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ABSTRACT 

 

 Recent curricular recommendations (NCTM, 2000; RAND, 2003) call for the 

development of student flexibility in relation to algebraic reasoning. In response to these 

recommendations, this study focused on the algebraic strategies employed by the 

participants and their flexibility in understanding various generalization strategies when 

generalizing numeric situations.  Algebraic flexibility consisted of two components: (a) 

Within-task flexibility (recognizing appropriate generalization strategies that could be 

used for a particular task) and cross-task flexibility (recognizing when a generalization 

strategy could be applied to various tasks). 

 Eleven tenth-grade students from two rural schools participated in active 

interviews (Holstein & Gubrium, 1995) centered on developing generalizations for 



 

contextualized algebraic tasks.  Following the development of a generalization for a 

particular task, participants were provided alternative student strategies to examine. 

 The results demonstrated that secondary students employ the same generalization 

strategies as elementary and middle level students: explicit, whole-object, recursive, and 

chunking.  Participants used recursive (92.3%) and chunking (90%) strategies with the 

greatest success, while the explicit strategy was the least effective (correctly used 60% of 

the time).   

 Participants classified as exhibiting a high level of flexibility did not necessarily 

demonstrate that ability in initially generalizing tasks. The participants fell along a range 

for both within-task and cross-task flexibility. Participants classified as exhibiting a high 

level of flexibility were able to determine the applicability of a strategy and develop 

contextually-justified rules. Students with low flexibility were unable to determine the 

applicability of a strategy or justify their rules.  
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CHAPTER I 

THE PROBLEM AND ITS BACKGROUND 

In an age where mathematical sophistication and utility are defined in terms of 

ability to solve complex problems, the current goals of mathematics education have 

changed in an attempt to meet societal demands. Active engagement and flexible problem 

solving represent factors critical to future mathematical and professional success 

(National Council of Teachers of Mathematics, 2000, pp. 20-21).  With the development 

of efficient solutions for non-routine problems representing a key workforce skill, a 

student’s ability to work flexibly in real-world problem situations has become paramount.  

As the skills required in today’s world change, schools must adjust to ensure that 

tomorrow’s societal members are adequately prepared to contribute.  In terms of 

mathematics, the search for improvement has led to greater expectations vis-à-vis a 

student’s ability to “explore, conjecture, and reason logically, as well as the ability to use 

a variety of mathematical methods effectively to solve non-routine problems” (NCTM, 

1989, p. 5).   

While the aforementioned abilities represent expectations of students working in 

any mathematical content strand, this study examined them in light of algebraic 

reasoning.  Specifically, this study documented the generalization strategies employed by 

secondary algebra students and measured their flexibility in using these strategies.    
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In this chapter, I offer a rationale for looking more closely at the current state of 

secondary student flexibility in terms of algebraic generalization.  The chapter begins 

with a look at current classroom recommendations, followed by a discussion outlining the 

merits of studying student flexibility, leading to the statement of the research questions.  

Sections follow containing the theory guiding the study and pertinent definitions of 

terms.  The chapter concludes with an argument for the significance of the study.   

NCTM’s Vision of the Classroom 

The National Council of Teachers of Mathematics (NCTM) (1989, 1991, 1995, 

2000) set forth a vision of the mathematics classroom where interactions within the social 

milieu are paramount; mathematical situations are explored, conjectures are made and 

refined, ideas are shared, and mathematical truth is reached through negotiation, based on 

the validity of the arguments.  As Simon and Blume (1996) noted, the mathematics 

classroom should involve students who “actively participate, taking on a role that is 

analogous to the role of mathematician, creating mathematics, evaluating mathematics 

that has been created by members of the classroom mathematics community, and 

negotiating shared approaches to and standards for these activities” (p. 3). Such activities 

remain at the forefront of Standards-based reform efforts in mathematics education.   

In order for students to gainfully participate in activities that support this vision, 

the manner in which they “do mathematics” must be dramatically different from what 

students experience in a typical American classroom, where “the teacher and textbook 

serve as the source of mathematics and the evaluators of mathematical validity” (Simon 

& Blume, 1996, p. 3).  In the vision laid out by the Principles and Standards for School 

Mathematics (NCTM, 2000), the responsibility for mathematical authority lies more in 
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the hands of the student learners, who serve as “flexible and resourceful problem solvers” 

that “value mathematics and engage actively in learning it” (p. 3).  A key to achieving 

this vision is the cultivation of flexible problem-solvers, whose charge is to create and 

substantiate the mathematics of the classroom.   

Since publication of the Standards documents, the idea of mathematical 

“flexibility” has become more and more a focus in discussions surrounding K-12 

mathematical proficiency (RAND, 2003).  As mathematics teachers and researchers work 

to implement the core tenets of NCTM’s vision, classroom events and the accompanying 

research have begun to exhibit an eye towards identifying and promoting flexible student 

reasoning.   

The Importance of Algebra in the Curriculum 

The meaningful learning of algebra is an important goal for every student. As 

noted by Romberg and Spence (1995), “All students, as members of tomorrow’s work 

force, need to see algebra as important and useful, and to regard it as making sense” (p. 

177).  This is due to the role of algebra in the workplace, where algebra “pervades 

computing and business modeling, from everyday spreadsheets to sophisticated 

scheduling systems and financial planning strategies” (Hoachlander, 1997, p. 135). Policy 

position documents have taken a similar stance with “algebra for all” representing the end 

goal. NCTM (2000) championed this sentiment in stating that, “Algebraic competence is 

important in adult life, both on the job and as preparation for postsecondary education. 

All students should learn algebra” (p. 37).  

Although algebra is important due to its real world applications, the learning of 

algebra is critical to the study and usage of all mathematics. The ability of students to 
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develop strategies to construct generalizations for algebraic tasks represents a key 

element of mathematical flexibility given the importance placed on algebra in the 

mathematics curriculum.  The vaunted status of algebra embodies its utility and necessity 

in mathematical and societal contexts.  Algebra serves as the fundamental backbone of 

most mathematical endeavors by providing the language and tools necessary for 

representing and analyzing quantitative relationships, modeling situations, solving 

problems, and stating generalizations (RAND, 2003, p. 44). Romberg and Spence (1995) 

concurred with this view, noting that, “algebra is a tool for making sense of the world” 

(p. 186).  Without a firm foundation in algebraic thinking, students do not have the means 

necessary to succeed in other areas of mathematics or many aspects of the real world. 

Algebraic notation, thinking, and concepts remain critical assets in a number of 

workplace contexts and in the interpretation of information by Americans on a daily basis 

(NCTM, 2000; RAND, 2003).   

In addition, algebra serves as a gatekeeper in K-12 education (RAND, 2003), with 

high-stakes decisions often resting on the relative success or failure of a student’s 

performance on algebraic tasks.  For many secondary schools, states require the 

demonstration of algebraic competency prior to graduation (Education Commission of 

the States, 2002; Kelderman, 2004).  At the postsecondary level, algebra has been used in 

a similar gatekeeper role, with qualifying and placement exams for certain programs 

containing a strong algebraic component (U.S. Department of Education, 1997).  The 

importance placed upon algebraic proficiency at most levels of formal education 

indicates that the teaching and learning of algebra will remain of primary importance, as 
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is the need for teachers and researchers to understand the development of algebraic 

reasoning.  

Flexibility in Algebraic Reasoning 

While the teaching and learning of algebra has taken different forms over the 

years (NCTM, 1991; Romberg & Spence, 1995; Wheeler, 1989), recent 

recommendations call for greater student flexibility in terms of algebraic reasoning.  In 

describing expectations for algebraic proficiency, the RAND (2003) panel noted the 

importance of students being able to work “flexibly and meaningfully with formulas or 

algebraic relations--to use them to represent situations, to manipulate them, and to solve 

the equations they represent” (pg. 44).  While each of these algebraic goals is important, 

this study focuses primarily on students’ abilities to represent situations algebraically.   

Due to the value placed on a particular procedure or strategy, students’ algebraic 

experiences often provide access to only a small portion of the strategies available to 

them for solving algebraic tasks (Kaput, 1995). In many cases, these methods involve 

establishing explicit rules that are to be manipulated to produce correct answers.   

However, research has shown that several factors (including the students’ prior 

knowledge, the mathematical characteristics of the particular task, and the social milieu) 

influence how students approach and eventually model algebraic situations (Lannin, 

Townsend, & Barker, under review-a), often resulting in the use of several different 

strategies (Healey & Hoyles, 1999; Lannin, 2001; Stacey, 1989; Swafford & Langrall, 

2000).  Depending on the input values given, the mathematical structure of the task, the 

social interactions, and their prior knowledge (including previous tasks and strategies), 

students may use any number of strategies to solve a particular task, or across tasks, 
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depending on the perceived utility of the strategy.  For linear situations, these strategies 

include recursive, chunking, whole-object, and explicit reasoning (Lannin, Barker, & 

Townsend, under review-a). Each of these strategies is described in detail later in this 

chapter.  Given the complexity of real-world problems and the fact that relatively few 

situations can actually be modeled with an explicit relation (Kaput, 1995), flexibility in 

algebraic strategy selection becomes paramount. 

