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ABSTRACT

Sensor arrays have been used widely in applications including radar, sonar, seismol-

ogy, biomedicine, communications, geophysical exploration, astronomy, and imaging. A

very popular type of sensor array is circular array. It has several advantages such as

the fact that it can perform 360◦ scan around its center very conveniently and during

the scan the array pattern can be kept almost invariant. In our research, we consider

beamformer design and DOA estimation for a wideband source using concentric ring

array(CRA) that contains many concentric rings of different radii. Such structure yields

several advantages including the flexibility in array pattern synthesis and adaptive array

design. Previous works on controlling the array pattern of CRA only address narrowband

scenario. The research on CRA conducted here is aimed for broadband beamforming

applications.

The design of deterministic broadband beamformer, adaptive broadband beamformer

and broadband direction of arrival(DOA) estimation using CRA are addressed in this

research. The proposed deterministic as well as adaptive broadband beamformer de-

signs use the novel idea of decomposing the weights of the array into two sets: inter-ring

weights and intra-ring weights, and they are chosen separately using different criteria.

The deterministic broadband beamformer design is based on the sidelobe level con-

trol method proposed by Stearns and Stewart for 2-D narrowband beamforming using

continuous ring antennas. We propose three methods to design inter-ring weights to

achieve desirable sidelobe and/or mainlobe in the array pattern at a range of frequen-

cies. Method I uses an interpolation technique to derive the inter-ring weights at a

range of frequencies that can yield the desired sidelobe level. Method II uses MMSE

optimization to find the inter-ring weights that can reduce the pattern synthesis error

when array elements are not enough. Method III improves on previous methods by se-

lecting appropriate desirable prototype array pattern at different frequencies to achieve
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frequency invariant array pattern. The proposed deterministic beamformer designs are

suitable for broadband beamformer implemented in the frequency domain.

In the development of the adaptive CRA, we propose an element space partially

adaptive CRA that accommodates arbitrary partition schemes. We then derive the

analytical form of the steady state residual interference and noise power and use it as

an evaluation criterion for different partition structures. Simulation have verified the

advantages of the proposed design.

Finally, based on Lee’s work [1] we propose a broadband DOA estimator for CRA,

which significantly improves the estimation accuracy and greatly reduces computational

complexity comparing to conventional incoherent broadband DOA estimators. The ad-

vantages of the proposed DOA estimator is corroborated by simulations.
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Chapter 1

Introduction

1.1 Background and Motivation

Signal parameter estimation problem is important in many applications, thus it has

received great research interest. The signal of interest is first picked up by one or

more sensors. However, the received signal of interest is almost always contaminated

by other propagating signals and noise that coexist in the space. In many cases, the

signal of interest is too weak among other signals so that solely temporal processing is

unable to yield satisfactory estimation results and additional processing gain needs to be

sought from spatial processing. Moreover, with the rise of new applications, parameter

estimation is no longer limited to temporal parameters. Estimation of spatial parameters

becomes necessary in many application such as source localization and source tracking

etc. Traditional methods based on temporal processing of the signal received in a single

sensor are incapable to estimate those spatial parameters.

Sensors with continuous aperture, such as parabolic dish used in radar system, have

directional characteristics. Thus they can be used to extract temporal as well as spatial

parameters of a signal. However, such sensors have several drawbacks [2]. First, the

directivity pattern is determined by the physical structure of the sensor. The antenna

has to be physically rotated to steer to a new direction. Second, the aperture of such

1



sensor is usually designed to enhance signal in one particular direction. Thus it is

unable to track multiple signals at the same time. Third, the operating frequency and

bandwidth of such sensor are also fixed by its aperture. Physical adjustments are needed

to receive signals in other frequency range.

Comparing with the single sensor, sensor array has all the advantages of spatial

processing while without the drawbacks of those single sensors with continuous aperture.

Sensor array spatially samples the signal and uses the collected spatial information

to enhance signals in certain directions while attenuating the others. The directivity

pattern of sensor array can be adjusted by modifying array processing algorithm and

tracking of multiple signals simultaneously can be easily programmed in the algorithm.

Sensor arrays are found in a wide range of applications, including radar [3–5], sonar

[6,7], seismology [8,9], biomedicine [10–12], communications [13,14], geophysical explo-

ration [15], astronomy [16,17], and imaging [18–20]. The design of a sensor array mainly

includes two aspects, i.e., the hardware design and software design. The hardware de-

sign usually refers to deciding an array’s geometry, size, number of sensors and other

physical characteristics of the array. The software algorithms typically perform source

localization, source tracking, signal detection, signal enhancement and other parameter

estimation tasks. Generally speaking, the design process is largely determined by the

particular application and the software algorithms may need to be optimized towards

the hardware structure.

Among various sensor arrays, a very popular type is the circular array, which is be-

ing used in many applications [21–26]. Circular array can be implemented in symmetric

form that brings several advantages, such as performing 360◦ scan around its center

by simply adjusting the weights of the array and the beampattern can be kept almost

invariant during the scan. However, the design of circular array is difficult in that the

array geometry is non-linear and many conventional array design methods developed for
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linear array cannot be applied to a circular array to control its gain in different direc-

tions. In our research, we are particularly interested in sensor array that has several

concentric circular rings. The reason we prefer such array geometry is that by using the

inherent concentric ring structure, the array’s gain in different directions can be effec-

tively controlled. It also yields flexibility in developing adaptive processing algorithms.

Circular array is also favored in direction finding applications since it provides almost

invariant azimuth angle coverage. These advantages and the methodologies to achieve

them are the topics of this dissertation, and they will be described in details in the

following chapters. Here we first present a review of the previous works on the circular

arrays.

1.2 Previous Works on Circular Array Beampattern

Synthesis

1.2.1 Array Pattern Synthesis Using Circular Array

The research in circular array dates back to early the last century. H. Stenzel [27] made

early theoretical investigations of circular array in 1920s. During 1950s, more theoretical

studies on circular array were made by LePage [28], DuHamel [29], Knudsen [30], Wait

and Householder [31], and Neff and Tillman [32]. The review of those early works

is omitted here because of limited space. In the following we will review some more

recent research works related to circular array beampattern synthesis and beamforming

methods. Review of the direction finding techniques using circular arrays can be found

in Chapter 5.

The circular array beampattern synthesis methods can be categorized as (1) Field
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synthesis method; (2) Minimax method; (3) Transform domain method and (4) Space-

time method and (5) Other methods. We will review the previous works by their cate-

gories.

1.2.2 Field Synthesis Method

The beampattern of the circular array can be expressed in terms of Bessel functions, as

will be discussed in detail in Chapter 2. Field synthesis method emerges based on the

knowledge that the beampattern can be expressed in an explicit mathematical form and

thus analytical solution can be developed.

Stearns and Stewart [33] discuss the application of several concentric circular ring

antennas to reduce the sidelobe level of the beampattern. In their method, the beam-

pattern of the whole array is formed as a weighted sum of the beampattern from each

ring. The weights for the beampatterns from different rings are then optimized through

Fourier-Bessel series expansion so that a desirable sidelobe level can be achieved. In [34],

Goto and Cheng also consider the beampattern synthesis using concentric ring array.

Their method is different from Stearns and Stewart’s method in that the weights for the

beampattern from each ring are selected according to a Taylor distribution for circular

aperture antennas [35]. Desirable sidelobe can be achieved using their method with the

requirement that the inter-ring spacing must be less than a quarter of the wavelength of

the operating frequency.

In [36], Vu adopts a different field-synthesis technique to achieve low sidelobes in a

circular ring array. When the main look direction of the circular array is vertical to the

plane where the array resides in, the beampattern of the circular array can be expressed

as an n-th order Bessel function of the first kind, where the order n can be an arbitrary

non-negative integer by choosing appropriate weights of the array elements. Vu noticed

that an appropriate linear combination of the zero and second order Bessel functions

can result in a pattern with small sidelobes. Thus by generating the beampatterns
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corresponding to the zero and second order Bessel functions and combining them in

phase, low sidelobe level can be achieved. However, this method requires the ring array

to have composite array elements that can generate outputs with different phases, which

may not be achievable in some applications. Moreover, its application is limited by the

requirement that the main look direction must be vertical to the plane of the array.

In [37], Chu investigated the relationship between the number of array elements on

a circular ring array and the variation in the azimuthal pattern as the radius of the

circular array varies. The purpose is to develop the condition under which a good omni-

directional pattern can be obtained. Sinnott and Harrington [38] use matrix method to

analyze and design the circular antenna arrays which can achieve economies of computa-

tion by exploiting the array symmetries. Several works [39,40] look at pattern synthesis

problem of circular arrays with directive elements. Other related research works under

this category can be found in [41–47].

1.2.3 Minimax Method

The minimax method seeks to find the optimum array weights that minimize the differ-

ence between the actual and the desired beampattern. Different from the field synthesis

method, the minimax method obtains the solution by some numerical searching algo-

rithm, and the optimum weights are usually determined iteratively.

Goto and Tsunoda [48] use an optimization technique for uniformly excited arrays

requiring only phase adjustments [49] to reduce the sidelobe level of a circular array.

The optimization problem can be described as finding a set of phases that maximizes

the gain at a main look direction while keeping the gains at sidelobes below a chosen

constant. The optimization problem is non-linear. By using a perturbation procedure,

Goto and Tsunoda reduce the nonlinear optimization problem to a linear one. They

then use iterative method and linear programming to find the solution. The resulting

beampattern has equal-ripple sidelobes similar to a Chebyshev pattern. Watanabe et
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al. [50,51] extended Goto and Tsunoda’s work to take into account the mutual coupling

between the array elements and the current distribution of each element. A drawback of

their methods is that there is no guarantee that the method can achieve a low sidelobe

level. Notice that to avoid high computational complexity, only a limited number of

sidelobe locations can be constrained to have a low gain. Thus it’s possible that after

some iterations, the sidelobes are still high and appear at different locations. Another

similar work presented by Coleman [52] also reduces the sidelobe level of the beampattern

using iterative technique.

Prasad and Charan [53] consider the constrained synthesis of beampatterns with

applications to circular and arc arrays. Their method is to find the optimum weights that

minimize the mean square error between the synthesized and the desired beampattern.

By solving the optimization problem using least-squares method, linear constraints can

be specified in the optimization process. However, the least squares solution may yield

several high sidelobes. Thus, they use a perturbation and search algorithm to minimize

the maximum sidelobe value through iterations. The resulting beampattern has almost

equal sidelobe level and nulls can be formed through linear constraints.

Vescovo [54] approaches the pattern synthesis problem in a way similar to Prasad

and Charan’s method. In Vescovo’s method, the weights are determined by minimiz-

ing the mean square distance between the synthesized and the desired beampattern.

Vescovo first examines the unconstrained optimization problem and obtains a closed

form solution. He then considers the case where each weight is constrained to belong to

a prescribed set of complex numbers. An iterative technique is then proposed to solve

the constrained optimization problem. It’s shown that if the constraint sets are closed

and convex, the weights obtained through the iterations will converge to yield the global

minimum of the mean square distance. When the constraint sets are non-convex, a good

approximation of the globally optimum solution can be obtained. Vescovo also considers

pattern synthesis for near-field beamforming in [55] using similar technique.
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In [56], Kumar and Branner propose a design of low sidelobe concentric ring array

(CRA) by element radius optimization. They notice that the peak sidelobe level of the

designed array is a function of the space between adjacent rings. An iterative technique

is used to find the optimum radii for the concentric rings so that the sidelobe level can

be reduced.

1.2.4 Transform Domain Method

The transform domain method emerges only recently. Generally speaking, the transform

domain method pre-processes the array data by transforming them to other domain to

gain some advantages that are not available in conventional methods.

In [57], Lau and Leung proposed an innovate method to synthesize the beampattern

of circular array. Their method employs a transformation technique that is first proposed

by Davies [58]. Using the technique, the array element space is transformed to a mode

space, in which the array response vector has the Vandermonde form similar to that

of a Uniform Linear Array (ULA). The Dolph-Chebyshev method for ULA can then be

applied in the mode space to design the beampattern of the circular array. The resulting

beampattern can reach a desired sidelobe level. Although the desired Chebyshev pattern

yields the narrowest mainlobe width at a given sidelobe level, the actual beampattern

obtained using their proposed method may not achieve the desired narrowest mainlobe.

This is because during the transformation to the mode space, approximation is involved

and the accuracy of the approximation is dependent on the array configuration and the

beamforming scenario.

Chan and Pun [59] proposed a method to design broadband circular array with fre-

quency invariant beampattern. Their basic idea is to transform the received array data

to the phase mode by an Inverse Discrete Fourier Transform (IDFT). The frequency

dependency of the phase modes is then removed by digital filtering. Finally, a set of

weights is chosen to linearly combine the processed phase modes to obtain the desired
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frequency invariant beampatterns. Conventional one dimensional beampattern synthe-

sis method can be used to choose the weights. The resulting beampattern can have

desired sidelobe level and the mainlobe width is approximately frequency invariant. An

extension of the method to concentric circular rings is reported in [60].

1.2.5 Space-time Method

Space-time method is carried out by simultaneously performing two-dimensional filtering

on array signal, i.e., the spatial and time domain processing. The array signal contains

not only spatially sampled signal but also temporally sampled signal obtained at time

delay taps following each array element. The advantage is that by adding the time

domain processing, the beamformer can have a certain operating frequency range and

thus it is no longer restricted to narrowband beamforming.

In [61], Sarkar and Adve propose a method to perform space-time adaptive process-

ing using circular arrays. In their method, a direct data-domain least-squares space-time

adaptive-processing approach is adopted to enhance signals in a non-homogeneous en-

vironment of jammers, clutter, and thermal noise. However, their method involves high

computational complexity. This is because the number of time-delay taps in each array

element is large (several hundreds) and consequently the number of adaptive weights

is large. Some other space-time processing techniques for circular array can be found

in [62–66].

1.2.6 Other Array Pattern Synthesis Techniques

Several works on the null-control for circular array [67–71] are available. The methods

used in those works are extensions of some of the methods above, so they will not be

described here. As will be pointed out in Section 3.5.3 of Chapter 3, there is a unified

method to perform null control in the beampattern design.
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1.3 Main Contributions of the Research

From the preceding review of pattern synthesis and beamforming techniques for circular

array, it can be seen that most of the methods are only suitable for narrowband beam-

forming. Space-time methods has the ability to process signal with certain band-width,

however, its computational complexity is high. In our research we are more interested in

developing a pattern synthesis method, which generally has much lower computational

complexity comparing to the space-time methods. Among the previously reviewed pat-

tern synthesis methods, Chan and Pun’s method [59] is developed for broadband beam-

forming. Different from Chan and Pun’s approach which uses only a single ring array,

our research of broadband beamforming employs an array structure that consists of

many concentric circular rings. The multiple ring structure has the following advan-

tages over a single ring array: 1) It is suitable for nested array design, which can greatly

expand the operating frequency range whilst keeping an efficient use of array elements,

2) It increases the flexibility in array design especially in adaptive beamforming as will

be shown Chapter 4. Chan and Chen have extended their method to multiple circular

arrays in a recent work [60]. However, the design we present in this dissertation takes a

different approach from theirs and has its own merit. The contribution of the research

presented in this dissertation includes three aspects: 1) The design of a deterministic

broadband beamformer using CRA, 2) The development of the partially adaptive CRA,

and 3) A broadband angle of arrival(DOA) estimator for CRA.

The proposed deterministic broadband beamformer design is based on Stearns and

Stewart’s work [33] that considers 2-D narrowband beamforming derived for continuous

concentric ring antennas. We first decompose the CRA’s weights into inter-ring and

intra-ring weights and then propose three methods to design inter-ring weights to achieve

desirable sidelobe and/or mainlobe in the array pattern at a range of frequencies. The

proposed design is suitable for broadband beamforming in 3-D space.

9



Secondly, we develop the adaptive form of the CRA. Adaptive beamforming is nec-

essary if the incoming signals are non-stationary. The CRA usually consists of a large

number of array elements, which can result in high computational complexity and slow

convergence rate in the adaptive algorithm. Partially adaptive array can effectively re-

duce computation and increase the convergence rate. Therefore we propose a generalized

partially adaptive CRA that accommodates arbitrary partitioning schemes. Two typi-

cal adaptive algorithms for the proposed design have been derived. Analysis of partially

adaptive CRA’s steady state performance and convergence rate is also presented.

Finally, we proposed a broadband DOA estimation technique based on Lee’s method

[1]. The proposed technique greatly reduces computation by operating in beamspace.

Furthermore, the proposed technique is capable of estimating the DOAs of broadband

signals by using the frequency invariant design we proposed for deterministic CRA.

Comparing to conventional incoherent broadband estimation technique, our proposed

method achieves significantly better estimation accuracy, requires much less computation

and is able to estimate the DOAs for correlated signals.

1.4 Content Organization

The rest of the dissertation is organized as the following. Chapter 2 prepares the funda-

mentals and the theoretical background of array processing and beamforming. Chapter

3 presents the design of deterministic broadband CRA. The development of the par-

tially adaptive CRA is discussed in Chapter 4. A broadband DOA estimator for CRA is

proposed in Chapter 5. Chapter 6 presents the application of CRA to bird monitoring.

Chapter 7 summarizes this dissertation and discusses the future research topics.
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Chapter 2

Introduction to Beamforming

In this chapter, we introduce the terminologies and fundamentals in array processing

and beamforming. The purpose is to provide the theoretical foundation of our research.

The organization of this chapter is as the follows. In Section 2.1, we introduce array

processing basics including coordinate systems, description of spatial signal, and the

signal model for array processing. In section 2.2, we review the beamforming techniques

by their categories: the conventional techniques and modern techniques. The various

array geometries and their characteristics are introduced in Section 2.3 followed by a

more detailed discussion on circular array in Section 2.4. Section 2.5 is the summary.

2.1 Array Processing Basics

2.1.1 Coordinate System

Two types of three-dimensional (3-D) coordinate systems are usually used to describe a

spatial signal: the Cartesian coordinate system and the spherical coordinate system.

The Cartesian coordinate system uses x, y and z as the spatial variables to specify

any point in a right-handed orthogonal coordinate system as shown in Fig. 2.1. In some

applications, the spherical coordinate system is more appropriate to use. The spherical

coordinate system denotes any point in the 3-D space by its distance r from the origin,
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Figure 2.1: The Cartesian and spherical coordinate systems.

the azimuth angle φ with respect to the x-axis and the elevation angle θ with respect

to the z-axis as shown in Fig. 2.1. The coordinates in the two coordinate systems are

related by

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

With time being the fourth dimension, a space-time signal in 3-D space can be

denoted as s(x, y, z, t) in the Cartesian coordinate system, or s(r, φ, θ, t) in the spherical

coordinate system. For simplicity, vector representation is also used. Define the three

unit vectors in the Cartesian coordinate axes as ~lx, ~ly and ~lz. They have the following

properties

~lx ·~lx = ~ly ·~ly = ~lz ·~lz = 1

~lx ·~ly = ~ly ·~lz = ~lz ·~lx = 0

~lx ×~ly = ~lz

Using the vector representation, s(x, y, z, t) is written as s(~x, t), where ~x is x~lx+y~ly +z~lz.
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2.1.2 Signals in Space and Time

The propagation of any space-time signal s(~x, t) obeys the wave equation given by [2]

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
=

1

c2

∂2s

∂t2
(2.1)

where c is the propagation speed of the signal. We assume that the signal is propagating

in the same media and c is always a constant. For example, the speed of acoustic wave

in dry air under normal temperature is approximately 343m/s.

Assuming s(~x, t) is a monochromatic plane wave having the form of a complex ex-

ponential

s(~x, t) = Aej(ωt−~k·~x) (2.2)

where j =
√
−1 and ω is the angular frequency of the signal and ~k is a vector termed

as the wavenumber vector and has an amplitude of |k| = 2π/λ. Putting (2.2) into (2.1)

yields

kxx + kyy + kzz = C (2.3)

where C is a constant. Thus as long as (2.3) is satisfied, a signal with the form given

in (2.2) is a solution to the wave equation. Equation (2.3) defines a plane of constant

phase. At any point on the plane, the signal s(~x, t) has the same phase delay given by

~k · ~x. By defining ~α = ~k/ω, (2.2) can also be written as

s(~x, t) = Aejω(t−~α·~x), (2.4)

and ~α · ~x corresponds to the delay in time.

Since the wave equation (2.1) is a linear equation and an arbitrary signal can be rep-

resented by an integral of complex exponentials using Fourier theory, it can be concluded

that an arbitrary signal

s(~x, t) =
1

2π

∫

∞

−∞

S(ω)ej(ωt−~k·~x)dω

=
1

2π

∫

∞

−∞

S(ω)ejω(t−~α·~x)dω

(2.5)
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satisfying (2.3) is also a solution to the wave equation. Here S(ω) is the Fourier spectrum

of the signal. Notice that |α| = |~k/ω| = 1/c, thus the time delay ~α · ~x is independent

of the angular frequency ω, which implies that all frequency components have the same

amount of time delay at any particular position. This is a very important property of a

propagating wave, since it ensures that the temporal shape of the propagating signal is

preserved and recovery of the signal is possible.

2.1.3 Array Processing Signal Model

Similar to (2.2), we can write a narrow band signal in the complex exponential form as

s(~x, t) = s(t)ej(ωt−~k·~x) (2.6)

where s(t) is a slowly time-varying signal comparing with its carrier ejωt, i.e., the band-

width of s(t) is much less than the center frequency ω.

The received array signal is usually converted to base-band for further processing.

Thus the carrier term ejωt in (2.6) can be dropped and the received base-band signal at

the nth array element is

xn(t) = s(t)e−j~kn·~xn = ans(t) (2.7)

where ~xn denotes the position vector of the nth array element, ~kn is the wavenumber

vector associated with that element, and an = e−j~kn·~xn .

