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ABSTRACT 
 
 
 Inertial Electrostatic Confinement (IEC) devices are of interest as neutron 

generators for many applications.  An essential part of these devices is the formation of a 

multiple potential well structure within the devices.  In this paper, previous analyses of 

the formation of these wells are reviewed and extended.  Three types of IEC systems are 

classified and analyzed according to the arrangement of electrodes and the species within 

the system.  These systems are the uni-polar cathode-anode (UCA) system, the bi-polar 

cathode-anode (BCA) system, and the bi-polar anode-cathode (BAC) system.  Results of 

extensive parametric studies are reported through an efficient solution of the Poisson’s 

equation.  These results delineate the conditions most conducive for double potential well 

formation in different systems and may aid in the future design of IEC systems. 
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I. INTRODUCTION 

 

Inertial Electrostatic Confinement (IEC) devices have many potential 

applications, including their use as neutron generators.  A few of these applications 

include: luggage inspection, oil well logging, medical isotope production, detection of 

explosives, archaeometry, forensics, breeding advanced fuels (He3), transmuting long-

lived radioactive isotopes from fission reactor waste, a neutron source to drive a sub-

critical fission reactor, generating power for space craft, and generating power for 

terrestrial needs [1]-[9].  

Medical isotopes are typically produced on site at a clinic with the use of medical 

isotope generators, or accelerators.  Isotopes used for imaging must be produced on site at 

the clinic due to the short half-life of typical isotopes employed for medical imaging.  

The advantages of an IEC device for producing medical isotopes are that it is small, 

compact, and inexpensive.  Such a portable neutron generator can be transported to some 

of the most remote places on earth in order to treat patients in a relatively inexpensive 

manner.  Another advantage of the IEC is that the radioactivity hazard can effectively be 

“unplugged”, when not in use, thus, special handling, and shielding requirements are 

limited [10].  Of course, many of these characteristics are desirable features for a number 

of neutron generator applications.  Experiments performed at the University of 

Wisconsin-Madison have generated 4-8 Bq of N13.  Protons of 14.7 MeV, generated by 

D-He3 reactions, irradiate water flowing through the IEC reactor to produce N13.  The 

isotope, N13, is later separated from the water [7], [8]. 
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In light of these potential applications for the IEC devices, many experimental 

and theoretical studies have been conducted regarding the potential distribution within 

IEC reactors.  Experiments performed with IEC devices indicate the existence of a 

multiple potential well structure, within the inner electrode.  The general method of 

theoretically obtaining the potential distribution within a spherical or cylindrical IEC 

device has been to solve Poisson’s equation while simultaneously applying the conditions 

of current continuity and conservation of energy.  These calculations, however, have not 

consistently supported the formation of double well structures, indicated by experiments 

[11]-[15].  It is, therefore, of interest to review the previous theoretical work, and to study 

the well formation in one consistent framework of computations. 

Although Langmuir and Blodgett [16] did not study the IEC devices explicitly, 

their work still provided the basic solutions for potential distribution in the systems of 

interest.  These authors solved Poisson’s equation within the inner electrode of a system 

of concentric spherical electrodes, in a vacuum:   

2/1
2

2
2

1 −= Y
X
K

dX
dY

X
dX
d

X
e ;    (1) 

With the boundary conditions for space charge limited current [17] (i.e. 0=
∂
∂

r
V

 and 

0=V  at the emitting electrode).  In Eq. (1), Y is the normalized potential and X is the 

normalized radius, given by: 

aV
rV

Y
)(=       (2) 

aR
r

X =       (3)  

While eK  is defined by Eq. (4), where eI is the electron current, em is the electron mass, 
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e  is the magnitude of the electron charge, while aV and aR  are the anode voltage and 

radius, respectively.  The typical solution generated by Langmuir’s and Blodgett’s 

equation, Eq. (1), is provided in Fig. 1 for the region within an inner anode. 

Hirsch [11] considered a system involving ion injection into a grounded vacuum 

chamber and electron emission from the inner surface of the chamber wall.  For his 

model, Hirsch constructed the equation, for the region within an inner cathode, 
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X i
i λ ;   (5) 

along with the boundary conditions for space charge limited current [17]: 

0
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Figure 1: Langmuir’s and Blodgett’s solution to Poisson’s 
Equation for concentric spherical electrodes [16]. 
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and the normalized potential is redefined in Eq (9), as:  

cV
rV

Y
)(−=       (9) 

In Eqs. (7-9), iI  is the ion current, im is the ion mass and cV− is the cathode potential.  

Hirsch found that the solution to the boundary value problem, defined by Eqs. (5) and (6), 

consists of a double potential well structure within the inner cathode, as shown in Fig. 2. 