Purpose of the Study 

The purpose of this study is to examine secondary students’ algebraic strategy use 

and flexibility.  The primary medium for exploring strategy use and flexibility was 

contextualized algebraic tasks.   

Specifically, this study seeks to: 

1.  define and document student algebraic flexibility.  While research and policy 

 documents agree that flexibility in solving algebraic problems is an important 

 skill to cultivate and possess (NCTM, 2000; RAND, 2003), little agreement exists 

 on what is meant by mathematical flexibility in algebra and few studies have 

 documented this ability.  This study builds upon the current literature by offering 

 a definition of algebraic flexibility that is based on prior research and by 

 providing a framework for the documentation of algebraic flexibility.   

2.  document algebraic strategies employed by secondary students who have 

experienced an algebra curriculum.  Myriad studies have examined student 

learning, especially struggles and misunderstandings with respect to K-12 algebra 

(Booth, 1984; Buswell & Judd, 1925; Radatz, 1979; Stefanich & Rokusek, 1992), 

but few studies have looked at student generalization strategies and their 
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classification.  While a few studies have documented student strategy use at the 

elementary and middle levels (Healy and Hoyles (1999); Lannin, 2001; Stacey, 

1989; Swafford & Langrall, 2000), none of the research has focused on the 

algebraic strategies employed by secondary school students.  This study seeks to 

add to the literature by providing this perspective.    

3.  provide a useful framework for identifying and developing flexible strategy 

use in the classroom.  Given that students enter algebra classrooms with 

considerable knowledge of mathematics (NCTM, 2000) and a particular 

understanding of various algebraic concepts, it ultimately remains the teacher’s 

charge to identify and support the expansion of student conceptions and 

approaches to different algebraic situations.  Without a clear method for strategy 

identification and an understanding of how to encourage diversification of 

strategy use, it will remain difficult for algebra teachers to ensure that their 

students develop algebraic flexibility.  While frameworks have been developed 

and continue to be modified for characterizing elementary and middle school 

algebraic thinking, no such framework exists for secondary algebra students.  

Research Questions 

The following research questions for this study are based on the field of 

mathematics education’s needs for a deeper understanding of the algebraic strategies 

employed by secondary students and their flexibility of use. 

1.  What strategies do secondary students use when generalizing numeric 

situations and how do they use these strategies?  
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2.  To what extent do students exhibit within-task strategic flexibility when 

generalizing algebraic tasks? In other words, to what extent are secondary 

students who have completed a formal algebra curriculum able to produce 

mathematically correct strategies given various constraints within a single 

problem situation?  To what extent do these students understand how various 

strategies apply to the same problem situation?  How general do the students view 

the rules that they produce? What justifications do students offer for the rules they 

produce? 

3.  To what extent do students exhibit cross-task strategic flexibility when 

generalizing algebraic situations?  Specifically, to what extent are secondary 

students who have completed a formal algebra curriculum able to apply, modify, 

and/or develop algebraic generalization strategies for different mathematical 

situations? 

In order to document and measure the attributes noted in the research questions, a 

conceptual framework was developed to guide the collection and analysis of the data.  

Conceptual Framework 

Guiding my understanding of students’ perspectives on algebraic reasoning, and 

therefore the design of this study, is a multi-tiered framework built upon an active view 

of student learning.  The first level of the framework is illustrated in Figure 1.   
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Figure 1.  Overall Conceptual Framework 

Generalization represents the outer layer of this model due to its centrality to all 

mathematical processes, including algebra (Mason, 1996).  As Gattegno (1990) noted, 

“Something is mathematical, only if it is shot through with infinity.” In other words, 

generality is not only an important part of mathematics, but it is, or should be, the goal of 

every mathematical endeavor.  In terms of this study, algebraic generalization represents 

the focus of the research questions.  The development of generalizations and the 

strategies employed by the students and the flexibility they demonstrate in doing so are at 

the heart of this study.   

Within generalization lies the content strand, algebra, on which this study is 

based.  Algebra, as defined by Sfard (1995), is “any kind of mathematical endeavor 

concerned with generalized computational processes” (p. 18).  This study is primarily 

concerned with developing a deeper understanding of these processes. A more detailed 
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rationale for choosing algebra as the content strand for this study is provided in Chapter 

II.  

Instructional tasks provide the means for eliciting algebraic generalizations. As 

illustrated in Figure 1, the task plays an important role in that it provides a link to the 

student’s thoughts on algebraic generalization.  For example, in the Cube sticker problem 

(Figure 2), generalization is encouraged through the input values asked.  From the 

particular values, a student could develop a general recursive rule (computing values term 

to term) that she believes will always work due to a pattern she noticed in the context or 

in the values she found.  A larger value, like 49, provides the impetus for students to 

consider more efficient generalization strategies.  The task serves as the medium upon 

which the researcher and student can build illuminating dialogue.  A sample task is 

provided in Figure 2 below. 

Cube Sticker Problem 

 A company makes colored rods by joining cubes in a row and using a sticker 

machine to place stickers on the rods. The machine places exactly one sticker on 

each exposed face of each cube. Every exposed face of each cube has to have a 

sticker, so this length two rod would need 10 stickers.  

 

 How many stickers would you need for rods of length 7? Length 10? 
 Length 20? Length 49? Explain how you determined these values. 

 Explain how you could find the number of stickers needed for a rod of any 

 length. Write a rule that you could use to determine this. 

 

 
Figure 2. Cube Sticker Problem 
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Although a student’s work with a task can afford the researcher or teacher a 

glimpse at the student’s algebraic generalization strategies, it remains challenging to 

ascertain how students develop their generalizations (i.e., what role did the context and 

the values in the problem play in determining their rule), and how they see the 

generalizability of the rule in the context of the problem (for which values of the implied 

domain would their rule work).  Much can be learned about the student’s thinking 

regarding these issues through student/researcher interactions that center on student 

justification.   

Justification provides a window into student thinking (Lins, 2001) that the 

researcher/teacher otherwise would not have.  For example, in generalizing a task such as 

the Cube Sticker problem (see Figure 2), a student might generate this rule: the number of 

stickers = 4 • (the number of sides) + 2.  While this equation provides the researcher with 

important information (i.e., the student seems to be thinking explicitly and the rule 

correctly models the problem situation), much more could be known through engaging in 

dialogue that focuses on justification.  Questions aimed at ascertaining the students’ 

views of the generality of their rules can provide insight into the general nature of the 

student’s reasoning. Through discourse focused on the student’s reasoning and 

understanding of the situation, a deeper understanding of the student’s strategies, as well 

as their ability to apply these strategies, can be gained.  Both are critical in terms of 

answering the research questions.   

Single Task View 

Expanding further on the previous framework, student decisions regarding 

generalization strategies when solving algebraic tasks are represented at the second level 
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of the conceptual framework.  The “task” noted in Figure 3 represents a task similar to 

the task in Figure 1 that was discussed in the previous section.  Figure 3 depicts the 

strategies generated, and their accompanying justifications, as a result of student work 

with a particular task.  

 

 

   

 

 

Figure 3. Within-Task Flexibility Framework 

As indicated in the above model, students can select from among a number of 

strategies, viable or otherwise, when generalizing algebraic tasks. Lannin, Barker, and 

Townsend (under review-a) noted how student strategy selection is based upon several 

determining and contributing factors, including social, task (input values, mathematical 

structure), and cognitive (mental image, prior experiences including strategies) 

influences.  A flexible problem solver recognizes the viability of various strategies as 

well as the strengths and limitations of these strategies. As noted in the research questions 

(pp. 7-8), both the documentation of the student generalization strategies and the 

 
Task 

Strategy a1 

Strategy a2 

Strategy a3 

Strategy an 

Justification a1 

Justification a2 
 

Justification a3 
 

Justification an 
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assessment of their respective within-task flexibility were primary goals of this study.  To 

that end, this framework played a crucial role.  

Cross-Task View 

While the single task perspective allowed for examination of the strategies 

employed for a particular task, the assessment of cross-task flexibility required a different 

look at strategy use, as illustrated in Figure 4.  

 

 

 

 

 

 

 

 

 

Figure 4.  Cross-task Flexibility Framework 

Cross-task flexibility is the ability of a student to deduce the applicability of a 

particular strategy to various problem situations.  As illustrated in Figure 4, a particular 

strategy, such as explicit reasoning, can be utilized in various situations.  However, 

contexts exist where the strategy does not apply.  A student’s ability to discern the 

contexts for which a strategy does and does not work is their cross-task flexibility.   

