0.30 0.17 0.54

-7 1.48 -0.4127 0.2265 0.00 0.78 0.22
1.8120 0.7735 0.19 0.12 0.69

-9 1.98 -0.1820 0.1704 0.00 0.70 0.30
2.3099 0.8296 0.12 0.08 0.80

4 3 -0.88 -1.6400 0.6927 0.03 0.97 0.01
-0.5600 0.3073 0.84 0.14 0.03

1 -0.48 -1.3700 0.6223 0.01 0.97 0.02
-0.1773 0.3777 0.74 0.18 0.08

0 -0.28 -1.2425 0.5736 0.01 0.96 0.03
0.0110 0.4264 0.65 0.22 0.13

-1 -0.08 -1.1319 0.5185 0.00 0.95 0.05
0.1980 0.4815 0.56 0.25 0.20

-3 0.32 -0.9528 0.4088 0.00 0.92 0.08
0.5817 0.5912 0.40 0.26 0.34

-5 0.72 -0.8039 0.3156 0.00 0.89 0.10
0.9756 0.6844 0.28 0.23 0.49

Table 5.2: c-optimal designs for the positive-negative extreme model for r = 3, 4.
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Figure 5.1: Directional derivatives c-optimal design for the positive-negative extreme
model for (r = 0.5.)
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Figure 5.2: Directional derivative for c-optimal design for the positive-negative ex-
treme model for selected values of µ and r = 1.
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Figure 5.3: Directional derivative for the positive-negative extreme model for c-
optimal design for selected values of µ and r = 2.
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Figure 5.4: Directional derivative for the positive-negative extreme model for c-
optimal design for selected values of µ and r = 2, 3.
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Figure 5.5: Directional derivative for the positive-negative extreme model for c-
optimal design for selected values of µ and r = 3.
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Figure 5.6: Directional derivative for c-optimal design for selected values of µ and
r = 3, 4.
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Figure 5.7: Directional derivative for the positive-negative extreme model for c-
optimal design for selected values of µ and r = 4.
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µ g(Θ) x Weights F (x) F̄ (x)Ḡ(x) H(x)

3 -1.50 -4.2617 0.1729 0.25 0.75 0.00
-1.6981 0.9827 0.98 0.03 0.00

-1 0.50 -0.1399 0.6299 0.27 0.50 0.23
1.5914 0.3702 0.84 0.03 0.13

-3 1.50 -0.3822 0.5162 0.033 0.74 0.22
3.514 0.4833 0.81 0.01 0.18

-5 2.50 -0.4489 0.5024 0.00 0.79 0.21
5.4782 0.4977 0.80 0.00 0.20

-8 4.0 -0.4647 0.5001 0.00 0.80 0.20
8.4670 0.4999 0.80 0.00 0.20

-10 5.00 -0.4659 0.5001 0.00 0.80 0.20
10.4663 0.5000 0.80 0.00 0.20

-12 6.0 -0.4600 0.5000 0.00 0.80 0.21
12.4600 0.5000 0.80 0.00 0.21

-15 7.500 -0.4600 0.5000 0.00 0.80 0.21
15.4600 0.5000 0.80 0.00 0.21

Table 5.3: c-optimal designs for the positive-negative extreme model with equal slope.

close to (−0.465, 0.465− µ) with equal weights. These points are approximately the

20th percentiles for Gx and Fµ+rx. We conjecture in Section 6.2 that the limiting lo-

cally c-optimal design consists of two equal weighted points at (−0.465, 0.465 − µ).

We have not been able to prove this; for details see Section 6.4.

Theorem 5.2.2 gives canonical c-optimal designs for θ0 = (0, 1, µ) = (0, 1, 0)

and (0, 1, 1). These c-optimal designs have only one point.

Theorem 5.2.2 For θ= (α2, β, µ) = (0, 1, 0) and (0, 1, 1), the c-optimal design is an

one point design putting mass 1 at the optimal dose x = 0 and x = −1/2, respectively.

Proof: For these parameters, the information matrix is singular. Because φc is

concave, we can verify that the design is c-optimal by finding a matrix H such
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Figure 5.8: Directional derivative for the positive-negative extreme model for c-
optimal design for selected values of µ.
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Figure 5.9: Continued directional derivative for the positive-negative extreme model
for c-optimal design for selected values of µ.
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that (M + HHT)−1 exists and is a generalized inverse of M = M(ξ, θ) such that

Fφ(M + HHT , I(x, θ)) ≤ 0 for all x and the Sup Fφ(M + HHT, I(x, θ)) = 0; Fφ is

the directional derivative of φ as defined in [36]. The Fisher’s information when θ

= (α2, β, µ) = (0, 1, 0) is

M(ξ, θ) =




0.5819767 0 0

0 0 0

0 0 0.2140973




.

Take H =

(
100

59
√

3
−2√

3
0

)T

. Then

G = (M + HHT)−1 =




1.718282 1.456171 0

1.456171 1.984043 0

0 0 4.670774




.

Fisher’s information when θ= (α2, β, µ) = (0, 1, 1) is

M(ξ, θ) =




0.6471598 −0.3235799 0

−0.3235799 0.1929014 −0.062223

0 −0.062223 0.124446




.

Let H =

(
100

49
√

3
−2√

3
0

)T

. Then

G = (M + HHT)−1 =




7.222648 8.135674 4.067837

8.135674 9.832958 4.916479

4.067837 4.916479 10.493853




.
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Figure 5.10: Directional derivative for Theorem 5 (µ = 0)

Figures 5.10 and 5.11 show that the directional derivatives were found to be non-

positive and the Sup Fφ(M + HHT, I(x, θ)) = 0. ¤

5.3 Efficiency of Locally c-optimal Designs

In this section we investigate how efficient the c-optimal designs are. We

illustrate one example when the slopes are equal and the location parameter is µ = −3.

The optimal design is ξ�=



−0.3822 3.514

0.5162 0.4838


 . Figure 5.12 shows the efficiency of

a design when x1 = −0.3822 is fixed and x2 varies away from 3.514 and the success

function H. By using a point less than the optimal point 3.514 and keeping the same
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Figure 5.11: Directional derivative for Theorem 5 (µ = 1)

weights, we see the that the efficiency decreases with the distance from 3.514 while the

probability of success increases to reach 0.6. Using the optimal dose, i.e., x2 = 2.004,

reduces efficiency of parameters estimators to about 0.41 % of the optimal design.
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Figure 5.12: Efficiency Plot for c-optimal design when (µ = −3, r = 1.)
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Chapter 6

Limiting Locally Optimal Designs

Recall from Chapter 4 and 5 that optimal designs for the contingent response

model were found numerically because there is no closed form for these optimal de-

signs. It can be seen from Table 4.1 that when the two response functions Fµ+rx and

Ḡx are quite separate (see Figure 1.1) the optimal designs consist of four approxi-

mately equally weighted design points. These design points are the optimal designs

for Fµ+rx and Ḡx separately. These optimal designs can be expressed as solutions to

closed form equations and used as an approximation for the optimal designs when

the two functions Fµ+rx and Ḡx are not quite separate. These approximate optimal

designs are called the limiting optimal designs. The limiting optimal designs were

introduced by Fan and Chaloner [12].

Limiting optimal designs for the contingent response model often can be sur-

mised from the knowledge of the optimal designs for each individual response Fµ+rx

and Gx. Such a guess can be used as starting values in numerical searches for the
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optimal designs and as initial treatments in a sequential designs that approximate the

optimal ones. Fan and Chaloner [12] studied the logistic-logistic model and found the

limiting optimal designs for this model. They found these limiting optimal designs

to be very efficient approximations of the true optimal designs for the models they

studied. This suggests one can use these designs in place of the optimal design.

We study the limiting optimal designs for the canonical positive-negative ex-

treme value model. We start by defining the limiting optimal designs as given in Fan

and Chaloner [12].

Definition 6.0.1 For a concave criterion φ on a set of design measures H, a sequence

of designs, {ηi, i ∈ R}, is called a sequence of limiting φ-optimal designs for a sequence

of prior distributions, {πi, i ∈ R, } if

Supη∈HFφ(ηi, η, πi) → 0 as i →∞.

A design of this sequence, ηi, is called a limiting φ-optimal design for πi.

The index i in the definition serves as −µ in the canonical model. That is, we find

the limiting optimal design for a sequence of designs as −µ goes to ∞.

6.1 Limiting Locally D-optimal Designs for Mod-

els with Unequal Slopes

Recall that for the canonical positive-negative extreme model with β1 6= β2

and θ = (0, 1, µ, r) that a candidate limiting locally D-optimal design was found in
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Section 4.1 on page 20 to consist of four equally weighted points at [x1 = 1.3377, x2 =

−0.9796, (−x1 − µ)/r, (−x2 − µ)/r]. These are the optimal design points for Fµ+rx

and Ḡx concatenated. Define

v(t) = exp(2µ + 2rt) exp(− exp(µ + rt))/(1− exp(− exp(µ + rt)))

and

w(t) = exp(− exp(µ + rt)) exp(−2rt) exp(− exp(−rt))/(1− exp(− exp(−rt))).

In Theorem 6.1.1, we prove that the directional derivative of the locally limiting D-

optimal designs for the positive-negative extreme model is asymptotically less than

or equal to the sum of the two directional derivative functions for the locally D-

optimal designs of the positive and negative extreme models when each is considered

separately. To prove Theorem 6.1.1, we use Lemma 6.1.1 from Fan and Chaloner

[13]. We will use ξ∗ to represent the limiting optimal design, where ξ∗ is the optimal

design.

Lemma 6.1.1 Consider two symmetric 2 × 2 nonsingular matrices P,Q and sup-

pose that P = Q + R. Let qij and rij be the ijthi, j = 1, 2 elements of Q and R,

respectively. Then for any symmetric 2× 2 matrix I =




i11 i12

i21 i22


,

Tr(I(P−1 −Q−1)) = i22(
−q11

detQ
+

q11 + r11

detQ + q22r11 − 2q12r12 − r2
12 + q11r22 + r11r22

)

+ 2i12(
q12

detQ
+

−q12 − r12

detQ + q22r11 − 2q12r12 − r2
12 + q11r22 + r11r22

)

+ i11(
−q22

detQ
+

q22 + r22

detQ + q22r11 − 2q12r12 − r2
12 + q11r22 + r11r22

).
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Theorem 6.1.1 The locally limiting D-optimal Design is given by

ξ∗ =




(−0.9796 1.3377 (0.9796− µ)/r (−1.3377− µ)/r)

0.25 0.25 0.25 0.25


 .

Proof: The Fisher’s information (See Lemma 3.1 on page 16)at ξ∗ is given by

M(ξ∗, θ) = 0.25




MA(ξ∗, θ) 0

0 MB(ξ∗, θ)


 ,

that is,

MA(ξ∗,θ) = Σ2
i v(xi)




1 xi

xi x2
i


 + v

(−xi − µ

r

)



1 −xi−µ
r

−xi−µ
r

(−xi−µ)2

r2




and

MB(ξ∗, θ)) = Σ2
i w(xi)




1 xi

xi x2
i


 + w

(−xi − µ

r

)



1 −xi−µ
r

−xi−µ
r

(−xi−µ)2

r2




Rewrite the sub-matrices of Fisher’s Information in terms of the optimal design for

the component models separately :

MA(ξ∗, θ) = 0.5MA
∗ + RA∗,

MB(ξ∗, θ) = 0.5MB
∗ + RB∗0

MA∗ is Fishers information for a single extreme value function F (µ + rx) evaluated

at the optimal points −x1−µ
r

and −x2−µ
r

, where

MA∗ = Σ2
i 0.5v

(−xi − µ

r

)



1 −xi−µ
r

−xi−µ
r

(−xi−µ)2

r2
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and

RA∗ = Σ2
i 0.25v(xi)




1 xi

xi x2
i


 ;

MB∗ is Fishers information for a single extreme value function Ḡ(x) evaluated at the

optimal points x1 and x2, where

MB∗ = Σ2
i

0.5w(xi)

exp(− exp(µ + rxi))




1 xi

xi x2
i


 ,

and

RB∗ = Σ2
i 0.25w(xi)(1− 1

exp(− exp(µ + rxi))




1 xi

xi x2
i




+Σ2
i 0.25w

(−xi − µ

r

)



1 −xi−µ
r

−xi−µ
r

(−xi−µ)2

r2


 .

