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ABSTRACT 

The study examines the farm level adoption and county level diffusion of three 

cotton biotechnologies in the US: insect resistant (Bollgard®), herbicide tolerance 

(Roundup Ready®), and stacked trait (Bollgard® & Roundup Ready®). Adoption and 

diffusion of these cotton biotechnologies are interdependent. A theoretical framework is 

developed to consider the adoption decision first. An optimal control model explains the 

effects of various learning mechanisms on the adoption of multiple, interdependent, and 

divisible innovations. Empirical specifications use a Generalized Method of Moments 

framework. Farmers are found to simultaneous adopt multiple technologies influenced by 

perceived economic gains, learning from own experience, and their neighbors’ adoption. 

Other factors also influence adoption decision including: interdependencies among 

biotechnologies and certain agronomic practices (e.g. minimum tillage). Adoption is 

found to be scale neutral. Aggregate (county level) models confirm that potential 

economic gains, learning, innovation interdependencies and complementarities with 

agronomic practices drive the diffusion of the cotton biotechnologies.

 vi



CHAPTER 1 

INTRODUCTION  

 

 

 Radical scientific discoveries can profoundly affect economic growth and social 

welfare (Romer, 1990). When radical discoveries link together and reinforce each other, 

they create a platform for continuing innovation that can affect multiple sectors of the 

economy and cause far-reaching socioeconomic and structural changes (Freeman and 

Perez, 1988).  

Biotechnology is just such a platform innovation. Radical discoveries, such as 

gene transfer and cell fusion, marked the dawn of modern biotechnology in the early 

1970s. Through further discoveries, biotechnology quickly emerged as a collection of 

diverse and reinforcing technologies with a wide range of applications in agriculture, 

forestry, food processing, waste management, pollution control, chemicals, raw materials, 

energy, cosmetics, pharmaceuticals, and other sectors (Altman, 1998).  

In its early stages, agricultural biotechnology innovation progressed slowly as 

basic enabling technologies and a regulatory framework were being developed 

(Kalaitzandonakes and Bjornson, 1997). First-generation products began to arrive at the 

market in the mid-1990s, after almost twenty years of research and field experimentation. 

First-generation products have been, principally, crops with modified input traits, such as 

herbicide tolerance and resistance to particular insect pests. Other product introductions 

have included crops with resistance to fungal and viral diseases, biopesticides, yield-

enhancing hormones for livestock, fruit with delayed ripening, flowers with altered 



 

colors, and enzymes for food processing. Second generation agrobiotechnologies are 

expected to arrive in the market over the next decade and include bioengineered crops 

with modified agronomic and output traits (Mazur, McElroy, 1999). 

Unlike product development, the adoption of first-generation agricultural 

biotechnologies has been quite rapid. In 1996, less than 4 million acres in six countries 

were planted with insect resistant and herbicide tolerant crops. By 2003, worldwide 

adoption had expanded to over 160 million acres (James, 2003). For some countries, 

uptake of bioengineered crop varieties has been the fastest on record. And in a few cases 

(e.g. Brazil, Uruguay) adoption has been rapid even though it was illegal, as it lacked 

local regulatory clearance for plantings.  

Interestingly, only modest research efforts have been devoted to understanding 

the unprecedented adoption and diffusion of first generation biotechnologies. Indeed, one 

can find only a handful of published studies that have formally modeled producer 

adoption decisions (as in Marra et al., 2001b,c and Kalaitzandonakes and Suntornpithug, 

2001). Instead, there has been far more interest in measuring the environmental impacts 

of agrobiotechnologies (Clark & Kuiper, 2001; Cullum & Smith, 2001; Diamand, 1999; 

Edge et al., 2001; Ervin et al, 2000; Marshall, 1998; Nickson & Head, 1999; Renner, 

1999), and their economic distribution both at the farm-level (e.g. see Marra for a review 

of farm-level impact assessment studies) and at an aggregate level (Falck-Zepeda, et al., 

2000a,b; Traxler & Falck-Zepeda, 1999; Moschini, et al., 2000). Given the broad interest 

in the impacts of agrobiotechnologies, the lack of formal analysis of producer adoption 

behavior is curious. After all, unless the factors that shape adoption decisions are clearly 
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understood, it is difficult to decide how impacts should be defined and measured 

(Kalaitzandonakes and Suntornpithug, 2003).  

Beyond the rapid pace, other dimensions of agricultural biotechnology adoption 

and diffusion are also of interest. Simultaneous introduction of a number of traits for 

multiple crops have put various crop biotechnologies in a position to compete for land 

share, but also, potentially influence each others’ adoption patterns (e.g. through cross-

technology knowledge externalities). How might interdependencies among various 

biotechnologies affect each others’ adoption and diffusion patterns? The answer to this 

question is unclear. Previous adoption (and impact assessment) studies (as in Carlson et 

al., 1998; Fernandez-Cornejo et al., 1999; Marra, 1999; and Marra et al., 2001) have 

considered the uptake of agrobiotechnologies one at a time; that is, separately from the 

adoption of other agrobiotechnologies or related agronomic practices.  

Many agricultural biotechnologies have also exhibited interesting diffusion 

patterns. Instead of the standard S-shaped paths that have been observed across various 

innovations and sectors in the past, many agricultural biotechnologies have had “zigzag” 

diffusion paths. Such paths suggest dis-adoption and reengagement. What factors explain 

such diffusion patterns then? Again, this question can not be adequately answered as 

there are no diffusion studies of agricultural biotechnologies.  

To answer these and other related questions, I first develop a theoretical model of 

producer adoption behavior. I then empirically test its relevance in adequately explaining 

adoption and diffusion patterns for a set of biotechnologies in US cotton production. 

Adoption and diffusion of the selected cotton biotechnologies display rapid rates, 

potential interdependencies, and in some cases, unconventional diffusion paths. In this 
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context, they present an interesting case study. A basic overview of these biotechnologies 

is presented next.  

 

Overview of Cotton Biotechnologies 

 

Prior to the introduction of agricultural biotechnologies, pest management relied 

exclusively on use of synthetic insecticides, as well as, herbicides and conventional 

tillage practices to control harmful insects and weeds. Conventional pest control practices 

require substantial amounts of labor, capital, and management prior, during, and after 

planting. Precise tank mixes and identification of suitable application windows 

complicate conventional pest control methods. Pest resistance to pesticides, crop injury, 

high production costs, and, occasionally, negative health and environmental externalities 

pose additional challenges. Consequently, there have been ongoing efforts to develop 

alternative pest control methods.  

No crop has had a more pronounced need for an alternative to conventional pest 

control methods than cotton. Historically, conventional cotton production has relied 

heavily on chemical pesticides, using about 25% of all the agricultural pesticides used 

worldwide. Some of these pesticides have been among the most toxic agricultural 

chemicals, starting with chlorinated hydrocarbons (such as DDT), which were banned in 

the 1970s and 1980s because of their high toxicity. Next came organophosphates, many 

of which were also highly toxic. Pyrethroids were widely used in 1980s and 1990s. 

However, pest resistance to organophosphates and pyrethoids developed soon after their 

introduction in many cotton producing regions. 
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In this environment, four different cotton biotechnologies were introduced in the 

market in the mid-1990s. The three most dominant technologies --Bollgard®, Roundup 

Ready®, and stacked Bollgard®/Roundup Ready® --are considered here.1 Collectively, 

these three technologies were used on almost 80% of the US cotton acres cultivated in 

2004 (figure 1). 
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The Adoption of Bollgard® Cotton  

Bollgard® (BG) cotton has been engineered to resist insect pests and was introduced in 

the market in 1996. Insect resistance has been engineered through the use of a gene from 

the common soil bacterium Bacillus thuringiensis (Bt), which when inserted into cotton 

                                                 
1 BXN cotton, which is resistant to the herbicide bromoxynil, was introduced to the US cotton market in 1995. 
Adoption of BXN cotton is limited by a restriction on the amount of cotton acres that can be treated with bromoxynil. 
Because the BXN technology cannot grow beyond its current 4% of US cotton acreage, its adoption is not considered 
here.  
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plants, causes them to produce a protein that is toxic to lepidoptera insect pests.  Bt cotton 

is effective in controlling caterpillar pests such as cotton bollworm (Helicoverpa zea) and 

pink bollworm (Pectinophora gossypiella), and is partially effective in controlling 

tobacco budworm (Heliothis virescens) and fall armyworm (Spodoptera frugiperda).  

Use of BG cotton in the US has been associated with meaningful reductions in the 

number of sprays for Lepidoptera pests (Carpenter and Giannesi, 2000, Edge et al., 2001, 

Heimlich et al., 2000). Fewer applications may translate into lower quantities of synthetic 

pesticides and associated expenses. Fewer sprays may also translate into meaningful 

labor and capital savings, as less labor and machinery hours may be necessary for mixing 

and spraying (ReJesus et al., 1997).  

Potential cost efficiencies may be strengthened by more effective pest control 

relative to that achieved through conventional varieties. BG varieties have been shown to 

provide effective protection against target pests (Edge et al., 2001). Their relative 

effectiveness may also improve as the efficacy of conventional pest control methods 

depreciates through insect resistance buildup (Marra et al., 2001; and also Pray and 

Huang, 2003; and Traxler et al., 2003). Furthermore, reduced damage on beneficial 

insects can improve secondary control over non-target pests (Edge et al., 2001). 

Pest damage is stochastic, influenced by the levels of pest populations and 

weather conditions. To prevent major infestations, cotton growers make complex 

decisions before and during the growing season (e.g., scouting, choosing appropriate 

insecticides, and choosing the timing of application). Use of BG cotton may reduce the 

risk of unpredictable outbreaks as it provides continuous protection, and could act as 

insurance (Carpenter and Giannesi, 2000). Similarly, use of BG cotton can temper 
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uncertainties associated with weather interfering with, or negating, ill-timed applications 

for key pests. Hence, the use of BG cotton may reduce production risk and increase 

yields. 

Synergies with certain agronomic practices might also exist. For instance, use of 

BG cotton may increase the productivity of irrigation. Synthetic pesticide applications 

tend to interrupt watering and interfere with efficient use of irrigation systems. 

Accordingly, producers who use irrigation may be more inclined to adopt BG technology 

as a way of improving the efficiency of their irrigation programs. 

 

Adoption of Roundup Ready Cotton 

Roundup Ready® (RR) cotton varieties have been engineered to resist the herbicide 

glyphosate2, which effectively controls a wide range of grasses and broadleaf weeds. The 

RR technology was introduced in the market in 1997. 

Use of herbicide resistant cotton has allowed the substitution of low-priced 

glyphosate for more expensive selective post-emergence herbicides and, in some cases 

fewer herbicide applications (Carpenter, 2002; Carpenter and Giannesi, 2001; Heimlich 

et al., 2000). As with BG cotton, a reduced number of sprays can lead to lower herbicide 

costs, as well as, lower labor and equipment costs. Further cost efficiencies may be 

possible from savings in management efforts. Herbicide programs using selective post-

emergence herbicides can be complex. Producers must scout the fields, correctly identify 

the type and size of weeds that must be controlled, and decide on an appropriate program 

by mixing relevant selective herbicides. All such activities require specialized knowledge 

                                                 
2 Glyphosate is essentially a phosphorus containing form of the nonessential amino acid, glycine.  
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and managerial time. With an effective non-selective herbicide, such as glyphosate, less 

management may be required.  

Use of RR cotton may also reduce production risk. Selective post-emergence 

herbicides can control specific weeds while they are in early phases of growth. Only a 

narrow window is therefore available for their effective use. Excessive rainfall may keep 

equipment off the field until weeds are too mature to control. With RR cotton, the 

potential window for spraying is extended, as glyphosate controls larger weeds well. 

Accordingly, production risk and associated output losses may be reduced. 

Potential synergies between RR cotton and certain agronomic practices may also 

exist. The most notable example is the increased ease of implementing no-till or 

minimum tillage programs in RR cotton acres (Carpenter and Giannesi, 2000). Producers 

may also find ultra narrow row cultivation systems increasingly profitable with more 

effective early season burndown. The decreased need of machinery for controlling post-

emergence weeds may allow areas between rows to be reduced to a few inches, resulting 

in more efficient land use. As in the case of BG technology, use of RR technology may 

also improve the efficiency of irrigation programs.  

 

Stacked Bollgard®/Roundup Ready® Cotton 

Stacked Bollgard®/Roundup Ready® (ST) cotton varieties were introduced in 1998 to 

combine the properties of BG and RR technologies. The two technologies are employed 

for different purposes but may find application in the same fields. Hence, producers can 

evaluate the economics of single traits independently or as a bundle. The use of stacked 
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traits is most likely to occur in areas with high concentrations of budworms and 

bollworms, as well as broadleaves and grasses. 

 

Perceptions of Innovation Advantages and Adoption Decisions 

 

The potential technical and economic advantages offered by the three cotton 

biotechnologies are expected to directly influence the adoption decisions of producers. In 

their efforts to maximize profits, cotton producers may adopt BG, RR, or ST cotton in 

order to reduce production costs, ease production risks and associated output losses, and 

exploit potential synergies with other agronomic practices.  Adoption decisions for these 

three agrobiotechnologies, however, are not independent. In most cases, the individual 

technologies readily substitute for one another. For instance, single trait and stacked 

technologies may be close substitutes given their overlapping pesticidal activities. Within 

this context, the adoption decision of one cotton biotechnology might directly influence 

the adoption decision of another.  

Similarly, complementarities between BG, RR, and ST with certain agronomic 

practices may imply further interdependencies. For instance, use of herbicide resistant 

technologies may improve the economics of minimum tillage and strengthen its adoption. 

Increased adoption of minimum tillage could simultaneously encourage adoption of RR 

and ST technologies in cotton production.  

As producer adoption decisions become more interdependent, complexity 

increases and uncertainties about the long term profitability of these biotechnologies 

could emerge. All the potential technical advantages of agrobiotechnologies are 
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stochastic in nature, as they are critically influenced by the actual levels of pest 

infestations and by weather. It is up to the producers to separate “noise” from potential.  

Producers must therefore weigh the potential technical and economic advantages 

of agrobiotechnologies in the face of significant uncertainty and against up-front extra 

costs (e.g., more expensive seeds and licensing fees for the technologies). Under 

uncertain conditions, producers could choose to partially adopt such technologies to 

slowly evaluate their performance (Abadi Gadim and Pannell, 1999, Cameron, 1999; 

Kalaitzandonakes and Boggess, 1993, Marra et al., 2001). Over time and through 

learning by doing or learning from other users, producers could sharpen their 

expectations about the profitability of the three technologies and gain knowledge on how 

to optimize their use, both agronomically and economically.  

 

 

Research Questions and Hypotheses 

 

Against this context, one can pose several relevant research questions:  

o What is the relative importance of perceived economic gains from cotton 

biotechnology innovations on their adoption and diffusion?  

o What kind of learning mechanisms do farmers use to optimize their adoption 

decisions?  

o How much of an impact does learning have on producer decisions? How do 

interdependencies among cotton biotechnologies and other agronomic practices 

affect producer adoption decisions?  
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o Are cotton biotechnologies scale biased? 

o Can the factors that explain producer adoption decisions also explain observed 

diffusion patterns and innovation dynamics for cotton biotechnologies?  

To answer these and other related questions, I develop a theoretical model of producer 

adoption decisions and propose the following hypotheses:  

 

Hypothesis 1 

US cotton producers adopt biotechnologies in order to maximize an expected 

stream of profits over a given period of time. Accordingly, producer adoption 

decisions are closely influenced by perceived economic gains from various 

biotechnologies. 

 

Hypothesis 2 

US cotton producers account for interdependencies and choose bundles of 

conventional technologies, agricultural biotechnologies and relevant agronomic 

practices. Hence, their behavior is characterized by multiple simultaneous and 

interdependent adoption decisions.  

 

Hypotheses 3 

In the presence of complexity and uncertain performance, US cotton producers use 

multiple learning mechanisms to optimize the use of the three cotton 

biotechnologies over time. They partially adopt one or more of the technologies 
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and learn by doing. They also learn by observing other users. Hence, their adoption 

decisions are dynamic in nature.  

 

Hypothesis 4 

Cotton biotechnologies are highly divisible and require no significant upfront 

investment. Their adoption implies no scale bias and it is evenly distributed across 

all firm sizes. 

 

Hypothesis 5 

Dynamic and simultaneous considerations explain not only adoption decisions 

among producers in any given year but also aggregate diffusion patterns observed 

over a period of time.  

 

I empirically test these hypotheses within the context of two closely linked but 

separate adoption and diffusion models for the selected cotton biotechnologies. For the 

adoption model, I use detailed survey data for a representative sample of US producers to 

examine the influence of the following factors: perceived innovation benefits, technology 

interdependencies, and learning from past decisions-- whether to adopt and to what extent 

among the three technologies. For the diffusion model, I examine the influence of the 

same variables on the whole population of adopters over multiple years. 
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Study Outline 

 

The remaining of the study is structured as follows: In chapter 2, I review relevant 

literature on adoption and diffusion of agricultural innovation and specifically of 

agrobiotechnologies. In chapter 3, I develop a theoretical optimal control model in order 

to examine the dynamic effects of various learning mechanisms on the adoption of 

multiple, interdependent, and divisible innovations.  

The complexity of the theoretical framework emphasizes the importance of the 

empirical models developed in chapter 4 and 5. Indeed the empirical adoption model 

presented in chapter 4 and the empirical diffusion model presented in chapter 5 examine 

the impacts of the following factors: perceived economic gains, learning mechanisms, 

interdependencies of multiple technologies and agronomic practices. Perceived economic 

gains include perceived pest control effectiveness, convenience, risk consideration, and 

perceived cost savings. Learning mechanisms include learning by doing from exact as 

well as that from similar technologies, and learning from others. Interdependencies 

include all possible substitutability among cotton varieties (traditional and biotech cotton) 

and synergies with agronomic practices. These interdependencies are simultaneous and 

dynamic. The Generalized Method of Moments (GMM)3 is used to estimate coefficients 

in a system of adoption and diffusion equations.  

Finally, in chapter 6, I summarize the key finding of the study and profice some 

concluding comments.  

                                                 
3 Inexperience readers would benefit from the following references: Johnston and John (1997), Maddala 
(1992), Mullen (2003)a,b,c, Pindyck and Rubinsfield (1998) 
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CHAPTER 2 

INNOVATION ADOPTION AND DIFFUSION: A LITERATURE REVIEW 

 

 

Adoption and diffusion are related but distinct concepts, with the later being a measure of 

aggregate adoption.  There is a vast literature that examines the patterns and determinants 

of innovation adoption and diffusion. In this area, Roger’s pioneering work provided a 

basic framework for many studies that followed in the last 40 years.  Roger introduced 

theories that explained innovation adoption and diffusion. These theories have been 

organized as: 1) perceived attributes theory, 2) innovation decision process theory, 3) 

individual innovativeness theory, and 4) rate of adoption theory (Rogers, 1995.)  

All four theories are linked to one another. Perceived attributes theory focuses on 

the characteristics of the innovation that affect its rate of adoption. The innovation 

decision process theory and the individual innovativeness theory deal with the adopt/not 

adopt decision of the individual innovator and the innovators characteristics. Finally, the 

rate of adoption theory examines the temporal evolution of adoption and diffusion. 

The characteristics of an innovation matter. Rogers explained that innovations are 

adopted at faster rates when they possess some of the following characteristics: 

trialability, observability, a clear relative advantage against incumbent technologies, 

simplicity, and compatibility with existing infrastructure, knowledge and other assets. 

When considering such dimensions, potential adopters go through five stages in 

their decision process. These stages include: knowledge –where they increase their 

awareness of the innovation and its characteristics; persuasion –where they develop an 
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attitude, favorable or unfavorable, towards the innovation; decision –where they engage 

in activities that lead to adoption or rejection; implementation –where they carry out their 

adoption/non adoption decision; and confirmation –where they look for reinforcement 

that the correct decision was made regarding the adoption.  

Roger went on to explain in his individual innovativeness theory that individuals 

differ in their propensity to innovate with some being more predisposed to innovate than 

others. He used a bell shaped normal distribution to categorize individuals into five 

categories: innovators (venturesome), early adopters (respectable), early majority 

(deliberate), late majority (skeptical), and laggards (traditional).  

Roger also proposed that the rates at which innovations are diffused over time 

yield predictable patterns that resemble an S-shaped curve. The rate of adoption accounts 

for the number of cumulative adopters and theorizes that an innovation goes through a 

period of slow, gradual growth before experiencing a period of relatively dramatic and 

rapid growth; then the innovation's rate of adoption gradually stabilizes and eventually 

declines.  

Most studies of agricultural innovations in the past forty years have confirmed 

many essential elements of Roger’s theories. The characteristics of the innovation have 

been found to matter. For instance, agricultural innovations can be categorized as 

divisible or non-divisible (lumpy). Non-divisible innovations involve dichotomous 

adoption decision, while divisible innovations allow for partial adoption.  