For example, consider the student who generalizes three algebraic tasks.  In doing 

so, she utilizes several strategies for each task, documenting each strategy that she 

 
Strategy 

Task 1 

Task 2 

Task 3 

Task n 
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considers. She correctly employs explicit rules for two of the tasks, and correctly notes 

that an explicit rule is not possible for the third.  In terms of the explicit strategy, this 

student would be considered relatively flexible.  Depending on her understanding of the 

other strategies and her subsequent flexibility ratings for each, her overall level of 

strategic algebraic flexibility, as determined by these tasks, could vary. Further discussion 

of within-task and cross-task flexibility can be found in Chapter 2. 

Student Algebraic Generalization Strategies   

The final component of the conceptual framework utilized current knowledge of 

how elementary and middle level children reason in algebraic situations.  This study was 

informed by prior research on generalization strategies that contributed to development of 

the framework. Healy and Hoyles (1999), Stacey (1989), and Swafford and Langrall 

(2000) described similar strategies employed by middles grades students when 

generalizing contextualized tasks. Lannin (2001) focused on a subset of these strategies, 

which he termed explicit and recursive, in his study of sixth grade students.  Building 

upon the work of these researchers, Lannin, Townsend, and Barker (under review-a) 

demonstrated that fifth grade students utilized similar strategies that could be classified 

into four categories: recursive, chunking, whole-object, and explicit (see Figure 5 for an 

adapted framework of these strategies).   

In the columns following each algebraic generalization strategy an example is 

provided for how students could develop this strategy.  For each strategy, a student could 

develop a rule through a relation discovered within the context of the problem situation 

(contextual) or through a numerical pattern in the values derived from the task (numeric).  
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Strategy Contextual Numeric 
Explicit An explicit rule is constructed based 

on the information provided in the 
situation by connecting to a counting 
technique [e.g., Cube Sticker: There 
are four stickers for each cube, so I 
took four times the length of the rod, 
then I added two stickers for the ends 
of the rod.] 

The student recognizes that the rate of 
change in the results is the same and 
multiplies by the rate factor to establish 
an explicit rule. Then an adjustment is 
made by adding or subtracting a 
constant to reach a particular value 
previously determined for the situation. 
[Cube Sticker: The number of stickers 
increases by 4 each time so I multiplied 
by 4. Then I added two, because a rod 
of length 1 requires 6 stickers and 
4*1+2 = 6.] 

Whole-
Object (also 
referred to as 

Unitizing) 

The student uses a portion as a unit to 
construct a larger unit using multiples 
of the unit. The student adjusts for 
over (or under) counting due to the 
overlap that occurs when units are 
connected. [Beam problem: A rod of 
length 10 has 42 stickers, so a rod of 
length 20 would have 42*2 – 2 
because the stickers between the two 
length 10 sections would need to be 
removed.] 

The student uses a portion as unit to 
construct a larger unit using multiples 
of the unit. The student fails to adjust 
for any over or undercounting, where 
applicable [Beam Problem: A rod of 
length 10 has 42 stickers, so a rod of 
length 20 would have 42*2 or 84 
stickers (incorrect)]. 

Chunking A recursive rule is established based 
on a relationship established in the 
context, adding a unit onto known 
values of the desired attribute. [Beam 
problem: For a rod of length 10 there 
are 42 stickers, so for a rod of length 
15, I would take 42 + 5(4) because 
each cube adds four stickers.] 

The student builds on a recursive 
pattern, devoid of relation to the 
context (perhaps referring a table of 
values), by building a unit onto known 
values of the desired attribute. [Beam 
problem: For a rod of length 10 there 
are 42 stickers, so for a rod of length 5, 
I would take 42 + 5(4) because the 
number of stickers increases by 4 each 
time.] 

Recursive The student describes a relationship 
that occurs in the situation between 
consecutive values of the independent 
variable. [Cube Sticker: Each 
additional cube adds 5 stickers, and 
one sticker must be removed when the 
new cube is added to the rod, making 
a total of 4 stickers added for each 
cube.] 

The student notices a pattern in the 
results for consecutive values of the 
independent variable. [Cube Sticker: 
The number of stickers goes up 4 each 
time when the length of rod is increased 
by 1. The number of stickers goes 6, 
10, 14, 18, etc.] 

Figure 5. Generalization Strategy Framework 
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To determine how students developed their rules, as well as how they view their 

generalizations, an understanding of a student’s justification for his generalization is 

paramount. Student explanations of the various components of their rules provide 

information as to how their rules were developed and how generally applicable they view 

their rules to be (Lannin, 2005).  For example, in working the Cube Sticker problem 

(Figure 2), a student produces the rule S = 4n + 2, where S is the number of stickers 

required for a rod of length n.  In describing how he developed his rule, the student 

notices that four rows with n stickers comprise the length of the rod (4n) and two more 

stickers are needed for the ends. The student’s justification implies that his rule is based 

in the context of the situation and that his visual image of the problem situation led to the 

development of his explicit rule.  The general nature of his statement suggests that he 

could apply this rule to any length of rod.  Subsequent questions could provide more 

information regarding the development and perceived generality of the rule.   

A student’s view of the domain of a representation impacts the student’s ability to 

apply the rule within the task, as well as to other tasks.  Therefore, ascertaining student 

understanding of the generality of their representations is key to gauging algebraic 

flexibility.  

In gauging strategy use, the Generalization Strategy Framework (Figure 5) plays a 

critical role by providing a means for classifying the strategies that students employ, as 

well as providing a key perspective in classifying the strategies as contextual or numeric. 

This framework informed both the study design and data analysis of this study.   
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Theoretical Perspective 

Given that this study centers on individual student cognition (the strategies 

employed by students and their flexibility in employing these strategies), a Piagetian 

perspective on learning was utilized in the design of this study and guided the subsequent 

data collection and analytical decisions. In such a view, the acquisition of knowledge is 

seen as a process of perpetual self-construction, where perturbations lead to 

accommodations that either maintain or re-establish equilibrium (von Glasersfeld, 1995, 

p. 68). In his studies of human development, Piaget (1985) hypothesized about the 

organization of sets of skills for performing particular tasks and denoted these sets as 

“schema.” These cognitive structures became evident to Piaget as students engaged in 

various tasks. Reflection on certain tasks by a child appeared to lead to a reorganization 

(accommodation) of their thinking or to an integration of the information into the child’s 

current schema (assimilation). Piaget’s work served as the theoretical foundation of this 

study; the students participating in this study harboured myriad schema that came into 

play while working to solve the algebraic tasks.  These included general mathematical, 

problem-solving, algebra, and strategy schema, among others.  How the students were 

able to utilize and modify these schemes played an integral role in determining the 

strategies that they used and, ultimately, their algebraic flexibility.   

While this study focuses on the individual mental constructs of the student 

participants, social factors were present during the data collection. These students were 

active participants in an interview with the researcher, necessitating social interaction, 

and subsequently, a social view of learning. Particular to this study, as much as possible, 

the focus of the social interactions was on gaining insight to the student’s individual 
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cognitions.  While the interactions inevitably affected the outcomes to some extent, the 

questions that comprised the bulk of the interactions focused on clarification, not 

suggestion or instruction. Therefore, the guiding theoretical framework focused on the 

Piagetian cognitive perspective.   

Definition of Terms 

As is often the case with fairly specialized areas of research, several terms used in 

this study require precise definition.   

Mathematical Power, as defined by NCTM (1989) is the ability to “explore, 

conjecture, and reason logically, as well as to use a variety of mathematical methods 

effectively to solve nonroutine problems” (p. 5).  In terms of this study, students who 

demonstrated mathematical flexibility were, by definition, able to use a variety of 

methods effectively, thus exhibiting mathematical power.  

Within-task flexibility, denoted as strategic flexibility by NRC (2001), is the 

ability to develop and understand viable strategies given the context and constraints of a 

particular problem.  The term within-task was chosen to highlight the fact that this type of 

flexibility occurs within the confines of a particular task.  While strategic flexibility has 

been coined to describe this phenomenon, such nomenclature could be confusing in this 

study, given the focus on strategy use within and across tasks.  

Cross-task flexibility is defined as the ability to recognize commonalities and 

differences within a class of problems and to choose among a set of strategies gleaned 

from prior experience with the problems.  As students work through problem situations, 

they access and modify their processes, strategies, and techniques for solving such tasks.  
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As noted in the research questions, this study seeks to examine students’ abilities to 

notice and utilize this prior knowledge.   

Algebraic flexibility is the term used to represent the possession and the ability to 

utilize both within-task flexibility and cross-task flexibility synergistically in solving an 

algebraic problem situation.    