Denote Fisher’s information for a single point x from F (µ + rx) and Ḡ(x) by IF and

IG, respectively. Note that in Lemma 3.1.1 on page 16, A(x, θ) = IF and B(x,θ)=

[1− F (µ + rx)]IG.

Now as−µ approaches∞ or µ approaches−∞, v(xi) and w(−xi−µ
r

), i = 1, 2 are

close to zero and hence so is any polynomial of µ multiplied by (v(xi)) and w(−xi−µ
r

).

Therefore, RA∗ and RB∗ go to zero, and hence MA
−1(ξ∗, θ) and MB

−1(ξ∗,θ) can be

approximated by 2M−1
A∗ and 2M−1

B∗ , respectively. The directional derivative for the
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locally limiting D-optimal design (ξ∗) is

FD = Trace(I(x, θ))M−1(ξ∗,θ)− 4

= Trace(A(x, θ)M−1
A (ξ∗,θ)) + Trace(B(x, θ) M−1

B (ξ∗,θ))− 4

which can be rewritten and bounded as

FD = Tr(A(x, θ)M−1
A (ξ∗,θ)) + Tr(B(x, θ)MB

−1(ξ∗, θ))

+ 2TrIFM−1
A∗ − 2TrIFM−1

A∗ + 2TrIGM−1
B∗ − 2TrIGM−1

B∗ − 4

= Tr(A(x, θ)M−1
A (ξ∗,θ)) + Tr(B(x, θ) M−1

B (ξ∗,θ)) + 2TrIFM−1
A∗

− 2TrIFM−1
A∗ + 2TrIGM−1

B∗

−2Tr(B(x, θ) + [1− exp(− exp(µ + rx))]IG)M−1
B∗ − 4

< Tr(A(x, θ)M−1
A (ξ∗,θ)) + Tr(B(x, θ)M−1

B (ξ∗,θ)) + 2TrIFM−1
A∗

− 2TrIFM−1
A∗ + 2TrIGM−1

B∗ − 2Tr(B(x, θ))M−1
B∗ − 4

= Tr(A(x, θ)M−1
A (ξ∗,θ))− 2TrIFM−1

A∗ + Tr(B(x, θ)M−1
B (ξ∗,θ))

− 2Tr(B(x, θ))M−1
B∗ + 2TrIFM−1

A∗ + 2TrIGM−1
B∗ − 4

= TrIFM−1
A∗ + TrIGM−1

B∗ − 4 + TrIFM−1
A∗ + TrIGM−1

B∗

+ Tr(A(x, θ)(M−1
A (ξ∗,θ)− 2M−1

A∗)) + Tr(B(x, θ)(M−1
B (ξ∗,θ)− 2M−1

B∗)).

(6.1)

We now show that the last two terms in (6.1) go to zero as −µ goes to ∞ using

Lemma 6.1.1 and the remaining terms are non-positive with supremum zero. That
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is, the directional derivative asymptotically is equal to

FD = 2TrIFM−1
A∗ + 2TrIGM−1

B∗ − 4 ≤ 0,

which will complete the proof.

The first three terms in (6.1) are the sum of the directional derivatives eval-

uated at the optimal design points for Fµ+rx and Ḡx separately. To understand this

consider the single negative extreme model Fµ+rx with location-scale parameters µ

and r. MA∗ is the Fisher’s information for the local D-optimal design for this model.

By the General Equivalence Theorem, the TrIFM−1
A∗ − 2 is the directional derivative

of the locally D-optimal design for this model and it is non-positive for all possible val-

ues of x. Similarly, consider the single positive extreme model Ḡx with location-scale

parameters 0 and 1. MB∗ is the Fisher’s information for the locally D-optimal design

for this model. By the General Equivalence Theorem, TrIGM−1
B∗−2 is the directional

derivative of the locally D-optimal design for this model and it is non-positive for all

possible values of x.

It can be seen from Figure 6.1a that as µ → −∞ TrIFM−1
A∗ asymptotes to-

ward zero as x decreases from −µ/2r and TrIGM−1
B∗ asymptotes toward zero as x

increases from −µ/2r. Therefore 2TrIFM−1
A∗ + 2TrIG M−1

B∗ − 4 is non-positive on x

and asymptotes towards zero as µ → −∞. An example is given in Figure 6.1b when

r = 2 as µ varies over −10,−15,−25 the supremum of the directional derivative goes

to 0. See Appendix A.3

To evaluate Tr(B(x, θ)(MB
−1(ξ∗,θ)−2M−1

B∗), let P = MB(ξ∗, θ),Q = 0.5M∗
B
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and I = B(x, θ) in Lemma 6.1.1. Then R in the Lemma 6.1.1 equals RB∗ . Recall

that RB∗ goes to a matrix of zeros as µ goes −∞. The elements of I = B(ξ∗,θ) are

bounded functions and M∗
B does not depend on µ. This implies that each element of

B(x, θ)(M−1
B (ξ∗,θ) − 2M−1

B∗) goes to zero as µ goes to −∞ and so the trace of this

matrix goes to zero.

Now to evaluate Tr(A(x, θ)(M−1
A (ξ∗,θ) − 2M−1

A∗) let P = MA(ξ∗, θ),Q =

0.5M∗
A and I = A(x, θ) in Lemma 6.1.1. Then R in the Lemma 6.1.1 equals RA∗ .

Let d = q22r11 − 2q12r12 − r2
12 + q11r22 + r11r22. Because RA∗ goes to a matrix of

zeros as µ goes −∞, each element of d, which is a polynomial of µ times an expo-

nential of µ, goes to zero too. The determinant of Q is independent of µ. Rewrite

Tr(A(x, θ)(M−1
A (ξ∗,θ)− 2M−1

A∗) as

Tr(A(x, θ)(M−1
A (ξ∗,θ)− 2M−1

A∗)) = i22(
−q11d

detQ + (detQ + d)
+

r11

detQ + d

+ 2i12(
q12d

detQ + (detQ + d)
+

−r12

detQ + d

+ i11(
−q22d

detQ + (detQ + d)
+

r22

+ detQ + d
.

(6.2)

We will show that each term of the right hand side of ( 6.2) goes to zero as µ goes to

−∞. We show this first for the second term by showing i12q12d and i12r12 go to zero

as µ goes to −∞. Consider the following:

1) |i12| = |xv(x)| = |xv(x) +
µ

r
v(x)− µ

r
v(x)|

≤ |µ + rx

r
v(x)|+ |µ

r
v(x)|
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≤ K̀

r
− µ

r
K, (6.3)

where K̀ = maxx(µ + rx)v(x) and K = maxxv(x).

2) |i12r12| = 0.25|i12||x1v(x1) + x2v(x2)|

= 0.25|i12| exp(2µ)|x1 exp(2rx1)
exp(− exp(µ + rx1))

1− exp(− exp(µ + rx1))

+ x2 exp(2rx2)
exp(− exp(µ + rx2))

1− exp(− exp(µ + rx2))
|

< 0.25|i12| exp(2µ)|x1 exp(2rx1) + x2 exp(2rx2)|

≤ 0.25[
K̀

r
− µ

r
K]| exp(2µ)|x1 exp(2rx1) + x2 exp(2rx2)|.

The last quantity goes to zero as µ goes to −∞, and therefore, so does i12r12. It

follows from the same argument that i12q12d goes to zero as µ goes to −∞, since q12d,

which is a polynomial of µ multiplied by an exponential function of µ, goes to zero

as µ goes −∞.

To show that the first term in 6.2 goes to zero as µ goes to −∞, we show that

i22r11 and q11d each go to zero as µ goes to −∞. Consider

1) |i22| = x2v(x) =
(µ + rx)2

r2
v(x)− µ2

r2
v(x)− 2

µrxv(x)

r2

≤ (µ + rx)2

r2
v(x)− 2

µrxv(x)

r2

≤
`̀
K

r2
+ 2|µ

r
i12|

≤
`̀
K

r2
− 2

µ

r
[
K̀

r
− µ

r
K]

=
1

r2
{ `̀
K − 2µ(K̀ − µK)},
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where
`̀
K = maxx(µ + rx)2v(x). Hence

2) |i22r11| = 0.25|i22||v(x1) + v(x2)|

≤ 0.25
1

r2
{ `̀
K − 2µ(K̀ − µK)} exp(µ)

| exp(2rx1)
exp(− exp(µ + rx1))

1− exp(− exp(µ + rx1))

+ exp(2rx2)
exp(− exp(µ + rx2))

1− exp(− exp(µ + rx2))
|

≤ 0.25
1

r2
{ `̀
K − 2µ(K̀ − µK)} exp(µ){exp(rx1) + exp(rx2)}.

This quantity goes to zero as µ goes to −∞. With a similar argument it is easy to

prove that i22q11d goes to zero as µ goes to −∞. Hence the first term in (6.2) goes

to zero as µ goes −∞.

Finally it is straight forward to show that the third term goes to zero as µ goes

to −∞. Since i11 is a bounded function and each of q22d and r go to zero as µ goes −∞

(using the same above argument). We conclude that Tr(A(x, θ)(M−1

A(ξ∗,θ)−MA∗)

goes to zero as µ goes to −∞. ¤

6.2 Limiting Locally D-Optimal Designs for Mod-

els with Equal slopes

Recall from Section 4.2 on page 41 for the canonical positive-negative model

with β1 = β2 = β and θ=(0, 1, µ), the candidate limiting locally D-optimal design
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was ξ∗ =



−0.8537 1.0773 (0.8537− µ) (−1.0773− µ)

0.2900 0.2100 0.2900 0.2100


 when µ goes to −∞.

Although this design consists of four design points, these points are not the optimal

design points obtained from concatenating the optimal designs points of the separate

positive and negative extreme value models.

Theorem 6.2.1 The locally limiting D optimal design is given by

ξ∗ =



−0.8537 1.0773 (0.8537− µ) (−1.0773− µ)

0.2900 0.2100 0.2900 0.2100


 .

Proof: First we find the design that maximizes log det Fisher’s information among

all designs of the form ξ =




(a b (−a− µ) (−b− µ))

ξ1 ξ2 ξ3 ξ4


 when µ goes to −∞.

Then we show that the design is the locally D-optimal design using the General

Equivalence Theorem. Let

v(t) = exp(2t + 2µ) exp(− exp(xt + µ))/(1− exp(− exp(t + µ)))

and

w(t) = exp(− exp(t + µ)) exp(−2t) exp(− exp(−t))/(1− exp(− exp(−t))).