The majority of adoption studies have treated agricultural innovation as non-

divisible though exceptions exist (e.g. Cameron, 1999; Marra et al, 2001a; Zhang et al., 

2002). Data limitations have usually been responsible for such a strong assumption. 
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Adoption behavior and adoption rates in the case of divisible innovations can be very 

different from non-divisible ones. Non-divisible innovations often require lumpy upfront 

investments that can become sunk costs. Such costs imply economies of scale and hence 

a scale bias might be present among adopters. Divisible technologies are typically more 

scale neutral as they require less upfront and lumpy investment. Furthermore, they allow 

for partial adoption and experimentation (or trialability) as well as easier reversal of 

adoption. 

 Similarly, many adoption studies of agricultural innovations have focused on the 

heterogeneity of agricultural populations and their differential propensity to adopt – 

especially in developing countries (Arellanes and David, 2003; Besley and Case , 1996; 

Cameron, 1999;  Godoy et al., 2000; Just and Ziberman, 1983; Smale and Heisey, 1993; 

Thirtle et al., 2003). Education and other human capital variables have frequently been 

used as indicators of population heterogeneity and propensity to adopt (Abidi Ghadim 

and Pannell, 1999; Hubbell et al., 2000; Godoy et al., 2000). A large number of studies 

have also treated informational asymmetries as the key source of heterogeneity in 

agricultural populations and differential adoption behaviors (Leathers and Smale, 2001; 

Marra and Hubbell, 2001; Shampine, 1998). Within this context they have focused 

particularly on the importance of information that increases producer awareness of the 

innovations and their virtues (e.g. extension, other adopters –Bala and Goyal, 1998; 

Ellison and Fudenberg, 1993; Foster and Rosenzweig, 1995; Zhang et al., 2002) and on 

producer attitudes. 

Finally, there have been a number of agricultural diffusion studies that have 

examined the temporal path of aggregate adoption (e.g. McWilliams and Zilberman, 
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1996; Zhang, 2000). Griliches’ classic hybrid corn diffusion study was a picture-perfect 

case of an S-shaped diffusion path, much like that suggested by Roger.  

 Some prior adoption and diffusions studies of agricultural and other innovations 

have particular importance to this study and for that reason I review them in more detail 

below.  

Learning and Innovation Adoption 

 

Learning mechanisms, information, and risk 

Learning and innovation adoption and diffusion are interdependent (Abadi Ghadim, 

1999; Bala, 1998; Cameron, 1999; Ellison & Fudenberg 1993, Feder et all., 1985; Foster 

& Rosenzweig, 1995; Marra et al., 2001ab; McWilliams & Zilberman, 1996; Plourabour 

et al., 1998; Zhang et al., 2002).  

Typical learning mechanisms involve learning by doing (experience), learning 

from neighbors (imitation), and learning from other external sources. Learning by doing 

describes all productivity improvements as users learn how to better utilize an innovation 

over time. Ellison and Fudenberg (1993) argued that economic agents also learn and base 

their adoption decisions on the experience of their neighbors, a process they called 

“social learning”. They assumed that economic agents observed their neighbors’ choices 

and payoffs, and periodically re-evaluated their own adoption decisions. However, the 

circumstances of their neighbors were assumed sufficiently heterogeneous so that 

economic agents would not make the same choice even with full information.  
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Ellison and Fudenberg (1993) constructed mathematically two theoretical models 

of social learning: one in which the same technology was optimal for all agents and 

another in which the new technology was better for some of them. 

The first model, called “homogenous-population model,” assumed that two 

competing technologies were available to economic agents in such a way that some 

fraction of them had the opportunity to revise their choices while others did not have such 

an opportunity and had to continue using whichever technology they had previously used. 

This model began with a “naive-rule of thumb” in which players ignored all historical 

data except those of superior technologies in the previous period. Under these conditions, 

players tended to choose the more popular technology even if profits were lower in 

previous periods (so called “popular weighting”). In the long run, this led agents to adopt 

and stick with better technologies. Presumably, relative popularity can serve as a proxy of 

historical performance. The homogenous-population model predicted the speed of new 

technology adoption was correlated with the extent of payoff difference, and the 

combination of inertia and popularity weighting led to efficient long run behavior.  

The second model, called the “heterogeneous-population model,” attempted to 

answer the question of whether the new technology was adopted by the appropriate 

agents. It was assumed that agents based their adoption decisions on the relative 

performance of the new and old technologies at nearby locations which the authors called 

“within one window width” of their own. This was crucial since Ellison and, Fudenberg 

perceived that agents could not observe outcomes at faraway locations and, when they 

could, the characteristics of remote locations were different enough to be considered 

irrelevant in the agents’ decisions. This window width concept was exogenous in the 
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model and a proxy of the neighbor-influence concept that has been described in various 

adoption studies. The heterogeneous-population model predicted that small window 

widths and high popularity weights caused slow diffusion. 

Various combinations of learning mechanisms have been modeled in previous 

agricultural innovation adoption studies. For instance, learning by doing and learning 

from neighbors have been investigated by Foster and Rosenzweig (1995), 

Kalaitzandonakes and Suntornpithug (2001, 2003), and Tsur et al. (1990). Learning by 

doing has been included in Abadi Ghadim & Pannell (1999), Cameron (1999), and 

Leathers & Smale (1991). Learning from neighbors alone has been included in Bala and 

Goyal (1998), Ellison and Fudenburg (1983), Karshenas et al (1993), Marra et al., 

(2001a).  

Risks and uncertainties are closely related to learning mechanisms in adoption 

studies. Over time, risk and uncertainties are minimized upon accumulation of 

information through the learning process. Bayesian learning (Feder and O’Mara, 1982) or 

ad hoc learning rules are usually employed to take into account the distribution of 

uncertainties. Potential adopters are either assumed risk neutral (Leathers and Smale 

1991; McWilliams and Zilberman, 1996) or risk averse (Just & Zilberman, 1983; Tsur et 

al, 1990). 

Since adopters can gather information from many sources including own 

experience, neighbors, media, and other external sources, the quality of information 

becomes important and variable. Quality of information is assumed to vary across 

sources and along the adoption cycle (Marra, 2001a). Own experience and early 

successful adopters have been found to be responsible for the most useful information 

 19



 

(Foster and Rosenzweig, 1995; Zhang et al., 2002). Fischer, Arnold, and Gibbs (1996) 

have pointed out that the value of any new piece of information is lower when it is 

correlated with those previously obtained.  

 

The Role of Learning on the Adoption of Single and Bundled Innovations 

 

Adoption of potentially interdependent innovations is of interest to this study. Given the 

significance of learning to the adoption literature, I review here some key studies that 

have modeled various learning mechanisms for single innovations and bundles of 

interdependent innovations.    

 

Adoption of Single Innovations 

Abadi Ghadim and Pannell (1999) presented a conceptual framework of individual 

farmers’ decisions on adoption of a single new technology. They modeled the adoption 

decision as a dynamic process spanning several years. Their framework allowed for 

learning by doing and accounted for a farmer’s perceptions, managerial skills, and risk 

preferences.  

This conceptual framework was empirically implemented by Abadi Ghadim in 

2000. His study involved a three-year series of personal interviews with 130 crops 

producers in Western Australia where he collected actual and planned adoption behavior 

for a new crop, chickpeas. He used three limited dependent variable models, Tobit, 

Probit, and Heckman, for his empirical estimation and concluded that risk aversion and 

the relative riskiness of the innovation strongly impacted the adoption decision.  
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Marra, Pannell, and Abadi Ghadim (2001) revisited the influence of risk, 

uncertainties, and learning on the adoption of agricultural technologies. They concluded 

that to effectively understand an adoption decision, it was important to explicitly account 

for the farmers’ perceptions about the riskiness of a technology, farmers’ attitudes to risk, 

the role of experimentation and learning in reducing the perceived risk, and the option 

value of delaying adoption.  

Cameron (1999) also studied the adoption decisions of farmers for high yielding 

seeds. Cameron measured the impact of learning by doing as the average profit 

differential between the new and the old seed experienced by the farmer and found this 

index to fit the data better than the commonly used learning by doing proxy of lagged 

profit differential. Cameron did not incorporate learning from others in his study due to 

data limitations. Cameron suggested then that any model that depends on learning by 

doing alone and does not incorporate learning from others has difficulties explaining why 

some farmers are late adopters. Cameron then pointed to the need to control for 

unobserved producer heterogeneity. Unobserved heterogeneity may include farm 

characteristics (e.g. land quality), unobserved farmer skills, initial beliefs of crop 

profitability, and so on. The author used fixed-effect dummy variables along with the 

method of instrumental variables to control for unobserved household heterogeneity and 

removed bias. Using panel data in a dynamic learning process proved to be superior to 

that of cross sectional data, which may suffer from omitted variable bias. 

Foster and Rosenzweig (1995) investigated the impacts of learning by doing and 

learning from neighbors in the adoption of agricultural innovations using a modified 

target-input model. They used 4,118 surveyed household-level panel data (within 250 
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villages) from national representative samples of rural India on high-yielding-seed 

varieties (HYVs) between 1968 and 1971. Their own HYV experience variables included 

lagged cumulative HYV use by year for each farmer. The neighbor HYV experience 

variables included the lagged sum of hectares cultivated under HYV averaged over all 

sampled farmers in each village, whether excluding the respondent farmer. Several 

empirical models were estimated with and without HYV including OLS, fixed effect, 

standard instrumental variables fixed-effects, nonlinear instrumental variables fixed-

effects, and constrained instrumental variable fixed effects.  

The explanatory variables included farm equipment, farm animals, and irrigation 

assets of both the potential adopters and their neighbors.  Foster and Rosenzweig (1995) 

concluded the imperfect knowledge about how to use new varieties was a significant 

barrier to adoption; however, as experience increased, the barrier diminished. Moreover, 

farmers with experienced neighbors were more profitable than those with inexperienced 

ones. Finally, farmers tended to free ride on the learning of others to minimize their 

losses by relying on their neighbors’ knowledge to gain the relevant experience and then 

increase the use of new technology when it became more profitable. 

Marra, Hubbell, and Carlson (2001) investigated the influence of information 

quality and learning, along with other variables of farm and farmer characteristics, on 

biotech cotton adoption in the Southeast US. Their study’s arguments were based upon 

effective information hypothesis and popular weighting hypothesis. Marra et al., argued 

that farmers received information about the innovation from other users. They assumed 

that since neighbors lived close by and tended to have similar farm characteristics, the 

information about the innovation would tend to flow easier and be more relevant to them 
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than others who live farther. However, early in the innovation cycle, the numbers of 

nearby adopters were low, so farmers would tend to gather more information from a 

larger group of users who lived farther away. In each stage of the adoption process, 

farmers weighted their adoption decision based on several sources of information, which 

differed in quality and reliability. Farmers learned to evaluate the performance of 

conventional and biotech cotton from both their own experience (learning by doing) and 

that of their neighbors, or other adopters, who were located further away, if their 

experiences could be gathered (learning from others). Mean differences in yields and 

profits between conventional and Bt cotton varieties were used to operationalize their 

hypotheses.  

Their empirical research was based on the data collected in 1996 and included 

farmers from North Carolina, South Carolina, Georgia, and Alabama. Since the 

dependent variable involves binary choice (adopt/not adopt in 1996 and 1997), a probit 

model was used to estimate the influence of differences in perceived profitability, 

abilities, farm and farmer characteristics.  

Marra et al., concluded that farm size and human capital had a significant positive 

effect on propensity to adopt; farmer education was positively related to the propensity to 

adopt; cotton growing experience did not have a significant impact on adoption 

propensity; own experience with the new technology, when available, had the most 

weight in the decision to adopt, otherwise county and state averages of yields and 

popularity (% state and % county biotech acres) were most important. 

  

 

 23



 

Sequential Adoption of Innovations 

Leathers and Smale (1991) used a dynamic Bayesian model to explain sequential 

adoption when farmers were risk neutral. Farmers were assumed to maximize expected 

utility of income, which was a function of a decision set of technologies whose returns 

were conditional on the validity of information provided through extension reports. At a 

given time, although expected profits may be maximized by adopting the innovation 

package, expected utility could be maximized by adopting one or more components.  

Their findings indicated that farmers, with similar characteristics but different 

prior judgments about the reliability of the extension reports, could choose to adopt 

different components of the innovation package. Accordingly, their model explained why 

farmers facing the same economic and agronomic conditions chose different adoption 

paths. Since uncertainties were reduced through experience, farmers could choose to 

adopt a component of the package rather than the complete package.  

 

Adoption of Innovation Bundles 

Feder (1982) examined a case where farmers encountered the choice between divisible 

technologies (crop varieties) and a lumpy technology requiring an upfront investment (a 

tube well). The potential yields of the modern crop varieties were higher if both 

technologies were adopted together. The adoption of lumpy technology also influenced 

the perceived risk associated with divisible technologies. Farmers were assumed to 

maximize their expected utility through both a dichotomous choice of whether lumpy 

technology should be adopted or not, and a proportional choice of intensity level for the 

divisible technology. The model implied that initially larger farms adopted both 
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technologies whereas smaller farms adopted the divisible technologies to a limited extent. 

Smaller farms, however, would increase adoption of divisible technologies over time and 

eventually, many of them adopted the lumpy technology. This behavior can be explained 

by the fact that the optimal farm size threshold declined as uncertainty from perceived 

output variability decreased; over time perceived output variance associated with new 

divisible technology could decline as a result of learning by doing or better dissemination 

of information. 

Dorfman (1996) studied adoption of multiple technologies using a multinomial 

probit (MNP) model that evaluated 625 apple growers’ adoption of four technological 

bundles. The bundles involved combinations of two technologies: integrated pest 

management (IPM) and improved irrigation. Hence, four technology bundles were 

considered: no new technology, IPM only, improved irrigation only, both IPM and 

improved irrigation. The study utilized Fruit and Nut Chemical Use Survey data 

conducted by National Agricultural Statistics Service (NASS), and examined the 

influence of the operators’ years of experience, amount of labor used in production, off-

farm labor hours, operators’ education level, acres planted, average age of the trees, 

planning density, and percentage of harvest sold for the fresh market on farmers’ 

adoption decisions. Due to data limitations, price variables could not be included in the 

empirical adoption model. Estimation was done in a Bayesian framework, employing 

Gibbs sampling to circumvent past difficulties normally encountered in maximum 

likelihood estimation of MNP model. The results showed that farm size did not have a 

clear impact on adoption as anticipated. Off-farm labor was found to have a significant 

impact, suggesting the potential relevance of labor constraints and desirability of labor 
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substitutability in the adoption process. An interesting insight from the study pointed to 

the fact that the negative covariance between adoptions of integrated pest management 

and improved irrigation implied crossed adoptions were often not optimal. 

 

Heterogeneity among Adopters 

 

While inherent economic advantages and learning are key to explaining the extent and 

rate of technology adoption, most studies have acknowledged that heterogeneity among 

firms and farm operators can often explain why all farmers may not adopt an innovation 

in the either short or long run (Fernandez-Cornejo & McBride, 2002). A number of 

characteristic differences among potential adopters have been modeled in various studies. 

Frequently, proxies for farm and farmer characteristics include farm size, yield, 

education, land tenure, access to information and credit, and location specific factors (e.g. 

cropping systems, climate, institutions, etc.).  

Firm size is probably the most popular explanatory variable in adoption studies 

(Feder et al., 1985). Firm size has showed significance across a broad range of studies, 

particularly those with relatively high sunk costs. Hence, many innovations are scale 

biased as larger firms have demonstrated an advantage to acquiring more information or 

enjoying larger static benefits (Feder and Scale, 1984, McWilliams & Zilberman, 1996). 

Since education encourages firms to better process complex information, as does size, 

education and firm size have typically had positive relationships and have contributed to 

scale bias. 
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Feder and Umali (1993) concluded that factors such as farm size, credit, land 

tenure, and education may only be temporarily relevant. They empirically found that such 

factors were critical determinants in the initial phases of adoption of Green Revolution 

technologies but faded into insignificance in the later stages of the diffusion cycle. 

Other studies have shown that certain technologies, especially divisible ones, are 

scale neutral with regard to both speed of adoption and per hectare benefits. For instance, 

biotech cotton technologies have been found to benefit small and large farmers equally 

(FAO, 2004; Kalaitzandonakes and Suntornpithug, 2003). In fact, Qaim and Zilberman 

(2003) argued that the relative performance of biotech cotton is likely to be greatest when 

used by small farmers in developing countries where severe infestation level and 

ineffective chemical pest control caused considerable yield losses. Their argument has so 

far been supported from studies in Argentina, China, and India.  

 

Innovation Diffusion 

  

When the level of adoption of a specific new technology is aggregated across a given 

population, adoption becomes diffusion. Details on innovation diffusion theories and 

reviews of empirical works can be found in Baptista (1999), Mahajan and Peterson 

(1985), and Rogers (1995). Geographers have added a spatial dimension to innovation 

diffusion process and relevant empirical concepts can be found in Baptista (2000) and 

Gardner et al. (1989). 

 Innovation diffusion is a slow process. Four different types of economic theories 

explain such delays and observed patterns of innovation diffusion (Baptista, 2000; 
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Choirat & Seri, 2003; Colombo & Mosconi, 1995; Karshenas & Stoneman, 1993). One of 

these theories relies on information asymmetries, whereas, the other three assume perfect 

information regarding the existence and nature of new technologies.   

“Epidemic” effects are closely related to endogenous learning and describe a 

process of auto-propagation of the information on an innovation and transmission 

through contact among potential adopters. Hence, epidemic theories of diffusion present 

a disequilibrium approach caused by information asymmetries between potential users.  

 So called “rank” (or heterogeneity) effects have been used to explain the delay in 

adoption and diffusion. Given the heterogeneity of firms, differences in various 

characteristics can affect adoption probability, independently of behavior. Potential users 

of a new technology differ from each other in some important dimensions (inherent 

characteristics such as firm size). As a result of such heterogeneity, some firms obtain a 

greater return from the new technology than others, and consequently, adopt faster. 

 “Stock” effects have originated from game-theoretic models of adoption and 

diffusion. They typically hypothesize that the benefit to the marginal adopter from 

adoption declines as the number of previous adopters increases. Thus, for a given cost of 

adoption, there is a point in time when the number of total adopters makes adoption for 

the remaining firms unprofitable. This occurs even if the potential adopters are perfectly 

homogeneous. So, while epidemic and rank effects are based on the presence of 

differences among firms, stock effects can emerge in a perfectly homogenous 

environment. For instance, given Cournot oligopolistic behavior, the adoption of the new 

technology can reduce production costs and induce an increase in the optimal firm size, 

thereby leading to the reduction in the profitability for the future adopters. 
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 “Order” effects are assumed to emerge from a first-mover advantage enjoyed by 

early adopters (e.g. because of the possibility of preemption on resources critical for the 

use of the technology such as prime geographic site or access to a pool of skilled labor). 

For a given cost of acquisition, it may be profitable only for some early adopters to adopt. 

The cost of acquisition was assumed to fall over time, so the number of adopters can rise. 

While both stock and order effects imply that the profitability of adoption declines as the 

number of adopter increases, stock effects imply an equilibrium number of adopters and 

lower profitability of adoption, order effects emphasize anticipation of subsequent 

adoptions; thus, order effects are found to have positive effects on adoption. This 

distinction determined the choice of variables entering to capture stock and order effects 

in the model.  

Empirical applications of diffusion models have mostly focused on disequilibrium 

epidemic models. For instance, Bass’ work was an early popular application in that it has 

been widely replicated in marketing and other fields. Bass’ model has its origin in 

epidemiology and its generic form is given by: 
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where N(t) is the cumulative number of adopters at time t, m is the size of the potential 

adopters, p is the coefficient of innovation, and q is the coefficient of imitation. Other 

similar epidemic models of innovation diffusion also exist.  

Epidemic modeling considers diffusion as a result of direct contact among 

adopters and potential ones. Information about the innovation is thought to spread like a 

disease. In their simplest form, epidemic models assume that a potential adopter will 

adopt the innovation upon learning of its existence and that information on the innovation 
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is spread through direct contact. Through time, more potential adopters will utilize the 

innovation and the proportion of users in the industry will increase. Through the use of 

basic aggregate data on adopters at any given time t, various parameters of interest such 

as the speed of diffusion, the potential population of adopters and others can be estimated 

through a simple model and integration of a basic differential equation. The ability to 

generate standard S-shape diffusion curves has added to their attraction over the years.  