For an array of N elements, the received array signal vector can be written in matrix

form as

x(t) = as(t)

where a = [a1, a2, . . . , aN ]T is named as the steering vector.

When a number of Q, Q < N , signals impinge on the array, the received array signal
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Figure 2.2: (a) Near-Field and (b) Far-Field scenarios.

vector becomes

x(t) =

Q
∑

q=1

aqsq(t)

= As(t)

where sq(t) denotes the q-th incoming signal and aq is its steering vector. A = [a1, a2, . . . , aQ]

is the steering matrix and s(t) = [s1(t), s2(t), . . . , sQ(t)]T is the signal vector. Here the

superscript (T ) denotes transpose.

In the presence of additive noise, the received array signal becomes

x(t) = As(t) + n(t) (2.8)

The array output y(t) is formed as a weighted sum of all the received signals

y(t) = wHx(t) (2.9)

where the superscript (H) denotes conjugate transpose and w = [w1, w2, . . . , wN ] is a

N × 1 weighting vector.

2.1.4 Near-field and Far-field Assumption

Whether the signal source is located in the near field or far field of the array affects

the modeling of the received signal. When the source is close to the array so that
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the wavefront of the propagating signal appears to be curved to the array, the source is

considered as a near field source. The directions of the propagation measured at different

array elements may be different as shown in Fig. 2.2 (a).

If the source is far from the array and the wavefront of the propagating signal, when

examined in a dimension comparable to the array size, is perceived as a plane, the

source is considered as a far field source. The direction of propagation at different array

elements is considered the same as shown in Fig. 2.2 (b). This results in a simplification

of modelling of the received signal in (2.7), where all the wavenumber vectors are the

same, i.e., ~kn = ~k.

2.2 Beamforming Techniques

Choosing different w in (2.9) to form the array output results in different spatial re-

sponse of the array. The spatial response of a given array as a function of the spatial

angles is called the beampattern. The 2-D beampattern of a linear array as a function

of azimuth angle θ, with the array lying in the x-axis, is shown in Fig. 2.3. The beam-

pattern has a mainlobe and many sidelobes. A desirable beampattern should have its

mainlobe centered around the Direction Of Arrival (DOA) of the desired signal and low

sidelobe level in other directions. Given an array geometry, how to achieve a desirable

beampattern is the central task of various beamforming techniques.

Beamforming is a term generally used to refer to various spatial filtering techniques

used in array processing. Beamforming technique dates back to the World War II and

has been an active research area ever since. Over more than half a century, beamforming

techniques have evolved greatly. Based on the time of their emergence, they are usu-

ally classified as the conventional beamforming techniques or the modern beamforming

techniques [72]. Conventional beamforming techniques include: delay-and-sum beam-

forming and tapered beamforming. Modern techniques include: statistically optimum
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Figure 2.3: The beampattern of a linear array. The linear array consists of 15 equally
spaced array elements, spacing between adjacent elements is half of the wavelength.

beamforming, adaptive beamforming, and sub-spaced method. In the following, we will

briefly review those techniques.

2.2.1 Conventional Beamforming Techniques

(1) Delay-and-sum Beamforming

The idea of delay-and-sum beamforming is very simple. The interested propagating

signal received at the array elements are associated with a time delay determined by the

locations of the array elements and propagation direction. By introducing extra amount

of delay in the received signals so that the desired signal in every array element has

the same amount of delay with respect to a reference point, the addition of the delayed

signals will reinforce the aligned desired signal. Signals and noise in other directions are

not aligned and are attenuated relatively. The implementation of such a delay-and-sum

beamformer is shown in Fig. 2.4. The output y(t) of a delay-and-sum beamformer with
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Figure 2.4: The delay-and-sum beamformer.

N array elements has the form

y(t) =
1

N

N
∑

n=1

xn(t − τn) (2.10)

where τn is the delay introduced for the nth received signal. The improvement in Signal-

to-Noise Ratio (SNR) of such a delay-and-sum beamformer is proportional to the number

of array elements.

The delay-and-sum beamformer can be extended by combining temporal filtering at

the beginning, results in the filter-and-sum beamformer. The filtering only lets through

the part of spectrum that is supposed to contain the desired signal, thus noise and inter-

ference reside in other spectral ranges are filtered out. The filter-and-sum beamforming

is most effective when the desired signal has very distinctive spectral characteristics as

to that of the interferences and noise.

The delay-and-sum beamforming also has its frequency domain counterpart. Since

the delay in time domain corresponds to linear phase shift in the frequency domain, by

transforming to the frequency domain using Fast Fourier Transform (FFT), the desired

signal can be aligned by appropriate phase shift and therefore reinforced after addition.

(2) Tapered Beamforming
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Figure 2.5: The beampattern of a tapered linear array. The value of the tapers are gen-
erated using a −20db Chebyshev function. The linear array has the same configuration
as in Fig. 2.3

The delay-and-sum beamforming usually yields high sidelobe level around the main-

lobe. When there are strong interferences coming through those high sidelobe regions,

the beamformer output will be degraded. The need to reduce sidelobe level or even to

specify the entire beampattern gives rise to a type of beamforming method called ta-

pered beamforming. Unlike the delay-and-sum beamforming where the weights of each

array element only differ in phase but have the same amplitude, the tapered beam-

forming introduces a tapering to the amplitude of the weights. To achieve a desired

beampattern, the values of the tapers can be designed using conventional filter design

algorithms. Many such algorithms are available, among them the most known one is

the Dolph-Chebyshev method. The Dolph-Chebyshev method is able to generate the

lowest sidelobe level for a specified mainlobe width, or a narrowest mainlobe width for

a specified sidelobe level. Fig. 2.5 shows a beampattern obtained through a tapered

beamformer. An equal sidelobe level of −20dB is achieved in this example.
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2.2.2 Modern Beamforming Techniques

(1) Statistically Optimum Beamforming

In the conventional beamforming technique, the beampattern is fixed. When there

are strong interferences, the sidelobe level may not be low enough to cancel them out. On

the other hand, setting the sidelobe level to a very low value will unnecessarily increase

the mainlobe width and therefore increase the noise taken in through the mainlobe.

In optimum beamforming techniques, the weights are chosen based on the a priori

knowledge of the received data. Several optimization criteria can be used to derive

the weights, they are: 1) maximization of the signal-to-interference-plus-noise ratio;

2) minimization of the interference and noise power with respect to some constraints;

3) minimization of the output power with respect to some constraints. Among them,

the last one is the most general formulation of the statistically optimum beamforming

problem and it is described in more detail below.

Denote the spatial covariance matrix of the array data by R, i.e., R = E[x(t)x(t)H ],

where x(t) is given in (2.8). The optimum weights wopt is obtained through

wopt = min
w

wHRw subject to CHw = b

where C is the constraint matrix and b is the constraint value vector. Beamformer

obtained using this method is known as Linear Constrained Minimum-Variance (LCMV)

beamformer. The optimum solution is found to be [2]

wopt = R−1C(CHR−1C)−1b. (2.11)

A special case for the solution occurs when the signal’s spatial covariance matrix is

a proportion of an identity matrix, and only spatially white noise exists. The solution

then becomes

wq = C(CHC)−1b. (2.12)

It is termed the quiescent solution, which is determined by the linear constraints only.
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Figure 2.6: The beampattern of an optimum linear array. The linear array has the same
configuration as in Fig. 2.3

Fig. 2.6 shows the beampattern of a uniform linear array obtained using a LCMV

solution in (2.12). Two linear constraints are used, one is the unit gain constraint at the

main look direction θ = 90◦, the other constraint puts a −60dB null at θ = 120◦, where

a strong interference is supposed to exist. Notice that the sidelobe is almost maintained

in the same level as that in the beampattern of a delay-and-sum beamformer in Fig. 2.3.

LCMV beamformer can be implemented directly using (2.11). An alternative way to

implement a LCMV is using the so called General Sidelobe Canceller (GSC) [73] shown in

Fig. 2.7. In a GSC, the upper branch is non-adaptive and its output is yq(t) = wH
q x(t),

where wq is the quiescent solution given in (2.12).

In the lower branch, B is a blocking matrix satisfying CHB = 0, so that the desired

signal specified in C will not be leaked into the lower branch. The lower branch performs

an unconstrained optimization problem in which the weighting vector wa is chosen to

minimize the mean square error between the outputs of the lower branch ya(t) and upper
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Figure 2.7: General sidelobe canceller.

branch yq(t). The optimum solution of wa is given by the Wiener-Hopf equation [72]

wa,opt = R−1
xaxa

rxayq
(2.13)

where Rxaxa
= E[xa(t)x

H
a (t)] is the lower branch covariance matrix and rxayq

= E[xa(t)y
∗

q (t)]

is the cross-correlation vector between xa(t) and yq(t). Here the superscript (∗) denotes

complex conjugate.

The GSC is equivalent to the original LCMV beamformer implementation, it can be

perceived as estimating the interference in the upper branch and then subtracting them

from the quiescent output.

(2) Adaptive Beamforming

When developing the statistically optimum beamformer, if the weights are set only

with a priori knowledge of the statistics of the array signal, the resulting beamformer

is a non-adaptive one. The design result is good only if the signal environment is sta-

tionary, i.e., the signal and interferences characteristics as well as their DOAs are fixed.

Statistically optimum beamformer can also be implemented as adaptive beamformer by

updating the weights using current statistics of the array signal. This is usually required

in non-stationary signal environment, where adaptive beamformers are able to track the

changes in the signal characteristics. We examine the adaptive implementation of some

of the statistically optimum beamformers below.

The most known statistically optimum beamformers include the LCMV beamformer,

Multiple Sidelobe Canceller (MSC), and beamformers based on maximization of SNR
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or SINR [74]. When implemented in adaptive form, the last two types of beamformers

have a common limitation that they can only update their weights when the desired

signal is absent to avoid cancellation of it. The LCMV beamformer can overcome this

limitation by putting linear constraints on its weights. Thus LCMV, together with its

alternative form the GSC, are the most widely used adaptive beamformers. We leave

the more detailed discussion on this topic to Chapter 4.

(3) Subspace Methods

Subspace method explores the eigen-structure of the spatial covariance matrix R

of the array signal. Through eigen-decomposition of R, the space containing both the

desired signal and noise is decomposed into two subspaces: the noise subspace and the

desired signal plus noise subspace. Several works [75–78] discuss the techniques that

can be used to extract the desired signal from the signal plus noise subspace. Subspace

methods are also widely used in DOA estimation, this topic will be discussed in Chapter

7.

2.3 Array with Different Geometry

The placement of array elements in the space corresponds to the spatial sampling pattern

of the signal field. Usually, the choice of a certain array geometry is the outcome of con-

sideration of several factors, namely the application requirements, physical constraints,

algorithm complexity and cost in deployment etc. Array geometry is best classified by

the number of dimensions that the array spans, i.e., 1-D array, 2-D array or 3-D array.

2.3.1 1-D Array

1-D array is also called linear array. Depending on the array element spacing, linear

arrays can be further classified into: equally spaced linear array or unequally spaced

linear array. The former is also known as the Uniform Linear Array (ULA) in literature.
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xbearing angle

Figure 2.9: The ambiguity DOAs of a linear array

ULA is the most widely used array geometry due to its simple and regular physical

form and efficiency in its array algorithms. Fig. 2.8 shows a ULA, where d is the spacing

between two adjacent elements. A usually followed rule of setting d is d ≤ λmin/2,

where λ is the wavelength of the highest operating frequency of the ULA. When this

requirement on d is not satisfied, grating lobes, or in other words, false mainlobes will

appear in the beampattern. When d is fixed, the size of an N element ULA is (N − 1)d.

The larger the size is the array, the narrower will be the mainlobe width.

Array lengths of several hundreds of λ or higher is quite common in many practical

applications. Because of the requirement that d ≤ λmin/2 in ULA, a large number

of array elements are necessary in those large arrays. Unequally spaced linear array

is developed mainly to reduce the number of array elements of a ULA while keeping a

comparable performance. Design of unequally spaced linear array is discussed in [79–81].

Although linear array is appealing for its simple form, it has an inherent limitation

regarding source localization. As long as the bearing angle between the incoming signal

and the linear array is the same, it appears to a linear array that the incoming signal
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is always from the same direction. The ambiguity directions form a cone wrapping

around the linear array as shown in Fig. 2.9. All the coming signals through this cone

is reinforced by the linear array, no matter they are the desired signal, interference or

noise. Since the DOA of the incoming signal has infinite possibility, source localization

within this cone is impossible.

2.3.2 2-D Array

y
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Figure 2.10: 2-D arrays. (a) cross array (b) rectangular array (c) L-shape array (d) right
triangle array (e) octagon array (f) circular array.

2-D array can take a regular geometry form or irregular geometry form. Shown in

Fig. 2.10 are some of the most frequently used regular 2-D arrays [82]. Irregular 2-D
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array takes an arbitrary geometry which does not fit into any of those regular shapes.

Comparing to 1-D array, 2-D array has the advantage that the DOA ambiguity is

reduced to two DOAs, which are symmetric with respect to the plane where the 2-D array

lies in. This greatly increases the source localization accuracy. In fact, in a lot of practical

source localization problems, one of the ambiguity DOAs can be easily eliminated using

some a priori knowledge. The reduction of ambiguity DOAs also reduces the amount of

interference and noise coming through the ambiguity DOAs.

We will introduce the basic concepts and properties of circular array in Section 2.4,

since it is the focus of our work. Studies on other regular 2-D arrays can be found

in [82–84]. Irregular arrays are not studied separately, modern beamforming techniques

which can be applied to array with arbitrary geometry are available for them.

2.3.3 3-D Array

Some of the commonly used 3-D arrays are cylinder array, sphere array and 3-D arrays

formed by adding one dimension to those regular 2-D arrays. Irregular 3-D arrays are

seldom. 3-D array totally eliminates the ambiguity of DOA. Studies on 3-D array can

be found in [85,86].

2.4 Circular Array

Circular array, also termed as ring array, has all its array elements placed on the cir-

cumference of a circle. Comparing to other 2-D arrays, circular array has received con-

siderable interest because it provides almost uniform beampattern for 360◦ azimuthal

coverage. When the array elements are equally spaced, the array is entitled as Uniformly

Circular Array (UCA). Because of the symmetrical structure of the UCA, the steering

direction can be easily changed in the azimuth angle by simply shifting weights among

array elements. Unequally spaced circular array are not common. In our work, we only
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consider UCAs. We also assume the signal source is located in the far-field.

A UCA with N(N = 16) array elements is shown in Fig. 2.10 (f). Using the vector

representation defined in Section 2.1.1, the position vector of the n-th array element is

~rn = ~lxR cos γn + ~lyR sin γn, n = 1, 2, . . . , N

where R is the radius and γn = 2π(n − 1)/N is the azimuth angle of the n-th element.

The 3-D array pattern of the UCA as a function of the azimuth angle φ and elevation

angle θ is

f(φ, θ) =
N

∑

n=1

w∗

ne
j~k·~rm (2.14)

where wm is the weights for the m-th element and ~k is an arbitrary wavenumber vector

given by

~k = ~lxk sin θ cos φ + ~lyk sin θ sin φ + ~lzk cos θ.

where k = 2π/λ with λ being the wavelength of the operating frequency.

Considering the design of a delay-and-sum beamformer whose main look direction is

(φ0, θ0), the delay-and-sum weight is found to be [87]

wm =
1

N
ej~k0·~rm (2.15)

where ~k0 is the wavenumber vector associated with the look direction and is equal to

~k0 = ~lxk sin θ0 cos φ0 + ~lyk sin θ0 sin φ0 + ~lzk cos θ0.

Putting (2.15) into (2.14) yields the delay-and-sum beampattern of a UCA

f(φ, θ) =
1

N

N
∑

n=1

ej(~k−~k0)·~rm

=
1

N

N
∑

n=1

e−jkR[sin θ0 cos(φ0−γn)−sin θ cos(φ−γn)]

(2.16)

By defining

ξ = arccos
sin θ cos φ − sin θ0 cos φ0

ρ
, (2.17)
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ρ =
√

(sin θ cos φ − sin θ0 cos φ0)2 + (sin θ sin φ − sin θ0 sin φ0)2, (2.18)

equation (2.16) can be written in a simpler form as [87]

f(φ, θ) =
1

N

N
∑

n=1

e−jkRρ cos(ξ−γn) (2.19)

The delay-and-sum beampattern of a UCA in (2.19) can be further expressed as the

sum of various Bessel functions of different orders [87],

f(φ, θ) = J0(kRρ) + 2
∞

∑

q=1

jNqJNq(kRρ) cos(Nqξ) (2.20)

where Jm(·) is the m-th order Bessel function of the first kind.

Comparing (2.20) with the beampattern of a continuous circular ring antenna [87]

f(φ, θ) = J0(kRρ), (2.21)

it is seen that they only differ in the second term which contains the high order Bessel

functions. It will be shown in Chapter 3, when the number of array elements N in the

UCA is large enough, the second term in (2.20) will be negligible and the beampattern

of a UCA can be represented by (2.21).

We assume N is large enough and examine the beampattern of a UCA represented by

the J0() function. Fig. 2.11 shows the plot of J0(s), s ∈ [−20, 20]. The J0(s) function

contains sidelobes as high as −7dB. Such high sidelobe level in the beampattern is

unacceptable in most applications, thus how to reduce the sidelobe level for a UCA

becomes an important task. This topic will be dealt in Chapter 3.

2.5 Summary

By introducing some of the terminologies and basic theory in array processing and

beamforming, this chapter serves as a preparation for topics in the remaining chapters.

In reviewing of those basics, we put more emphasis on those topics closely related to
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Figure 2.11: Bessel functions J0(s), s ∈ [−20, 20].

our research work. Some of the sections will be referenced through out the remaining

chapters.
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Chapter 3

Deterministic Beamforming Using

Concentric Ring Array

In this chapter we first introduce the structure of the concentric ring array(CRA). The

weights of the array is decomposed into two parts: the intra-ring weights for array

elements on each ring and the inter-ring weights representing the contribution to the

array pattern from each ring. Our proposed design is based on a previous work by

Stearns and Stewart [33] that addressed concentric ring antenna design for continuous

rings, narrowband input and 2-D scenario only. We first generalize their method to 3-D

beamforming and then propose three methods to obtain inter-ring weights at different

frequencies that can control sidelobe and/or mainlobe. The proposed methods can

be applied in frequency domain based broadband beamformer. A nested array design

is proposed to further extend the operating frequency range. We also show that our

deterministic design can be incorporated into the Linear Constrained Minimum-Variance

(LCMV) [88] to generate nulls in the array pattern to cancel strong interferences.

The rest of the chapter is organized as follows. Section 3.1 introduces the structure

of a CRA and presents the decomposition of CRA weights. In Section 3.2, we briefly

review Stearns and Stewart’s work. We generalize their work to 3-D beamforming in

Section 3.3. The proposed methods to derive inter-ring weights are described in Section
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3.4. In Section 3.5, we discuss the implementation of a broadband beamformer using

proposed methods. Section 3.6 presents examples and simulations and Section 3.7 is a

summary.

3.1 Beamforming Using CRA

3.1.1 CRA Structure

The CRA considered is shown in Fig. 3.1.1, where φ and θ denote the azimuth angle

and the elevation angle with respect to the z-axis. The array consists of M rings. The

numbering of the rings starts from the inner most one so that the inner most ring is

called the 1st ring and the outer most ring is the M -th ring. The m-th, m = 1 . . . M

ring has Nm equally spaced array elements and its radius is denoted by Rm. The total

number of array elements is K =
∑M

m=1 Nm.

For a narrow-band signal impinging on the CRA, the beamformer output at time

instant n is

z(n) =
M

∑

m=1

Nm
∑

i=1

v∗

mixmi(n) = vHx(n) (3.1)

where xmi(n) is the received signal from the i-th element on the m-th ring, vmi is the
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corresponding weight. x(n) and v are the received data vector and weight vector re-

spectively, both are of size K × 1. By choosing the weights vmi properly, the array can

enhance a directional signal and reduce interferences and noise.

3.1.2 Design of the CRA Weights

Our proposed method does not obtain v directly, but rather decomposes v into two

different sets of weights that will be chosen differently. The reason is because each ring

in the CRA can be viewed as a stand alone array with the output

ym(n) = hH
mxm(n), (3.2)

where xm(n) = [xm1(n), xm2(n), . . . , xmNm
(n)]T is a Nm × 1 vector containing the data

received by the elements on the m-th ring and hm denotes the corresponding weight

vector. The final output z(n) of the CRA can then be formed as a weighted sum of the

output from each ring:

z(n) = wHy(n), (3.3)

where y(n) = [y1(n), y2(n), . . . , yM(n)]T and w = [w1, w2, . . . , wM ]T is the weight vector

that governs the contribution of the individual rings to the final output.

Putting (3.2) into (3.3) yields

z(n) = uHx(n) (3.4)

where x(n) = [xT
1 (n),xT

2 (n), . . . ,xT
M(n)]T is the same array data vector defined in (3.1),

and

u = [w1h
T
1 , w2h

T
2 , . . . , wMhT

M ]T . (3.5)

Comparing (3.4) and (3.1) reveals that u is a partitioned form of v and there are a

total number of (K + M) weighting parameters in u.
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Among these (K + M) weights, we can set hi to be the delay-and-sum weights

computed based on the a priori knowledge of the desired signal’s DOA. The delay-and-

sum weight for a circular ring array is developed in Section 2.4 as given in equation

(2.16). Similar to (2.16), when a narrow-band signal of wavelength λ is impinging on

the array in the direction of (φ0, θ0), the delay-and-sum weight of the ith element on the

m-th ring is obtained as

hmi =
1

Nm

ejkRm[sin θ0 cos(φ0−γmi)], i = 1, 2, . . . , Nm (3.6)

where γmi = 2π(i − 1)/Nm is the azimuth angle of this element and k = 2π/λ. The

delay-and-sum weights allows a maximum reduction of ambient noise when it is spatially

white.