Define the following:

v1 = v(a) =
exp(2µ + 2a) exp(− exp(µ + a))

(1− exp(− exp(µ + a)))
,

v2 = v(−a− µ) =
exp(−2a) exp(− exp(−a))

(1− exp(− exp(−a)))
,
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v3 = v(b) =
exp(2µ + 2b) exp(− exp(µ + b))

(1− exp(− exp(µ + b)))
,

v4 = v(−b− µ) =
exp(−2b) exp(− exp(−b))

(1− exp(− exp(−b)))
,

w1 = w(a) =
exp(− exp(µ + a)) exp(−2a) exp(− exp(−a))

(1− exp(− exp(−a)))
,

w2 = w(−a− µ) =
exp(− exp(−a)) exp(2a + 2µ) exp(− exp(a + µ))

(1− exp(− exp(a + µ)))

w3 = w(b) =
exp(− exp(µ + b)) exp(−2b) exp(− exp(−b))

(1− exp(− exp(−b)))
,

w4 = w(|(−b− µ)) =
exp(− exp(−b)) exp(2b + 2µ) exp(− exp(b + µ))

(1− exp(− exp(b + µ)))
.

Evaluating Fisher’s information given in Lemma 3.1.1 on page 16 for the above design

we get

M(ξ,θ) = ξ1v1




1 a 0

a a2 0

0 0 0




+ ξ1w1 +




0 0 0

0 a2 a

0 a 1




+ξ2v2




1 −a− µ 0

−a− µ (−a− µ)2 0

0 0 0




+ ξ2w2




0 0 0

0 (−a− µ)2 −a− µ

0 −a− µ 1
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+ξ3v3




1 b 0

b b2 0

0 0 0




+ ξ3w3 +




0 0 0

0 b2 b

0 b 1




+ξ4v4




1 −b− µ 0

−b− µ (−b− µ)2 0

0 0 0




+ ξ4xw4




0 0 0

0 (−b− µ)2 −b− µ

0 −b− µ 1




.

Now when µ is negatively large, w1 and w3 are approximated by v2 and v4, respec-

tively. Also v1, v3, w2, w4 tend to zero. Hence Fisher’s information matrix can be

approximated by

Ṁ(ξ∗,θ) = ξ1v2




0 0 0

a a2 a

0 a 1




+ ξ3v4




0 0 0

0 b2 b

0 b 1




+ξ2v2




1 −a− µ 0

−a− µ (−a− µ)2 0

0 0 0




+ ξ4v4




1 −b− µ 0

−b− µ (−b− µ)2 0

0 0 0




.

=




ξ2v2 + ξ4v4 v2ξ2(−a− µ) + ξ4v4(−b− µ) 0

v2ξ2(−a− µ) + ξ4v4(−b− µ) m22 ξ1v2a + ξ3v4b

0 ξ1v2a + ξ3v4b ξ1v2 + ξ3v4




,

where m22 = ξ1v2a
2 + ξ3v2(−a− µ)2 + ξ3v4b

2 + ξ4v4(−b− µ)2.
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Maximizing the determinant of Ṁ(ξ∗, θ) using NPSOL yields a = −0.8536657, b =

1.077288, ξ1 = ξ2 = 0.2895051, and ξ3 = ξ4 = 0.2104949.

Now we show that the directional derivative at this design is non-positive and

its maximum is zero. The directional derivative at this design is

FD(x, ξ∗,θ) = Trace(I(x, θ)M−1(ξ∗, θ))− 3

= Trace(I(x, θ)Ṁ
−1

(ξ∗, θ))

+ Trace(I(x, θ)[M−1(ξ∗,θ)− Ṁ
−1

(ξ∗, θ))])− 3.

Recall that when µ is negatively large M(ξ∗,θ)
.
= Ṁ(ξ∗,θ) and each element of

I(x, θ) is a bounded function. This implies that Trace(I(x, θ)[M−1(ξ∗,θ)−Ṁ
−1

(ξ∗,θ))])

→ 0 as µ → −∞. We need to show now that Tr = Trace(I(x, θ)Ṁ
−1

(ξ∗,θ))− 3 ≤ 0

as µ → −∞. Hence the directional derivative at this design FD is non-positive as

µ → −∞ and the proof will be complete.

Denote v(x) and w(x) by vx and wx, respectively. Let gx = g(x) =

exp(−2x) exp(− exp(−x))/(1− exp(− exp(−x))). Note that wx ≤ gx for all values of

µ ≤ 0. Using Maple software, (see Appendix A4), the trace (Tr) is found to be

Tr = vx[−2.091898121µ + 3.023967019µ2 + 4.732702573]

+2vxx[−1.045949058 + 3.023967013µ] + 3.023967012vxx
2

+3.023967012wxx
2 + 2.091898118wxx + 4.732702591wx

Case when x < −µ/2 :

Assuming different large negative values of µ, for each sequence such that
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x < −µ/2 the following statements were verified by S-plus: v(x) < v(−µ/2),−(x +

µ)v(x) < (−µ/2)v(−µ/2) and (x + µ)2v(x) < (µ2/4)v(−µ/2). Assuming these in-

equalities hold and keeping four significant digits, we rearrange Tr as

Tr = 3.0240(x + µ)2vx − 2.0919(x + µ)vx + 4.7327vx

+(3.0240x2wx + 2.0919xwx + 4.7327wx)

< 3.0240(µ2/4)v(−µ/2) + 2.0919(−µ/2)v(−µ/2) + 4.7327v(−µ/2)

+(3.0240x2gx + 2.0919xgx + 4.7327gx)

≤ 3.0240(µ2/4)v(−µ/2) + 2.0919(−µ/2)v(−µ/2) + 4.7327v(−µ/2)

+Max(3.0240x2gx + 2.0919xgx + 4.7327gx)

= 3.0240(µ2/4)v(−µ/2) + 2.0919(−µ/2)v(−µ/2) + 4.7327v(−µ/2) + 3.

Case when x ≥ (−µ/2) :

For each sequence of x values such that x < −µ/2 with different series of large

negative values of µ the following statements hold. They were verified by S-plus:

wx ≤ gx, g(x) < g(−µ/2), xg(x) < (−µ/2)g(−µ/2) and x2g(x) < (µ2/4)g(−µ/2).

Assuming these inequalities hold and keeping four significant digits, we rearrange Tr

as

Tr = 3.0240(x + µ)2vx − 2.0919(x + µ)vx + 4.7327vx

+(3.0240x2wx + 2.0919xwx + 4.7327wx)

≤ (3.0240(x + µ)2vx − 2.0919(x + µ)vx + 4.7327vx)

+(3.0240x2gx + 2.0919xgx + 4.7327gx)
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< (3.0240(x + µ)2vx − 2.0919(x + µ)vx + 4.7327vx)

+3.0240(µ2/4)g(−µ/2) + 2.0919(−µ/2)g(−µ/2) + 4.7327g(−µ/2)

≤ Max(3.0240(x + µ)2vx − 2.0919(x + µ)vx + 4.7327vx)

+3.0240(µ2/4)gx|(−µ/2) + 2.0919(−µ/2)g(−µ/2) + 4.7327g(−µ/2)

< 3 + 3.0240(µ2/4)g(−µ/2) + 2.0919(−µ/2)g(−µ/2) + 4.7327g(−µ/2.)

Note that v(−µ/2) = g(−µ/2) = exp(u) exp(− exp(µ/2))/(1− exp(−exp(µ/2))) → 0

as µ → −∞, which implies that Tr = Trace(I(x, θ)Ṁ−1(ξ∗, θ)) goes to 3. Therefore,

the directional derivative FD is non-positive and the maximum is zero as µ goes to

−∞ and the proof of Theorem 6.2.1 is complete. ¤

6.3 Efficiency of Limiting Locally D-optimal De-

signs

The limiting D-optimal Designs found in the previous sections are found to be

very efficient with respect to the exact optimal designs. The limiting optimal designs

were found when µ takes negative large values and in applications µ might sufficiently

large. The definition of efficiency we use is given by

Definition 6.3.1 Efficiency is given by the sample size needed for an experiment

using the optimal design to reach the same criterion value as an experiment using the

limiting design with sample size one.
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The sample size needed for limiting design ξL to be as efficient at ξ∗ when β1 6= β2 is

calculated as follows:

log det(nM(ξ∗,θ) = log detM(ξL,θ))

logn4 det(M(ξ∗,θ) = log detM(ξL,θ))

4logn + log det(M(ξ∗,θ) = log detM(ξL,θ))

logn = [log detM(ξL,θ))− log det(M(ξ∗, θ)]/4

n = exp[log detM(ξL,θ))− log det(M(ξ∗, θ)]/4.

In a similar way when β1 = β2 the required sample size is given by

n = exp[log detM(ξL,θ))− log det(M(ξ∗, θ)]/3.

Figures 6.2 -6.6 display plots of required sample size n versus µ when β1 6= β2 for

different values of r. The efficiencies for large negative values of µ approaches 0.99 with

both large and small values of r. For small to moderate values of |µ|, the efficiencies

vary with the value of r, and they range from 71% − 91%. It can be seen that the

efficiencies are higher for r = 0.5 and r = 1 than larger values of r, but they are

still reasonable. In general, as the values of |µ/2r| get larger and larger the efficiency

approaches 1.

Figure 6.7 shows the efficiency plot n versus µ when β1 = β2. These efficiencies

are all higher than 92% and they approaches 96% for large values of |µ|.
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Figure 6.2: Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 0.5

mu

n

-20 -15 -10 -5 0

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

o

o

o

o

ooo

Figure 6.3: Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 1
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Figure 6.4: Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 2
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Figure 6.5: Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 3
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Figure 6.6: Efficiency plot for limiting D-optimal design when β1 6= β2 and r = 4
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Figure 6.7: Efficiency plot for limiting D-optimal design when β1 = β2
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6.4 Limiting Locally c-optimal Designs

Unfortunately for c-optimal designs we were not able to find theorems similar

to those found in the previous sections to D-optimal designs. When the two slopes

are not equal with θ=(α2, β2, µ, r), the locally c-optimal designs consist of two design

points with different weights depending on the different values of r, µ. See Tables 5.1

and 5.2. No pattern was observed. When the two slopes are equal with θ=(α2, β2, µ),

the locally c-optimal designs consist of two points with different weights. When

µ assumes negative large values the weights become equal. (See Table 5.3). One

can suggest that a candidate limiting locally c-optimal design consist of two equally

weighted at −0.47, 0.47−µ. It is interesting to note that the maximum of the function

(G′)2/(G(1−G)) is 0.6476 attained at x = −0.47.

But unfortunately a similar theorem to theorems proved in the previous sec-

tions was not found. It was difficult to prove that the limiting locally c-optimal

consists of a two point design equally weighted at −0.47, and 0.47 − µ as µ goes to

−∞. The computation of the directional derivative for this candidate design was too

complicated and the Maple output was about 40 pages with many terms on each page

that were very hard to simplify.

We conjecture that the limiting locally c-optimal consist of two point de-

sign equally weighted at −0.47, and 0.47 − µ as µ goes to −∞. Motivated by the

high efficiencies we found (see Figure 6.9), we show graphically that this conjecture

holds. Figure 6.8 shows the directional derivatives for µ = −10,−15. The directional
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derivatives are nonpositive and achieve the maximum at the candidate design points.

Computational problems arise when µ is a very large negative large value.

The efficiency for c-optimal designs is defined as in Section 6.3 on page 90.

The efficiencies of this candidate designs are higher than 0.965 as it can be seen from

Figure 6.9 .
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Figure 6.8: Directional derivative for limiting c-optimal design when µ = −10,−15.
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Figure 6.9: Efficiency for limiting c-optimal design.
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Chapter 7

UP–AND–DOWN PROCEDURES

Optimal design criteria typically are functions of Fisher’s information matrix.