Although use of such models in estimating and testing the existence of an S-shape 

curve has been extensive, such models are limited in some significant ways. First, 

epidemic models do not allow for dis-adoption. Second, they do not explain the adoption 

decision process and when might information be sufficient to induce adoption. Third, 

they do not provide for any other mechanisms of learning (beyond contact). In this way, 

they ignore other information channels (e.g. mass media) and active information 

gathering by potential adopters. A number of other limitations have also been pointed out 

including its embedded assumptions of homogeneous potential adopters and fixed 

innovation profits. Homogeneity of potential adopters and constant profitability from 

adoption has been broadly rejected in empirical adoption studies. In addition to these 

limiting assumptions, the standard epidemic diffusion model cannot explain why some 

firms adopt earlier than others. 

So while epidemic models explicitly account for the role of information and 

learning in diffusion, they are naïve in their approach. Various studies have tried to 

correct the deficiencies discussed above.  For example, the process of decision making 

under uncertainty has been further elaborated using Bayesian theory. Similarly, 

equilibrium models have been developed focusing on the decision process of the 
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individual firms while assuming that information and knowledge of the innovation in the 

economy are unevenly distributed. Heterogeneity of potential adopters results in 

differences in adoption timing. Other extensions have accounted for the fact that the 

innovation might improve over time. The assumption of free information has also been 

relaxed to assume that information is specific, rare, and costly.  

Innovation diffusion paths have also been produced through modeling in game 

theory as strategic interaction. This approach shows that even under very simple 

assumptions (identical adopters and no uncertainties), a firm may not adopt  an 

innovation instantly, but sequentially. Nash equilibrium sometimes emerges when each 

firm adopts at different dates, even though all firms share the same perfect information. 

Game theoretic framework can also be extended to include the existence of learning and 

informational externalities since the game itself allows players to observe other players’ 

payoff and react in such a way that takes into account others actions. While all such 

advances through equilibrium models offer useful insights, equilibrium models have been 

rarely empirically implemented.  

Feder and Umali (1993) suggested that adoption and diffusion studies needed to 

be linked for better understanding of diffusion patterns. McWilliams and Zilberman 

(1996) attempted to fill the gap by bridging the insights from an adoption and a diffusion 

model for a non-divisible innovation (computer). McWilliams and Zilberman (1996) 

conducted their research in two steps: in the first step they test the effect of firm size and 

education on the time length of computer adoption; in the second step they used the 

estimation in the first step as an instrument to derive an industry diffusion path.  
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While diffusion studies are typically ex-post in nature, their approach predicted 

ex-ante, the diffusion path when only 26 percent of the sample had adopted. Learning by 

doing was not possible to quantify and test in the first step. However, in the second step, 

the farmer’s education as well as the interaction between the farmer’s time of use 

(estimated from the first step) and education was shown to influence the number of 

computer applications a farmer uses—serving as a proxy for the farmers’ intensity of 

technology use. Since logit and probit evaluate the probability of a firm having adopted 

an innovation or new technology by a given time, the empirical models relying on logit 

and probit did not explicitly address the effect of variables on the speed of adoption. 

Tobit analysis was shown to provide superior results to the traditional logit and probit 

analysis due to the increased information provided by the time of adoption data since 

tobit took into account the heterogeneity of adoption time among those who had adopted. 

By forecasting who would adopt and when, the authors derived a diffusion that was 

theoretically motivated by the underlying adoption structure and analysis. 

  

Spatial diffusion 

Another key limitation of aggregate models of innovation diffusion is that they are 

exclusively temporal in nature and have largely ignored the spatial neighborhood effect in 

the diffusion process.  

Indeed, Marra, Hubbell, and Carlson (2001), Ellison and Fudenberg (1993) and 

other adoption studies have pointed to the relevance of various mechanisms of learning, 

including the neighborhood effect.  If a new technology is “popular” within the decision 

makers’ “window” of relevant potential adopters, then they are more likely to adopt it. 
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Empirically, neighborhood effects on adoption have been found to be significant 

(Gardner, 1989; Thrall, 1988). Diffusion models should be able to account and test for 

such effects. 

A parallel concept of learning gives rise to "spatial diffusion" models which focus 

on the effects of space as a major influence (Onsrud, 1991). In the area of spatial 

diffusion, the pioneer work belongs to Hägerstrand (1967, 1981). He initially developed a 

mathematical model to describe how an innovation should be expected to diffuse over 

space and time. Within the context of this model, he determined that the probability of 

contact was a negative function of distance4 and he derived various patterns of innovation 

through simulation and other empirical analysis.  His model has been utilized and 

modified to suit various innovations (e.g. Baptista, 1999). 

Hägerstrand’s classical diffusion model took into account time and space and as 

well as the contact between early adopters and the susceptible population. His model 

divided time and space into discrete periods such as years and cell, respectively. The 

Mean Information Field (MIF) was created to describe the probability of contact at 

different distances and directions. Since the MIF involved spatial proximity, physical 

barriers such as lake and mountains affected MIF. The potential adopters are assumed to 

receive a number of contacts before adoption took place. The process was repeated and 

continued for several periods so that areas with larger numbers of possible adopters 

tended to have more adopters and contactors. Details of how to create MIF can be found 

in Morrill (1988, p. 26-29).  

                                                 
4 The proxy of spatial proximity of this dissertation utilizes this concept where the further the sources of 
information from the adoption location, the less probability of contact, then the less information 
transmission to the potential adopters’ location.  
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Mahajan and Peterson (1985) paralleled Hägerstrand’s view of diffusion as the 

information disseminated through mass media and interpersonal contact. Three empirical 

regularities associated with Hägerstrand’s findings were an S-shaped curve, a hierarchical 

effect (larger center would expect to be diffused prior to smaller center), and a 

neighborhood effect (wavelike fashion outward from an urban center to neighborhood 

rather than remote area). In adoption studies, the neighborhood effect is similar to 

learning from others. Neighborhood effect in adoption studies is mainly used just for an 

explanatory variable to reflect learning process—not necessarily reflected as the wavelike 

phenomena discovered by Hägerstrand. Diffusion models in marketing and other 

empirical research have generally focused on predicting the cumulative number of 

adopters, and examined the influence of the firm size, imitation effects, and 

communication via alternative channels (mass media and interpersonal communications). 

Interpersonal communication including non-verbal observations, has been found to be an 

important predictor of the speed and shape of the S-shaped pattern of the diffusion 

process in social systems (Mahajan et al., 2000).  

Morrill (1988) concluded two key elements of spatial diffusion were phenomenon 

and spread. Phenomenon can be material (human settlement) or immaterial (idea or 

behavior), and must have a real place of origin. Examples of material phenomena were 

High Yield Varieties seed, while examples of immaterial phenomena were religious 

believe. Phenomenon must be transferable. Agents can be inanimate (wind, water, and 

highway) or animate (animals and people).  

  Morrill suggested that the nature of “spread” or movement from an “origin” 

implied a spatial continuity.  The idea of spatial continuity, in turn, was captured in the 
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statistical concept of spatial autocorrelation, which implies that what happens at one 

place is in part a function of what has already happened at nearby places.  

Empirical applications of spatial diffusion models for agricultural innovations are 

indeed very few. Zhang et al. (2002) investigated factors influencing rate of diffusion of 

high-yielding varieties (HYVs). A panel data set covering 25 years, starting in 1970, for 

280 districts in rural India was used. Their study demonstrated that early successful 

adopters tend to have a larger neighborhood effect than early unsuccessful adopters.  

In the Zhang et al. study, the decision variable was the percentage of total planted 

area with HYVs of rice, wheat, and maize taking values between 0 and 1. Zhang et al. 

assumed that farmers grew only one crop on a unit of land and there were two 

technologies available for farmers: traditional varieties and superior, but riskier, HYVs.  

A Tobit model was used to explain the diffusion pattern of HYVs. In order to 

empirically calculate appropriate neighboring factors, they tested four different 

specifications of the weight of neighboring proxies. They employed geographic 

information systems (GIS) to calculate different proxy indicators of the neighborhood 

effects. The first proxy used the average shares of HYV adoption among neighboring 

region, a common practice in other similar studies. A second proxy assigned nonzero 

equal weight to the regions where higher yields were present and zero to the regions 

where the lower yields existed. A third assigned a weight to the highest yield among 

neighboring regions, and zero to the rest of the neighboring regions. In addition to 

neighboring effects, lagged dependent variables representing dynamic learning effects, 

human capital, and physical infrastructure were also included in the Tobit model. They 

used logarithm of literacy level (education) as a proxy for human capital, the portion of 
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irrigated area and the road density (total length divided by the total geographic area) as 

the proxies of physical infrastructure.  

 Results confirmed their hypotheses that early successful adoptions were positively 

statistically significant. Education and irrigation also played positive and significant 

roles. They also compared empirical models with and without lagged dependent 

variables. The findings showed that models with lagged dependent variable served as a 

short-run relationship, whereas a model without lagged dependent variable represented a 

long-run relationship.  Interestingly, a model without lagged dependent variable had 

much higher coefficient estimates in other independent variables, particularly in 

neighboring effect. Furthermore, the road density, which was not significant in model 

with lagged dependent variable, turned to be statistically significant in the model without 

lagged dependent variable. It was then concluded that infrastructure had significant 

impacts on the long-run diffusion model. 

 

Implications for Modeling 
 

 

Risk, uncertainty and learning play a number of distinct roles in the process of adopting a 

new technology. Sunk costs (irreversibility of the investment), operational costs, and 

uncertain returns largely vary according to types of new technology. Typically, divisible 

innovation allows farmers to proportionally adopt without large sunk costs and is 

irreversible. Many agricultural innovations were available to farmers as a bundle 

(fertilizer, pesticide, and high yield varieties), and can be adopted as a whole or in 

sequential fashion. However, some agricultural innovation such as new irrigation systems 
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may be associated with considerable sunk costs, making it difficult to revert back to the 

former technology. Risk also varies proportionally according to the investment and 

irreversibility.  

Previous studies on the economics of technology adoption under uncertainty have 

taken at least two paths: (1) investment in a durable asset with an uncertain payoff, and 

(2) relationship between the riskiness of the technology and the utility of a risk-averse 

decision maker. Net present value approaches and option value approaches are used to 

estimate future returns of a new technology. The option value approach can be used to 

incorporate the delay to adopt in order to observe earlier adopters’ experience with the 

technology. Due to the difficulties to observe and measure risk and uncertainties, very 

few previous empirical studies were able to use direct interview techniques to investigate 

the effect of farmers’ risk attitude and perception of riskiness on their decisions.  

Learning is the mechanism of potential adopters in updating their information and 

knowledge toward the existence (awareness) of the technology, the ability to implement 

(skill development), and outcomes of new technology along with its costs and benefits. 

Accordingly, updated information through time reduces the risk associated with new 

innovation. Potential adopters can obtain information from various channels, depending 

upon the directions of information flow: active information—potential adopters seek for 

information5, or passive information—information finds potential adopters without fees.  

Typically, learning mechanisms consist of learning by doing, learning from 

others, and learning from external sources. Experience is accumulated through learning 

                                                 
5 Experience (self-learning or learning by doing) can be considered a subset of active information, and in 
this case, active information incurs extra costs (or investments). Costs can be derived from investing in the 
new technology as learning by doing process or purchasing information. Unlike self-learning, imitation is 
active information without extra costs, and derived from learning from others or neighborhood effects 
(Ellison and Fudenberg 1993.)   
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by doing. Learning from others typically involves neighbors who are located nearby and 

share similar characteristics. External sources of learning include university extension 

and other information brokers such as marketing agents and media sources.  

Potential adopters can gain knowledge on new technologies directly from the 

same exact technologies used by others or indirectly from the use of similar technologies. 

With many sources and large amounts of information, the quality of information becomes 

critical to the adoption decision.  The quality of information received by potential 

adopters varies with the sources of information, the stage of diffusion process when the 

information was shared, prior information of users, and the current adoption levels of 

users. In addition, optimal learning from neighbors usually occurs when it is received 

from successful early adopters rather than unsuccessful ones. 

Innovations can be adopted individually, sequentially, or as a bundle. Through 

time, potential adopters may find innovation useful and decide to continue or increase 

adoption rates; on the other hand, adopters may not find innovation beneficial and decide 

to discontinue its use and dis-adopt.   

To summarize, technological adoption and diffusion theories and methods are 

revisited in this study in the context of adoption and diffusion of US cotton 

biotechnologies. Learning by doing and learning from others are considered significant 

influences of adoption among US cotton farmers.  

The population of the potential adopters is not considered homogeneous. Farms 

are assumed to differ in their characteristics (e.g. size, agronomic practices, and use of 

other technologies like irrigation). Farm location can also point to other significant 

differences among farms that can influence their behavior towards innovation (e.g. 
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differential pest pressures). Farm heterogeneity is assumed to explain, in part, differential 

adoption and diffusion levels in cotton biotechnologies. 

US cotton farmers are assumed to form expectations about the potential gains 

from biotech cotton technologies and any synergies with other agronomic practices (e.g. 

minimum tillage practices). Perceived gains are considered significant influences of 

adoption among US cotton farmers.  

The significance of such factors in explaining observed adoption levels of a 

representative sample of farmers and the population of adopters over several years is 

explicitly tested. 
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CHAPTER 3 

THEORETICAL FRAMEWORK 

 

 

 In this chapter, I develop a theoretical model that examines the adoption decision 

of a U.S. cotton farmer in the presence of multiple new biotechnology varieties and a 

traditional one. For this, I extend an optimal control model of technology adoption 

developed by Kalaitzandonakes and Boggess, 1993 (KB model). The KB model took into 

account the dynamic process of active and passive learning6, and adjustment costs in a 

competitive market. The KB model analyzed two divisible technologies (a traditional and 

a new technology) and allowed for partial adoption. Specifically, it assumed that the firm 

allocates a quasi fixed factor7 (land) between the traditional and the new technology. The 

profitability of the new technology is considered uncertain. The theoretical model 

developed here expands the KB model to incorporate multiple new technologies that 

compete with a traditional technology for the quasi fixed factor. It also allows for cross- 

learning. The firm is assumed to solve a two-step optimization problem. 

1st step:  

The Firm allocates the quasi fixed factor Z among 

• A traditional divisible technology (A) ( ) 1z

• A new divisible technology (B) ( ) 2z

• A new divisible technology (C) ( ) 3z

                                                 
6 Accumulation of information and learning are often incorporated to allow the firms to update their 
perceptions on the profitability and/or the riskiness of the new technology over time. 
7 Factors of production that are in a fixed amount, independent of the output of the firm, in the short run. 
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2nd step: 

 The Firm determines the variable input mix conditionally on the allocation of the 

quasi fixed factor Z. In other words, the firm decides the variable input mix by 

maximizing short run profits. 

),,( 111 zwpππ =  

222222 ),,(),,( ezwpgzwp += ππ  

333333 ),,(),,( ezwpgzwp +=ππ  

Where p & w are the output and input prices, respectively. P and w are considered 

exogenous to the firm. The traditional technology is assumed deterministic8 whereas the 

new technologies are assumed stochastic. However, the perception of riskiness 

diminishes over time, so g is assumed concave in z with g(0)=0 and e~N(0,v) denoting 

uncertainties in returns. 

The total available land is z and can be allocated to any of these technologies, 

individually or in combination. 

321 zzzz ++=  

For a given set of p and w, profits can be expressed as9: 

3333322222321 )()()()()( ezgzezgzzzz ++++−−= ππππ  

Thus, I assume that innovation rents are normally distributed with 

Mean:    )()()( 3322321 zzzzz ππππ ++−−=  

                                                 
8 Presumably farmers have been planted traditional varieties for a numbers of years and assumed to be able 
to estimate their profit using traditional cotton seeds. 
9 To set up the problem with more than one new technology, all new technologies can be rewritten as: 

∑
=

+=
n

i
iiiiii ezwpgzwp

2
),,(),,(ππ
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Variance:   33
2

322
2

2 )()( vzgvzgvx +=

Also, I assume that the risk preferences of the firm can be adequately represented by a 

negative exponential utility function: 

)exp()( θππ −=U  

In this way, the optimal allocation of the fixed factor between the three alternative 

technologies could be determined within the typical Arrow-Pratt Mean-Variance 

framework. The Maximum Expected Utility within a single period then is given by: 

Max   xvR
2
θπ −=  

or 

Max  33
2

322
2

23322321 )(
2

)(
2

)()()( vzgvzgzzzzzR θθπππ −−++−−=  

where θ  is the Arrow-Pratt risk aversion coefficient. Hence, the levels of and  that 

maximize R will also maximize 

2z 3z

)(πU . 

There are at least three reasons that the firm might extend the adoption of a 

divisible innovation over several periods, including short run capital availability 

constraints, adjustment costs, and learning. 

The firm is assumed to maximize the present value of a stream of expected 

utilities by choosing the temporal path of  and  subject to the fixed factor 

availability constraint. 

)(2 tZ )(3 tZ

Assumptions:  

• The stock of knowledge with respect to the profit of a new technology increases 

with rate of adoption through learning. 
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• As the stock of knowledge increases, the perceived riskiness in the return of a 

new technology decreases over time through  

o Learning by doing (experience) and investment. 

 Farmers can invest in technology B today and expect to gain 

experience on its profitability through learning by doing in the 

following periods. 

 Farmers can also invest in similar technology C today and expect 

to gain some experience on the profitability of B (though less than 

if they invested in A directly); hence learning through similar 

technologies is assumed. 

o Passive learning (from external sources & imitation from others & 

neighbors) without investment 

 Farmers expect to gain more information regarding the new 

technologies as time goes by. 

• Adoption process entails costs of adjustment 

 

Based on the above assumptions, the producer’s adoption problem can be formally stated 

as 

( ) ( ) ( )

( ) ( ) dt

tztzCtztzC

tvtzgtvtzg

tztztztzz

eMax
T rt

zz

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−

−−

++−−

••

−∫

)(),()(),(

)()(
2

)()(
2

)()()()(

333222

33
2

322
2

2

3322321

0, 32

θθ
πππ

  

Subject to 
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⎟
⎠
⎞

⎜
⎝
⎛=

•••

ttztztzftv ),(),(),()( 3222   [temporal change in perceived riskiness of new  

                                         technology (B)] 

⎟
⎠
⎞

⎜
⎝
⎛=

•••

ttztztzftv ),(),(),()( 2333    [temporal change in perceived riskiness of new  

        technology (C)] 

032 )0()0( vvv ==       at the beginning period t=0, risks associated with technology  

                                         B&C are assumed equal to v0 

0)0()0( 32 == zz       at the beginning t=0, none of the quasi fixed factor (land) is  

                                         allocated to either new technology  

zz ≤≤ 20   adjustment costs are incurred only for a positive adoption of z2 

zz ≤≤ 30   adjustment costs are incurred only for a positive adoption of z3 

Where:  

•  denotes that future periods are discounted at rate r rte−

•  &  are the stocks of technologies B&C, respectively, at time t  )(2 tZ )(3 tZ

•  &  denote the rates of adoption for B&C, respectively )(2 tZ
•

)(3 tZ
•

• t is incorporated into the equation of motion to imply that additional information 

becomes available from external sources to users through passive learning 

(learning from others). The longer the period, the more information is available to 

the firm. 

• C(•) denotes the disutility resulting from costs of adjustment and is assumed to be 

increasing at an increasing rate in  and a decreasing rate in z. 
•

z

 44



 

In order to test whether the assumed learning mechanisms influence the rate or speed of 

adoption, specific functional forms of 1π , 2π , 3π , , , f , ,  much like those 

assumed in the KB model: 

2g 3g 2C 3C

1π , 2π , 3π  are assumed quadratic and weakly separable in z.  

( )2
1

22 )(tzg ⋅= δ  implies that the uncertainty associated with the innovation rent of  

   technology B is increasing at a decreasing rate, 

( )2
1

33 )(tzg ⋅= δ  implies that the uncertainty associated with the innovation rent of  

  technology C is increasing at a decreasing rate, 

)(
2

2

22 tzkC
•

=     the adjustment cost of technology B is proportional to Stoneman’s  

                         adjustment cost, and 

)(
2

2

33 tzkC
•

=     the adjustment cost of technology C is proportional to Stoneman’s  

                         adjustment cost. 

 

Hence, it is assumed that the rate of change in the variance of the innovation rents 

decreases proportionally as the rate of adoption increases. Given these assumptions and 

suppressing the time argument for simplicity, the problem may be stated in calculus of 

variation as 
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∫
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−−

⋅⋅−⋅⋅−

+++

+++

−−+−−+

••

−T rt

zz
dt

zkzk

vzvz

zz

zz

zzzzzz

eMax
0

2

3

2

2

3322

2
32310

2
22210

2
3223210

,

22

22

)()(

)()(

)()(

32

δθδθ
γγγ

βββ

ααα

 

Subject to: 

•••

+= 34222 zzv ηη  

•••

+= 25333 zzv ηη  

032 )0()0( vvv ==  

0)0()0( 32 == zz  

zz ≤≤ 20  

zz ≤≤ 30  

With 0,0,0,0,0,0,0,0 212121 >><><><> δθγγββαα , 02 <η , 03 <η , 04 <η ,  

05 <η , 1
4

2 >
η
η

 and 1
5

3 >
η
η

 (the last two assumptions emphasize that more weight is 

placed on learning by doing through the use of the exact technology than through use of a 

similar technology). 