 

 

Hirsch’s model neglects spreads in the total and angular energies of the particles.  

However, Dolan, [15], [18] Lavrent’yev, [19] and Swanson, [13]-[14] created more 

realistic models that allow for spreads in the total and angular energies of particles.  

Dolan and Swanson solved Eqs. (10), and (11) 

),(
1 2

2 YXf
dX
dY

X
dX
d

X e=      (10) 

),(),(
1 2

2 YXgYXf
dX
dY

X
dX
d

X ie −=     (11) 

where ),( YXf e , and ),( YXg i  are given as 

Figure 2: Hirsch’s solution to Poisson’s Equation for ions injected from a spherical vacuum 
chamber, with electrons emitted from the inner surface of the vacuum chamber [11]. 
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for a system with electron emission from an outer grounded cathode and for a system 

which included ions confined within the inner anode as well as electrons emitted from the 

outer cathode.  The normalized total and angular electron energies are represented by EeY ,  

and φ,eY , while the normalized total and angular ion energy is represented by EiY ,  and 

φ,iY .  Equation (10) produces broad single well solutions, while Eq. (11) reveals the 

formation of double wells under certain conditions.   

Swanson’s results [13] indicated that double well solutions do form under limited 

circumstances, however, questions arose pertaining to the uniqueness of the double well 

solutions.  Dynamic IEC analysis by Hockney [20] and Ohnishi [21] indicated that 

double potential well structures are transient phenomena, thus double well solutions 

computed in the steady state may not be valid.  In addition, simulations by Matsuura [22] 

revealed that a multiple potential well structure is not necessary to produce multiple 

radial peaks in the neutron production rate.  

In the future, for clarity in system designation, IEC systems will be denoted as 

shown in Table I:   
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Thus, the studies performed by Langmuir and Blodgett were for a UCA system, while 

Hirsch’s model is equivalent to the BAC system.  In addition, Eq. (10) represents a UCA 

system and Eq. (11) is for a BCA system. 

Our purpose here is to obtain and critically examine potential well solutions 

within the inner electrodes of the systems in Table I.  We also have explored further 

results for the UCA system and show that we get results similar to those of Dolan and 

Denotation Electrons Ions Schematic 

uni-polar cathode-anode 
system (UCA) Yes No 

 

 
 

Figure 3:  Schematic diagram of a UCA 
system 

bi-polar cathode-anode 
system (BCA) Yes Yes 

 

 
 

Figure 4:  Schematic diagram of a BCA 
system 

bi-polar anode-cathode 
system (BAC) Yes Yes 

 

 
 

Figure 5:  Schematic diagram of a BAC 
system 

Table I:  This table identifies different types of inertial electrostatic devices that will be analyzed in this work. 
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Swanson [12]-[15].  The method of analysis for the bi-polar systems will involve finding 

a double well solution and performing systematic variation of certain parameters to 

determine which parameters affect double well formations the most.  We should note that 

more detailed IEC modeling is performed by simultaneously solving Poisson’s equation 

with equations describing the creation and removal of particles from the system, while 

the present paper is directed at careful review and analysis of the problem where specific 

forms of particle distributions are assumed.  This work thus serves as a benchmark for 

more detailed considerations. 
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II. EQUATIONS AND METHODS OF SOLUTION 

 

For the systems in Table I, the basic problem can be described by Eq. (10) for the 

UCA system and by Eqs. (11) and (14) for the BCA and BAC systems.   

),(),(
1 2
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X ei −=    (14) 
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If we assume guassian distributions for current in Eqs. (12) and (13), then for the systems 

described by Eqs. (10) and (11), the electron current is distributed over the normalized 

electron total and angular energies, EeY , and φ,eY , as shown in Fig. 6.  In addition, the ion 

current is distributed over EiY , and φ,iY , as shown in Fig. 7, where EiY , and φ,iY  are the 

normalized ion total and angular energies, respectively. 
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The electron current may be represented with Eq. (17), 

)()(
,,

,,,,),( φφ σσ
φ

eeEeEe YY
eeEee eeAYYI −−=     (17) 

with Ee,σ  and φσ ,e  representing the spreads in total and angular electron energy, and 

where the constant eA is computed by recognizing that Eq. (18) represents the circulating 

electron current.   

Figure 6: Gaussian electron current distribution over the Ye,E, Ye,φ plane. 

