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ABSTRACT

The focus of this dissertation is the study of lattice oscillations on the magnetic properties
of two families of materials. One class of materials is the La;_,Ca,MnOQOj series of manganites
which exhibit colossal magnetoresistance in some regions of their phase diagram. The second
consists of Li;_,Na,NiO, series of nickelate materials which may display unusual magnetic
and orbital properties. Both these classes of materials have attracted considerable attention
in recent years for their possible industrial applications, the manganites for their use as base
materials for read heads in hard-drives and the nickelate as rechargeable battery storage
materials.

This work is divided into five main parts: Introduction, Methods, EPC in a two-site
system, Magnetism in NaNiO,, and self-trapped magnetic polaron. Chapter 1 is the intro-
duction to the dissertation, while Chapter 2 discusses the numerical and analytical methods
used. In Chapter 3, the issue of the electron-lattice coupling is examined in a two-site model
of the LaMnQO3, and the magnitude of the isotope effect on the critical temperature 7. is es-
timated. The electron-phonon coupling is shown to decrease the magnetic exchange from its
Anderson-Hasegawa upper limit of ¢ cos #/2, and the oxygen isotope shift in 7, is estimated
and found to agree well with experiments. Chapter 4 discusses the electronic structure and
magnetism in NaNiO,. The Variational Lang-Firsov method as well as exact diagonalization
methods are used to show that inter-planar exchange is reduced by lattice coupling. The
issue of different magnetic properties of LiNiO, compared to those of NaNiO, is discussed.
Chapter 5 of the dissertation examines the magnetic polaron problem in a three dimensional
lattice. The effect of the static Jahn-Teller coupling on the binding energy of the magnetic
polaron is computed, as well as the effect of the next-nearest-neighbor hopping. The former

is found to further stabilize the MP, while the latter has the opposite effect.

xii



Chapter 1

Introduction

The subject of this dissertation is the study of the effect of the interactions between crystal
lattice vibrations and electronic wave functions on the magnetic properties of certain solids.
I focus in this work on the oxides and in particular, on the manganite and nickelate families
of materials.

This coupling between electronic wave function and lattice oscillations, often referred to
as the electron-phonon coupling (EPC), is a central phenomenon in solid-state physics and is
found to play an important role in many of today’s important problems such as the so-called
colossal magnetoresistance (CMR) effect in transition-metal oxides, superconductivity and
many others. In the case of the CMR effect for instance it was shown by Millis et al.[7/ that,
in order to reproduce the observed magnetoresistance, the double-exchange model should be
corrected by including the EPC. It was also demonstrated that in several doped manganites,
polaron formation tends to drive the system towards a first order phase transition. (see
reference (8| for a review).

In order to gain a deeper understanding of many of these phenomena, it has therefore
become increasingly important to determine to what extent the EPC coupling affects the
magnetic properties of certain materials. Because of their unusual magnetic properties, we

shall focus in particular on the series of transition metal (TM) oxides: La;_,Ca,MnOj3 and
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Figure 1.1: Temperature dependence of the resistivity of Lag 175Prg.505Cag 3 MnOj3 for several
magnetic fields. The magnetic field of 2T suppresses the [Charge-Ordered| State of the 80
sample, resulting in the metal-insulator transition. ( Babushkina N. A. et al., Nature 391,

159 (1998))
Li;_,Na,NiO,.

Magnetic phenomena in transition metal orides—Transition metal oxides show a very
rich and complex phase diagram. This is presumably due the simultaneous interplay of
electronic, spin, and lattice degrees of freedom. In this dissertation we focus primarily on
two families of materials; Lanthanum-Calcium manganites and its relatives, and Lithium-
Sodium Nickelates.

Consider first the family of materials La;_,Ca,MnQOg3, where x is the electron doping.
These materials were discovered[9] many years ago and the complex magnetic ordering in
these systems was well known ever since the excellent series of experiments by Wollan and
Koehler[10]. The observation of the CMR effect however, has lead to the re-discovery of
this particular family of manganites. The ensuing years have seen an intense area of re-

search develop around the manganites. Much work was done to explain the complex mag-



netic orderings in the LCMO system, culminating in the so-called Goodenough-Kanamori-
Anderson[11, 12] (GKA) rules which we now state:

Rule 1. The 180° exchange between half-filled orbitals (one electron per orbital) is rela-
tively strong and antiferromagnetic.

Rule 2. The 90° exchange between half-filled orbitals is ferromagnetic and relatively
weak.

Rule 3. The exchange between a half-filled and an empty orbital is ferromagnetic and
weak (irrespective of the orientation of the bond).

It should be noted that while these phenomenological rules have proved very effective
in describing the simplest cases, there is no general theory that describes the magnetic
ordering in LCMO for an arbitrary doping = from first-principles. In this work we have
computed the ground-state energy for several model Hamiltonian and computed the exchange
interaction for several materials, correctly describing their magnetic ordering. We describe
this technique, as well as the associated computer code in much detail in the Methods section.

Cooperative Jahn-Teller effect—In transition-metal oxides, the Jahn-Teller (JT) effect is
the principal driving force of the coupling between lattice distortions and electronic wave
function. and may be explained simply as the response of the lattice to a local change in
electric charge. The coupling between electronic and lattice degrees of freedom in these
materials takes place via the Coulomb interaction. This effect can be understood easily if
we consider the simple model of a solid shown in Fig. 1.2. A crystalline solid may be viewed
as a background of positive charges with electrons free to move around in the lattice. If we
focus on a single itinerant electron, the Coulomb interaction between the negatively charged
electron and the surrounding positive ions will cause a distortion of the crystal lattice, while
at the same time lowering the kinetic energy of the electron. This model however, has proven
too simplistic as the situation in transition metal oxides is much more complex. Indeed, the
coupling between electrons and lattice in these systems takes place via the so-called Jahn-

Teller effect which we now discuss.
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Figure 1.2: Simple picture of the electron-phonon coupling in solids. The positive signs
represent the nuclei of the atoms in the lattice while the negative sign is the electron.



When solving the Schrodinger equation in a crystal one expects the resulting electronic
wave functions ; to be highly degenerate due to the symmetric nature of the system. How-
ever, some of these degeneracies will be lifted by the lattice distortions. The Jahn-Teller
effect may generally be described as the lifting of some of the degeneracies of the electronic
wave functions in response to the lattice distortions. Consider for example the ideal per-
ovskite structure as it occurs in CaMnQOj3. In this crystal, a manganese ion is surrounded
by six oxygen atoms. If we dope this system using for example La, additional electrons are
introduced in the system, thus changing the local valence. The itinerant electrons will then
occupy one of the empty e, orbitals, thus lifting the degeneracy of the electronic orbitals.
This has been shown from Density Functional calculations[13] where the electronic wave
functions around the Fermi energy have Mn(d) character with strong hybridization with the
O(p) orbitals(see Fig.1.3). The presence of the itinerant electron will cause the degeneracy
of the e, orbitals to be lifted, which is associated with a lowering of the symmetry of the
crystal from cubic to orthorhombic.

Effect of the EPC on magnetism—A useful experimental probe of the electron-phonon
coupling in oxides is the isotope effect, where vibronic coupling is modified by the substitution
of 150 by its heavier isotope 80. The observation of an isotope effect[14, 15] on the charge-
ordering critical temperature of certain CMR materials indicated the involvement of the
lattice in the magnetic properties of these important compounds. The isotope effect requires
for its interpretation a description of the physics involving the quantum- mechanical nature
of the nuclear wave function. That is we must consider the dynamics of the lattice and use
the quantum mechanical description (phonons) of lattice vibrations.

While no single model describing the physics exists, it is now generally believed[16] that
such an effect arise from complex interactions between different degrees of freedom. What
makes this problem difficult is that no single degree of freedom seems to dominate the
physics, so that traditional methods such as perturbation theory, have largely failed to

describe the experimental observations. It has now become clear that in order to make
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Figure 1.3: Density of state of CaMnOj3 calculated using Local Spin-Density Approximation
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single doped electron.



progress in this area of condensed matter we must develop methods that are able to treat
the different interactions on an equal footing. In this work, and in order to compute the
magnetic exchange, we make use of the Variational Lang-Firsov method which is shown to
give good results for a wide range of the electron-phonon coupling strength.

Organization of the Thesis — In chapter two the methods used in this dissertation are
discussed in detail. In particular, we give a detailed description of the Variational Lang-
Firsov Method, and apply it to a simple Hamiltonian. We also explain the use of the Cluster
program which is a code we developed and whose purpose is to compute the ground-state of
a system of N atoms with N atoms and M orbitals per site. An example of how to use the
code is also presented.

In chapter three we study the electron-phonon coupling as well as the isotope effect in a
two-site system. The problem is discussed based on a two-site Hamiltonian and it is shown
that the coupling significantly decreases the magnetic exchange. In chapter two, the effect
of the dynamical Jahn-Teller coupling on the Anderson-Hasegawa double exchange in the
manganites is studied in a two-site model taking into account the double degeneracy of the
e, orbitals and their coupling to three of the MnOg octahedron vibrational modes (Q1, Q2,
and (3). Both exact diagonalization and the Lang-Firsov variational method approaches
are used. We find that the coupling to the () and ()3 vibrational modes reduces the double
exchange, while the (); mode is ineffective. The isotope dependence of the double exchange
interaction is also found to be consistent with experiments.

In chapter four the electronic structure and magnetism in NaNiQO, are studied from
density-functional calculations and by solving model Hamiltonians, suggested from the density-
functional results, to understand the magnetic exchange. The density-functional calculations
within the “LSDA-+U" approach yields a layered antiferromagnetic solution with ferro-orbital
ordering of the Ni(d) orbitals arising from the Jahn-Teller distortion around the Ni*T ion
in agreement with the orbital ordering inferred from neutron diffraction. The weak ferro-

magnetic interaction within the layer (Jr ~ 1 meV) is caused by the 90° Ni-O-Ni exchange



following the Goodenough-Kanamori-Anderson rules, while the weaker antiferromagnetic
interaction between the layers (J4r ~ —0.1 meV) is mediated via a long Ni-O-Na-O-Ni su-
perexchange path. In order to shed light on the differences between NaNiO, and LiNiOs,
which show very different magnetic behaviors in spite of the similarity of their crystal struc-
tures, we examine the effect of the coupling of the alkali atom (Na) motion to the electronic
degrees of freedom on the inter-layer exchange J4r. A model Hamiltonian is proposed and
solved by exact diagonalization and by using the variational Lang-Firsov method. We find
that reducing the mass by going from Na to Li does reduce the strength of the magnetic
exchange, but only by a small amount, so that the difference in mass alone can not describe
the differences in magnetic behavior between the two compounds.

In chapter five We study the energetics of the self-trapped magnetic polaron (elec-
tron plus the distorted local magnetization cloud) in the electron doped manganites, e.g.,
Cay_,La,MnOj3; with small x. A single electron moving in a cubic lattice of antiferromag-
netic to, core spins, as appropriate for the manganites, is examined, taking into account
the effects of the nearest and the next-nearest neighbor hoppings, the Anderson-Hasegawa
double-exchange, as well as the Jahn-Teller interaction. We compute the ground state en-
ergy and the wave function of the system using a set of self-consistent equations. While we
show that the next-nearest-neighbor hopping significantly reduces the binding energy of the
magnetic polaron, this reduction is not enough to destabilize the self-trapped state. The
ground-state of the polaron is found to be a seven-site ferromagnetic region, comprising the
central spin and the six nearest neighbors, with a net magnetic moment of approximately 7
p in qualitative agreement with the experiments. We argue that the polaron should exhibit
an activated hopping an seen in the experiments, and estimate an activation energy of about
40 meV.

The results of the dissertation are then briefly summarized again in the conclusion sec-

tion.



Chapter 2

Methods

In order to study the problem of the electron-phonon coupling and its effect on the magnetism
various numerical and analytical techniques were used in this work. The most interesting
methods used here are exact diagonalization (ED) and the semi-analytical method known
as the Variational Lang-Firsov (VLF) method. However, first-principle electronic structure
calculations based on Density Functional Theory (DFT) were also used, as well fourth order
non-degenerate perturbation theory. Extensive use was also made of the ” Cluster” computer
code developed for the purpose of forming the Hamiltonian matrix of a system with N; sites
(M orbitals per site) and N, electrons of both spins. This chapter gives an introduction to

the various methods used to solve some of the problems of this thesis.

2.1 Computation of the magnetic exchange

Because the exchange interaction in Oxides usually takes place via an intermediate oxygen
ion, it is necessary to resort to fourth order perturbation to compute the ground-state energy.

Based on the Heisenberg Hamiltonian

Hg = —

N |

>S5S, (2.1)
(i7)



the exchange interaction is then defined as the energy difference between the ferromagnetic

and anti-ferromagnetic spin configurations

We use this definition of the exchange interaction throughout this thesis. In this section
section we discuss in detail how the exchange is obtained from perturbation theory where

the first four orders in perturbation theory are given by [17]

DU Vi Vi VitV -y Vol [Vi* 1
i ikt (€n — €) (€n — Ej) (€n — €x) i iEn (€n —€) (€n — Ej) €n — €
+ —_—— — + . (2.3)
; (€n — 61')3 ”27;” (en—€)(€n—€) Len— € € —¢

The matrix elements V; are the off-diagonal elements of the perturbation Hamiltonian, and
¢; is the i—th diagonal matrix element of the unperturbed Hamiltonian. The first, second,
and third terms of the expansion are given in the appendix for completeness.

As an example of computing the exchange based on fourth-order non-degenerate pertur-
bation theory consider a three sites Mn-O-Mn system as shown in Fig. 2.1. For the sake of
simplicity we assume that only one ejorbital per Mn atom is involved in the hopping, and
take the Hund’s rule coupling to be infinity. This model is probably inappropriate to describe
any meaningful physics in the manganites, but it is nevertheless useful in illustrating some
of the methods developed in this thesis. The on-site Coulomb interaction at the O site is
denoted by U, the p — d hopping by ¢, and the charge-transfer energy cost by A.

The Hamiltonian for this system may be written

H = Z [t(cigcpo +cb e +hc) + Anpo] + Unyiny, (2.4)

[

where cja(cig) are the creation (annihilation) operator for an electron of spin o at Mn site

10



Mn(1) O Mn(2)

Figure 2.1: Schematic representation of the hopping in a three-levels system with two elec-
trons. The Hund’s exchange coupling on the Mn is assumed infinite for the sake of simplicity.
i = 1or2, while ¢/ (c,,) are the creation (annihilation) on the O site. The occupation
number operators are then defined as n;, = cjacw. In order to compute the exchange
J using Equation 2.2 we must first compute the Hamiltonian matrices in the occupation
number representation for both the ferromagnetic and anti-ferromagnetic arrangements of
the to,spins(see Figure 2.1. For example the ordered basis set for the anti-ferromagnetic case
is written {|(100);(001),), [(100);(010),), [(010);(001),), [(010);(010);)}. We then compute
the matrix elements for the Hamiltonian Eq. 2.4. For instance, the matrix element between
the two states [(100);(001);) and [(100);(010),) is ¢ (hopping of the spin | from site 3 to
site 2). The exact sign is determined according to the fermion commutation relations (see
the appendix for a discussion of the fermion sign issue).

The respective Hamiltonians for the ferromagnetic and antiferromagnetic configurations

are then written

0 t ¢t 0
At 0
t A0 t
HTT = t 0 ¢t , and H” = . (25)
t 0 A t
0 t A
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Note that neither of the above Hamiltonians is degenerate. If they were, then the use of
the energy expansion given by Eq. 2.3 is wrong. This is nevertheless frequently encountered
in the literature. An example of the proper treatment of the degenerate case is discussed
in section 4.3.2. In this case however, the exchange is fund trivially by carrying out the
expansions of the ferromagnetic and antiferromagnetic ground-state energies up to fourth

order and taking the difference. In this case we find

J_i (2.6)
AU +2A) '

The fourth-order perturbative method is useful provided the dimension of the Hilbert space
is small enough that one can compute the matrix elements of the Hamiltonian by hand.
However, for many of the systems encountered throughout this thesis the Hilbert space
is often prohibitively large. It is for this purpose that the ” Cluster” computer code was

developed.

2.2 7 Cluster” computer program

The general problem the Cluster computer code solves is that of an N, - sites system with
M (i) orbitals per site and N, electrons present in the system. Both the on-site Coulomb
and the Hund’s rule exchange interactions are taken into account. The hopping between the
different orbitals is computed using the tight-binding matrix elements as given in Harrison’s
book|2]. Some of these matrix elements are shown for reference in Appendix A. The model

Hamiltonian used is given by

H == H1+H2+H3+H4, (27)
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where

H1 = Z Z t%ﬁ Z C;[OCUC]-QJ + h.c. (28)

(i) of o

Hy = Zzﬁiaznmo (2-9)
/
H3 = Z %UZC Z Z NiacMiBo! (210)

afB oo’

/
H4 = Z %JZH Zﬁ Z(?’Lmanjgy_a — nmgn]—ﬁa). (211)

The definition of the various terms of the above Hamiltonian is as usual and the primed sums
are, by definition, such that the arguments are distinct: Z;B =5, 45~ The Koster-Slater
tight-binding matrix elements tf;-ﬁ are determined from reference [2]. The on-site energy of
an electron in orbital « at site 7 is denoted &;,, while the on-site Coulomb and Hund’s rule
exchange interactions are denoted US and JE, respectively.

In order to compute the exchange interaction J.,, the Cluster program computes the
ground-state energies for the ferromagnetic and antiferromagnetic configurations separately,
then takes the difference. The two configurations usually only differ in the number of elec-
trons of each spin. For example in the example above, the number of electrons for the
antiferromagnetic configuration is the same for either spins (N! = 1, N} = 1), while for the
ferromagnetic configuration there are no spin| electrons (N! =2, N} = 0).

The information about the number of electrons, the number of sites, etc. is stored in
a pair of input files (one for each magnetic configuration, MN.TPaf and MN.TPfm). The
information about the hopping must be supplied by hand” by editing the file "edit.f90”
before recompiling and running the program. The algorithm for the Cluster program is

summarized in the flowchart shown in Fig. 2.2. The procedure is as follows:

1. Cluster asks for the value of V4,

2. From the Input Files (MN.TPaf and MN.TPfm) read the following

13



Enter Vpdo

Read Input Files

V4

Form Basis Set

\4

Form Hamiltonian

l

Find Ground State

Figure 2.2: Flowchart diagram for the Cluster program.
(a) Ni, M(i), NI, N}
(b) On-site energies
(c) Coulomb and Hund’s rule
3. Form the Basis Set in the occupation number representation

4. Form the Hamiltonian H (Egs. 2.8-2.11)

5. Find the Ground State by using either Lanczos Diagonalization or Fourth-Order non-

degenerate perturbation theory.

2.3 Exact Diagonalization

Exact diagonalization (ED) methods are the "brute-force” methods of solving the problem

of the electron-phonon coupling. The Lanczos diagonalization scheme is simply a method to
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bring a symmetric matrix into tridiagonal form. The advantage in finding a basis set where
a matrix is tridiagonal is two-fold; The memory storage required is considerably reduced
compared to that of the initial matrix; one only needs to remember 2n — 1 numbers instead
of n(n+1)/2. In the appendix we give a brief description of the Lanczos numerical scheme.
The Lanczos method consists of constructing a basis where the initial symmetric matrix is
brought into tridiagonal form. We consider a set of orthonormal states|¢;), for j =1,--- ,n,

it is then to write each tridiagonal state [¢;) as a linear combination of |¢;):
) = cijloy) . (2.12)
j=1
Now consider the Hamiltonian of the system in the form
H = Hy+ H, (2.13)

such as the |¢;) are the eigenfunctions of Hy. If we now consider H; as a perturbation, it
may be possible to approximate the true ground-state using a linear combination of only a

few |¢;). For a more detailed description see Reference[18].

2.4 Variational Lang-Firsov Method

In general the electron-phonon coupling problem is not soluble, save for very simple models
since excited states of the lattice are bosons, which gives rise to infinite-size Hamiltonians
that are, in general, impossible to diagonalize via "brute-force”. A possible solution to this
dilemma is to truncate the Hilbert space basis, then diagonalize the smaller matrices. This
has the drawback that the accuracy will depend on the problem at hand, an that for complex
systems there is no hope for this method to achieve reasonable accuracy. It is possible in
some case to diagonalize very large matrices using the Lanczos algorithm described earlier,

but there still remains a fundamental limit to exact diagonalization methods.
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It is therefore necessary to approach the problem from a different angle. The Variational
Lang-Firsov method is the combination of the variational method with a unitary trans-
formation of the many-body Hamiltonian. Let’s consider the simplest Hamiltonian with

electron-phonon coupling

H=H,+ Hgp (2.14)
where
Hy = tY clej+he. (2.15)
(ij)
1
_ f f f
Hgp = M(Zbibi+§)+)\Zcici(b,~+bi). (2.16)

The program of the VLF is to find the unitary transformation U which diagonalizes Hpp,
then applying U to H,; we find the total transformed Hamiltonian H = UTHU. An appro-
priate variational state of the form [W),. = |0) , is then chosen, where [0) , is the phonon
vacuum, and the resulting Hamiltonian H is then minimized with respect to some variational
parameter. We now apply such a method to the above Hamiltonian.