The solution of the above problem can be derived within the framework of 

calculus of variation or of optimal control. In either case, the resulting optimal adoption 

paths ( , ) should be the same. )(2 tz∗ )(3 tz∗
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The problem is converted into a standard optimal control form by defining 

 and . The  and  are considered the control 

(instruments) and , , , and  the state variables. Hence, the firm’s 

optimization probably becomes: 

)()( 22 tztu
•

= )()( 33 tztu
•

= )(2 tu )(3 tu

)(2 tz )(3 tz )(2 tv )(3 tv
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,

22
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)()(

2

32

δθδθ
γγγ

βββ
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Where: 

2
21000 zz αααα ++=  

z212211 2αααα −−==  

Subject to 

22 uz =
•

 

33 uz =
•

 

34222 uuv ηη +=
•

 

25333 uuv ηη +=
•

 

032 )0()0( vvv ==  

0)0()0( 32 == zz  
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zz ≤≤ 20  

zz ≤≤ 30  

 

The (discounted) Hamiltonian is then given by 
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 From the discounted Hamiltonian to the current Hamiltonian, I define the current 

value multiplier )(tµ  as: 

),()()()( tettet i
rt

ii
rt

i µλλµ −=⇔=  

And, through it, the current value Hamiltonian is  
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Applying the Maximum Principle I obtain 
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(H.1) 

(H.2) 

(H.3) 

(H.4) 

And the conditions of the control variables are: 

0
2

=
∂
∂
u
H  ⇔ 0552422

2

=+++−=
∂
∂ ηµηµµku

u
H c

 (H.5) 

(H.6) 0
3

=
∂
∂
u
H  ⇔ 0443533

3

=+++−=
∂
∂ ηµηµµku

u
H c

 

Then the conditions of the states are: 

213333222211122
2

2
2

)()()( vzzttr
z
Ht

z
H c

θαααµµλ −++=−=
∂
∂

⇔−=
∂
∂ ••

 

Thus, )()( 222133332222111
2

trtvzz
z
H c

µµθααα −=+−−−=
∂
∂

−
•

 (H.7) 

323666255544433
3

3
3

)()()( vzzttr
z
Ht

z
H c

θαααµµλ −++=−=
∂
∂

⇔−=
∂
∂ ••

 

Thus, )()( 333236662555444
3

trtvzz
z
H c

µµθααα −=+−−−=
∂
∂

−
•

 (H.8) 

244
2

4
2 2

)()()( zttr
v
Ht

v
H c

⋅−=−=
∂
∂

⇔−=
∂
∂ ••

δθµµλ  

Thus, )()( 4421
2

trtz
v
H c

µµθ −==
∂
∂

−
•

 (H.9) 
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355
3

5
3 2

)()()( zttr
v
Ht

v
H c

⋅−=−=
∂
∂

⇔−=
∂
∂ ••

δθµµλ  

Thus, )()( 5532
3

trtz
v
H c

µµθ −==
∂
∂

−
•

 (H.10) 

where: 

111111 βαα +=  

)(222 2222222 βαβαα +=+=  

2555333 2ααα ==  

122444 γαα +=  

2333555 2ααα ==  

)(222 2222666 γαγαα +=+=  

δθθθ
221 ==  

By convention, 111α  and 444α are assumed to be positive and 222α , 333α , 555α , 

and 666α  are assumed negative. These assumptions imply that a transfer of one unit of the 

quasi-fixed factor z from the old technology to either new technology results in 

increasing profits at a decreasing rate. 

 From (H.1) and (H.2) with (H.3), it is implied that . Similarly, 

from (H.1) and (H.2) with (H.4), it is implied that , then 

•••

=+ 23422 vzz ηη

•••

=+ 32533 vzz ηη

)()()( 3422234222 tztztvzzv
••••••

+=⇒+= ηηηη  

∫∫∫ += dt
dt
dzdt

dt
dzdt

dt
dv 3

4
2

2
2 ηη  
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CtztztvCzzv ++=⇒++= )()()( 3422234222 ηηηη  

Now:  

Let t=0,  Czzv ++= )0()0()0( 34222 ηη ;  

Then, ; [since = =0]& [Cv =)0(2 )0(2z )0(3z 02 )0( vv = ] from the boundary conditions 

Thus, 034222 vzzv ++= ηη  (H.11) 

Similarly, 025333 vzzv ++= ηη  (H.12) 

 

A linear system of first-order differential equations is derived as 

01
5

5
4

2
22 =++=

•

µηµηµ
kkk

z                                    (D.E.1) 

By substituting (H.1) into (H.5) 

01
5

3
4

4
33 =++=

•

µ
η

µηµ
kkk

z            (D.E.2) 

By substituting (H.2) into (H.6) 

1362222 ϑϑϑµµ =−−−
•

zzr            (D.E.3) 

        (with 212222 ηθαϑ +−= ; 413336 ηθαϑ +−=  and 011111 vθαϑ +−= ) from substituting 

(H.7) into (H.11) 

3342733 ϑϑϑµµ =−−−
•

zzr            (D.E.4) 

        (with 326664 ηθαϑ +−= ; 525557 ηθαϑ +−=  and 024443 vθαϑ +−= ) from substituting 

(H.8) into (H.12) 

Then, rearranging (H.9)&(H.10), gives 

0)()( 2144 =−−
•

ztrt θµµ            (D.E.5) 
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0)()( 3255 =−−
•

ztrt θµµ            (D.E.6) 

To solve for and , the solutions of , , , and need 

to be solved as a system of equations. Most systems of linear ordinary differential 

equations deal with two variables, which can be solved by a 2X2 matrix that utilizes the 

trace and determinant of matrix to derive real and distinct roots. However, once the 

matrix is of larger dimension, this step becomes complex.  

)(2 tz
∗

)(3 tz
∗

)(2 t
∗

µ )(3 t
∗

µ )(4 t
∗

µ )(5 t
∗

µ

To attempt to solve this 6X6 matrix, some assumptions need to be made. 

Obviously, the 6 differential equations are non-homogenous.10 Instead of solving for the 

                                                 
10 Differential equations (D.E.) are non-homogeneous. Briefly, the solution of a non-homogeneous 

individual linear differential equation
bay

dt
dy

=+
 will consist of two terms: the complementary integral 

and the particular integral . The complementary function  is the general solution of the 

reduced equation, which is the general solution in the homogenous case. The particular integral  is 
simply any particular solution of the complete equation. 

)( cy )( py )( cy

)( py

 The yc is the general solution of the reduced equation in the homogenous case (when b=0), and it 
can be derived as: 

dtady
y

a
dt
dy

y
ay

dt
dy

⋅−=⇒−=⇒=+
110

 

∫∫ ⋅=⋅⇒+−=+⇒⋅−= − 21ln
21ln1 catcy eeeecatcydtady

y  

The general solution of homogeneous case is  where
at

c eAtyy −⋅== )(
12

1

2
cc

c

c

e
e
eA −==

  

The definite solution of homogeneous case is  
at

c eytyy −⋅== )0()(
The yp can be anything including the simplest possible type of solution, the constant (y=k). According to 

bay
dt
dy

=+
, if y=k, 

0=
dt
dy

, then bay = and a
by =

as long as 0≠a . Thus, a
by p =

   ( 0≠a ) 
Finally, 

pc yyty +=
∗

)(
 

at
c eAy −⋅=  
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complete solution (for both homogenous and particular integral terms), reduced solutions 

(for homogenous as complementary function only) can be sought instead. Of interest is to 

examine the direction of the influence of learning from exact and similar technologies on 

the rate of adoption of the new technologies. To do so, the real and distinct root needs to 

be determined upon deriving the homogenous solutions of the non-homogenous system 

of differential equations.11 

 To solve for a system of six differential equations, the system is rearranged and 

follows: 

01
5

5
4

2
22 =++=

•

µηµηµ
kkk

z
                                   (D.E.1) 

01
5

3
4

4
33 =++=

•

µ
η

µηµ
kkk

z
           (D.E.2) 

1362222 ϑϑϑµµ =−−−
•

zzr            (D.E.3) 

        (with 212222 ηθαϑ +−= ; 413336 ηθαϑ +−=  and 011111 vθαϑ +−= ) 

3342733 ϑϑϑµµ =−−−
•

zzr            (D.E.4) 

        (with 326664 ηθαϑ +−= ; 525557 ηθαϑ +−=  and 024443 vθαϑ +−= ) 

0)()( 2144 =−−
•

ztrt θµµ            (D.E.5) 

0)()( 3255 =−−
•

ztrt θµµ            (D.E.6) 

                                                                                                                                                 

a
by p = 0≠a      ( ) 

11 Further research can focus on solving the complete equation since the equilibrium level of adoption 
requires particular integral term to be solved. Once the real and distinct root is determined, it provides the 
direction of the marginal increase in the farmer’s learning on optimal level of adoption. In addition to 
learning the impacts of cost adjustment and risk aversion con adoption can also be determined. 
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To find a non-zero column vector v and scalar λ (which may be 0) such that Av= 

λv (a column vector v is called eigenvector of A, and the scalar λ is called eigenvalue of 

A for v), all the eigenvector and eigenvalues of the following square matrix A need to be 

found: 
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A system of first order linear ordinary differential equation can then be expressed as  
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or in the matrix form 
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 BAXX +=  

where the square matrix A, which is assumed to have an inverse, contains only constants. 

B is function of t. One way to solve the system is to diagonalize the coefficient matrix A 

and hence decouple these equations. 
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Suppose that nλλλ ,...,, 21  and are distinct eigenvalues and associated 

eigenvectors of 

nvvv ,...,, 21

 XAX λ=  
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The augmented matrix for these equations is therefore 
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To process, I assume that all right-hand side values are zero as in the homogenous 

case12. To solve these equations, set the determinant (Det) of this matrix (m), equal to 

zero so that the optimal λs can be derived. Using Mathematica, given 

22 ϑϕ = , 44 ϑϕ = , 66 ϑϕ = , 77 ϑϕ = 13. 

Let’s, 

m =

ijjjjjjjjjjjjjjjjjjjj

-l

k

0 1 ê k 0 h2 ê k h5 ê k
0 -l 0 1 ê k h4 ê k h3 ê k

j2 j6 r - l 0 0 0
j7 j4 0 r - l 0 0
q1 0 0 0 r - l 0
0 q2 0 0 0 r - l

yzzzzzzzzzzzzzzzzzzzz
{  

Determinants of m equals 

                   

1
4k2  

IHr - lL2 I-8k r g2l + 4k2 r2 l2 + 8k g2l2 - 8k2 r l3 + 4k2 l4 -

4g2d qh2 + 2k r d ql h2 - 2k d ql2 h2 + 2k r d ql h3 -

2k d ql2 h3 + d2 q2 h2 h3 - d2 q2 h4 h5 - 8g2h2 q1 +

4k r l h2 q1 - 4k l2 h2 q1 + 2d q h2 h3 q1 - 2d qh4
2 q1 +

4k r l h3 q2 - 4k l2 h3 q2 + 2d q h2 h3 q2 - 2d qh5
2 q2 +

4h2 h3 q1 q2 - 4h4 h5 q1 q2 +

4a2 I4g2 - 4k r l + 4k l2 + 4 b2 - d q h3 + d qh4 + d qh5 +

2h4 q1 - h2 Hd q + 2q1L - 2h3 q2 + 2h5 q2M +

4 b2 H4g2 + 2k l H-r + lL - h3 Hd q + 2q2LLMM  

 Det(m)= 

In order for these equations to have a non-zero solution, set the Det(m) =014. 

Solving yields eigenvalues and eigenvectors of the matrix. When determinants of m 

equals to zero, solving for optimal λs yields six optimal λs 

                                                 
12 Since the right hand side of the augmented matrix is a column of zeros as being assumed in the case of 
homogenous, row operations cannot change this and so there is no need to write it down. 
 
13 for notation differences in Mathematics software purposes. 
14 This method is equivalent to elementary row (column) operations to reduce the matrix to an echelon form 
and the echelon form must have a row of zeros. 
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{{l1Ør},{l2 Ø r}, 

:l Ø -
1

8k2  
 

 

:l

 

 

 3
i
k
jj-4k2 r - -i

k
jj16k4 r2 + 16k2 i

k
jj-4k g2 - 8k a2 - 4k b2 + k d qh2 +

k d q h3 + 2k h2 q1 + 2k h3 q2 -
1
2

,IH8k g2 + 16k a2 + 8k b2 - 2k d q h2 -

2k d q h3 - 4k h2 q1 - 4k h3 q2L2 -

16k2 I16g2a2 + 16g2 b2 + 16a2 b2 - 4g2d q

h2 - 4d qa2 h2 - 4d qa2 h3 - 4d q b2 h3 +

d2 q2 h2 h3 + 4d q a2 h4 + 4d qa2 h5 - d2 q2

h4 h5 - 8g2h2 q1 - 8a2 h2 q1 + 2d q h2 h3
q1 + 8a2 h4 q1 - 2d qh4

2 q1 - 8a2 h3 q2 -

8 b2 h3 q2 + 2d q h2 h3 q2 + 8a2 h5 q2 - 2d

q h5
2 q2 + 4h2 h3 q1 q2 - 4h4 h5 q1 q2MM

yzzyzzyzz>,
{{{  

 

Ø -
1

8k2  
 
 4
i
k
jj-4k2 r + -i

k
jj16k4 r2 + 16k2 i

k
jj-4k g2 - 8k a2 - 4k b2 + k d qh2 +

k d q h3 + 2k h2 q1 + 2k h3 q2 -
1
2

,IH8k g2 + 16k a2 + 8k b2 - 2k d q h2 -

2k d q h3 - 4k h2 q1 - 4k h3 q2L2 -

16k2 I16g2a2 + 16g2 b2 + 16a2 b2 - 4g2d q

h2 - 4d qa2 h2 - 4d qa2 h3 - 4d q b2 h3 +

d2 q2 h2 h3 + 4d q a2 h4 + 4d qa2 h5 - d2 q2

h4 h5 - 8g2h2 q1 - 8a2 h2 q1 + 2d q h2 h3
q1 + 8a2 h4 q1 - 2d qh4

2 q1 - 8a2 h3 q2 -

8 b2 h3 q2 + 2d q h2 h3 q2 + 8a2 h5 q2 - 2d

q h5
2 q2 + 4h2 h3 q1 q2 - 4h4 h5 q1 q2MM

yzzyzzyzz>,
{{{  
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:l Ø -
1

8k2  

i
k
jj-4k2 r - -i

k
jj16k4 r2 + 16k2 i

k
jj-4k g2 - 8k a2 - 4k b2 + k d qh2 +

k d q h3 + 2k h2 q1 + 2k h3 q2 +
1
2

,IH8k g2 + 16k a2 + 8k b2 - 2k d q h2 -

2k d q h3 - 4k h2 q1 - 4k h3 q2L2 -

16k2 I16g2a2 + 16g2 b2 + 16a2 b2 - 4g2d q

h2 - 4d qa2 h2 - 4d qa2 h3 - 4d q b2 h3 +

d2 q2 h2 h3 + 4d q a2 h4 + 4d qa2 h5 - d2 q2

h4 h5 - 8g2h2 q1 - 8a2 h2 q1 + 2d q h2 h3
q1 + 8a2 h4 q1 - 2d qh4

2 q1 - 8a2 h3 q2 -

8 b2 h3 q2 + 2d q h2 h3 q2 + 8a2 h5 q2 - 2d

q h5
2 q2 + 4h2 h3 q1 q2 - 4h4 h5 q1 q2MM

yzzyzzyzz>,
{{{  

 

 

:l Ø -
1

8k2  
 

 

 

 6
 5
i
k
jj-4k2 r + -i

k
jj16k4 r2 + 16k2 i

k
jj-4k g2 - 8k a2 - 4k b2 + k d q h2 +

k d qh3 + 2k h2 q1 + 2k h3 q2 +
1
2

,IH8k g2 + 16k a2 + 8k b2 - 2k d q h2 -

2k d qh3 - 4k h2 q1 - 4k h3 q2L2 -

16k2 I16g2a2 + 16g2 b2 + 16a2 b2 -

4g2d qh2 - 4d q a2 h2 - 4d q a2 h3 -

4d q b2 h3 + d2 q2 h2 h3 + 4d qa2 h4 +

4d qa2 h5 - d2 q2 h4 h5 - 8g2h2 q1 -

8a2 h2 q1 + 2d qh2 h3 q1 + 8a2 h4 q1 -

2d qh4
2 q1 - 8a2 h3 q2 - 8 b2 h3 q2 +

2d qh2 h3 q2 + 8a2 h5 q2 - 2d q h5
2 q2 +

4h2 h3 q1 q2 - 4h4 h5 q1 q2MMyzzyzzyzz>>
{{{  
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Again, ,0,0,0,0,0,0,0,0 212121 >><><><> θδγγββαα  and 

δθθθ
221 == . In additions, 02 <η , 03 <η , 04 <η ,  05 <η , 1

4

2 >
η
η

 and 1
5

3 >
η
η

. 

The six optimal λs can result in one of the three possible outcomes: real & 

distinct, real and equal, and complex conjugate. Thus, by logical comparison, and given 

the assumptions that there cannot be six feasible solutions in this case, two feasible 

solutions from six possible solutions of λs are derived and selected based upon the fact 

that the stable adoption and diffusion path requires the concave components of the root. 

Thus, from six possible roots, λ1, λ2, λ3, and λ5 yield a positive sign and would result in 

convex components of the root are considered inconceivable solutions and excluded. 

Only λ4 and λ6 are able to provide a negative sign. The assumption that all terms within 

the square root is greater than 4k2r needs to be made, however. Upon deriving roots  

and from Det(m)=0, the system of differential equations yields the general solution 

*
4λ

*
6λ

2
*
6

*
4

212 )( pttt zeAeAtz ++= λλ  

3
*
6

*
4

433 )( pttt zeAeAtz ++= λλ  

where 

02
21 =++ pzAA  

03
43 =++ pzAA  

22
*
61

*
4 dAA =+λλ   (d2 is an arbitrary non-negative constant) 

34
*
63

*
4 dAA =+λλ   (d3 is an arbitrary non-negative constant) 

with   (steady-state level of technologies’ adoption.) 32 pp zz ≠
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The particular integral 2pz and 3pz are not being derived in this study, as the focus 

is not on deriving analytical solutions for the adoption path  and . The fact that 

both  and  share a similar set of roots, the partial derivative of real and distinct 

roots with respect to choice variables of either  are adequate. 

)(2 tzt )(3 tz t

)(2 tzt )(3 tz t

)(tz t

The right hand side (RHS) consists of two square roots; one is inside the other. 

With the assumption that terms within each square root are positive, in absolute values, 

 is always less than . Consequently, only  dominates the solution and is real and 

distinct. Although  can produce the negative sign,  can become positive and result in 

convex component of root when the terms within inner-square root becomes larger15, 

whereas the  is always negative16. Furthermore, the derivative of  with respect to η2, 

η3, η4, and η5 can be derived to explain the impact of learning by doing from exact 

technology and learning from others on the speed of adoption. 

*
4λ

*
6λ

*
6λ

*
4λ

*
4λ

*
6λ

*
6λ

A1 and A3 are equal to zero; otherwise, A1 or A3 would be non-stable when the 

convex component of  is dominated. Thus, the optimal path is restricted to be *
4λ

2
*
6

22 )( ptt zeAtz += λ  

3
*
6

43 )( ptt zeAtz += λ  

To assess the qualitative effects on the speed of adoption, comparative results can 

be directly obtained through the derivation of the adoption path of either z2(t) and z3(t). 

Only direct differentiation of the dominant roots (the speed of adoption) is obtained here. 

Although they are algebraically complicated and lengthy, they can be signed with 
                                                 
15 The positive values within inner-square root subtract from other terms outside inner-square root but 
inside the outer-square root. 
16 Assume the terms within the outer-square root are greater than 4k2r. 
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minimal conditions. Accordingly, the sign of each dominant root is specified. The steady-

state level of adoption with respect to key parameters has not been obtained however. 