Figure 7: Gaussian ion current distribution over the Yi,E, Yi,φ plane. 
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0
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2
,

φφ eEee
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eEeace YYIdYdYVI
Ee

� �
−

=     (18)  

One thus [13], [14] has for eA : 

( )[ ]
( ) [ ] ( ) ( )[ ]{ } 111
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1
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2

,,, )/(1
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⋅=

EeeEe eee
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Eeee

Eeeacee

σσ
φφ

σ

φ

φσσσ

σσ
   (19) 

Evaluating iA is not as straightforward as the evaluation of eA  because the electron is 

allowed to have Eee YY ,, 10 −≤≤ φ and 10 , ≤≤ EeY .  The ion has energies in the range 

( )min,,0 YYY Eii −≤≤ φ  and 1,min ≤≤ EiYY .  These limits depend on the minimum normalized 

potential within the anode, minY , which is information that we seek from the solution of 

Eq. (11).  The ion current is represented with Eq. (20), and the circulating ion current is 

defined in Eq. (21).  

( )[ ] ( )φφ σσ
φ

,,,, 1
,, ),( iiEiEi YY

iiEii eeAYYI −−=     (20) 
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1

0
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2
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φφ iEii
Y
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iEiaci YYIdYdYVI
Ei
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−
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Observation of Fig. 7 reveals that for small values of energy spreads in the total 

ion energy and angular ion energy, Ei,σ and φσ ,i , integration of Eq. (21) may be 

approximated with 0min =Y  for moderate values of minY (i.e. 85.0min <Y ), which allows 

us to compute iA  from Eq. (22).   
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,,,
1

,,
2

,,,1
−−−− −⋅−+−

⋅=

EiiEi eee

VIA

Eiii

Eiiacii

σσ
φφ

σ

φ

φσσσ

σσ
  (22) 
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If 05.0, =Eiσ and 001.0, =φσ i , then values of iA , for values of minY  from 0 to 1 are 

provided in Table II.   

 

 

 

 

 

 

 

The error in using the approximation 0min =Y  when 85.0min =Y is %1.5  and the error in 

using 0min =Y when 80.0min ≤Y  is %9.1< .  Using Eqs. (17) - (22), we can introduce Eqs. 

(23) and (24),  

( ) ( ) ( )
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with eK  and iK  defined in Eqs. (25) and (26), where η  represents the transparency of the 

anode [15], [18]. 

Ymin Ai/(Ii Va
-2) 

0 20000 
0.1 20000 
0.2 20000 
0.3 20000 
0.4 20000.1 
0.5 20000.9 
0.6 20006.8 
0.7 20050.7 
0.8 20380.9 

0.85 21070.4 
0.9 23204.5 

0.95 32019.8 

Table II:  Ai versus Ymin for σi,E = 0.05 
and σi,φ = 0.001. 
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Eqs. (23) and (24) may then be plugged back into Eqs. (10) and (11), respectively, to 

solve for the potential distribution within the anode of a UCA system and a BCA system. 

In the BAC system, represented by Eq. (14), ions and electrons reverse the roles 

they had in the BCA system of Eq. (11).  The distribution of ion current for Eq. (14) is 

now represented with Fig. 6, and the distribution of electron current is now illustrated in 

Fig. 7.  The ion current is represented with Eq. (27),  

( ) ( )φφ σσ
φ

,,,,),( ,,
iiEiEi YY

iiEii eeAYYI −−=      (27) 

and the circulating ion current is now defined with Eq. (28). 

),( ,,

1

0

1

0
,,

2
,

φφ iEii

Y

iEicci YYIdYdYVI
Ei

� �
−

=     (28) 

iA  is surmised from Eq. (28) and defined in Eq. (29).   
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Electron current is represented in Eq. (30), and the circulating electron current is now 

defined by Eq. (31).   

( )[ ] ( )φφ σσ
φ
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Analogous to iA , for the BCA system, a difficulty occurs in determining  the value of 

eA , for the BAC system, because ranges for the electron total and angular energies are 

( )min,,0 YYY Eee −≤≤ φ  and 1,min ≤≤ EeYY .  As in the case of the BCA system, this BAC 

system requires knowledge of the minimum normalized potential, which is information 

that we seek from the solution of Eq. (14).  Thus, minY is once again approximated with 

minY = 0 to obtain the value of eA  in Eq. (32).: 

  
( )[ ]

( ) ( )[ ] ( ) ( )[ ]{ } 111
,,,

1

,,
2

,,,1
−−−− −⋅−+−

⋅=

EeeEe eee

VIA

Eeee

Eeeccee

σσ
φφ

σ

φ

φσσσ

σσ
  (32) 

This assumption leads to errors in the calculations of eA of ~40% for large values of 

minY (~0.85).  An error of 40% will produce a noticeable difference in the solution, but, it 

will not produce a change in the trends observed.  In addition, since the error decreases 

exponentially as the value of minY decreases, error in the calculation of eA  for the BAC 

system, does not produce a noticeable change in the solution for small values of minY .  A 

table with values of eA calculated using various values of minY is given in Table III.   
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In parallel with Eqs. (23) and (24), for BCA systems, we obtain Eqs. (33) and (34) to be 

plugged into Eq. (14).   
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=
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  (33) 
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ee
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e
Y
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e

e
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φ
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φ
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−−

=
−−−

��
  (34)  

The values of iK  and eK  for Eqs. (33) and (34), respectively, are defined in Eqs. (35) 

and (36), where η  is the transparency of the cathode. 