When setting hmi to the delay-and-sum weight given in (3.6), the array pattern of

the m-th ring becomes the delay-and-sum array pattern of a UCA as given in Section

2.4. As pointed out earlier, if there are sufficient number of elements on a ring, the array

pattern of the m-th ring equals the array pattern of a continuous ring that has the zero

order Bessel function term only, which is

Fm(φ, θ) = J0(kRmρ). (3.7)

The condition to make this valid will be discussed in Subsection 3.3.1. With this as-

sumption, we can write the array pattern of the CRA with M rings as

F (φ, θ) =
M

∑

m=1

wmFm(φ, θ)

≈
M

∑

m=1

wmJ0(kRmρ)

(3.8)

where wm represents the weight for the array pattern of the m-th ring. The weighted sum

of the beampatterns from different rings can result in lower sidelobe level and rejecting

directional interference if the weights are chosen carefully. Thus wm plays a central role

in the synthetic array pattern for CRA.
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3.2 Stearns and Stewart’s Method

In [33], Stearns and Stewart examined the sidelobe control problem of a continuous

concentric ring antennas. They developed their method for the special case of 2-D

beamforming in the x-y plane. In such case, θ = π/2, θ0 = π/2 and ρ in (2.18) becomes

ρ = 2

∣

∣

∣

∣

sin(
φ − φ0

2
)

∣

∣

∣

∣

, φ ∈ [0, 2π] (3.9)

Putting the above equation into (3.8) yields the 2-D array pattern

F (φ) =
M

∑

m=1

wmJ0(2kRm

∣

∣

∣

∣

sin(
φ − φ0

2
)

∣

∣

∣

∣

). (3.10)

The weight wm is then obtained through the infinite Fourier-Bessel series expansion as

explained below.

For any continuous function g(ϕ) defined in [0, 1], it can be expanded as an infinite

Fourier-Bessel series as [33]

g(ϕ) =
∞

∑

m=1

AmJ0(δmϕ), ϕ ∈ [0, 1], (3.11)

where δm is the m-th zero of J0(·) arranged in ascending order. The coefficients Am are

given by [33]

Am =
2

J2
1 (δm)

∫ 1

0

τg(τ)J0(δmτ)dτ. (3.12)

Comparison of (3.10) and (3.11) shows that the first M terms in (3.10) can be mapped

to the first M terms in (3.11) by establish the following mapping relationship

ϕ =

∣

∣

∣

∣

sin(
φ − φ0

2
)

∣

∣

∣

∣

, (3.13)

Rm = δm/(2k), (3.14)

wm = Am. (3.15)

After the mapping, F (φ) becomes a truncated Fourier-Bessel series with M terms. If

M is large enough then any g(ϕ) expressed as a infinite Fourier-Bessel series can be

approximated by F (φ).
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(3.14) indicates that the first M zeros of J0 function determines the radii of the M

rings and this may be inconvenient in practice. An interpolation technique is used by

Stearns and Stewart to overcome this restriction. First, the accumulative value of Am is

obtained

Bm =
m

∑

j=1

Aj, m = 1, . . . ,M.

A set of points (Rm/λ,Bm),m = 1, . . . ,M is interpolated as shown in Fig. 3.2, where λ =

c/f and f is the desired operating frequency. If it’s desirable to have M equally spaced

rings, the curve is resampled at M equally spaced points in the interval of [0, RM/λ].

Denoting the new sampling points by (R̃m/λ,B′

m), m = 1, . . . ,M , then a new set of

weights is obtained by:

w′

1 = B′

1

w′

m = B′

m − B′

m−1, m = 2, . . . ,M

w′

m now corresponds to the weight of the m-th ring whose radius is given by R̃m =

mR̃M/M . Notice that the radius of the M -th ring is kept unchanged with the value of

R̃M = δM/(2k).

This is to ensure that the array dimension remains to be the same. It’s shown by Stearns

and Stewart that this resampling technique has negligible effect on the resultant array

pattern.

3.3 Proposed 3-D Array Pattern Synthesis Method

Stearns and Stewart’s pattern synthesis method is only suitable for 2-D beamforming

in the x-y plane. In this subsection, we generalize their method to 3-D array pattern

synthesis.

Comparison of (3.8) and (3.11) shows that to map the 3-D array pattern given in

(3.8) to a truncated Fourier-Bessel series, we only need to modify the mapping in (3.13)
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to

ρ = 2ϕ, ϕ ∈ [0,
1 + sin θ0

2
] (3.16)

and keep the other two mappings specified in (3.14) and (3.15) unchanged, ρ in (3.16)

is given in (2.18). The new mapping in (3.16) is examined in more details below.

The desired array pattern function g(ϕ), ϕ ∈ [0, 1] has the property that g(0) = 1

and g(ϕ) < 1 when ϕ > 0. Thus ϕ = 0 corresponds to the main look direction and those

relatively large values of ϕ form the sidelobe region.

The definition of ρ in (2.18) is relisted here as

ρ =
√

(sin θ cos φ − sin θ0 cos φ0)2 + (sin θ sin φ − sin θ0 sin φ0)2 . (3.17)

Note that ρ is a function of the azimuth and elevation angle pair (φ, θ), thus through

the mapping in (3.16), (φ, θ) is mapped to ϕ, i.e. any point in the 3-D array pattern

is mapped to a point in the desired 2-D array pattern. A mapping is considered to be

effective if it is able to map the mainlobe region in 3-D array pattern to the mainlobe

region in the 2-D array pattern g(ϕ) and the sidelobe region in 3-D array pattern to
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the sidelobe region in the 2-D array pattern g(ϕ). An effective mapping can successfully

transform the sidelobe control from the 2-D array pattern to the 3-D array pattern.

By rewriting (3.17) as

ρ =
√

(sin θ − sin θ0)2 + 2 sin θ sin θ0[1 − cos(φ − φ0)] ,

it is easy to see that ρ has a minimum value of 0 when φ = φ0 and θ = θ0, which is the

main look direction. ρ reaches a maximum value of (1 + sin θ0) when φ = φ0 ± π and

θ = π/2.

Notice that the values of ρ and 2ϕ in the mapping ρ = 2ϕ may have different ranges

depending on the elevation angle θ0. The effect of θ0 on the mapping is examined below

by looking at two boundary cases.

(1) When θ0 = π/2, ρ is between 0 and 2 and through the mapping in (3.16), ϕ is

between 0 and 1. Hence the mapping is effective in that sidelobe region in 3-D array

pattern is mapped to sidelobe region in 2-D array pattern.

(2) When θ0 is close to 0, the maximum of ρ is close to 1 and through the mapping

in (3.16), the maximum of ϕ is close to 0.5. This indicates that the whole 3-D array

pattern is mapped to the region between 0 and 0.5 in the 2-D array pattern g(ϕ). This

suggests that when the elevation angle is close to 0, compression of the desired array

pattern function g(ϕ) in ϕ-axis is necessary to maintain relatively the same mainlobe

width and sidelobe level. The exact amount of compression is a parameter to be adjusted

in practice.

The 3-D array pattern is symmetric with respect to the x-y plane. It is obvious from

(3.17) that ρ(φ, θ) = ρ(φ, π− θ). Hence both points (φ, θ) and (φ, π− θ) will be mapped

to the same ϕ through (3.16) so that F (φ, θ) = F (φ, π−θ). Note that the two mainlobes

at (φ0, θ0) and (φ0, π − θ0) may overlap when θ0 is close to π/2.

As an example, Fig. 3.3 shows the relationship between ϕ and (φ, θ) when the

look direction is (φ0 = 90◦, θ = 45◦). In the figure, ϕ reaches the minimum 0 at
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Figure 3.3: Mapping between (φ, θ) and ϕ, ϕ is represented by z-axis. The look direction
is (φ0 = 90◦, θ = 45◦).

(φ0 = 90◦, θ = 45◦) and (φ0 = 90◦, θ = 135◦) corresponding to the look direction and

its ambiguity direction. It can be seen that except the small regions surrounding the 2

minima, (φ, θ) is mapped to relatively large value of ϕ, which corresponds to sidelobe

region in the desired array pattern g(ϕ).

3.3.1 Requirement on Number of Array Elements

The design of wm presented above assumes that the discrete CRA has sufficient array

elements so that the higher order Bessel function terms in (2.20) can be ignored. Oth-

erwise, the array pattern of a single discrete ring cannot be expanded as Fourier-Bessel

series as defined in (3.11) and the performance of the proposed design will degrade. We

shall establish the requirement on number of array elements to fulfill the assumption.

From the properties of Bessel function, J0(s) has a mainlobe at s = 0 and decreasing

sidelobes toward s = ∞. Higher order Bessel functions only have sidelobes and the

distances between the origin s = 0 and their first sidelobes increase with the order. Fig.
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Figure 3.4: Bessel functions: J0(s) (solid line), J4(s) (dashed line) and J8(s) (dotted
line).

3.4 shows the plot of J0(s), J4(s) and J8(s); the sidelobes of J4(s) is more close to the

origin s = 0 than the sidelobes of J8(s).

Since ρ has a range of [0, 1 + sin θ0], only portions of the Bessel function terms

J0(kRmρ) and JNmq(kRmρ) within this range contribute to the synthesized array pattern.

Suppose the location of the first sidelobe of the Bessel function JNm
(s) in (2.20) is at

s = ±SNm
. From the property of the Bessel function, SNm

increase with Nm, thus by

choosing Nm large enough so that

SNm
> kRm(1 + sin θ0), (3.18)

JNm
(s) will hardly affect the sidelobe level of the array pattern. Other higher order

Bessel functions JNmq(s), q > 1 will have even less effect on the array pattern.

In summary, the procedure to achieve the desirable prototype array pattern g(ϕ) at

an operating frequency f is as follows:

(1) Set the radius of the m-th ring as in (3.14), and the number of equally spaced
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array elements in the ring is chosen large enough to fulfill (3.18),

(2) Choose the weights within the m-th ring as (3.6),

(3) Set the weights among different rings according to (3.12) and (3.15),

(4) Determine the number of rings M so that the relative truncation error

ǫ =

∫ 1

0

|g(ϕ) −
M

∑

m=1

AmJ0(δmϕ)|2 dϕ /

∫ 1

0

|g(ϕ)|2 dϕ (3.19)

is within a certain tolerable limit.

3.4 Proposed Inter-ring Weights Design Methods

Suppose a CRA operating at frequency f0 has been obtained using the method described

in Section 3.3. When the incoming frequency deviates from f0, the desirable array

pattern can no longer be achieved. Usually, the obtained array pattern’s mainlobe width

varies and the sidelobe level raises. In this section, we derive three methods to design

the inter-ring weights at different frequencies that are able to maintain the sidelobe level

or/and mainlobe width of the desirable array pattern. These methods use the same array

structure within the design frequency range, and can be incorporated into a frequency

domain based broadband beamformer.

3.4.1 Method I: Inter-ring Weights Interpolation

In this subsection, a method to design inter-ring weights at different frequencies using

interpolation technique is described. The aim of this approach is to achieve similar

maximum sidelobe level over a certain input frequency range.

The CRA consists of M rings. An interpolation technique is used by Stearns and

Stewart [33] so that the radii can be equally distributed as: R̃m = mR̃M/M , where

R̃M = δM/(2k). Here we will show that the interpolation technique can be used from a

different perspective to offer some flexibility of the beamformer’s operating frequency.
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Figure 3.5: Interpolation curve of (δm/(4π), Bm), m = 1, · · · , 15, obtained by using a
−30dB sidelobe level Chebyshev function as the desired array pattern.

First, suppose that up to T coefficients Am,m = 1, . . . , T are obtained using (3.12),

where T is a sufficiently large number, say 15. Note that Am depends on m through δm.

The accumulative value of Am is

Bm =
m

∑

j=1

Aj, m = 1, . . . , T. (3.20)

We therefore have T discrete points (δm/(4π), Bm),m = 1, . . . , T . Interpolating them

through B-spline yields a continuous curve as shown in Fig. 3.5.

Putting k = 2π/λ0 into (3.14) and rearranging it yields Rm/λ0 = δm/(4π). Hence

the x-coordinate δm/(4π) has the physical meaning of the radius Rm normalized by the

wavelength λ0. If we denote the interpolated continuous curve by B(r), r ∈ [0, δT /(4π)],

then r corresponds to an arbitrary radius R normalized by an arbitrary wavelength λ,

i.e. r = R/λ.

Given a certain wavelength λ and radii R̃m,m = 1, . . . ,M , we can sample B(r) at

rm,λ =
R̃m

λ
. (3.21)
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Then a new set of weights wm that operates at λ can be obtained through

w1,λ = B(r1,λ)

wm,λ = B(rm,λ) − B(rm−1,λ), m = 2, . . . ,M

(3.22)

In this process to determine wm,λ, R̃m are always fixed and only λ varies. Note that

we have a different set of wm,λ for different λ’s. In the following analysis, we will show

that within some range of λ, wm,λ obtained through resampling B(r) can achieve desired

sidelobe level at the corresponding frequency f .

From (3.21), it can be seen that for a given λ the resampling process uses only a

portion of the curve, specifically, the curve in the range [0, R̃M/λ]. If an integer P is

defined as

P = arg min
m=1,2,...

∣

∣

∣

∣

∣

R̃M

λ
− δm

4π

∣

∣

∣

∣

∣

(3.23)

then P roughly equals the number of terms we kept in the Fourier-Bessel series expansion

in (3.11). Since R̃M/λ0 = δM/(4π) and f/f0 = λ0/λ, (3.23) can be simplified to

P = arg min
m=1,2,...

∣

∣

∣

∣

δM
f

f0

− δm

∣

∣

∣

∣

. (3.24)

As an example, Fig. 3.6 shows the relationship between P and the frequency ratio

f/f0 for M = 4, 6, 8, 10. At f/f0 = 1, P = M . Generally speaking, when f < f0,

P ≤ M and when f > f0, P ≥ M .

When the operating frequency decreases, i.e., f < f0, the number of terms kept in the

Fourier-Bessel expansion (3.11) P is less than M and the truncation error increases. It

is expected that there is a lower limit of P , denoted by PL, at which the truncation error

is no longer acceptable. The corresponding frequency of keeping PL terms is roughly

equal to f0δPL
/δM from (3.24). On the other hand, when f > f0, the number of terms

we kept in the Fourier-Bessel expansion should be greater than M . However there are

only M rings and we are only able to sample the curve at M locations, which results

in distortion in the array pattern through not keeping enough terms in (3.11). Hence
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Figure 3.6: Relationship between P and (f/f0) for M = 4, 6, 8, 10.

there is an upper limit of P , denoted by PU , at which the distortion introduced by not

keeping enough terms is no longer acceptable. The corresponding frequency of keeping

PU terms, from (3.24), is roughly equal to f0δPU
/δM . Thus the range of the operating

frequency is given by

f ∈ [
δPL

δM

f0,
δPU

δM

f0]. (3.25)

Within this frequency range, using the weights wm,λ obtained through (3.22) can achieve

the desired sidelobe level in the array pattern, as will be demonstrated in Section 3.6. The

exact values of PL and PU depend on the configuration of the array and the acceptable

sidelobe level.

In Section 3.3.1, we derived the requirement on the number of array elements on a

ring. In Method I, this requirement needs to be modified to accommodate the broadened

frequency range.

The derivation of (3.18) assumes that the m-th ring is associated with the m-th term

in the Fourier-Bessel series. However, this may no longer be the case after applying
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Method I. Denote the broadened frequency range centered at f0 by [f1, f2], which can

also be expressed equivalently by their wavelength as [λ2, λ1]. For an operating frequency

with wavelength λ ∈ [λ2, λ1], the m-th ring is roughly associated with the Pmth term in

the Fourier-Bessel series, where Pm is determined by

Pm = arg min
p=1,2,...

∣

∣

∣

∣

∣

R̃m

λ
− δp

4π

∣

∣

∣

∣

∣

. (3.26)

Pm is dependent on λ. A larger value of Pm implies that the m-th ring is associated with

a term of higher order in the Fourier-Bessel series and resultantly more array elements

are required on the m-th ring as indicated by (3.18). By setting λ = λ2, the maximum

value of Pm is obtained

Pm,max = arg min
p=1,2,...

∣

∣

∣

∣

∣

R̃m

λ2

− δp

4π

∣

∣

∣

∣

∣

. (3.27)

Thus when the number of array elements Nm on the m-th ring satisfies

SNm
> δPm,max

, (3.28)

the discrete array pattern can be well approximated by J0(s) over the broadened fre-

quency range [f1, f2] and the proposed design method can be applied.

3.4.2 Method II: Inter-ring Weights Design Using MMSE Cri-

terion

Method I involves two types of approximations in the process of synthesizing the array

pattern. First, the desired array pattern is expressed as an infinite Fourier-Bessel series

in (3.11), while the synthesized array pattern is a truncated Fourier-Bessel series of M

terms corresponding to M rings. Thus there is a truncation error between the desired

and synthesized array pattern. The truncation error is negligible when M is large. When

M is small, the truncation error will be reflected in the array pattern, resulting in raised

sidelobe level.
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Figure 3.7: Beampattern of a discrete ring: array pattern generated using only J0 term
(solid line), actual array pattern (dashed line).

Second, when deriving the weights wm for the discrete circular ring array, we assume

that there are enough array elements on a ring so that the discrete array pattern in

(2.20) can be approximated by only the J0 term. If the number of array elements is less

than required, then the higher order Bessel function terms cannot be ignored and they

will increase the sidelobe level. Fig.3.7 shows the actual array pattern for a discrete ring

array composed of less than required number of array elements, together with the array

pattern approximated by only the J0 term. The difference between them is obvious and

significant. In such case, using the previous method will generate some unwanted high

sidelobe in the synthesized array pattern.

The degradation accompanying the two types of approximations can be mitigated

by maintaining the number of rings and the number of array elements on each ring

above some minimum values. In some applications, the required number of array ele-

ments can be large, which is costly not only in deployment but also in real-time data

45



processing. Thus reducing the elements without degrading the array pattern is a de-

sirable design goal. However, this is difficult to achieve using the previous proposed

design method since the approximation error is simply ignored and left uncontrolled in

the design process.

In this section, we present a pattern synthesis method based on the MMSE criterion,

which takes the two kinds of degradation into account and offers some error control over

different spatial regions of a array pattern. The new method can serve as an alternative

design method for applications where the number of array elements is a constraint.

Denote the desired array pattern as g(ϕ), ϕ ∈ [0, (1 + sin θ0)/2], where φ0 is the

elevation angle of the main look direction. The array pattern of the m-th ring is

Fm(φ, θ) = Fm(ϕ), ϕ ∈ [0, (1 + sin θ0)/2], where the pair (φ, θ) is converted to ϕ through

(2.18) and (3.16). The synthesized pattern ĝ(ϕ) is formed as a weighted sum of the

array pattern of each ring:

ĝ(ϕ) =
M

∑

m=1

wmFm(ϕ), ϕ ∈ [0, (1 + sin θ0)/2]. (3.29)

To simplify the design procedure, the array pattern of each ring is evaluated at D

locations, where D is sufficiently large, within [0, (1 + sin θ0)/2] that are denoted by

ϕd, d = 1 . . . D. This process results in D linear equations

ĝ(ϕd) =
M

∑

m=1

wmFm(ϕd), d = 1 . . . D. (3.30)

The D linear equations can be expressed in matrix form as

Ĝ = Fw (3.31)

where Ĝ = [ĝ(ϕ1), ĝ(ϕ2), . . . , ĝ(ϕD)]T , F = [f1, f2, . . . , fM ] with fm = [Fm(ϕ1), Fm(ϕ2),

. . . , Fm(ϕD)]T , and w = [w1, w2, . . . , wM ]T is the unknown weight vector.

The error vector between desired pattern G and synthesized pattern Ĝ is

e = G − Ĝ = G − Fw, (3.32)
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and the weighted energy of the error is formed as

E = eHKe = (G − Fw)HK(G − Fw) (3.33)

where K is a positive definite and Hermitian D × D weighting matrix that emphasizes

error in certain spatial regions. A typical choice of K is a diagonal matrix as

K =



















k11 0 . . . 0

0 k22 . . . 0

...
...

. . .
...

0 . . . 0 kDD



















.

where kdd > 0, d = 1, . . . , D. If the diagonal elements in the upper left-hand corner

has larger values than the others, then the synthesis error in the mainlobe region will

receive more emphasis and therefore more reduction. If the goal is to reduce mainly

the synthesis error in the sidelobe region, the diagonal elements in the lower right-hand

corner should be set to larger values.

To make the design more general, linear constraints can be imposed in finding w.

The optimum weight vector w in the MMSE sense is then chosen by minimizing error

energy E while at the same time satisfying a set of Q linear constraints in the form

of C̄Hw = b, where C̄ is a M × Q constraint matrix and b is a Q × 1 vector of the

constraint values. If M weights are available, up to M−1 constraints can be specified. A

commonly used constraint is the unit gain constraint at the look direction of the desired

signal.

The optimization problem can be described as

wopt = arg min E subject to C̄Hw = b.