Thus, the partial derivative of the real and distinct roots with respect to the choice 

variables17 (only the learning mechanism in this case) of either and their expected 

signs are: 

)(tz t

Learning by doing of new technology B from previous adoption of (exact) technology B  

 

    

-Ik Id q + 2q1 + Hk Hd q + 2q1L H4g2 - 4 b2 - d q h3 + h2 Hd q + 2q1L - 2h3 q2LL ë
I,Ik2 I16g22 + 64a2

2 + 16 b2
2 + 8g2d q h2 + d2 q2 h2

2 -

8g2d qh3 - 2d2 q2 h2 h3 + d2 q2 h3
2 + 4d2 q2 h4 h5 +

16g2h2 q1 + 4d qh2
2 q1 - 4d q h2 h3 q1 + 8d qh4

2 q1 +

4h2
2 q1

2 - 16g2h3 q2 - 4d qh2 h3 q2 + 4d q h3
2 q2 +

8d qh5
2 q2 - 8h2 h3 q1 q2 + 16h4 h5 q1 q2 + 4h3

2 q2
2 -

8 b2 H4g2 + h2 Hd q + 2q1L - h3 Hd q+ 2q2LL -

16a2 Hh4 Hd q+ 2q1L + h5 Hd q + 2q2LLMMMMM ë
I4,Ik2 Ik2 r2 - 4kg2- 8ka2 - 4k b2 + kd qh2 + kd q h3 +

2kh2 q1 + 2kh3 q2 +
,Ik2 IH-4g2 - 8a2 - 4 b2 + d qh2 + d q h3 + 2h2 q1 +

2h3 q2L2 - 4 I-4g2d q h2 + d2 q2 h2 h3 - d2 q2

h4 h5 - 8g2h2 q1 + 2d q h2 h3 q1 - 2d qh4
2 q1 +

2d q h2 h3 q2 - 2d qh5
2 q2 + 4h2 h3 q1 q2 - 4h4

h5 q1 q2 + 4a2 H4g2 + 4 b2 - d q h3 + d qh4 +

d qh5 + 2h4 q1 - h2 Hd q + 2q1L - 2h3 q2 +

2h5 q2 + 4 b2 4g2 - h3 d q + 2q2L H H LLMMMMMM  

=
∂
∂

2

*
6

η
λ

The sign of
2

*
6

η
λ
∂
∂  becomes negative when 

)2(4242 12223321 θδθηγθηδθηβθδθ ++>−−−++ , assuming that the terms within 

                                                 
17 Signs of risk aversion and cost adjustment can be qualitatively specified, yet they are not only 
cumbersome to derive, but also trivial to the purpose of this study. Thus, they are not included in the partial 
derivatives. 
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the square roots of 
2

*
6

η
λ
∂
∂

 are positive. When this condition holds, farmer adopts the new 

technology faster as the ability through learning by doing from use of the exact 

technology becomes greater. Similar circumstances hold in the case where learning from 

technology C encourages its own adoption. 

 

Learning by doing of new technology B from previous adoption of ( similar) 

technology C 

 

       

-Ik2 I4d qh4 q1 - 4a2 Hd q+ 2q1L + h5 Id2 q2 + 4q1 q2MMM ë
I2,Ik2 IH-4g2 - 8a2 - 4 b2 + d qh2 + d q h3 + 2h2 q1 + 2h3 q2L2 -

4 I-4g2d q h2 + d2 q2 h2 h3 - d2 q2 h4 h5 - 8g2h2 q1 +

2d qh2 h3 q1 - 2d qh4
2 q1 + 2d q h2 h3 q2 - 2d qh5

2 q2 +

4h2 h3 q1 q2 - 4h4 h5 q1 q2 + 4a2 H4g2+ 4 b2 - d q

h3 + d qh4 + d q h5 + 2h4 q1 - h2 Hd q + 2q1L - 2
h3 q2 + 2h5 q2L + 4 b2 H4g2- h3 Hd q+ 2q2LLMMM

,Ik2 Ik2 r2 - 4kg2- 8ka2 - 4k b2 + kd qh2 + kd qh3 +

2kh2 q1 + 2kh3 q2 +
,Ik2 IH-4g2 - 8a2 - 4 b2 + d qh2 + d q h3 + 2h2 q1 +

2h3 q2L2 - 4 I-4g2d q h2 + d2 q2 h2 h3 - d2 q2

h4 h5 - 8g2h2 q1 + 2d q h2 h3 q1 - 2d qh4
2 q1 +

2d q h2 h3 q2 - 2d qh5
2 q2 + 4h2 h3 q1 q2 - 4h4

h5 q1 q2 + 4a2 H4g2 + 4 b2 - d q h3 + d qh4 +

d qh5 + 2h4 q1 - h2 Hd q + 2q1L - 2h3 q2 +

2h5 q2 + 4 b2 4g2 - h3 d q + 2q2L H H LLMMMMMM  

=
∂
∂

4

*
6

η
λ

The negative sign of
4

*
6

η
λ
∂
∂

 is achieved when 

)4(4)2(4 21
22

51412 θθθδηθδθηθδθα ++>+− , assuming that the terms within all the 
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square roots of 
4

*
6

η
λ
∂
∂

are positive. When this condition holds, the farmer adopts the new 

technology faster when the ability to learn by doing from use of the similar technology of 

farmers becomes greater. Similar circumstances hold in the case where learning from 

technology B encourages the adoption of technology C. 

The firm transfers one unit of the quasi-fixed factor z from the old technology to 

either the new technologies, B or C, when 11 βα <  ; 11 γα <  ; 22 βα <  ; 22 γα < . 

Whether the firm transfers one unit of the quasi-fixed factor z from the new 

technology B to new technology C and vice versa depends upon the magnitude of 2β and 

2γ . There are two scenarios: first, profit could increase when transferring one unit of th

quasi-fixed factor z from the new technology B to new technology C, when 

e 

11 γβ <  and 

22 γ  ; and second, profit could increase when transferring one unit of the quasi-fixed β <

factor z from the new technology C to new technology B, when 11 βγ < and 22 βγ < . 

Finally, since is negative, the absolute value of*
6λ

2

*
6

η
λ
∂
∂

 , 
3

*
6

η
λ
∂
∂

,
4

*
6

η
λ
∂
∂

, and 
5

*
6

η
λ
∂
∂

 

increases, as ηj increases (j=2,3,4,5), so that the firm adopts the new technologies faster 

esented here are cumbersome and not elegant, some 

cess, 

when the learning ability of the firm’s manager toward either exact or similar of new 

technologies becomes greater. 

 While the derivations pr

interesting observations can be made about the results. First, depending on the efficiency 

of the learning processes, the new technologies B and C can replace the traditional one A. 

Second, the relative learning of each new technology affects their individual and 

aggregate adoption. Third, depending on the relative efficiency of each learning pro
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it is possible to reverse the adoption of one of the new technologies, say B, in favor of 

increasing the adoption of the other, C. Hence, depreciation of a new technology B can

happen through own and cross learning and through advancement of the alternative new

technology C. These results would be counter-intuitive in the absence of considering the 

adoption of the two new technologies jointly and their cross-learning effects. 

 The most significant insight obtained through the theoretical developm

 

 

ents in this 

of the 

chapter however is an indirect one. Derivations here demonstrate that as one attempts to 

add relevancy to our theoretical constructs of adoption decisions and account for 

technology interdependencies, learning and other relevant effects, the complexity 

theoretical derivations increases and solutions become quickly intractable. This result 

suggests that empirical analysis might be all that much more important, or may be the 

only way to examine relevant complexity in innovation adoption and diffusion. 
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CHAPTER 4 

ADOPTION OF COTTON BIOTECHNOLOGIES IN THE US  

 

 

The hypotheses developed in chapters 1 and 2 are empirically tested in this 

chapter. An empirical adoption model is structured in accordance with the theoretical 

developments in chapter 3 and presented here.  

 Various learning mechanisms are explicitly modeled in the adoption models 

presented here. They include learning by doing from the technology of interest and from 

similar ones as well as learning from neighbors. The inclusion of previous year’s 

adoption intends to capture the partial nature of the adoption process and the impact of 

the farmer’s own experiences. It is hypothesized that the previous year’s adoption of the 

biotech cotton variety considered (exact technology) positively influences its future 

adoption. 

Previous year adoption of a similar biotech cotton variety captures the partial 

process of learning that occurs from use of similar technologies. It is hypothesized that 

previous year adoption of a biotech cotton variety positively influences subsequent 

adoptions of similar biotech cotton technologies. Furthermore, it is expected that the 

impact of learning from the exact technology on its rate of adoption will be greater than 

that of learning from a similar technology. 

In addition to their own experiences, cotton growers can also learn from their 

neighbors or others. This type of learning is particularly important in the early stage of 

adoption when experience from learning by doing is limited. Average percent adoption at 
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the county level is used as an empirical proxy of learning from others in this adoption 

model. It is hypothesized that the aggregate adoption of biotech cotton in a given county 

positively influences next year’s adoption of individual farmers in the same county; then 

an individual adoption of the same GM cotton also increases. 

In any given year, cotton growers have to decide which type of cotton  

varieties will be planted, both conventional and biotech. Although each variety can 

substitute for any other, closer traits are more likely to show higher substitutability, while 

varieties with different traits may show less. For instance, Bollgard® and Roundup 

Ready® cotton appeal to rather different groups of farmers as Bollgard® is attractive to 

the cotton growers who anticipated outbreak of bollworm or budworm, while Roundup 

Ready® is attractive to farmers who look for simple weed. These two traits should, in 

principle, demonstrate less, except of course that which is evident for land competition. 

Stacked cotton carries combines the traits of both Bollgard® and Roundup Ready® 

cotton. Hence, Stacked cotton is expected to substitute strongly both Bollgard® and 

Roundup Ready®. 

Herbicide tolerance complements minimum tillage practice adoption and vice  

versa. It is hypothesized that if the adoption of herbicide tolerant varieties increases, then 

the adoption of minimum tillage practices also increase. Conversely, it is also 

hypothesized that if adoption of minimum tillage practices increases, then the adoption of 

herbicide tolerant varieties should also increase. 

In addition to minimum tillage practices, the use of irrigation systems is also 

hypothesized to encourage the adoption of biotech cotton as they may contribute to the 

use of such irrigation systems earlier and more efficiently. 
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Unlike most agricultural innovation that are scale biased, insect resistant, and 

herbicide-tolerant, cotton varieties are perfectly divisible and are hypothesized to be scale 

neutral. Hence, any firm size variable included in the model is not anticipated to have a 

significant impact on the farmer’s adoption decision. 

Fundamentally, biotech cotton is a labor saving technology. Although pest control 

effectiveness is the key benefit of biotech cotton varieties, this level of effectiveness is 

comprised of both direct and indirect effects. The proxy of direct effect is perceived cost 

savings from labor and equipment efficiencies (including fuel, repairs, and maintenance).   

Indirect effects from biotech cotton adoption include the technology’s implied 

reduction in production risks, simplicity of agronomic practices, as well as the “peace of 

mind,” convenience, and flexibility in operations. Such effects can be significant but are 

mostly non pecuniary in nature. Nevertheless, it is assumed that producers can place a 

value to such indirect effects. The higher such value is, the higher adoption will be. 

 It is hypothesized that if cotton growers perceive that biotech cotton is more 

effective than traditional practices at controlling pests, then adoption will increase. The 

perceived effectiveness against major and minor insects are tested in the case of Bollgard. 

The effectiveness of Roundup Ready against major and minor weeds is also considered. 

In the Stacked case, only the main pests are tested, so M=1 is main insect and M=2 is 

main weed. 

Insect resistant biotechnologies might also have a secondary positive 

effectiveness impact through preservation of beneficial insects. Beneficial insects can aid 

in controlling harmful insect populations. It is hypothesized that if cotton growers 
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perceive a positive impact to the beneficial insect population, then adoption of Bollgard 

cotton will increase. 

 

The Empirical Model 
 
 
 

Following these arguments, I specify here an adoption model to guide the 

empirical analysis. Producer adoption decisions for the various agrobiotechnologies and 

related agronomic practices are represented by a system of simultaneous equations. 

Adoption decisions are interdependent and simultaneous, as the technologies considered 

can be adopted both independently and as bundles. Accordingly, the following simulta-

neous equation system is specified and estimated.  
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Where: 