In nonlinear models, Fisher’s information depends on the unknown parameters, so for

the contingent response model, c-and-D-optimal designs serve as unattainable gold

standards for efficient estimation. To implement these designs, one can put a prior

distribution on the parameters and average the locally optimal designs with respect to

this prior distribution. Such designs are called Bayesian (cf. Chaloner and Verdinelli

[4]). Sequential designs provide another approach to this problem. We focus on the

use of Markovian up-and-down designs and discuss some other alternative procedures.

7.1 Up-and-Down Procedures

Markovian up-and-down procedures have been constructed to cluster treat-

ments around the unknown quantals of an increasing response function [See Durham
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and Flournoy ([7], [8]), Derman [6], and Giovagnoli and Pintacuda [20]]. Giovagnoli

and Pintacuda [21] suggest using Markovian up–and–down designs to cluster points

around optimal design points. For the contingent response model, we follow this

suggestion using Theorem 1 of Durham and Flournoy [7] for random walks rules

that states, under mild conditions, that if the P(increasing the dose) decreases while

P(decreasing the dose) increases, then the asymptotic treatment distribution will

be unimodal. Durham and Flournoy’s Theorem 1 also provides insight for adjusting

treatment allocation procedures to shift the treatment mode into a close neighborhood

of the optimal design points, namely, treatments will cluster unimodally in the neigh-

borhood of the point for which the P(increasing the dose) equals the P(decreasing the

dose). We will say a procedure targets a dose x if it produces a unimodal treatment

distribution with mode xm such that xm−1 ≤ x < xm+1.

Let treatments belong to a finite set Ωx = {x1, . . . , xK} and let Nj(n) denote

the number of subjects treated at xj up to and including the nth subject. Then we call

N(n)/n = {N1(n)/n, N2(n)/n, . . . , NK(n)/n} the treatment distribution. Let X(n)

denote the treatment for the nth subject. It is not hard to show Proposition 7.1.1.

Proposition 7.1.1 (cf. Karlin and Taylor, [26]). Assume Pij = P (X(n + 1) =

xj|X(n) = xi) are first order Markovian transition probabilities with Pij = 0 for

|j − i| > 1. If Pi, i−1 > 0, i = 2, . . . , K, Pi, i+1 > 0, i = 1, . . . , K − 1, P11 > 0, and

PKK > 0, a limiting treatment distribution will exist:

lim
n→∞

N(n)

n
= {π1, π2, . . . , πK} = π,
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where πj = π1Π
j
i=2Pi−1, i/Pi, i−1, , j = 2, . . . , K, and ΣK

j=1πj = 1.

A Markovian up–and–down procedure can be made to target an optimal design point

by, for example, the use of biased coins. Define four Bernoulli random variables:

Bi =





1 with probability bi, i = 1, . . . , 4.

0 else

It is natural to assume the dose will not be increased following a toxic failure, nor will

it be decreased following disease failure. Thus consider rules for changing dose levels

that can be described by a first order Markov chain with transition probabilities

Pi, i−1 = P (X(n) = xi−1)|X(n− 1) = xi)

= b1F (xi) + b4(1− b2)H(xi)

Pi, i = P (X(n) = xi)|X(n− 1) = xi)

= b2H(xi) + (1− b1)F (xi) + (1− b3)F̄ (xi)Ḡ(xi)

Pi, i+1 = P (X(n) = xi+1)|X(n− 1) = xi)

= b3F̄ (xi)Ḡ(xi) + (1− b4)(1− b2)H(xi)

Pi, j = 0, |i− j| > 1

(7.1)

with Pi, i−1 + Pi, i + Pi, i+1 = 1. Then following directly Durham and Flournoy Theo-

rem 1 [7], we have

Theorem 7.1.1 A Markovian up–and–down procedure meeting the conditions of Propo-

sition 7.1.1 with probability transitions given by (7.1) and with any b1, . . . , b4 ∈ [0, 1]
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such that Pi, i−1 = Pi, i+1, i.e.,

b1F (x) + b4(1− b2)H(x) = b3F̄ (x)Ḡ(x) + (1− b4)(1− b2)H(x), (7.2)

targets the dose x.

The asymptotic design resulting from such up–and–down procedure is

ξ =




x1 . . . xK

π1 . . . πK


 , where the {πi} are calculated according to the formulae in

Proposition 7.1.1.

Corollary 7.1.1 As a practical special case, set b2 = 1. This prescribes that one will

treat with the same dose again following a success. Then procedure will target the

point x for which

F (x)/F̄ (x)Ḡ(x) = b3/b1. (7.3)

In Section 7.1 we specify an up–and–down procedure motivated by Theo-

rem 7.1.1 and optimal design theory that causes treatments to cluster around the

optimal design points. Like the optimal designs, the specification of this procedure

depends on the unknown parameters, so they too are not directly implementable.

However, they have value as ”gold standard” up–and–down designs that are useful

for comparison purposes.

In Section 7.1.2 we generalize an ad hoc up–and–down procedure proposed

by Flournoy[15]. We characterize this procedure using Proposition 7.1.1 and Theo-

rem 7.1.1 These procedures form the basis of current experiments. In Section 7.1.3 we
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describe an alternative up–and–down procedure studied by Kpamegan and Flournoy

(2000) that causes treatments to cluster around the optimal dose. In Section 7.2, we

compare these procedures.

7.1.1 An Up–and–Down Procedure Targeting the Optimal

Design Points

If the nth subject is treated at xk, the most straightforward treatment alloca-

tion rule satisfying (7.1) and (7.2) is to set b2 = 1 and treat the (n + 1)st subject as

follows:

Xn+1 =




xk−1 if (Y1 = 1, B1 = 1)

xk if (Y1 = 0, Y2 = 1, B3 = 0) or (Y1 = 1, B1 = 0) or (Y1 = 0, Y2 = 0)

xk+1 if (Y1 = 0, Y2 = 1, B3 = 1).

(7.4)

Define ΓTj = F (x∗j) and ΓDj = F̄ (x∗)Ḡ(x∗j), j = 1, . . . , P where x∗j is an opti-

mal design point and P is the number of optimal design points. Setting b3/b1 =

F (x∗j)/F̄ (x∗)Ḡ(x∗j) = ΓTj/ΓDj causes the treatment distribution to target the jth

optimal design point. Therefore, as subjects arrive, assign them to the treatment

sequence targeting x∗j with probability wj. Denote the asymptotic design that results

from this procedure by ξx∗ .

For example, the c-optimal design points for the (−3, 2) canonical model are
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found in Table 5.2 to be (x∗1 = −0.5054, x∗2 = 1.3595) with weights (w1 = 0.4444, w2 =

0.5556). So

ΓT1/ΓD1 = 0.0180/0.7949 = 0.023;

ΓT2/ΓD2 = 0.5300/0.1064 = 4.981.

Since this optimal design has two points, we need two up–and–down procedures with

b3/b1 = 0.023 and 4.981, respectively. Therefore, as subjects arrive, assign them

to the treatment sequences targeting x∗1 and x∗2 with probability 0.4444 and 0.5556,

respectively (see Appendix B.3). Figure 7.1 shows the canonical (−3, 2) model and

the treatment distribution that results from using this up–and–down procedure. The

treatment modes resulting from the two procedures are -0.5 and 1.5 respectively. As

predicted by random walk design theory, these are the largest possible treatments

that are not greater than x∗1 and x∗2, respectively.

This procedure is still ”local” because it depends on the parameters (µ, r).

7.1.2 Up–and–Down Procedure Balancing Failure Rates

An appealing ad hoc procedure in the contingent response setting is to decrease

the dose after each toxicity and increase the dose after each disease failure. This was

proposed by Flournoy [15], used as the basis of a procedure simulated by Gooley [22]

et al. and currently used in practice.

Toxicity and disease failures may not be of equal significance. For, example,

if disease failures are preferred over toxicities, then one wants a design that will
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Figure 7.1: Treatment Distribution Targeting the Optimal Design Points of the
Canonical Model (−3, 2).

105



increase the dose for given disease failure more often than it decreases the dose given

toxicity. In this case, one wants a design in which the ratio of the rate of failure due

to disease failure to the rate of failure due to toxicity is greater than one. This can

be accomplished by using the up–and–down procedure given by (7.4) with b3/b1 > 1.

Although the procedure is not based on any optimality properties, it is implementable

in that it does not depend on the model parameters, and scientists have suggested it

to an author. Denote the design that is produced from this procedure by ξρ, where

ρ = b3/b1.

7.1.3 Kpamegan and Flournoy’s Up–and–Down Procedure

An up–and–down design procedure was studied by Kpamegan and Flournoy

[28] with the ethical goal of clustering treatments around the optimal dose, rather the

optimal design points. Consider Ωx, the set of possible dosages, with ∆ = xj − xj−1

and let X(n) be the midpoint of the dose interval for the nth pair of subjects. Then

the optimizing up–and–down for selecting the dose with maximum success probability

is defined by the following algorithm with adjustments at the treatment boundaries.

If the nth pair of subjects has been treated at X(n) − ∆
2

and X(n) + ∆
2
, the

midpoint of the (n+1)st pair is

X(n + 1) = X(n) + ∆V (n),
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where

Vn =





−1 if the treatment at X(n)− ∆
2

results in success

and the treatment at X(n) + ∆
2

in failure;

0 if the nth pair of treatment results in two success

or two failure;

1 if the treatment at X(n)− ∆
2

results in failure

and the treatment at X(n) + ∆
2

in success.

This procedure produces a design we denote by ξKF . As opposed to the procedure

described in Section 7.1, this procedure is independent of the model parameters.

7.2 Comparisons

In this section we examine efficiency of the up–and–down designs discussed

in the Section 7.1.3. All comparisons assume the positive-negative extreme value

contingent response model. We define the efficiency of two designs for estimating

the optimal dose g(Θ) to be the ratio of the asymptotic variances of their maximum

likelihood estimators. That is, if ξ1 is one design and ξ2 is some other design, then

E(ξ1, ξ2) =
ġT(Θ)M−1(ξ1,Θ)ġ(Θ)

ġT(Θ)M−1(ξ2,Θ)ġ(Θ)
.

In Table 7.2, the canonical (−3, 2) positive-negative extreme value model is

assumed true. E(ξx∗ , ξ
∗) = 0.85. That is, the up–and–down design targeting the

optimal design points is 85% efficient compared with the locally optimal design. This

up–and–down design was characterized with Ωx = {−3, 2.5, . . . , 5.5, 6, }, so K = 19
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and the interval between doses is ∆ = 0.5.

Table 7.1 shows, for a variety of canonical positive-negative extreme value re-

sponse models, that decreasing ∆ and increasing K over the same span of points

increases the efficiency of up–and–down designs targeting the optimal design points.

This is expected because the variance of a Markovian up–and–down design is inversely

proportional to ∆. So decreasing ∆ causes the treatment distribution to converge to

the optimal design.

Returning attention to Table 7.2, efficiencies relative to the locally optimal

design also are given for designs denoted by ξ1, ξ2, . . . , ξ9. These are asymptotic de-

signs resulting from using the Markovian up–and–down procedures (7.1) operating

on the same treatment space Ωx as ξx∗ . The true response function for all efficiency

calculations in this table is the canonical (−3, 2) positive-negative extreme value re-

sponse model. Since determining ξx∗ requires specification of b3/b1 which requires

specification of the optimal design points, it is of interest to see how model misspec-

ification influences the efficiency of estimating the optimal dose g(Θ). Thus b3/b1 is

calculated assuming the values of r and µ given for ξ1, ξ2, . . . , ξ9. b2 is again set to 1.