By formulating the pattern synthesis problem this way, the degradation described pre-

viously can be assimilated into the synthesis error. This is because (3.29) explicitly uses

M rings and Fm(ϕ) contains not only the J0 term but also higher order Bessel function

terms in (2.20).
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This constrained optimization problem can be solved by using the method of La-

grange multipliers. The Lagrangian of this problem is

L(w,β) = (G − Fw)HK(G − Fw) + (bH − wHC̄)β (3.34)

where β = [β1, β2, . . . , βQ]T is the Lagrange multiplier vector. Setting ∂L(w,β)/∂w∗ =

0 and solving w gives

wopt = (FHKF)−1FHKG + (FHKF)−1C̄β. (3.35)

Using C̄Hw = b, β is obtained to be

β = [C̄H(FHKF)−1C̄]−1[b − C̄
H

(FHKF)−1FHKG]. (3.36)

Note that the solution (3.35) and (3.36) is at a given frequency since F is dependent on

frequency. Hence wopt is different at different operating frequencies.

3.4.3 Method III: Inter-ring Weights Design with Frequency

Invariant Property

Frequency invariant(FI) array pattern design is desirable for broadband signal acqui-

sition and it has also been used in high resolution broadband signal DOA estima-

tion [1,89,90]. FI design based on linear array has been studied in [90–93]. The technique

in [90] relies on the beamspace and the Jacobi-Anger expansion of the array pattern for

wideband range and bearings estimation. [91] and [93] use a technique similar to [59]

where a fixed filter is applied to compensate for the frequency dependence to create FI

beampatterns for linear arrays. In the case of an arbitrary array, Ward et al. [92, 94]

adjust the sensor positions to achieve FI array pattern. For a single ring uniform cir-

cular array, Chan and Pun [59] utilize phase mode processing and filtering to obtain FI

design. We take a different approach by using multiple concentric rings together with a

careful choice of the ring radii to achieve the FI property. The FI design is based on the
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deterministic CRA method described in Section 3.3, and improves significantly in terms

of FI property of the array pattern.

Suppose a narrowband CRA beamformer having a desirable array pattern at fre-

quency f0 has been obtained using the method from Section 3.3. At another operat-

ing frequency f different from f0, the synthesized array pattern degrades. One could

re-design the inter-ring weights at the new operating frequency to achieve the same

desirable array pattern. However, since the ring radii in the CRA are determined by

Rm = δm/(2k) = δmc/(4πf), where c is the signal propagation speed, they are depen-

dent on the frequency. Hence the new set of weights for f will require rings of different

radii than the one that operates at f0. Having a completely different CRA at different

frequencies is neither practical nor cost effective. In the following, we shall derive a

technique to maintain FI array pattern over a range of frequencies for the given array

structure designed at f0.

By design with operating frequency at f0, the radii are Rm = δmc/(4πf0) and the

inter-ring weights are wm,f0
= Am given in (3.12). The array pattern Ff0

(φ, θ) thus

approximates the desirable array pattern g(ϕ), i.e,

Ff0
(φ, θ) |ρ=2ϕ= g̃(ϕ) =

M
∑

m=1

AmJ0(δmϕ). (3.37)

where g̃(ϕ) denotes the truncated Fourier-Bessel series.

At a different operating frequency f , where f < f0, the array pattern from the same

array structure Rm and inter-ring weights wm,f0
is, from (3.8),

FF (φ, θ) =
M

∑

m=1

wm,f0
J0(

2πRm

λ
ρ) =

M
∑

m=1

AmJ0(δm
f

f0

ϕ) (3.38)

where (3.16) and (3.14) have been used.

Comparing (3.38) with (3.37) indicates that

FF (φ, θ) |ρ=2ϕ= g̃(
f

f0

ϕ) (3.39)

49



0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ϕ

Ff0
(φ, θ)

Ff (φ, θ)

b = af0/fa

Figure 3.8: Array pattern Ff0
(φ, θ) and FF (φ, θ), where ϕ = ρ/2. a and b denote the

first zero crossing points of Ff0
(φ, θ) and FF (φ, θ) respectively, b = af0/f .

Since g̃(ϕ) is defined in the range [0, 1], (3.39) indicates that the array pattern at fre-

quency f < f0 is a stretched version of g̃(ϕ) and therefore creates undesired widening of

the mainlobe. An example is shown in Fig. 3.8 to illustrate this stretching effect.

In order to achieve the same desirable array pattern at a lower frequency, we create

a pre-compressed desirable array pattern, i.e. gf (ϕ) = g(Cfϕ), where Cf = f0/f , and

use gf (ϕ) instead of g(ϕ) to obtain the inter-ring weights through (3.12). Note that in

order to obtain gf (ϕ) in the range of ϕ ∈ [0, 1], additional definition of g(ϕ), ϕ ∈ (1, Cf ]

is necessary. In practice, g(ϕ), ϕ ∈ (1, Cf ] can be set to a desirable sidelobe level. As a

result, we have from (3.39)

FF (φ, θ) |ρ=2ϕ= g̃f (
f

f0

ϕ) = g̃(Cf
f

f0

ϕ) = g̃(ϕ) (3.40)

and therefore the same array pattern can be maintained.

The above method cannot maintain the desirable array pattern at arbitrarily low

frequencies. When the frequency decreases, the prototype array pattern g(ϕ) needs to

be compressed more and it becomes shaper in shape. Hence the coefficients of expansion
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Am in (3.12) become larger in amplitude for larger m. Note that we only keep the first

M terms in the Fourier-Bessel series to approximate the desirable array pattern. Keep

compressing g(ϕ) will eventually increase |Am|, for m > M , such that the truncation

error will no longer be negligible. Thus there is a lower frequency limit that can achieve

the same array pattern using the fixed array structure. It is determined by the number

of rings we use in the CRA.

Throughout the derivation, we assume f0 is the highest frequency that the CRA

operates. The highest frequency is actually determined by the number of array elements

on the rings. Rearranging (3.18) yields

f0 <
cSNm

4πRm

, (3.41)

where θ0 = π/2 is assumed to obtain the least upper bound of f0. The highest frequency

must satisfy this condition to avoid the distortion introduced by those higher order Bessel

function terms in (2.20), SNm
is the location of the first maximum of JNm

(s). The more

the array elements on each ring the larger SNm
becomes, and from (3.41) the higher the

frequency can be. However, there is a practical limit on the highest frequency in which

the proposed method can achieve. This is because the ring radius and the coupling effect

limit the number of array elements that can be allocated to a ring.

If the frequency band broadening technique developed here does not provide enough

frequency range coverage, the compound ring structure method can be utilized on top of

the proposed band broadening technique to extend the coverage of frequency range [95].

The proposed beamformer operates on broadband signal as follow:

(i) separate the signals received at each sensor elements into segments using a window,

(ii) perform FFT on the data segments,

(iii) pass each FFT components through the proposed narrowband beamformers

designed to have the same array pattern,

(iv) apply inverse FFT to the outputs of the narrowband beamformers to obtain the
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beamformed signal in time-domain. Note that the size of FFT is equal to the length of

the tapped-delay line for each array element.

3.4.4 Comparison of Method I, II, III

Method I and II are similar in that they aim to control the sidelobe level but not

the mainlobe within a frequency range. Comparing these two, Method II has better

sidelobe level control performance at the price of higher computational complexity. This

is because in Method II, the MMSE solution for w is more complex and it needs to be

computed at all operating frequencies during the design stage, while in Method I all the

weights in one subband can be obtained through sampling the same interpolated curve.

Thus Method II is more favorable for applications where there are a limited number of

array elements and the control of sidelobe is more important than the design complexity.

Method III yields the best performance among the three in terms of sidelobe level

and mainlobe control. However, it requires more number of rings in order maintain

tolerable truncation error in the Fourier-Bessel series.

3.5 Broadband Beamforming Implementation

3.5.1 Frequency Domain Broadband Beamformer

The proposed method assumes the incoming signals are narrow-band. For broadband

beamforming, the incoming signals can be decomposed into many narrow-bands and

processed by narrow-band beamformers respectively. The final output is formed by

combining outputs from those narrow-band beamformers.

A commonly used method in broadband beamforming is to transform the broadband
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Figure 3.9: Frequency domain broadband beamformer based on FFT.

signal to frequency domain using FFT, the frequency domain data are then processed us-

ing narrow-band beamforming techniques. Such processing requires the design of narrow-

band beamformers at all the frequency bins. Using our proposed band-broadening tech-

nique, we can derive weights to achieve desired sidelobe level at arbitrary frequency by

sampling a prescribed curve, which makes it convenient to design a frequency domain

broadband beamformer based on FFT. Fig. 3.9 shows the diagram of such a broadband

beamformer. The received signal x(t) is first transformed to frequency domain using

FFT. Denote the received signal vector in frequency domain by xωl
, where ωl is the

angular frequency at the lth frequency bin. At a particular frequency ωl, the received

data xωl
is first processed by a narrow-band delay-and-sum beamformer hωl

to form the

intermediate output yωl
, which is a M × 1 vector containing the outputs from each ring.

Using the inter-ring weights wωl
, the outputs from each ring are combined to yield the

output zωl
. Finally, the frequency domain output is transformed to time domain using

IFFT.
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3.5.2 Nested Array Design

The frequency range provided by the previous three methods may not be wide enough to

cover the entire frequency range of interest in some applications. To further extend the

frequency range of the array, we assimilate the nested array [96] design used for linear

array.

The nested CRA is composed of many concentric rings grouped into different sub-

arrays, each of which is dedicated to a subband of the entire frequency range. The

proposed methods will be used in each subarray to cover a corresponding subband. By

properly grouping, rings can be reused among different subarrays to improve efficiency.

This is illustrated by an example in Fig. 3.10, in which only the radii of the rings are

shown. The exemplary array has 6 rings in total. It consists of 2 subarrays as indicated

by the grouping of the radii in the figure. Each subarray has 4 rings. The size of the 2nd

subarray is 2 times that of the 1st one, so that the center frequency of the 2nd subarray

is half of that of the 1st subarray. Ring 2 and Ring 4 are shared by the two subarrays.

Only half of the elements in these two rings are used in the 2nd subarray.

Nested array design requires the rings in each subband have equally spaced ring radii.

Note that Method I and II are derived for CRAs possess such structure, while Method III

is not. However, Method III can also be extended to equally spaced ring structure using

Stearns and Stewart’s interpolation technique described in 3.2, the details are omitted

here.

3.5.3 Linear Constrained Beamformer with Desired Beampat-

tern

In Section 3.4, we derived three methods to control the sidelobe or/and mainlobe in the

array pattern of a CRA. Such beamformer is expected to have satisfactory performance
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Figure 3.10: CRA using nested array structure. Rm,m = 1, . . . , 6 normalized with
respect to R1 is: [1 2 3 4 6 8].

when noise and interference is at moderate level. However, when there are strong inter-

ferences, the fixed sidelobe level may not achieve enough attenuation of the interferences

and resultantly the remaining interferences are still at a hazardous level. Decreasing the

overall sidelobe level to a sufficiently low value to cancel the strong interference is not a

practical solution since the mainlobe will be widened accordingly, not mentioning that

sometimes there are physical constraints to do so.

In the review of modern beamforming techniques in Section 2.2.2, we introduced

the Linear Constrained Minimum-Variance (LCMV) beamforming technique. LCMV

beamformer is known to be very effective in removing strong interference. When the

DOA of an interference is known, the LCMV beamformer can add a linear constraint

to explicitly specify the gain at the direction of the interference to be zero or other

sufficiently small value. The obtained LCMV solution will generate a deep dull in the

array pattern to remove the interference while the sidelobe level surrounding the null is

only slightly raised.

Although LCMV is effective in removing interference, it cannot replace conventional

methods that can specify the array pattern to a desired one. Theoretically, for an N -

element array, it is possible to use as many as N linear constraints to specify the whole

array pattern, but it would be very computationally inefficient to implement a LCMV

in this way if N is large because the inverse of large size matrices are involved. In most
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cases, the LCMV contains only a few constraints to specify the gains and the main

look direction, directions at interferences and other linear constraints to increase the

robustness of the LCMV beamformer. In such case, most of the sidelobe region is not

explicitly specified in the LCMV, which results in relatively high sidelobe level in the

array pattern, especially in those regions close to the mainlobe.

In [88], Griffiths and Buckley proposed a method to control the quiescent pattern

in linearly constrained adaptive arrays. Their method can be used to incorporate our

deterministic design of the weights of a CRA into the framework of the LCMV beam-

former. The result is a deterministic beamformer that has desired overall sidelobe level

and deep dulls only in directions of the interferences. The advantage in combining the

LCMV design with our design is obvious, it eliminates some of the inherit limitations

in both designs we discussed earlier and therefore opens up more applications. The

combined design method is briefly summarized below.

We first describe the LCMV form of the K-element CRA. The linear constraints are

specified as CHv = b, where C is a K × Q constraint matrix, v is the K × 1 weight

vector for array elements, and b is the Q × 1 constraint value vector. The solution to

the LCMV optimization problem is given in (2.11) in Section 2.2.2.

Using our proposed methods in Section 3.4, the inter-ring weights w is obtained.

Combining w with the intra-ring delay-and-sum weights h in the manner given in (3.5)

yields the weights for each array element v0. v0 obtained this way may not satisfy the

linear constraints of the LCMV. A vector v0 that is the closest to v0 in the least-squares

sense and also satisfies the linear constraints is found through solving the following

linearly constrained minimization problem [88]:

v0 = min
v0

{(v0 − v0)
H(v0 − v0)} subject to CHv0 = b

The solution is

v0 = [I − C(CHC)−1CH ]v0 + vq (3.42)
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where I is a K × K identity matrix and vq is the quiescent solution given by vq =

C(CHC)−1b.

Finally, the constrained matrix C and constrained value vector are modified respec-

tively to [88]

C = [C,vs] (3.43)

b =





b

v0
Hvs



 (3.44)

where vs = v0 − vq.

The quiescent solution obtained under the modified linear constraints can generate

a array pattern similar to the one obtained using our proposed methods, which has the

desired sidelobe level. Notice that only one additional linear constraint needs to be

added to yield the desired array pattern in the LCMV beamformer. Nulls can be added

in the array pattern through other linear constraints.

3.6 Experimental Results

The proposed methods can be applied for electromagnetic and acoustic applications. In

this section, we consider the design of a CRA for acoustic signal acquisition [95, 97] to

demonstrate Method I, II, III respectively.

3.6.1 Method I

An exemplary CRA of 9 equally spaced rings, grouped into 2 subarrays, are used to cover

an input frequency range from 500Hz to 4kHz. The radii of the 9 rings normalized with

respect to the first one are: [1, 2, 3, 4, 5, 6, 8, 10, 12] and the radius of the largest ring

is 0.475m. The 1st subarray consists of ring 1 to ring 6. The 2nd subarray consists of

rings 2, 4, 6 from the 1st subarray and rings 7, 8, 9. The 1st and 2nd subarrays originally

57



0 50 100 150 200 250 300 350
−70

−60

−50

−40

−30

−20

−10

0

θ

600Hz 

1600Hz 

B
ea

m
p
at

te
rn

(d
B

)

Figure 3.11: 2-D Beampatterns in the 2nd subarray: curves starting from the outside
one are beampatterns at frequencies: 600Hz, 800Hz, 1000Hz, 1200Hz, 1400Hz and
1600Hz respectively. The main look direction in this 2-D array pattern is φ = 45◦

operate at 2000Hz and 1000Hz, and intend to cover a frequency range of 500− 1800Hz

and 1800 − 4000Hz respectively after band-broadening.

A Chebyshev function with −30dB sidelobe level is used as the desired array pattern.

Using (3.28), the number of elements on the 6 rings of the 1st subarray is found to be

: [7, 14, 19, 24, 30, 36]. Some redundancy of elements are allowed on rings 2, 4, 6 for

the purpose of reusing them in the 2nd subarray. Specifically, only every other elements

on rings 2, 4, 6 are reused in the 2nd subarray. This is to ensure the two subarrays

have roughly the same amount of elements. The number of elements in 2nd subarray

is distributed as: [7, 12, 18, 24, 28, 32]. The total number of elements is 214, among

which 130 are in the 1st subarray, 121 are in the 2nd subarray.

Assume that the arriving direction of the signal is (φ0 = 45◦, θ0 = 60◦). For the

purpose of illustration, the surface θ = 60◦ cutting through the look direction is presented

as a sample of the 3-D array pattern. The beampatterns for some sampled frequencies in

58



−0.2

0

0.2

0.4

0.6

0.8

1 −0.2

0

0.2

0.4

0.6

0.8

1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
x

z

(45◦, 60◦)

Figure 3.12: 3D Beampattern at 1600Hz in the 2nd subarray, the main look direction
is (φ0 = 45◦, θ0 = 60◦).

the 2nd subarray are shown in Fig. 3.11, where the curves, starting from the outside one,

are beampatterns at 600Hz, 800Hz,1000Hz,1200Hz,1400Hz and 1600Hz respectively.

The beampatterns for another subarray are nearly identical. As can be seen from the

figure, the beampatterns fulfill the design objective of −30dB sidelobe level. In the

experiment, similar sidelobe level is observed in the 3-D array pattern except the region

between the 2 ambiguity DOAs, where the sidelobe is raised due to the overlapping of the

mainlobes at the two ambiguity DOAs. An exemplary 3-D array pattern at frequency

1600Hz is also shown in Fig. 3.12.

We then use computer simulated received array signal to test the performance of the

beamformer obtained above. Two signal scenarios are assumed to generate the received

array signal. In the first scenario, the received array signal contains a desired speech

signal from the direction (φ0 = 45◦, θ0 = 60◦) and ambient noise in the background. The

signal-to-noise ratio (SNR) is −5dB. The noise starts to appear at about t = 0.4s. The

processing results are shown in Fig. 3.13. From the figure, it can be seen the ambient

noise level in the beamformer output is greatly reduced.
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Figure 3.13: Processing results for scenario 1: (a) Desired signal s(t); (b) Received noisy
signal in one channel; (c) Beamformer output z1(t); (d) Error signal: e1(t) = z1(t)−s(t).

In the second scenario, the received array signal contains a desired speech signal from

the direction (φ0 = 45◦, θ0 = 60◦), two narrow-band interferences and ambient noise in

the background. The first interference is a narrow-band signal with central frequency

1000Hz from the direction (φ0 = 180◦, θ0 = 60◦) and the signal-to-interference ratio

(SIR) is −30dB. The second interference is a narrow-band signal with central frequency

2400Hz from the direction (φ0 = 135◦, θ0 = 80◦) and SIR is −25dB. The SNR is 0dB.

The interferences and noise start to appear at about t = 0.4s. The processing results

are shown in Fig. 3.14. The beamformer output in (c) shows the two interferences and

ambient noise has been effectively removed, which is as expected since the sidelobe level

is designed to be −30dB.

Finally, to demonstrate the performance of the combined design in Section 3.5.3, we

compose a third scenario, in which the received array signal contains a desired speech

signal from the direction (φ0 = 45◦, θ0 = 60◦), a interference speech signal for the
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Figure 3.14: Processing results for scenario 2: (a) Desired signal s(t); (b) Received noisy
signal in one channel; (c) Beamformer output z2(t); (d) Error signal: e2(t) = z2(t)−s(t).

direction (φ0 = 180◦, θ0 = 60◦), and ambient noise in the background. The SIR is

−30dB and the SNR is 0dB. It should be noted that the SIR is computed based on

the average energy of the two speech signals, which are broadband signals. Because

the energy of a speech signal concentrates mostly in low frequencies, it can be expected

that the actual SIRs at those low frequencies may be less than the average SIR −30dB.

The narrow-band beamformers at those low frequencies cannot completely remove those

strong interference since the sidelobe level is −30dB. In order to remove the interference,

we use the combined design to incorporate the beamformer with −30dB sidelobe into a

LCMV beamformer that also has a null at the direction of the interference. Fig. 3.15

shows the 2-D array pattern obtained at 700Hz, which is taken out of the 3-D array

pattern by using the surface θ = 60◦ cutting through the main look direction. The 2-D

array pattern has an overall sidelobe of −30dB and a deep null at φ = 180◦, which is

the direction of the interference. The processing results using the new beamformer are
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Figure 3.15: 2-D array pattern obtained at 700Hz.

shown in Fig. 3.16. By examining the output in (c) and error signal in (d), it is seen

the beamformer successfully removes the interference and noise.

3.6.2 Method II

In this subsection we use an example to demonstrate Method II. The discrete CRA

used in this example is composed of 4 rings. Using the band broadening technique, the

array can operate on a frequency range centered around the array’s original operating fre-

quency f0. The radii normalized by the wavelength λ0 are: R/λ0 = [0.2346, 0.4691, 0.7037,

0.9382]. A Chebyshev function with −20dB sidelobe level is used as the desired array

pattern. From (3.28), the minimum number of array elements required for each ring is

found to be N1 = [6, 10, 14, 18]. To demonstrate the error control ability of the proposed

method, a reduced set N2 = [4, 8, 10, 12] is used, resulting in a saving of 14, or about

30% of the array elements. In Method II, the weighting matrix in (3.33) is chosen so

that the mismatched error in the sidelobe region receives more weighting to achieve more
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Figure 3.16: Processing results for scenario 3: (a) Desired signal s(t); (b) Received noisy
signal in one channel; (c) Beamformer output z3(t); (d) Error signal: e3(t) = z3(t)−s(t).

reduction in this region. Only one linear constraint that is the unit gain constraint in

the signal’s look direction (φ0 = 45◦, θ0 = 90◦) is used.