j = BG, RR, ST, MinTL 

~~~~
,, STRRBGj =  

i = 1, 2, ..., 703 cotton growers 

t = 199918 

                                                 
18 Similar specification was used in other sets of survey with t=2000 and 2001; however, these two surveys 
lack the completeness of data in other key variables; consequently, empirical results were dropped in the 
final stage. 
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The dependent variable represents land allocation in period t to the three 

agrobiotechnologies and reduced tillage. Dynamic learning effects are explicitly modeled 

through the inclusion of lagged dependent variables, which are intended to capture the 

iterative nature of the adoption process. The relevance of the hypothesized synergies with 

agronomic practices can be explicitly tested within this empirical model.  

The impacts of perceived economic gains of the new technologies, both pecuniary 

and non-pecuniary, on the adoption decision of the producers are captured through three 

separate sets of indicators: producer perception of pest control effectiveness, cost savings, 

and risk reductions (“peace of mind”). In this way, their relative importance can be 

measured and assessed. Such indicators of perceived economic advantage are relative in 

the sense that they measure performance against conventional technologies, which serve 

as the numeraire. Through learning, perceptions become more accurate, thus further 

clarifying the value of experimentation.  

Differences across farms -such as in size- must also be taken into account to 

control for their differential impacts on adoption. In this study, a quadratic function of 

farm size is included to allow for any scale bias in the adoption process. Two regional 

dummy variables are also used to control for systematic differences in pest infestations 

and in the limited availability of bioengineered cotton varieties in a certain area (e.g. 

Texas). 

Table 1 lists the variables used in the empirical estimation of the adoption and 

clarifies their measurement.  
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Table 1: Variables used in empirical specifications of adoption model 

       Variable & H0 Definition Proxy 
 Percent adoption of each GM 

cotton and Min.Tillage (j) by 
each cotton grower (i) at time 
t  

( =dependent 
variables) 

j
tiY ,

 
 

BG
tiY ,  Percent adoption of Bollgard 

cotton by each cotton grower 
(i) at time t  

 

RR
tiY ,  Percent adoption of Roundup 

Ready cotton by each cotton 
grower (i) at time t 

 

ST
tiY ,  Percent adoption of Stacked 

cotton by each cotton grower 
(i) at time t 

 

j
tiY ,  

 
 
 
 
 
 
 
 
 
 
 

MinTL
tiY ,  Percent adoption of Min. 

Tillage by each cotton grower 
(i) at time t 

 

 Percent adoption of each GM 
cotton and Min.Tillage (j) by 
each cotton grower (i) at prior 
time (t-1)   

Learning by 
doing of exact 
technology 

j
tiY 1, −  

 
 

0: 10 ≤jaH  BG
tiY 1, −  Percent adoption of Bollgard 

cotton by each cotton grower 
(i) at prior time (t-1)   

 

RR
tiY 1, −  Percent adoption of Roundup 

Ready cotton by each cotton 
grower (i) at prior time (t-1)   

 

ST
tiY 1, −  Percent adoption of Stacked 

cotton by each cotton grower 
(i) at prior time (t-1)   

 

0: 10 ≤jaH  

MinTL
tiY 1, −  Percent adoption of Min. 

Tillage by each cotton grower 
(i) at prior time (t-1)   

 

~

1,
j
tiY −  

 

~
jj ≠  

 

Percent adoption of other GM 
cotton ( ) by each cotton 
grower (i) at prior time (t-1)   

j
Learning by 
doing of similar 
technologies19 

                                                 
19 Lagged endogenous explanatory variables are used in each adoption model in two aspects: learning by 
doing from exact technology and learning by doing from other similar technologies. Only one lagged 
dependent variable is considered as the proxy of learning by doing from exact technology while two 
separated lagged endogenous explanatory variables are considered as proxies of learning by doing from 
similar technologies. The superscript ~ is just to emphasize that these variables are considered as learning 
from similar technologies although in adoption model specification they are simply lagged endogenous 
explanatory variable that are also used as the lagged dependent variable in other adoption model. 
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       Variable & H0 Definition Proxy 
~

1,
BG
tiY −  Percent adoption of Bollgard 

cotton by each cotton grower 
(i) at prior time (t-1)   

~

1,
RR
tiY −  Percent adoption of Roundup 

Ready cotton by each cotton 
grower (i) at prior time (t-1)   

0:
~

20 ≤jaH  
 
 

0:
~

20 ≤jaH  
 

~

1,
ST
tiY −  Percent adoption of Stacked 

cotton by each cotton grower 
(i) at prior time (t-1)   

~: indicated 
learning from 
similar 
technology’s 
purposes. 

MinTLj ≠  Average county level adoption 
of exact technology of cotton 
grower i at time t at the same 
FIP codes 

Learning from 
others 
(neighborhood 
effects) 

3,
1,,3

kBG
tiX −  Average county level adoption 

of BG cotton of cotton grower 
i at time t at the same FIP 
codes 

 

3,
1,,3

kRR
tiX −  Average county level adoption 

of Round Ready cotton of 
cotton grower i at time t at the 
same FIP codes 

 

3,
1,,3

kj
tiX −  

 
 
 

0: 3,
30 ≤kjaH  

3,
1,,3

kST
tiX −  Average county level adoption 

of Stacked cotton of cotton 
grower i at time t at the same 
FIP codes 

 

4jj ≠  Percent adoption of each GM 
cotton and Min.Tillage (j) by 
each of cotton grower (i) at 
time t ( =endogenous 
independent variables) 

3,
,

jj
tiY

Multiple 
simultaneous 
effects 

4,
,

jj
tiY  

 
 
 
 

0: 4,
40 ≥jjaH  4jj ≠  

MinTLj ≠4  
Percent adoption of Bollgard 
cotton by each of cotton 
grower i at time t  in Bollgard 
model 
 

 

4jj ≠  
 

Percent adoption of Roundup 
Ready cotton by each of 
cotton grower i at time t  in 
RR model 

 0: 4,
40 ≥jjaH  

 
 
 

0: 4,
40 ≥jjaH  

 
 

4jj ≠  
 

Percent adoption of Stacked 
cotton by each of cotton 
grower i at time t  in ST 
model  
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       Variable & H0 Definition Proxy 
0: 4,

40 ≤jjaH  4jj ≠  

BGj ≠4  
Percent adoption of Min.TL 
by each of cotton grower i at 
time t  in Min.TL model 

 

5,
,,5
kj
tiX  

0: 5,
50 ≤jjaH  

 
 
 
 

Binary dummy variable: 
Having irrigated land of 
cotton farmer i at time t 
Irrigated land =1; otherwise = 
0 

Synergy with 
other agronomic 
practice as 
irrigated land 
(when appeared 
on RHS) 

2,16 =k  Average farm size of cotton 
grower i in year t (‘000 acres)   

Heterogeneity 
toward economy 
of scales 

6,
,,6
kj
tiX  

 
0: 6,

60 =kjaH  1,
,,6
6=kj
tiX  sizei = Total planted (‘000 

acres) 
 

 2,
,,6
6=kj
tiX  Size squarei = sizei

2  

MinTLj ≠  
 
 
 

Perceived labor and capital 
saving when adopting GM 
cotton over traditional 
varieties in dollar of cotton 
grower i at time t 

Monetary Effect 
(Cost & labor 
savings of GM 
cotton adoption) 

7,
,,7

kBG
tiX  Perceived labor and capital 

saving when adopting 
Bollgard cotton over 
traditional varieties in dollar 
of cotton grower i at time t 

 

7,
,,7

kRR
tiX  Perceived labor and capital 

saving when adopting 
Roundup Ready cotton over 
traditional varieties in dollar 
of cotton grower i at time t 

 

7,
,,7
kj
tiX  

 
 
 

0: 7,
70 ≤kjaH  

7,
,,7

kST
tiX  Perceived labor and capital 

saving when adopting Stacked 
cotton over traditional 
varieties in dollar of cotton 
grower i at time t 

 

MinTLj ≠  
2,18 =k  

Perceived values toward peace 
of mind and convenience 
when cotton grower i adopting 
GM cotton over traditional 
varieties at time t in likert 
scales  

Non-monetary 
effect (Peace of 
mind of GM 
cotton adoption) 

8,
,,8
kj
tiX  

 
 
 
 
 

0: 8,
80 ≥kjaH  

 

1,
,,8

8=kBG
tiX  Perceived values toward peace 

of mind and convenience 
Peace of mind of 
Bollgard 
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       Variable & H0 Definition Proxy 
when cotton grower i adopting 
Bollgard cotton over 
traditional varieties at time t in 
likert scales 

adoption 

1,
,,8

8=kRR
tiX  Perceived values toward peace 

of mind and convenience 
when cotton grower i adopting 
Roundup Ready cotton over 
traditional varieties at time t in 
likert scales 

Peace of mind of 
Roundup Ready 
adoption 

1,
,,8

8=kST
tiX  Perceived values toward peace 

of mind and convenience 
when cotton grower i adopting 
Stacked cotton over traditional 
varieties at time t in likert 
scales 

Peace of mind of 
Stacked 
adoption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0: 2,
80

8 ≥=kBGaH  2,
,,8

=kBG
tiX  Perceived impact over 

beneficial insect in likert 
scales of BG cotton grower i 
at time t  in BG model only 

Impact on 
beneficial insect 
of Bollgard 
adoption 

MinTLj ≠  
2,19 =k  

Perceived pest control 
effectiveness toward GM 
cotton adoption of cotton 
grower i at time t in likert 
scales 

Pest control 
effectiveness  

9,
,,9
kj
tiX  

 
 
 
 

0: 29,
90 ≥=MkjaH  

1,
,,9

9=kBG
tiX  Perceived major insect control 

effectiveness toward Bollgard 
cotton adoption of cotton 
grower i at time t in likert 
scales 

 

2,
,,9

9=kBG
tiX  Perceived minor insect control 

effectiveness toward Bollgard 
cotton adoption of cotton 
grower i at time t in likert 
scales 

 

1,
,,9

9=kRR
tiX  Perceived major weed control 

effectiveness toward Roundup 
Ready cotton adoption of 
cotton grower i at time t in 
likert scales 

 

0: 29,
90 ≥=MkjaH  

2,
,,9

9=kRR
tiX  Perceived minor weed control 

effectiveness toward Roundup 
Ready cotton adoption of 
cotton grower i at time t in 
likert scales 
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       Variable & H0 Definition Proxy 
1,

,,9
9=kST

tiX  Perceived major insect control 
effectiveness toward Stacked 
cotton adoption of cotton 
grower i at time t in likert 
scales 

 

2,
,,9

9=kST
tiX  Perceived major weed control 

effectiveness toward Stacked 
cotton adoption of cotton 
grower i at time t in likert 
scales 

 

10,
,,10

kj
tiX  2,110 =k  

 
1,

,,10
10=kj
tiX  

2,
,,10
10=kj
tiX  

Binary dummy variables 
whether cotton grower i at 
year t was located at 

=10k 1: Texas =1; otherwise 
=0 

=10k 2: Southern region 
(Louisiana and Mississippi) 
=1; otherwise =0 
 

Locational effect 

Restrictions in Minimum 
Tillage model: 
 

0,.,, 98721 =jjjjj aaaaa   
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Expected Signs of Coefficient Estimates and Hypothesis Testing 

 

Based on the arguments developed before, the stated hypotheses can be statistically tested 

as follows:  

o Learning mechanisms 

o Learning by doing from exact technology 

:   0: 10 ≤jaH

      0: 11 >jaH

o Learning by doing from similar technologies 

:  ( ) 0:
~

20 ≤jaH
~
jj ≠

   ( ) 0:
~

21 >jaH
~
jj ≠

o Learning from others (neighborhood effect) 

:  0: 3,
30 ≤kjaH

   0: 3,
31 >kjaH

o Technology Interdependencies 

o BG model 

:  (0: 4,
40 ≥jjaH 4jj ≠ & MinTLj ≠4 ) 

   (0: 4,
41 <jjaH 4jj ≠ & MinTLj ≠4 ) 

o RR and ST models 

:  (0: 4,
40 ≥jjaH 4jj ≠ ) 

   (0: 4,
41 <jjaH 4jj ≠ ) 
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o Minimum Tillage model 

:  (0: 4,
40 ≤jjaH 4jj ≠ & BGj ≠4 ) 

   (0: 4,
41 >jjaH 4jj ≠ & BGj ≠4 ) 

For instance, the hypothesis that minimum tillage encourages adoption of RR 

and/or ST technologies can be empirically assessed by evaluating the statistical 

significance of and . RRMinTLa ,
4

STMinTLa ,
4

o Irrigation system 

0: 5,
50 ≤jjaH   

0: 5,
51 >jjaH   

o Farm heterogeneity and scale effects 

:  0: 6,
60 =kjaH

   0: 6,
61 ≠kjaH

o Perceived economic advantages of biotechnologies 

o Direct, pecuniary effects 

:  (0: 7,
70 ≤kjaH MinTLj ≠ ) 

   (0: 7,
71 >kjaH MinTLj ≠ ) 

o Indirect, non-pecuniary effects (Peace of mind and convenience) 

:  (0: 8,
80 ≥kjaH MinTLj ≠ ) 

  20 (0: 8,
81 <kjaH MinTLj ≠ )  

o Pest control effectiveness 
                                                 
20 The likert scale used in the survey values lower numbers (such as 1) as superior to non-GM cotton, while  
higher the numbers (such as 5) are inferior to non-GM cotton. Thus, the alternate hypothesis follows a left-
tailed t test.  
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:   (0: 29,
90 ≥=MkjaH MinTLj ≠ and M2=1,2) 

  21 ( MinTLj0: 22,
91 <== MkjaH ≠ and M2=1,2) 

 Impact on beneficial insect 

:    0: 2,
80

8 ≥=kBGaH

  22  0: 2,
81 <=kBGaH

Effectiveness against both major and minor insects are tested in Bollgard using 

M=1 and M=2, respectively. Effectiveness against major and minor weeds are tested in 

the in Roundup Ready case through similar methods. In the Stacked case, only 

effectiveness against major pests is included, so M=1 is major insects, and M=2 is major 

weeds. 

 

Data 

 

In order to estimate the proposed adoption model above, I use producer-survey data. In 

order to capture the rich substitution effects among the three cotton biotechnologies, 

adoption data was sought for the years where BG adoption was still increasing and ST 

was coming into the market. In more recent years, RR and ST technologies have 

dominated adoption patterns, while BG adoption has diminished, probably due to 

substitution (Figure 1). Several market research companies were contacted for such data 

availability and an appropriate dataset was located. The survey used includes cotton 
                                                 
21 The likert scale used in the survey values lower numbers (such as 1) as “much better” pest control, while 
the higher numbers (such as 4) are “not nearly as good” pest control compared to non-GM cotton. Thus, the 
alternate hypothesis follows left-tailed t test.  
22The likert scale used in the survey values lower numbers (such as 1) as “very satisfied”, while the higher  
numbers (such as 4), are “very dissatisfied” with the performance of Bollgard cotton. Thus, the alternate 
hypothesis follows a left-tailed t test.  
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growers from all cotton growing states23 except California and Arizona and it was 

conducted in 1999. The survey was conducted by the marketing firm Marketing 

Horizons, Inc. Data from this survey were contributed from Marketing Horizons for the 

purpose of this research. There are 703 usable observations, of which 564 and 139 

observations involve biotech cotton adopters24, and non-adopters25, respectively. Due to 

the confidentiality nature of data in the study, descriptive statistics can not be shown. 

Although most key variables are derived from this survey, two other sources of 

data were used. Certain information on tillage practices was obtained from the 

Conservation Technology Information Center (CTIC). Similarly, information on 

aggregate adoption of the three biotech cotton varieties (total acres) for each county was 

obtained from the trait supplier for the purpose of this research. CTIC provides data on 

minimum tillage use at the county level, while the total biotech cotton acres for each 

county are utilized to derive average percent adoption of each biotechnology cotton trait 

at the county level. 

 

 

Econometric Estimation  

 

The data suffers from heteroscedasticity and the errors are not normally 

distributed. Additionally, when the four equations are estimated simultaneously, the 

dependent variable of each equation also appears as an explanatory variable on the right 

                                                 
23 The survey consists of samples in the following states: Alabama, Arkansas, Florida, Georgia, Louisiana, 
Missouri, Mississippi, North Carolina, New Mexico, Oklahoma, South, Carolina, Tennessee, Texas, and 
Virginia. 
24 Users were defined as having planted more than 50 acres of any genetically modified cotton in 1999 
25 Non-users were defined as having planted less than 50 acres of any genetically modified cotton in 1999 
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hand side. Thus, OLS would result in simultaneity bias and inconsistent estimates. 

Instrumental variable (IV) estimators or maximum likelihood (MLE) approaches are thus 

preferable. IV estimators rely on effective instrument selection, while MLE assumes the 

errors are normally distributed.  

For IV estimators, under conditional homoscedasticity, the multiple-equation 

system estimated via a Generalized Method of Moment (GMM)26 reduces to the full 

information instrumental variable efficient estimator, which in turn reduces to 3SLS if the 

set of instrumental variables is common to all equations in the system. If more 

restrictions are imposed in such a way that all the regressors are predetermined, then 

3SLS reduces to seemingly unrelated regressions (SUR) (Hayashi, 2000). 

To choose the most preferable among IV estimators, one first must determine 

whether the model is identified, unidentified, or over-identified. Thus, the number of free 

elements in the covariance matrix and the numbers of parameters to be estimated are 

compared. Specifically, if the number of parameters equals the number of free elements 

in the covariance matrix, then there may exist a unique set of parameter estimates that 

exactly reproduce the observed covariance matrix. In this case, the model is said to be 

just identified or saturated. If the number of parameters is less than the number of free 

elements in the covariance matrix, there may exist no set of parameter estimates that 

reproduces the observed covariance matrix. In this case, the model is said to be 

overidentified. In the (exactly) identified case, 2SLS and GMM produce the same results 

(Johnston and John, 1997).  

                                                 
26 The following references are excellent sources for interesting readers on the mathematical rigors of 
GMM (Hall, 1993; Hansen, 1982; Hansen and Kenneth, 1982; Hayashi, 2000; Green, 1997; Matyas, 1999). 
For SAS codes and estimation method, see SAS (2001). 
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In the overidentified case, only the GMM produces consistent estimates, 

regardless of the weighting matrix used. When optimal weighting matrix is selected as 

the inverse of the asymptotic variance matrix of the orthogonality conditions of moment 

condition, GMM also produces efficient estimates (Mullin, 2003a
, SAS (2001). There are 

two methods for improving the efficiency of the parameter estimates in the presence of 

heteroscedastic errors. If the error variance relationships are known, weighted regression 

can be used or an error model can be estimated. If the error variance relationship is 

unknown, GMM estimation can be used.  

Furthermore, among IV estimators in a system of equations, GMM requires the 

least assumptions toward the distribution of the data. GMM, however, requires correct 

model specification and large sample sizes. A sample size of 703 observations is 

considered adequate. So, given all relevant considerations, I use GMM for the empirical 

estimation of the adoption model. However, to confirm the robustness of the model and 

examine the sensitivity of the results to alternate estimation methods, some additional 

considerations were necessary.  

An alternative method to the GMM is maximum likelihood. Fundamentally, MLE 

has some desirable properties relative to GMM in at least two areas. First, when the 

distributional assumptions are valid, the MLE provides the most efficient parameter 

estimates,27 while the GMM method may not. Second, MLE doesn’t require specification 

of instruments. Although both IV estimators and maximum likelihood methods are 

theoretically justified, MLE would be preferred if the properties required by MLE were 

met.  

                                                 
27 The asymptotic variance of MLE is usually equal to the Cramer-Rao lower bound – the lowest 
asymptotic variance that a consistent estimator can have (Kennedy (1997), pp. 30.) 
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That said, MLE requires both complete specification of the model and strong 

distributional assumptions. To make the estimation problem tractable, the assumed 

distributions often must be serially uncorrelated and conditionally homoscedastic. When 

the distributional assumptions are not satisfied, like in this case, the parameters estimates 

may be biased even in large samples.  These limitations of MLE restrict the scope. 

Nevertheless, MLE is also used here to evaluate the robustness of the estimated model. 
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Table 2: Empirical results of BG adoption model 
 

GM Cotton 99 Adoption Model Bollgard® model (BG) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated

Aprrox. 
Std. 

Error 
t- 

Value Pr > |t| 
       
Dependent variable: %BG99 per farmer 

Intercept_BT 0.985 0.086 11.460 <.0001
Learning mechanisms      
Learning by doing of exact technology 0.250 0.031 8.160 <.0001
Learning by doing of similar technologies      
Learning by doing from last year RR 0.030 0.011 2.720 0.007
Learning by doing from last year ST 0.034 0.018 1.890 0.059
Learning from others 0.132 0.034 3.860 0.000
Multiple simultaneous effects      
With RR adoption -0.028 0.021 -1.330 0.183
With ST adoption -0.071 0.026 -2.750 0.006
Synergies with other agronomic practices      
Synergies with irrigation 0.047 0.027 1.730 0.084
Heterogeneity toward economies of scale      
Scale bias -0.001 0.020 -0.030 0.975
Quadratic scale bias 0.000 0.007 0.060 0.953
Monetary effects      
Labor and capital savings 0.004 0.001 4.650 <.0001
Non-monetary effects      
Values toward peace of mind & convenience 0.007 0.017 0.430 0.667
Pest control effectiveness      
Major Insect control effectiveness -0.099 0.025 -3.970 <.0001
Minor Insect control effectiveness -0.071 0.029 -2.400 0.017
Secondary control over nontarget pest      
Impact over beneficial insect -0.123 0.012 -10.32 <.0001
Locational effects      
For Texas state -0.003 0.009 -0.320 0.750
For southern region (Louisiana and 
Mississippi) 0.028 0.023 1.220 0.223
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Table 3: Empirical results of RR adoption model 
 

GM Cotton 99 Adoption Model Roundup Ready® model (RR) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated

Aprrox. 
Std. 

Error 
t- 

Value Pr > |t| 
       

Dependent variable: %RR99 per farmer 
Intercept_RR 0.958 0.081 11.830 <.0001
Learning mechanisms         
Learning by doing of exact technology 0.260 0.034 7.550 <.0001
Learning by doing of similar technologies         
Learning by doing from last year BG 0.070 0.022 3.240 0.001
Learning by doing from last year ST 0.141 0.027 5.270 <.0001
Learning from others 0.059 0.034 1.720 0.086
Multiple simultaneous effects         
With BG adoption -0.108 0.036 -3.000 0.003
With ST adoption -0.283 0.041 -6.950 <.0001
Synergies with other agronomic practices         
Synergies with minimum tillage program 0.491 0.086 5.680 <.0001
Synergies with irrigation 0.086 0.023 3.750 0.000
Heterogeneity toward economies of scale         
Scale bias -0.057 0.028 -2.030 0.042
Quadratic scale bias 0.009 0.008 1.200 0.232
Monetary effects         
Labor and capital savings 0.000 0.001 -0.170 0.868
Non-monetary effects         
Values toward peace of mind and 
convenience -0.099 0.016 -6.240 <.0001
Pest control effectiveness         
Major Insect control effectiveness -0.073 0.015 -4.770 <.0001
Minor Insect control effectiveness -0.106 0.022 -4.830 <.0001
Locational effects         
For Texas state -0.018 0.023 -0.790 0.430
For southern region (Louisiana and 
Mississippi) -0.045 0.016 -2.810 0.005
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Table 4: Empirical results of ST adoption model 
 

GM Cotton 99 Adoption Model 
Bollgard® Roundup Ready® model 

(ST) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated

Aprrox. 
Std. 

Error 
t- 

Value Pr > |t| 
          

Dependent variable: %ST99 per farmer 
Intercept_St 0.976 0.058 16.73 <.0001
Learning mechanisms         
Learning by doing of exact technology 0.308 0.042 7.27 <.0001
Learning by doing of similar technologies         
Learning by doing from last year BG 0.207 0.031 6.71 <.0001
Learning by doing from last year RR 0.191 0.033 5.89 <.0001
Learning from others 0.110 0.084 1.32 0.1879
Multiple simultaneous effects         
With BG adoption -0.290 0.049 -5.92 <.0001
With RR adoption -0.367 0.074 -4.93 <.0001
Synergies with other agronomic practices         
Synergies with minimum tillage program 0.306 0.176 1.74 0.0817
Synergies with irrigation 0.129 0.020 6.51 <.0001
Heterogeneity toward economies of scale         
Scale bias -0.010 0.024 -0.4 0.6859
Quadratic scale bias 0.001 0.006 0.13 0.8985
Monetary effects         
Labor and capital savings 0.006 0.001 4.19 <.0001
Non-monetary effects         
Values toward peace of mind and 
convenience -0.042 0.018 -2.31 0.0211
Pest control effectiveness         
Major insect control effectiveness -0.136 0.014 -10.02 <.0001
Major weed control effectiveness -0.112 0.019 -6.05 <.0001
Locational effects         
For Texas state -0.030 0.022 -1.37 0.1716
For southern region (Louisiana and 
Mississippi) -0.011 0.025 -0.45 0.6508
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Table 5: Empirical results of minimum tillage adoption model: 
 

GM Cotton 99 Adoption Model Minimum Tillage Practices 

Proxy and meaning of explanatory variables 
Parameter 
Estimated

Aprrox. 
Std. 

Error 
t- 

Value Pr > |t| 
        

Dependent variable: %MinTL99 per farmer 
Intercept_MinTL -0.044 0.023 -1.93 0.0546
Learning mechanisms         
Learning from others 0.062 0.019 3.36 0.0008
Synergies with other agronomic practices         
Synergies with RR varieties 0.345 0.041 8.43 <.0001
Synergies with ST varieties 0.220 0.033 6.64 <.0001
Synergies with RR Irrigation 0.001 0.027 0.05 0.9607
Synergies with ST Irrigation -0.022 0.019 -1.15 0.2523
Heterogeneity toward economies of scale         
Scale bias 0.021 0.033 0.64 0.5247
Quadratic scale bias -0.002 0.009 -0.18 0.8552
Locational effects         
For Texas state -0.043 0.018 -2.45 0.0145
For southern region (Louisiana and 
Mississippi) -0.013 0.015 -0.9 0.367
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Empirical Results 
 

 
The parameter estimates presented in tables 2-5 are based on GMM estimation. 

The empirical model also estimated using alternative econometric methods including 

3SLS and MLE. The results from all three estimation procedures were similar. Due to the 

advantages of GMM over other methods, particularly in the over-identified case, and the 

remedies for heteroscedasticity and endogeneity with consistent and efficient estimates, 