A recursive strategy is a rule that generates terms in a sequence through the 

preceding term or terms (NCTM, 2000).  Recursive strategies are usually employed when 

a student knows a particular term and needs to find the next term or a value fairly close to 

it (Lannin, Townsend, Barker, under review-a).   

Use of a whole-object strategy includes multiples of a previously derived amount 

being used to construct the solution for a different input value.   

An explicit strategy uses index-to-term reasoning that relates the independent 

variable to the dependent variable(s), allowing for the immediate calculation of any 

output value. 

A chunking strategy is best described as a recursive strategy where multiple 

“chunks” of the recursive value are added on to a known value.  Examples of each of 

these strategy types can be found in Figure 4.  

Contextual justification is an explanation of a generalization that ties each part of 

the rule to the context of the problem situation.  For example, a student providing a 

contextual justification might say, “there are four sides showing for each cube and one 

side on each end, so the total number of stickers needed to cover the sides would be 4n+2 

for n cubes.” 



20 

 

Numeric justification involves a description of a numerical pattern gleaned from a 

list of numbers that were derived from the problem situation.  For example, a student 

offering an empirical justification could note, “I noticed that there were 14 stickers for a 

rod of length three and 18 stickers for a rod of length four.  After guessing and checking 

and a few modifications, I came up with 4n+2 for my rule.”  

Significance of Study 

Researchers (Lannin, 2001; Stacey, 1989; Swafford & Langrall, 2000) have 

documented the generalization strategies of students at the upper elementary and lower 

middle school levels when working in algebraic situations.  To date, studies designed to 

document and categorize the algebraic strategies employed by secondary students have 

not been completed.  Likewise, the research that has been conducted on algebraic 

flexibility has focused primarily on representational flexibility or flexibility in algebraic 

manipulation.  This study seeks to expand the literature base by: (a) documenting the 

types of strategies that secondary students use when generalizing algebraic situations, and 

(b) measuring their flexibility in completing these tasks. 

  Given that the mathematical preparation of today’s students requires that they 

become efficient solvers of complex, real-world problems, the curricula that these 

students experience will necessarily be focused toward working effectively and 

efficiently in various contexts and situations.  Within the realm of algebra, the real-life 

situations facing these students will often require them to draw upon their prior 

experiences with similar problems to model the situation correctly.  Implicit to this ability 

to solve these types of problems is a student’s ability to generalize the situation 

effectively and efficiently given the constraints of the task.  Knowledge of flexibility can 
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be an asset to teachers in nurturing their students to become better problem solvers.  This 

study seeks to assist in this endeavor by capturing and providing descriptions of the 

various strategies that these secondary students of algebra employ and by documenting 

the flexibility these students exhibit in this venture.   

Summary 

Mathematical flexibility is critical to students as they prepare to enter the 

workforce.  Current reform efforts support an increased emphasis on the study of algebra 

and algebraic flexibility.  This study seeks to document secondary students’ algebraic 

generalizations and the flexibility of these students in using these generalizations. Student 

work on algebraic generalization tasks and student justification provide a medium for 

determining strategy use and flexibility.  Four generalization strategies gleaned from 

prior research frame the determination of student strategy use.  Flexibility, as defined for 

this study, is made up of two components: within-task flexibility and cross-task 

flexibility.  Both facets of flexibility impact overall student algebraic flexibility. A 

Piagetian perspective on student learning underpins the theoretical framework utilized for 

this research.   

The remaining chapters further delineate the details of this study.  Chapter II 

provides a review of the current literature on algebraic reasoning, generalization, problem 

solving, and mathematical flexibility.  Chapter III includes a description of the 

participants, algebraic generalization tasks, data sources, data gathering procedures, and 

methods of analysis (including the Alternative Generalization Strategies).  Chapter IV 

offers an interpretation of the data, focusing specifically on algebraic strategy use and 
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flexibility. Chapter V provides a discussion of the results, limitations of the study, and 

implications for curriculum and instruction.   
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

This chapter begins with a look at algebra and generalization, including a review 

of the current state of algebraic learning in the classroom and recommendations from 

research.  This is followed by a discussion of the algebraic strategies that students employ 

when solving generalization tasks and the role of justification in interpreting student 

generalizations. The chapter concludes with a discussion of flexibility, including different 

types of algebraic flexibility and the derivation of flexibility as used in this study, and a 

look at problem solving literature pertinent to gauging flexibility.  

Student View of and Difficulties with Algebra 

Many students, through their school experiences, develop a narrow perspective of 

what it means to do mathematics, particularly algebra (Kieran, 1992; Sfard & Linchevski, 

1994).  The view of algebra as a static field, made up of isolated topics and particular 

skills--such as symbol manipulation and equation identification and application--to be 

mastered through memorization has been fostered through the organization and teaching 

of algebra in schools (Lampert, 1990; Romberg & Spence, 1995; Schoenfeld, 1992).  

Students experience algebra lessons where the teacher and the textbook serve as the 

mathematical authorities for the correctness of answers (Weller, 1991), subject matter is 

packaged into single “one-rule-per-section” chunks (Wenger, 1987), and student 
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variation from the prescribed processes results in immediate correction from the teacher 

(Weller, 1991).  Such algebraic experiences provide the impression that a 

straightforward, single rule will always suffice (Wenger, 1987). These experiences often 

lead to student misconceptions about the nature of algebra. In this section, I provide an 

overview of research on student difficulties in algebra, focusing on issues relevant to this 

study.  

The transition from arithmetic to algebra has provided an obstacle to student 

understanding of algebraic conventions.  Collis (1974) noted that beginning algebra 

students view algebraic expressions as statements that are somehow incomplete.  This 

causes cognitive dissonance for the students, due to the fact that younger children cannot 

hold unevaluated operations in suspension.  For example, younger children require that 

numbers connected by an operation be physically replaced by the result of that operation.  

This causes a problem in algebra as expressions such as n - 1 are not always able of being 

replaced.  Booth (1984) also wrote about student misunderstandings related to the 

simplification of algebraic expressions.  She found that students view algebraic symbols 

as unknowns (standing for specific numbers), rather than as varying quantities. 

Similarly, Kuchemann (1981) reported that high school age students had 

difficulties representing word problems with equations.  In his study, students struggled 

to correctly produce a cost equation when given two colors of pencils cost different 

amounts.  Many of the students viewed the variables as representing labels for the 

different sets of pencils (i.e. “r” for red and “b” for blue), rather than as variable 

quantities.  Similarly, Carpenter et al. (1981) reported that many students who had 

completed at least one year of algebra had trouble solving the following NAEP problem: 
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       Carol earned D dollars during the week.  She spent C dollars for clothes and F 

dollars for food.  Write an expression using D, C and F that shows the number of 

dollars she has left.   

The translation of the words into an algebraic expression caused considerable difficulty 

for these students, demonstrating the misunderstandings that exist in the algebraic 

backgrounds of many students.  

Other studies have demonstrated that college students’ attempts to represent 

situations are influenced by an impoverished understanding of variables and their use in 

equations.  Research by Clement (1982) with the student-professor problem (i.e., There 

are six students for each professor. Write an equation to represent this relationship.) 

suggested two sources of common error with such a task: syntactic and semantic 

translations of the problem.  In a syntactic translation, the student assumes that the 

sequence of words maps directly into a corresponding sequence of symbols (in the case 

of the student-professor problem, 6s = p.)  In a semantic translation, students link the 

equation to the meaning of the problem.  The equation generated by the student to 

represent the situation is not viewed as an indication of equivalence, but as an illustration 

of relative size (more students than professors, so 6s = p.)   

Later research on the student-professor problem showed similar results with 

respect to the reversal of terms, even when the context explicitly provided the order for 

the equation (Stacey & MacGregor, 1993). Philipp’s (1992) work with the student-

professor problem reiterated the findings of Kuchemann, demonstrating that students 

often misunderstood the meaning of the symbols in algebraic situations, leading to the 

use of symbols as labels rather than as varying quantities.  
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Prior research demonstrates that classroom experiences have often promoted the 

view of algebra as involving only symbol manipulation.  Such a view has contributed to 

difficulties by students of all ages in learning algebra.  Research has documented that 

these difficulties lie in representing algebraic situations symbolically and understanding 

what these symbols actually mean.  This study seeks to take a different view in 

examining the learning of algebra.  While I will be investigating similar aspects in the 

learning of algebra (the understanding and representation of an algebraic situation), my 

study focuses on the strategy use of the students, instead of students’ views of symbolic 

notation.   

Current Recommendations for the Teaching and Learning of Algebra 

 Mathematics education literature presents an alternative view for learning algebra.  