( )[ ] ( )[ ] ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]{ }

( )2/3

111
,,,

1

2/1
,,

2

,,,1

24112

ci

Eiii

iiEioi

VI

eee

emK

EiiEi ⋅−⋅−−−

⋅⋅⋅−=
−−−− σσ

φφ
σ

φ

φσσσ

σσεπηη

   (35) 

Ymin Ae/(Ie Vc
-2) 

0 6675.22 
0.1 6683.34 
0.2 6699.23 
0.3 6730.38 
0.4 6791.9 
0.5 6915.01 
0.6 7168.07 
0.7 7718.23 
0.8 9074.82 

0.85 10587.9 
0.9 13798.7 

0.95 23924.0 

Table III:  Ae versus Ymin for σe,E = 
0.15 and σe,φ = 0.001. 
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  (36) 

Equations (10), (11), and (14) are solved numerically.  The double integrals on the 

right hand sides of Eqs. (23), (24), (33) and (34) have been previously evaluated by 

expanding the exponential into a Taylor Series.  After Taylor series expansion, the 

integral of the resulting argument may be found using a standard table of integrals [13].  

However, we have found that it is possible to express the double integrals on the right 

hand sides of Eqs. (23), (24), (33), (34) in terms of error functions for which fast and 

accurate numerical routines are readily available.  Thus, for ),( YXg i and ),( YXge , we 

have:  
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where ][zErfi  is the imaginary error function, which is defined in Eq. (39), where ][zErf  

is the error function. 

i
ziErf

zErfi
][

][ =     (39) 

Similarly for ),( YXfe  and ),( YXf i  we find: 
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These results dramatically reduce computational labor and increase computational speed.  

In addition, they increase the accuracy and reliability of solutions obtained.   

Equations (37), (38), (40), and (41) can be inserted into Eqs. (10), (11) and (14).  

The latter equations are then solved numerically by assuming the boundary condition in 

Eq. (42), 

0
)0( =

dX
dY

     (42) 

and employing the shooting method to determine the value of )0(Y  that satisfies the 

boundary condition of Eq. (43).   

1)1( =Y      (43) 

The models just described, for each of the systems in Table I, are summarized in Table 

IV.  

 

System Model Right Hand Side of Model 

UCA ),(
1 2

2 YXf
dX
dY

X
dX
d

X e=  Use ( )YXfe ,  in Eq. (40), with eK  in Eq. (25). 

BCA ),(),(
1 2

2 YXgYXf
dX
dY

X
dX
d

X ie −=  
• Use ( )YXfe ,  in Eq. (40), with eK  in Eq. (25). 

• Use ( )YXg i ,  in Eq. (37) with iK  in Eq. (26). 

BAC ),(),(
1 2

2 YXgYXf
dX
dY

X
dX
d

X ei −=  
• Use ( )YXf i ,  in Eq. (41), with iK  in Eq. (35). 

• Use ( )YXge ,  in Eq. (38) with eK  in Eq. (36). 

Table IV:  A summary of the systems and corresponding equations. 
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In order to study double well solutions for Eqs. (11) and (14), it is convenient to 

introduce some measures.  A central well will provide better confinement if the peak of 

the well is large and the well is narrow in width.  The width of a central double well is 

depicted in Figure 8,  

 

 

and is defined as the Full Width at Half Maximum (FWHM).  The value of half-

maximum is the average of the central well peak potential and the minimum potential 

within the well.  The “Double Well Depth” (DWD) is defined by Tzonev [22] in Eq. (44), 

and is depicted in Figure 8.   

min

min

1 Y

YY
DWD peak

−
−

=        (44) 

Figure 8: Depiction of a typical double well solution. 
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III. RESULTS 

  

Solutions for systems considered in Table IV will be provided in this section.  A 

parameter for each system will be varied, while the rest of the parameters are held 

constant.  Thus, several plots are generated for each of the models in Table IV, revealing 

trends in IEC behavior.  The FWHM and DWD of solutions in a particular plot are 

provided in a corresponding table.  We begin by discussing the results for the UCA 

system, and then provide the results for the BCA and BAC models. 