For the signal component at frequency f0, the synthesized array pattern (solid line)

using Method II is presented in Fig. 3.17 together with the desired array pattern (dotted

line). The synthesized array pattern has achieved a sidelobe level of −20dB at the price

of a slightly wider mainlobe. The balance of the mainlobe width and sidelobe level

can be adjusted through the weighting matrix K to some extent. Comparison between

synthesized array pattern using Method II and Method I is presented in Fig.3.18. In

both cases, the reduced set of array elements N2 is used. The synthesized array pattern

from Method I has a maximum sidelobe level of −15dB due to insufficient number of

array elements. Method II, however, achieves excellent result and has better control of

the sidelobe level.
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Figure 3.17: The Desired and synthesized array pattern: Desired (dashed line), synthe-
sized (solid line). The main look direction is φ = 45◦.

3.6.3 Method III

In this example, the highest operating frequency of the CRA is set to f0 = 2000Hz

and the number of rings M in the CRA is chosen to be 12 to maintain the rela-

tive truncation error defined as in (3.19) to be −30dB in the Fourier-Bessel series

expansion. Assuming the sound speed is 343meter/s, the radii are determined by

using (3.14). Among them, the largest radius is 0.50 meter and the smallest one is

0.03 meter. The number of array elements on each ring is then found from (3.41) as

N = [5 8 11 15 18 21 24 27 30 34 37 40], from the innermost to the outermost ring. The

total number of array elements is 270.

In the first simulation, the look direction of the CRA is (φ0, θ0) = (45◦, 45◦). The

desirable array pattern g(ϕ) is the Chebyshev function of order 8 [87] and has a −30dB

sidelobe level. The 3-D beampattern obtained from the proposed method in Section 3.3

at f0 = 2000Hz is shown in Fig. 3.19. The 3-D beampattern has two mainlobes and
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Figure 3.18: Method I (dashed line) vs. Method II (solid line). The main look direction
is φ = 45◦.

is symmetric with respect to the x-y plane due to the DOA ambiguity of planar arrays.

The mainlobes are quite directional to provide effective 3-D beamforming.

We now apply Method III to achieve FI array patterns over a certain frequency

range. The look direction of the CRA is (φ0, θ0) = (45◦, 60◦). At a given frequency f ,

the delay-and-sum weights are first generated using (3.6). Next, (3.12) is applied to g(ϕ)

to obtain the inter-ring weights wm. (3.8) is then used to generate the array pattern.

The array patterns from 900Hz to 2000Hz with 100Hz increment are depicted in Fig.

3.20 and overlapped in Fig. 3.21. For illustration purpose, only the 2-D beampatterns

by cutting through the mainlobes of the 3-D beampatterns using a surface defined by

θ = 60◦ are shown. From the figures it is clear that the sidelobe level is kept at −30dB,

and the mainlobe width is approximately the same at the frequencies within the range

from 900 to 2000Hz. Note that the beampatterns in Fig. 3.20 and Fig. 3.21 represent

the ideal case and they have not taken into account the distortion due to finite length

FFT applied to the input signal for broadband beamforming.
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Figure 3.19: 3D array pattern at 2000Hz, the look direction is (45◦, 45◦)

To verify that the 3-D array patterns are indeed frequency invariant, we compare

the relative Mean Squared Error (MSE) in the array pattern at a given frequency with

respect to that at f0 = 2000Hz, i.e.,

MSEf =

∫

θ

∫

φ

|Ff (φ, θ) − Ff0
(φ, θ)|2 dφdθ /

∫

θ

∫

φ

|Ff0
(φ, θ)|2 dφdθ.

The MSEf from 600Hz to 2000Hz is shown in Fig. 3.22. It is seen from the figure

that the relative MSE in the array pattern generally increases when f decreases. This is

because that the truncation error of the Fourier-Bessel series becomes larger at lower fre-

quencies. If the tolerable relative MSE is −35dB, then the lowest frequency to maintain

FI array pattern is around 900Hz.

The dynamic range ratios for the inter-ring weights over the 900 - 2000 Hz frequency

range are 5.5651, 2333.0 and 89.4168 for the minimum, maximum and mean values. The

large maximum value is resulted from a very small weight (0.001) in the outermost ring

at a few frequencies, where the Fourier-Bessel expansion (3.11) is able to approximate

the Chebyshev function very well with only the first few terms.
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Figure 3.20: 3-D view of 2-D beampatterns from 900Hz to 2000Hz, sampled at every
100Hz.

3.7 Summary

In this chapter, we have discussed the design of deterministic broadband beamforming

using CRA. To facilitate our design, we partition the weights into two parts: the inter-

ring weights and intra-ring weights. We focus on how to control the sidelobe and/or

mainlobe of the array pattern through designing of the inter-ring weights, and the intra-

ring weights are fixed to delay-and-sum weights. Three methods to derive the inter-ring

weights have been proposed. In Method I, the inter-ring weights at the original operat-

ing frequency is first obtained through Fourier-Bessel series expansion so that a desired

sidelobe level can be achieved. An interpolation technique is then used to obtain weights

at a range of frequencies that can yield the desired sidelobe level. Method II uses MMSE

optimization to find the inter-ring weights that can reduce the pattern synthesis error

when array elements are not enough. Method III improves on previous methods by

selecting appropriate desirable prototype array pattern at a frequency and then extend

it to other different frequencies to achieve FI design. To broaden the applications of our
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Figure 3.21: Overlapped beampatterns from 900Hz to 2000Hz, sampled at every 100Hz.

proposed deterministic designs, we show that they can be incorporated into a LCMV

beamformer so that nulls can be added into the array pattern to cancel strong interfer-

ences. The experiment and simulation results verify that our design of a deterministic

broadband CRA is successful.
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Figure 3.22: The relative MSE from 600Hz to 2000Hz.
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Chapter 4

Design of Adaptive Concentric Ring

Array

The deterministic beamformers described in Chapter 3 work most effectively in station-

ary environment where an appropriate sidelobe level can be chosen based on the a priori

knowledge of noise and interferences. A drawback of the deterministic beamformer is

that it is unable to track changes in the signals, thus its performance tends to deteriorate

in non-stationary signal environment.

In non-stationary signal environment, adaptive beamforming is necessary. Adaptive

array can adapt its weights by learning the characteristics of an environment in real-time,

thus they are more suitable for applications in non-stationary environment. Although

many existing adaptive array design methods are available, the difficulty of designing

an adaptive broadband CRA lies in that it usually consists of a large number of array

elements. Thus if the array operates in a fully adaptive manner, the computation burden

can be a serious issue for teal-time applications. Moreover, the convergence rate can be

slow, which makes the adaptive array ineffective in rapidly changing signal environment.

This chapter addresses the problem of designing adaptive CRA. To increase the con-

vergence rate and reduce computation, we propose a partially adaptive array by making

use of the specific structure of the CRA. In the proposed design, only a small portion of
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the array weights are adapted while the majority others are kept fixed by using a pri-

ori knowledge of the desired signal’s DOA, which is usually available to a beamformer.

The proposed design can be implemented as a Linear Constrained Minimum-Variance

(LCMV) beamformer or a General Sidelobe Canceller (GSC). Results from the deter-

ministic beamformer design can then be incorporated to reduce the sidelobe level in the

LCMV or GSC’s quiescent beampattern [88]. The proposed method to achieve partially

adaptive CRA is generic and different adaptation algorithms can be applied.

The rest of this chapter is organized as follows. In Section 4.1, we discuss the design

of a fully adaptive CRA. Two adaptive approaches are available and the disadvantages

of applying them to a fully adaptive large size array are discussed. In Section 4.2, we

propose a generalized partially adaptive CRA design method for arbitrary partition-

ing schemes. Implementation of the partially adaptive CRA using the LMS and RLS

algorithms are also presented. Performance analysis of the proposed partially adap-

tive CRA is presented in Section 4.3. In Section 4.4, several partially adaptive CRAs

from different partitioning schemes are demonstrated and their performances in terms

of convergence rate and residual interference and noise power are compared through

simulations. Finally, a summary is given in Section 4.5.

4.1 Fully Adaptive CRA

As discussed earlier in Section 2.2.2 of Chapter 2, the LCMV beamformer is the mostly

widely used form in adaptive beamforming. In our research, we only consider imple-

menting the adaptive CRA as a LCMV beamformer and its equivalent form – the GSC.

Basic concepts of the LCMV and GSC have already been presented in Chapter 2, here

we only briefly describe the optimum solutions for the CRA implemented as a LCMV or

GSC beamformer, and then focus the discussion on the adaptive approaches to compute

the optimum solutions.
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The CRA considered here consists of M rings and a total of K =
∑M

m=1 Nm array

elements, where Nm is the number of array elements on the m-th ring. Its output at

time index n is given by

z(n) = vHx(n) (4.1)

where v is the weight vector and x(n) is the data vector, both are K × 1 vectors.

The CRA is implemented as a LCMV beamformer with a number of Q linear con-

straints specified as

CHv = b (4.2)

where C is a K × Q constraint matrix and b is a Q × 1 vector of constraint values.

The weights are chosen to minimize the power of the beamformer output E[|z(n)|2]

= vHRxxv subjecting to a set of linear constraints given in (4.2), and the solution is

given by [2]

vopt = R−1
xxC(CHR−1

xxC)−1b. (4.3)

where Rxx = E[x(n)xH(n)] is the spatial covariance matrix of the array data.

Next, we look at the alternative implementation of the LCMV beamformer using the

GSC structure. The diagram of the GSC is shown in Fig. 4.1. The upper branch in the

GSC is the quiescent response of the beamformer and vq is given by [72]

vq = C(CHC)−1b, (4.4)

which is determined by the constraints only and independent of array data.
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In the lower branch, the array signal x(n) goes through the blocking matrix B and

yields xa(n), thus xa(n) = BHx(n). The weights va are chosen to minimize the mean

squared error of the GSC output z(n), which is an unconstrained optimization problem

and the solution is given by [72]

va,opt = R−1
xaxa

rxazq
(4.5)

where Rxaxa
= E[xa(n)xH

a (n)] is the spatial covariance matrix of xa(n) and rxazq
=

E[xa(n)z∗q (n)] is the cross-correlation vector between xa(n) and zq(n).

The number of unconstrained weights in the beamformer is referred as degrees of

freedom(DOFs) . In the fully adaptive CRA, the number of weights is K and the

number of linear constraints is Q, and thus the DOFs is K −Q. This relation is clearly

shown in the GSC, where the adaptive branch performs an unconstrained optimization

and the dimension of the adaptive weight vector is exactly K − Q. For the LCMV, the

DOFs is also K − Q, although it is not explicitly shown in the form of its optimum

weight vector in (4.3).

The optimum solutions obtained for the LCMV and GSC beamformers in (4.3) and

(4.5) require knowledge of the second order statistics of the array signal, which are

usually unknown in practice and need to be estimated. By assuming the array signal

is ergodic in time, those statistics can be estimated through the time ensemble average

of the signal. In the case of non-stationary signal environment, those statistics change

with time and adaptive algorithms are most suitable for finding the optimum solutions.

There are two adaptive approaches available, namely the block adaptive approach and

the sample-by-sample adaptive approach [74], which are described below.

4.1.1 Adaptive Approaches

(1) Block Adaptive Approach

The block adaptive approach uses a block of data to estimate the statistics of the
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signal, and calculate the optimum solution based on the estimation results. The block

of data being used is updated with incoming samples so that the algorithm can track

the changes in the signal.

Suppose we take the optimum solution for the LCMV beamformer in (4.3) for ex-

ample. The covariance matrix Rxx is typically estimated using the Maximum-likelihood

(ML) estimation, which yields

R̂xx =
1

NB

NB−1
∑

n=0

x(n)xH(n) (4.6)

where NB is the length of the data block and n denotes the sample index of the data

vector in the block. The solution of the LCMV beamformer is obtained by substituting

(4.6) into (4.3), which yields

v̂opt = R̂−1
xxC(CHR̂−1

xxC)−1b. (4.7)

Notice that the inverse of R̂xx requires R̂xx to be a full rank matrix. R̂xx is a K × K

matrix, therefore to yield a full rank R̂xx using the estimation method in (4.6), it requires

averaging of at least K samples of the data vector x(n). Thus the block size NB must

satisfy NB ≥ K. In some beamforming applications, training data is available for

estimation of the statistics. In such case, using larger NB gives better results.

The block adaptive approach for the GSC can be developed in a similar way. In the

GSC, the spatial covariance matrix Rxaxa
is of size (K −Q)× (K −Q), which is smaller

than the covariance matrix used in the LCMV. Usually Q is small, and the size of the

spatial covariance matrices in both cases are mostly determined by the array size K. A

CRA normally consists of a large number of array elements, thus the covariance matrices

also have large size. It is known that the inversion of large size matrices is very time

consuming: roughly O(K3) multiplies are involved. For this reason, the block adaptive

approach is not suitable for large size CRA.

Another drawback of the block adaptive approach is that when the signal statistics

are time-varying and the length of data block is relatively large, the estimation results

74



can be poor. This problem is especially serious for large size array, since the length of

the block must be kept above some minimum, i.e., K in the case of the LCMV or K−Q

in the case of the GSC , to yield an estimated spatial covariance matrix of full rank.

(2) Sample-by-sample Adaptive Approach

The sample-by-sample adaptive approach avoids directly solving the matrix inverse

to compute the optimum weights. Instead, the weights are updated on each incoming

sample so that they can gradually converge to the optimum solution. By doing so, the

beamformer has better tracking ability and the computation is less complex comparing

to the block adaptive approach. Because of these advantages, we adopt the sample-by-

sample adaptive approach to implement the adaptive CRA.

Two most widely used sample-by-sample adaptive algorithms are the Least Mean

Square (LMS) and the Recursive Least Squares (RLS) algorithms [72]. Details on im-

plementation of these two algorithms are illustrated later in Section 4.2.3. For now we

only give a general description of them.

The LMS algorithm is based on the method of steepest descent. The error surface of

the MSE of the beamformer output has the shape of a bowl and the optimum weights

reside in the bottom of the bowl. At each incoming sample, the LMS algorithm adjusts

the current weights in the direction that yields the steepest descent on the error surface,

so that the weights can take the shortest way to converge to the optimum weights.

In the RLS method the time consuming process of directly computing the inverse of

the matrix is avoided. The RLS method is based on recursively updating the inverse of

the covariance matrix as new data samples coming in. Usually the data samples used

to update the inverse of the matrix are exponentially weighted so that the effects of

relatively old data can be gradually removed and the adaptive weights are able to track

the changes in current data samples.

The performance of the sample-by-sample adaptive methods greatly depends on the
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convergence rate of the weights towards the optimum solution. A slow convergence rate

may not be acceptable in some real-time applications. The convergence rate of LMS al-

gorithm is inversely proportional to the eigenvalue spread of the covariance matrix: the

larger the eigenvalue spread the slower the convergence rate. For large size covariance

matrix, the eigenvalue spread tends to be large, which results in slow convergence rate.

The RLS offers faster convergence rate independent of the eigenvalue spread, however,

its convergence rate is also restricted by the array size, since it takes longer time to

accurately estimate a large size covariance matrix. Although the RLS has faster con-

vergence rate than the LMS, this advantage is overshadowed by its complexity. The

multiplies involved in the LMS algorithm is roughly O(2K) and the multiplies involved

in the RLS algorithm is roughly O(K2). Application of the RLS algorithm in a large

size fully adaptive array is restricted by the computational complexity required.

4.1.2 Broadband Adaptive Beamforming

The preceding discussion on computational complexity is limited to narrowband beam-

forming. As we have pointed out in Section 3.5.1, in broadband beamforming, the

received broadband signal is usually decomposed into many narrowband components

using FFT and different components are processed separately. Denote the number of

FFT components as L. If the sample-by-sample adaptive approach is adopted, for the

LCMV implementation, there are a total of K × L number of weights that need to be

adapted; for the GSC implementation, the number of adaptive weights is (K − Q) × L.

When K or L is large, the total computation required can be a huge burden and become

the major obstacle for real-time applications.

76



4.1.3 Summary on Fully Adaptive CRA

From the discussion above, it can be seen that the two most important issues concerning

the design of fully adaptive CRA are the computational complexity and the convergence

rate. A brief summary on them is given below.

(1) Computational complexity increase with the number of narrowbands and the size

of the array.

(2) The effect of the array size on the computational complexity differs with algo-

rithms. Block adaptive approaches have roughly O(K3) multiplies involved, thus they

have limited usage in our research. Among the sample-by-sample adaptive approaches,

the LMS requires roughly O(2K) multiplies, the RLS requires roughly O(K2) multiplies.

(3) Large array size results in slow convergence rate for both LMS and RLS. Among

them, the RLS has faster convergence rate, however, the computational complexity of

the RLS makes it not suitable for large array.

The number of narrowband components and the array size are determined by ap-

plication scenario, and usually cannot be reduced significantly without causing serious

degradation in the beamformer performance. Thus the most practical solution to avoid

the disadvantages listed above is to reduce the number of adaptive weights by developing

partially adaptive array, which is the problem to be addressed in the next section.

4.2 Partially Adaptive CRA

4.2.1 Introduction to Partially Adaptive Array Design

Partially adaptive array design splits the whole array into many subarrays where deter-

ministic beamforming is applied in each of them individually. The outputs from all the

subarrays are then collected for further adaptive processing. This process can be inter-

preted as projecting the received array signal into a reduced-dimension signal subspace
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and performing the optimization in the reduced-dimension subspace. Finding adaptively

the optimum solution in the reduced-dimension subspace has faster convergence speed

and requires less computation. However, the advantages are achieved at the cost of cer-

tain amount of degradation in the interference and noise cancellation performance, since

the number of degrees of freedom (DOFs) in the optimization is reduced as compared

to the fully adaptive array.

Projecting the original K × 1 data vector x into a reduced-dimension signal space

can be described by a matrix T of size K×Kr, where Kr is the dimension of the reduced

signal space. T usually has the following form

T = [v1,v2, . . . ,vKr
], (4.8)

where vm is a K × 1 unit-norm column vector representing the weights for the m-th

subarray. Thus each column of T corresponds to a subarray. Depending on how T and

vm is constructed, the existing partially adaptive methods can be classified into two

main categories: the element space method and the beam space method [72]. We briefly

review these methods below.

The element space methods [98,99] split the array into many subarrays with less array

elements. Thus vm has both zero and non-zero elements. Non-zero elements indicate

that the corresponding array elements are included into the m-th subarray. Assuming

the same look direction in each subarray, non-adaptive beamforming is performed and

the outputs from all the subarrays are then collected for further adaptive processing.

The element space methods can be applied to both the LCMV and the GSC.

The beam space methods [100–102] decompose T as T = TrB and then choose Tr

and B separately. Different from element space method, each subarray in the beam

space method has the same number of array elements but points to different possible

directions of the interference. These beamformers form the columns of Tr. B is then

used to select a subset of the output of Tr, each subset usually consists of outputs from
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beamformers pointing at adjacent directions. By doing so, the reduced-dimension signal

space contains all the possible interferences and they can be used to adaptively estimate

the statistics of interferences.

4.2.2 Proposed Partially Adaptive CRA

The preceding discussion shows that two approaches are available to implement the

partially adaptive array, i.e., the beam space approach and the element space approach.

The beam space methods requires a priori knowledge of the DOAs of the interference,

which limits its applications. In our research, we are more interested in developing a

beamformer suitable for general purpose applications, thus we take the element space

approach to design the partially adaptive array.

Partially adaptive array seeks optimization in the reduced-dimension signal space and

thus suffers performance degradation in terms of residual interference and noise power.

The amount of degradation varies with partition schemes. Van Veen and Roberts [103]

proposed a method to select partition scheme based on minimization of the power of the

interference in the output. The method requires training in a range of possible inter-

ference signal scenarios, and the partition scheme yields the best average performance

is chosen. Their method is more suitable in applications where a priori knowledge of

the DOAs and statistics of the interferences are available. For general applications,

there lacks a universal criterion to choose partition scheme, part of the difficulty also

lies in that the choice of partition scheme is closely related to array geometry. For 1-D

arrays, or 2-D arrays such as the cross array and the rectangular array etc., partition

scheme is relatively easier to choose, because those arrays can be easily divided into

many subarrays of similar dimension.

For CRA, it is more difficult to choose T. In the following, we first derive the general

form of a partially adaptive CRA with an arbitrary partitioning structure. Performance

analysis will then follow in the next section.
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An arbitrary partitioning scheme is described by T of the form

T = [h1,h2, . . . ,hKr
], (4.9)

where hm is a unit-norm column vector whose non-zero elements correspond the weights

for the m-th subarray, and the number of those non-zero elements is the size of the m-th

subarray. Here we assume T has full column rank and its columns are linearly inde-

pendent. Many standard deterministic beamforming techniques can be used to obtain

hm. The deterministic beamforming within each subarray can reduce certain amount of

noise and interference. The adaptive processing further attenuates the interferences by

creating nulls in the incoming directions of interferences.

After projected by TH , a K × 1 signal vector x(n) is reduced to a Kr × 1 signal

vector y(n) as

y(n) = THx(n). (4.10)

Adaptive processing is then performed on y(n) to form the final beamformer output

z(n) = wHy(n) (4.11)

where w is a Kr × 1 vector representing the adaptive weights for each ring.

Putting (4.10) into (4.11) yields

z(n) = wHTHx(n)

= (Tw)Hx(n)

(4.12)

Comparing the above equation with the output of the fully adaptive array given in the

form z(n) = vHx(n), it is seen that the partially adaptive array actually partitions the

fully adaptive weight vector to

v = Tw =



















w1h1

w2h2

...

wKr
hKr



















. (4.13)
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In this partitioned form of v, there are a total number of (K + Kr) weights, among

which we fix the K weights represented by hi using a priori knowledge and only adapts

the Kr weights represented by w.

It follows from (4.13) that the linear constraints specified as CHv = b can be con-

verted into constraints on w as

C̄Hw = b (4.14)

where C̄ = THC.