So the procedures producing these designs differ in that they target the wrong design

points. Note that, efficiency decreases as µ decreases for r = 2, 3 and 0.5, that is,

as the response functions become further apart. This decrease in efficiency is accel-

erated as the ratio of misspecified scale parameters deviates from the true r = 2. If

one considers ξx∗ the ”gold standard” for Markovian up–and–down designs targeting
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r µ ∆ = 0.5 ∆ = 0.25
0.5 -1 0.88 0.94
0.5 -3 0.93 0.94

2 -1 0.85 0.93
2 -3 0.75 0.87
2 -5 0.89 0.94
2 -7 0.82 0.94
3 -1 0.74 0.86
3 -3 0.80 0.90
3 -5 0.83 0.91
3 -7 0.85 0.92

Table 7.1: Efficiency’s dependence on ∆

the optimal design points with ∆ = 0.5, then model specification doesn’t hurt much

until it becomes rather extreme.

As described in Section 7.1.2, it is natural to consider decreasing the dose

after a toxic failure and increasing it after a dose failure. The authors have also

heard investigators suggest modifying this up–and–down procedure to give toxic-

ity and disease failure different weights. We found the asymptotic treatment dis-

tribution assuming procedure (7.4) for six given values of b3/b1 and a variety of

positive-negative extreme value models. The efficiencies resulting from such proce-

dures are shown in Tables 7.3 and 7.4, together with the mode of the treatment

distribution and the expected rates of toxicity, disease failure and success. The ex-

pectations are calculated as E(F (x)) =
∑

πiF (xi), E(F̄ (x)Ḡ(x)) =
∑

πiF̄ (xi)Ḡ(xi)

and E(H(x)) =
∑

πiF̄ (xi)G(xi).

Thus, for example, one can see from Table 7.4, for the canonical (−3, 3)positive-

negative extreme model, that if one considers toxicity twice as serious as disease fail-
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ure, and hence sets b3/b1 = 2, efficiency will only be 15% relative to ξx∗ , the dose

targeting the optimal design points, and it will do even worse relative to the locally

optimal design. In general the efficiencies of these designs, defined by heuristically

fixing b3/b1, perform very poorly and should avoided.

For each model evaluated in Tables 7.3 and 7.4, the Kpamegan-Flournoy de-

sign ξKF is also evaluated. Cross checking with Table 5.2, one sees that the treatment

mode resulting from these procedures is close to the optimal dose g(Θ). Because of

this, the efficiency is rather low, but not nearly so low when b3/b1 is heuristically

fixed. Surprisingly, the expected numbers of successes are often not increased com-

pared with ξx∗ .

Comparing Tables 7.3 and 7.4 with Table 7.2, we conclude that, if up–and–

down designs are used for the contingent response model, better estimates of the

optimal dose are expected using one that targets the optimal design points, even

through it will most certainly be misspecified, than heuristically weighting the fail-

ures by fixing b3/b1 or by targeting the optimal dose as done by Kpamegan and

Flournoy.

7.3 Conclusion

Clearly more work is needed to find efficient, ethical designs for the contingent

response model.

Other sequential procedures for approximating optimal designs include using
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b3/b1

r µ Efficiency
ξ∗ 2 -3 1
ξx∗ 2 -3 0.85 0.023 4.981
ξ1 2 -1 0.78 0.061 10.728
ξ2 2 -5 0.76 0.007 3.230
ξ3 2 -7 0.62 0.016 2.680
ξ4 3 -1 0.83 0.016 4.210
ξ5 3 -3 0.67 0.005 2.400
ξ6 3 -5 0.49 0.001 1.793
ξ7 3 -7 0.22 0.000 1.545
ξ8 0.5 -1 0.16 0.797 502.466
ξ9 0.5 -3 0.21 0.519 1637.870

Table 7.2: Efficiencies with model misspecification

sequential maximum likelihood estimates (White, [39], McLeish and Tosh, [30], Fe-

dorov, [14] p.186, and Wynn, [40]), the directed walk of Hardwick, Meyer and Stont

[24], a sequential Bayesian approach (Haines, Perevoskaya, and Rosenberger, [23], urn

designs by Flournoy [34] and Mungo, Zhu, and Rosenberger [32]. Application of the

sequential maximum likelihood and Bayesian procedures to the contingent response

model is, conceptually, straightforward. In sequential and optimal Bayesian designs,

after each outcome is observed, the optimality criterion is re-estimated by applying

the method of maximum likelihood or by finding a new posterior model, respectively.

The criterion is then optimized to obtain a new estimate of the optimal design, which

forms the basis for allocating the next subject, or group of subjects, to treatments.

The sequential maximum likelihood approach is difficult to apply in practice,

and difficult to analyze, because of well known problems with the existence of esti-

mators for small samples. For use in a single response function model (e.g. logistic),
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µ = −1, r = 0.5

Mode E(ξx∗ , ξ) EF (x) E(F̄ (x)Ḡ(x)) EH(x)

ξ∗ 1.14 0.56 0.25 0.20
ξx∗ 0.0, 4.0 1 0.47 0.32 0.21
ξ1 0.5 0.16 0.36 0.36 028
ξ1.5 0.5 0.19 0.41 0.27 0.32
ξ2 1 0.22 0.44 0.22 0.34
ξ2.5 1 0.22 0.47 0.19 0.35
ξ3 1 0.22 0.49 0.16 0.35
ξ3.5 1.5 0.20 0.51 0.15 0.35
ξKF 1.25 0.69 0.55 0.27 0.18

µ = −3, r = 0.5

ξ∗ 1.08 0.24 0.15 0.62
ξx∗ 1.5, 6.0 1 0.22 0.16 0.62
ξ1 2 0.09 0.01 0.13 0.74
ξ1.5 2.5 0.12 0.15 0.10 0.75
ξ2 2.5 0.13 0.16 0.08 0.76
ξ2.5 2.5 0.13 0.17 0.07 0.76
ξ3 2.5 0.12 0.18 0.06 0.76
ξ3.5 3 0.11 0.19 0.06 0.75
ξKF 2.25 0.70 0.20 0.14 0.66

µ = −1, r = 3

ξ∗ 1.36 0.32 0.58 0.10
ξx∗ -1.5, 0.5 1 0.17 0.77 0.60
ξ1 0 0.37 0.41 0.41 0.19
ξ1.5 0 0.26 0.49 0.33 0.18
ξ2 0.5 0.20 0.56 0.28 0.16
ξ2.5 0.5 0.17 0.61 0.24 0.15
ξ3 0.5 0.13 0.64 0.22 0.14
ξ3.5 0.5 0.12 0.68 0.19 0.13
ξKF -0.25 0.35 0.62 0.34 0.04

Table 7.3: Efficiency and expected number of toxicity, disease failure and success for
for canonical (µ, r) = (−1, 0.5) = (−3, 0.5) = (−1, 3).
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µ = −3, r = 3

Mode E(ξx∗ , ξ) EF (x) E(F̄ (x)Ḡ(x)) EH(x)

ξ∗ 1.25 0.27 0.48 0.25
ξx∗ -1.0, 1.0 1 0.12 0.76 0.13
ξ1 0.5 0.28 0.32 0.32 0.35
ξ1.5 0.5 0.20 0.40 0.27 0.33
ξ2 1.0 0.15 0.46 0.23 0.31
ξ.5 1.0 0.12 0.51 0.20 0.29
ξ3 1.0 0.10 0.55 0.18 0.27
ξ3.5 1.0 0.09 0.58 0.17 0.25
ξKF 0.25 0.47 0.50 0.38 0.12

µ = −5, r = 3

ξ∗ 1.21 0.21 0.37 0.42
ξx∗ -1.0, 1.5 1 0.08 0.72 0.20
ξ1 1.0 0.23 0.24 0.24 0.52
ξ1.5 1.0 0.17 0.31 0.20 0.49
ξ2 1.0 0.13 0.36 0.18 0.47
ξ2.5 1.5 0.11 0.40 0.16 0.44
ξ3 1.5 0.09 0.44 0.15 0.42
ξ3.5 1.5 0.08 0.47 0.13 0.40
ξKF 0.75 0.61 0.36 0.37 0.27

µ = −7, r = 3

ξ∗ 1.18 0.15 0.27 0.58
ξx∗ -0.5, 1.5 1 0.05 0.67 0.28
ξ1 1.5 0.21 0.17 0.17 0.67
ξ1.5 1.5 0.16 0.22 0.14 0.64
ξ2 2.0 0.13 0.26 0.13 0.62
ξ2.5 2.0 0.10 0.29 0.12 0.59
ξ3 2.0 0.09 0.32 0.11 0.57
ξ3.5 2.0 0.08 0.35 0.10 0.55
ξKF 1.25 0.73 0.23 0.31 0.46

Table 7.4: Efficiency and expected number of toxicity, disease failure and success for
canonical (µ, r) = (−3, 3) = (−5, 3) = (−7, 3).
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existence criteria are known explicitly (Silvapule, [35]). This is an open problem for

the contingent response model. With a Bayesian prior, this problem is resolved. But

one must select a prior treatment distribution, and updating the posterior model

poses a significant computational burden on the practitioner. For both approaches

optimizing the design criterion, for each subject, requires tinkering with optimiza-

tion software. At this time, few practitioners will undertake such labor intensive

approaches. However, it would be good to see the Bayesian approach developed.

Both Flournoy’s [16] and Mungo, Zhu, and Rosenberger’s [32] urn designs

have the biased coin design of Durham and Flournoy [7] as a special degenerate case.

Parameters in the urn models could be re-set so that treatments will cluster around

optimal design points based on Durham and Flournoy [7] in the same way as is done

in the biased coin design presented in Section 3.1 of this paper. Urn designs should be

considered when full randomization is important for an application. However, with

more randomization will come increased variation in the design, and hence also in

the parameter estimates. So the efficiency loss in adopting an urn design in place of

a biased coin design typically will be significant. A new approach to urn designs is

needed if there are to be be useful completely randomized designs for the contingent

response model.

Hardwick et al. [24] examine the performance of directed walks combined

with smoothed shape constrained curve fitting techniques in the context of compet-

ing failures. They do not, however, adopt the assumption that observation of disease
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failures is contingent on toxicity. In this more general context the probability of suc-

cess is not necessarily a unimodal function of dose. Directed walks are up–and–down

designs in that the dose for the next subject is no more than one step away from

the current dose. Various curve fitting techniques are used to fit the P (Y1 = 1|x)

and P (Y2 = 1|x). Then the next dose is one step in the direction of the dose with

highest estimated probability of success. If this prescribes repeating the same dose,

exploration is under taken with decreasing probability as the experiment continues.

Directed walks are not Markovian, and therefore, characterizations are simulation

not theoretical. Directed walks may be considered generalizations of the Kpamegan-

Flournoy procedure; they too attempt to cluster treatments around the optimal dose

rather than the optimal design points.

Hardwick et al. evaluated 8 varieties of directed walks, the Kpamegan-Flournoy

procedure and equal allocation assuming three different underlying response models.

In addition to not assuming contingent responses, the estimation procedure they used

was not maximum likelihood, and therefore, their results are not directly comparable

with the results presented here. Also, their evaluation criterion for estimation de-

generates in the case of asymptotic maximum likelihood estimation. However, it is

worth noting that they found equal allocation to perform very badly for all models.