We shall look for unitary transformations of the form

U=¢° (2.17)
where S is an anti-Hermitian operator (ST = —S). It is easily shown that an arbitrary
operator A will transform as

~ 1 1
A=e55e% = A+ A S+ 51 [[4, 5], S] + 3 [[[4, 5], S],S] + ... (2.18)
We choose the form
A £ A
S=a > (b—=b))cle; (2.19)

i
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where « is a variational parameter, and apply Eq.2.18 to the phonon operator b, and we find

~ A P A
b=">b— aazi:cici =b— az—n (2.20)

where we use the condensed notationsn =) .n; =) . cZTci. The transformed of the electron-

phonon Hamiltonian is then

~ 1 >\2
Hgp = hw (D blb; + 5) A —a) > nibi+ b)) + ﬂ(az —2a)n?. (2.21)

Note that for a @ = 1, the above transformation does indeed diagonalize the electron-
phonon Hamiltonian. If we now use the same method to calculate the transformed electronic

b;—b}

. . . —ar
Hamiltonian we find ¢ = ¢;e™ %% ), and

~ Ty A T
H, :tzcjcjea%(bl_bi)e @5 (0 =0),
(i)

The next step in the Variational Lang-Firsov program is to take the average over the varia-
tional state |¥),,

_ _a2 A2 hw A2
H =te 2hw? <E - CZC]' + 7 + ﬂ(cf — 2a)n2 (222)
ij

and minimize the corresponding ground-state energy with respect to the variational param-
eter \.

As the above transformation diagonalizes the electron-phonon Hamiltonian for o = 1 it
may be considered exact in the limit where ¢ — 0, and is therefore a good approximation in
the strong coupling limit (the so called anti-adiabatic limit). However, in the weak-coupling
or adiabatic limit it is not clear that S alone gives a suitable approximation to the ground-
state energy. When a greater accuracy is required of the simple transformation S is often
supplemented by two additional unitary transformations S, and Ss;. References [19, 20]

discusses this case in much more detail in the context of the Holstein model.
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The first transformation is often taken

Sy = &£ A(b-1b) (2.23)

where £ is a dimensionless constant and A; are variational parameters usually interpreted
as uniform lattice displacements. The above transformation describes the system well in the
adiabatic regime where the electron-phonon coupling is weak compared to the hopping ¢.
To understand that we note that the electron’s creation/destruction commute with S, and
are therefore not affected by the unitary transformation. The phonon operator on the other
hand are rescaled as

The transformed Hamiltonian (under Sy alone) is then

H = H,+ Hgp (2.25)

which will be a good approximation only if H gp 18 small compared to H., that is in the
small coupling limit.
Another transformation that is often used is the so-called "squeezed” phonon state trans-

formation S5 and has the form

S3 = Czni(bibi - bjbj) (2.26)

which describes the physics for the intermediate strength of the electron-phonon coupling
A detailed discussion is beyond the scope of this thesis and we again refer the reader

to References [19, 20| for a more sophisticated discussion of the Variational Lang-Firsov

Method.
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2.5 Density Functional Theory

First principle or ab initio methods of computing the electronic structure of crystalline
solids have been in use for a long time. Recently, and with the explosion of computational
power, these methods have become quite popular. The focus of this dissertation, however,
is not on electronic structure so I will limit the description of such methods to the most
general introduction to Density Functional Theory(DFT). This theory provides a general
method to solve, in principle, the problem of infinitely-many interacting fermions. There
are , however, difficulties such as the fundamental impossibility to exactly determine the
exchange-correlation energy. In order to solve the equations of DFT it is often necessary
to resort to drastic approximations such as the Local Density Approximation (LDA) where
the density is assumed to vary slowly enough that it may be considered constant locally.
This, surprisingly, has not kept DFT from becoming a very powerful tool when studying the
electronic structure of relatively complex materials.

As proved by Hohenberg and Kohn|21] the ground-state energy of a system of interacting

electrons can be found by minimizing the following functional of the one-electron density n(r)

E,In(r)] = /v(r)n(r)dr + F[n(r)] (2.27)

where 7" and V' are the kinetic and potential energies, v(r) is a static external potential, and

|W) is the many-body wavefunction. The quantity
Fn(r)] = (V| (T + V) |¥) (2.28)

is universal functional of the density and can be shown to be independent of the both the
number of electron, and the external potential. It is convenient to separate the above func-
tional into three separate terms: the classical Coulomb energy % [ n(r')n(r)/|r — r/| drdr/,

the kinetic energy Ti[n(r)] of a non-interacting electron gas with same density n(r), and
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the Kohn-Sham|[22| exchange-correlation energy F.,.[n(r)] of the interacting electron system.
The energy functional then takes the form

Fln(r)] = /v(r)n(r)dr + E / Mdrdr/ + Ti[n(r)] + Eye[n(r)]. (2.29)

2 v —r/|

The one-electron density n(r) is then expanded in term of one-electron orbitals ®,(r), and

the above functional is minimized subject to the normalization condition

> / O (r) Py (r)dr = 1. (2.30)

This result in a set of coupled equation which are then solved self-consistently.

The method described above is in general exact, as no approximation have been made so
far. However, determining the exchange-correlation energy FE,. is a non-trivial many-body
problem in its own right. Various approximations (LDA, GGA,...) are in use today in order

to a solve the self-consistent equations thus obtained.
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Chapter 3

Electron-Phonon coupling and isotope

effect in a two-site system

3.1 Introduction

The lanthanum manganites are mixed valence systems with a mixture of Mn3" which is
a Jahn-Teller (JT) ion and Mn*" which is not. The excess electron therefore tends to
carry the local JT distortion of the MnOg octahedron along with it as it moves about in
the lattice. The way this coupled motion affects the phenomenology of the manganites
has been addressed by several authors [23, 24]. The recent discovery of the isotope effect
indicates the involvement of the lattice in the magnetic properties [25]. The isotope effect
requires for its explanation the quantum mechanical nature of the nuclear wave function.
In fact, it has been shown earlier from a simple model with non-degenerate electron states
that the double exchange (DE) interaction|[26, 27] is modified in two important ways by
coupling to the lattice: 1. the magnitude of the DE is reduced sharply from the Anderson-
Hasegawa t cos(6/2) value, and 2. the coupling to the oxygen motion leads to an oxygen-
mass-dependent DE. On the other hand, the double degeneracy of the ¢, electrons and their

characteristic coupling to the JT distortions of the MnOg octahedron has been shown to
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lead to interesting consequences. In this chapter, we include the effects of double degeneracy
and the appropriate JT coupling within a two-site Van Vleck-Kanamori Hamiltonian|[28, 29|

which we solve by Lanczos diagonalization.

3.2 Electron-Phonon coupling in a two-site model

The relevant orbitals for the itinerant electron motion in La;_,Ca,MnOj3 are the Mn(e,)
orbitals, which couple to the vibrational mode of the MnOg octahedra via the JT interaction.
There are three important vibrational modes|30| (i) the breathing mode Q;, (ii) the in-plane
distortion mode Q2, and (iii) the apical stretching mode Q3. Taking the symmetric MnOg
octahedron with the average Mn—O bond length as the reference, the amplitudes of the Qs
and the Q3 distortions in LaMnOs are 0.20 A and 0.02 A, respectively, resulting in the three
Mn—O bond lengths of 1.91, 2.19, and 1.96 A. The amplitude of the Q; distortion is zero by

definition. The three normal modes are shown in Fig. 3.1. @1, Q2 and Q3 are given by[29]

Q1 = (X1 +Xo—Ys+Yy—Zs+ Z) /6
Q: = (X1 +Xo+Y3-Y))/2

Qs = (X1 4+ Xy —Ys+Y, +275 —2Z)/V12

where X1, X5, Y3, Yy, Z5 and Zg are the positions of the oxygen atoms in the MnOg octahe-
dron.

If we now consider two MnQOg octahedra sharing a common vertex such that one of the
Mn ions has the valence d® while the other has the valence d*, so as to correctly reproduce

the valence in Lag5CagsMnQO3, then the Hamiltonian of the system may be written as
H = H,+ Hpy + Hyr (3.1)

where the first term represents the kinetic energy of the itinerant electron , the second term
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the lattice distortion, and the third term represents the electron-phonon coupling due to the

Jahn-Teller effect. These three terms may be written

He = Z t?;»’cj-agcibg — JH Z Siﬁm

(ij)o b i
R d? K
B = 2 ~oyragz T2 @ &2
Cilo
Hyp = Z (cZT.lo, 0120) [9'Qirly — 9(QiaTe + QisT.)]
ic Ci2o

This Hamiltonian is referred to in the literature as the Van Vleck-Kanamori Hamiltonian[29,

28]. The operator ¢! (c;,) creates (destroys) an electron of spin o at the i*® site in orbital

«, where o = 1 corresponds to the 2> — 1 orbital, while o = 2 corresponds to the 2> — y?
orbital. The matrix elements ¢’ are the Koster-Slater[2] tight-binding hopping integrals
between the different pairs of e, orbitals and are given by the matrix

11,12

tij  ti L =V3 ) Vi

ti; = = cos(6/2). (3.3)
t?jl 2.2 V3 3 4

ij

The angle 0 is the angle between the two net to,which we consider here to be classical and
denote by the vectors S... The spin of the itinerant electron at (i, «) is referred to as Jq,
and ;s is the 3" normal mode of the MnOg octahedron. The respective Pauli spin-matrices

Tz, are given by

0 1 1 0
Ty = and 7, =

10 0 -1

The constants K, g, and ¢’ respectively represent the lattice stiffness, the electron-phonon
coupling to the ()23 modes, and the electron-phonon coupling to the ); mode. Moreover,

the Hund’s rule coupling is here assumed to be infinite (Jy = o0), which in effect allows
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one to consider only spin orientation, and the Hamiltonian Eq. (3.1) will not depend on the
spin-index o.

It can be shown by seeking the ground-state of Hy, + Hjr, where we assume that the
lattice distortion is not quantized (i.e. static Jahn-Teller distortion), that the e, levels are
split by the lattice distortion, and that the addition of the kinetic energy term H, further
lowers the energy by forming a band electron.[31]

Before carrying the second quantization of the Hamiltonian Eq. (3.1), we estimate the
parameters as follows: (i)Vig, =~ —0.3 — 0.4 eV from the calculated band-width and taking
into account the appropriate orbital ordering.[13] (ii)The electron-phonon coupling constant
g~ 3—14 eV/Aas estimated from tight-binding fits to the density functional e, bands
with varying octahedral distortions.[31] (iii) The stiffness constant is then estimated from
K = g/+/Q3 + Q2 to be about 15-20 eV /A2

The dynamical problem may be solved by quantizing the lattice degrees of freedom in

Eq. 3.2; we take

o = (i) (he)

P = _deO; = (M;w)l/z (b,Ta _bia>

which in this case gives the following Hamiltonian

H = H,+ Hy, + Hyp (3.4)
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Figure 3.1: The three relevant normal modes of vibration for the MnOg octahedron with
their eigenvectors |Q1), |Q2) and |Qs).

ab .450/2
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Figure 3.2: Mn-O-Mn bonds and angle-dependent hopping in La;,Ca; /2MnOs.
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where

H, = Z Z t?]b janb +h.c.

(ig) ab

H,, = Zhw (b} bi 4 = ) (3.5)

Hyr = Z &'n,; bil +bi) + 5(01102-2 + H.(:.)(bj2 +bio) +&(ny — nig)(bjg + bi3)
where ¢/ (ci,) creates (destroys) an electron at site 7 in the orbital a, bl (b.) creates
(destroys) a phonon of type o at the i*! site. Again we point out that since Jy = oo,
the Hamiltonian is essentially spin-independent. The Koster-Slater tight-binding matrix
elements t%’ are given by Eq. (3.3), w = \/% is the phonon frequency (assumed uniform
for the sake of simplicity), and £(') = g(’ )\/% is the electron-phonon coupling to the @

modes. We define the double-exchange energy as the difference of the ground-state energies

between the states where the two core spins are parallel and anti-parallel, i.e.
Jor = Ly — By

In this work, we shall neglect the effect of the coupling to the (); mode, as it merely introduces
a shift in the total energy by an amount N, x ¢’ /2K, where N, is the total number of electrons.
That energy shift is independent of the hopping ¢%°, and is therefore the same for all values

of 0, therefore contributing nothing to the double-exchange energy Jpg.

3.3 Exact diagonalization

Unlike the case of an infinite lattice, it is possible for the two-site model to use brute-force
numerical methods in order to find the ground-state solution of the problem. We shall
compute such a solution using exact-diagonalization and compare the results obtained from

the Variational Lang-Firsov method. The ground-state energy of the Hamiltonian (3.5) is
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Figure 3.3: Comparison between the exact and variational Lang-Firsov (LF) energies for the
ferromagnetic (FM) or antiferromagnetic (AF) alignment of the Mn core spins.
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obtained by direct diagonalization in the occupation representation. An element of the basis
set may be written

lia) ® |nravsvs) (3.6)

where ¢ and a are the site and orbital, and the v’s are the vibrational quantum numbers
of the phonon modes at the two sites, such that v1and v, correspond to ()5 and v3 and vy
correspond to Q3. Note that while 7 and a are limited to to the number of sites and orbitals,
the phonon indices may in general take any positive value, the phonon Hilbert space being

infinite by definition. Let us calculate the matrix elements of the Hamiltonian in this basis:

(V'|H W) = (jb, pipropista| H |ia, v1vovs0y)

= (jb, i (He + Hpn + He-ph) lia, V) (3.7)
where we have adopted the following vector notation for the phonon numbers for simplicity.
|17> = |U17V27V3a1/4>- (38)

We compute the various terms in Eq. (3.7). A general matrix element for the kinetic energy

may be written

(b, il Helia, 7) =1 (jb, il (clacan + clyera ) lia, )
a?/B
= t“bé(ﬁ — 1) [01,i02,; + 62,01 ;] -

The part of the Hamiltonian representing the lattice dynamic has the following matrix ele-

ment in the occupation representation
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(b, 1 Honlia, ) =3 i (7l (bl bio +1/2) 17)

2,0

= hw&-jéabé(ﬁ— /I) (1 + Z Vk) )

k=14

whereas the electron-phonon coupling has the form

(b, fi] He—pn |ia, 7)

The phonons being boson particles, there is an infinite number of phonon states in the
Hilbert space, which makes it impossible to exactly diagonalize the Hamiltonian, and it
is therefore necessary to truncate the phonon part of the Hilbert space such that only a

maximum of M phonons per mode are kept. In which case the dimension of the Hamiltonian

matrix is

where N is the number of lattice sites, L is the number of orbitals per site, M is the
maximum number of phonon per mode, and ¢ is the number of vibrational modes. In our

case we have that N = L = ¢ = 2, and the dimension of the Hilbert space in the case of our

€ Gzl (bly + biz) 10} S sdie (58] (chicia + chyen ) lia)
l

(pspal (bly + s ) 1V504) O (it (chican = chocia ) lia)
€6i; [ (81002 + G2a015) (1151 (b;Q + bj2> i) T v
e

Oab (010 — O24) (42| (b}:& + bj3> vise) TT Sve]
ke j+2

£0ij [(51a52b + 02401p) H Ouse ik (5uj,uj—1\/7j + 041V V5 + 1)

ki

5ab (51a - 52(1) H 6V2+Im#2+k X
k#j

(6N2+j71/2+j_1\/ Viwz T Oy jvoy41\/ Vagj + 1)]

LN(M + 1)
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two-site system is 4(M + 1)*. For the calculation of the results we keep a maximum number
of M = 20 phonons, which results in a Hamiltonian matrix of dimension 777924 that we
diagonalize using the Lanczos diagonalization scheme (See Appendix B). In Fig. (3.3) we

show that ground-state energy as a function of the Jahn-Teller energy (—A ;7 = ¢?/2K).

3.4 The Variational Lang-Firsov method

As discussed earlier, the bosonic nature of the lattice excitation gives rise to a Hilbert
space with infinite dimension. It is thus not in general possible to find the true ground-
state of the system, except for simple mode systems. Numerous authors|cite Feynman| have
outlined the difficulties of solving the general electron-phonon problem, and it is clear that
in order to handle more realistic systems different methods must be developed. Methods
based on Unitary transformations have proven to be quite powerful in that respect, where
such methods allow for an exact diagonalization of the problem when the Hamiltonian is
quadratic in the boson or fermion operators. Unfortunately, the Hamiltonian Eq. 3.5 does
not belong to this class of problems.

It is possible, however, to devise a method which makes use of the power of the varia-
tional principle and that is based on a unitary transformation. The Variational Lang-Firsov
approximation has the following simple program: 1. Find a transformation that diagonal-
izes the phonon and electron-phonon parts of the Hamiltonian. 2. Continuously vary the
expectation value of the transformed Full Hamiltonian.

In this section we use the Variational Lang-Firsov (VLF) method to compute the ground-
state energy of the Hamiltonian 3.5 and compare our results to the exact diagonalization.

We consider the anti-Hermitian operator

S = VA /hwx Y n; [71(512 — bia) + Y2(bly — bis)

where v, and v, are variational parameters and transform the quantized VVK Hamiltonian of
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Figure 3.4: Isotope exponent in terms of the electron-phonon coupling constant g. The two
curves correspond to the exact result with only the Q2 mode (green line), or both @ and
(23 retained in the total Hamiltonian. The lines are a smoothed fit to the data.
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Eq. (3.4) such that the transformed Hamiltonian is given by H = e5He~°. From Appendix

A, the transformed annihilation operators for electron and phonons are given by

A
Cia = Cig€V T L Yabia—bj,)

~ A
bia = bin+ %%‘ni

where i refers to the i'" lattice site, a refers to the orbital occupied by the electron at that

site, and « corresponds to the phonon mode(either Q5 or @)3). The transformed Hamiltonian

then takes the form
H = H,+ Hy, + He_pn

where

\/AIT [A

P17 h‘LT Za Vo (bia_b.ira)e % Za Ve (bja_b;a)CT Cjb
a

(,5)ab
- [A A 1
B t JT t JT 2 2
Hpn = hw g (biabia + H”ﬂa(bm + bia) + T iVt 5)

5 [Ajr
He pn = f; <(sz2 + big + 2 E%W)(CLCQ + Cl‘LQCﬂ)

[A
+ (sz's + bz + 2 %737%)(03101'1 — 03202‘2))

We then approximate the ground-state by the variational state

0),-[5),0 1), as
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where \Ifo> is the transformed phonon vacuum. The final form of the Hamiltonian is then
ph

_ A huw

H = Z t?fe_%Za " (Cjacjb + H.C-) + AJTZ (K + (5 + 7%)”22)

£ , JT
(3,7)ab 4

[A
+ 2 % Z n; [72(03101'2 + C;'rgcil) + v3(na — nz2)i|

where we have calculated the average over the phonon vacuum. At this point we diago-
nalize the above Hamiltonian using the ~,’s as variational parameters. The results for the
ground-state and exchange energy are shown in Fig. (3.3). We see that, as expected from
a variational scheme, the VLF energies are indeed higher than the exact energies. Also, we
note that while the VLF is exact in the adiabatic limit (hw > t) and yields good agree-
ment in the opposite anti-adiabatic limit (strong coupling), it is a poor approximation in
the intermediate range of the electron-phonon coupling. It has however been shown[32] that
by modifying the operator S to include two-phonon coherent (or squeezed) states (these
are an-harmonic terms which lower the polaronic band-narrowing effect and enhance the
hopping) and inhomogeneous distortion of the lattice[20], the VLF agreement with exact
diagonalization is substantially improved. Furthermore, it is also possible to increase the
number of phonon states one averages over via successive perturbative corrections. That is,
instead of taking the variational state to be of the form given by Eq. (3.9) one could imagine

taking such a variational state as

i), -

thus effectively adding more and more phonon states to the Hilbert space. Such an approach

D) @ (100, + A1)y + X2 [2)+ )

has been used in theoretical studies of the two-site Holstein model.|33]
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Chapter 4

Lattice Coupling and Magnetic
Exchange in NaNi1O»

4.1 Introduction

It is a puzzle as to why the two compounds, NaNiO, and LiNiO,, in spite of having very
similar crystal structures, show very different magnetic properties. The former is a type-
A antiferromagnet (ferromagnetic layers coupled antiferromagnetically; Fig. 1), while the
latter shows no long-range magnetic order. Experiments [1] on NaNiO, have revealed that
the antiferromagnetic exchange interaction .J4r between the layers is considerably weaker
than the ferromagnetic exchange Jr within the layer, Jr ~ 1 meV and J4r =~ —0.1 meV. It is
conceivable that the superexchange path between the layers being Ni-O-Na-O-Ni, replacing
Na by Li weakens the inter-planar superexchange sufficiently so as to destroy the magnetism
altogether, since the two-dimensional magnetism becomes untenable by virtue of the Mermin-
Wagner Theorem.[34, 35]

The reduction of the inter-planar coupling could come either through differences in the
electronic parameters such as the hopping parameters and charge-transfer energy or simply

through the mass difference of the intervening alkali atom, which is quite large between Na
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Figure 4.1: Crystal structure of NaNiO, at high temperature.|3] The low temperature struc-
ture is obtained by distorting the NiOg octahedra along the long Ni-O-Na-O-Ni bond shown
in the figure. The magnetic ordering is anti-ferromagnetic type A and the two types of Ni-Ni
exchange interactions Jr and Jp are shown. The shaded plane is the plane of the charge
density plot in Fig. 2. The shaded square in the upper portion of the figure shows the
Ni-O-Ni-O plaquette for the 90° exchange as discussed in the text.
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Table 4.1: Structural information for NaNiO, for both high and low-temperature
structures.[1] The lattice parameters at low temperatures are a = 5.311A, b = 2.844A,
¢ = 5.568A, and § = 110.4°, while those for the high-T structure are a = b = 2.964,
c=15.784, and v = 120°.