As noted by NCTM (2000):  

Algebra is more than moving symbols around. Students need to understand the 

concepts of algebra, the structures and principles that govern the manipulation of 

the symbols, and how the symbols themselves can be used for recording ideas and 

gaining insights into situations (p. 36).   

Pegg and Redden (1990) noted that algebra should emerge through student activity 

instead of being imparted as fact. They recommend that students experience tasks that 

facilitate the recognition of number patterns, create rules that describe those patterns, and 

then write the rule(s) in an abbreviated form.   

Mathematics is an evolving discipline with new applications arising as business, 

technology, and other real-world entities demand solutions to emerging problems.  Due to 

the inherent ties between mathematics and the real world, students should experience and 
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learn mathematics through real-world settings and applications.  More specific to this 

study, algebra is best learned through real-world contexts (Usiskin, 1995; Nathan & 

Koedinger, 2000).  NCTM is also a strong advocate for the learning of algebra through 

contextual means.  The 1989 Curriculum and Evaluation Standards calls for students to 

use algebra in real-world situations (p. 151).  NCTM (2000) notes that, “working in real-

world contexts may help students make sense of the underlying mathematical concepts 

and may foster an appreciation of those concepts” (p. 296).   

Generalization is the Core of Mathematics 

 Generalization represents a key element of mathematics and a guiding goal in the 

mathematics classroom.  As Gattegno (1990) asserted, something should only be 

considered mathematical when fully generalized or “shot through with infinity.” Mason 

(1996) brought this idea to the classroom in noting that if students fail to express their 

own generalizations, “mathematical thinking is not taking place” (p. 65).  The process of 

mathematical generalization involves students looking across particular cases for 

meaningful commonalities, such as patterns and structures, and identifying and exposing 

these relationships (Kaput, 1999; Mason 1996).  For example, Mason (1996) described a 

five-year-old student who worked through a succession of paired arithmetic questions 

where the order was reversed between the first and second question ( i.e. 4 + 3 = __, 3 + 4 

= __.) After answering a few of the questions, the student suddenly noted, “Something 

plus something is…the same as something plus…something” (p. 70). The student was 

able to at least hypothesize the generalization that the addition of two numbers is 

commutative. This movement led Mason (1996) to describe generality as “seeing a 

generality through a particular and seeing the particular in the general” (p. 65).  
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 Harel and Tall (1991) provide a framework for classifying the types of 

generalization that individuals employ. The three generalization categories are: (a) 

expansive generalization in which the learner extends the applicable range of an existing 

schema without reconstructing it, (b) reconstructive generalization which occurs when 

the learner reconstructs an existing schema in order to widen the range of applicability, 

and (c) disjunctive generalization where the learner constructs a new schema in order to 

deal with new information. Expansive and reconstructive generalization require the 

learner to extend or modify previous schema while disjunctive generalization requires a 

Piagettian accommodation for the generalization. For example, students learning to solve 

linear equations might encounter the following two problems: 3 x = 21 and (2/3) x = 21. 

If a student understands these equations to be mathematically similar and sees the 

processes of solving the equations to be essentially the same, then the student has 

exhibited either expansive or reconstructive generalization.  The learner has likely either 

extended or reconstructed to widen the applicability of his schema for solving one of the 

equations to include the solving of the other.   If a student views the two equations and 

their methods of solution as unrelated, then this student has likely experienced disjunctive 

generalization for the solving of these two equations.   

The authors suggest that expansive and reconstructive generalizations are more 

appropriate for cognitive development.  To provoke generalization in students, Harel and 

Tall suggest the use of a generic example to help students generalize a particular idea.  A 

generic example represents a successful generalization when a student views “one or 

more specific examples as typical of a wider range of examples embodying an abstract 
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concept” (p. 6). This idea of a generic example relates to Mason’s view of seeing the 

generic in the particular.   

Mathematical generalization represents a major focus of this study, as can be seen in 

the conceptual framework (Figure 1).  The tasks used for this study harbored the capacity 

to serve as generic examples.  When generalizing these tasks, students were asked to 

produce descriptions and/or formulae that serve as generalizations for each problem 

situation.  Specific questions aimed at ascertaining the generality with which the student 

was viewing their rules were asked (see Interview Protocol in Appendix A). 

Algebra is the Language of Generalization 

While generalization is at the heart of all mathematical activity (Kaput, 1999; 

Mason, 1996), it is also considered to be at the heart of algebra. Students must view 

algebraic rules as generalizations--mathematical statements that model situations for any 

value in the domain of the variable(s)--to demonstrate an understanding of algebra 

(Dienes, 1961). In this study, generalization is viewed as a key component of algebra. 

Such a position is represented in the conceptual framework that guides this study and is 

supported in the literature. For example, Mason (1996) noted that “generalization is 

central to all mathematical processes” (p. 74), while speaking specifically about algebra 

(the combining of arithmetic operations).  Lee (1996) supported this position, noting that, 

“algebra and indeed all of mathematics is about generalizing patterns” (p. 103). Clearly, 

generalization and algebra are deeply intertwined with generalization representing a 

critical element of algebra. For example, the student described by Mason (1996) in the 

previous paragraph developed a generalization about the addition of two numbers.  

Algebraic notation provided the student with a means for representing his generalization 
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symbolically. In terms of this study (as illustrated in the conceptual framework), algebra 

represented the medium through which generalization was viewed in the form of 

patterning situations.   

Linking Generalization and Justification 

While the focus of this study is on student generalizations and the flexibility the 

students exhibit in providing and utilizing these generalizations, little could be 

ascertained about how and why they create and use particular strategies without detailed 

explanations concerning their thoughts and choices.  As noted by Lannin (2005), 

“generalization cannot be separated from justification” (p. 235).   

Justification plays two key roles related to understanding student thinking: (a) It 

allows the researcher insight into why a student used a particular strategy, and (b) it 

provides a window for ascertaining the degree to which students view the generality of 

their rules (Lins, 2001).  For example, when attempting to generalize the Cube Sticker 

problem (see Figure 2), a student produces the rule S = 4n + 2, where S is the number of 

stickers required for a rod of length n.  In describing how he developed his rule, the 

student noticed that four rows of stickers comprise the length of the rod (4n) and two 

more stickers are needed for the ends. The student’s justification implies that his rule is 

based in the context of the situation and suggests that his visual image of the problem 

situation led to the development of his explicit rule.  The general nature of his statement 

suggests that he could apply this rule to any length rod.  Subsequent questions such as 

“For which values would your rule work?” could provide more information regarding the 

development and perceived generality of the rule.   
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Without justification, the degree of generality implied by a student for a particular 

rule would be nearly impossible to ascertain.  Justification is also important in 

determining a student’s level of flexibility, which is discussed in the next section.   

Strategy Use 

Relatively few studies have focused on student strategies for generalizing 

algebraic tasks.  Of the extant literature on generalization strategies, most research has 

been conducted with students in late elementary through middle school grades.  These 

studies, however, provide a strong foundation for investigating secondary student strategy 

use. Stacey (1989) described several strategies used by 9-11 year old students in solving 

contextualized linear generalization tasks.  She found that students employed a counting 

strategy, a difference strategy, a whole-object strategy, and a linear strategy.  For the 

counting strategy, the students counted the number of items from a drawing.  The 

difference method involved multiplying by the common difference (similar to both the 

chunking strategy and explicit strategy used in this study).  The whole-object strategy 

used a multiple of a previous value as a new value, implicitly assuming direct variation.  

Stacey’s final strategy category, linear, described the development of a linear (explicit) 

model to find the solutions.   

These strategies were similar to those found by Healy and Hoyles (1999) who 

engaged students aged 12-13 in specific contextualized linear tasks and Swafford and 

Langrall (2000) who worked with 6th grade students in generalizing algebraic tasks prior 

to formal algebra instruction. Lannin, Townsend, and Barker (under review-a) studied the 

strategies of 5th grade students using similar, contextualized tasks. Their categorizations 

of recursive and chunking, whole-object, and explicit strategies represent adaptations of 
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Stacey’s difference, whole-object, and linear strategies. They also meld well with Healy 

& Hoyles’ differences between terms, multiplicative, and dependent and independent 

variables strategies, respectively. These categories serve as the basis for classification of 

strategies in this study.  A description of these strategies and the literature surrounding 

them is provided below.  

Explicit Strategies 

Explicit reasoning has long been the focus of the algebra curricula (Kaput, 1999).  

Explicit, or closed-form, generalizations allow for the immediate calculation of any value 

for the particular situation by relating the independent variable to the dependent variable.  

For example, in the Cube Sticker Problem (see Figure 2), the explicit rule S = 4(n-2) + 10 

provides a method for calculating the number of stickers, S, needed for a rod of length n.   