A. UCA System: 
 

The solutions to Eq. (10) for different values of Ee,σ , φσ ,e , eI , and aV  are shown 

in Figs. 9-12.  Figure 9 shows several solutions to the UCA model for values of φσ ,e  over 

the range of 8.00005.0 , ≤≤ φσ e .  Solutions, for multiple values of Ee,σ , where 

8.001.0 , ≤≤ Eeσ  are shown in Fig. 10.  Figure 11 contains solutions for UCA model as the 

voltage is varied from 200050 ≤≤ aV  V, while Fig. 12 contains solutions for several 

values of current, with 37525 ≤≤ eI mA. 

Figure 9 shows that the solution is highly dependent on the angular energy spread, 

and, as the angular energy spread of electrons decreases, the solution of Eq. (10) 

approaches the solution of Langmuir and Blodgett [16] in Fig. 1.  Variation in the total 

energy spread of electrons has very little effect on the potential well shape as indicated in 

Fig. 10.  Figures 11 and 12 show that potential well depth varies proportionally to the 

perveance, 2/3
a

e

V

I
. 
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Figure 9:  Potential vs. Radius within the anode of the 
UCA model as a function of angular energy spread. Figure 10:  Potential vs. Radius within the anode of 

the UCA model as a function of total energy spread. 

Figure 12:  Potential vs. Radius within the anode 
of the UCA model as a function of current. 

Figure 11:  Potential vs. Radius within the anode of 
the UCA model as a function of applied voltage. 

Va = 1000 V 
Ie = 100 mA 
σσσσe,E = 0.05 

Va = 1000 V 
Ie = 100 mA 
σσσσe,φφφφ = 0.05 

Ie = 100 mA 
σσσσe,φφφφ = 0.05 
σσσσe,E = 0.05 

Va= 1000 V 
σσσσe,φφφφ = 0.05 
σσσσe,E = 0.05 
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B. BCA System:  
 

Each one of the parameters, φσ ,e , Ee,σ , φσ ,i , Ei,σ , eI , aV , and β  (ratio of the ion 

current to electron current, 
e

i

I
I

), are varied, while the rest are held constant to observe 

trends in the solution of Eq. (11).  Figure 13 shows solutions for the BCA system for 

various values of φσ ,i  in the range 5.0001.0 , ≤≤ φσ i , and Table V provides a list of their 

FWHM’s and DWD’s.  Fig.14 contains several solutions for Ei,σ  over 8.001.0 , ≤≤ Eiσ , 

with the FWHM and DWD of each solution listed in Table VI.  Electron angular energy 

is varied from 5.001.0 , ≤≤ φσ e  and solutions for these values are given in Fig. 15, with the 

associated FWHM and DWD data provided in Table VII.  Next, solutions for Ee,σ over 

8.005.0 , ≤≤ Eeσ  are shown in Fig. 16, and the FWHM’s and DWD’s for these solutions 

are given in Table VIII.  The ratio of ion current to electron current, β , is varied for 

003.00 ≤≤ β  and solutions are given in Fig. 17, while the FWHM and DWD data for 

these solutions are given in Table IX.  The applied voltage is varied for 1500400 ≤≤ aV  

volts and solutions are given in Fig. 18, with a list of the FWHM’s and DWD’s given in 

Table X.  Finally, Eq. (11) is solved for several values of electron current, 

400100 ≤≤ eI mA, and the solutions are displayed in Fig. 19, with a list of the FWHM’s 

and DWD’s provided in Table XI. 
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Figure 13:  Potential vs. Radius within the anode of the 
BCA model as a function of ion angular energy spreads. 

Figure 14:  Potential vs. Radius within the anode of the 
BCA model as a function of ion total energy spreads. 

Figure 17:  Potential vs. Radius within the 
anode of the BCA model as a function of β. 

Figure 19:  Potential vs. Radius within the anode of 
the BCA model as a function of electron current. 

Figure 15:  Potential vs. Radius within the anode of the BCA 
model as a function of electron angular energy spreads. 

Figure 16:  Potential vs. Radius within the anode of the 
BCA model as a function of electron total energy spreads. 

Figure 18:  Potential vs. Radius within the anode 
of the BCA model as a function of voltage. 

  Va = 1000V    σσσσe,E = 0.05 
  ββββ = 0.003             σσσσi,E = 0.05 
   Ie = 100 mA    σσσσe,φφφφ = 0.15 

  Va = 1000V       σσσσe,E = 0.05 
  ββββ = 0.003                  σσσσe, φφφφ = 0.15 
   Ie = 100 mA       σσσσi,φφφφ = 0.001 

  Va = 1000V       σσσσe, φφφφ = 0.15 
   Ie = 100 mA       σσσσi, E = 0.05 
  ββββ = 0.003               σσσσi,φφφφ = 0.001 

σσσσe, E = 0.05                         σσσσe, φφφφ = 0.15 
Ie = 100 mA                         σσσσi, E = 0.05 
Va = 1000V                         σσσσi,φφφφ = 0.001 σσσσe, E = 0.05                       σσσσe, φφφφ = 0.15 