Atom z/a  y/b  z/c

Na 0 1/2 1/2
T~10K Ni 0 0 0

O 02832 0 0.8047

Na 0 0 12
T>490K Ni 0 0 0

0 0 0 0.2308

and Li. In view of the fact that isotope substitution has been known to alter the magnetic
interactions, changing the magnetic transition temperature 7, in a variety of compounds
such as Fe30, [36] and the manganites[14, 15, 25, 37, 30], it is important to examine the
effect of the alkali mass .

In this chapter, we focus on the compound NaNiQO,. Starting with the density-functional
band structure, we study the mechanism of the magnetic interaction as well as the effect
of the sodium mass on it. We study this by proposing a model for the superexchange
and solving it by a variational Lang-Firsov approach as well as by exact diagonalization
and the fourth-order perturbation theory. From our model, we explain the mechanism of
the exchange interactions for NaNiQO,, ferromagnetic within the layer and antiferromagnetic
between the layers. However, we find that although there is some effect of the alkali mass
on the magnetic interactions, it is not enough to describe the suppression of magnetism in
LiNiO,. It is suggested that differences in the electronic structure such as orbital ordering
or simply the magnitudes of the Hamiltonian parameters could further reduce J4r, enough

to suppress the 2D magnetism in LiNiQOs.
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Energy (eV)

(a) LSDA+U

Figure 4.2: Density-functional electron bands for the antiferromagnetic NaNiO, obtained
from the "LSDA+U" calculations. The low-temperature crystal structure with two formula
units in the unit cell was used in the calculation. The e, bands are split near the Fermi
level due to the Jahn-Teller and exchange interactions. The LSDA calculation without the
Coulomb U correction produces a similar band structure, except that the lowest e, band
(el 1) is not completely detached from the rest of the e, bands, resulting in a metallic band

g
structure.
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Figure 4.3: One-electron Densities-of-States for antiferromagnetic NaNiO,.
4.2 Electronic Structure of NaNiO,

We begin by discussing the ab initio electronic structure calculations based on density func-
tional theory (DFT). At high temperature, NaNiO, has the simple hexagonal crystal struc-
ture (space group R3m, no. 166) shown in Fig. 4.1, and undergoes a structural transition to
a lower-symmetry monoclinic structure with the paramagnetic space group C2/m (no. 12)
at about 500 K [1]. This latter structure is layered and may be viewed as an arrangement of
slightly elongated NiOg octahedra separated by Na sheets. The NiOgz octahedra in this ma-
terial are edge-sharing such that the Ni ions form a triangular lattice. There are two types of
oxygen atoms due to the strong JT distortion, giving rise to two different Ni-O bond lengths:
four short bonds of approximately 1.91 A, and two long ones of 2.14 A. The lattice param-
eters are taken from Ref. [1| The magnetic structure of this material is anti-ferromagnetic

(AF) of type A with a Néel temperature of Ty ~ 20 K.[3]
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Figure 4.4: Charge-density contours for the occupied Ni(e,) bands obtained from the local
spin-density approximation and plotted on the shaded plane shown in Fig.4.1. The plane
contains both the Ni-O-Na-O-Ni and the 90° Ni-O-Ni superexchange paths. The dashed-
line rectangle indicates the Jahn-Teller distorted NiOg octahedron. All Ni(d) orbitals in the
crystal are oriented along the same direction indicating the so-called “ferrodistorsive" orbital
ordering, inferred from the neutron scattering experiments.[4, 5]
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The ab-initio electronic structure calculations were performed for the low temperature
structure using the local spin-density approximation (LSDA) to density functional theory
(DFT). The self-consistent tight-binding linear muffin-tin orbitals (TB LMTO) method was
used|38, 39]. In addition we made use of the "LSDA+U” correction|[40] to better account for
the correlation effects. The on-site Coulomb energy of U = 5 eV for the Ni(d) orbitals was
used. In the magnetic calculation, the symmetry is not reduced further and the magnetic
unit cell is also monoclinic with space group C2/m with two formula units per unit cell.
The calculations were scalar relativistic and the von Barth-Hedin|41]| exchange-correlation
potential was used.

Within the LMTO atomic sphere approximation (LMTO-ASA), the AF-A structure was
found to be the ground state, lower in energy than both the ferromagnetic and paramag-
netic configurations. It was found that the Ni ion is in a low spin state with the nominal

occupations 5 e;

and a magnetic moment p ~ 0.5 up/Ni ion. The magnetic moment is
significantly reduced from the expected Hund’s rule value of i = 1 pp/Ni due to the strong
hybridization of the Ni(d) and O(p) orbitals.

The band structure is shown in Fig. 4.2. The bands are consistent with a low-spin state
, with the to, states being completely occupied while the e, states are only 1/2-filled (£5,¢,)-
The 5, and e, bands are split by a strong crystal-field, while the e; and ei] are split by the
exchange coupling with a strength A, ~ 0.5 eV. The Ni(d) occupation being t ¢}, the atom
is JT-active and the degeneracy of the e, levels is then lifted, with a JT splitting A ;7 ~ 0.6
eV. The one-electron densities of states are shown in Fig. 4.3.

We have also computed the electronic charge density for an energy range which includes
only the valence e, band. In a frame of reference where the 2 axis points along the long
Ni-O bond, we found this band to be of 322 — r? character. The charge-density contours are
plotted in Fig. 4.4, which clearly show the "ferro-orbital ordering," where all the 322 — r2

orbitals on all Ni atoms in the structure are oriented along the same direction, towards the

elongated Ni-O bond which lies on the Ni-O-Na-O-Ni superexchange path as indicated in
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the contour plot. Electronic structure calculations for the high-temperature structure, which
has undistorted NiOg octahedra, were also performed and no orbital ordering was found for

this structure. The DFT calculations are discussed in full detail in Ref. [42].

4.3 Magnetism in NaNiQO,

4.3.1 Intra-layer Exchange

The ferromagnetic exchange interaction within the plane is mediated via the oxygen atom
forming the 90° Ni-O-Ni bond, which is weakly ferromagnetic according to the celebrated
Goodenough-Kanamori-Anderson rules. The rule states that the 90° exchange between filled
orbitals is ferromagnetic and relatively weak|11, 12].

To illustrate this for the present compound, we adopt a simple model shown in Fig. 4.5,
retaining only the 2 orbitals as the active orbital for electron transfer on the two transition
metals, consistent with the orbital ordering shown in Fig. 4.4. The Ni ¢y, orbitals are fully
occupied. There are actually two 90° Ni-O-Ni paths forming a square plaquette as shown in
Fig. 4.4, so that, considering the two paths to be independent, the exchange will be twice
of the magnitude calculated for a single Ni-O-Ni path.

We assume that if two e, electrons are present on the transition metal atom, they both will
occupy the 2% 1| orbitals, which is favored by the Jahn-Teller energy gain. The alternative
configuration of 22 7, 22 — y? 1 is considered to have a higher energy, because although
favored by the Hund’s rule, there is no JT energy gain for this state, which is important
since two electrons are occupied. With this reasoning we omit the 22 — y? orbital altogether
in our model.

The magnetic interactions are best described in terms of the holes. With the oxygen
shell full and the Ni 22 orbitals occupied by one electron each, we have just two holes present
in the system. Furthermore, we neglect the double occupancy of the holes on the Ni atom,

which would have a much higher energy. With these simplifications, the Hamiltonian for the
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Ni(2)

Figure 4.5: Model for the 90° Ni-O-Ni exchange interaction within the layer. Open arrows
represent the holes. Double-arrowed, dashed lines indicate virtual processes with the hopping
of the e; electrons from the neighboring transition-metal atoms to the oxygen atom giving
rise to the ferromagnetic interaction.

holes reads

H = Z(tdigcm +t'd}_cyo +hoc) + A Z Z c;(,cp(7

o p=x,2 O

+ Z UpinnleH(nxTnzT + nxlnzl). (41)

p=x,z

Here, the creation operator for a hole of spin ¢ on the oxygen in the p = x or z orbital is

.I.

denoted by cIT, while the same for the two Ni sites are denoted by dL, and d,_, respectively.

The Coulomb energy and the Hund’s exchange coupling on the oxygen site are denoted by U,
and Jy, while A is the charge transfer energy of the hole from the nickel to the oxygen site.
The holes hop between Ni(1) and O(p.) and between Ni(2) and O(p,) orbitals, with the two
hopping matrix elements being ¢ and t', respectively. According to Harrison’s tight-binding

parametrization,|2] we have t' ~ —t/2 = —V)4,/2.

It is quite simple now to obtain the energies of the AF and FM states of the two holes
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and take the difference to yield the exchange energy

J=Ey, — Ey. (4.2)

There are only four configurations for the two holes in both cases: {|T0071), [07T071),
|1070),]077 0)} for the FM case (ferromagnetic) and {|7 00 |),[0T0]),|T0]10),[07]0)}
for the FM case (antiferromagnetic). The arrows refer to the spin of the hole, where the
first and the fourth labels in each configuration represent Nil and Ni2, while the second and
the third labels represent p, and p, orbitals on the oxygen. It is quite simple now to obtain
the energies of the AF and FM states of the two holes and take the difference to yield the
exchange energy

J=Ey — Ey. (4.3)

Consider the FM case with the parallel alignment of the two e, electrons. The two spin-
down holes are distributed among the four spin up states of oxygen and nickel. Of the total
six configurations (*Cy), there are only four that are relevant for the ground state, viz.,
{|7007),]0707),/T070),/0770)}. The remaining |17 00) and |00 17)} configurations
don’t mix, because there is no possibility of hole transfer between the two Ni atoms. They
are therefore not considered as part of the working Hilbert space. The arrows here refer to the
spin of the hole, where the first and the fourth labels in each configuration represent Nil and
Ni2, while the second and the third labels represent p, and p, orbitals on the oxygen. Sim-
ilarly, we only have the four relevant configurations {|100 [),[0 T0]),[T0/0),/0 7] 0)}

for the AF case.

43



The Hamiltonians are then written as

0 ¢t ¢ 0
t A0 ¢
H = (4.4)
0 At
0t t N

where A" = 2A + U, — Jy for the FM case and A’ = 2A + U, for the AF case. It is obvious
from the structure of the Hamiltonian why the FM state will have the lower energy. The
only difference between the two Hamiltonians is the on-site energy A’, which is lower in the
FM case and hence a larger gain of the hybridization energy by configuration mixing.
Quantitatively, the ground-state energies for the FM and AF configurations are computed
using the standard fourth-order non-degenerate perturbation theory[17] and taking the off-
diagonal part of the Hamiltonian as the perturbation. Applying this to the Hamiltonians

Eq. (4.4), we obtain the intra-layer exchange (denoted commonly by Jg for this compound)

J—2><V;il" ! 1 (4.5)
Prtm A2 \U, +2A—Jy U, +2A)° '

to be

where the factor of two comes from the fact that there are two 90° Ni—O—Ni paths on
the square plaquette. The result is consistent with the expression given by Mostovoy
and Khomskii[43] and is weakly ferromagnetic in agreement with one of the Goodenough-
Kanamori-Anderson rules, which states that: "A 90°-exchange between half-filled orbitals is
ferromagnetic and weak".[12]

The basic physical mechanism of the ferromagnetic coupling is simple. For the FM
alignment of the Ni spins, the two-hole state on oxygen has the same spins, whose energy is
lower by Jy (Hund’s energy on the oxygen site) as compared to the energy of the two-hole
state with opposite spins. The latter is relevant for virtual hopping in the case of the AF
alignment of the Ni spins. Virtual hopping therefore produces a larger gain of energy for the

FM case than for the AF case. It is this difference that leads to the FM interaction as seen
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explicitly from the perturbation-theory result of Eq. (4.5). Within our model, the magnetic
exchange would be zero if there was no Hund’s energy on the oxygen site.

It is clear from Eq. (4.5) that the interaction is always ferromagnetic, irrespective of
the Hamiltonian parameters. However, as usual, the strength of the interaction is obviously
quite sensitive to the magnitude of the parameters. Taking typical parameters: V4, = 1 €V,
A=4eV,U,=5eV,and Jy =1 eV, we find the value for Jp ~ 10 K, which is of the same

order of magnitude as the measured value of 13 K.[1]

4.3.2 Inter-layer Exchange

We now turn to the inter-layer exchange coupling, which is experimentally anti-ferromagnetic
and in view of it, is denoted by the symbol J,4r. The superexchange path is the Ni-O-Na-O-
Ni path as shown in Fig. 1 and also in Fig. 4. Similar paths that connect the Ni atoms on the
adjacent layers but with a 90° bend at the Na atom (see Fig. 4) will have less contribution to
exchange, because of the type of orbital ordering of the half-filled Ni(e,) orbitals. Unoccupied
Ni(e,) orbitals have higher energy and will contribute much less to the exchange because of
the larger energy denominator and are omitted in the model Hamiltonian like in the previous
section.

We examine the magnetic exchange based on a simple three site model schematically
shown in Fig. 4.6, where the electrons hop between the two Ni(e,) orbitals located on the
adjacent layers via the intermediate Na(s). In reality the Ni-Na hopping takes place via
the intermediate O(p) orbitals, but for the sake of simplicity we have considered only the
effective Ni-Na hopping ¢.

It is more convenient for the inter-layer case to write the Hamiltonian for the electrons
rather than for the holes. There are two electrons in the system and, again, our goal is to cal-

culate the AF-FM energy difference to determine the magnetic exchange. The Hamiltonian
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reads

H, = Z tij(clgcjg +he)+ Z ging + Ungng) (4.6)

(i.g)o i

where C;[J’S denote the creation operators for the electrons, ¢ is the effective Ni-Na hopping,
g; is the on-site energy at site i, where i = 1,2,3 are, respectively, Ni(1), Na, and Ni(2)
atoms, and U;’s are the on-site Coulomb interactions on the Ni (U; = Uz = U,) and Na
sites (Us = U,). Note that for simplicity, we do not include in the model Hamiltonian the
Jahn-Teller split ef] orbital ("2% — y*”) because of its higher energy. In the present section,
the hopping between Ni and Na is fixed ¢;; = t; however it will be dependent on the atom
positions when we include the electron-phonon coupling in a latter section.

The Hamiltonian for the FM state below is given in the basis set: {|110), [101), |011)},
in that order, while the basis set used for the AF state is: {|100;001), [100;010), |100; 100},
|010;001) , |010; 010), |010; 100), |001; 001), |001;010), |001; 100)}, where the first three num-
bers in each configuration correspond to the occupations of the spin | orbitals on the Ni(1),
Na, and Ni(2) atoms, respectively, while the remaining three numbers correspond to the
occupation of the corresponding spin | orbitals.

With these basis sets, the Hamiltonians read

At 0
Hyp = t 0 ¢t
0 ¢t A

and
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Figure 4.6: A three-site model for the magnetic exchange between the layers. The virtual
hopping between nickel and sodium occurs via the intermediate oxygen atom, which is re-
placed in the model by an effective direct hopping between the nickel and the oxygen sites.

47
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Hy = ot 0o ¢ U420 ¢ 0 ¢t 0 (4.7)

00 ¢t O t A 0 0 t

0 0 0 ¢t 0 0 U; t O

00 0 O t 0 t At

00 0 O 0 t 0 t 0

The Ni-Na charge-transfer energy cost A is given by

A=¢g,—¢eq+ %AJTa (4.8)

where ¢, and ¢4 are the Na and Ni on-site energies, respectively, and A ;7 is the Jahn-Teller
splitting between the two e, orbitals as seen in Fig. 4.3, so that half of it is the JT energy
gain for the electron.

First of all, we can conclude from the structure of the two Hamiltonians that the ground-
state energy for the parallel configuration is higher than that of the anti-parallel configura-
tion, for the simple reason that H;; forms a diagonal subblock of H; |, so that the variational
principle dictates the latter to have the lower ground-state energy, leading thus to an anti-
ferromagnetic exchange.

For a quantitative result, we need to obtain the ground-state energies correct to the
fourth-order in the perturbation theory. For the FM case, the exact ground-state energy is
given by

By = (A — VAT 1 822)/2. (4.9)
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For the AF case, the exact expression for the ground-state energy is rather complicated
and also the fourth-order (degenerate) perturbation theory is quite involved, unless the
degeneracy is removed in a low order in the perturbation,|44] which is not the case here.
Often in the literature, non-degenerate perturbation theory is applied erroneously in such
cases, leading to a wrong prediction of the prefactor of the fourth-order term.

In the present case, fortunately, the symmetry present in H;; allows us to compute
the ground-state energy F; | in the following manner. We first compute the eigenvalues
numerically and find that the exact ground-state eigenfunctions have the symmetric form
11, «, 8,0, v, a, 3, e, 1 >. This can also be easily seen from the symmetry of the Hamiltonian
4.7. We then operate the Hamiltonian H;| (Eq. 4.7) on it, and solve the time-independent
Schroedinger equation. As a result, we find that the ground-state eigenvalue \ satisfies the

following transcendental equation:
AN = QU+ Us +2A =30 (Ug — N) N (Us +2A = N) 7 = (A= N)/(2¢%)  (4.10)

which we solve by an iterative method by starting with the initial guess A\(¥) = 0, which is
the unperturbed energy, and iterating the expression (4.10) until convergence is achieved to
the fourth order in the perturbation ¢. The result is

A T A3 A2

o 2t2+4t4 4t 1L, 2
e Us ' Us+2A

) + O(t%) (4.11)

Taking the energy difference between the FM and the AF configurations from Eqs. (4.9)

and (4.11), we get the inter-layer exchange to be[45]

4t 1 2
= (=—+—"). 4.12
Jar = =7 (Ud * U8+2A) (412)

It is clear that the interaction is always antiferromagnetic, irrespective of the magnitudes

of the Hamiltonian parameters. If we take as typical parameters: ¢ = 0.1 eV, A =1 eV, and
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Figure 4.7: Comparison of the results of the perturbation theory Eq. (4.12) with the exact
results, obtained by the diagonalization of Eq. (4.7), for the intra-layer exchange Jap.
Parameters are: U; = U, =5 eV and A =1 eV.
Uj=Us =5¢€V, we find Jor =~ —2.3 K from Eq. (4.12), which is about the same order of
magnitude as the experimental value of —1 K.[1]

If the orbital ordering is different from the one shown in Fig. (4.6), which might occur
in LaNiO,, the hopping integral between Ni(1) and Na will be different from that between
Ni(2) and Na. Taking them as ¢ and ¢, respectively, the above expression for J4r becomes

modified to
4t2t"72 (1 2
_ ) 4.1
Jar = =53 <Ud+US+2A) (4.13)

For the orbital orientation shown in Fig. (4.8), Harrison’s scaling gives us ¢t = V4, and

t' = —t/2, so that Jar is reduced by a factor of four.
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Figure 4.8: Model for inter-site superexchange with orbital ordering different from the or-
dering for NaNiOs.

4.4 Effect of Electron-Phonon Coupling on Magnetism

4.4.1 The Electron-Phonon Hamiltonian

Since one of the differences between NaNiO, and LiNiO, is the atomic mass of the intervening
alkali atom (Na or Li) through which the inter-layer superexchange is mediated, we examine
the effect of this mass on the magnetic exchange. This will also allow us to predict the effect
of sodium isotope substitution on the magnetic exchange.

To this end, we introduce a model electron-phonon Hamiltonian starting from a simple
physical picture of the inter-layer electron hoping and the resulting NiOg distortions as

indicated in Fig. 4.9. The total Hamiltonian is now
H=H,+ He_pp, (4.14)

where the electronic part of the Hamiltonian H,; is given by Eq. 4.6 and the electron-phonon
coupling part H._,, is developed below.