Until recently, developing explicit rules has been the primary focus for algebra 

textbooks. Even with other strategies considered as viable alternatives (Kaput, 1995; 

Sandefur, 1992), explicit reasoning remains the primary end goal of many lessons.  Such 

focus is not without merit.  The National Council of Teachers of Mathematics has 

supported the use of explicit thinking throughout iterations of standards.  For example, 

the Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) and 

the Principles and Standards for School Mathematics (NCTM, 2000) both provided 

examples that support the goal of using explicit reasoning at various grade levels.  One 

particular example occurs in the Grades 6-8 Algebra Standard (NCTM, 2000).  The 

“Super Chocolates” problem provides a context for developing explicit reasoning (p. 

226). The Super Chocolates problem is similar to the one presented in Figure 6 below.  
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Figure 6. Chocolates problem. 

In this problem, arrays of caramel candies are surrounded by arrays of chocolates.  

Students must determine the number of caramels in any box if the dimensions of the box 

(the number of chocolates in each direction of the array) are known. NCTM (2000) 

reiterates the importance of explicit reasoning in the 9-12 Algebra Standard, where one 

student expectation involves “generalizing patterns using explicitly defined” functions (p. 

296).   

While many examples can be found in current classrooms and textbooks that refer 

to the use explicit strategies, other strategies are often treated as relatively unimportant or 

are not valued at all.  However, NCTM (2000) recommended the use of non-explicit 

strategies, such as recursion, in the 9-12 grade level expectations.  NCTM’s call for 

alternative strategy use seems warranted given the pragmatic utility of such 

generalizations. For example, Kaput (1993) noted that most mathematical situations 

cannot be modeled using a closed-form (explicit) representation. As noted in Chapter I, if 

the mathematics curriculum is expected to prepare students for the realities of the outside 

world, students should be expected to solve problems that require alternative 
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generalizations. Given that current technology allows for the efficient use of non-explicit 

strategies (Kaput, 1995), it seems prudent to consider alternative strategies.   

Recursive Strategies  

 Recursive reasoning can often provide a viable option for solving problems of 

algebraic nature. Recursive reasoning involves recognizing and applying the change from 

term-to-term in the dependent variable.  Swafford and Langrall (2000) noted that students 

naturally employ general recursive reasoning to problem situations.  Maurer (1995) 

described the importance of recursive reasoning in noting “the essential ingredient in 

many problems is relating the arbitrary case to earlier cases” (p. 95).  Booth (1989) wrote 

that research evidence on the kinds of procedures that students use naturally points to a 

greater use of recursive techniques.  NCTM (2000) agreed, stating that “students should 

study sequences best defined by recursion,” (p. 37) specifically pointing to the many that 

appear naturally in various contexts.  

The National Council of Teachers of Mathematics considered recursive reasoning 

important enough to recommend the study of recursive relationships at both the high 

school level (NCTM, 1989, p. 178, 296) and in the middle grades (p. 263).  In the 

Principles and Standards for School Mathematics, NCTM (2000) called for secondary 

students to engage in increasingly more and diverse experiences with potentially 

recursively-modeled situations such as interest-rate and models of growth problems (p. 

305).  Thus, students should have opportunities to generalize tasks that can be 

represented through a variety of strategies so that connections among strategies can 

emerge.  
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It should be noted that there is not complete agreement regarding the study of 

recursive relationships. In fact, Stacey and MacGregor (2001) have recommended that 

particular tasks not be used when the emphasis is on encouraging explicit reasoning.  

Their argument stems from possible student confusion with the recursive notation and 

their belief that explicit reasoning might be overshadowed by the students’ work with 

recursion.     

Whole-Object Strategies 

The Whole-Object strategy (Stacey, 1989), also referred to as unitizing (Lamon, 

1993) is quite different from the other three strategies. Stacey defined whole-object 

reasoning as using a multiple of the output for a smaller input value to find the output for 

a larger input value. The use of this method, without a correction, implies that the task 

represents a direct variation situation. For example, a rod of length 10 has 42 stickers, so 

a student might reason that a rod of length 20 would have 42*2 or 84 stickers.  In this 

case, the student failed to adjust for over-counting that occurred due to the ends of the rod 

also being doubled. A student who has a good visual image of the problem situation may 

adjust for the over-counting in this case by subtracting two for the ends of the rods that 

were joined together in the doubling (i.e. a rod of length 10 has 42 stickers, so a rod of 

length 20 would have 42*2 – 2 because the stickers between the two length-10 sections 

would need to be removed.)   

Chunking Strategies 

Given the relative infancy of the definition of and research on the chunking 

strategy, it is not surprising that much less literature has been devoted to understanding 

student use of this strategy than has focused on recursive, explicit, and whole-object 
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reasoning.  However, Stacey (1989) dealt with chunking in her difference method 

(repeated addition implies multiplication), which also included recursive reasoning. 

Healy and Hoyles (1999) described chunking strategies in terms of student operations on 

differences between terms.  In this study, chunking played an important role in algebraic 

generalization in that it represents a potential link between recursive and explicit 

reasoning.  When using a chunking strategy, a student builds on a recursive pattern by 

adding a unit onto known values of the desired attribute.  For example, on a rod of length 

10 there are 42 stickers. For a rod of length 15, one would take 42 + 5(4) because the 

number of stickers increases by 4 each time.  The quantity 5•4 represents a “chunk” of 

five iterations of recursion that is added on to the previous total.  As previously noted, the 

research on chunking is brief.   

Research has provided a strong base for looking at student strategy use.  Looking 

across the studies for commonalities reveals that elementary and middle grades students 

employ four main algebraic generalization strategies: explicit, whole-object, chunking, 

and recursive strategies.  However, the current research base does not extend beyond the 

middle school level in terms of the strategies employed by students.   

Algebraic Flexibility 

Algebraic flexibility represents a key component of this study, as research 

questions two and three focus on this topic. For this research, I focused on a particular 

form of strategic flexibility for solving algebraic generalization problems.  In this section, 

I discuss the extant literature surrounding the meaning and importance of algebraic 

flexibility. Following this review, I detail the definition of algebraic flexibility that was 

used to guide the data analysis for this study.   
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Mathematics education research has demonstrated the importance of 

understanding students’ algebraic flexibility.  Krutetskii (1976) provided an early look at 

algebraic flexibility in his work documenting student ability. Lewis (1981) and Starr 

(2001) also investigated student flexibility in working with particular algebraic situations.  

Although in every case algebraic flexibility is referred to as a positive student attribute, a 

consensus does not exist regarding what algebraic, or even mathematical, “flexibility” 

entails. It is often difficult to ascertain exactly how “algebraic flexibility” is being defined 

when no formal definition is given or the context under which the term was used leaves a 

lot to be deduced.     

 In looking at the various contexts under which algebraic flexibility has been 

studied, it seems that algebraic flexibility has myriad meanings.  The definitions for 

flexibility include the ability to: 

 1. Move between interpreting notation as a process to do something (procedural) 

and as an object to think with and about (conceptual), depending upon the context (Gray 

& Tall, 1994).   

 2. Move among representations and understand how each says the same thing 

(PSSM, 2000; Davis & McGowen, 2002). 

3.  Use more than one strategy to solve the same problem or equation (Hollands, 

1972; Lewis, 1981; NRC, 2001). 

4.  Apply various sequences of steps to solve several similar problems (Star, 

2001). 

5.  Switch from one solution method to another (Krutetskii, 1976).   
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The definitions used by Gray and Tall, NCTM, and Davis and McGowen describe 

flexibility in ways that were not useful for this study.  They do, however, provide 

alternative perspectives on how the term “flexibility” is being used within the same 

mathematical domain.  I discuss each of these definitions below.   

 Gray and Tall (1994) described flexibility in terms of an ability to view notation as 

a process to do something (procedural) and as an object to think with and about 

(conceptual), depending upon the context.  For example, the expression x + 4 represents 

both the process “add four” and for the product of that process, the quantity “x + 4.” This 

process of viewing an expression in two different ways simultaneously was not included 

in the definition of flexibility that guided this study. 

The National Council of Teachers of Mathematics (1989, 2000) calls for students 

to be mathematically flexible vis-à-vis representation by the middle grades.  “Students 

should be able to understand the relationships among tables, graphs, and symbols and to 

judge the advantages and disadvantages of each way of representing relationships for 

particular purposes (NCTM, 2000, p. 37). The Curriculum and Evaluation Standards 

(NCTM, 1989) recommends that students in grades 5-8 should understand the 

relationship between data in tables, algebraic generalizations, and graphical 

representations.  Similarly, Davis and McGowen (2002) describe flexibility in terms of 

connections between various representations of functions, including tables, graphs, and 

algebraic syntax.  In these examples, flexibility is described as the ability to use and 

understand various representations of mathematical data.   For example, a student trying 

to find the solution to the system of equations containing y = 3x + 4 and x + y = 7 might 

be inclined to construct a graph, generate a table, or work with the formal symbols.  The 
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student’s ability to understand and move between the different representations is at the 

heart of this description of flexibility.   Once again, this view of algebraic flexibility was 

not included in the definition of flexibility employed for this study.   