Using their evaluation criteria, all procedures except equal allocation do a good job

of estimating g(Θ) with most performing a bit better than the Kpamegan-Flournoy

procedure. In addition, the directed walk procedures tend to cluster treatments some-
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what more closely around the optimal dose. Thus it would be very interesting to see

a simulated evaluation of the directed walk procedures incorporating the contingent

response assumption compared to the c-optimal design.
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Chapter 8

FUTURE WORK

In this dissertation D- and c-optimal designs for the contingent response model

were found. Since no closed form was found for the optimal designs, there is a need

to investigate other contingent response models. The probit is of interenst. It is

also of interest to extend what is known about the location-scale contingent response

models to more complex settings. For example, the four parameter logistic models

are models of interest.

Limiting optimal designs for the positive–negative extreme value model were

found and proved to be efficient. Fan and Chaloner findings for the continuation-

ratio model were almost similar with the finding of the positive–negative extreme

value model studied in this dissertation. I want to look more for common properties

in these optimal designs and make more generalizations for the contingent response

model. One goal is to see if there are closed forms for the limiting optimal designs

for these new models.
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As it is well known, the frequentist approach assumes that Θ, the parameters

underlying the model, is fixed. For nonlinear models Fisher’s information matrix de-

pends on Θ. That means we have to estimate or guess Θ, which could be a disaster if

our estimate is far away from the true value of Θ. One way to solve this problem is to

put a prior distribution on Θ, and average the optimality criterion of interest over the

prior distribution. I am very interested in studying the Bayesian optimal designs for

the contingent response model, in particular for the positive–negative extreme value

model.

Another idea of some interest and value is to find restricted optimal designs.

Restricted optimal designs allow a compromise between optimality and some con-

straints, like sample size, ethical concerns, design region, cost and others.

We saw in Chapter 4 and 5 that optimal designs have large probability of

toxicity and small probability of efficacy. From ethical viewpoint patients in clinical

trials should not be assigned to highly toxic or non-effective doses. In clinical trials

usually the level of toxicity and effective doses are predetermined by the clinicians in

pharmaceutical companies, physicians and other agencies. Restricted optimal designs

takes into consideration the maximum tolerated dose and the minimum effective dose.

That means find the optimal designs within an interval between these doses.

A challenging and open problem that still needs to be addressed is how to

implement these optimal designs.
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APPENDIX A

MAPLE SOFTWARE CODE

A.1 Code for Theorem 5.1

1) Find the objective function for Θ = (α2, β2, µ, r).

The location-scale parameters are denoted by (a1, a2) and (b1, b2), respectively. c[i]

is the weight for the design point x[i].

Define Fisher’s Information (M)

> M := matrix([[Sum(c[i]*v[i],i = 1 .. k),

Sum(c[i]*v[i]*x[i]/b2-a2*c[i]*v[i]/b2,i = 1 .. k), 0, 0],

[Sum(c[i]*v[i]*x[i]/b2-a2*c[i]*v[i]/b2,i = 1 .. k),

Sum(c[i]*v[i]*(x[i]^2-2*a2*x[i]+a2^2)/b2^2,i = 1 .. k), 0, 0], [0, 0,

Sum(c[i]*w[i],i = 1 .. k), Sum(c[i]*w[i]*x[i]/b2-a2*c[i]*w[i]/b2,i = 1

.. k)], [0, 0, Sum(c[i]*w[i]*x[i]/b2-a2*c[i]*w[i]/b2,i = 1 .. k),

Sum(c[i]*w[i]*(x[i]^2-2*a2*x[i]+a2^2)/b2^2,i = 1 .. k)]])

Find the inverse matrix of M
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> MMI:=inverse(M);

Simplify the inverse matrix

> MI:=simplify(MMI);

Define the gradient vector gdot and its transpose

gt := matrix([[-1/b2/(r+1),

-1/b2^2/r/(r+1)+(ln(r)+u+a2*(r+1))/b2^2/(r+1)^2, -1/b2/(r+1),

1/b2^2/(r+1)+(ln(r)+u+a2*(r+1))/b2^2/(r+1)^2]])

g := matrix([[-1/b2/(r+1)],

[-1/b2^2/r/(r+1)+(ln(r)+u+a2*(r+1))/b2^2/(r+1)^2], [-1/b2/(r+1)],

[1/b2^2/(r+1)+(ln(r)+u+a2*(r+1))/b2^2/(r+1)^2]])

Define the objective function ( the c optimality criteria)

> objj:=multiply(gt,MI,g);

> Simplify the objective function

> phi:=simplify(objj);

2) Find the objective function for Θ = (0, 1, µ, r).

Define Fisher’s Information (M0)

M0 := matrix([[Sum(c[i]*v[i],i = 1 .. k), Sum(c[i]*v[i]*x[i],i = 1 ..

k), 0, 0], [Sum(c[i]*v[i]*x[i],i = 1 .. k), Sum(c[i]*v[i]*x[i]^2,i = 1

.. k), 0, 0], [0, 0, Sum(c[i]*w[i],i = 1 .. k), Sum(c[i]*w[i]*x[i],i =

1 .. k)], [0, 0, Sum(c[i]*w[i]*x[i],i = 1 .. k),

Sum(c[i]*w[i]*x[i]^2,i = 1 .. k)]])
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Find the inverse matrix

> MMI0:=inverse(M0);

Simplify the inverse matrix

> MI0:=simplify(MMI0);

Define the gradient vector gdot for theta (0, 1, u, r)

gt0 := matrix([[-1/(r+1), -1/r/(r+1)+(ln(r)+u)/(r+1)^2, -1/(r+1),

1/(r+1)+(ln(r)+u)/(r+1)^2]])

g0 := matrix([[-1/(r+1)], [-1/r/(r+1)+(ln(r)+u)/(r+1)^2], [-1/(r+1)],

[1/(r+1)+(ln(r)+u)/(r+1)^2]])

Define the objective function (the c optimality criterion)

> cc:= multiply(gt0,MI0,g0);

> Simplify the objective function

> phi0:= simplify(cc);

A.2 Code for Theorem 5.2

> 1) Find the objective function for Θ = (α2, β2, µ).

Define Fisher’s information (M)

M := matrix([[Sum(c[i]*v[i],i = 1 .. k),

Sum(c[i]*v[i]*x[i]/b-a*c[i]*v[i]/b,i = 1 .. k), 0],

[Sum(c[i]*v[i]*x[i]/b-a*c[i]*v[i]/b,i = 1 .. k),

121



Sum(c[i]*(v[i]+w[i])*(x[i]^2-2*a*x[i]+a^2)/b^2,i = 1 .. k),

Sum(c[i]*w[i]*x[i]/b-a*c[i]*w[i]/b,i = 1 .. k)], [0,

Sum(c[i]*w[i]*x[i]/b-a*c[i]*w[i]/b,i = 1 .. k), Sum(c[i]*w[i],i = 1 ..

k)]])

Find the inverse of M

> MI:=inverse(M);

Define the gradient vector gdot

gt := matrix([[-1/2/b, 1/2*(2*a+u)/b^2, -1/2/b]])

g := matrix([[-1/2/b], [1/2*(2*a+u)/b^2], [-1/2/b]])

Simplify the inverse matrix of M

> Ms:= simplify(MI);

Find the objective function (the c optimality criterion)

> obj:=multiply(gt,MI,g);

> copt:= simplify(obj);

2) Find the objective function for Θ = (0, 1, µ).

Define Fisher’s information (M0)

M0 := matrix([[Sum(c[i]*v[i],i = 1 .. k), Sum(c[i]*v[i]*x[i],i = 1 ..

k), 0], [Sum(c[i]*v[i]*x[i],i = 1 .. k), Sum(c[i]*(v[i]+w[i])*x[i]^2,i

= 1 .. k), Sum(c[i]*w[i]*x[i],i = 1 .. k)], [0, Sum(c[i]*w[i]*x[i],i =

1 .. k), Sum(c[i]*w[i],i = 1 .. k)]])
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Find the inverse of M0

> MM0:=inverse(M0);

Simplify the inverse of M0

> Ms0:=simplify(MM0);

Define the gradient vector gdot and its transpose

gt0 := matrix([[-1/2, 1/2*u, -1/2]])

g0 := matrix([[-1/2], [1/2*u], [-1/2]])

Find the objective function (the c optimality criterion)

> obj0:=multiply(gt0,Ms0,g0);

> Simplify the objective function

> copt0:=simplify(obj0);

A.3 Code of the trace function for the example

used in Chapter 6 (Section 1)

Define Fisher’s information components at the optimal design points x1,x2.

x1:=convert(1.3377, fraction)

> x2:=convert(-.9796,fraction);

> f1:= exp(-2*x1)*exp(-exp(-x1))/(1-exp(-exp(-x1)));

> f2:= exp(-2*x2)*exp(-exp(-x2))/(1-exp(-exp(-x2)));
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f1 :=

exp(-13377/5000)*exp(-exp(-13377/10000))/(1-exp(-exp(-13377/10000)))

f2 := exp(2449/1250)*exp(-exp(2449/2500))/(1-exp(-exp(2449/2500)))

Mlo is Fisher’s information for Gbar(x) at x1,x2

> Mlo:=array([[.5*f1+.5*f2,.5*x1*f1+.5*x2*f2], [.5*x1*f1+.5*x2*f2,.5*x1^

2*f1+.5*x2^2*f2]]);

Mup is Fisher’s information for F(u + r x) at (-x1-u)/r,( x2-u)/r

> Mup:=array([[.5*f1+.5*f2,.5*((-x1-u)/r)*f1+.5*((-x2-u)/r)*f2],[.5*((-

x1-u)/r)*f1+.5*((-x2-u)/r)*f2,.5*((-x1-u)/r)^2*f1+.5*((-x2-u)/r)^2*f2]

]);

Define Fisher’s information for a single point

> f:=exp(2*r*x+2*u)*exp(-exp(r*x+u))/(1-exp(-exp(r*x+u)));

> Iup:=array([[f,x*f],[x*f,x^2*f]]);

f := exp(4*x-50)*exp(-exp(2*x-25))/(1-exp(-exp(2*x-25)))

Iup := matrix([[exp(4*x-50)*exp(-exp(2*x-25))/(1-exp(-exp(2*x-25))),

x*exp(4*x-50)*exp(-exp(2*x-25))/(1-exp(-exp(2*x-25)))],

[x*exp(4*x-50)*exp(-exp(2*x-25))/(1-exp(-exp(2*x-25))),

x^2*exp(4*x-50)*exp(-exp(2*x-25))/(1-exp(-exp(2*x-25)))]])

g:=exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x)))

> Ilo:=array([[g,x*g],[x*g,x^2*g]]);
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g := exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x)))

Ilo := matrix([[exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x))),

x*exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x)))],

[x*exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x))),

x^2*exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x)))]])

Find the inverse of Mup, Mlo

> MIup:=inverse(Mup);

> MIlo:=inverse(Mlo);

Find the trace: Tr(I F* Mˆ-1 F) and Tr(I G *Mˆ-1 G when u = -10, r =2

> u:-10;

> tup:=convert(trace(multiply(Iup,MIup)),float);

tup :=

1487.575983*exp(4.*x-50.)*exp(-1.*exp(2.*x-25.))/(1.-1.*exp(-1.*exp(2.

*x-25.)))-234.9528400*x*exp(4.*x-50.)*exp(-1.*exp(2.*x-25.))/(1.-1.*ex

p(-1.*exp(2.*x-25.)))+9.293731502*x^2*exp(4.*x-50.)*exp(-1.*exp(2.*x-2

5.))/(1.-1.*exp(-1.*exp(2.*x-25.)))