For the H._,, part, consider the following argument. First of all, we have the two
e; electrons hopping between the three sites in our model. Now, as shown by our DFT
calculations, the Ni (d) orbitals have a nominal valence of tgge; such that the Niion is in a

low-spin configuration with a half-filled e, orbital. When the e, electron hops from the Ni
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Figure 4.9: Fluctuating Jahn-Teller distortion of the NiOgz octahedra and the consequent
displacement of the Na ion. The dashed square around Ni (1) indicates the undistorted
NiOg octahedron when the e, orbital on that site is empty, while the solid squares indicate
the Jahn-Teller distorted octahedra when the Ni atoms are occupied by one e, electron
each. The fluctuating distortions of the NiOg octahedra in turn induce the motion of the
intermediate sodium atom, which is modeled by the electron-phonon Hamiltonian H,._,, as
discussed in the text.

site, the JT distortion of the NiOg octahedron is relaxed - Ni is tgg now with no degeneracy to
produce the JT distortion - causing a displacement of the intermediate Na ion. For example,
if the Ni(2) (e,) and Na(s) sites are both occupied by an electron each, the NiOg octahedron
on the Ni (1) site will be undistorted, causing a net displacement of the Na ion to the left
as shown in Fig. 4.9. The different electronic occupations of the Ni-Na-Ni complex will give
rise to different distortions as shown in Table 4.2. For instance, if n;, = 0, ny = 1, and
nz = 1, we have an equilibrium displacement of —¢ for the Na ion. As seen from the Table,
the equilibrium position of the Na atom for all possible electron configurations is given by
the simple expression

with

and ny, ng, and n3 being, respectively, the electron occupations of the Ni (1), Na, and the
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Ni (2) sites.
This leads to the coupling of the ionic motion to the electronic degrees of the freedom,
which we describe by the displaced harmonic oscillator
¥ K

1
HY, = om T @ o), (4.17)

where the mass of the Na atom is denoted by m, K = mw? is the lattice spring constant,
and w is the frequency of the phonon mode.

There is a second part to the coupling as a result of the dependence of the electronic
hopping on the distance between the atoms, which was the main ingredient of the Su-
Schrieffer-Heeger (SSH) model[46, 47] of the soliton. The hopping between Ni(1) and Na is
a function of the distance between the two atoms and can be approximated by keeping the
linear term, so that

t12 :t(\xml _«TNaD %t—t/l’, (418)

where ¢ is the hopping with Na fixed at the center (z = 0) between Ni(1) and Ni(2) and x is
the deviation of the Na atom from this position. Similarly, hopping between Ni(2) and Na
is

to3 :t(|l’Ni2 —SL’NGD %t—i-t/l’. (419)
The constant term in hopping reproduces the electronic part H. (Eq. 4.6), while the linear

term adds the electron-phonon coupling part
He@_)ph = —t'x Z(CIJC% — cb,c35) + hoc. (4.20)
The total Hamiltonian now reads

H=H,+H", +H®

e—ph?

(4.21)
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where H. is given by Eq. 4.6. At this point we make use of the second quantization

formalism for the lattice degrees of freedom, and a quick calculation shows

2 2 2
w _ p G mw 5 2 MW= o9
He_ph = 2m+—2 T4 — mw 5Fx—|——2 6T
1 h mw
_ R U SR R ty L W™ o
hw(bb+2) ST (40" + 5 6T
1 hw mw
= { ) — 25T \ MY~ s2p2
hw(bb—l—2) 2mw2mw5 (b+0") + 5 )
+ 1 mw? 12 t, MW o
:iw@b+§%—7wjfﬁ F@+b)+7fﬁr.

where bfand b are respectively the phonon creation and annihilation operators, and A =
(hwe)'/? is the effective electron-phonon coupling constant , with e = K§2/2. The SSH part

of the electron-phonon Hamiltonian in second-quantization is

B\ /2
He(i)ph = <%) [Z(CL,CQJ — 650030) +he | (b4

o

= (b’ +b) Z(CL,CQJ — ¢} _c3,) + hec. (4.22)

g

where

nzf(ll)m. (4.23)

2mw

The electron-phonon Hamiltonian in second-quantized form is then given as

He pn = (bTb +1/2)hw — AI'(b+ bT) + (hw) ™' A2T?

— (b +b) Z(CLCQU —¢_e5) +hoc (4.24)

[

The parameters that determine H,._,, are the phonon frequency Zw and the strength of
the electron-phonon coupling A. There are two main parameters in the problem: the energy
ratio ¢/hw and the dimensionless coupling strength A\/fw, as may be seen by scaling the
Hamiltonians Eqgs. (4.6) and (4.24) by hw.
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Table 4.2: Dependence of the equilibrium position xy of the sodium atom on the electronic
occupations of the Ni (1), Na, and the Ni (2) sites, denoted by ny, no, and ngz, respectively.
The orbitals involved are e, for the nickels and the s orbital for sodium.

ny N9 ns r Zo
1 0 1 0 0
0 1 1 -1 —0
1 1 0 1 +0

The main parameters that determine H._,, are the energy ratio t/hw and the dimen-
sionless coupling strengths A /fw and 7/hw, as may be seen by scaling the Hamiltonians Eqs.
(4.6) and (4.24) by hw.

To make a rough order of magnitude estimate of the coupling strengths, we take the force
constant K ~ 10 eV/ A2, which yields iw ~ 13 meV and taking the displacement § ~ 0.1 A
from the measured oxygen displacement for the NiOg octahedron, we find A\ ~ 45 meV, so
that the dimensionless coupling parameter A/hw ~ 3. Similarly, with ¢ ~ 0.1 eV and using
Harrison scaling[2] for ', so that ¢’ ~ 0.2eV /A, which yields 7 ~ 10 meV or \/hw ~ 1.

To make a rough order of magnitude estimate of A\, we take the force constant K ~ 10

eV/ A2 and the mass of the alkali atom m = 23 u, which yields

1/2
K\ 10 eV/A”
ho=he|—) =1 A ~ 1

¢ <m02) 913 eV <23 X 031.5 x 106 &V 3 meV

and taking the displacement § ~ 0.1 A from the measured oxygen displacement for the NiOg
octahedron, we find A\ ~ 45 meV, so that the dimensionless coupling parameter \/fiw ~ 3.
Note that in our model, we have not kept the vibrations of the oxygen octahedra, which
of course must be considered if one is interested in the effect of the oxygen mass. In the
present case, we reason that the vibrational modes of the oxygen octahedra will have much
higher frequency (stronger chemical bonds) than the motion of the intervening sodium atom,
so that the quantized octahedral vibrational modes will have much larger energies than the

sodium vibrational mode. Coupling to the lower energy states has a larger effect because
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of the energy denominator, which justifies the neglect of the coupling to the oxygen modes
within the spirit of our work.
The electron-lattice coupling affects magnetism because it modifies the bare electron

hopping parameters, which is the subject of study in the next section.

4.4.2 Solution of the Hamiltonian

The lattice effects may be studied either via the Lang-Firsov approach or by exact diagonal-
ization. The former approach, although approximate, yields a physically appealing result by
casting the lattice effects in terms of the renormalization of the electron hopping parameters.
Within the VLF approach, [19, 48, 20] which is a variational method based on the canonical
Lang-Firsov transformation[49], we introduce the unitary transformation of the Hamiltonian

H/

H = e H'e,
S = aif(bT—b) (4.25)
- hw ) .

where « is a variational parameter and S is anti-Hermitian, so that the transformation
described by U = e~ is unitary and H' = H, + He(l_)ph. Note that the transformation can
diagonalize the electron-phonon part of the Hamiltonian exactly with the choice of a = —1
(see Egs. 4.33 and 4.30), but the electronic part becomes modified, with the phonon operators
entering the electronic Hamiltonian Eq. (4.33). The variational parameter « is a measure of
the phonon “dressing” of the electron, the so-called Lang-Firsov small polaron.

Although the transformation is designed to work well in the strong coupling limit, we find
that it works quite well in our case, where the coupling A/Aw is not that high. A better but
more involved Lang-Firsov transformation|[19, 20] consists of three consecutive variational
transformations defined by S, S’ = B(b' — b) , and S” = ~(b'b! — bb), where «, 3, and v

are variational parameters, each designed to work well in the high, low, and intermediate
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coupling regimes respectively. In the “Methods” section we have discussed the transformation

of the Hamiltonian Eq. 4.14 under the full unitary transformation
U=eee. (4.26)

In order to compute the transformed Hamiltonian, we begin by computing the trans-
formed boson and fermion operators b and Cio- Using the general expression for a transformed

operator in terms of the corresponding commutators

1
A=e4e® = A+[A S+ o 14 8] 8]+ (4.27)

it is necessary to compute the commutators [b, S| and [¢;,, S|. The first commutator is given

by
r
b,S] = a%r [b,b"] = —a)\% (4.28)
which gives the transformed boson operator as
~ Al
b=b—a—. 4.29
afe (429

As a result the transformed electron-phonon Hamiltonian is given by

1. A AN
He—ph = hW(bTb“— 5) - Q’ﬂhw(b‘l‘ bT) + hw (Oéﬂ)
212
w

Al
— A (b+b' —2a— ) +
A <b b e} )

— hw (bt — (@AL' + AT') (b+b') + X7
- 2) @ “* Tho
A202 NP2
o T e

AT

= Ho_pp = hw{b*b+%—(1+a)a(b+b*+(1+a)£)}. (4.30)

+ 2«

hw

o7



In order to find the transformed Hamiltonian for the fermion operator, we compute the

commutation relation

lcirs S] = —Bcir, TI(0 — )
= 201 (e ol — )+ (1 )i,y i)
- —g(b = b1) (eao(n1 — n3) + (1 +na)(c1o — c30))
- __g(b—-bw(ém(nl——n3)+-(1+-niﬂ5u“5&))Q0
= [¢i,S] = Bicis

which, by virtue of Eq. 4.27 gives

Gio = € Ve, (4.31)

where

a\

The transformed occupation numbers are then trivially computed as

n; = e_ScjcieS = e_ScjeSe_ScieS
_ e do-Bi B, _
= ;¢ =ce Teie = ¢

The transformed electronic Hamiltonian then reads

Hel = tz CIUE%VM(N_I))C]'U + h.c. + Z(Eznz + Umﬁnil) (433)
(ig)o )

and where v;; = —vj;, v12 = (3/2) — ny, and a3 = (3/2) — n3. The Hamiltonian is then

averaged over the bare phonon vacuum \\Ifgh>. In general, the average over the phonon
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z(bT—b)

vacuum of the operator e is given by

\Ijgh} 6x(b—bT) }\Ijgh> — <\Ijgh} e —zbt :L‘b ——[ bt 0] ‘\I] h> _ <\Ij h} 6—be :L‘b -z bbT] }\DO >

- T Y0 3 (3] 010 95
1,m=0

¢ M

e & (@) (a

=Y
I,m=1

pn| (1) (D) \‘I’?mZ

=0 ,Vl,m;ﬁO

= (0] e* @0y = 7. (4.34)

which yields the fully transformed Variational Lang-Firsov Hamiltonian

H ~ (U, |H|V,)
= t Zc e 8h2w2 lzﬂc +h.c. +Z eini + Uingngy)
(if)o
hew A2
— +(1 212 4.
+ 5 + (14 «) " (4.35)

There is some confusion in the literature[20, 48| as to which phonon vacuum must be aver-
aged over, the bare or transformed phonon vacuum. Reference [48] refers to the “transformed
phonon vacuum”, meaning by this the state of the form U ‘\11$1)>’ while reference [20] simply
refers to the phonon vacuum leaving open the possibility that the state referred to is indeed
the bare phonon vacuum ‘\I/gfl)> However, it is clear from the following that if the Hamil-

tonian H = UTHU is averaged over the transformed phonon vacuum, the result is trivially
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H,;+constant terms :

0
(s

U)FI(UT)\IISQ» _ <\If§,‘2‘UUTHUUT)\D§Q>
- (o)
ho A2

H,+ —+ =12 4.36
o (4.36)

This last Hamiltonian will show no polaronic band-narrowing and, in general, lacks any
dynamical properties necessary to describe the phonon subsystem. Therefore, the average is
necessarily over the bare phonon vacuum.

Note that as compared to the original electronic Hamiltonian H,;, the hopping parameter
becomes renormalized to a lower value, which is readily seen to reduce the magnetic exchange
from the fourth-order perturbation theory. Also, H will clearly yield a variational upper
bound to the ground-state energy, since the Hilbert space is now restricted to the zero-
phonon subspace only.

In the exact diagonalization, the ground-state wave function is simply expanded in the
joint electron-phonon occupation-number basis set: |G) = . a; |i), and the resulting Hamil-
tonian matrix is diagonalized using the Lanczos method. The Hamiltonian is truncated by
keeping only a finite number of phonons, making sure that convergence of the ground-state
energy has been achieved as a function of the number of phonons. Typically, ten to fifty
phonons are needed to achieve convergence.

Fig. 4.10 shows the calculated energies using three different methods. The results indi-
cate that the Lang-Firsov Hamiltonian is quite accurate as far as the ground-state energy
is concerned. Within the VLF approximation, the ground-state energies for the FM and
AF configurations are obtained by diagonalizing the Hamiltonian Eq. (4.35) and then by
minimizing the energy as a function of the variational parameters o. In general this method
would give a different minimum value of « for the FM and the AF configurations, but in

practice we find that the minimum in « for the FM and AF configuration are very close
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Figure 4.10: Energy of the FM and AF states using three different methods: a) Exact
diagonalization of the full, untransformed Hamiltonian Eq. (4.14), b) Exact diagonalization
of the Lang-Firsov Hamiltonian H (Eq. 4.35), and c¢) The fourth-order perturbation theory
on the Lang-Firsov Hamiltonian H. In the exact diagonalization method, the Hamiltonian
is truncated by keeping only a finite number of phonons, making sure that convergence of
the ground-state energy has been achieved as a function of the number of phonons. Often
as few as only five phonons are needed. Note that the VLF energy is always above the exact
energy, forming a variational lower bound to the ground-state energy. Parameters used here
are: hiw =100 meV,t=0.1eV,U;=5¢eV, U, =2¢eV,and A =5 eV.
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Figure 4.11: Plot of the exchange interaction J4r as a function of the electron-phonon cou-
pling. J4r remains always antiferromagnetic, but its magnitude is decreased with increased
strength \ of the electron-phonon coupling. Parameters used are the same as the previous
figure except for Aw.

62



aar =~ appy ~ 0.01, so that we take them to be the same in writing down the perturbative
result in Eq. (4.37) below.

Such a small value of « is indicative of the fact that the electron-phonon coupling does
not affect the electronic system strongly. Indeed, as seen from the renormalized operators,
Eq. (4.31), if « is zero, then we have just the bare electrons and phonons.

The Lang-Firsov Hamiltonian (4.35) may be written in a matrix form similar to Eq. (4.7)
with modified off-diagonal hopping elements. Fourth-order perturbation theory carried out
following the procedure of Section III (B) yields in the present case the following result for

the inter-layer exchange:

_4t4€—50!26/(2hw)

J ~ X
A (A +e)

26—20425/Fuu N 1
Us+2A  Ug+e

(4.37)

where ¢ = \?/hw as defined before. In the limit of no electron-phonon coupling, \/hw — 0,
this expression clearly reduces to Eq. 4.12. As indicated from the expression, the exchange
remains always antiferromagnetic, however, the electron-phonon coupling diminishes the
magnitude of J4r. The result of the perturbation expression Eq. (4.37) together with the
exact diagonalization and the Lang-Firsov results have been shown in Fig. 4.11.

The second part of the coupling H @

e_pn 18 somewhat cumbersome to treat by the Lang-

Firsov approach, since it contains off-diagonal hopping terms. However, this coupling,
parametrized by the strength 7, also reduces the magnetic exchange, as seen from Fig.
4.12, obtained from exact diagonalization.

We now turn to the question of the dependence of the exchange interaction on the mass
of the alkali atom. We have computed this by diagonalizing the full Hamiltonian, keeping
all couplings. As mass is varied, the phonon frequency Aw as well as the coupling strengths
A and n change, which are calculated using the parameters given in the caption of Fig.

4.13. The figure shows the result for two different values for the Ni to Na charge-transfer
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Figure 4.12: Plot of the exchange interaction Jsr as a function of the electron-phonon
coupling strength 7, with A = 0, obtained from diagonalization of the full Hamiltonian
Eq.(4.21). Parameters are: fuw = 10 meV, ¢t = 0.1 eV, U; =5¢€eV, U; =5¢eV, and A =1 eV.
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Figure 4.13: Dependence of the magnitude of the inter-planar exchange J4r on the mass
of the intermediate alkali atom for the parameters: hw = 10 meV, ¢t = 0.1 eV, U; = 5 €V,
and Us; = 5 eV. A is the Ni to Na charge transfer energy and 6|Jar|/|Jar| = [|Jar(m)| —
|Jar(Na)|] x |Jar(Na)|™'. A smaller A increases the fluctuation in T', thus enhancing the
lattice effects on magnetism as discussed in the text.
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energy A. Although the measured J4r &~ —1 K is already quite small for NaNiO,, we find
a reduction of J4r by only a small amount in going from ?*Na to “Li. We thus conclude
that the difference in mass alone can not describe the differences in the magnetic behavior
between the two compounds NaNiO, and LiNiOs.

A further reduction in J,r could come from changes in the electronic structure in going
from NaNiO, to LiNiO,. For example, neutron scattering experiments|5] have shown that
unlike NaNiO,, no long-range orbital ordering exists in LiNiO,. An orbital ordering different
from NaNiO; would diminish J4r as indicated in the last part of Section III B, as would

also a variation in the electronic parameters in the Hamiltonian.

4.5 Conclusion

We have studied the electronic structure and the exchange interaction in the Nickelate com-
pound NaNiQ,. The density-functional results showed a ferrodistorsive orbital ordering with
all Ni(e,) orbitals in the crystal pointed along the Ni-O bond, i.e., along the same crystallo-
graphic direction.

Both the intra- and the inter-layer exchange interactions are weak because of different
reasons. The intra-layer exchange is mediated via the 90° Ni-O-Ni superexchange and is
weakly ferromagnetic, consistent with the Goodenough-Kanamori-Anderson rules, while the
inter-layer exchange is even weaker and antiferromagnetic due to the long Ni-O-Na-O-Ni
superexchange path.

Finally, we studied the effect of the electron-phonon coupling on the magnetic exchange
by solving a simple model Hamiltonian from exact diagonalization, variational Lang-Firsov,
and perturbation theoretic approaches. While we found that the inter-layer exchange is
indeed diminished by coupling to the lattice, this effect alone is not large enough to alter the
magnetic behavior in going from NaNiO, to LiNiO;. What is happening is that the inter-

layer superexchange, which is especially small in this class of compounds owing to the long
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Ni-O-Na-O-Ni superexchange path, becomes enhanced in NaNiO, due to orbital ordering
(Ni orbitals pointed along Ni-O facilitating electron hopping, which in turn enhances the
magnetic exchange). The Jsp (measured value ~ 1 K), although still relatively weak, is
nevertheless strong enough to support magnetism between the layers and hence in the entire
3D structure. Within this scenario, what is suggested is that the weak magnetism in NaNiO,
is the result of the specific type of orbital ordering in the compound, which allows for a strong

enough exchange between the planes.
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Chapter 5

Self-trapped magnetic polaron in the

electron-doped CaMnOj

Recent experiments have suggested that magnetic polarons may be present in the electron-
doped Ca;_,La,MnO3 with small x. In this work we study the problem of an electron in
an antiferromagnetic (AF) cubic lattice as appropriate for the manganites. The effects of
the various interactions are examined through a model Hamiltonian that includes both the
nearest and the next-nearest neighbor hopping, the Anderson-Hasegawa double-exchange
between the core spins and the conduction electron, as well as the electron-phonon coupling
due to the static Jahn-Teller (JT) effect. We compute the ground state of the system using
a variational technique and by solving exactly the resulting set of self-consistent equations.
The energetics, size, and magnetic moment of the polaron are studied both with and without
the JT coupling. While we show that the next-nearest-neighbor hopping significantly reduces
the binding energy of the magnetic polaron, this reduction is not enough to destabilize the
self-trapped state. We find the ground-state of the spin lattice to be close to a seven-site
ferromagnetic cluster, where one core spin is turned by 180° and the doped electron is more or
less confined to this cluster. The resulting net magnetic moment is approximately 7 puz/Mn

ion in qualitative agreement with experiments.
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5.1 Introduction

The magnetic polaron consists of an itinerant electron plus a local ferromagnetic (FM) region
that it nucleates via exchange interaction in an otherwise antiferromagnetic lattice of local
spins as indicated in Fig. 5.1. A distinction is made between the bound magnetic polaron
(BMP), where the electron is bound to a defect center and polarizes the localized magnetic
moments in its neighborhood, and the self-trapped magnetic polaron (STMP), where the
electron is trapped in the magnetic potential well that it produces via the exchange inter-
action with the local moments. Analogous to the case of the lattice polaron (electron plus
lattice distortion), the magnetic polaron must carry the magnetic distortion along with it,
as it moves from site to site in the lattice. There are important differences in the conduction
properties of the BMP and STMP. While the BMP should always show activated conductiv-
ity, the STMP should have metallic conductivity in the weak coupling limit, with a modified
effective mass, and an activated conductivity in the strong coupling limit.