the GMM results are presented here. 

Overall, innovation adoption is driven by the learning process. All GM crops 

substitute one another for land. Synergies between biotech cotton and other agronomic 

practices, including minimum tillage and irrigation are strong. This is especially true in 

the case of herbicide-tolerant varieties and minimum tillage practices. There is generally 

no scale bias, but when there is, RR is preferred by the smaller firm. Perceived economic 

benefits and technology effectiveness are found to have a key positive impact on 

adoption. 

 

The Impacts of Learning 

Learning by doing with either exact or similar technologies, that is experience from traits 

used in the previous year, is significant across all adoption equations. All three types of 

biotech cotton varieties are driven by these learning mechanisms, although experience 

with exact technologies is found to have a greater influence than experience from similar 

technologies. Learning from neighbors is also significant except in the case of ST, 

indicating that farmers observe and learn from other users as well. In addition to biotech 

cotton adoption, the adoption of minimum tillage is also influenced by learning from 
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neighbors.28 The fact that learning from neighbors is insignificant in the case of ST is 

reasonable, as information is expected to be scarce in the neighboring area due to the 

recent release of the ST technology. The relative significance of the three different  

learning mechanisms in the model suggests that learning by doing through partial 

adoption of the exact technology is the most influential, followed by learning from 

neighbors and similar technologies, depending on the type of the biotech cotton. 

For instance, in the BG case learning by doing of exact technology has the 

strongest impact on adoption, followed by learning from others and then learning from 

similar technologies. On average, cotton growers would increase Bt adoption in period t 

+1 by 0.25% with every 1% increase in the acreage of Bt in period t, ceteris paribus. On 

average cotton growers would increase Bt adoption in period t +1 by 0.13% with a 1% 

increase of Bt adoption at the same county in period t, ceteris paribus. On average cotton 

growers would increase Bt adoption in period t +1 by a little more than 0.03% for every 

1% increase in the previous RR (or ST) own adoption in period t, ceteris paribus. 

These outcomes confirm the hypothesized effects of various learning 

mechanisms, in that the learning processes encourage adoption, and the magnitude of 

learning by doing from exact technology is the strongest such as in BG model. The effect 

of learning from others and from similar technologies is also confirmed. 

 

 

 

 

                                                 
28 Due to data limitation, learning from own experience of minimum tillage can not be incorporated in this 
study. 
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Adoption Interdependencies and Technology Bundles 

Farmers encounter multiple choices in the selection of seed, including biotech and 

traditional cotton seeds, which can be chosen over others simultaneously. Traits are 

priced differently and can substitute for one another. Thus, farmers may substitute one 

seed for another, according to their characteristics, and relative competitiveness for 

land.29 The substitution effects, indeed, are very strong, and stronger among those 

varieties that shared certain characteristics. The substitutability between ST and RR was 

found to be the strongest.  

In the BG adoption model, RR is statistically insignificant, suggesting that 

adoption of BG is not strongly influenced by adoption considerations for RR. In RR 

adoption model, BG has a significant impact. Specifically, RR adoption increases by 

about 10% of every 100% decrease in BG acres with all other factors held constant. In 

addition, RR adoption increases about 28% for every 100% decrease in ST acres with all 

other factors held constant. In the ST adoption model, BG and RR are significant. ST 

adoption increases about 29% for every 100% decrease in BG acres with all other factors 

held constant. Moreover, ST adoption increases 37% for every 100% decrease in RR 

acres with all other factors held constant. These results suggest that the last of the three 

biotechnologies introduced in U.S. cotton production must “wrestle” acres away from 

other biotechnologies for its success. Overall, the empirical results confirm strong 

interdependencies among the three biotechnologies.  

 

 

                                                 
29 All endogenous explanatory GM cotton variables are negative in sign, implying that the substitution 
effect of the dependent variable. All but the RR in BG model are statistically significant at 0.01 
significance level. To adopt BG, farmers may not need to reduce the RR acres.  
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Synergy with Agronomic Practices 

Previous literature has qualitatively hypothesized that certain agronomic practices 

(e.g. no-tillage and irrigated land adoption) may be influenced by the use of biotech 

varieties and vice versa. The empirical results obtained here confirm that minimum 

tillage adoption influences and is influenced by herbicide tolerant cotton adoption. 

Synergies between minimum tillage adoption and herbicide tolerant variety adoption are 

very strong. For instance, on average RR or ST adoptions increase 49% and 31%, 

respectively, for every 100% increases in minimum tillage adoption with all other 

variables held constant. On the other hand, on average minimum tillage increases 35% or 

22% for every 100% increase in RR or ST adoption, respectively, with all other variables 

held constant. The synergies between minimum tillage practice and herbicide tolerance 

reinforce and strengthen the adoption of one another. This study is the first to empirically 

confirm this synergistic relationship between herbicide tolerance and minimum tillage 

practices. Considering the current controversy toward adoption of biotech crops, the 

results here underline one of the alleged environmental benefits-- soil preservation-- of 

biotech cotton.  

In addition to minimum tillage practice, irrigation also influences the adoption of 

biotech cotton varieties. The coefficient of (binary) irrigation measures the average 

difference in percentages adoption of each biotech cotton variety in irrigated land and 

non-irrigated land.  Irrigated land experiences increased by BT, RR, or ST adoption (on 

average) 5%, 9%, or 13 % respectively, relative to non-irrigated land with all other 

variables held constant. 
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Firm Heterogeneity and Scale Bias 

There is no scale bias across all GM cotton varieties or minimum tillage except in the 

case of RR cotton where smaller firms demonstrated higher adoption rates than larger 

firms. These results are consistent with the divisible nature of the technology and the lack 

of need for upfront investments. Hence, the stated hypothesis could not be generally 

rejected. It is unclear whether the minor advantage for small firms identified in the case 

of RR cotton is spurious or in fact a structural effect. 

 

Perceived Economic Gains from Innovation Adoption 

Pest control effectiveness is a unique characteristic inherent in biotech cotton varieties. 

Without appropriate pest control, yield losses lead to reductions in profit. Through 

biotech cotton adoption, farmers commit to a new pest control paradigm, which 

ultimately might minimize yield loss and increase profits. Thus, the farmers’ perceptions 

of pest control effectiveness determine one of the perceived dimensions of innovation 

gains from these new technologies: reduction in risk. All the proxies of perceived pest 

control effectiveness and secondary control over non-target pests have the correct sign 

and are statistically significant at the 0.01% level throughout all adoption equations. 

Hence, as farmers’ perceptions for decreased risk improve, their adoption tends to 

increase.  

 Perceived economic gains in the form of cost reductions are also significant. For 

instance, on average, Bt adoption increases 4% for every $10 of perceived savings in 

cost/acre with all other variables held constant. This impact increases to 6% for ST 
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varieties. Such effects are not strong in the case of RR cotton. It would appear that 

farmers perceive RR cotton as risk reducing rather than cost reducing technology.  

 In all, the empirical results of the adoption model are consistent with the 

hypothesized effects and the theoretical development in the previous chapter. 

Furthermore, they tell a story of a complex adoption decision process where farmers 

consider interdependent technologies with strong substitutability but also synergistic 

relationships with other agronomic practices; where complex learning mechanisms are 

utilized to improve innovation pay offs; and where complex perceptions of innovation 

gains—both pecuniary and non-pecuniary—are considered. These complexities in 

adoption decisions have not been uncovered or investigated in prior adoption studies of 

agricultural innovations. 
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CHAPTER 5 

DIFFUSION OF COTTON BIOTECHNOLOGIES IN THE US 

 

 

The hypotheses developed in chapters 1 and 2 are empirically tested in this chapter. An 

empirical diffusion model is structured in accordance with the theoretical developments 

in chapter 3 and estimated econometrically in this chapter. It should be noted that this is 

not a naïve epidemic diffusion model that seeks to predict the maximum level of 

diffusion or its speed. Instead, this is a theoretically consistent model that investigates 

whether the adoption behavior of all biotechnology cotton adopters in the US (i.e. of the 

population) over a five year period is consistent with the stated hypotheses developed in 

chapters 1 and 2. Such estimation has not been attempted in the past since population data 

has never been available for any agricultural innovation (or to the author’s knowledge 

any new technology of any kind). The population of adopters includes thousands of 

individuals located in 19 states. To keep the estimation tractable and to complete the data 

on adopters with additional relevant information that cannot be available for each 

individual in the population, I aggregate individual adoption information to the county 

level. Hence, the unit of observation in the analysis is the county. Estimated in this 

fashion, the empirical diffusion model also includes some useful considerations of space 

and innovation spread. 

As before, three separate learning mechanisms are explicitly modeled in the diffusion 

models of the three biotechnology cotton varieties. They include learning by doing from 

the technology of interest (learning from exact technology), learning from a similar 
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technology, and learning from others. However, all three learning variables take a 

somewhat different meaning when the unit of observation is the county rather than the 

individual adopter.  

The inclusion of lagged dependent variables intends to capture the iterative  

nature of the adoption process at the county level. It is hypothesized that previous 

adoption of the same biotech cotton variety positively influences future adoption of the 

same technology. The inclusion of lagged adoption of a similar biotech cotton variety in 

the same area intends to capture the concept that adopters could learn from similar 

technologies as well. Furthermore, it is hypothesized that the magnitude of learning from 

the exact technology is greater than from similar technologies in the same area. It should 

be noted here that at the county level experience from using the new technology becomes 

a hybrid concept that combines learning by doing and learning from neighbors that are 

most proximate.  

Learning from others also takes a somewhat different meaning within the context 

of the diffusion model.  Once again, I seek to quantify the impact of any learning from 

proximity effect on adoption. Proximity for this larger space model has a different 

context.   

Specifically, I quantify the “learning from others” effect through the combination 

of two distinct influences of learning: spatial distance to the source of information and 

quality of information where only successful adopters matter.  These concepts serve as 

the basic framework for constructing the proxy of learning from others (neighborhood 

effect) in the diffusion model. The idea is to incorporate only the successful adopters in 

the aggregate adoption model as “sources of information”. Arbitrarily 25% adoption is 
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used as a threshold to divide successful and unsuccessful areas of adoption.30 After the 

sources of information were determined, the distances between each unit of analysis 

(county) and sources of information were calculated. Only the nearest county is selected; 

consequently, the distances between the unit of analysis and the source of information are 

used as the first of two parts of learning from others in the diffusion model.  

It is possible that several sources of information around the area of analysis are 

adjacent to one another.   The previous proxy would only account for the closest sources 

of information and discard the rest. To take other nearby sources of information into 

consideration, the numbers of sources of information must be taken into account. An ad 

hoc method is to count the sources of information; however, far away counties are not 

likely to influence the diffusion phenomena comparing to nearby counties. The question 

is how far away is considered “nearby” and how far away is counted as “far”. If the 

closer sources of information are to be given more weight, it may be appropriate to take 

variance into account.  These factors would complicate the counting since each source of 

information may not be counted as one, but more or less depending upon their weight. 

Another possibility is to introduce a fixed radius around the area of analysis and count all 

the sources of information within this radius.  

Instead of choosing a fixed radius, flexible boundaries can be calculated based 

upon their relative distance to all other sources of information in order to count all the 

sources of information that are located within this boundary. The later method relies on 

the relative distances and location of the unit of analysis and whether it is located in an 

area of high concentration to other sources or a rather isolated area. This later method is 

used in this analysis, and average distances from all sources of information are used as 
                                                 
30 For Bollgard Cotton, 25% adoption was about 10% of total GM cotton planted in 1996. 
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the boundary. Thus, the number of sources of information that are located between the 

area of analysis and all the sources of information determine the second proxy of learning 

from others in the empirical diffusion model.  

It is hypothesized that as the area of analysis and the source of information 

become closer in distance, more information is shared and the adoption rate increases. It 

is further hypothesized that the more sources of information within the boundary, the 

more information is shared, and the larger the adoption rate. 

Biotech and traditional cotton varieties compete for land; thus, it is hypothesized 

that biotech cotton varieties are substitutes. The magnitude of substitution is expected to 

be stronger between biotech cotton varieties that have similar traits than when they do 

not.  

The relevance of the hypothesized synergies between herbicide tolerant cotton  

varieties and agronomic practices, such as minimum tillage, can be explicitly tested 

within the empirical model. Synergies with other agronomic practices are also 

considered.  Irrigated land is hypothesized to encourage the adoptions of biotech cotton 

due to implied efficiency gains.  

Once again, the scale neutrality of cotton biotechnologies is empirically 

evaluated. Insect resistant and herbicide tolerant cotton varieties as well as minimum 

tillage practices are hypothesized to be scale neutral.  

The various counties in different locations are assumed to be heterogeneous in the 

pest pressure they experience. Accordingly, locations are differentiated by measures of 

both insect and weed pressures. The higher the pest pressures are, the higher the adoption 

and diffusion of biotech cotton varieties are expected to be. 
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The Empirical Model 

 

Following these arguments, I specify here diffusion model to guide the empirical 

analysis. The adoption decisions for the various agrobiotechnologies and related 

agronomic practices are represented by a system of simultaneous equations for a period 

of five years. Adoption decisions are interdependent and simultaneous, as the three 

biotechnologies can be adopted both independently and as bundles. Accordingly, the 

following simultaneous equation system is specified and estimated. 
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Table 6: Variables used in empirical specification of diffusion model 

       Variable Definition Proxy 
 Percent adoption of each biotech 

cotton and Min.Tillage (j) by each 
county (i) at time t  

( =dependent 
variables) 

j
tiY ,

BG
tiY ,  Percent adoption of Bollgard cotton 

by each county (i) at time t  
 

RR
tiY ,  Percent adoption of Roundup Ready 

cotton by each county (i) at time t 
 

ST
tiY ,  Percent adoption of Stacked cotton 

by each county (i) at time t 
 

j
tiY ,  

MinTL
tiY ,  Percent adoption of Min. Tillage by 

each county (i) at time t 
  

 Percent adoption of each biotech 
cotton and Min.Tillage (j) by each 
county (i) at prior time (t-1)  (one 
year lagged dependent variables) 

Learning by 
doing of exact 
technology 

BG
tiY 1, −  Percent adoption of Bollgard cotton 

by each county (i) at prior time (t-1)   
 

RR
tiY 1, −  Percent adoption of Roundup Ready 

cotton by each county (i) at prior 
time (t-1)   

 

ST
tiY 1, −  Percent adoption of Stacked cotton 

by each county (i) at prior time (t-1)   
 

j
tiY 1, −  

 
 
 

0: 10 ≤jaH  

MinTL
tiY 1, −  Percent adoption of Min. Tillage by 

each county (i) at prior time (t-1)   
 

~
jj ≠  

 

Percent adoption of other biotech 

cotton ( ) by each county (i) at prior 
time (t-1)   

~
j

Learning by 
doing of similar 
technologies31 

~

1,
BG
tiY −  Percent adoption of Bollgard cotton 

by each county (i) at prior time (t-1)   
 

~

1,
j
tiY −  

 
 

0:
~

20 ≤jaH  
~

1,
RR
tiY −  Percent adoption of Roundup Ready 

cotton by each county (i) at prior 
time (t-1)   

 

                                                 
31 Lagged endogenous explanatory variables are used in each diffusion model in two aspects: learning by 
doing from the exact technology and learning by doing from other similar technologies. Only one lagged 
dependent variable is considered as the proxy of learning by doing from exact technology while two 
separated lagged endogenous explanatory variables are considered as proxies of learning by doing from 
similar technologies. The superscript ~ is just to emphasize that these variables are considered as learning 
from similar technologies although in diffusion model specification they are simply lagged endogenous 
explanatory variable that are also used as the lagged dependent variable in other diffusion model. 
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       Variable Definition Proxy 
~

1,
ST
tiY −  Percent adoption of Stacked cotton 

by each county (i) at prior time (t-1)   
 

3jj ≠  Percent adoption of each biotech 
cotton and Min.Tillage (j) by each 
county (i) at time t 
( =endogenous independent 
variables) 

3,
,

jj
tiY

Multiple 
simultaneous 
effects 

3jj ≠  

MinTLj ≠3  

Percent adoption of Bollgard cotton 
by each county (i) at time t in 
Bollgard model 
 

 

3jj ≠  
 

Percent adoption of Roundup Ready 
cotton by each county (i) at time t in 
RR model 

 

3jj ≠  
 

Percent adoption of Stacked cotton 
by each county (i) at time t in ST 
model  

 

3,
,

jj
tiY  

 
 
 
 

0: 3,
30 ≥jjaH  

 
 
 

0: 3,
30 ≥jjaH  

 
0: 3,

30 ≥jjaH  
 
 

0: 3,
30 ≤jjaH  3jj ≠  

BGj ≠3  

Percent adoption of Min. tillage by 
each county (i) at time t in Min.TL 
model 

 

4,
,,4
kj
tiX  

0: 4,
40 ≤kjaH  

 Percent irrigated acres of farm in 
county i in year t (Irrigated acresi,t / 
total planted cotton acresi,t)   

Synergy with 
other agronomic 
practice as 
irrigated land 
(when appeared 
on RHS) 

2,15 =k  Average size of farm in county i 
(‘000 acres) : Avg. of 1997 and 2000 
county data 
(Individual variations regardless of 
time) 

Heterogeneity 
toward 
economies of 
scale 

1,
,5

5=kj
iX  Sizei = Harvest farmi / harvest acresi   

5,
,5
kj
iX  

 
 
 
 

0: 5,
50 =kjaH  

2,
,5

5=kj
iX  Size squarei = sizei

2  

 Binary dummy variable: 
Time variations regardless of county 
level 

Time effect 6,
,6
kj
tX  

1,
,6

6=kj
tX  dummy variable when 1997=1; else 

=0 
 

2,
,6

6=kj
tX  dummy variable when 1998=1; else 

=0 
  

3,
,6

6=kj
tX  dummy variable when 1999=1; else 

=0 
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       Variable Definition Proxy 
4,

,6
6=kj

tX  dummy variable when 2000=1; else 
=0 

 

MinTLj ≠ Average pest pressure by state in 
year t 

Pest pressure by 
state 

1,
,,7
7 =kj
tis

X  Avg. percent Bollworm infected 
acres by state in year t 

Insect pressure by 
state 

7,
,,7

kj
tis

X  
 

0: 7,
70 ≤kjaH  

2,
,,7
7 =kj
tis

X  Avg. Weed dollar lost by state in 
year t 

Weed pressure by 
state 

MinTLj ≠ Geographic proximity effect: 
distances and concentrations of 
sources of information 

Geographic effect 
through sources 
of information 

1,
,,8

8=kBG
tiX  Minimum distances (in miles) from 

sources of information (25% BG 
adoption) 

Nearness 
(distance) Effect 
from sources of 
adoption info. 

1,
,,8

8=kRR
tiX  Minimum distances (in miles) from 

sources of information (25% RR 
adoption) 

 

1,
,,8

8=kST
tiX  Minimum distances (in miles) from 

sources of information (25% ST 
adoption) 

 

2,
,,8

8=kBG
tiX  Numbers of other BG adoption 

counties as sources within boundary 
of AVG. distances of all sources 

Area 
concentration (# 
of sources) of 
exact biotech 
adoption  

2,
,,8

8=kRR
tiX  Numbers of other RR adoption 

counties as sources within boundary 
of AVG. distances of all sources 

 

8,
,,8
kj
tiX  

 
 
 

0: 1,
80

8 ≥=kjaH  
 
 

0: 1,
80

8 ≥=kjaH  
 
 

0: 1,
80

8 ≥=kjaH  
 
 

0: 2,
80

8 ≤=kjaH
 
 
 

0: 2,
80

8 ≤=kjaH
 
 
 

0: 2,
80

8 ≤=kjaH

2,
,,8

8=kST
tiX  Numbers of other ST adoption 

counties as sources within boundary 
of AVG. distances of all sources 

 

Restrictions in Minimum 
Tillage model: 
 

0., 872 =jjj aaa  
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Expected Sign of Coefficient Estimates and Hypotheses 

 

o Learning mechanisms 

o Learning by doing from exact technology 

:   0: 10 ≤jaH

      0: 11 >jaH

o Learning by doing from similar technologies 

:  ( ) 0:
~

20 ≤jaH
~
jj ≠

   ( ) 0:
~

21 >jaH
~
jj ≠

o Technology Interdependencies and Complement 

o BG model 

:  (0: 3,
30 ≥jjaH 3jj ≠ & MinTLj ≠3 ) 

   (0: 3,
31 <jjaH 3jj ≠ & MinTLj ≠3 ) 

o RR and ST models 

:  (0: 3,
30 ≥jjaH 3jj ≠ ) 

   (0: 3,
31 <jjaH 3jj ≠ ) 

o Minimum tillage model 

:  (0: 3,
30 ≤jjaH 3jj ≠ & BGj ≠3 ) 

   (0: 3,
31 >jjaH 3jj ≠ & BGj ≠3 ) 
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For instance, the hypothesis that RR and/or ST technologies encourage adoption of 

minimum tillage in the same area can be empirically assessed by evaluating the statistical 

significance of and .  MinTLRRa ,
3

MinTLSTa ,
3

o Synergy with other agronomic practices-- irrigation 

:  0: 4,
40 ≤kjaH

   0: 4,
41 >kjaH

 Irrigated land is hypothesized to encourage the adoptions of biotech cotton as well 

as minimum tillage in the same area.  

o Scale effects 

:  0: 5,
50 =kjaH

    0: 5,
51 ≠kjaH

o Time effect 

o Pest pressure 

        :  0: 7,
70 ≤kjaH

              0: 7,
70 >kjaH

o Geographic proximity as sources of information regarding the adoption of biotech 

cotton 

It is hypothesized that the closer the area of analysis is to the source of  

information, the more information is shared and the larger the adoption rate. If the unit of 

analysis is itself the source of information, the distances are to be zero.  

:   (0: 1,
80

8 ≥=kjaH MinTLj ≠ ) 

    (0: 1,
81

8 <=kjaH MinTLj ≠ ) 
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It is similarly hypothesized that the more sources of information within the 

boundary, the more information flows, and the larger the adoption rate. 

:   (0: 2,
80

8 ≤=kjaH MinTLj ≠ ) 

    (0: 2,
81

8 >=kjaH MinTLj ≠ ) 

 

Data 

 

Data was obtained from the trait supplier for the purpose of this research. The 

original data consisted of all the biotech cotton seed transactions (in bags) within the U.S. 

from 1996 to 2000. In this five year period, there were more than 25,000 cotton growers 

in 720 counties around the US making at least one purchase of biotech seeds. The biotech 

cotton seed varieties were comprised of Bollgard© (BG), Roundup Ready©(RR), and 

(Stacked) Bollgard Roundup Ready©(ST).  The purchases of seed were converted into 

estimated planting acres. Only the numbers of acres and the county of purchase are 

examined in this analysis. As suggested earlier, the data is aggregated to the county 

level32.  

 Other sources of data were also employed in the model, including data from the 

Conservation Technology Information Center (CTIC) for county level of tillage acres by 

year, National Agricultural Statistics Services (NASS) for county level of cotton planted 

and irrigated acres by year, state level information on cotton insect losses in acres by year 

                                                 
32 It is assumed that the seed was used at the same year where it was sold.  
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(Williams, Mississippi State University), and state level dollar losses from weed 