ββββ = 0.003                             σσσσi, E = 0.05 
Ie = 100 mA                       σσσσi,φφφφ = 0.001 

  Va = 1000V        σσσσe, E = 0.05 
   Ie = 100 mA       σσσσi, E = 0.05 
  ββββ = 0.003               σσσσi,φφφφ = 0.001 

Vc = 1000V    σσσσe, φφφφ = 0.001 
   ββββ = 0.20                           σσσσe,E = 0.15 
  σσσσi,φφφφ = 0.15                         σσσσi,E = 0.05 
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σσσσi,φφφφ Ymin Ypeak DWD FWHM 
0.001 0.860 0.935 0.538 0.313 
0.005 0.824 0.833 0.053 0.239 
0.008 0.799 0.799 - - 
0.010 0.783 0.783 - - 
0.050 0.672 0.672 - - 
0.100 0.637 0.637 - - 
0.500 0.594 0.594 - - 

σσσσi,E Ymin Ypeak DWD FWHM 
0.010 0.833 0.940 0.641 0.271 
0.050 0.860 0.935 0.538 0.313 
0.150 0.800 0.855 0.272 0.242 
0.500 0.729 0.756 0.099 0.184 
0.800 0.713 0.733 0.072 0.170 

σσσσe,φφφφ Ymin Ypeak DWD FWHM 
0.010 0.122 0.150 0.032 0.077 
0.050 0.557 0.610 0.121 0.127 
0.100 0.751 0.832 0.326 0.204 
0.500 0.959 0.984 0.617 0.610 

σσσσe,E Ymin Ypeak DWD FWHM 
0.050 0.860 0.935 0.538 0.313 
0.100 0.857 0.935 0.545 0.314 
0.500 0.858 0.942 0.591 0.341 
0.800 0.862 0.945 0.603 0.352 

ββββ Ymin Ypeak DWD FWHM 
0 0.582 0.582 - - 

0.0005 0.632 0.632 - - 
0.001 0.669 0.685 0.050 0.132 
0.003 0.860 0.935 0.538 0.313 

Va 
(volts) Ymin Ypeak DWD FWHM 

400 0.196 0.595 0.496 0.173 
500 0.345 0.626 0.429 0.173 
600 0.498 0.715 0.431 0.185 
800 0.730 0.870 0.518 0.240 
1000 0.860 0.935 0.538 0.313 
1500 0.936 0.956 0.310 0.335 

Ie (mA) Ymin Ypeak DWD FWHM 
100 0.860 0.935 0.538 0.313 
200 0.540 0.742 0.439 0.191 
300 0.315 0.613 0.435 0.172 
400 0.191 0.596 0.500 0.173 

Table V:  DWD and FWHM for the BCA 
model, for several values of ion angular energy 

spread, as shown in Fig. 13. 

Table VI:  DWD and FWHM for the 
BCA model, for several values of ion 

total energy spread, as shown in Fig. 14. 

Table VII:  DWD and FWHM for the BCA 
model, for several values of electron 

angular energy spread, as shown in Fig. 15. 

Table VIII:  DWD and FWHM for the BCA 
model, for several values of electron total 

energy spread, as shown in Fig. 16. 

Table IX:  DWD and FWHM for the BCA 
model for several values of β, as shown in 

Fig. 17. 

Table X:  DWD and FWHM for the 
BCA model for several values of 

applied voltage, as shown in Fig. 18. 

Table XI:  DWD and FWHM for the BCA 
model for several values electron current, 

as shown in Fig. 19. 
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Figures 13-19 and Tables V-XI show that a double well solution depends most 

greatly on the value of φσ ,i .  A double well structure exists for small values of φσ ,i , and 

vanishes rapidly as φσ ,i  is increased.  Small values of φσ ,e  tend to deepen the minimum 

depth of the potential well, but small values of φσ ,e  do not necessarily enhance the 

distinctness of the central double well.  Results in Table VII shows that that for 

φσ ,e =0.01, the FWHM of the solution is smallest for solutions in Figure 15, but its DWD 

is rather poor.  On the other hand, the solution for φσ ,e = 0.5 has the best DWD value for 

solutions of Figure 15, but it has a very wide FWHM.  As a general observation, it 

appears to be undesirable to have φσ ,e  too small, possibly because the existence of more 

electrons in the center of the device may neutralize the positive ions trapped in the double 

well.   

The value of Ei,σ  has a noticeable effect on the central double well, but the 

double well solution does not vanish nearly as rapidly for increasing values of Ei,σ  as it 

does for increasing values of φσ ,i .  In fact, double well solutions still exist for relatively 

large values of Ei,σ .  The existence of a double well appears to be nearly independent of 

Ee,σ  according to the solutions in Fig. 16, while Figs. 18 and 19 reveal that the 

distinctness of the double well solution is proportional to the system perveance, 2/3
a

e

V
I

. 