With the preceding derivations, finding the optimum partially adaptive weights can

be formed as a standard LCMV problem as described below,

wopt = min
w

wHRyyw subject to C̄Hw = b

where Ryy denotes the covariance matrix of y(n) defined in (4.10). The DOFs in the

partially adaptive array is Kr − Q.

The following design is presented using the GSC, because its structure offers greater

clarity on the unconstrained optimization problem. The design of partially adaptive

array implemented as LCMV is similar and will not be discussed separately.

The diagram of the proposed partially adaptive beamformer implemented as a GSC

is shown in Fig. 4.2, where input data vector is the reduced-dimension vector y(n). wq

in the upper branch specifies the quiescent pattern of the partially adaptive array, it

can be specified using different techniques depending on the design objective. Here we

choose wq so that the quiescent response in the partially adaptive array is the closest to

that of the fully adaptive array in the least-squares sense. That is, given the quiescent

response vq from certain design, we find wq that minimizes ‖Twq − vq‖2 which yields

wq = (THT)−1THvq. (4.15)

Note that the matrix inverse in (4.15) always exists since T has full column rank and

its columns are linearly independent. The output of the quiescent response is denoted

by zq(n) and zq(n) = wH
q y(n).
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Figure 4.2: General sidelobe canceller.

In the lower branch of the partially adaptive GSC structure in Fig. 4.2, B̄ is a

M × (M − Q) blocking matrix satisfying B̄HC̄ = 0. wa is the (M − Q) × 1 adaptive

weight vector. The optimum solution of wa is given by the Wiener-Hopf equation [72],

wa,opt = R−1
yaya

r (4.16)

where Ryaya
= E{ya(n)yH

a (n)} is the lower branch covariance matrix and r = E{ya(n)z∗q (n)}

is the cross-correlation vector between ya(n) and zq(n).

4.2.3 Adaptive Algorithms

There are many adaptive algorithms available to obtain wa,opt. Among them the most

popular ones are the LMC and RLS algorithms, we will describe their implementation

for the partially adaptive CRA below.

LMS algorithm

The LMS algorithm is based on the steepest descent method. The optimum weights

in adaptive branch is chosen based on minimizing the mean squared error between the

outputs from the adaptive branch and quiescent branch, i.e., minimizing

E[|z(n)|2] = E[|zq(n) − za(n)|2]

= E[[zq(n) − wH
a ya(n)][zq(n) − wH

a ya(n)]H ]

= E[zq(n)z∗q (n)] − wH
a Ryqzq

− Rzqya
wa + wH

a Ryaya
wa.

(4.17)
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where Ryqzq
= E[ya(n)z∗q (n)], Rzqya

= E[zq(n)yH
a (n)] and Ryaya

= E[ya(n)yH
a (n)].

The gradient of the above is

∇w =
∂E[|z(n)|2]

∂w∗
= −Ryqzq

+ Ryaya
wa (4.18)

The new weight vector wa(n+1) is obtained through adjusting the current weight vector

wa(n) towards the negative direction of the gradient, which yields

wa(n + 1) = wa(n) − µ∇w

= wa(n) − µ[−Ryqzq
+ Ryaya

wa(n)]

(4.19)

where µ is the step size indicating the amount of adjustment. Larger value of µ results

in faster convergence rate but also raises the gradient noise level in steady-state. The

statistics Ryqzq
and Ryaya

are not available and need to be estimated.

In LMS algorithm these statistics are replaced by their instantaneous estimates,

i.e., Ryqzq
is replaced by ya(n)z∗q (n) and Ryaya

is replaced by ya(n)yH
a (n). Putting the

instantaneous estimates into (4.19) and rearrange them yields

wa(n) = wa(n) + µz∗(n)ya(n), (4.20)

where z(n) is obtained as

z(n) = zq(n) − wH
a (n)ya(n). (4.21)

In practice, to simplify the selection of µ in (4.20), normalized LMS (NLMS) algo-

rithm is usually used:

wa(n + 1) = wa(n) +
2µ

yH
a (n)ya(n)

ya(n)z∗(n). (4.22)

It is shown that the NLMS algorithm converges in the mean square if 0 < µ < 1 [104].

In the following analysis and simulations we will use NLMS instead of LMS algorithm.

The convergence rate of the NLMS algorithm is dependent on the eigenvalue spread

of the covariance matrix Ryaya
: the larger the eigenvalue spread of Ryaya

, the slower the
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convergence rate. The convergence rate in NLMS can be increased by enlarging the step

size µ but the steady state performance will suffer.

RLS algorithm

Due to the small number of adaptive weights in the proposed partially adaptive

array, more advanced adaptive algorithm such as RLS [72] algorithm can be used. RLS

algorithm recursively computes the inverse of the covariance matrix, which yields faster

convergence rate when compared to the NLMS algorithm. The RLS algorithm applied

to the proposed partially adaptive array is summarized as follow:

G(n) =
P(n − 1)ya(n)

γ + yH
a (n)P(n − 1)ya(n)

(4.23)

z(n) = zq(n) − wH
a (n − 1)ya(n) (4.24)

P(n) =
1

γ
[P(n − 1) − G(n)yH

a (n)P(n − 1)] (4.25)

wa(n) = wa(n − 1) + G(n)z∗(n) (4.26)

where γ is a constant, and its typical value is between 0.98 and 1.

4.2.4 Comparison Between the Fully and Partially Adaptive

CRA

Comparing the fully adaptive array with the proposed partially adaptive array, the

DOFs in the weights is reduced from (K − Q) to (Kr − Q). The number of complex

multiplications required to update the weight vector for both of them is listed in Table

4.1 for comparison. In typical applications, K is in the order of hundreds and Kr is less

than 10. Thus the proposed partially adaptive beamformer is able to reduce greatly the

computation and at the same time improve significantly the convergence rate and hence

the tracking performance.

The partially adaptive array has (Kr −Q) DOFs and it is capable of cancelling up to

(Kr −Q) additional interferences besides those priorly specified in the linear constraint
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Fully adaptive Partially adaptive
LMS O(2(K − Q) + K) O(2(Kr − Q) + K)
RLS O(3(K − Q)2 + K) O(3(Kr − Q)2 + K)

Table 4.1: Number of required complex multiplications.

matrix C̄. One consequence of the partially adaptive method is that the Mean Square

Error (MSE) of the steady state output will be larger than that of the fully adaptive one

due to the reduction in the DOFs for the weights. Based on the optimum solution (4.16),

it is shown in Section 4.4 that the increase in steady state MSE of the partially adaptive

array is only marginal: less than 1.6dB at 30dB interference-to-noise ratio (INR) and

about 1.2dB at −20dB INR.

4.3 Analysis of Partially Adaptive CRA

The performance of the partially adaptive array largely depends on the choice of T.

First of all, the number of columns in T determines the number of DOFs in the partially

adaptive array, which is given by Kr − Q. It is also equal to the maximum number

of interferences that the array can remove. Thus, Kr should be set large enough to

remove the maximum number of expectable interferences. In fact, a larger Kr value also

provides more DOFs so that the adaptive weights can be adjusted to provide a smaller

amount of residual interference and noise in the array output. However, Kr should not

be too large, otherwise the gain in convergence rate (tracking ability) and computation

will be reduced.

Once the size of T is determined, the remaining task is to choose a partition scheme

to divide the array into Kr subarrays. Interesting though, given a fixed Kr, different

partition schemes (choice of T) will affect the convergence speed resulted from different

eigenvalue spreads as well as residual interference and noise power.
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4.3.1 Convergence Rate

The convergence rate in the NLMS algorithm (4.22) is governed by the number of adap-

tive coefficients and the eigenvalue spread of the input correlation matrix. Partially

adaptive array has only Kr − Q adaptive coefficients as compared to K − Q in fully

adaptive case. If Kr is much less than K, a significant increase in convergence speed is

achieved. The behavior of the eigenvalue spread of the input correlation matrix in the

adaptive system is more difficult to predict. In fact, it is dependent on the partition

matrix T.

In general, the partially adaptive array always yields faster convergence rate since

Kr is much smaller than K. If more sophisticated adaptive algorithm is employed such

as the RLS algorithm, the convergence rate is independent of the eigenvalue spread and

depends only on Kr. In such a case, different partitioning schemes but with the same

size of T will give identical convergence speed.

4.3.2 Steady State Performance

Analysis of the steady state performance of partially adaptive array can be found in [105].

The array structure we adopted in our research is different than the one used in [105].

Here we develop the theoretical formula to calculate the steady state residual interference

and noise power in our proposed array structure.

From adaptive filter theory and the GSC system in Fig. 4.2, the adaptive weight

vector wa will converge to the optimum solution given by the Wiener-Hopf equation [105]

at steady state,

wa,opt = E[ya(l)y
H
a (l)]−1E[ya(l)z

∗

q (l)]

= (TH
e RxxTe)

−1TH
e Rxxve

(4.27)

where Te = TB̄, ve = Twq and (4.10) has been used to derive the result. The desired

signal is uncorrelated with the interference and noise, hence Rxx can be decomposed as
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Rxx = Rs + Ri+n, where Rs denotes the desired signal correlation matrix and Ri+n is

the correlation matrix of interference plus noise. Utilizing a property of the GSC that

TH
e Rs = 0, (4.27) becomes

wa,opt = (TH
e Ri+nTe)

−1TH
e Ri+nve. (4.28)

For partially adaptive array, the residual interference and noise power at the steady

state in the array output is

pi+n,ss = wH
optT

HRi+nTwopt , (4.29)

where wopt is the overall optimum weight vector in the adaptive system shown in Fig.

2, which is wopt = wq − B̄wa,opt. Upon using (4.28), (4.29) becomes

pi+n,ss = vH
e Ri+nve

− vH
e Ri+nTe(T

H
e Ri+nTe)

−1TH
e Ri+nve.

(4.30)

The first term in (4.30) is the interference and noise power in the upper branch.

The second term represents the interference and noise power that can be reduced by the

lower branch, and it is subtracted from that in the upper branch to form the residual

interference and noise power in the array output. The partition scheme affects the

estimation performance in the lower branch and thus the ability of removing interference

and noise. This is clear in (4.30) where pi+n,ss is explicitly dependent on Te = TB̄. For

all the candidate partition schemes under certain signal scenario, pi+n,ss can be evaluated

and serves as a criterion to compare the performance of different partition schemes.

4.4 Experimental Results

This section first uses some examples to illustrate the proposed design method by ex-

amining the performance of partially adaptive arrays in terms of their convergence rates

and the residual interference and noise power. A realistic broadband beamforming ex-

ample is then given to show the flexibility of the proposed design method. Four types
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Figure 4.3: Partition schemes of partially adaptive arrays: Type 1 (a), Type 2 (b), Type
3 (c) and Type 4 (d). Only two adjacent rings are shown, where the array elements in
the same subarray are represented by the same symbols.

of partially adaptive CRAs are examined here as shown in Fig. 4.3 where only two

adjacent rings are shown for illustration purpose:

Type 1: Each of the M rings in a CRA is treated as a subarray. The number of

DOFs is thus M − Q. This partially adaptive array is the same as that in [106].

Type 2: Each ring is further divided by taking at alternate the array elements on

that ring to form 2 subarrays. The number of DOFs is increased to 2M − Q.

Type 3: Each ring is split into two symmetric halves to form 2 subarrays. The

adjacent rings are rotated by 90◦ to avoid similar directional spatial sampling patterns

in all the subarrays. The number of DOFs is 2M − Q.

Type 4: Each ring is divided by taking at alternate two adjacent elements on that
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ring into 2 subarrays. The number of DOFs is 2M − Q.

In this simulation study, we set hm in the partition matrix T to be the delay-and-sum

weights given in (3.6) in Chapter 3.

4.4.1 Adaptation Performance

A narrowband beamforming example is considered to study the adaptation performance

of the partially adaptive arrays. The CRA consists of 4 equally spaced rings, where the

smallest and the largest ring radii normalized to the wavelength of the center frequency

are 0.2346 and 0.9382. The number of array elements is allocated as [12, 12, 20, 24] from

the innermost to the outermost ring. Hence K is 68 and M is 4. The NLMS algorithm

as shown in (4.21) - (4.22) is used for adaptation. The adaptation performance of the

fully adaptive and the four types of partially adaptive arrays are examined, and their

numbers of adapting coefficients are 67, 3, 7, 7 and 7 respectively.

The simulation scenario assumes the array has a look direction of (0◦, 90◦) and the

desired signal has unit energy. Three stationary directional interferences and ambient

background noise are simulated. The DOAs of the three interferences are (120◦, 75◦),

(150◦, 90◦) and (220◦, 80◦), with the Signal-to-Interference Ratio (SIRs) being −25dB,

−35dB and −30dB respectively. The Signal-to-Noise Ratio (SNR) of the ambient back-

ground noise is 0dB. Based on 50 independent runs, the interference and noise power

in the array outputs, pi+n, for fully and partially adaptive arrays as a function of the

number of iterations are plotted in Fig.4.4. The pi+n values shown are normalized to

the interference and noise power before adaptation begins and are given in dB unit.

As adaptation proceeds, pi+n in all adaptive arrays decrease gradually as the adaptive

weights converge to the optimal solutions. To reveal more details of the trajectories,

we calculated the locally averaged interference and noise power at a series of iteration

numbers as shown below.

As can be seen from Fig. 4.4 and Table 4.2, fully adaptive array has the slowest
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Iterations Fully Type 1 Type 2 Type 3 Type 4

100 1.3605 0.4277 0.6550 0.7699 1.6214

200 0.3132 0.0350 0.0946 0.1001 0.2761

300 0.1307 0.0286 0.0356 0.0374 0.0952

500 0.0431 0.0279 0.0191 0.0186 0.0295

1000 0.0171 0.0275 0.0176 0.0167 0.0178

3000 0.0152 0.0258 0.0170 0.0165 0.0174

5000 0.0151 0.0243 0.0168 0.0165 0.0174

Theory 0.0148 0.0203 0.0163 0.0160 0.0169

Table 4.2: Interference and noise power at some iteration numbers.
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Figure 4.4: Interference and noise power in array outputs. Vertical axis: Normalized
interference and noise power in dB, horizontal axis: number of iterations.

convergence rate and Type 1 partially adaptive array converges the fastest at the begin-

ning. The convergence rates of Type 2, 3, and 4 partially adaptive arrays are comparable

to each other. This is as expected since in general the convergence rates are inversely

proportional to the number of DOFs. We have also calculated the theoretical interfer-

ence and noise power at steady state using (4.30) and they are shown in the last row of

Table 4.2. Note that except Type 1 partially adaptive array, all other arrays are able

to approach within a very close range of the theoretical value at around 5000 iterations.
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We have observed that Type 1 partially adaptive array was able to approach close to

the theoretical value given more iterations. This could be due to the fact that Type 1

adaptive array may have a larger eigenvalue spread.

4.4.2 Comparison of Partitioning Schemes

In this subsection, we compare the steady state interference and noise cancellation per-

formance of the four types of partially adaptive arrays. The same CRA in the previous

subsection is used. The desired signal has unit energy and its DOA is denoted by (θ0, φ0).

The ambient background noise has a SNR of 0dB. To simplify the study, there is only

one interference whose DOA is denoted by (θi, φi) and the SIR is −45dB. In this simu-

lation, the DOA of the interference is always maintained outside of the mainlobe of the

beamformer so that the effect of different partition schemes on the residual interference

and noise power can be demonstrated more clearly. One linear constraint is used to

maintain a unity gain in the look direction.

We shall denote the steady state residual interference and noise power pi+n,ss at

certain values of (θ0, φ0) and (θi, φi) as pi+n,ss(θ0, φ0, θi, φi). We define the average pi+n,ss

and maximum pi+n,ss as

Pave =

∫

θ0

∫

φ0

∫

θi

∫

φi
pi+n,ss(θ0, φ0, θi, φi) dφidθidφ0dθ0

Θ0Φ0ΘiΦi

, (4.31)

and

Pmax = max
θ0,φ0,θi,φi

pi+n,ss(θ0, φ0, θi, φi), (4.32)

where the range for θ0 is [0, 2π] and φ0 is [0, π]. The ranges for θi and φi are similar to

those of θ0 and φ0 except the angles within the mainlobe of the beamformer are excluded.

Θ0, Φ0, Θi, Φi in (4.31) represent the widths of the integrals. The values of Pave and

Pmax for the fully and Type 1-4 partially adaptive arrays are shown in Table 4.3.

The results indicate that the partially adaptive CRAs increase both Pave and Pmax as

compared to the fully adaptive array. Type 1 array has the largest amount of increase.
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Fully Type 1 Type 2 Type 3 Type 4

DOFs 67 3 7 7 7

Pave 0.01475 0.01541 0.01532 0.01501 0.01506

Pmax 0.01483 0.01892 0.01668 0.01673 0.01755

Table 4.3: Steady state residual interference and noise power.

However, the increase is only 4.5% in Pave and 27.6% in Pmax although the numbers

of DOFs is about 20 times smaller than that of the fully adaptive array. Types 2-4

arrays have 7 DOFs and are able to yield smaller Pave and Pmax compared to Type 1.

Type 3 array has the smallest Pave and Type 2 has the smallest Pmax among them. In

practice, depending on whether the design priority is on the best averaged performance

or on the tolerance of the worst performance, different partition schemes can be chosen

accordingly.

4.4.3 Broadband Beamforming

The performance of the proposed partially adaptive array method is now examined for

adaptive broadband beamforming. A CRA consisting of 204 array elements allocated

on 10 rings is used [106]. The radii of the 10 rings normalized to the smallest radius

are: [1, 2, 3, 4, 6, 8, 12, 16, 24, 32]. The smallest radius is 0.02m and the largest radius

is 0.64m. The CRA uses nested array design as shown in Table 4.4, and it covers a

frequency range from 200Hz up to 8KHz. The ring index is counting from the innermost

ring.

Subband
Ring
Index

Array Elements Frequency
Rangeon Each Ring

1 1 2 3 4 [12 16 20 24] 3.6 - 8KHz

2 2 4 5 6 [8 12 20 24] 1.8 - 3.6KHz

3 4 6 7 8 [12 12 20 24] 0.9 - 1.8kHz

4 6 8 9 10 [12 12 20 24] 0.2 - 0.9KHz

Table 4.4: Configuration of CRA in the nested array design.
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The simulation scenario contains a desired signal and four interferences as summa-

rized in Table 4.5. The desired signal is a bird sound with non-stationary behavior. The

interferences are also non-stationary. The background noise is stationary and the SNR

is 5dB.

Signal Type SIR DOA

Desired Signal Bird Sound NA (30◦, 85◦)

Interference 1 Helicopter Noise −30dB (200◦, 75◦)

Interference 2 Tank Noise −35dB (90◦, 90◦)

Interference 3 Firetruck Noise −40dB (350◦, 85◦)

Interference 4 Jet Noise −30dB (180◦, 60◦)

Table 4.5: Desired signal and interferences.

The fully adaptive and the four types of partially adaptive arrays described earlier

are implemented. One linear constraint is used to maintain a unity gain in the look

direction. The average number of adaptive weights in the fully adaptive, Type 1 and

Type 2-4 adaptive arrays are 67, 3 and 7 respectively in each frequency component of

the FFT decomposition. The partially adaptive arrays are implemented using the RLS

algorithm. The fully adaptive array is implemented using the NLMS algorithm since

the RLS algorithm is computationally too costly due to the large number of adaptive

weights.

The residual interference and noise of all types of arrays are shown in Fig. 4.5, where

they are obtained from the difference between the desired signal and the corresponding

array outputs. Type 1 partially adaptive array has the poorest performance because it

only has 3 DOFs and is not able to remove all 4 interferences. The fully adaptive array

is not performing well because the signal and interferences are highly non-stationary and

its convergence rate is too slow to track changes in the signal characteristics. Types 2,

3 and 4 partially adaptive arrays yield similar convergence performance and are able to

effectively remove the interferences. Type 3 array outperforms Type 2 and 4 arrays a

little, which is consistent with the theory as indicated in Table 4.3.
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Figure 4.5: Processing results. (a) Desired signal. (b)-(f) Residual interference and noise
in fully adaptive array and Type 1-4 partially adaptive array.

4.5 Summary

In this chapter, we discuss the adaptive beamforming using CRA. We first analyze the

disadvantages of implementing the CRA as a fully adaptive array, which are slow con-

vergence rate and high computational complexity. To solve these problems we propose

a partially adaptive design. The design is based on element space partially adaptive

approach. An important consideration in the element space approach is the choice of an

appropriate partition scheme because it affects the convergence and the interference and

noise cancellation performance. The proposed method accommodates arbitrary partition

schemes and thus provides a basis for their comparison. We then derive the analytical

form of the steady state residual interference and noise power and use it as an evaluation

criterion for different partition structures. Simulations have verified the advantages of

the proposed method.
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Chapter 5

DOA Estimation Using Concentric

Ring Array

Through out our design of deterministic and adaptive CRA in previous chapters, we

have assumed that the DOA of the desired signal is known. In the deterministic design,

we also assume the Directions of Arrival (DOA)s of interferences are known so that nulls

can be placed in the beampattern. However, in practice, the DOAs of the incoming

signals are generally unknown and need to be estimated.

DOA estimation problem has been a central topic in array processing for the past

few decades due to its importance in a great variety of applications including radar and

sonar, personal communications, teleconference, surveillance, underwater acoustics, and

medical diagnosis/treatment, etc [107]. In this chapter we first review current DOA

estimation techniques and then propose a broadband DOA estimation method for CRA.

The performance of the proposed estimator is studied in detail and is evaluated by

simulations.