infestation (Byrd, Mississippi State University). 33 

Geographic proximity: 

The two geographic proximity variables attempt to verify whether the source of 

information matters. The underlying concept is that information diffuses through 

proximate regions.  This is an empirical concept that has not been used in any previous 

studies.  The formulation of this concept into relevant proxies of minimum distance from 

the source of information and the nearby sources of information is explained below. 

The distances among various counties are the same for every time period, while 

the percent of adoption varies annually. So at a given time, some areas (counties) 

influence, or are influenced by other counties. The areas (counties) that initially have a 

certain percent of adoption are considered “sources of information.”  Deriving the 

qualification threshold for the “sources of information” is difficult since there are no 

priors suggested by the literature, particularly for agricultural biotechnology products. 

For this study, I arbitrarily set the threshold at 25% adoption. The 25% adoption 

threshold in 1996 implied that about 10% of all the counties were “sources of 

information.” For consistency, previous-year 25% adoption of each biotech cotton variety 

is used for all three varieties and for all years from 1996 to 2000. Hence, for 1996, there 

would be no sources of information, since the insect resistant variety was introduced to 

the market in 1996 and the herbicide tolerant varieties were introduced in 1997. 

Having the sources of information is only part of the calculation. The distances 

between the county of interest and other counties need to be taken into account. Using 

                                                 
33 Other data comes from Census Bureau for demographic data and various sources to derive the number of 
dealers by county. These two data sets, however, are not included in the final model. 
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longitudinal and latitudinal coordinates of county centroids, the distances (in miles) 

between each of the 781 cotton growing counties can be obtained. Once, the 781X 781 

matrix of distances of cotton growing counties is calculated, then the sources of 

information can be overlaid so that the minimum distances between the county of interest 

and the sources of information can be derived for use as a proxy of minimum distances 

from the source of information. It is possible that there could be a number of counties that 

qualify as sources of information are located nearby each other. With the only proxy of 

minimum distances between county of interest and the sources of information, only one 

source of information, the one that yields the minimum distances, is counted.  

To take into account other nearby sources of information, all the sources of 

information within a specified radius are taken into account regardless of their distance to 

the county of interest. Then, the average distances of all the sources of information are 

calculated. Lastly, only the sources of information located within the radius of average 

distances are counted and used as a proxy of “numbers of sources of information.” 

 104



 

 Table 7: Empirical results of BG diffusion model 

GM Cotton diffusion Model Bollgard® model (BG) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated 

Std. 
Error 

t- 
Value Pr > |t| 

       
Dependent variable: %BGt per county (t=1996,…,2000) 

Intercept_BT 4.578 1.307 3.500 0.001
Learning mechanisms      
Learning by doing of exact technology 0.591 0.049 12.190 <.0001
Learning by doing of similar technologies      
Learning from last year RR 0.114 0.021 5.370 <.0001
Learning from last year ST -0.005 0.029 -0.160 0.876
Learning from others      
Geographic Effect through sources of info.      
Closet to the source of info.BG_t-1 (miles) -0.012 0.003 -4.430 <.0001
# of Counties within the Means boundary -0.055 0.018 -3.010 0.003
Multiple simultaneous effects      
With RR adoption -0.288 0.053 -5.460 <.0001
With ST adoption -0.038 0.079 -0.480 0.628
Synergies with other agronomic practices      
Synergies with irrigation 0.080 0.018 4.480 <.0001
Heterogeneity toward economies of scale      
Scale bias 0.010 0.004 2.390 0.017
Scale bias squared 0.000 0.000 -1.520 0.129
Time period effect      
dummy variable when 1997 = 1; else = 0 -0.537 1.714 -0.310 0.754
dummy variable when 1998 = 1; else = 0 -0.438 1.865 -0.230 0.814
dummy variable when 1999 = 1; else = 0 -2.931 1.663 -1.760 0.078
dummy variable when 2000 = 1; else = 0 -1.554 1.706 -0.910 0.362
Pest Control Effect      
% Bollworm Infected Acres 0.041 0.009 4.410 <.0001
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Table 8: Empirical results of RR diffusion model 

GM Cotton diffusion Model Roundup Ready® model (RR) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated 

Std. 
Error 

t- 
Value Pr > |t| 

       
Dependent variable: %RRt per county (t=1996,…,2000) 

Intercept_RR -0.092 1.508 -0.060 0.952
Learning mechanisms      
Learning by doing of exact technology 0.507 0.070 7.200 <.0001
Learning by doing of similar technologies      
Learning from last year BG 0.250 0.052 4.790 <.0001
Learning from last year ST 0.102 0.048 2.130 0.033
Learning from others      
Geographic Effect through sources of info.      
Closet to the source of info.RR_t-1 (miles) -0.031 0.005 -6.290 <.0001
# of Counties within the Means boundary -0.031 0.032 -0.980 0.327
Multiple simultaneous effects         
With BG adoption -0.381 0.095 -4.020 <.0001
With ST adoption -0.117 0.111 -1.050 0.292
Synergies with other agronomic practices         
Synergies with minimum tillage program 0.079 0.024 3.260 0.001
Synergies with irrigation 0.072 0.019 3.700 0.000
Heterogeneity toward economies of scale         
Scale bias 0.001 0.005 0.170 0.864
Scale bias squared 0.000 0.000 -0.120 0.906
Time period effect         
dummy variable when 1997 = 1; else = 0 1.510 0.779 1.940 0.053
dummy variable when 1998 = 1; else = 0 10.862 1.490 7.290 <.0001
dummy variable when 1999 = 1; else = 0 6.075 2.140 2.840 0.005
dummy variable when 2000 = 1; else = 0 10.786 2.756 3.910 <.0001
Pest Control Effect         
Weed lost in dollar 0.006 0.001 5.420 <.0001
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Table 9: Empirical results of ST diffusion model 

GM Cotton diffusion Model 
Bollgard® Roundup Ready® 

model (ST) 

Proxy and meaning of explanatory variables 
Parameter 
Estimated 

Std. 
Error 

t- 
Value Pr > |t| 

          
Dependent variable: %STt per county (t=1996,…,2000) 

Intercept_St -4.455 1.359 -3.280 0.001
Learning mechanisms      
Learning by doing of exact technology 0.532 0.070 7.550 <.0001
Learning by doing of similar technologies      
Learning from last year BG 0.519 0.088 5.870 <.0001
Learning from last year RR 0.207 0.050 4.160 <.0001
Learning from others      
Geographic Effect through sources of info.      
Closet to the source of info.ST_t-1 (miles) -0.009 0.002 -3.810 0.000
# of Counties within the Means boundary 0.113 0.063 1.790 0.073
Multiple simultaneous effects      
With BG adoption -0.617 0.161 -3.840 0.000
With RR adoption -0.235 0.122 -1.920 0.054
Synergies with other agronomic practices      
Synergies with minimum tillage program 0.088 0.027 3.200 0.001
Synergies with irrigation 0.040 0.019 2.060 0.040
Heterogeneity toward economies of scale      
Scale bias 0.013 0.005 2.720 0.007
Scale bias squared 0.000 0.000 -1.620 0.106
Time period effect      
dummy variable when 1997 = 1; else = 0 -4.713 0.888 -5.310 <.0001
dummy variable when 1998 = 1; else = 0 0.650 1.086 0.600 0.550
dummy variable when 1999 = 1; else = 0 -1.753 2.416 -0.730 0.468
dummy variable when 2000 = 1; else = 0 4.298 2.753 1.560 0.119
Pest Control Effect      
% Bollworm Infected Acres 0.058 0.012 4.860 <.0001
Weed lost in dollar 0.004 0.001 2.850 0.004
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Table 10: Empirical results of minimum tillage diffusion model 

GM Cotton diffusion Model Minimum Tillage Practices 

Proxy and meaning of explanatory variables 
Parameter 
Estimated 

Std. 
Error 

t- 
Value Pr > |t| 

          
Dependent variable: %Min.TLt per county (t=1996,…,2000) 

Intercept_MinTL 10.631 2.463 4.320 <.0001
Learning mechanisms      
Learning by doing of exact technologies 0.409 0.027 15.060 <.0001
Multiple effect & Synergies with GM 
varieties      
Synergies with RR varieties 0.166 0.050 3.360 0.001
Synergies with ST varieties 0.359 0.054 6.650 <.0001
Synergies with RR and/or ST irrigation 0.095 0.026 3.610 0.000
Heterogeneity toward economies of scale      
Scale bias -0.006 0.010 -0.670 0.506
Scale bias squared 0.000 0.000 1.090 0.276
Time period effect      
dummy variable when 1997 = 1; else = 0 -2.294 1.277 -1.800 0.072
dummy variable when 1998 = 1; else = 0 -3.683 1.352 -2.730 0.007
dummy variable when 1999 = 1; else = 0 -8.318 1.450 -5.740 <.0001
dummy variable when 2000 = 1; else = 0 -11.048 1.706 -6.480 <.0001

 

 

Empirical Results 

 

Similar to the individual adoption findings, diffusion is influenced by the level of 

diffusion of biotech cotton varieties in the previous year, synergies with agronomic 

practices, and by the economics of the new technologies. Lagged biotech cotton adoption  

allows for “learning by doing” from either the exact technology or similar technologies 

within the limits of a county.   
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Learning from others (neighbors) in aggregate adoption is redefined and utilized 

both in the “information nearness” and “information concentration” proxies. This 

approach takes into account the closest distance to the only designated source location (as 

information nearness) and the concentration level of all designated sources within a 

certain boundary (information concentration). Information nearness is statistically 

significant across all technologies while information concentration seems to matter only 

in the ST model.  

Learning by doing of exact technologies is the most influential factor in all but the 

ST models. Multiple simultaneous effects (substitutability for biotech cotton models and 

complementarities with minimum tillage model) are also dominant factors. 

Substitutability to BG in ST model is the strongest factor. Due to the fact that ST was 

first introduced on the market in 1998, the diffusion of ST was still in the early stage in 

2000, which is the latest data available in this study. This fact may contribute to some 

behavior that is unexpected or incongruent to the stated hypotheses.  

 Diffusion of biotech cotton varieties in period t+1 increases, on average, by more 

than 50% for every 100% increase in the acreage of the exact same technology in period t 

with all other factors held constant. Diffusion is also influenced by use and learning from 

similar technologies. For instance, BG diffusion also relies on previous RR aggregate 

adoption in the same county. On average BG diffusion increases by about 10% for every 

100% increase in previous aggregate RR adoption at the same county with all other 

factors held constant. In the RR case, RR diffusion increases by about 10% (and up to 

25%) for every 100% increase in previous ST adoption (or previous BG at the same 

county with all other factors held fixed). As for the ST diffusion model, approximately 
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50% of the increases in ST diffusion come from an 100% increase in either previous RR 

or BG with all other factors held constant.  

 The diffusion model also indicates that learning from others has a strong 

proximity character and affects diffusion. The closer to the source of information a 

county is, the more likely is that diffusion of the exact technology in that county will 

increase. For example, in BG model, current BG diffusion increases about 1.2% for every 

100 miles closer to the nearest BG source of information is. In the RR model, any county 

with at least 25% adoption of RR in period t+1 is responsible for a 3% increase in period 

t RR diffusion within the 100 miles radius if the particular county is the closet source of 

information to any other counties. In the ST model, current ST diffusion increases almost 

1% for every 100 miles in radius closer to the nearest source of ST information a year 

earlier.  

 Information concentration captures all the surrounding sources of information. All 

the sources of information surrounding a particular county are designated and their 

distance to the second county is added.  The average distances to all the sources are 

calculated, but only the numbers of sources within the average distance are counted 

toward information concentration. Those counties that are located outside the average 

distances are considered too remote and consequently ignored. Only the past ST 

concentrations influence the current ST diffusion. Given the early stages of ST diffusion, 

it is possible that such effect is spurious.  

 Substitutability is found to have a strong impact on aggregate adoption, 

particularly, in RR and ST diffusion models. As BG lost popularity after 1998, both RR 

and ST would appear to have substituted for BG. The empirical results suggest that the 
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current BG diffusion decreases on average 29% for every 100% increase in current RR 

aggregate adoption. Reverse effects also exist suggesting that, on average, 38% 

decreasing in RR diffusion when BG increases by 100%. Clearly, although BG and RR 

control different types of pests, they seem to act as substitutes as they do compete for 

limited land.  

The empirical model also indicates that the current ST diffusion increases by 62% 

for every 100% decrease in current BG aggregate adoption. This finding suggests that the 

introduction of a new technology can affect the adoption level of an old one to the point 

of disadoption. The large marginal effects suggest that ST directly displaces BG much 

more that RR would. This is reasonable due to the similar properties of BG and ST. The 

current ST diffusion also increases by about 20% for every 100% decrease in current RR.  

 The strong synergy between minimum tillage and herbicide-tolerant varieties is 

once again confirmed in the diffusion model. Minimum tillage is one of the factors 

responsible for a substantial level of diffusion of herbicide tolerant cotton. For every 

100% increase in current minimum tillage practice, diffusion of herbicide-tolerant cotton 

would increase from 3% to 8% with other factors held constant. The reverse impact is 

significantly stronger. Herbicide-tolerant cotton diffusion strongly encourages the 

diffusion of minimum tillage practice. The minimum tillage practice increases 36% for 

every 100% increase in ST cotton. Similarly, minimum tillage practices increase 17% for 

every 100% increase in RR cotton. From this finding, it is clear that minimum tillage 

diffusion relies proportionally on the concentration of herbicide tolerant-cotton. 

 In addition to the synergy between herbicide tolerant cotton and minimum tillage, 

synergies also exist between biotech cotton and irrigated acreage. Irrigated acres are 
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statistically significant at 1% and encourage diffusion of all biotech and minimum tillage 

practices. For every 100% increase in currently irrigated land, diffusion of biotech cotton 

as well as minimum tillage practice would increase by 4% to 10%.  

 Economics have a significant impact on the diffusion of all biotech cotton 

varieties. The percentage of bollworm infected acres and dollar losses due to weed 

infestation were used as proxies of pest pressure and economic need for improved 

methods of pest control.  All biotech cotton diffusion increased as pest pressure rises. In 

the BG model BG diffusion increased 4% for every additional 100 bollworm infected 

acres in the area. In the RR model, RR diffusion increased 6% for every additional 

$1,000,000 lost to weed damage in the area.  

 Average size of farms and their quadratic effect are used as proxies of scale bias. 

Only BG diffusion showed any significant scale effects and even then such impact was 

rather small in value. Specifically, BG diffusion increased by 10% for every 1,000 acres 

increase in the average farm size in the particular county. Given that BG diffusion has 

been shrinking, the result may be due to the fact that larger farms have been slower to 

disadopt.  

In all, much like with the adoption model in chapter 4, the stated hypotheses are 

supported within the context of the diffusion model  
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

 

 

 In this study I proposed the following hypotheses: (a) US cotton producers 

adopt biotechnologies in order to maximize an expected stream of profits over a given 

period of time. Accordingly, producer adoption decisions are closely influenced by 

perceived economic gains from various biotechnologies. (b) US cotton producers 

account for interdependencies and choose bundles of conventional technologies, 

agricultural biotechnologies and relevant agronomic practices. Hence, their behavior is 

characterized by multiple simultaneous and interdependent adoption decisions. (c) In 

the presence of complexity and uncertain performance, US cotton producers use 

multiple learning mechanisms to optimize the use of the three cotton biotechnologies 

over time. They partially adopt one or more of the technologies and learn by doing. 

They also learn by observing other users. Hence, their adoption decisions are dynamic 

in nature. (d) Cotton biotechnologies are highly divisible and require no significant 

upfront investment. Their adoption implies no scale bias and it is evenly distributed 

across all firm sizes. (e) Dynamic and simultaneous considerations explain not only 

adoption decisions among producers in any given year but also aggregate diffusion 

patterns observed over a period of time.  

I empirically tested these hypotheses within the context of two closely linked but 

separate adoption and diffusion models for three selected cotton biotechnologies. For the 

adoption model, I used detailed survey data for a representative sample of US producers 
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to examine the influence of the following factors: perceived innovation rents, perceived 

innovation risk, technology interdependencies, learning from past adoption decisions, 

adoption of related agronomic practices, and farm size. For the diffusion model, I 

examined the influence of similar variables on the behavior of the whole population of 

adopters over multiple years. 

The population of the potential adopters is not considered homogeneous. Farms 

are assumed to differ in their characteristics (e.g. size, agronomic practices, and use of 

other technologies like irrigation). Farm location can also point to other significant 

differences among farms that can influence their behavior towards innovation (e.g. 

differential pest pressures). Farm heterogeneity is assumed to explain, in part, differential 

adoption and diffusion levels in cotton biotechnologies.  

 In their effort to maximize expected profits and minimize risks, cotton producers 

may partially adopt one or more new biotechnologies. These new technologies compete 

for land in any given period, and served as sources of basic knowledge for further 

adoption in following periods. I model this producer behavior within the framework of an 

optimal control problem.  

While the derivations presented here are cumbersome and not elegant, some interesting 

observations can be made about the results. First, depending on the efficiency of the 

learning processes, the new technologies can replace the traditional one. Second, the 

relative learning of each new technology affects their individual and aggregate adoption. 

Third, depending on the relative efficiency of each learning process, it is possible to 

reverse the adoption of one of the new technologies, in favor of increasing the adoption 

of another. Hence, depreciation of a new technology can happen through own and cross 
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learning and through advancement of the alternative new technology. These results would 

be counter-intuitive without considering the adoption of the two new technologies jointly 

and their cross-learning effects. 

 The most significant insight obtained through the theoretical developments in this 

study, however, is an indirect one. Derivations demonstrated that as one attempts to add 

relevancy to theoretical constructs of producer adoption decisions and account for 

technology interdependencies, learning and other relevant effects, the complexity of the 

theoretical derivations increases and solutions become quickly intractable. This result 

suggests that empirical analysis is all that much more important, or may be the only way 

to examine relevant complexity in innovation adoption and diffusion. 

 For these reasons, the empirical analyses of adoption and diffusion patterns were 

ultimately the focus of this study. Both the survey and population data suffered from 

heteroscedasticity and in the case of the diffusion data, also from serially correlation. 

Thus, parameters were estimated through Generalized Method of Moments which yield 

consistent and efficient estimates. 

Empirical results confirmed the stated hypotheses. They showed: that adoption is 

driven by various learning mechanisms and perceptions of innovation rents and risk. All 

biotechnologies substitute one another and compete for land. Synergies between biotech 

cotton and other agronomic practices, including minimum tillage and irrigation, are 

strong. This is especially true in the case of herbicide-tolerant varieties and minimum 

tillage practices. 

The dynamic interdependencies among the three biotechnologies over multiple 

periods were intensity. For example, in any period, all varieties compete for land. 
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However, previous experience with any of the new varieties encourages further adoption 

not only its own trait but of similar traits as well. There are strong synergies between 

herbicide tolerant and minimum tillage practices at any given period that lead to 

reinforceable adoption relationships. This finding confirms the hypothesis that has been 

posed but not quantified in previous literature that herbicide tolerant biotech varieties 

contribute to the adoption of reduced tillage practices with associated gains in soil 

conservation. 

The empirical results indicated that there is generally no scale bias in the adoption 

of biotechnologies, but when there is, herbicide resistant biotech cotton is adopted more 

by smaller firms. Perceived economic benefits and technology effectiveness were found 

to have a key positive impact on adoption. 

The empirical results of this study therefore tell a story of a complex adoption 

decision process where farmers consider interdependent technologies with strong 

substitutability but also synergistic relationships with other agronomic practices; where 

complex learning mechanisms are utilized to improve innovation pay offs; and where 

complex perceptions of innovation gains—both pecuniary and non-pecuniary—are 

considered. These complexities in adoption decisions have not been uncovered or 

investigated in prior adoption studies of agricultural innovations. 

The empirical results from the diffusion models were also consistent with those of 

the adoption models. Empirical results showed that diffusion in any given year is 

influenced by the level of diffusion in the previous year, synergies with agronomic 

practices, and by the economic payoffs of the new technologies. Substitutability among 

new technologies was found to have a strong impact on diffusion, particularly, in 
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herbicide resistant and stacked cotton biotechnologies. Learning by doing and from 

others were also found to influence the diffusion levels of biotech innovations. 

 In the diffusion model, learning from others (neighbors) was measured through 

“information nearness” and “information concentration” proxies. This approach took into 

account the closest distance to an information source and the concentration level of 

information sources within a certain boundary. Information nearness was found to be 

statistically significant across all technologies while information concentration seemed to 

matter only in the stacked model.  

Learning by doing of exact technologies was found to have a significant impact 

on diffusion. Diffusion was also influenced by use and learning from similar 

technologies. 

Substitutability among the three new technologies was found to have a strong 

impact on diffusion, particularly, in the herbicide resistant and stacked diffusion models. 

Clearly, although the three cotton biotechnologies control different types of pests, they 

act as substitutes as they do compete for limited land.  

 The strong synergy between minimum tillage and herbicide-tolerant varieties is 

once again confirmed. Minimum tillage use is one of the factors that is responsible for a 

substantial level of the diffusion of herbicide tolerant cotton. The opposite is also true. 

From this finding, it is clear that minimum tillage diffusion relies on the adoption and 

diffusion of herbicide tolerant-cotton as well. Synergies also exist between biotech cotton 

and irrigated acreage.  

 Innovation rents have a significant impact on the diffusion of all biotech cotton 

varieties. The percentage of bollworm infected acres and dollar losses due to weed 
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infestation were used as proxies of pest pressure and economic need for improved 

methods of pest control.  All biotech cotton diffusion increased as pest pressure grew.  

 Only the diffusion of insect resistant biotech cotton showed any significant scale 

effects and even then such impacts were rather small in value. Given that the diffusion of 

insect resistant cotton has been shrinking, the result may be due to the fact that larger 

farms have been slower to disadopt. In all, much like with the empirical results of the 

adoption model, the stated hypotheses were supported within the context of the diffusion 

model  
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