The BMP have been established in the magnetic semiconductors, where they lead to a
number of novel properties such as the giant red shifts in the band gap and the spectacular
metal-insulator transition in EuO. The STMP is believed to exist in the antiferromagnetic
(AF) semi-conductors such as EuSe and EuTe as well as the Gd-doped family of materials
Eu;_,Gd,Se and Eu;_,Gd,Te.[50, 51, 52, 53| Their existence is however not conclusively es-
tablished. Recent experiments|54| have suggested the existence of the STMP in the mangan-
ites, where measurements of the saturation magnetization of Ca;_,La,MnO3 at low doping
levels (0.0 < z < 0.2) are consistent with the presence of local FM regions in the globally
AF lattice. This was attributed by the authors to the stabilization of a STMP state in low
electron-doped CaMnQ3.7

Theoretical work on the STMP dates back to the early seventies with the pioneering work
of Kasuya[55], Mott[56], and Nagaev[57]. More recently, Pathak et. al. studied the problem
in the continuous limit as well as for a lattice [58| using variational methods. Previous the-

ories, however, did not approach the problem of the STMP with the manganites in mind.
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As such, significant effects that determine the physics in these materials are neglected by
many authors. Such effects as orbital degeneracy, JT coupling, and next-nearest-neighbor
hopping are known to lead to important phenomena in the manganites. Recently, Chen
and Allen[59] developed a model describing the magnetic polaron in the manganites, but
neglected the next-nearest neighbor electron hopping which plays a crucial role in deter-

mining the energy of the STMP state. In this work we examine the energetics and the

Figure 5.1: Schematic representation of the magnetic polaron. The continuous lattice is
entirely AF except for a FM core. The core is spherical of radius R, and the electron is
trapped inside by an infinite confinement potential of spherical symmetry.

formation of the self-trapped magnetic polaron in Ca;_,La,MnOj in the light doing limit,
i.e., for small lanthanum concentration. In particular, we will consider what happens when
a single electron is introduced into the AF lattice of CaMnO3. Our model takes into account
the coupling between the electronic, lattice, and the spin degrees of freedom. A variational
approach is adopted to study the ground state of the system within our model, the results
of which are compared to density-functional calculations for selected cases.

Our conclusions may be summarized as follows. 1. We find that the Jahn-Teller inter-
action increases the binding energy of the STMP only marginally, while the second-near-

neighbor hopping has a much larger effect. 2. This effect however is not strong enough to
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destabilize the STMP state completely, leading to a polaron binding energy in the range
of 100 meV or so. 3. The configuration of the lattice spins in the ground state with the
added electron is generally a seven-site ferromagnetic cluster (central site plus the six nearest
neighbors on the cubic lattice), formed by flipping the central spin. This is consistent with
the experimental observation (Neumeier) as well as earlier theory work of Chen and Allen. 4.
And, finally, we argue that the STMP in the electron doped CaMnO3 should show activated
conductivity and we estimate the activation energy for the hopping of the magnetic polaron.

The chapter is organized as follows. In section II we discuss the basic physics of the self-
trapped magnetic polaron within the simple model of Mott. Section III introduces a model
Hamiltonian appropriate to the magnetic polaron in CaMnOs3, while section IV describes
the method used to find the ground state. In section V, we discuss the results of the model
calculation and argue that the polaron conductivity should be activated type as observed in

the experiments.

5.2 The Mott Polaron

Before studying the magnetic polaron in CaMnQO3, we discuss the Mott model which, despite
its simplicity, captures many features of the magnetic polaron physics. We consider an
AF lattice where the lattice spins interact through an anti-ferromagnetic Heisenberg-like
exchange of the form Jg;.gj (J > 0 is the exchange coupling constant). When a single
excess electron of mass m is introduced into the AF background, it will interact with the
spins of the lattice via a ferromagnetic interaction. This interaction will tend to polarize a
FM region of radius R around the site occupied by the excess electron (see Fig. 5.1).

If the energy cost to turn a single lattice spin from AF to FM is 2J5? (the energy of
the AF bond is by definition zero) then the energy required to form a polaron of radius
Ris (v/2)2J5?4(R/a)®. If we refer to the number of nearest-neighbors (NN) around the

site occupied by the excess electron as v, then the number of site inside the FM core is
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T (R/ a)®. In addition, the electron is confined inside the FM region since hopping between
AF sites is energetically unfavorable. In the limit where the Hund’s rule coupling is infinite,
the electron is forbidden to leave the FM core and is trapped inside an infinite potential well

with a confinement energy h?m?/2mR2. The energy of the system is

h2r? At (R\®
E= JS*P— (=) —3t 5.1

2mR? v 3 <a) (5.1)
where the last term is the band energy of the electron with ¢ being the hopping constant

(t > 0). In the following we use the tight-binding approximation where the band-mass of

1 9%°E

the electron is such that % = 32552+ 1t can easily be shown that for a two bands model we

have necessarily
" _ ta’. (5.2)
m
Using the above in Eq. (5.1), we eliminate the mass of the electron and minimize the
Mott energy with respect to the radius R of the core. The radius and energy minima as a
function of the dimensionless coupling constant a = ¢/JS? are given by

R= ()"

4v

(5.3)
EMOtt/t = AO[_2/5 -3

where A ~18.55 for a simple cubic lattice. The above equation shows that the energy of the
Mott polaron as well as its size depend only on the ratio ¢/JS? This shows a competition
between two interactions: the spin-spin interactions that favor an AF arrangement of the
lattice spins, and the electronic hopping that favors a FM lattice. The latter will tend to
increase the radius of the polaron, while the former will tend to reduce it. If we define the
binding energy of the magnetic polaron as the energy gained by forming a FM core starting

from an AF lattice

EY™ = Exp — Eyon, (5.4)
then for parameters appropriate to CaMnQO3[31, 6, 60], t = 0.5—0.75 eV, and JS? = 5 meV,
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we find a polaron radius R ~ 1.81a, and a binding energy varying from E¥°" = (0.03 —0.38
eV and increasing linearly as a function of t.

Jahn-Teller coupling— In order to describe the physics of the Jahn-Teller effect in this
system, we wish to extend the above model to include the electron-phonon coupling. In
manganites with perovskite structure, six oxygens form an octahedron around the manganese

ions which have a Mn™ valence (Fig. 5.2).

R crumwr SUN I

|
® La O
®
! - +
CINO) I
|
L qQ,
++
Q; [+

Figure 5.2: Type-G magnetic structure of CaMnOj3 and schematic description of the relevant
normal modes of the MnOg octahedra. When the itinerant electron occupies an e, orbital
on the Mn ion, the Jahn-Teller effect causes the octahedron to distort. The arrows show the
Jahn-Teller modes considered in this work.

When an excess electron occupies one of the Mn d orbitals, thus changing the valence
from Mn** to Mn™3, the MnOg octahedra will distort in order to lower the energy of the
system via Jahn-JT coupling Teller coupling. in CaMnQOj3 the JT coupling is of type e ® E,
coupling the e, electrons to the E, normal modes of the isolated single octahedron. The

Hamiltonian due to this JT effect may be written

3
Hyr = g Z Q? — g(0.Q2 + 0.Q3) (5.5)
=1
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where ()1, ()2, and Q)3 are respectively the uniform, in-plane, and apical stretching modes of
the isolated MnOg octahedron. The pseudo-spins o,, and o, are introduced to describe the
coupling of the lattice to the orbital degrees of freedom. The lattice stiffness and electron-
lattice coupling constants are denoted K and g.

It can then be shown[61] that the energy gain by JT effect is of the form 1K (Q? + Q3 +
Q3) + g\/m. This is the well-known “Mexican hat” potential for which the minimum

in terms of the lattice distortions is given by E% = —¢?/2K, with an optimal distortion

Qmin = g/ K.

In our case however, the electronic wave function is spread out over the entire spherical
FM region, thus ”diluting” the electron-lattice coupling. Therefore the energy gained by
distorting a single octahedron at a site a distance r from the center of the magnetic polaron
is given by

B(r) = 5@+ gQn(r), (5

where n(r) is the number of electrons at site r, and @(r) is the lattice displacement from
equilibrium. The optimal lattice displacement (),,;, is found by solving 0F/0Q = 0 for @,

which gives

Qmin = %n(r) (5.7)
and a minimum energy
2
Eyr(r) = —29—Kn2(7~). (5.8)

The electron density n(r) at site r is calculated as follows; if the electron is considered
trapped by an infinite potential of spherical symmetry, its wave function is a solution to the

classic electron-in-an-infinite-spherical-potential problem

v = (o) o () = (ﬁ)m =, (5.9

We assume the electron distribution to be uniform around a given site r and consider a
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spherical shell of radius 7 and thickness dr; then the number of electrons at site r is n(r) =

a® |1 (r)|?, while the number of MnOg octahedra in the shell is 4Z§2 dr. The correction to the

Mott energy due to the JT distortion is then

R
EJT = / EJT(’T’)CZT
0

2Kn a’d
2 a 3
- Le(®) o1
where
T .4
00:/ Slzfdx:o.mm. (5.11)
0

Therefore, in the presence of the JT interaction, the total energy of the Mott-like magnetic

polaron is modified to

tr?a®  4nvJS?R® Ttepa®
Eyror = —3t+ N2 + 5 ~ o (5.12)

where we have defined the dimensionless constant I' = g%/ Kt.

Eq. (5.12) shows that the qualitative effect of the JT coupling in this system is to increase
the binding energy of the magnetic polaron. Finding the minimum of Ej, ,, using analytical
methods is not simple, so we have used a numerical method in order to minimize Eq. (5.12)
with respect to the magnetic polaron radius R for different values of the effective electron
phonon coupling constant ['. The results are shown in Fig.5.3. The two lines shown in the
figure correspond to the Mott energy as a function of the polaron radius, with two different
values of the electron phonon coupling constant I'.

The solid line correspond to parameters appropriate to CaMnOs( with g = 2 éV /A, and
K = 10 — 20 ¢V/A?) and its minimum gives a binding energy of EM°" ~ 0.48 eV and a
polaron radius of R = 1.8a. These values are close to the ones found for the Mott polaron

without JT effect, which shows that the effect of the JT distortion on the magnetic polaron
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Figure 5.3: The total energy in the Mott approximation. The solid line correspond to
I' = g?/Kt ~ 0.67, while the dotted and dashed lines correspond respectively to I' = 0 and
[’ = 4. This shows that the JT effect increases the binding energy of the magnetic polaron
while reducing its size. The curve for I' = 0 is not significantly different from the one for
' = 0.67: the correction due to the JT distortion has a small effect on the magnetic polaron.
energy and radius is quantitatively small. The dashed curve shows the Mott energy for a
much larger value of I', and demonstrates the qualitative effect of the JT distortion. The

total energy is lowered by the JT gain E,;r = gt (%)3, while the radius of the FM core is

slightly reduced.

5.3 Hamiltonian for the Magnetic Polaron

In CaMnQOg the valence of the Mn ions is 44, with 3 electrons of parallel spin occupying the
lower t5, orbitals while the e, orbitals [3z* — r?) and |2? — y?) are unoccupied and higher in
energy due to the crystal field splitting. The ?5, and e, orbitals of opposite spin are lifted
higher in energy by the Hund’s rule exchange as shown in Fig. 5.4. A single excess electron
introduced in the system through light doping will thus occupy the lowest e, orbital, with
its spin parallel to that of the ¢y, electrons, and will cause the degeneracy of the e, orbitals
to be lifted via cooperative JT effect.[62]

In order to study the formation and stability of the STMP state in a 3-dimensional

CaMnOs; cubic lattice, we have constructed a model that includes both the nearest and next-
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Figure 5.4: Density of state, and electron hopping between Mn ions in CaMnQO3. The Hund’s
rule exchange being infinite, the Mn-Mn electron hopping is forbidden when the spins of the
Mn(ty,) electrons are AF. The site occupied by the itinerant electron has a valence Mn™,
which causes the degeneracy of the two ejorbitals to be lifted due to the Jahn-Teller effect.
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nearest neighbor electron hopping, the t,, — t2, exchange interaction between local spins, as
well as a static JT coupling between lattice and electron degrees of freedom. We also include
the Hund’s rule exchange coupling below, but it is assumed infinite as is customary in the
manganites. However, in order to take the limit I — oo, where [ is the Hund’s exchange

constant, we express the different terms of the total Hamiltonian
H = H,+ Hgpin + Hyr (5.13)

in a basis where the electronic spin quantization axis is parallel to the total 5, spin §Z at
each site i. The first and second terms Eq.(5.13) are the electronic hopping and 5, — to,
exchange terms respectively, the third is the Hund’s rule exchange coupling, and the last
term is the electron-lattice coupling contribution to the total Hamiltonian H of the system.

In the following we derive the Hamiltonian and discuss the parameters used for the
variational solution to the problem. The electronic hopping takes place between two sites
for which the spins 5_’; and 5_*; are in general not parallel. If the electron spin-quantization

axis is parallel to the global z direction, the hopping term is expressed as

Ha = Z Z(tf}ﬁajwawg +H.c.) + Hruna- (5.14)
(ij) aB,o

The Koster-Slater matrix elements t%ﬁ shown in table 5.1 represent the hopping between

T

orbitals o and (3 on sites i and j . a], (a;n0) are the creation (annihilation) operators when
the single excess electron with spin ¢ occupies the orbital o and site ¢, and Hpyng is the
Hund’s rule coupling term.

With the above choice of creation/annihilation operators the Hund’s rule term will depend
on the relative angles between the itinerant electron and lattice spins, which unnecessarily
complicates the problem. Therefore, we choose to express the spin of the electron such that

the spin-quantization axis is along the local lattice spin.

We define a new set of creation /destruction operators (¢!, ¢;a) such that the quantiza-
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Direction <e£1]‘ Hy ‘e;> <e;‘ H, ‘e§> <63} H, }e§>

& Ly, —¥3y, 3V,

j v, w3, 3V,

Z V. 0 0
T4y V! 0 V!
R A A R A A VA A
Erd Ve SV RV PVE RVa+ iV

Table 5.1: The Koster -Slater hopping matrix elements between nearest and next-nearest
neighbors e, orbitals as calculated in [2]. |e}) and |e2) refer respectively to [3z% — r?) and
|22 — y?) d states, while (V,, V) and (V/, V/)are the first and second NN tight-binding
hopping parameters.

tion axis is parallel to the net ¢y, spin. As a consequence, the electronic hopping amplitudes

will depend on the relative angle between the lattice spins. This considerably simplifies the

expression of the Hund’s rule coupling

1Sh
HHund = —T (CjaTCiaT — Cjalcial) (515)

1o

where I is the Hund’s rule exchange coupling constant. Replacing a!_(aiqs) by the new set
of creation/annihilation operators ¢l (ciar) in Eq. (5.14) and taking the limit / — oo the

electronic part of the Hamiltonian becomes

H, = Z t%ﬁ Cos %clacjﬁ +H.c., (5.16)
ij,af3

where x;; is the angle difference between the spin angles ¢, and 0, of two neighboring 5,
spins, and is defined such that
Xij = 6; — 0. (5.17)

At each site ¢ there are three angle differences corresponding to the three bonds in the

positive x, y, z directions.
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The magnetic interaction Hyy,;, between lattice spins appearing in Eq. (5.13) is Heisenberg-

like and is given by
(i.5)

Taking the spins to be classical and redefining the zero of energy such that the AF alignment

of neighboring spins has zero energy, H,;, becomes

Hgpin = JSQZ(l + €OS Xij)- (5.19)
(i.5)

The last term in Eq. (5.13) is the electron-lattice coupling due to the JT effect. As
the electron moves around the lattice, the valence of the Mn ions changes from 4+ to 3+.
The MnOg octahedron seeks to reduce its energy by distorting itself, which leads to the
splitting of the two e, orbitals into [322 — r?) and |2 — y?). The isolated MnOg octahedron
has 12 normal modes of which we only consider the two giving rise to the above splitting.
Throughout this work we have chosen to ignore the breathing mode (), whose effect on the
JT coupling is merely to shift the total energy. This coupling between the distortion of the

lattice and the motion of the excess electron is described by the Hamiltonian

K
Hyp = ) 5 (Qf + @ + Q3)

Qs Qo Ci2
— gld, ] : (5.20)
Q2 — s Ci3
This is the same as Eq. (5.5), but we know sum over all lattice sites as well. The constants
K and g have been defined earlier, and ()o; and ()3; refer respectively to the in-plane and
apical stretching modes as defined in References |29, 28|.

The nearest and next nearest neighbor hopping parameters are designated by tiyy =

|Vado| and toyn = |V}, |, and their values are obtained from the band-width estimates of
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density functional theory (DFT) calculations as: [6] t;yy = 0.5—0.75 €V and toyy = 0.2—0.3
eV. Note that we make use of the Harrison scaling|2] V. ~ —0.54V, for the next-nearest
neighbors inter-atomic matrix elements.

The remaining parameters are the ¢y, — t5, exchange constant .J, which is such that
JS? ~ 5 meV|[63, 64, 65|, and the lattice elasticity and JT coupling constants which are
estimated from ab initio DFT calculations[31] of LaMnOs to be K = 10 — 20 eV /A2 and
g=2eV/A.

5.4 Method of solution

The most general ground-state wave function is given by

V) = o) ©]Q) @16) (5.21)

where |@Q)) and |f) are the lattice and angle states in configuration space, and |[i.) =
. Yiacl, 0 is the electronic wave function, with 1, variational parameters. Using the
pseudo-spins 7, and 7, to describe the different e, orbitals, the total energy corresponding

to the Hamiltonian Eq. (5.13) is given by

E = ZZt%ﬁ COS %ﬁaqﬂjﬁ

ij  af

K
2 2
+ JS Z(l + cos xi;) + ?;QZ

(@)
= 9D hatis (120Qui + 727Qu1) (5.22)
o

7

The problem is then to find the global minimum of the total energy (5.22) as a function of

the variational parameters subject to the constraint that the wave function is normalized.
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In order to do so we define the functional

Fo= B-AQC 1~ [l

1o

The minima conditions are given by 0F /0y, = 0, 0F/0Qq = 0, OF/0Q3 = 0, and

I (a) (b)
(c)

O
(d)

Figure 5.5: Ferromagnetic clusters used in optimizing the total energy in terms of the ¢y,
angles. These are formed by turning one to three spins by 180°. These clusters are labeled
(a)seven-site FM, (b)twelve-site FM, (c)thirteen-site FM, and (d) seven-site FM. The par-
ticular spins flipped to form the clusters are shown in black. All circles represent Mn sites
with same spin, while the remainder of the lattice is not shown and is anti-ferromagnetic of
type G.
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OF/00; = 0, which give the following set of non-linear equations

o 0,— 0
Z tijﬁ cos = Lip — Abig
JB

- Z 9787 Qai + TP Qai)is = 0 (5.23)
B
KQq — 927‘55?@&%5 =0 (5.24)
af
KQsi—yg 27‘?5??;&%5 =0 (5.25)
af

Asin% + C'sin 6,

—Bcos%—Dcos@i =0 (5.26)

where we have defined A, B, C, and D such that

0 0
A= E Eij COSEJ , B= E Eij sin;ﬂ
J J

C= Zaijcosﬁj , D= Zaijsinﬁj
j j

and €5 =) 5 tf}ﬁ Y ;. The above set of coupled equations is then solved self-consistently
by taking an initial guess of the angles # then computing the lattice distortions )o and ()3,
followed by the wave function ¢ at each step. New angles 6 are then computed by finding
the roots of Eq. (5.26).

We compute the ground-state energy of the system and study the binding energy (BE)
in terms of NN and NNN hoppings ¢, yny and tonny as well as in terms of the electron-phonon
coupling g. The binding energy Ez of the magnetic polaron is defined as the energy gained

in forming a magnetic polaron state from a type-G AF arrangement of the ¢, lattice spins
Ep = Ear — Ep.

The AF energy E4r is calculated as the ground state energy of the system when the 5,
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spins are fixed in the AF type G configuration. This amounts to solving Eqgs.(5.23-5.26) with
the angles 6 fixed in the AF type G configuration. The polaron energy Fp is the minimum
found from the same set of equations but with the angles 6 now allowed to vary between 0
and 27.

The nature of the ground-state to which the above algorithm will converge is strongly
dependent on the initial guess, in particular, the initial guess for the angles 6. In order
to avoid convergence to a local minimum (meta-stable state), this guess must be chosen
appropriately. We have chosen as such starting guesses the clusters shown in Fig. 5.5,

formed by turning one or more spin.

5.5 Results
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Figure 5.6: Density of States of CaMnOj corresponding to the Hamiltonian Eq. (5.16).
when the ¢y, spins are in the in the AF type G. The solid line corresponds to the undoped
CaMnOj3(AF lattice), while the dashed lines shows the one-electron energies after doping
one electron. The parameters are such that t;yy = —0.5eV, toyy = —0.25 eV, and g = 0.
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Tight-binding density of state of the STMP — To get a simple picture of the en-
ergetics of the system we consider a tight-binding model for the AF type G and STMP
states.