The remaining three views of flexibility are related to this study, with each 

adopting a slightly different perspective in terms of what it means to algebraically 

flexible.  These three descriptions of algebraic flexibility were influential in the 

development of the definition used for this study.   

Lewis (1981) defined flexibility as “the lack of consistent use of a single process 

for solving a given equation.”   Under this definition, students who routinely provided 

more than one solution for the same equation were considered to have flexibility.  For 

example, a student who could usually produce more than one explicit rule, such as S = 

4n+2 and S = 4 (n-1) + 6 for the Cube Sticker problem, would be classified as flexible. 

Hollands (1972) provided a similar description of flexibility (flexibility is demonstrated 

through a suggestion of a variety of methods) in his work on creativity.  One could 

imagine that changing the word “equation” to “problem” or “task” in Lewis’s description 

would provide a broader, more inclusive definition that would work for contextualized 

situations.  

The National Research Council (2001) introduced a similar definition for 

algebraic flexibility when discussing strategic competence.  Under this definition, a 

student exhibits flexibility if he can devise several different approaches to a nonroutine 

problem and “chose flexibly among reasoning, guess-and-check, algebraic, or other 

methods” (p. 127) in solving the particular problem.  Lewis’ definition, along with the 

one suggested by the NRC, for flexibility centers on providing different solutions for the 
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same situation (within-task), thus neglecting the potential for students who solve 

mathematically similar tasks (e.g., problems that could be modeled linearly) in different 

manners or tasks exhibiting different constraints to be considered flexible.   

Star (2001) defined flexibility as “the ability to vary the sequence of steps that one 

uses to solve a group of similar problems” (p. 89).  In his study, Star looked at the 

number of different ways that sixth grade students, who had not experienced instruction 

on symbolic equation solving, could solve linear equations. Star’s view of flexibility 

effectively expands upon the single-problem constraint inherent in Lewis’ definition and 

provides a useful definition for the context of students using different steps to solve 

similar equations.  However, unless “sequence of steps” is construed broadly, this 

definition does not seem to include problem-solving situations that are not procedural in 

nature. 

In his work on the identification of mathematically capable seventh grade 

students, Krutetskii (1976) discussed the idea of flexibility as the ability to switch from 

one mental operation to another (p. 222), “from one method of approach to another, from 

one method of solution to another” (p. 188).  Differentiating his work from the previous 

references, Krutetskii did not focus on whether or not the students found several methods 

of solution.  He was more interested in their abilities to move from one method of 

solution to another.  In his study, students were asked to ascertain the maximum number 

of ways to solve each problem in a particular set.  The problems used in this investigation 

included traditional algebraic tasks such as sailing with and against the current. To 

distinguish between students who found the same number of solution strategies, 

Krutetskii documented the amount of time that it took for a student to find each solution 
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for each problem.  He found that it was more difficult for “average” pupils to switch to a 

new method of solving a problem once they already solved it.  The less capable students 

had even more difficulty, “as if the solution that had been found cut off any possibility of 

their switching to a new method of operations” (p. 278).  Ultimately, Krutetskii 

demonstrated that the students who were able to grasp the structure of the problem 

demonstrated the greatest algebraic/problem solving flexibility.   

Although Krutetskii spoke mainly of flexibility in terms the ability to switch 

between different ways of solving the same problem, he also implied that there are 

actually two aspects of flexibility: flexibility working within a particular task (within-task 

flexibility) and flexibility that applies across tasks (cross-task flexibility).  Although 

Krutetskii did not explicitly use these terms, both within-task and cross-task flexibility 

were alluded to in his work.  Within-task flexibility involved the ability to move between 

multiple methods for solving a particular task. Likewise, cross-task flexibility deals with 

the effect, or lack thereof, that working a particular problem had on a subsequent one; the 

set of problems for Krutetskii’s study included variations of the same problem that 

required different methods of solution.  Since the amount of time it took to produce 

solutions for each problem was documented, he used a ratio of the time it took to solve 

the original problem and its variation to measure how “bound” a student was to his 

previous method of solution.  In other words, student experience with what was 

considered to be a “similar” problem could impact them negatively in terms of flexibility.   

 Certainly, flexibility can and does mean different things to different people 

working within different contexts and topics.  However, it seems that a well defined, yet 

broad description of flexibility is needed to allow researchers and practitioners to more 
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clearly understand and communicate thoughts and findings related to this important facet 

of student learning.  With that goal, my experience, and other’s writings in mind, this 

study sought to provide such a definition.   

In establishing the definition for flexibility used to guide this study, it was 

important for flexibility to represent a valuable characteristic of mathematical thinking 

that ultimately enhances a student’s mathematical power in terms of problem solving. To 

ensure that such criteria are met, mathematical flexibility needs to account for thinking 

within and across tasks. As noted in the review of definitions of flexibility in 

mathematics education research, flexibility has been defined in particular cases to refer to 

flexibility within a task (Lewis, 1981), flexibility across tasks (Star, 2001), and a 

combination of both (Krutetskii, 1976). By defining flexibility as such, the expectation 

for achieving mathematically flexible status is markedly higher, with a deeper 

understanding of the structure of the mathematics behind the problem required.  Within-

task and cross-case flexibility remain critical aspects of the definition. The achievement 

of each type of flexibility is certainly no less important, but it is the attainment of both 

elements concurrently that leads to the characterization of a more comprehensive 

understanding of the underlying mathematics and is seemingly, therefore, a crucial 

ingredient in consideration for becoming “algebraically flexible.”  

Given the afore-mentioned preferential aspects of algebraic flexibility, I draw 

upon the work of Krutetskii (1976) and Star (2001) in fashioning this definition.  

Krutetskii alluded to the need for flexibility to include both within-task flexibility and 

cross-task flexibility. However, Krutetskii was more concerned with the amount of time it 

took a student to change strategies than in her ability to understand multiple strategies.  
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Star valued the correct use of multiple strategies within a set of similar situations, but did 

not focus on the ability of students to apply strategies across varied tasks.  A combination 

of the two perspectives provides a definition in which the broader aspects of flexibility 

noted by Krutetskii (within and cross-task flexibility) meld with the importance of 

multiple strategies presented by Star.   

For the purpose of this study, flexibility was defined as the ability to utilize and 

demonstrate both within-task flexibility and cross-task flexibility in solving a 

mathematical task.  Within-task flexibility [referred to as strategic flexibility in NRC 

(2001)] represents the ability to recognize the viability of various strategies given the 

context and constraints of a particular problem.  Cross-task flexibility is defined as the 

ability to recognize to the applicability of a particular strategy to various situations. This 

definition of flexibility requires students to be able to solve a variety of problems within 

different contexts, under myriad conditions.  

Flexibility and Problem Solving 
 

While Krutetskii discussed student algebraic flexibility, his work also intertwined 

flexibility with problem solving.  Taking his lead, I explored the problem-solving 

literature to gain further insight into algebraic flexibility.  In this section, I discuss the 

relationship between problem solving and algebraic flexibility, factors that contribute to 

problem solving ability, and how these factors relate to the determination of algebraic 

flexibility.   

“The central point of education is to teach people to think, to use their rational 

powers, to become better problem solvers" (Gagne, 1980, p. 85). Educational researchers 

have considered problem solving a critical skill due to its everyday utility. As each of the 
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students in this study worked to solve the tasks, they engaged in problem solving.  To that 

end, problem solving was employed in this study.  However, the literature on problem 

solving also plays a key role in informing this study due to the focus on algebraic 

flexibility. In this study, algebraic flexibility involves the ability of a student to 

understand and utilize various generalization strategies.  Similarly, problem solving 

involves the ability of a student to understand and utilize various problem solving 

approaches or heuristics (Stewin & Anderson, 1974). Since little literature exists on how 

algebraic flexibility can be determined, I looked to the research on problem solving, as I 

hypothesized that the qualities that impact problem solving ability would have 

implications for determining algebraic flexibility.  Several factors have been shown to 

contribute to problem solving ability.  These factors are described below.    

 Stewin and Anderson (1974) noted that students who consider more alternative 

approaches are better problem solvers. A key component of algebraic flexibility, as 

defined in this study, is the ability to use and understand multiple strategies when solving 

an algebraic task.    