> tlo:=convert(trace(multiply(Ilo,MIlo)),float);

tlo :=

2.811031575*exp(-2.*x)*exp(-1.*exp(-1.*x))/(1.-1.*exp(-1.*exp(-1.*x)))

+1.304776227*x*exp(-2.*x)*exp(-1.*exp(-1.*x))/(1.-1.*exp(-1.*exp(-1.*x

)))+2.323432836*x^2*exp(-2.*x)*exp(-1.*exp(-1.*x))/(1.-1.*exp(-1.*exp(

-1.*x)))
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Find the trace: Tr(I F* Mˆ-1 F) and Tr(I G *Mˆ-1 G when u =-15, r =2

> u:=-15;

> tup:=convert(trace(multiply(Iup,MIup)),float);

> tlo:=convert(trace(multiply(Ilo,MIlo)),float);

Find the trace: Tr(I F* Mˆ-1 F) and Tr(I G *Mˆ-1 G when u =-25, r =2

> u:=-25;

> tup:=convert(trace(multiply(Iup,MIup)),float);

> tlo:=convert(trace(multiply(Ilo,MIlo)),float);

A.4 Code of the Trace function of Theorem 6.2

Define the optimal design weights

> a1:=convert(.2895,fraction);

> a2:=convert(.2105,fraction);

> a3:=convert(.2895,fraction);

> a4:=convert(.2105,fraction);

Define the optimal design points

> x1:= convert(-.8537,fraction);

> x2:=convert(1.0773,fraction);

Define Fisher’s information MM at the optimal design points

> f1:=exp(-2*x1)*exp(-exp(-x1))/(1-exp(-exp(-x1)));

> f2:=exp(-2*x2)*exp(-exp(-x2))/(1-exp(-exp(-x2)));

126



> M1b:=array([[f2*a4,a4*f2*(-x2-u),0],[a4*f2*(-x2-u),a4*f2*(-x2-u)^2+a2

*f2*x2^2,a2*f2*x2],[0,a2*f2*x2,a2*f2]]);

> M1a:=array([[f1*a3,a3*f1*(-x1-u),0],[a3*f1*(-x1-u),a3*f1*(-x1-u)^2+a1

*f1*x1^2,a1*f1*x1],[0,a1*f1*x1,a1*f1]]);

> MM:=evalm(M1a+M1b);

Find the inverse of MM

> MI:=convert(inverse(MM),float);

Define v x = ff1

> ff1:=exp(2*x+2*u)*exp(-exp(x+u))/(1-exp(-exp(x+u)));

Define w x = ff2

> ff2:=exp(-exp(x+u))*exp(-2*x)*exp(-exp(-x))/(1-exp(-exp(-x)));

Define Fisher’s information for a single pint

> FI:=array([[ff1,ff1*x,0],[ff1*x,ff1*x^2+ff2*x^2,ff2*x],[0,ff2*x,ff2]]

);

Define the trace function Tr(I Mˆ-1)

> tt:=trace(multiply(FI,MI));
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APPENDIX B

S-plus Code

B.1 The Directional Derivatives for D-optimality

Criterion

Define function F(negative extreme value)and return Fbar.

ff<-function(x,d1,b1)

{

f<-exp(-exp(b1*x+d1)) return(f)}

Define function G(positive extreme value) and return G

gg<-function(x,d,b) {

g<-exp(-exp(-b*x-d))

return(g) }

Define Fisher matrix:(a: the weights vector, y: the design points

vector)
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FM<-function(a,y,d1,b1,d,b){

s11<-NULL

s12<-NULL

s22<-NULL

s33<-NULL

s34<-NULL

s44<-NULL

k<-NULL

h<-NULL

for(i in 1:length(y)) { k[i]<-ff(y[i],d1,b1)

h[i]<-gg(y[i],d,b)

s1<-NULL

s1[i]<-((a[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1- k[i])

s11<-c(s11,s1[i])

s11<-sum(s11)

s13<-NULL

s13[i]<-((a[i])*(y[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s12<-c(s12,s13[i])

s12<-sum(s12)

s2<-NULL

s2[i]<-((a[i])*(y[i]^2)*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s22<-c(s22,s2[i])

s22<-sum(s22)

s3<-NULL

s3[i]<-((a[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1- h[i])

s33<-c(s33,s3[i])

s33<-sum(s33)

s31<-NULL

s31[i]<-((a[i])*(y[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s34<-c(s34,s31[i])

s34<-sum(s34)

s4<-NULL

s4[i]<-((a[i])*(y[i]^2)*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s44<-c(s44,s4[i])

s44<-sum(s44)}

A<-matrix(ncol=4,nrow=4)

A[1,]<-c(s11,s12,0,0)

A[2,]<-c(s12,s22,0,0)
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A[3,]<-c(0,0,s33,s34)

A[4,]<-c(0,0,s34,s44)

B<-solve(A) return(B) }

BB is the inverse of Fisher information evaluated at the optimal

design points.

BB<-FM(a,y,d1,b1,d,b)

Define Fisher information for a single point y.

MF1<-function(y,d1,b1,d,b) {

f<-exp(-exp(b1*y+d1))

g<-exp(-exp(-b*y-d))

s11<-exp(2*(b1*y+d1))*f/(1-f)

s12<-y*exp(2*(b1*y+d1))*f/(1-f)

s22<-(y^2)*exp(2*(b1*y+d1))*f/(1-f)

s33<-((exp(-2*(b*y+d)))*(f)*(g))/(1-g)

s34<-((y)*(exp(-2*(b*y+d)))*(f)*(g))/(1-g)

s44<-((y^2)*(exp(-2*(b*y+d)))*(f)*(g))/(1-g)

A<-matrix(ncol=4,nrow=4) A[1,]<-c(s11,s12,0,0)

A[2,]<-c(s12,s22,0,0) A[3,]<-c(0,0,s33,s34) A[4,]<-c(0,0,s34,s44)

return(A)}

Define the directional derivative: ( tr(I*M^-1)-p, p is the no.

of parameters.

I is fisher for a single point and tr is the trace function.

Define the trace of 2 matrices -p.

tr<-function(I,A) {

p<- 4

d<- sum(diag(I *A))-p

return(d)}

Find the directional derivative for different values of x.

dir<-function(B) {

tx<- seq(-15,15,.01)
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dd<- NULL

dd_c(1:length(tx))

for(i in 1:length(tx))

dd[i]<-tr(MF1(tx[i],d1,b1,d,b),B)

return(dd)}

The directional derivative at the inverse of Fisher’s

information evaluated at the optimal design points.

y<-dir(BB)

plot( tx,y,type="l", xlab="x", ylab ="Directional Derivative")

abline( h = 0 )

B.2 The Directional derivative for c-Optimality Cri-

terion

Define function F(negative extreme value)and return Fbar.

ff<-function(x,d1,b1)

{f<-exp(-exp(b1*x+d1))

return(f)}

Define function G(positive extreme value) and return G

gg<-function(x,d,b) {

g<-exp(-exp(-b*x-d))

return(g)}

Define Fisher information matrix at(a: the weights vector, y: the

design point vector)

FM<-function(a,y,d1,b1,b,d){

s11<-NULL

s12<-NULL

s22<-NULL
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s33<-NULL

s34<-NULL

s44<-NULL

k<-NULL

h<-NULL

for(i in 1:length(y))}

k[i]<-ff(y[i],d1,b1)

h[i]<-gg(y[i])

s1<-NULL

s1[i]<-((a[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1- k[i])

s11<-c(s11,s1[i])

s11<-sum(s11)

s13<-NULL

s13[i]<-((a[i])*(y[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s12<-c(s12,s13[i])

s12<-sum(s12)

s2<-NULL

s2[i]<-((a[i])*(y[i]^2)*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s22<-c(s22,s2[i])

s22<-sum(s22)

s3<-NULL

s3[i]<-((a[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s33<-c(s33,s3[i])

s33<-sum(s33)

s31<-NULL

s31[i]<-((a[i])*(y[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s34<-c(s34,s31[i])

s34<-sum(s34)

s4<-NULL

s4[i]<-((a[i])*(y[i]^2)*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s44<-c(s44,s4[i])

s44<-sum(s44)}

A<-matrix(ncol=4,nrow=4)

A[1,]<-c(s11,s12,0,0)

A[2,]<-c(s12,s22,0,0)

A[3,]<-c(0,0,s33,s34)

A[4,]<-c(0,0,s34,s44) B<-solve(A)
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return(B) }

BB is the inverse of Fisher’s information matrix at the optimal

designs points.

BB<-FM(a,y,d1,b1)

Return the transpose of a matrix.

tran<-function(A,n,m)

{B_matrix(nrow=m,ncol=n)

for(i in 1:m )

for (j in 1:n)

B[i,j]<-A[j,i]

return(B)}

Define Fisher information for a single point.

MF1<-function(y,d1,b1,b,d) {

f<-exp(-exp(b1*y+d1))

g<-exp(-exp(-b*y-d))

s11<-exp(2*(b1*y+d1))*f/(1-f)

s12<-y*exp(2*(b1*y+d1))*f/(1-f)

s22<-(y^2)*exp(2*(b1*y+d1))*f/(1-f)

s33<-((exp(-2*(b*y+d)))*(f)*(g))/(1-g)

s34<-((y)*(exp(-2*(b*y+d)))*(f)*(g))/(1-g)

s44<-((y^2)*(exp(-2*(b*y+d)))*(f)*(g))/(1-g)

A<-matrix(ncol=4,nrow=4) A[1,]<-c(s11,s12,0,0)

A[2,]<-c(s12,s22,0,0)

A[3,]<-c(0,0,s33,s34)

A[4,]<-c(0,0,s34,s44)

return(A) }

The directional derivative for a seq of x values.

dir<-function(B,d1,b1,b,d) {

x<- seq(-8,8,.01)

dd<- NULL

gc_matrix(nrow=4,ncol=1)
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gc[1]<- -1/(b1+1)

gc[2]<- -1/(b1*(b1+1))- ((-log(b1)-d1)/(b1+1)^2)

gc[3]<- -1/(b1+1)

gc[4]<- (1/(b1+1))- ((-log(b1)-d1)/(b1+1)^2)

gct<-tran(gc,4,1)

for(i in 1:length(x))}

Ix<-MF1(x[i],d1,b1,b,d)

dd[i]<-gct*B*Ix*B*gc - gct*B*gc}

return(dd)}

y<-dir(BB,d1,b1,b,d)

x<-seq(-8,8,.01)

plot(x,y,type="l",ylab="Directional Derivative")

abline(h=0)

B.3 Up–and–Down Procedure

A program to return an estimate of the optimal designs using up

and down procedure.

The optimal designs for the contingent

response model when mu =-3, r=2.