The rest of this chapter is organized as below. Section 5.1 is a review of the DOA

estimation techniques. Section 5.2 describes the proposed method. Study of the statis-

tical performance of the proposed method is given in Section 5.3, followed by simulation

results presented in Section 5.4. Finally, Section 5.5 is a summary.
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5.1 Introduction to DOA Estimation

Depending on the spectrum of the signal of interest, the DOA estimation methods can

be categorized as narrowband and broadband methods. These two types of methods

are reviewed briefly in this section. In addition, DOA estimation techniques specifically

proposed for circular arrays are also reviewed.

5.1.1 Narrowband DOA Estimation

Narrowband DOA estimation methods can be categorized as (1) Spectral-based and (2)

Parametric approaches [107].

The Spectral-based approaches include DOA estimation based on beamforming tech-

niques and Subspace-based methods. The former has small computation but suffers poor

resolution [107]. Subspace-based methods are model-based, which requires the knowl-

edge of the array signal model. By performing eigen-decomposition of the spatial co-

variance matrix of the array data, the array data signal space is decomposed into signal

subspace and noise subspace. Direction finding algorithms can then be applied, such

as MUltiple Signal Classification (MUSIC) [108, 109] and ESPRIT [110] etc. When the

source signals are correlated, the signal subspace cannot be determined correctly thus

resulting in erroneous DOA estimates.

Parametric methods are developed by more fully exploiting the underlying signal

generation process. The most well known parametric methods are Maximum Likelihood

(ML) techniques [111, 112]. Based on the different statistical assumptions of the source

signal, ML methods can be classified as Deterministic ML method and Stochastic ML

method. The advantages of parametric methods are higher resolution and robustness

to correlated signal sources. However, they generally involve multidimensional search,

which makes them computationally unattractive.
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5.1.2 Broadband DOA Estimation

DOA estimation for broadband signals can be divided into two classes: incoherent and

coherent processing methods [113]. The incoherent processing methods are natural ex-

tensions of the narrowband estimation techniques described above. In such method, the

broadband signals are first decomposed into many non-overlapping narrowband com-

ponents, DOA estimation is then performed in each narrowband and the results from

each narrowband are combined to form the broadband signal DOA estimates. These

methods are computationally inefficient and they can not handle the cases when there

are correlated signal sources.

The coherent signal subspace processing (CSS) methods are discussed in [113–116].

This kind of methods use focusing matrices to align the signal subspaces of the nar-

rowband components and then combine the aligned signal subspace to form a single

covariance matrix at some reference frequency. The subspace DOA estimation tech-

niques for narrowband signal can then be performed on this single covariance matrix.

Compared with incoherent method, CSS methods yield higher estimation accuracy and

can handle correlated signals.

5.1.3 DOA Estimation Using Circular Arrays

Circular arrays are favored in many DOA estimation applications because (1) they can

yield both azimuth and elevation angle estimates since they are 2-D arrays. (2) Compar-

ing to other 2-D arrays, their symmetric structures provide nearly invariant beampattern

for 360◦ azimuthal coverage. Many of the previous described DOA estimation techniques

are suitable for arbitrary 2-D and 3-D array geometry and thus they can be applied to

circular arrays directly. Nevertheless, much research effort has been made to either im-

prove the efficiency of those “generic” techniques or to develop new techniques using

specific features of circular arrays. Those results are briefly reviewed below.
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[117,118] discuss application of uniform linear array bearing estimation techniques to

uniform circular arrays (UCA’s). The applicability of the ESPRIT principle in conjunc-

tion with rotationally invariant arrays (such as UCA’s) was studied in [119]. In [120],

Lau et al. improves the robustness of a transformation [58] that can create approxi-

mate Vandermonde form array manifold vector in UCA, so that beamforming and DOA

estimation techniques for ULA can be applied to UCA.

In [121], the array manifold of a UCA is transformed to beamspace manifold through

phase mode excitation-based beamformers, which leads to the development of two eigen-

structure based estimation algorithms that operate in beamspace, namely, UCA-RB-

MUSIC and UCA-ESPRIT. The latter yields computationally efficient 2-D angle esti-

mation algorithm and its performance analysis can be found in [122].

In [123], a model-fitting approach is applied to DOA estimation with UCA that can

improve drastically upon conventional beamformer and yields performance comparable

to the best high-resolution techniques.

Direction finding of coherent signals for UCAs has been discussed in [124,125]. Evalu-

ation of the statistic performance of MUSIC and ML estimator for azimuth and elevation

narrowband DOA estimation using UCA can be found in [126,127].

5.2 Proposed Broadband DOA Estimation Method

Using CRA

Most of the DOA estimation techniques for circular arrays assume narrowband scenario.

They can be extended to broadband scenario using either incoherent or coherent ap-

proach. As pointed out earlier, incoherent approach has many disadvantages and it

should be avoided. Implementation of coherent approach requires the design of focus-

ing matrices at different frequencies, which can be a very challenging task. Moreover,

applying CSS methods to CRA may involve a large amount of computation. This is
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because a typical CRA has several dozens to a few hundreds of array elements and the

computation required to identify the signal subspaces through eigenvalue decomposition

is very high for an array that has a large size.

Based on the work by Lee [1], we here propose a broadband DOA estimation tech-

nique specifically for CRA. The proposed method also takes the CSS approach but

operates in beamspace, thus greatly reduces the computational complexity.

5.2.1 Signal Model

The configuration of a CRA is shown in Fig. 5.1, where φ denotes the azimuth angle

and θ the elevation angle with respect to the z-axis. The array consists of M rings, and

the numbering of the rings starts from the innermost one. The m − th ring has Nm

equally spaced array elements and its radius is Rm, m = 1 . . . M . The total number of

array elements is K =
∑M

m=1 Nm.

Consider the scenario of D broadband sources impinging on the CRA. The D sources

are located in the far field of the CRA so that the plane wave assumption holds at all

array elements. The received array signals are first divided into short frames. Using

a bank of L bandpass filters, each data frame is then decomposed into L narrowband
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components, centered at ωl, l = 1, . . . , L. The array snapshot vector at frequency ωl and

n-th frame is [1]

x(n; ωl) = A(ωl)s(n; ωl) + v(n; ωl), l = 1, 2, . . . , L, (5.1)

where s(n; ωl) is a D × 1 source signal vector. v(n; ωl) is a K × 1 vector representing

the additive spatially white noise present at all the array element. A(ωl) is a K × D

source direction matrix, whose i-th column is the array manifold corresponding to the

i-th source and has the form [1]

a(~r, ωl) = [ejωl
~r·~α1

c , ejωl
~r·~α2

c , . . . , ejωl
~r·~αK

c ]T , (5.2)

with ~r = ~ri, where ~ri is the unit vector pointing at the i-th source from the array phase

center. ~αk is the coordinate vector of the k-th array element with respect to the array

phase center, and c is the propagation speed of the wave. Using the coordinate system

defined in Fig. 5.1, (5.2) can be written as

ai,ωl
= a(~ri, ωl) = [e

j2πr1
λl

sin θi cos(φi−γ1)
, e

j2πr2
λl

sin θi cos(φi−γ2), . . . , e
j2πrK

λl
sin θi cos(φi−γK)

]T ,

(5.3)

where rk is the distance between the k-th element and the origin and γk is its azimuth

angle.

If a series of matrices Tl, l = 1, . . . , L exist, such that

TlA(ωl) = A(ω0), l = 1, . . . , L, (5.4)

then the source direction matrices at various frequency bins can be transformed into

a single direction matrix at some pre-selected frequency ω0. Such Tl, l = 1, . . . , L are

referred to as focusing matrices [1].

100



Using focusing matrices, the “focused” data covariance matrix can be formed as [1]

R̄xx =
L

∑

l=1

βlTlRxx(ωl)T
H
l

= A(ω0)R̄ssA
H(ω0) + R̄vv

(5.5)

where

Rxx(ωl) = E[x(n; ωl)x
H(n; ωl)] (5.6)

R̄ss =
L

∑

l=1

βlE[s(n; ωl)s
H(n; ωl)] (5.7)

R̄vv =
L

∑

l=1

βlTlE[v(n; ωl)v
H(n; ωl)]T

H
l (5.8)

and βl is a set of pre-selected weights.

Narrowband DOA estimation techniques, such as MUSIC, can then be performed on

this focused covariance matrix R̄xx. Compared to incoherent processing methods, CSS

methods achieve lower detection and resolution SNR threshold at reduced computational

complexity. In addition, they can handle the correlated signal sources. A limitation of

CSS methods is that they usually require preliminary DOA estimates to construct the

focusing matrices, and erroneous preliminary estimates can result in large estimation

bias in CSS methods [128].

5.2.2 Focusing Matrices Design Using Frequency Invariant CRA

Broadband DOA estimation in beamspace has the merit of reducing computation [129,

130]. In [1], Lee proposed a CSS method based on beamspace processing, in which beam-

forming matrices that yield identical beampatterns at different frequencies are used to

align the signal subspaces of the narrowband components in beamspace for DOA esti-

mation. Comparing to element space CSS methods, beamspace CSS (BS-CSS) method
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yields similar performance and greatly reduces computation. Moreover, it requires no a

priori knowledge of the spatial distribution of the broadband sources.

In [1], Lee uses a Least-Squares(LS) fit procedure to design frequency invariant (FI)

beamformers. [89] and [131] follow Lee’s DOA estimation approach but use different tech-

niques to design FI beamformers. In [89], Ward et al. avoids frequency decomposition

of array signal by implementing the FI beamformers through FIR filtering. [131] uses a

simple FI design that is suitable for arbitrary array, however, the design lacks control

on the sidelobe level and mainlobe width of the beampattern, which may compromise

the quality of DOA estimate.

In Chapter 3, we proposed a design method (Method III) that can achieve desired

FI array pattern for CRA at a range of frequencies. Using this beamformer design

technique, we propose a beamspace broadband DOA estimation technique for CRA

based on Lee’s approach [1]. The proposed technique has the merit that no optimization

process is required to obtain the FI beamformers and it can control the mainlobe width

and sidelobe level of the beampattern.

In the proposed method, multiple beams are first formed over the interested DOA

ranges. At each frequency bin ωl, a K × P beamforming matrix Vl = [vl1,vl2, . . . ,vlP ]

can be formed, where P is the number of beams and vlp is a K × 1 vector representing

the weights to form the p-th beam at frequency ωl. The element space snapshot vector

x(n; ωl) can thus be transformed to beamspace snapshot vector [1]

xB(n; ωl) = VH
l x(n; ωl), l = 1, . . . , L. (5.9)

The number of beams P needs to satisfy P > D in order to resolve all D signal sources.

At the same time, P is usually chosen to be less than K so that the beamspace has

a smaller dimension compared to element space and reduction of computation can be

achieved.
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Putting (5.1) into (5.9) yields

xB(n; ωl) = B(ωl)s(n; ωl) + vB(n; ωl), l = 1, . . . , L. (5.10)

where

B(ωl) = VH
l A(ωl), l = 1, . . . , L (5.11)

and

vB(n; ωl) = VH
l v(n; ωl), l = 1, . . . , L (5.12)

The columns of Vl are FI beamformer weights obtained by using the FI beamformer

design method described in Chapter 3. Hence, the left side of (5.11) will approximate

the same beamspace direction matrix at a pre-selected frequency ω0, i.e.,

B(ωl) ≈ B(ω0), l = 1, . . . , L. (5.13)

where B(ω0) is the beamspace DOA matrix at ω0.

In the same manner of forming the focused covariance matrix in element space, a

focused covariance matrix of the beamspace data can be formed as [1]

Q̄xx =
L

∑

l=1

βlE[xB(n; ωl)x
H
B (n; ωl)]

= B(ω0)R̄ssB
H(ω0) + Q̄vv

(5.14)

where R̄ss is as defined in (5.7) and

Q̄vv =
L

∑

l=1

βlE[vB(n; ωl)v
H
B (n; ωl)]

=
L

∑

l=1

βlV
H
l E[v(n; ωl)v

H(n; ωl)]Vl

(5.15)

Assuming the additive noise received at each array element is spatially white and

has a common variance σ2
l , i.e., E[v(n; ωl)v

H(n; ωl)] = σ2
l I, l = 1, 2, . . . , L. Under this

assumption, (5.15) becomes

Q̄vv =
L

∑

l=1

βlσ
2
l V

H
l Vl (5.16)
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If Vl is constructed such that its columns are orthonormal, i.e.

VH
l Vl = I (5.17)

(5.16) is reduced to

Q̄vv =
L

∑

l=1

βlσ
2
l I = σ̄2I (5.18)

where σ̄2 =
∑L

l=1 βlσ
2
l is the weighted sum of noise variance at different frequencies. In

the following derivation, we assume (5.18) holds. Narrowband DOA estimation methods

can be applied on Q̄xx, which is of size P × P . When P ≪ K, a great reduction of

computation is achieved.

Performing eigen-decomposition of Q̄xx yields

Q̄xx = UΛUH (5.19)

where Λ = diag{λ1, λ2, . . . , λP} is a diagonal matrix with λ1 ≥ λ2 ≥ . . . ≥ λP being

the eigenvalues in descending order, and U is the corresponding eigenvector matrix.

From the assumption in (5.18), there are P − D eigenvalues equal to σ̄2 and the rest

D eigenvalues are larger, i.e. λ1 ≥ λ2 ≥ . . . ≥ λD > λD+1 = λD+2 = . . . = λP = σ̄2.

Accordingly, the eigenvectors in U can be partitioned into two sets: the noise eigenvec-

tors that correspond to λD+1, λD+2, . . . , λP and the signal eigenvectors that correspond

to λ1, λ2, . . . , λD. Hence, Q̄xx can be written as [107]

Q̄xx = UsΛsU
H
s + UnΛnU

H
n (5.20)

The noise eigenvectors Un span the noise space, which is the orthogonal complement of

the signal space spanned by Us. Thus Un is orthogonal to the beamspace DOA matrix

B(ω0). Define the projection matrix onto the noise space spanned by Un as [107]

Π⊥ = UnU
H
n = I − B(ω0)[B

H(ω0)B(ω0)]
−1BH(ω0). (5.21)
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In practice, the true statistics used above needs to be estimated, which are usually

obtained through time sample averaging by assuming time ergodicity of the signal. Sup-

pose an estimate Π̂⊥ of the noise space projection matrix is obtained, a MUSIC spatial

spectrum can be calculated [107]

P (φ, θ) =
bH(φ, θ)b(φ, θ)

bH(φ, θ)Π̂⊥b(φ, θ)
, (5.22)

and the D peaks of P (φ, θ) correspond to the DOAs of the D sources. An exhaustive

2-D search of P (φ, θ) is necessary to locate these D peaks.

Note that when the number of frequency bins L = 1, the proposed method reduced

to a narrowband beamspace estimation method.

5.3 Statistical Performance Analysis

The performance of an estimator is usually examined in two aspects: (1) Whether the

estimator is unbiased, (2) The amount of its estimation variance. A desirable estimator

should be unbiased and has acceptable small estimation variance. Cramer-Rao Lower

Bound (CRLB) specifies the lowest variance an unbiased estimator can achieve, thus it

provides a useful tool to investigate the statistical performance of an estimator.

Study of CRLB of the MUSIC and ML methods for narrowband DOA estimation

can be found in [132–134]. CRLB of 2-D angle estimation using 2-D array is discussed

in [135]. [126, 127] analyze the statistic performance of narrowband MUSIC and ML

estimator for 2-D angle DOA estimation using UCA.

Statistical performance of broadband DOA estimation techniques is discussed in

[114,131,136–138]. [114] uses coherent processing technique to perform broadband DOA

estimation and derives a broadband CRLB of its method. [137] derives the CRLB for

broadband DOA estimation using ULA. [138] first constructs a stacked data vector using

snapshot data vectors from all frequency bins, and then use the covariance matrix of
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the stacked data vectors to analyze the CRLB of wideband source localization and DOA

estimation for single source. [138] also derives the CRLBs for source localization and

DOA estimation specifically for UCA. Different from [138], [131] uses coherent processing

techniques to form a single covariance matrix at some reference frequency and use this

covariance matrix to derive the variance of the DOA estimator.

5.3.1 Cramer-Rao Lower Bound Analysis

Denote a set of random variables by χ, its probability density function conditioned on

Θ is given by p(χ|Θ), where Θ = (θ1, θ2, . . . , θd) is a set of parameters. Let Θ̂ be the

estimate of Θ. The CRLB of the estimator Θ̂ is [114],

CRLB(Θ̂) = J−1(Θ) (5.23)

where J(Θ) is the Fisher information matrix defined by

[J(Θ)]i,j = −E[
∂2 log p(χ|Θ)

∂θi∂θj

], i, j = 1, . . . , d. (5.24)

The CRLB for estimating the azimuth and elevation angles of a single source using a

CRA is described below. In such a case, the random variables are x(n; ωl), n = 1, . . . , Q

and l = 1, . . . , L, where Q is the total number of frames in time domain. The parameter

to be estimated is the 2-D angle pair (φ, θ).

At each frequency bin, x(n; ωl), n = 1, . . . , Q is assumed to be gaussian variables

with zero mean and its correlation matrix is given by Rxx(ωl) = E[x(n; ωl)x
H(n; ωl)].

The log-likelihood function of χ(ωl) = {x(n; ωl)}, n = 1, . . . , Q is [114]

log p(χ(ωl)|φ, θ) = a − log det[Rxx(ωl)] − tr[R̂xx(ωl)R
−1
xx (ωl)] (5.25)

where R̂xx(ωl) = Q−1
∑Q

n=1 xH(n; ωl)x(n; ωl) is the sample correlation matrix of x(n; ωl)

and a is a constant independent of φ and θ.
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The frequency components x(n; ωl) are asymptotically independent and complex

normal with zero-mean [114]. Thus the log-likelihood function of of χ = {χ(ωl)} is the

sum of log-likelihood function from each frequency bin, i.e.

log p(χ|φ, θ) =
L

∑

l=1

log p(χ(ωl)|φ, θ) (5.26)

Putting (5.26) into (5.24) yields [139]

[J(Θ)]i,j =
L

∑

l=1

tr{R̂xx(ωl)

∂θi

R−1
xx (ωl)

R̂xx(ωl)

∂θj

R−1
xx (ωl)} (5.27)

Denote the estimator of azimuth angle by φ̂ and the estimator of elevation angle by

θ̂. Using results from [134], the CRLBs of φ̂ and θ̂ for the CRA are

CRLB(φ̂) = [KQG sin2(θ)
M

∑

m=1

R2
mNm]−1 (5.28)

and

CRLB(θ̂) = [KQG cos2(θ)
M

∑

m=1

R2
mNm]−1 (5.29)

with

G =
1

c2

L
∑

l=1

ω2
l

(pl/nl)
2

1 + K(pl/nl)
, (5.30)

where pl and nl are the signal and noise power at frequency bin ωl respectively.

The CRLB(θ̂) and CRLB(φ̂) are independent of φ. This is because the CRA has a

symmetric structure in the azimuth plane. The CRLBs in (5.28) and (5.29) also suggest

that when the DOA moves closer to the azimuth plane, the variance of the azimuth angle

estimates becomes smaller and the variance of the azimuth angle estimates becomes

larger.

Comparison of (5.28) and (5.29) indicates that

CRLB(φ̂) > CRLB(θ̂), if θ < 45◦

CRLB(φ̂) = CRLB(θ̂), if θ = 45◦

CRLB(φ̂) < CRLB(θ̂), if θ > 45◦.

(5.31)
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5.4 Experimental Results

In this section, we use simulations to investigate the performance of the proposed broad-

band DOA estimator for CRA. The CRA considered in this section has the same con-

figuration as the one described in Section 3.6.3 in Chapter 3, which has 12 rings and a

total number of 270 elements.

5.4.1 Narrowband Beamspace

We first look at the performance of the proposed beamspace DOA estimator in narrow-

band scenario.

The received array signal is generated in frequency domain at 2000Hz, which contains

a stationary directional signal and white gaussian noise. The source signal is assumed

to be in the far-field and the DOA is (φ = 45◦, θ = 60◦).

The desirable beampattern of the CRA is a Chebyshev function of order 8 [87] and

has a −30dB sidelobe level. The look directions are the grids formed by the following

azimuth and elevation angle values: φ = [0◦ : 10◦ : 90◦] and θ = [45◦, 70◦, 90◦]. The

total number of beams generated is 30 and they cover the area of interest.

By setting the number of frequency bins to 1, the proposed broadband DOA esti-

mator becomes a narrowband beamspace DOA estimator. It is then used to generate

the MUSIC spectrum as defined in (5.22) and a 2-D searching algorithm is applied to

the 2-D spectrum to locate the peak. A total of Q = 256 samples are used for the

estimation. Based on 20 independent runs, we plot the root mean squares error(RMSE)

of the azimuth and elevation angle estimates at various SNRs in Fig. 5.2. The CRLB

of calculated from (5.28) and (5.29) are also plotted for reference.

From the Fig. 5.2 we can see the beamspace estimator has small RMSE values.

The estimation error of the azimuth angle is lower than that of the elevation angle,

which is consistent with (5.31) as the elevation angle is larger than 45◦. The RMSEs
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Figure 5.2: Narrowband beamspace estimator: RMSEs in degrees vs. SNR.

of the estimator approach the CRLBs in the high SNRs but can not attain them. The

RMSEs can be further reduced by increasing the number of beams, however, doing

so greatly increase the computational complexity and lose the merit of the beamspace

processing method. Moreover, putting too many the beams in a given area may also

violate the orthonormal condition in (5.17). This is because the beams have certain

mainlobe width, putting different beams too close to each other will cause overlapping

between their mainlobes and resultantly the orthonormal condition in (5.17) will be

violated, which may lead to degraded performance.