In the case of the perfectly AF lattice for CaMnO3 the NN hopping is forbidden by the
infinite Hund’s rule exchange, because the hopping term between NN sites has the form
tcos6;;/2, where 6;; is the angle between two neighboring classical lattice spins. In the case
of the AF type G, the angle 6;; between NN lattice spins is always 180° which gives zero
coupling. Therefore, in the case where the magnetic structure is AF type G and the Hund’s
exchange is infinite, hopping only occurs across second and further nearest neighbors sites.

We have computed the band structure of the electron due to the second nearest neighbor
hopping, via the Hamiltonian Eq. (5.14) by keeping only the NNN hopping matrix elements
given in Table 5.1. The corresponding density of state shown in Fig. 5.6 is then computed in
the simple tight-binding approximation, and is found to correctly reproduce the band-width
of the e, levels (~0.2 Ry) as computed by Satpathy et. al. [13]. In the case of the Type G
AF magnetic structure, the Hamiltonian Eq. (5.16) corresponds to the total energy of the
system because in that case Hyp;, = 0 and H;r = 0.

If an electron is doped into the AF lattice, it will occupy the bottom of the conduction
band, that is the orbital 6;. Let’s for example consider a seven-site cluster where the central
spin is turned by 180° and compute its energy. Since turning one spin breaks the spatial
symmetry, it is not possible to make use of the Bloch theorem. Instead we have computed
the one-electron energies of the e, states by direct diagonalization of the Hamiltonian Eq.
(5.14) on a finite lattice (of size 73). In addition to the kinetic energy gained by hopping

there are magnetic and elastic energy costs resulting in the net energy

K
5=EP_J5221+COSXU_EZQ?@ (527)
(,9) ia

which is shown in dashed lines in Fig. 5.6.

When an electron is doped in the AF lattice of CaMnOj3 and if a STMP state is formed,
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Figure 5.7: Wave function of the doped electron along the [001] direction of the simple cubic
lattice for different values of the second-nearest neighbor hopping. The arrows represent the
spin orientation of the classical lattice spins. The inset shows the magnitudes of the total
lattice distortion @ = /Q3% + Q% in the same direction.The solid line corresponds to g = 3
eV /A, while the dashed and dotted lines are for g = 0 eV /A. The nearest-neighbor hopping
is always taken tyyy = 0.75 €V and the remaining parameters are shown in the label boxes.
it will seek to lower its energy via hopping and by way of distorting the lattice. We therefore
expect to find the energy of the e, states to be lowered as compared to the DOS of the AF
lattice. Furthermore, the e; and ef] will be split by the JT effect. These states are shown as
dashed lines in Fig. 5.6.

The doped electron will occupy the e; state which has lowest energy as shown in Fig. 5.4.

This state is a combination of 322 — r? and 2% — 3? states, the particular mixture depending

on the parameters.

Typical ground-state of the STMP — We consider the seven-site FM cluster config-
uration (Fig. 5.5a), and begin the discussion by studying the electronic wave function and
the typical lattice distortions obtained by solving Eqgs. (5.23-5.26).

The wave function of the doped electron along the [001] direction is shown in Fig. 5.7.
The total wave function shown is the sum of the contributions from both the 322 — r2and

2% — y?orbitals. For the set of parameters chosen these two contributions are comparable
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in magnitude. The solid and dashed lines represent the total wave function of the electron
for two different values of the nearest-neighbor hopping. For parameters appropriate for
CaMnOg3, the wave function of the electron is localized to the central site, and drops rapidly
away from the center. This is consistent with a seven-site FM cluster configuration, where
only the lattice spin at the central site is turned.

The dashed line corresponds to a higher value of the NNN hopping 5. This will cause
the electron to spread more in the lattice, thus lowering the magnitude of its wave function
on the central site, while simultaneously increasing it on sites away from the center.

The inset in Fig. 5.7 shows the total distortion Q) = \/QSTQ?,) of the lattice along the
[001] direction. This distortion is more prominent in the center of the STMP and decreases
rapidly on sites away from the center. This is to be expected, the JT energy gain being
proportional to —g? /2K W|2 as previously discussed in the context of the Mott polaron.

In the case where the angles of the lattice spins are freely varied, a competition between
the different interactions in the system will determine the exact nature of the ground-state
of the magnetic polaron. The competition between the various interactions is discussed in

the next section.

Effect of {1y, tanny, and g — In a FM cluster where the central spin is turned by 180°,
as the nearest neighbor hopping ¢,y is increase the electron will gain kinetic energy and its
wave function will tend to delocalize, as schematically shown by the arrows in Fig. 5.7. This
situation is similar to what happens in the Mott limit. In fact, our model reduces exactly to
the Mott model in the large ¢ yy limit and tonyn = 0.

The next-nearest neighbor hopping also causes a delocalization of the wave function, but
its contribution is in direct competition with the NN hopping. As one turns a lattice spin in
an otherwise AF lattice, the twelve NNN which were initially parallel to the central spin are
now anti-parallel to it , thus causing a large kinetic energy loss. This will have a destabilizing

effect on the STMP state, where, unlike in the Mott limit, the magnetic polaron is only stable
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Figure 5.8: Binding energy of the magnetic polaron as a function of the next-nearest neighbor
hopping. The binding energy is defined as above; the dashed lines are for g = 2 eV /A(t;yn =
0.6 eV or t;yy = 0.5 €V) and the solid lines for g = 2 eV/A and t;yy = 0.6 eV.
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for values of ton less than a critical value.

The electronic wave function also shows this competition between nearest and next-
nearest neighbor hopping (Fig. 5.7) where the electronic wave function is broadened when
the second NN hopping is increased.

The electron-phonon coupling will either lower or raise the energy of the STMP state,
depending on how well the electron wave function is localized. If the electronic wave function
is strongly localized, the energy gain will be close to that of the isolated octahedron: —g?/2K.
If, on the other hand, the electron is more spread out through the lattice, this energy gain is
lowered, turning eventually into an energy cost. This is shown in Fig. 5.8, where the binding
energy is plotted in terms of the NNN hopping parameters. For small values of o5y, the
BE is lowered by the electron-lattice interaction, while beyond a value of about 0.07 eV, it

is enhanced by this coupling.

Energetics of different ferromagnetic clusters — So far in our discussion, we have
only considered the case of the seven-site FM cluster. There are however other possible
spin configurations which may, depending on the parameters, have a lower energy than the
seven-site configuration.

Chen et al.[59] considered such clusters in their work on the magnetic polaron in ;.
However, they have failed to include the next-nearest neighbor hopping which ;| as we shall
show in the following, has important consequences on the nature of the ground-state.

In order to form a FM cluster, one has to flip one or more spins, thus gaining NN
hopping at the cost of losing NNN hopping energy. Therefore clusters with more than a few
flipped spins are too expensive energetically. In addition to the AF type G configuration,
we choose four different spin configurations with one, two, or three spins flipped, and study
the energetics of the STMP. The different FM clusters discussed in this chapter are shown
in Fig. 5.5.

The seven-site FM cluster is formed by flipping one spin, and has the lowest kinetic
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Figure 5.9: Energy of the magnetic polaron for different FM clusters (as shown in Fig.
5.5) as a function of the dominant lattice distortion mode )2. The dashed horizontal line
corresponds to the global variational minimum. The parameters are t;yy = 0.5 eV, toyny =
0.2eV, g=2eV/A, and K =10 eV /A2
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Figure 5.10: Total energy of the magnetic polaron as obtained by the global optimization
as a function of the NN hopping t;xn. The short dashed lines correspond to the energies of
the seven-site FM and thirteen-site FM clusters, while the horizontal dashed line is the AF
energy. Below t;yny = 0.4 €V, the magnetic polaron state is not stable, while above 0.4 eV
the seven-site FM, and later the thirteen-site FM, have lowest energy. The parameters are
tany =025 eV, g =2eV/A, and K = 10 eV /A2
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Figure 5.11: Energy bands of the (La,Ca;_,MnQO3)y super cell around the Fermi level as
obtained by Density Functional Theory(DFT) calculations of reference [6]. The parameters
of the DFT calculation are such that N = 32 formula units, and = = 1/32 ~ 3%. The fat
bands’ thickness is proportional to the occupation of the e; and ef] bands for the (a) central
Mn atom, the (b) first nearest neighbor and (c) second nearest neighbor Mn atoms. We are
thankful to T.S. Dasgupta for communication of these results.
energy gain via NN hopping. This cluster, however, also has the lowest net energy cost due
to magnetic energies and NNN hopping. The next most energy-favorable FM cluster is the
thirteen-site FM cluster, where the two spins flipped are along the [110] of the simple cubic
lattice. These two spin arrangements are very close in energy in the range t1yy = 0.4—0.7 eV
(Fig. 5.10), with the thirteen-site becoming more favorable as the NN hopping is increased.
The other spin clusters are energetically too expensive for a parameter range valid for
CaMnOj as shown by Fig. 5.9. It is not excluded, however, that in a different material (for
a different set of parameters) these other clusters may be more energetically favorable.
Note that because of the competition between NN and NNN hopping, the system does
not always find it energetically favorable to form a STMP state. This is clearly shown in

Fig, 5.10, where the AF type G is the lowest energy state for values of ¢t;yy < 0.4 €V, which

shows that forming the magnetic polaron is not favored in that range.

Global optimization — We have used the different clusters discussed above as starting

guesses in the numerical optimization. In fact, because of the large number of variables,
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there are many local minima. This makes it necessary to consider small angle deviations at
the central, first and second NN sites for each of these clusters. The results of the global
optimization are shown in Figs. 5.10 and 5.8.

The BE as a function of the NNN hopping parameter ¢,y shows a sharp decrease, which
is easily understood since the NNN hopping favors the FM alignment of the second NN ¢5,
spins. In the limit of large toyn the STMP is unstable, and the ground-state of the system
has the AF type G configuration.

The JT effect mostly increases the stability of the magnetic polaron, although this effect
is rather small (Fig. 5.8, solid line). The STMP state is thus further enhanced by the lattice
polaron effect caused by the electron-phonon coupling. In the small ¢5 v limit, however, the
BE is weakened by the JT coupling. The reason being that, in that limit, electron hopping is
almost completely suppressed (AF lattice) and the NNN hopping is small, causing a strong
localization of the electronic wave function. This gives rise to a large JT energy gain close

to that of the isolated site[61] —g?/2K .

Density-functional results — The above model is missing several important features
such as the higher order order hopping or the finite Hund’s rule coupling. In order to
describe the seven-site cluster solution using a more realistic theory we have performed a ab
initio DFT calculation of the band structure of La,Ca;_,MnO3(2=3%).

A super-cell method was used to model the low electron-doping with the super-cell con-
sisting of thirty two formula units of CaMnQO3; with one Ca®" replaced by La®**. This in-
troduces one doped electron per super-cell into the conduction band and corresponds to a
La doping of about 3%. Two separate magnetic calculations were performed: one for the
type-G AF magnetic structure, and another where a central Mn(t,) spin was flipped, thus
forming the seven site FM cluster.

The main feature of the band structure is the introduction of two bands in the gap,

which we interpret as being due to the formation of a STMP state in the Ca;_,La,MnOg
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super-cell. The binding energy as calculated from the DF'T work is found to be about 0.1 eV,
which agrees with the value found by our variational method. The higher order hopping or
Hund’s rule coupling seem then to only have a qualitative effect on the BE of the magnetic
polaron. Furthermore, the wave-function of the itinerant electron is shown to rapidly drop
as one moves away from the center of the magnetic polaron as can be seen from Fig. 5.11,
and this is also what comes out of the variational model. A more detailed discussion of this

work may be found in Ref. [6].

site (a)  site (b)

Figure 5.12: Activated hopping of the self-trapped magnetic polaron. The angle 6 represents
the deviation of the angle from the ideal seven-site cluster configuration for the central spin
and one of its NNN along the [100] direction

Conductivity in low-doped manganites — We now examine the issue of transport of
the STMP in low-doped CaMnQO3. While in the case where the magnetic polaron is bound
to an ionic center we expect the system to be an insulator, it is not clear whether the
conductivity of the STMP should be activated or metallic. To shed some light on the issue
we have used a method inspired from studies of small lattice polaron[66] to estimate the
activation energy.

In the small polaron limit, the transport takes place via hopping of an electron from one

site to the next while it carries the lattice distortion with it. Since the lattice distortion
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must move with the electron as it hops in the lattice, there might be an activation energy
E4 involved. ”Authors” et al. [66] calculated this activation energy by considering an
intermediate state, putting half the charge of the electron on each of the two sites involved
in the hopping process. A full lattice relaxation for the intermediate state is then carried
out to compute F4.

In the case of the magnetic polaron we follow a similar line of reasoning, with the lattice
distortion replaced by the exchange-induced distortion of the lattice spins. We assume the
conduction to take place via hopping of the excess electron which carries the spin distortion
with it. The starting configuration is the seven-site FM cluster, and the final state is one
where the center of the seven-site cluster has moved to the NNN. The intermediate state
is formed by turning the central lattice spin and its NNN by 90° in the same direction as
shown in Fig. 5.13.

The total energy is computed as a function of the cant-angle 6, and the activation energy
E 4 is defined as

Ey=Ep(@ =7/2)— E,(0=0).

We find the activation energy to be F4 =~ 40 meV or roughly half the binding energy Ep
which is what we expect if transport takes place via activated hopping.

It is interesting that experiments [54] do indeed show an activated conductivity with
an activation energy of 50 — 80 meV. This may be interpreted as the barrier energy of the

intermediate configuration as indicated in Fig. 5.13

5.6 Conclusion

We have studied the problem of the self-trapped magnetic polaron in the manganites using
several methods. The Mott approximation valid in the large polaron limit found that the
magnetic polaron is stable for all values of the parameters, and that the influence the JT

effect on the dimension of the magnetic polaron is small to negligible. In addition, we have
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Figure 5.13: (a) Energy of the self-trapped magnetic polaron as a function of the angle .
(b)The angle 0 is the angle varied to change the initial configuration with the magnetic
polaron at site ¢ (solid lines), to the final configuration where the polaron has moved to site
J (dashed lines).

performed an ab initio calculation of the electronic structure of Ca;_,La,MnOj3 (z = 0.03)
using a super-cell method, and used the parameters thus obtained in a model appropriate
to the manganites.

A variational method was used in conjunction with a model appropriate to the particular
physics of the manganites to compute the ground state of the self-trapped magnetic polaron.
It is found that the double exchange, mechanism mediated by the nearest-neighbor hopping,
is in competition with the Heisenberg-like exchange interaction: while the former strongly
increases the binding energy, the latter tends to favor an AF arrangement of the lattice, thus
lowering Ep.

Also, we find that the next-nearest interaction has a major effect on the stability of the
STMP state, sharply reducing the binding energy by as much as a factor of three in the case
of CaMnOs.

This, however, is not enough to destroy the self-trapped stated, and we found the polaron
to be stable with a binding energy of 0.1 meV. This is agrees with the energy gain of £z = 0.1
meV found by the DFT calculation. The effect of the JT coupling is small with an optimal
distortion of @ = 0.1 A, comparable to the distortion in LaMnO;. The magnetic moment

i ~ 7 pp/Mn for the seven-site ferromagnetic solution, where one t5, is turned by 180°,
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agrees well with the value of the magnetic moment found experimentally by Neumeier et

al.[54].
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Chapter 6

Concluding Remarks

In conclusion, I shall summarize the main results of this dissertation this thesis as well as
suggest new directions of research for the issue of the interaction between lattice and electrons
in solids.

The second chapter is devoted to the discussion of the various methods that were used
to obtain the main results of the work. In particular, density functional theory and the
variational Lang-Firsov method were discussed in some detail, as well as the “ Cluster” com-
puter program used he to compute the exchange interaction in several instances. In chapter
three we discuss the electron-phonon coupling in a two-site system. It was found that the
coupling significantly reduces the magnetic exchange from the t cos #/2 Anderson-Hasegawa
limit. The magnitude of the oxygen isotope effect was estimated and the isotope exponent
was found to agree with experiment.

The effect of the electron-phonon coupling on the magnetic interaction in oxides was, in
general, to dramatically decrease the strength of the coupling. This decrease comes as a result
of two separate effects: the first is due to the reduced hopping due to the lengthening of the
chemical bond. This has been considered by Su, Schrieffer, and Heeger in their celebrated
papers.[46, 47] A second, and this is the predominant effect in most transition oxides, is

the cooperative dynamical Jahn-Teller effect. The Jahn-Teller effect gives rise to some of
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the more interesting properties of the TM oxides and is discussed in great detail in many
references. For a good source see reference [62].

Other consequences of the electron-phonon coupling that we discuss in this study is the
isotope effect of which we have seen examples in both chapters three and four. The isotope
effect may be described simply as the shift, as a result of the variation of the oxygen mass, of
the critical temperature 7, at which the Metal-Insulator transition takes places. This effect
was observed to be unusually large in several manganites.|25, 67].

Another example of an isotope effect was also discussed in the nickelates (chapter four),
where it was found that decreasing the mass of the intermediate Na ion increased the mag-
netic exchange. This effect was found to be small, but more importantly, to be opposite to
that in the manganites. This is found to be caused by the nature of the electron-phonon
coupling which takes place vi a long Ni-O-Na-O-Ni superexchange path.We have also esti-
mated the effect of the electron-phonon coupling on the magnetic exchange and found that
the exchange is not significantly modified by this coupling. We conclude from this result
that it is unlikely that the electron-phonon coupling is the cause of the unusual magnetic
properties of the isostructural LiNiOs,.

The fifth chapter was devoted to the study of the magnetic polaron in low-doped CaMnOQOs,
where again we study the effect of electron-phonon coupling. This effect increases the binding
energy of the magnetic polaron and localizes the electronic wavefunction. In addition the
effect of the next-nearest-neighbor hoping we found to have a destabilizing effect on the

magnetic polaron.
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Appendix A

Summary of often-used relations

This appendix hopes to be an important addendum to the main body of the dissertation as
well as a useful reference for the reader. It covers some very basic topics such as commutation
relations, as well as some more arcane subjects such as the Lanczos diagonalization scheme

and the “fermion-sign” issue.

A.1 Koster-Slater Inter-atomic Matrix Elements

The Slater and Koster (1954) inter-atomic matrix elements as a function of the direction

cosines [, m,n between the two atoms involved in the hopping are given by
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Em7m2_y2

Ey,:v2—y2
Ez,:cz—gﬂ
E:c,?)zz—rz

Ey,gzz_rz

Ez,322—7“2

V3
2
?m (l2 - m2) Vodo +m (1 —?+ m2) Vodr

V3
771 (l2 - m2) Vodo

1
l |i7’L2 — 5 (l2 + m2):| V;,dg — \/§Zn21/;,dﬂ

(P —m?) Vigo + 1 (1= P +m?) Vyur
-n (l2 - mz) Vodr

1
m {n2 -3 (*+ m2)] Vodo — V3mn*V,gn

o 1 = 2 )] o B ) o

The V’s are taken from the solid-state table in reference [2] and are given by

h2 27,,3/2 h27"3
Virm = Mm— Vidm = nldm};d—?m Vaadm = nddmm—d‘;
Nsso = —1.40 Nsdo = —3.16 Nddoe = —16.2
Nspe = 1.84 Npdo = —2.95 Nddr = 8.75
Nppo = 3.24 Npdr = 1.36 Ndas = 0
Nppr = —0.81
€ € gl — gt
Vi=+—, Vo = 2.16-12; Vy= bt
h2 A 3
h __ _ Tdr
Vy' = 4.37—md2 Wq 6.83W8

A.2 Fourth Order Non-Degenerate Perturbation Theory

We write The total Hamiltonian as H = diag(H) % 1,, + V where diag(V) = 0. That is

the perturbation is the off-diagonal of the Hamiltonian. The perturbative corrections of the
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lowest energy state up to fourth order are then

El = V.
2
2 |Vn2|
n = ; EY — E?
2
B - Y mmme o
Bt Z VaiVii Vit Vien
" o (B0 — D) (B — EY) (B — EY)
- Z |Vn2| |an| 1
0
byt (E9) — E?) (EY — E9) B, — Ej
+ Z |Vnn| |Vn2|
z;ﬁn
Vnz‘/wv}n : Vnn 1 1
> .

7 (Ep - EY) (EQ — EY) |E) — E)  E)—E}

A.3 Lanczos Diagonalization Scheme

The goal of this method is to reduce a large symmetric matrix to tridiagonal form, then
diagonalize the resulting matrix in a sub-space of lower dimension. We start by choosing a

vector |¥) such that

N
V) => cjley)
j=1
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where {|¢;)},_, v is a complete basis set. Then, sequentially, we calculate the first few

Lanczos numbers

N
Gre = E c1;Hy ;
j=1

N
d = E Cl,icl,jHi,j

ig=1
N 1/2
2 = [Z (915 — d101,j)2]
=1
1
Coj = 7l (g1, — dic1j)

The next k + 1 numbers are calculated as such

N
Ik = E ekt
=1

N 1/2
fror = D (grs — fetho1j — diciy)’
j=1
1
Chy1j = Tl (g — frCr—1,; — dicr ;)

N
g1 = § Ck—l—l,ick—i-l,jHiJ

i,j=1

A.4 Fermion sign “problem”.