1) x_1^*=-0.05054 , x_2^*=1.3595, with w_1=0.4444 and w_2=0.5556

Define the negative-positive extreme value function

ffu<-function(x,u,r) {

f<-1- exp(-exp(r*x+u))

return(f)}

b3<-ffu(-.5054,-3,2)

ggu<-function(x,u,r){

g<-(1-exp(-exp(-x)))*(exp(-exp(r*x+u)))

return(g) }

b1<-ggu(-.5054,-3,2)

r<- 2

u<--3
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rp<- NULL

Define

Pi_i/Pi_1 p<-b3*ggu(x[1],mu,r )/(b1*ffu(x[2],mu,r) )

rp<-c(p,rp)for(i in 2: (length(x)-1) ) {

w_rp[i-1]*b3*ggu(x[i],mu,r)/(b1*ffu(x[i+1],mu,r)) rp_c(rp,w)}

sum1<-sum(rp) p1<-1/(1+sum1)

pp<-NULL

pp_<-c(p1,pp)

for(i in 1: length(rp) ) {

pps<-p1*rp[i]

pp<-c(pp,pps)}

Repeat for the second optimal point.

b3<-ffu(1.3595,-3,2)

b1<-ggu(1.3595,-3,2)

x<-seq(-3,6,.25)

rp2<-NULL

p2<-b3*ggu(x[1],mu,r)/(b1*ffu(x[2],mu,r))

rp2<-c(p2,rp2)

for(i in 2 :(length(x)-1)) {

w1<-rp2[i-1]*b3*ggu(x[i],mu,r)/(b1*ffu(x[i+1],mu,r))

rp2<-c(rp2,w1)}

sum2<-sum(rp2)

p11<-1/(1+sum2)

pp1<-NULL

pp1<-c(p11,pp1)

for(i in 1: length(rp2) ) {

pps<-p11*rp2[i]

pp1<-c(pp1,pps) }

Efficiency of the designs

Define the components functions of Fisher’s information.

ff<-function(x,b1,d1) {

f<- exp(-exp(b1*x+d1))

return(f) }

gg<-function(x){
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g<- exp(-exp(-x))

return(g) }

Define Fisher’s information for a vector of x^* and w^*.

FM<-function(a,y,b,d,b1,d1){

s11<-NULL

s12<-NULL

s22<-NULL

s33<-NULL

s34<-NULL

s44<-NULL

k<-NULL

h<-NULL

for(i in 1:length(y)){

k[i]<-ff(y[i],b1,d1)

h[i]<-gg(y[i])

Define the components of Fishers M

s1<-NULL

s1[i]<-((a[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s11<-c(s11,s1[i])

s11<-sum(s11)

s13<-NULL

s13[i]<-((a[i])*(y[i])*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s12<-c(s12,s13[i])

s12<-sum(s12)

s2<-NULL

s2[i]<-((a[i])*(y[i]^2)*(exp(2*(b1*y[i]+d1)))*(k[i]))/(1-

k[i])

s22<-c(s22,s2[i])

s22<-sum(s22)

s3<-NULL

s3[i]<-((a[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s33<-c(s33,s3[i])

s33<-sum(s33)

s31<-NULL

s31[i]<-((a[i])*(y[i])*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

136



s34<-c(s34,s31[i])

s34<-sum(s34)

s4<-NULL

s4[i]<-((a[i])*(y[i]^2)*(exp(-2*(b*y[i]+d)))*(k[i])*(h[i]))/(1-

h[i])

s44<-c(s44,s4[i])

s44<-sum(s44)}

A<-matrix(ncol=4,nrow=4)

A[1,]<-c(s11,s12,0,0)

A[2,]<-c(s12,s22,0,0)

A[3,]<-c(0,0,s33,s34)

A[4,]<-c(0,0,s34,s44)

return(A) }

The design parameters.

b<-1

d<-0

b11<-2

d1<--3

Return the transpose of a matrix.

tran<-function(A,n,m){

B_matrix(nrow=m,ncol=n)

for(i in 1:m )

for (j in 1:n)

B[i,j]<-A[j,i]

return(B) }

Define the gradient vector.

gc_matrix(nrow=4,ncol=1)

gc[1]<- -1/(b11+1)

gc[2]<- -1/(b11*(b11+1))- ((-log(b11)-d1)/(b11+1)^2)

gc[3]<- -1/(b11+1)

gc[4]<- (1/(b11+1))- ((-log(b11)-d1)/(b11+1)^2)

gct<-tran(gc,4,1)

Find the variance of g(Theta) when (mu=-3,r=2) for the c-optimal

design

a <-c(.4444,.5556)

y<-c(-.5054,1.3595)
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BB<-FM(a,y,b,d,b11,d1)

BBo<-solve(BB)

varo<-gct*BBo*gc

Find the variance of Up and Down design.

Sum pi I_x over the grid points and the pi’s are (pp) and (pp1)

a1<- a[1]*pp

a2<-a[2]*pp1

yy<-x

aaa_a1+a2

Evaluate Fisher’s information at the up-and-down design and

find the inverse.

BB2<-FM(aaa,yy,b,d,b11,d1)

BBd<-solve(BB2)

varupx<-gct*BBd*gc
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APPENDIX C

FORTRAN CODE
Optimal designs were found using NPSOL which is a fortran program

to minimize a multivariate function. For details about the procedure

see [19]. The program was run for each (mu, r) or \mu) model

assuming the optimal design consist of 2, 3, 4,5,... until the

candidate design is verified by the General Equivalence Theorem.

The following is a Fortran program for minimizing log-determinant

of Fisher’s information assuming optimal designs consist of two

design points .

program det2

implicit double precision (a-h, o-z)

%* ==================================================================

* Set the declared array dimensions.

* ldA = the declared leading dimension of A.

* ldcJ = the declared leading dimension of cJac.

* ldR = the declared leading dimension of R.

* maxn = maximum no. of variables allowed for.

* maxbnd = maximum no. of variables + linear \& nonlinear

constrnts.

* liwork = the length of the integer work array.

* lwork = the length of the double precision work array.

%* ==================================================================

parameter (ldA = 1, ldcJ= 1, ldR= 4 , maxn=4,

liwork = 30, lwork= 150, maxbnd=

maxn+ldA+ldcJ)

integer istate(maxbnd)

integer iwork(liwork)

double precision A(ldA,maxn)
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double precision bl(maxbnd), bu(maxbnd)

double precision c(ldcJ), cJac(ldcJ,maxn), clamda(maxbnd)

double precision objgrd(maxn), R(ldR, maxn), x(maxn)

double precision work(lwork)

external funobj, funcon

double precision bigbnd

character*20 lFile

logical byname, byunit

parameter (zero=0.0d+0, one=1.0d+0)

%* ------------------------------------------------------------------

* Assign file numbers and open files by various means.

* (Some systems don’t need explicit open statements.)

* iOptns = unit number for the Options file.

* iPrint = unit number for the Print file.

* iSumm = unit number for the Summary file.

%* ------------------------------------------------------------------

iOptns =4

iPrint = 10

iSumm=6

byname = .true.

byunit = .false.

if ( byname ) then

lFile = ’det2.opt’

open( iOptns, file=lFile, status=’OLD’, err=800 )

lFile = ’det2.out’

open( iPrint, file=lFile, status=’UNKNOWN’, err=800 )

else if ( byunit ) then

lUnit = iOptns

open( lUnit, status=’OLD’, err=900 )

lUnit = iPrint

open( lUnit, status=’UNKNOWN’, err=900 )

end if

%* =============================================================

* Set the actual problem dimensions.

* n = the number of variables.

* nclin = the number of general linear constraints (may be

0).

* ncnln = the number of nonlinear constraints (may be 0).

%* =============================================================

n = 4

nclin = 1

ncnln = 0
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nbnd = n + nclin + ncnln

*Assign the data arrays.

* A = the linear constraint matrix.

* bl = the lower bounds on x, a’x and c(x).

* bu = the upper bounds on x, a’x and c(x).

* bounds .ge. bigbnd will be treated as plus infinity.

* bounds .le. - bigbnd will be treated as minus infinity.

* x = the initial estimate of the solution.

%* ------------------------------------------------------------------

bigbnd = 1.0d+21

A(1,1)= zero

A(1,2)=zero

A(1,3)= one

A(1,4) = one

* set the bounds

bl(1) = -bigbnd

bl(2) = -bigbnd

bl(3) = zero

bl(4) = zero

bl(5) = one

bu(1) = bigbnd

bu(2) = bigbnd

bu(3) = one

bu(4) = one

bu(5)= one

Set the initial estimate of X.(to be checked later)

x(1) = -1.25

x(2) = 1.05

x(3) = .5

x(4) = .5

%* ------------------------------------------------------------------

Set a few options in-line.

* The Print file will be on unit iPrint.

* The Summary file will be on the default unit 6

* (typically the screen).

* ------------------------------------------------------------------

call npopti( ’Print file =’, iPrint )

call npoptr( ’Infinite Bound size =’, bigbnd )

* Read the Options file.

call npfile( iOptns, inform )

if (inform .ne. 0) then

write(iPrint, 3000) inform
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stop

end if

%------------------------------------------------------------------

Solve the problem.

% ------------------------------------------------------------------

call npsol ( n, nclin, ncnln, ldA, ldcJ, ldR,

A, bl, bu,

funcon, funobj,

inform, iter, istate,

c, cJac, clamda, objf, objgrd, R, x,

iwork, liwork, work, lwork )

if (inform .gt. 0) go to 999

do 100, j = 1, n

x(j) = x(j) + 0.1

100 continue

* Set some new options in-line,

* but stop listing them on the Print file.

call npoptn( ’Nolist’ )

call npoptn( ’Derivative level 0’ )

call npoptn( ’Verify No’ )

call npoptn( ’Warm Start’ )

call npopti( ’Major iterations ’, 20 )

call npopti( ’Major print level ’, 10 )

* Error conditions.

800 write(iSumm , 4000) ’Error while opening file’, lfile

stop

900 write(iSumm , 4010) ’Error while opening unit’, lunit

stop

999 write(iPrint, 3010) inform

stop

3000 format(/ ’ npfile terminated with inform =’, i3)

3010 format(/ ’ npsol terminated with inform =’, i3)

4000 format(/ a, 2x, a )

4010 format(/ a, 2x, i6 )

* end of the example program for NPSOL

end

%*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine funobj (mode, n, x,objf, objgrd, nstate)

implicit double precision(a-h, o-z)

double precision x(n), objgrd(n)
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double precision , parameter::a1=0d0, d1=.5d0,

a2=0d0,d2=1d0

F1 =1- exp(-exp(a1 + d1*x(1)))

Fb1 =1-F1

G1 =exp(-exp(-(a2+ d2*x(1))))

Gb1 =1-G1

F2 =1- exp(-exp(a1 + d1*x(2)))

Fb2 =1-F2

G2 =exp(-exp(-(a2+ d2*x(2))))

Gb2 =1-G2

s11 = x(3)*exp(2*(a1+d1*x(1)))*(Fb1/F1) +

x(4)*exp(2*(a1+d1*x(2)))*(Fb2/F2)

s12 = x(3)*exp(2*(a1+d1*x(1)))*x(1)*(Fb1/F1) +

x(4)*exp(2*(a1+d1*x(2)))*x(2)*(Fb2/F2)

s22 = x(3)*exp(2*(a1+d1*x(1)))*x(1)**2*(Fb1/F1) +

x(4)*exp(2*(a1+d1*x(2)))*x(2)**2*(Fb2/F2)

s33 = x(3)*exp(-2*(a2+d2*x(1)))*Fb1*(G1/Gb1) +

x(4)*exp(-2*(a2+d2*x(2)))*Fb2*(G2/Gb2)

s34 = x(3)*exp(-2*(a2+d2*x(1)))*x(1)*Fb1*(G1/Gb1) +

x(4)*exp(-2*(a2+d2*x(2)))*x(2)*Fb2*(G2/Gb2)

s44 = x(3)*exp(-2*(a2+d2*x(1)))*x(1)**2*Fb1*(G1/Gb1) +

x(4)*exp(-2*(a2+d2*x(2)))*x(2)**2*Fb2*(G2/Gb2)

dt1 = s11*s22 - s12**2

dt2 = s33*s44 - s34**2

objf= -log(dt1*dt2)

END SUBROUTINE funobj

subroutine funcon (mode, ncnln ,n, ldcJ, needc,x,c, cJac,

nstate)

implicit double precision(a-h, o-z)

integer needc (*)

double precision x(n), c(*), cJac(ldcJ,*)

END SUBROUTINE funcon
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