5.4.2 Proposed Broadband Beamspace Method

In the second simulation, the source signal has certain bandwidth and the proposed

broadband DOA estimator is used. The source signal is generated in frequency domain,

it is a stationary directional signal with flat spectrum from 1000Hz to 2000Hz. The

background noise is white gaussian noise. The source signal is assumed to be in the

far-field and the DOA is (φ = 45◦, θ = 60◦). 512 point-FFT is used, there are a total
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Figure 5.3: Coherent broadband estimator: RMSEs in degrees vs. SNR.

of 33 frequency bins within the signal’s frequency range. At each frequency bin, we

generate 30 beams with frequency invariant property using Method III proposed in 3.

The look directions of the 30 beams are the same as in the previous simulation.

The length of the frequency samples is T = 256. The proposed broadband DOA

estimation method is then applied, the reference frequency f0 is chosen at the middle

of the frequency range. The RMSEs of the estimation results based on 20 independent

runs are shown in Fig. 5.3 together with the corresponding CRLBs.

Comparing Fig. 5.3 with the narrowband scenario in Fig. 5.2, we can see the

estimation results improved because of the information from more frequency bins are

included. Same as in Fig. 5.2, the RMSE of the azimuth angle estimation is smaller than

that of the elevation angle and it approaches the CRLB in high SNR region. Several

factors may degrade the performance of estimator. First, the number of beams is limited.

Secondly, due to design limitations, the orthonormal condition in (5.17) is not strictly

satisfied. Thirdly, the frequency invariant array pattern design is not perfect, thus (5.4)

can only be approximated.

110



−5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

R
M

S
E

 in
 D

eg
re

es

RMSE(φ)

RMSE(θ)

CRLB(φ)

CRLB(θ)

Figure 5.4: Incoherent broadband estimator: RMSEs in degrees vs. SNR.

For comparison, we also implemented an incoherent broadband 2-D angle estimator.

At each frequency bin, we perform the narrowband beamspace method described in

Section 5.4.1 to generate a narrowband MUSIC spectrum. The MUSIC spectrum from

all frequency bins are then averaged and this averaged MUSIC spectrum is used for angle

estimation. The signal scenario is the same as the previous simulation in this section.

The RMSEs of the estimation results based on 5 independent runs are shown in Fig.

5.3.

Comparing Fig. 5.4 with Fig. 5.3 clearly indicates the advantage of the coherent

broadband estimator in estimation accuracy. Note that in the incoherent broadband

method, the computational complexity is almost L = 33 times that of the coherent

broadband method. It is because the eigen-decomposition needs to be calculated at

every frequency bin in the incoherent method while only once in the coherent broadband

method.
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5.4.3 Correlated Sources

In the last simulation, we demonstrate the performance of the proposed broadband DOA

estimator for correlated sources.

Two far field sources signals are simulated, the first signal s1(t) is from the direction

(φ1 = 45◦, θ1 = 60◦) and the second signal s2(t) is from the direction (φ2 = 40◦, θ2 = 50◦).

s1(t) is a stationary signal with flat spectrum from 1000Hz to 2000Hz. s2(t) is a delayed

version of s1(t), i.e, s2(t) = s1(t − τ) with τ = 0.5s. The background noise is white

gaussian noise. Both signals have a SNR = 10dB. The number of samples is 256.

First, using the narrowband beamspace estimator in Section 5.4.1, we generate the

MUSIC spectrum as shown in Fig. 5.5. There is only one peak lies between the true lo-

cations of the two source signals. Obviously, the narrowband estimator fails to estimate

the correlated source signals. This is a well-known limitation of narrowband subspace

method. They are ineffective to estimate the directions of correlated sources, because the

correlated sources will degenerate the signal subspace. Note that the incoherent broad-

band method in previous section cannot yield correct estimates either, since incoherent

broadband method also relies on the narrowband MUSIC spectrum.

We then apply the same coherent broadband estimator from previous section to

generate the MUSIC spectrum as shown in Fig. 5.6. The MUSIC spectrum shows

two peaks near the true locations of the two source signals. Based on 10 independent

runs, we obtain estimates of the two source locations as (φ̂1 = 44.25◦, θ̂1 = 58.02◦) and

(φ̂2 = 39.65◦, θ̂1 = 49.46◦), which are very close to the true locations.

5.5 Summary

In this section, we proposed a broadband DOA estimation method for the CRA. First,

the proposed method takes the beamspace approach, thus greatly reduces the compu-

tation. Secondly, the propose method uses the frequency invariant beamformer design
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Figure 5.5: Narrowband estimator: MUSIC spectrum of two correlated sources.

method we proposed in Chapter 3 to align the beamspace covariance matrices obtained

at different frequency bins to form a focused beamspace covariance matrix. Narrowband

estimation technique can then be applied to the focused beamspace covariance matrix.

Comparing the an incoherent broadband estimation method, our proposed broadband

DOA estimation method requires much less computation, significantly improves the es-

timation accuracy and has the capability to estimate correlated sources.
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Figure 5.6: Proposed coherent broadband estimator: MUSIC spectrum of two correlated
sources.
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Chapter 6

Application of Concentric Ring

Array in Bird Monitoring

Collisions between aircraft and birds have become an increasing concern for human

health and safety. According to statistics from the Federal Aviation Administration

(FAA), there were over 33, 000 bird strikes reported to civil aircraft between 1990 and

2000, and about 15% of all bird strikes result in aircraft damage. Since 1960, about

400 aircraft have been destroyed and over 370 people killed as a result of bird and other

wildlife strikes [97,140]. To minimize the number of bird strikes, microphone arrays have

been used to monitor birds near the airport or some critical locations in the airspace.

The received signals can be further processed to help identifying the bird species, this

is important because some bird species are considered most hazardous to aircraft in

certain area. However, the range of existing arrays is only limited to a few hundred

meters. Moreover, the bird species identification performance in low signal-to-noise

environment is not satisfactory.

Under the support of the US Air Force, Intelligent Automation, Incorporated (IAI)

and the University of Missouri at Columbia, propose a novel system to improve bird

monitoring and recognition system in noisy environments. First, a CRA is used to pro-

vide very directional and long range (a few thousand meters) acquisition of bird sounds.
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Figure 6.1: Proposed automated bird monitoring and recognition system.

Second, an efficient bird species recognition algorithm is proposed which uses Hidden

Markov Model (HMM) and Gaussian Mixture Models (GMM). The overall system is

suitable for real-time monitoring and recognition for a large number of birds.

In this chapter, we first briefly describe the overall bird monitoring system in Section

6.1. In Section 6.2, we present a CRA based on Method I proposed in Chapter 3 for

bird sound acquisition, which is first tested by simulations and then implemented in

hardware and tested by field data. These experimental results are also presented.

6.1 Overall System Description

Fig. 6.1 shows the proposed system diagram, which consists of a CRA, followed by a

data acquisition system, and then the software algorithms including DOA estimation,

beamforming and bird sound classification.

The design of the CRA and its beamforming algorithms have been discussed in

previous chapters and will not be repeated here. The data acquisition system and the

bird classification algorithm are developed by IAI [97, 141], they will not be discussed

here.

A beamformer requires the DOAs of the directional signals for beamforming to en-

hance the desired signal or to remove interference. The DOAs of the signal and interfer-

ence are not known in practice and need to be estimated. In the simulations, we adopt

the MUltiple Signal Classification (MUSIC) [108,109] algorithm for DOA estimation.
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Figure 6.2: Spectrum of some bird species. Spectrum computed using 256 point FFT.

6.2 Experimental Results

In this section, we first describe the configuration of the proposed CRA. The beamform-

ing results obtained from both simulated data and field data are then presented.

6.2.1 Array Configuration

Fig. 6.2 shows the spectrum of the sound of some hazardous bird species. From the

figure, it can be seen that most of the energy of those bird sounds concentrates in the

frequency range of 200 − 8kHz. Thus the operating frequency of the bird monitoring

array should have the same range. To cover such a wide frequency range, the nested

array design as presented in Section 3.4.1 of Chapter 3 is adopted, which divides the
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whole array into different subarrays to cover different frequency subbands.

The proposed array consists of 64 array elements allocated among 10 rings. The

radii of the rings and the distribution of array elements is summarized in Table 6.1.

Ring No. 1 2 3 4 5 6 7 8 9 10
Radius R1 2R1 3R1 4R1 6R1 8R1 12R1 16R1 24R1 32R1

No. of array elements 4 4 6 8 6 8 6 8 6 8

Table 6.1: Radii of each ring and array elements distribution.

The 10 rings are grouped into 4 subarrays. As shown in Table. 6.2, each subarray

has an original operating frequency and by using the Method I proposed in Section 3.4.1

it can cover a certain frequency range. The 4 subarrays altogether covers the interested

frequency range of 200 − 8kHz.

Subarray No. Ring No. Original operating frequency Frequency range
1 1 2 3 4th 4kHz 3600 − 8kHz
2 2 4 5 6th 2kHz 1800 − 3600Hz
3 4 6 7 8th 1kHz 900 − 1800Hz
4 6 8 9 10th 500Hz 200 − 900Hz

Table 6.2: Grouping of subarrays and their configuration, numbers in round bracket
indicates the array elements are shared with other subarrays.

The largest radius R10 is calculated using (3.16), which yields

R10 =
δ4λ500Hz

4π
= 0.64m

where δ4 is the 4th root of the Bessel function J0() and is equal to 11.79. The radius of

the 1st ring is found to be R1 = R10/32 = 0.02m.

6.2.2 Simulation Results

Given the limited number of array elements, the overall sidelobe level is chosen to be

−10dB and a Chebyshev function is used as the desired beampattern function. Using

Method I proposed in Section 3.4.1, we generate the 2-D beampattern when the DOA

of the signal is (θ0 = 45◦, φ0 = 60◦). The beampatterns for some sampled frequencies
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Figure 6.3: 2-D Beampatterns in the 2nd subarray: curves starting from the outside
one are beampatterns at frequencies: 900Hz, 1100Hz, 1300Hz, 1500Hz and 1700Hz
respectively. The main look direction in this 2-D beampattern is θ = 45◦

in the 2nd subarray are shown in Fig. 6.3, where the curves, starting from the outside

one counted in the mainlobe, are beampatterns at 900Hz, 1100Hz,1300Hz,1500Hz and

1700Hz respectively. The 2-D beampattern presented here is the surface φ = 60◦ cutting

through the look direction. The beampatterns for other subarrays are nearly identical.

As can be seen from the figure, the beampatterns fulfill the design objective of −10dB

sidelobe level.

We then consider two simulated scenarios for bird sound acquisition. In the first

scenario, the array signal contains a bird sound of interest plus interference and back-

ground noise. The bird sound is the sound of Canadian goose coming from the direction

(θ = 45◦, φ = 60◦). The interference is the sound generated by a plane taking off, com-

ing from the direction (θ = 115◦, φ = 80◦), and the SIR is −20dB. The background

noise has a SNR of 0dB. The interference and background start to appear at t = 0.5s.

The second scenario assumes the same signal environment as the first scenario except

an additional interference starts to appear at t = 0.5s, which is the sound of sparrows

from the direction (θ = 270◦, φ = 45◦) and the SIR is −10dB. In both scenarios, the
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method proposed in Section 3.5.3 is used to generate nulls in the beampattern to cancel

the interferences. The processing results for these two scenarios are presented in Fig. 6.4

and Fig. 6.5. From the figure, it is seen that in both scenarios most of the interference

and background noise have been removed.

6.2.3 Field Data Testing Results

The proposed array is then implemented in hardware. As shown in Fig. 6.6, 64 micro-

phones are placed in circles on a wood board to form a microphone dish, which is used to

collect data in an open field (parking lot). Two loud speakers placed at about 40ft from

the microphone dish serve as two sound sources, one is playing the bird sound and the

other is playing plane noise as interference. The bird sound being played is either the

sound of Canadian goose or the sound of chip sparrow, classification algorithms will be

applied later to judge the bird species. The direction of the loud speakers with respect

to the microphone dish is arbitrary and unknown to the beamformer. The output from

the microphone dish is immediately fed into a data acquisition system, which performs

A/D conversion and then transforms the discrete data to a computer [97]. After the data

is stored in a computer, we first use the MUSIC algorithm to estimate the number of

directional signals and the corresponding DOAs, and then use the previously described

beamforming algorithm to process the array signal. We present processing results from

two set of data below.

In the first set of data, estimation results from MUSIC algorithm shows there are

two directional signals in the received array data, their DOAs are (θ = 320◦, φ = 19◦)

and (θ = 165◦, φ = 43◦). We alternately assume one of the two DOAs as the main

look direction of the beamformer and perform the beamforming. By listening to both

outputs we are able to identify one of the directional signal is the bird sound of interest

and the other is an interference. The enhanced bird sound together with the noisy array

signal are shown in Fig. 6.7. In the second set of data, estimated results from MUSIC
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algorithm shows there are also two directional signals in the received array data, their

DOAs are (θ = 171◦, φ = 30◦) and (θ = 329◦, φ = 39◦). The processing results are shown

in Fig. 6.8. The beamformer outputs in both sets of data are greatly improved. Besides

the results presented here, many other tests using field data are conducted, all of them

show substantial improvement in the beamformer outputs.

The bird sound used is either the sound of Canadian goose or the sound of chip

sparrow. Bird classification algorithm is applied to distinguish the bird species. In

the classification process, the bird sound signals are matched with the sound models of

Canadian goose and chip sparrow, the model with higher probability will be output as

decision. Both the signal before and after beamforming are used for classification, the

results are summarized in Table 6.3 and 6.4.

Prob. as Canadian goose Prob. as chip sparrow Decision
Canadian goose -107.2907 -118.1171 Canadian goose
Chip sparrow -121.6638 -117.6680 Chip sparrow

Table 6.3: Classification results before beamforming.

Prob. as Canadian goose Prob. as chip sparrow Decision
Canadian goose -100.9485 -149.3710 Canadian goose
Chip sparrow -131.2033 -92.4776 Chip sparrow

Table 6.4: Classification results after beamforming.

From the table, we can see the classification algorithm is able to make correct deci-

sions with or without beamforming. However, the difference between matching probabil-

ity is much smaller without beamforming comparing to the case of using beamforming,

which indicates it is very difficult to set thresholds if beamforming is not used.

6.3 Summary

In this chapter, we describe the application of a CRA to bird monitoring. The research

is still under development, presented here are some of the preliminary results. However,
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it can be seen the work is fruitful and has great potential for further improvement.
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Figure 6.4: Processing results for scenario 1: (a) Desired signal s(t); (b) Received noisy
signal in one channel; (c) Beamformer output z1(t); (d) Error signal: e1(t) = z1(t)−s(t).
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Figure 6.5: Processing results for scenario 2: (a) Desired signal s(t); (b) Received noisy
signal in one channel; (c) Beamformer output z1(t); (d) Error signal: e1(t) = z1(t)−s(t).
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(a) Front view. (b) Rear view

Figure 6.6: Implemented microphone array.
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Figure 6.7: Processing results for the first set of field data: (a) Received noisy signal in
one channel; (b) Beamformer output. Horizontal axis represents the number of samples.
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Figure 6.8: Processing results for the second set of field data: (a) Received noisy signal in
one channel; (b) Beamformer output. Horizontal axis represents the number of samples.
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Chapter 7

Conclusion and Future Work

In this chapter we first summarize the completed research work and then discuss the

future research topics.

7.1 Completed Research

During my research study, I have investigated the problem of designing a broad-band

beamformer using CRA. Three pattern synthesis methods for deterministic broad-band

beamformer using the CRA have been proposed [95,142,143]. For beamforming in non-

stationary signal environment, I have proposed a partially adaptive broad-band CRA

[106, 144, 145]. The proposed deterministic design has been applied to bird monitoring

applications and yielded encouraging results [97].

7.1.1 Deterministic CRA Design

Our proposed design of deterministic broad-band beamformer is based on Stearns and

Stewart’s work [33], in which they proposed a pattern synthesis method for continuous

concentric ring antennas using Fourier-Bessel series expansion. However, their method

is limited to 2-D narrow-band beamforming. We first generalize their method to 3-D

beamforming and then propose a way to decompose the array weights into inter-ring
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and intra-ring weights. Three methods are proposed to design the inter-ring weights to

achieve desirable sidelobe level and/or mainlobe over a range of frequencies. Method

I uses interpolation techniques to derive inter-ring weights at different frequencies to

control the sidelobe level. In Method I, several approximations have been used which

are valid if the number of array elements is sufficiently large; otherwise degradation

is expected in the increase of sidelobe level. To alleviate the degradation, we propose

Method II that optimizes the inter-ring weights using the MMSE criterion. Method II

yields better sidelobe level control by taking the degradation due to insufficient array

elements into an optimization process. Thirdly, we propose Method III that is able to

achieve frequency invariant beampattern at a range of frequencies.

The frequency range that the proposed methods can be effectively applied is re-

stricted by the array configuration, i.e., the array size, number of array elements and

number of rings. A nested array design is adopted which can greatly expand the fre-

quency range and make efficient use of array elements so that the total number of array

elements can be kept to minimum.

The deterministic methods proposed above can achieve desired sidelobe level and/or

mainlobe at arbitrary frequency within a given frequency range, thus broad-band beam-

former based on FFT can be implemented very conveniently. To expand the scope of

applications for the proposed deterministic designs, we have shown that our determinis-

tic design can be incorporated into the Linear Constrained Minimum-Variance (LCMV)

design using a method proposed by Griffiths and Buckley [88]. By doing so, nulls can be

added in the beampattern to cancel strong interferences. We simulated various signal

scenarios to test the performance of the proposed deterministic broad-band beamformer,

the results confirm that our design is successful.
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7.1.2 Adaptive CRA Design

Second, we look into developing the adaptive form of the CRA for applications in non-

stationary signal environment. We first showed that if the array is implemented in fully

adaptive manner, its computational complexity will be high and the convergence rate

will be slow since the CRA usually consists of a large number of array elements.

To avoid these disadvantages, we propose the use of partially adaptive CRA. We

first develop the generalized form of the partially adaptive CRA that accommodates

arbitrary partitioning schemes. All the subarrays operate as deterministic beamformers

using weights computed based on a priori knowledge of the desired signal’s DOA. The

adaptive processing is performed on the outputs from the subarrays, thus number of the

weights is greatly reduced. We develop the partially adaptive CRA in the framework of

Linear Constrained Minimum-Variance (LCMV) beamformer and its equivalent form –

the General Sidelobe Canceller (GSC). The linear constraints applied to fully adaptive

weighting vector are transformed to the partially adaptive weighting vector. We further

show that our deterministic beamformer design can be incorporated into the LCMV or

GSC design to improve the beamformer’s quiescent beampattern by adding an additional

linear constraint [88]. Two partially adaptive algorithms based on the LMS and RLS

for the proposed partially adaptive CRA are also presented. Finally, we derive the

theoretical formula of the steady state residual interference and noise power, which can

serve as a criterion to evaluate different partitioning schemes.

In the simulations, we compare several typical partitioning schemes and compare

their performance in terms of convergence rates and steady state residual interference

and noise power. The proposed partially adaptive array yields very good performance

as demonstrated by experiments. It is also shown that although the partially adaptive

array may not achieve the global optimum solution in the steady state, the degradation

in steady state performance is negligible.
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7.1.3 Broadband DOA Estimation

The proposed deterministic and adaptive design method of CRA all assume the DOAs of

the desirable signals are known. However, in practice, the DOAs are unknown and need

to be estimated. To complete our research, we propose a broadband DOA estimation

method for CRA.

Since the CRA usually contains a few dozens to hundreds of array elements, the

computation required to perform signal subspace DOA estimation method in element

space is very high. Our proposed method operates in beamspace to reduce computation.

Furthermore, based on a broadband method by Lee [1], we use the frequency invariant

deterministic design method proposed in Chapter 3 to design a broadband DOA estima-

tor. In the proposed broadband DOA estimation method, the received array signals are

first decomposed into narrowband components using FFT. At each frequency bin, the ar-

ray signal is transformed to beamspace using a set of frequency invariant beamformers.

The beamspace covariance matrices from different frequency bins are then calculated

and coherently combined to form a single focused beamspace covariance matrix. Any

narrowband DOA estimation technique can then be applied to the focused beamspace

covariance matrix to yield DOA estimate. The CRLB of any unbiased DOA estima-

tor using the CRA is also given to analyze the statistical performance of the proposed

broadband DOA estimator.

Simulations confirm that the proposed broadband DOA estimator yields high esti-

mation accuracy and greatly reduces computation compared to conventional incoherent

estimation methods. In addition, the proposed method is able to resolve correlated

sources when conventional incoherent estimation method fails.
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7.1.4 Bird Monitoring Application

Collisions between aircraft and birds have become an increasing concern for human

health and safety. We cooperated with US Air Force and Intelligent Automation, In-

corporated in a bird monitoring project. The proposed deterministic CRA design has

been used to enhance the performance of a bird monitoring system. Bird sounds in very

noisy environment are picked up by a CRA using our proposed design, the received noisy

signal is then processed using our beamforming algorithms. The improvement in output

signal SNRs and bird sound classification score is corroborated by simulations and field

data experiments.

7.2 Future Work

We plan to continue our research on CRA in these following topics:

(1) Improve the range of the CRA beamforming

Long range beamforming aims to pick up weak signal in long distance. It is a very

challenging problem in that with the increasing operation range of the beamformer the

amount of interference and noise received are also greatly increased. Possible solution

might be the developing of CRA with high directivity together with robust adaptive

processing capability.

(2) Improve the accuracy of direction finding

Although the proposed broadband DOA estimator in Chapter 5 achieves high accu-

racy, it still has some room for improvement as suggested by the CRLB, especially for

the estimation accuracy of the elevation angle.
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