When computing matrix elements in the occupation number representation it is necessary
to take the commutation relations of the fermion operators into account. This issue is
similar to that of the normal-ordering of operators when computing the time-evolution of a
many-body Hamiltonian. In what follows we derive a formula to compute the fermion sign

for an arbitrary pair of states in the occupation number representation.
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Consider two states in the many-body Hilbert space|¢) and |¢) such that

1Y) = CleCsz i 'CZTS 0)

o) = C}W}Q e 'C;S 0)

If the {ix} and {ji} are all equal except one pair (as would occur in the case of an electron

hopping between two states), then there exists a pair (M, N) such that

(¢l chyen [0) = £1

(A1)

The sign of the cross product depends on the precise order of the pair (M, N) as well as on

the occupation of the kets |1)) and |¢). In fact it is possible to derive a formula to

determine such a sign for all states and all pairs (M, N). We find

(o C}L\JCN |4)

(¢ C.‘]—\JCNCIIC;% e 'CIS 0)

(=)' (@l enchpechely el [0)

(_1)ik+1 (@] CNCLCZE e 'C;'[kcjw e 'CZTS |0)
(~1)== %0 (gl exchyely -l eyl [0)

1

M .
(1) 9 x(@l eig ooy ey i clycly ol el

1k

(_1)25-11 ¥(5) (_1)2?7;11 ¢(7)

(@lcig - CinCiy - ciyenclicl, -l ey -l o)

If we define S; such that:

l

Si(w) = w(k)

k=1

The hopping term is then

<¢ ‘C;r\/[CN‘ w> _ (_1>5M(¢)+5N71(¢>)
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A.5 “Cluster” computer program listing

PROGRAM RUN_CLUSTER
USE VARIABLES
implicit none
INTEGER::Niter=3 ! Number values +1 of angles between pi/2 and pi
INTEGER::NLCZ ! Maximum Number of Lanczos steps
INTEGER::INFO
INTEGER::SUCCESS'! Status of convergence(y=>1,n=>0)
REALx8:delta ! Radius of convergence of the Lanczos
REALx8::theta ! Mn—O—Mn bond angle
REALx8::dtheta ! Bond angle increment
!
!

© 0 N O s W

=
= o

REAL=«8::Ndt Number of increments to add to pi/2
REAL=%8::Xhund ! Strength of the Hund’s exchange coupling
REAL«8::EGrFM ! FM ground state energy
REAL«8::EGrAF ! AF ground state energy
REAL%8::Vpds ! Strength of the hopping
character(LEN=1)::EXACT
open(33 file="REPORT’) ! The Lanczos results are stored here
open(133,file="RESULT’) ! The Lanczos results are stored here
Ndt=Niter ! This impose theta=pi

EXACT="Y’

NLCZ=100000
22 Xhund=1.0d0
23 printx, Give the hopping’
24 readx*, Vpds
25 lambda=—0.0

BIG FAT WARNING:
The values of the Hund’s exchange on each atom are defined in the Jh array. You should change this

for your specific problem
26 Jh=(/ Xhund,0.0d0,Xhund/)

I e e e
= O © 00 N O ook W N

27 dtheta=Ndtxpi/ (2xNiter) ! See above

28 theta=pi !/2 + dtheta ! See above

20 Nmiss=1 !Number of missing orbitals from each Mn site.(See doc.tex)
Ferro

30 MAGTYP=’FW’

31 ! The FM Hamiltonian is formed by CLUSTER and the

32 ! result outputed to '"MNOFM’

ss  CALL CLUSTER(theta,Vpds,”MN.TP£m’,’MN_IN’ > MNOFM’)
34 NZMAX=MAXVAL(NZ) 'Max number of non—zero matrix elements per line in H

35 ! The GS energy is calculated by Lanczos diagonalization

36 CALL DLANCZOSMETH(’MNOFM’ ,NDIM,NZ,NZMAX,NLCZ,EgrFM,INFO,SUCCESS,delta)
37 !Interupts if The Lanczos hasn’t converged

38 if (SUCCESS/=1)then

39 stop’The Lanczos did not converge yet’

40 end if

a !Output the results of the Lanczos run in unit 33(REPORT)
42 write(33,x) MAGTYP

43 write(33,%)’ The number of Lanczos,steps,is:’,INFO
44 write(33,*)’The radius of convergence is: ’,delta
a5 deallocate(NZ)

Anti-Ferro

146 MAGTYP=AF’
sr  CALL CLUSTER(theta, Vpds,”MN.TPaf’,’MN_IN’,’ MNOAF?)

48 NZMAX=MAXVAL(NZ)'Max number of non—zero matrix elements per line in H

49 !The GS energy is calculated by Lanczos diagonalization

50 CALL DLANCZOSMETH(?MNOAF’> NDIM,NZ,NZMAX,NLCZ,EgrAF,INFO,SUCCESS,delta)
51 !Interupts if The Lanczos hasn’t converged

52 if (SUCCESS/=1)then

53 stop’The Lanczos did notconverge_ yet’
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54 end if

55 !Output the results of the Lanczos run in unit 33(REPORT)

s6  write(33,x) MAGTYP

57 write(33,*)’ The number ,of Lanczos,steps,is:’,INFO

58 write(33,)’The radius of convergence is:’,delta

5o deallocate(NZ)

60 !FINAL results

61 write(x,’ (4£12.5) ?)theta, EGrFM,EGrAF,(EGrFM—EGrAF)+1000

62 write(x,’ (4a12) ?)"Vpds","EGrFM","EGrAF" " Jex,, (meV) "
63  write(x,’ (4£12.5)?) Vpds, EGrFM,EGrAF,(EGrAF— EGrFM)+1000
64 open(10,file="energies.dat")!,access="append’)

s write(10,” (4a20) ’)’Vpds’,’EGrFM’ > EGrAF’,’ EAF-EFM,, (meV) ’

66 write(10,’ (4£20.5)?) Vpds, EGrFM,EGrAF,(EGrAF—EGrFM)+1000
67 close(10)

6s  close(33)

69 END PROGRAM RUN_CLUSTER

70 SUBROUTINE editinput(theta, Vpds,INPUT FILE,OQUTPUT FILE)
71 USE Variables

72 IMPLICIT NONE

73 integer,parameter:: Nline=1000,Nhopp=8,Natoms=3 leg’—eg’

74 INTEGER,DIMENSION(NHopp)::AT1,AT2,0R1,0R2

75 REAL=x8:theta

76 REAL«*8, DIMENSION (Nhopp)::t

77 CHARACTER(LEN=Y) ::INPUT FILE

78 CHARACTER(LEN=5) :OUTPUT FILE

79 CHARACTER(LEN=50)::characs

80 CHARACTER(LEN=50),DIMENSION(Nline):: ASCI

81 REALx8: Vpds, Vpdp

82 Vpdp=—Ilambdax Vpds

83 print*, &

84 "Did, you remember to edit the file edit.f90 for this particular problem?"

—~

85 AT1=(/1,1,1,1,3,3,3,3/) ! Left Atom

86 OR1=(/1,2,3,4,1,2,3,4/) | Orbital of Left Atom
s AT2=(/2,2,22,22,22/) ! Right Atom

ss  OR2=(/1,1,2,3,1,1,2,3/) ! Orbital of Right Atom
89 ! These are the Koster Slater matrix elements

90 t(1) = Vpds«sqrt(3.0)/2

)
3) =Vpdp

4) =Vpdp

5) = Vpds«sqrt(3.0)/2

6) =Vpdsx—1.0/2

7) =Vpdp

97 t(8) =Vpdp

s  OPEN(77,FILE=INPUT_FILE)
99 OPEN(55,FILE=QUTPUT FILE)

100

1=0
101 DO k=1,10«Nline

102 1=1i+1

103 READ(77,’ (a50) >, END=100) ASCI(3)
104 WRITE(55,’ (ab0) ?) ASCI(3)

105 IF(INDEX(ASCI(4),’%20: ) /=0)THEN
106 READ (77, (a50) ?) characs

107 WRITE(55,’ (ab0) ?) characs

108 WRITE(55,’ (i4) *) Nhopp

109 DO j=1,NHopp

110 WRITE(55,” (418, £15.3) ) AT1(j), OR1(j),AT2(j), OR2(j) t(5)
111 END DO

112 READ (77, (ab0) ?)characs
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113
114
115
116
117
118
119
120
121
122
123
124
125
126

WRITE(55,’ (ab0) ?) characs
WRITE(55,’ (i4) ?) Nhopp
DO j=1,NHopp
WRITE(55,” (4i8,£15.3) ) AT1(j), OR1(j),AT2(j), OR2(5) ,(j)
END DO
ELSE IF(INDEX(ASCI(4),”*50:)/=0)THEN
DO j=1,Natoms
WRITE(55,’ (110,£10.3) )5,Jh(j)
END DO
END IF

END DO
100 CONTINUE
CLOSE(55);CLOSE(77)
END SUBROUTINE editinput

This essentially checks for errors and only keep as a basis vector the vectors satisfying > . %iao

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144

SUBROUTINE BASIS FORM(Ns,Ne,Nd,Basis_Set)

IMPLICIT NONE
INTEGER:: Ns,Ne,Nd
INTEGER::%,j,k,p,check,index
INTEGER,DIMENSION(N5s):: Vector
INTEGER,DIMENSION (Nd,Ns+1):: Basis_ Set
Basis_ Set=0;inder=0
bin_loop:DO i=1,2xxNs
printx,i
Vector=0
CALL conv_binary(i,Ns, Vector)
IF (SUM( Vector)/=Ne)CYCLE bin_loop
indez=1index+1
Basis_ Set(indez,1)=index
Basis_ Set(index,2:Ns+1)= Vector
END DO bin_loop
RETURN

END SUBROUTINE BASIS FORM

Converts any integer into binary format, for book-keeping of the vectors of the basis sets

145

146
147

148
149
150
151
152
153

154

156
157

159
160
161
162
163
164
165
166
167

169
170
171

SUBROUTINE conv_ binary(input,Ns,output)

IMPLICIT NONE
INTEGER : m,l Ns,rank,input
INTEGER,DIMENSION(N5) :: output
IF(Ns<=1)THEN
WRITE(x,%) ’CONV_BINARY, the no. of, sites_ is too,small’
RETURN
END IF
rank=0;output=0
IF (input==1)THEN
output(1)=1
RETURN
ELSEIF (input==2)THEN
output(2)=1

RETURN

ELSEIF (input——3)THEN
output(1)=1; output(2)=1
RETURN

ENDIF

I=input; m=INT(l/2)

DO WHILE(m>1)
rank=rank+1
m=INT(l/2)
output(rank)=MOD(1,2)
I=INT(i/2)

END DO

rank=rank+1; output(rank)=1
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172 RETURN

173 END SUBROUTINE conv_ binary

174  SUBROUTINE CLUSTER (theta,Vpds,INPUT 0,INPUT FILE,OUTPUT FILE)
175 USE Variables

176 ICalculate the non—zero matrix elements of the Hamiltonian

177 lof a small cluster, and outputs the result in OUTPUT _FILE.

178 !
179

180

181

182

183

184

theta: REAL=%8. Used as input for the EDITINPUT
subroutine. It corresponds to the Mn—O—Mn
bond angle(see the file "doc.tex").

!
!
!
!
I Vpds: REALx8. Used as input for the EDITINPUT
! subroutine. It is the dtrength of the hopping
! (see the file "doc.tex").
186 !
187 ! INPUT_ 0: CHARACTER(LEN=Y). This the user—supplied

! template file. Use the file MN.TP in the

E template directory to buid it .

:

!

!

!

!

!

INPUT_FILE: CHARACTER(LEN=5). This file is produced by
EDITINPUT subroutine based on the supplied
template(INPUT _0).

194

195

196

197 ! their indices

108 IMPLICIT NONE

199 REAL=x8:2

200 CHARACTER(LEN=7)::INPUT 0 !User—provided template file

201 CHARACTER(LEN=5)::INPUT_FILE !Created by EDITINPUT

202 CHARACTER(LEN=5)::OUTPUT _FILE !Created by EDITINPUT

OUTPUT _FILE: CHARACTER(LEN=5). This is the outpout file
containing the non—zero matrix elements with

203 REALx&::theta !Mn—O—Mn bond angle
204 INTEGER::Natoms INumber of atoms
205 REAL=*8: Vpds !p—d Hopping

206 !Modifies the template file 'INPUT 0’ to account for the theta

207 !dependance of the hopping and writes the result to 'INPUT _FILE’.
208  CALL EDITINPUT(theta, Vpds,INPUT 0,INPUT_FILE)

209 'Reads the parameters from the INPUT FILE’.

210 CALL READATA(INPUT FILE)

211 !This line checks that the Coulomb interaction

212 'is the same for up and down spins

213 IF(SUM(U_UP—U_DN)>1l.e—7)THEN

214 STOP * CHECK, , THE, ,COULOMB_ DEFINITION, IN MN_IN.’

215 END IF

216 !The Number of Up and Down atoms are assumed to be the same
217 ! all the time.

218 Natoms=NatomsUP

219 NdimUP=COMB(NsiteUP,NeUP)

20  NdimDN=COMB(NsiteDN,NeDN)

221 Ndim=NdimUP+NdimDN

22  ALLOCATE(HUP(NdimUP,NdimUP) ,HDN(NdimDN,NdimDN),NZ(NDIM))
223 ! SPIN UP

224 form the UP Basis Set

225  ALLOCATE(BasisSetUP(NdimUP,NsiteUP+1) )

226 CALL BASIS FORM(NsiteUP,NeUP,NdimUP,BasisSetUP)

227 Nsite=Nsite UP

228  ALLOCATE(EQO(Nsite), T h(Nsite,Nsite) ,U(Nsite,Nsite) ,BasisSet(NdimUP,Nsite+1) )

229 EO0=FEQUP
230 T h=T hUP

231 BasisSet=BasisSetUP
232 U=U_UP

233 CALL form_ offd H(NdimUP,HUP)
234 CALL form_diag H(NdimUP,HUP)
235 DEALLOCATE(EO,T h,U,BasisSet
236 ! SPIN DOWN
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237 form the DN Basis Set
238 ALLOCATE(BasisSetDN(NdimDn,NsiteDN+1) )
239 CALL BASIS FORM(NsiteDN,NeDN,NdimDN,BasisSetDN)
240 Nsite=Nsite DN
241 ALLOCATE(EO0(Nsite), T _h(Nsite,Nsite), U( Nsite,Nsite), BasisSet( NdimDN, Nsite+1) )
242 EO0=FEODN
243 T h=T hDN
244 BasisSet=BasisSetDN
U=U_DN

245

246 !Symetricity:

247 ! If the UP and DOWN dimensions are the same,
248 Ithe off —diagonal elements of HUP & HDN will
249 'be identical . In that case there is no need to
250 ! recalculate the off —diagonal terms of HDN

1 IF (NdimUP/=NdimDn)THEN

252 CALL FORM offd_H(NdimDN,HDN)

253 ELSE

254 HDN=HUP

255 END IF

26 CALL FORM _diag_H(NdimDN,HDN)
257 DEALLOCATE(EO,T h,BasisSet,U)

258 'Form The total Basis Set — Needed to calculate
259 the Coulomb & Hund’s rule couplings

260 ALLOCATE(BasisSet(Ndim,1+NsiteUP+ NsiteDN) )

261 k=1

262 DO i=1,NdimUP

263 DO j=1,NdimDN

264 BasisSet(k,1)=k

265 BasisSet(k,2: NsiteUP+1)=BasisSetUP(i,2:)
266 BasisSet(k,2+ NsiteUP:)=BasisSet DN(j,2:)
267 k=k+1

268 END DO

269 END DO
270
271
272
273

At this Point we deviate from the small Cluster Method:

Instead of forming the full HAMILTON and storing in memory,

we only determine which elements are Non—Zero from the

274 HUP & HDN matrices, calculate only those, and output the

275 results to a file .

276 CALL TENSPROD(NdimUP,NdimDN,HUP,HDN)

277 DEALLOCATE(BasisSet,BasisSetUP,BasisSetDN,OrbDens UP,OrbDensDN,phi,psi, HUP, HDN,EHund, T hUP,’
278 CONTAINS

279 SUBROUTINE TENSPROD(N,M,A,B)

!
!
!
!
!
!

280 ! This is similar to the FUNCTION TENSPROD,
281 ! However this SUBROUTINE version takes the

282 ! AxB(i,j) element and stores it in a

283 ! file instead of in an array

284 !

285 CHARACTER(LEN=5)::QUTPUT

286 INTEGER,INTENT (in):: N,M

287 INTEGER::il,j1,k,1l

288 REAL«8 DIMENSION(N,N),INTENT (in):: A
289 REALx8,DIMENSION(M,M),INTENT(in)::B
290 REALx8,DIMENSION(N,N)::ONE_N

291 REALx8 DIMENSION(M,M)::ONE_M

292 REALx*8::AzB,y

293 OPEN(99,FILE=OQUTPUT FILE)

204 OPEN (88, FILE=’COUNTS” )

205 ALLOCATE psi( Nsite),phi( Nsite))
296 ONE N=0.0;O0NE M=0.0

297 DO =1,N

208 ONE_ N(i,4)=1.0

299 END DO

300 DO =1,M
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302
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315
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322
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327
328
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330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

ONE_ M(i,i)=1.0
END DO
NZcount=0
NZ=0.0
iloopUP:DO k=1,N

iloopDN:DO i=1,M

jloopUP:DO [=1,N
IF(A(k,)==0.0 .AND. k/=))THEN
CYCLE jloopUP

END IF
! iloopDN:DO i=1,M
jloopDN:DO j=1,M
IF(B(i,j)==0.0 .AND. j/=i)THEN
CYCLE jloopDN
END IF
! From the indices of HUP & HDN
! we calculate the corresponding il,jl
i1=(k—1)«M+i; jI=(1—-1)xM+j
AzB=A(k,))xONE_M(i,j)+ ONE_ N(k,l)xB(i,j)
IF (i1==j1)THEN
I—gite Coulomb interactionsssksksrskskokskok
! For each DIAGONAL state, count the number
! of electrons in each atom and add the
! Coulomb and Hund’s exchange energies
psi=DBasisSet(i1,2:NsiteUP+1) !Up electrons
phi=BasisSet(il,NsiteUP+2: ) !Down "
DO atom1=1,Natoms
NelUp=0;Nel DN=0
! This is to account for the
! missing Hund’s exchange when
! some of the orbitals are not
! explicitely included.
IF(MAGTYP=="FM’)THEN
IF (atom1==1) NelUP=Nmiss;Nel DN=0
IF (atom1==3) NelUP=Nmiss;NelDN=0
ELSE
IF(atom1==1)THEN
NelUP=Nmiss;Nel DN=0
END IF
IF(atom1==3)THEN
NelUP= 0 ; NelDN=Nmiss
END IF
END IF
Nelec=0
DO orb1=1,0rbDensUP(atom1)
! From the atom and orbital indices,
find the site index
CALL find_ site(Nsite,OrbDensUP,atom1,0rb1,n1)
!Calculate the number of electrons from
lthe occupation of the state
Nelec=Nelec+psi(n1)+phi(ni)
NelUP=NelUP+psi(nl)
NelDN=NelDN+phi(nl)
END DO
CALL find_ site(Nsite,OrbDensUP,atom1,1,n2)
AzB=AxzB+ U_UP(n2,n2)xNelecx(Nelec—1)/2 &
+ NelUPxNelDN« EHund(atom1)
y=NelUPxNelD N« EHund(atom1)
END DO
END IF
IF (AzB/=0.0.0OR.i1==j1)THEN
NZcount=NZcount+1
WRITE(99,+)i1,j1,AzB
NZ(i1)=NZ(i1)+1
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END IF
END DO jloopDN
END DO jloopUP
END DO iloopDN
END DO iloopUP
WRITE(88,%) NZcount, Ndim,NdimUP,NdimDN
WRITE(88,’ (i5) ’)NZ
NZMAX=MAXVAL(NZ)
CLOSE(99);CLOSE(88)
END SUBROUTINE TENSPROD
SUBROUTINE FORM offd_H(Ndim,H)
INTEGER, INTENT (IN):: Ndim
REALx8 DIMENSION(Ndim,Ndim) INTENT(OUT)::H
INTEGER::sgn
! Calculates T he first two terms of the Hamiltonian:
! The on—site energies term

! +

! the Hopping term

! This is done simply by calculating the following term:
! H(i,j)=SUM_ {lm}[T(I,m) <ile+_{1}c_{m}|j>]
H=0.0

DO i—1,Ndim
!Hopping energy term
DO j=i+1,Ndim
H(i,7)=0.0
DO m=1,Nsite
DO n=1,Nsite
IF (n==m)CYCLE
sgn=—(—1)*x( SUM(BasisSet(j,2:n))+SUM(BasisSet(i,2:m)) )
I<|e+ {n}c_{m}|j>*T(n,m)
H{(4,7)=H(4,j)+sgnx DOT( Nsite, BasisSet(i,2: Nsite+1),&
Creates(Nsite,n,&
Destroy(Nsite,m,BasisSet(j,2: Nsite+1)) ) )+xT _h(n,m)
END DO
END DO
H(j, i)~ H(i,j)
END DO
END DO
END SUBROUTINE FORM OFFD_H
SUBROUTINE FORM diag H(Ndim,H)
INTEGER,INTENT(IN):: Ndim
REAL+8 DIMENSION (Ndim, Ndim) INTENT(OUT):: H
DO i=1,Ndim
!0On—site energy: SUM_ {i}| E(k)<psi(i)|n(k)|psi(i)> |
H(4,)=0.0
DO [=1,Nsite
H(i,i)=H{(4,i)+ BasisSet(i,14+-1)* EO(l)
END DO
END DO
END SUBROUTINE form_ diag H
INTEGER FUNCTION FSIGN(k,)RESULT (sgn)
INTEGER::L,
sgn=0
IF(l==1)THEN
sgn=0
RETURN
END IF
sgn=SUM(BasisSet(k,2:1))
END FUNCTION FSIGN
SUBROUTINE READATA(INPUT _FILE)
INTEGER::Natoms,n
REAL=x8:t,F, Ucoul
CHARACTER(LEN=5)::INPUT FILE
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428 OPEN(10,FILE=INPUT_FILE)

429 DO =1,10000

430 READ(10,’ (a) ? ,END=100)inline

431 IF (INDEX(inline,” *x00°)/=0)THEN

432 ! Reads the number of atoms in the cluster
433 READ(10,x) NatomsUP,NatomsDN

434 ! Allocate the dimension of the orbital density arrays
435 ALLOCATE(OrbDensUP(NatomsUP),OrbDensDN(NatomsDN))
436 OrbDensUP=0;0rbDensDN=0

437 ELSEIF (INDEX(inline,’*01°)/=0)THEN
438 ! Reads the orbital density matrices

439 READ(10,’ (a) ?)inline

440 IF(INDEX(inline,’UP*)/=0)THEN

441 ! Spin Up Density Matrix:

442 DO k=1,NatomsUP

443 READ(10,x) OrbDensUP(k)

444 END DO

445 READ(10,’ (a) ?)inline

446 ! Spin Down Density Matrix:

447 DO k=1,NatomsDN

448 READ(10,%) OrbDensDN(k)

449 END DO

450 END IF

451 ELSEIF (INDEX(inline,’*02°)/=0)THEN
452 READ(10,’ (a) ?)inline

453 ! Reads the no. of electrons with spin UP/DOWN
454 IF(INDEX(inline,’UP?)/=0)THEN

455 READ(10,%)NeUP ! no. of Up e—

456 READ(10,’ (a) ?)inline

457 READ(10,%)NeDN ! no. of Down e—
458 END IF

459 END IF

460 END DO
461 100 CONTINUE

462 ! At this point all the information about the structure

463 ! of the cluster has been gathered from the input file (s)

464 ! In the next section we read the hopping matrix elements

465 ! Calculate the no. of sites by adding up all the orbitals

466 ! accessible to the itinerant e—’s:

467 NsiteUP=SUM(OrbDensUP); NsiteDN=SUM(OrbDensDN)

468 ! Calculate the TOTAL no. of possible hopping paths

469 ! for Up & Down spins.