C. BAC System: 
 

Each one of the parameters, φσ ,e , Ee,σ , φσ ,i , Ei,σ , iI , cV , and β , is varied, with 

the rest held constant to observe trends in the solution of Eq. (14) for the BAC system.  



 24

Figure 20 shows solutions for the BAC system for various values of φσ ,e  in the range 

1.00005.0 , ≤≤ φσ e  and Figure 21 contains several solutions for Ee,σ  over 5.001.0 , ≤≤ Eeσ .  

Ion angular energy is varied from 2.006.0 , ≤≤ φσ i  and solutions for these values are given 

in Fig. 22.  Next, solutions for Ei ,σ over 3.001.0 , ≤≤ Eiσ  are shown in Fig. 23.  β  is 

varied for 25.1125.0 ≤≤ β  and solutions are given in Fig. 24,  and the applied voltage is 

varied for 1200500 ≤≤ cV  V with solutions given in Fig. 25.  Finally, Eq. (14) is solved 

for many values of ion current, 2.72 ≤≤ iI  mA, and the solutions are displayed in Fig. 26.  

FWHM and DWD data for the solutions in Figs. 20-26 are provided in Tables XII 

through XVIII. 

In Fig. 20, it is evident that the existence of a double well structure depends rather 

strongly on, φσ ,e , since the central peak in Fig. 20 vanishes rapidly as the angular energy 

of the electrons increases.  Well depth increases substantially for decreasing values of 

φσ ,i , in Fig. 22, but the DWD of the solution is also degraded.  A double well solution is 

unable to materialize for 01.0, =Eeσ  and 05.0, =Eeσ .  However, Fig. 21 shows that a 

double well solution appears at approximately Ee,σ = 0.1, and the quality of the well then 

degrades for increasing values of Ee,σ .  Fig. 23 reveals that the value of Ei,σ  has minimal 

effects on the potential well structure, while Figs. 25 and 26 reveal that the distinctness of 

a double well varies with proportion to the perveance, 2/3
c

i

V
I

. 
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Figure 20:  Potential vs. Radius within the cathode of the BAC 
model as a function of spread in angular electron energy. 

Figure 21:  Potential vs. Radius within the cathode of the 
BAC model as a function of spread in total electron energy. 

Figure 23:  Potential vs. Radius within the cathode of the 
BAC model as a function of spread in total ion energy. 

Figure 22:  Potential vs. Radius within the cathode of the 
BAC model as a function of spread in angular ion energy. 

Figure 24:  Potential vs. Radius within the 
cathode of the BAC model as a function of β. Figure 25:  Potential vs. Radius within the cathode of 

the BAC model as a function of applied voltage. 

Figure 26:  Potential vs. Radius within the cathode 
of the BAC system as a function of ion current. 

  Vc = 1000V    σσσσe,E = 0.10 
  ββββ = 0.2    σσσσi,E = 0.05 
   Ii = 2.8 mA   σσσσi,φφφφ = 0.15 

  Vc = 1000V  σσσσe, φφφφ = 0.001 
  ββββ = 0.20        σσσσi,E = 0.05 
   Ii = 2.8 mA   σσσσi,φφφφ = 0.15 

  Vc = 1000V   σσσσe, φφφφ = 0.001 
  ββββ = 0.20        σσσσe,E = 0.10 
   Ii = 2.8 mA     σσσσi,E = 0.05 

  Vc = 1000V   σσσσe, φφφφ = 0.001 
  ββββ = 0.20     σσσσe,E = 0.15 
   Ii = 2.8 mA   σσσσi,φφφφ = 0.15 

  Vc = 1000V  σσσσe, φφφφ = 0.001 
  Ii = 2.8 mA         σσσσe,E = 0.15 
  σσσσi, φφφφ = 0.15             σσσσi,E = 0.05 

  Ii = 2.8 mA   σσσσe, φφφφ = 0.001 
  ββββ = 0.20                            σσσσe,E = 0.15 
  σσσσi,φφφφ = 0.15                         σσσσi,E = 0.05 

Vc = 1000V    σσσσe, φφφφ = 0.001 
   ββββ = 0.20                           σσσσe,E = 0.15 
  σσσσi,φφφφ = 0.15                         σσσσi,E = 0.05 
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σσσσe,φφφφ Ymin Ypeak DWD FWHM 
0.0005 0.508 0.508 - - 
0.001 0.760 0.845 0.353 0.238 
0.005 0.732 0.743 0.042 0.213 
0.010 0.699 0.699 - - 
0.050 0.598 0.598 - - 
0.100 0.564 0.564 - - 