470 NhoppsUP=COMB(NsiteUP,2); NhoppsDN=COMB(NsiteDN,2)
ar1 ! The Koster Slater Mat. elements

72 ALLOCATE(T hUP(NsiteUP,NsiteUP) ,T hDN(NsiteDN,NsiteDN) ,U UP (NsiteUP,NsiteUP),U_DN (Ns:
473 T hUP=0.0; T hDN=0.0; U _UP=0.0; U_DN=0.0
474 ! On—site energies

a7s ALLOCATE(EQUP(NsiteUP) ,EODN(NsiteDN) )

476 FEOUP =0.0 ; EODN=0.0

a7 ! Read the matrix elements from "CU IN".

478 REWIND(10)

479 DO i=1,1000

480 READ(10,’ (a) >, END=200)inline

481 IF (INDEX(inline,” *x10°)/=0)THEN

482 'Read the Up on—site energies

483 READ(10,’ (a) ?)inline

484 DO j=1,NsiteUP

485 READ(10,%)i_atom,i_orb,E

486 CALL find_ site(NatomsUP,OrbDensUP,i_atom,i_ orb,n)
487 EOUP(n)=FE

488 END DO

489 !Read the Down on—site energies

490 READ(10,’ (a) ?)inline
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DO j=1,NsiteDN
READ(10,%)i_atom,i_ orb,E
CALL find_site(NatomsDN,OrbDensDN,i_atom.i_orb,n)
EODN(n)=E
END DO
END IF
IF (INDEX(inline,’ ¥20°)/=0)THEN
READ(10,’ (a) ?)inline !ReadtThe Up K.S. hopping elements
READ(10,+)M
DO j—1,M
READ(10,%)atom1,0rb1,atom2,0rb2,t
CALL find_ site(NatomsUP,OrbDensUP,atom1,0rb1,n1)
CALL find_site(NatomsUP,OrbDensUP,atom2,0rb2,n2)
T hUP(nl1n2)=t
T hUP(n2nl)=t
END DO
READ(10,’ (a) ?)inline
READ(10,%x)M !Read the Down K.S. hopping elements
DO j—1,M
READ(10,%)atom1,0rb1,atom2,0rb2,t
CALL find_ site(NatomsDN,OrbDensDN,atom1,0rb1,n1)
CALL find_ site(NatomsDN,OrbDensDN,atom2,0rb2,n2)
T hDN(n1,n2)=t
T hDN(n2,nl)=t
END DO
END IF
! Find The on—site Coulomb interaction terms
IF (INDEX(inline,’ *30?) /=0) THEN
READ(10,’ (a) ?)inline
DO j=1,NatomsUP
READ(10,%)i_ atom,Ucoul
DO k=1,0rbDensUP(i_ atom)
DO =1,0rbDensUP(i_atom)
CALL find_ site(NsiteUP,OrbDensUP,i_ atom,k,n1)
CALL find_ site( NsiteUP,OrbDensUP,i_ atom,l,n2)
U_UP(n1,n2)="Ucoul
END DO
END DO
END DO
READ(10,’ (a) ?)inline
DO j=1,NatomsDN
READ(10,%)i_ atom, Ucoul
DO k=1,0rbDensDN(i_ atom)
DO I=1,0rbDensDN(i_ atom)
CALL find_site(NsiteDN,OrbDensDN,i_atom,k,n1)
CALL find_site(Nsite DN,OrbDensDN,i_ atom,l,n2)
U _ DN(n1,n2)=Ucoul
END DO
END DO
END DO
END IF
! Read The inter—atomic Coulomb interaction terms
IF (INDEX(inline,”*40°)/—0)THEN
READ(10,’ (a) ?)inline
READ(10,%) Neoul
IF(Ncoul == 0)EXIT
DO j=1,Ncoul
READ(10,%)atom1,atom?2, Ucoul
DO k=1,0rbDensUP(atom1)
DO =1,0rbDensUP(atom2)
CALL FIND SITE(NsiteUP,OrbDensUP,atom1,k,n1)
CALL FIND SITE(NsiteUP,OrbDensUP,atom2,l,n2)
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553 U_UP(n1,n2)=Ucoul

554 U_UP(n2nl1)=Ucoul

555 END DO

556 END DO

557 END DO

558 READ(10,’ (a) ?)inline

559 READ(10,*) Ncoul

560 DO j=1,Ncoul

561 READ(10,*)atom1,atom?2, Ucoul

562 DO k=1,0rbDensDN{atom1)

563 DO [=1,0rbDensDN(atom2)

564 CALL FIND SITE(NsiteDN,OrbDensDN,atom1,k,nl)
565 CALL FIND SITE(NsiteDN,OrbDensDN,atom2,l,n2)
566 U_DN(n1,n2)=Ucoul

567 U DN(n2n1)=Ucoul

568 END DO

569 END DO

570 END DO

571 END IF

572 END DO
573 200 CONTINUE

574 ALLOCATE(EHUND(NatomsUP))

575 REWIND(10)

576 DO i=1,1000

577 READ(10,’ (a) >, END=300)inline

578 ! Read Hund’s rule energy

579 IF (INDEX(inline,”*50:°)/=0)THEN
580 DO j=1,NatomsUP

581 READ(10,%)atom1, EHund(atom1)
582 END DO

583 END IF

584 END DO

585 300 CONTINUE

586 CLOSE(10)

587 END SUBROUTINE READATA

CJM function

sss.  FUNCTION CREATES(Nsite,i_site,psi) RESULT (phi)

589 ! The Creation operator acting on a state vetor: c-+|psi>
590 ! Asinput:

591 ! % Nsite : T he dimension of the state

592 ! [i.e. the total no. of

593 ! sites =sum(OrbDens)]

594 !' %1 site: T he site at which the function operates
595 ! As output:

596 ! s psi : T_he resulting vector = c+|psi>

507 INTEGER,INTENT(IN)::i_site

598 INTEGER,INTENT(IN):: Nsite

590 INTEGER,DIMENSION (Nsite) INTENT(IN)::psi
600 INTEGER,DIMENSION( Nsite)::phi

601 IF (psi(i_site)==1)THEN

602 phi=—

603 ELSE IF(psi(i_site)==0)THEN

604 phi=psi

605 phi(i_site)=1

606 END IF

607 END FUNCTION Creates
Ciao function
eo0s ~ FUNCTION DESTROY{(Nsite,i_site,psi) RESULT (phi)

609 ! The Destruction operator acting on a state vetor: c|psi>
610 ! Asinput:
611 ! % Nsite : T he dimension of the state
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[i.e. the total no. of
sites =sum(OrbDens)]
% 1 site: T he site at which the function operates

612
613

!
!
614 !
!

615 As output:

616 ! % psi : T_he resulting vector = c|psi>
617 INTEGER,INTENT(IN)::i_site

618 INTEGER,INTENT(IN):: Nsite

619 INTEGER,DIMENSION (Nsite) INTENT(IN)::psi
620 INTEGER,DIMENSION( Nsite)::phi

621 IF (psi(i_ site)==0)THEN

622 phi=20

623 ELSE IF(psi(i_site)==1)THEN

624 phi=psi

625 phi(i_site)=0

626 END IF

627 END FUNCTION DESTROY

628 !  DOT Product

629 FUNCTION DOT(Ns,phi,psi) RESULT(x)
630 INTEGER,INTENT(IN):: Ns

631 INTEGER,INTENT (IN), DIMENSION(N5s):: phi,psi
632 INTEGER::z,i

633 =1

634 DO i=1,Ns

635 IF (phi(i)/=psi(i)) 2=0

636 END DO

637 END FUNCTION DOT
638 SUBROUTINE FIND SITE(Natoms,Orb_Dens,i_atom,i_orb,i_site)

639 ! Given Atomic and Orbital indices this calculates the Site index
640 ! % N_atoms: T he no. of atoms

641 % Orb_Dens: An array of dimension N_atoms such that
642 Orb_Dens(i) is the number of orbitals in the i—th atom

!
!
643 ! x1 atom : T he given atomic index
644 ! xi orb : T he given orbital index
645 ' % i site : T he site index
646 ! See notes for method of calculation
647 INTEGER,DIMENSION(Natoms),INTENT(IN)::Orb_ Dens
648 INTEGER,INTENT(OUT)::i_site
649 IF (i atom==1)THEN
650 i_site=i_orb
651 ELSE IF(i_atom>1)THEN
652 i_site=SUM(Orb_ Dens(1:i_atom—1))+i_orb
653 ELSE
654 STOP ’You entered an invalid atomic,index’
655 EN

D IF
ss END SUBROUTINE FIND_SITE
¢sr  INTEGER FUNCTION COMB(n,m) RESULT (bino)

658 INTEGER,INTENT(IN)::N,M
659 INTEGER::;

660 REALx*8::L1=0,L2=0

661 L1=0.0

662 DO =M+1,N

663 L1=L1+LOG(1.0%%)

664 END DO

665 L2=0.0

666 DO =1,N—-M

667 L2=L2+LOG(1.0x1)

668 END DO

669 bino=NINT(EXP(L1-L2))

¢o  END FUNCTION COMB
er1  RECURSIVE FUNCTION FACTORIAL(N) RESULT(N_ Fact)

672 INTEGER, INTENT(IN)::N
673 INTEGER :: N_Fact
674 IF (N>0)THEN
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705

N_Fact = N % factorial(N—1)
ELSE
N_Fact=1
END IF

END FUNCTION FACTORIAL

END SUBROUTINE CLUSTER

%« This module is used to declare common variables !

MODULE Variables
IMPLICIT NONE
CHARACTER(LEN=40)::inline
CHARACTER(LEN=2) : MAGTYP
INTEGER::NatomsUP,NatomsDN,NeUP,NeDN, Nmiss
INTEGER:: Nsite,NsiteUP,Nsite DN, N Zcount, NZMAX
INTEGER:: Nhopps,NhoppsUP,NhoppsDN,Ndim UP,NdimDN, Ndim
INTEGER::i_ atom,i_orb,Ncoul,Nelec, NelUP,NelDN,icount
INTEGER::atom1,atom2,0rbl,0orb2
INTEGER::ijk, [ mnmnin2
INTEGER, ALLOCATABLE,DIMENSION(:,:):: BasisSet,BasisSetUP,BasisSetDN
INTEGER,ALLOCATABLE,DIMENSION(:):: OrbDensUP,OrbDensDN
INTEGER, ALLOCATABLE,DIMENSION(:)::phi,psi,NZ
REAL=x8:lambda
REAL«8, DIMENSION(3)::Jh
REAL+8,ALLOCATABLE DIMENSION(:,:):: HUP,HDN,HAMILTON
REAL*8,ALLOCATABLE,DIMENSION(:,:):: T h,T hUP,T hDN
REAL+8,ALLOCATABLE DIMENSION(:,:):: U,U_UP,U_DN
REAL*8,ALLOCATABLE DIMENSION(:):: E0, EOUP,EODN, EHund
REALx«8::FElow,E1,E2,E3,E)

REAL+«8§,PARAMETER::pi—=3.141592653589793d0

END MODULE VARIABLES

SUBROUTINE DLANCZOSMETH(¥FILE,NDIM,NZ,NZMAX,NLCZ,E0,INFO,SUCCESS,Delta)
IMPLICIT NONE

e
e
e

Read The Non zero matrix elements and their indices from the file "INPUTFILE" and compute the ground
state energy using the Lanczos diagonalization scheme.

706
707
708
709
710
711
712
713
714
715
716
7
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

INTEGER::i,j,k,l,m,n,p,q,INFO,LDZ,LWORK linteger dummy variables
INTEGER INTENT(IN):: NDIM !dimension of the Hilbert space
INTEGER,INTENT(IN):: NZMAX !Max. number of non—zero elements per row
INTEGER,INTENT(IN),DIMENSION(NDIM)::NZ ! Number of n—z elements in each row
INTEGER,INTENT(IN):: NLCZ ! The Number of Lanczos iterations
INTEGER,INTENT(OUT)::SUCCESS =1 if covergence is acheived, =0 otherwise
INTEGER,DIMENSION(NDIM,NZMAX)::JD lindex of n—z elements in each row.
CHARACTER(LEN=5),INTENT(IN):: FILE
CHARACTER(LEN=1)::JOBZ="N’
real«8,parameter::toler=1.e—6 Iradius of convergence criterion
REAL«8::E OLD=0.0,qdrng,z real dummy variables
REAL«8,INTENT(OUT)::E0 !Ground—state energy
REAL«8 INTENT(OUT):: Delta lconvergence radius
REAL«8, DIMENSION(NLCZ)::D
REAL«8,DIMENSION(NLCZ+1)::F
REAL«8 DIMENSION(NDIM)::g
REAL«8,DIMENSION(2,NDIM)::c
REAL*8 DIMENSION(NDIM)::cTMP
REAL*8 DIMENSION(NDIM,NZMAX)::HD
REAL+8, ALLOCATABLE DIMENSION(:)::LANCZ DIAG,LANCZ OFFD,ZWORK
REAL*8, ALLOCATABLE,DIMENSION(:,:):: ZDUM
JD=0.0;HD—=0.0
E0=-17.
OPEN(10,file=FILE)
! Read The Non—zero matrix elements and their
! indices from FILE
DO k=1,NDIM

DO =1,NZ(k)

READ(10,*)4,JD(4,1),HD(4,])
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735 END DO

736 END DO

737 CLOSE(10)

738 E _OLD=gqdrng()! Take a random guess of the energy

739 ! Start the run by calculating

mo L F(1){c(1,)}{g(1,)},D(1);F(2) and {c(2,j)}

w1 F(1)=0.0d0; C=0.0d0; G=0.0d0;D=0.0d0

742 DO =1,NDIM

743 ¢(1,4)=qdrng() ! Random guess of the initial Gram—Schmidt vector
744 END DO

745 c(1,:))=c(1,:)/ SQRT(SUM(c(1,:)**2)) INormalize {c(1,j)}
746 !First diagonal element

7ar  D(1)=0.0d0

748 DO i=1,NDIM !Cycles over all rows

749 DO j=1,NZMAX ! Cycles over non—zero elements in each row
750 IF(JD(i,5)==0)CYCLE

751 D(1)=D(1)+¢(1,3)*c(1,JD(4,5) )« HD(4,5)

752 ENDDO

753 ENDDO

754 'ng& intermediate vector in the Gram—Schmidt orthogonalization
755 g=0.

756 DO j=1,NDIM

757 DO I=1,NZMAX

758 IF(JD(j,l)==0)CYCLE

759 9(7)=90i)+¢(1,JD(50))« HD(j,1)

760 ENDDO

761 ENDDO

762 !First off —diagonal element

763 F(2)=0.0

764 DO =1,NDIM

765 F(2)=F(2)+( g(1)—D(1)*c(1,5) )**2

766 END DO

767 F(2)=SQRT(F(2))

768 12ND Gram—Schmidt vector

769 DO j=1,NDIM

o c(2,3~(90)~ D(1)<c(19)/ ABS(F(2))
ENDDO

771

772 !Compute the remaining Lanczos numbers

773 DO K=2,NLCZ

774 LDZ=NLCZ

775 !The K—th diagonal

776 D(k)=0.0d0

7 DO =1,NDIM

778 DO j=1,NZMAX

779 IF (JD(i,j)==0 )EXIT

780 D(k)=D(k)+¢(2,1)xc(2,JD(4,5))* HD(4,5)
781 ENDDO

782 ENDDO

783 !k—th intermediate vector in the Gram—Schmidt orthogonalization
784 9=0.0d0

785 DO j=1,NDIM

786 DO =1,NZMAX

787 IF (JD(5,l)==0)EXIT

788 g(]):g(])+c(27JD(.77l))*HD(]al)

789 ENDDO

790 ENDDO

791 !The K—th off—diagonal

792 F(k+1)=0.0

793 DO =1,NDIM

794 F(k+1)=F(k+1)+( g(4)—F(k)*c(1,5)— D(k)xc(2,i) )**2
795 END DO

796 F(k+1)=SQRT(F(k+1))

797 !(k+1)—th Gram—Schmidt vector

798 cTMP(:)=c(2,:)
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799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

DO j=1,NDIM
¢(2,7)=(9() —F(k)*c(1,5)— D(k)xc(2,4) )/ ABS(F(k+1))
ENDDO
c(1,:))=cTMP(:)
!Diagonalization of the Lanczos Matrix
ALLOCATE (LANCZ DIAG(K),LANCZ OFFD(K-1),ZDUM(K,K),ZWORK(2xK—2))
LDZ=K
LANCZ_DIAG(:)=D(1:K)
LANCZ OFFD(:)=F(2:K+1)
ZDUM=0.0
!Subroutine to diagonalize a tri —diagonal matrix from the LAPACK
!library . Type 'man dstev’ at the prompt for more details.
CALL DSTEV (JOBZ, K, LANCZ DIAG, LANCZ OFFD, ZDUM,LDZ, ZWORK, INFO)
x=LANCZ DIAG(1)
Delta=abs(z—E _OLD)
! Check the convergence at the k—th iteration
if (Delta<toler)then ! If successfull

SUCCESS=1 ' =11if successfull
INFO=K ! Number of Lanczos iterations
EO==zx ! ground—state energy
DEALLOCATE (LANCZ DIAG,LANCZ OFFD,ZDUM,ZWORK)
goto 100
else
SUCCESS=0 ! =0 if unsuccessfull
E OLD=z ! The old energy becomes the new one
E0=-19 ! To check if the energy has converged after NLCZ steps.
end if
DEALLOCATE (LANCZ DIAG,LANCZ OFFD,ZDUM,ZWORK)
ENDDO
100 continue
RETURN

END SUBROUTINE DLANCZOSMETH

QUICK AND DIRTY Random Number Generator (From Numerical Recipes)

831
832
833
834
835
836
837

w

FUNCTION qdrng()
INTEGER,PARAMETER::0=9301,m=233280,c=49297
INTEGER::jran=233267
REALx*8::gqdrng
jran=MOD(jranxa+c,m)
gdrng=float(jran)/ float (m)

END FUNCTION gdrng
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