σσσσe,E Ymin Ypeak DWD FWHM 
0.01 0.508 0.508 - - 
0.05 0.508 0.508 - - 
0.10 0.760 0.845 0.353 0.238 
0.15 0.741 0.812 0.275 0.224 
0.30 0.700 0.749 0.163 0.197 
0.50 0.674 0.710 0.112 0.181 

σσσσi,φφφφ Ymin Ypeak DWD FWHM 
0.06 0.491 0.555 0.125 0.132 
0.10 0.650 0.730 0.229 0.179 
0.15 0.760 0.845 0.353 0.238 
0.20 0.820 0.898 0.434 0.290 

σσσσi,E Ymin Ypeak DWD FWHM 
0.01 0.741 0.811 0.271 0.222 
0.05 0.741 0.812 0.275 0.224 
0.10 0.741 0.814 0.282 0.228 
0.30 0.757 0.832 0.310 0.245 

� Ymin Ypeak DWD FWHM 
1.250 0.554 0.557 0.006 0.083 
1.000 0.565 0.569 0.011 0.096 
0.500 0.613 0.633 0.052 0.137 
0.200 0.741 0.812 0.275 0.224 
0.125 0.836 0.915 0.479 0.313 

Vc 
(volts) Ymin Ypeak DWD FWHM 

500 0.258 0.557 0.404 0.181 
750 0.577 0.720 0.337 0.203 

1000 0.741 0.812 0.275 0.224 
1200 0.805 0.847 0.217 0.230 

Ii (mA) Ymin Ypeak DWD FWHM 
2.0 0.816 0.853 0.203 0.230 
2.8 0.741 0.812 0.275 0.224 
5.0 0.501 0.675 0.349 0.195 
7.2 0.303 0.572 0.386 0.181 

Table XIII:  DWD and FWHM for the BAC 
model for several values of electron total 

energy spread, as shown in Fig. 21. 

Table XV:  DWD and FWHM for the 
BAC model for several values of ion 

total energy spread, as shown in Fig. 23. 

Table XIV:  DWD and FWHM for the 
BAC model for several values of ion 

angular energy spread, as shown in Fig. 22. 

Table XVII:  DWD and FWHM for 
the BAC model for several values of 
applied voltage, as shown in Fig. 25. 

Table XVI:  DWD and FWHM for the 
BAC model for several values of β, as 

shown in Fig. 24. 

Table XVIII:  DWD and FWHM for the 
BAC model for several values of ion 

current , as shown in Fig. 26. 

Table XII:  DWD and FWHM for the BAC 
model for several values of electron 

angular energy spread, as shown in Fig. 20. 



 27

IV. CONCLUSIONS 
 

 

Langmuir and Blodgett solved poisson’s equation for concentric spherical 

electrodes and discovered the formation of a single virtual electrode at the center 

electrode [16].  Hirsch performed similar analysis on an IEC device, but included the 

emission of electrons from the inner surface of the vacuum chamber in his theoretical 

model.  Hirsch’s experiments and analysis indicated that a multiple potential well 

structure existed at the center of the IEC device [11].  Dolan [15],[19], Swanson [13]-

[14], and Lavrent’yev [18] developed more realistic models that accounted for spreads in 

total particle energy and angular particle energy.  Following the work of Dolan and 

Swanson, we have performed computer simulations for the three systems noted in Table 

IV.  We have obtained solutions in a consistent framework, and performed an extensive 

parametric study of the solutions over φσ ,e , Ee,σ , φσ ,i , Ei,σ , eI , iI , aV , cV and the factor 

�. 

Information obtained, from solutions to the models in Table IV, provides insights 

in IEC performance with respect to which parameters and conditions will be most 

conducive to double well formation.  The results have shown that double well formation 

requires that φσ ,i  for BCA systems and φσ ,e  for BAC systems, is relatively small.  

However, it is not necessarily desirable for φσ ,e  or φσ ,i  to be small.  In that case, the 

depth of the potential well, min1 Y− , is increased, but the DWD, Eq. (44), is decreased. It 

could also be noted that double well existence depends weakly on Ei,σ  for BCA systems 
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and Ee,σ  for BAC systems.  In addition, Ee,σ  for BCA systems and Ei,σ  for BAC 

systems, have very little influence on potential well structure. 

In this paper we have concentrated on models that permit extensive parametric 

studies with respect to double well formations.  The models can certainly be improved 

both in terms of underlying physical phenomena and numerical techniques of solution.  

Such improvements will permit comparisons with experimental data and more realistic 

assessments.  Nevertheless, the present work clarifies the past work on the problem and 

provides many useful insights. 
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