 As previously noted, Krutetskii found that students who were able to determine the 

deeper structure of a problem demonstrated the greatest flexibility in terms of solving the 

algebraic situations.  Similarly, research (Bassok, 1997; Blessing & Ross, 1996; 

Schoenfeld & Herrmann, 1982; Silver, 1981) has shown that novices tend to focus on 

surface level features of tasks rather than on the deeper relational properties that experts 

use to solve the problems.  In focusing on the surface level features (words or objects 

presented in the problem), novices are far less successful in solving problems than the 

experts who understand the structure of the problem and recognize common features that 
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allow them to be successful problem solvers.  For example, expert chess players perceive 

board positions differently than do their novice counterparts.  The experts see the board 

in terms of patterns or broad arrangements, whereas novices do not (Chase & Simon, 

1973).  In physics, experts and novices were asked to describe their approach to solving 

particular physics problems.  Experts usually mentioned the principles or laws that were 

applicable, along with their reasoning as to how and why the laws could be applied. 

Novices, however, mentioned which equations they would use and how they could be 

manipulated (Chi, Feltovich, & Glaser, 1981).  With respect to this study, the students 

who were able to see and utilize the mathematical similarities and differences between 

problems certainly had an advantage in producing a correct generalization.  They were 

also likely to be more algebraically flexible in that they were able to generalize the 

functionality of a strategy across problems. 

Summary 

Students often view algebra as a static field in which algebraic problem solving 

involves the application of a single rule to solve a problem.  Consequently, many students 

have difficulties understanding and utilizing algebraic symbols.  Research has suggested 

that the learning of algebra emerges through student activity, employing the use of 

contextualized algebraic tasks.  

The determination of student generalization represented a main goal of this study 

and guided the selection of algebraic tasks.  Justification of a generalization was also 

discussed as a critical component in ascertaining student understanding, as it provides a 

window to student perception of generality. Literature surrounding the development and 

classification of algebraic strategies was provided, which included a description of each 
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of the four algebraic generalization strategies (explicit, whole-object, chunking, and 

recursive) that formed the foundation for strategy classification in this study.   

Various definitions of algebraic flexibility presented in literature were examined 

and used to construct the definition for flexibility that guided the analysis of algebraic 

flexibility for this study.  Algebraic flexibility is comprised of within-task and cross-task 

flexibility.  Within-task flexibility refers to a student’s ability to recognize the viability of 

various strategies given the context and constraints of a particular algebraic task.  Cross-

task flexibility deals with a student’s ability to recognize to the applicability of a 

particular strategy across various situations.  The chapter concludes with a discussion of 

the problem solving literature focused on descriptions of the various factors that impact 

problem solving ability and how these studies inform the determination of flexibility.  

The next chapter details the specific methods used for this study, guided by the literature 

noted in this chapter.   
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Chapter III 

RESEARCH DESIGN AND METHODOLOGY 

For this study, I analyzed secondary student strategy use and characterized the 

algebraic flexibility of these students.  In particular, I examined the strategies that 

secondary students use, recognize, and value when solving particular algebraic tasks.  

Also, I ascertained the extent to which the secondary students in this study exhibited 

within-task strategic flexibility and cross-task strategic flexibility when working in the 

afore-mentioned contexts. This chapter provides a detailed description of the methods I 

employed to select the participants for my study and the methodology and tools used in 

the analysis of their algebraic reasoning and flexibility. In the following sections, I first 

describe the methods that were used to select the students for participation in the study. 

Next, I present the design of the interviews, followed by the instrumentation, including 

tasks that were used in data gathering and analysis of student algebraic strategy use. This 

is followed by a description of the data sources that were collected for analysis and an 

illustrative example of the coding scheme.  The chapter concludes with details regarding 

the data analysis.   

Skemp (1987) defined a methodology as “a collection of methods for constructing 

(building and testing) theories, together with a rationale that decides whether or not a 

method is sound.  This includes both constructing a new theory ab initio, and improving 

an existing theory by extending its domain or increasing its accuracy and completeness” 
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(p. 130). This research project contributes to theory by defining and analyzing student 

flexibility and extends existing theory by adding to the literature base concerning student 

strategy use.   

Participants  

For this study, 11 tenth-grade students participated from two rural Midwestern 

schools, hereafter designated School A and School B. Tenth grade students were chosen 

due to the students’ recent completion of an introductory algebra course (i.e., Algebra I). 

Participant completion of an introductory algebra course was important due to the lack of 

current literature about the strategy use of students at this level.  The two schools were 

selected due to their use of non-NSF funded mathematics curricula throughout K-12. 

Given that most students in the United States currently do not experience NSF-funded 

curricula, schools employing only non-NSF funded curricula were chosen in an effort to 

enhance the potential generalizability of the findings.   

School A is located in a growing town that is situated midway between two larger 

cities.  Many of the inhabitants of this community commute to the cities for work.  

Seventeen percent of students qualify for free and reduced lunches. For School A, initial 

contact with school personnel was made through the principal. After the principal 

provided consent to conduct the study, I distributed a call for potential participants 

through 10th grade teachers. These teachers allowed for contact with the entire 10th grade 

student population at School A. Once the pool of potential participants was identified, 8 

student volunteers were contacted to ascertain their level of interest in taking part in the 

study. All 8 students agreed to participate in the study. Seven of the 8 students 

participated in three 30-45 minute interviews, with one student withdrawing from the 
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study after the first full interview.  All students selected in the study represent a 

convenience sample, as the sample selection process was not random.   

Additional students from another high school, School B, were selected to broaden 

the sample. School B is located in a small agricultural town where 48% of the students 

qualify for free or reduced lunches.  Initial contact was made through the high school 

mathematics teacher at School B. Due to the small size of this rural school, few students 

were available for participation. Once the principal consented to involve students in his 

school, the selection process began. Three students from School B were each able to 

participate in two interview sessions.  The teacher identified these students as individuals 

that would provide the richest data (i.e., the students most likely to verbalize their 

reasoning). These three students were selected and each participated in two one-hour 

interviews.  

Generalization Tasks 

 In determining the tasks in which the participants were to be engaged, efforts were 

made to identify questions that elicit algebraic generalizations.  These tasks are often 

embedded in a contextual situation that requires the calculation of particular values.  The 

ultimate goal of these tasks is the generation of a rule or rules that could be used to 

determine other particular instances of the pattern.  Research (Kenney, Zawojewski, & 

Silver, 1998; Stacey, 1989; Swafford & Langrall, 2000) has shown that such activities 

lead students to the construction of a variety of generalizations.  

 Given that the goals of this study center on the ability of students to generate, 

understand, and efficiently utilize different generalizations, problems of the variety listed 

in the previous paragraph were employed extensively. However, given the reality that the 
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students in this study have mainly experienced classrooms more representative of the 

“one-rule-per-section” teaching philosophy, the format of the tasks that were employed 

for this study likely did not represent the norm for the participants.  While all students 

attended class periods specifically designed for preparation for the Missouri Assessment 

Program exams (which were described as at least somewhat driven by the discussion of 

contextualized problem situations), this study incorporated only contextually situated 

algebraic tasks. The selection of these tasks follows current recommendations for 

mathematics teaching and learning.  A more detailed breakdown of the tasks that were 

used is provided below.   

Two different problem types were utilized in this study: (a) contextualized 

patterning situations that included visual models and (b) contextualized patterning 

problems that did not include models were presented to students during the interview.  

Contextualized problems encourage students to draw upon their prior experiences 

(Kaput, 1989), promoting reflection on their mathematical representations and thinking 

(Filloy & Sutherland, 1996), and increasing students’ understanding of the topic (Van 

Reeuwijk, 1995). Van Reeuwijk notes that given the opportunity to choose their own 

solution strategy for these contextualized tasks, students fair even better. Furthermore, 

algebra students are more successful in solving contextual-type algebra problems than 

similar problems presented outside of a context (Nathan & Kodinger, 2000). 

Contextualized tasks provide opportunities for the students to reason more flexibly, 

drawing upon their verbal reasoning skills to produce inventive non-standard strategies. 

Problems presented through traditional algebraic notation provide little opportunity for 
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students to employ such alternative strategies, instead often prompting the use of 

potentially maligned manipulation skills. 

Other contextualized problems without visual representations (diagrams) were 

also provided.  Such tasks require students to create their own models of the phenomena 

through various means, including “drawing on their knowledge of many classes of 

functions—to decide, for instance, whether a situation would best be modeled with a 

linear function or a quadratic function—and be able to draw conclusions about the 

situation by analyzing the model” (NCTM, 2000, p. 39).   

Specific Tasks 

The selection of the tasks used in the active interviews (Holstein & Gubrium, 

1995) was based on a few factors inherent to the tasks: (a) they were algebraic in nature, 

and (b) they offered the potential to elicit various strategies.  Given the wide range of 

potential tasks, the first criterion required further definition.  After consideration of 

problems from various studies and texts, tasks that included linear, quadratic, and 

exponential functions were chosen. Since this study looked at students who had recently 

completed an initial algebra course, the topics represented in the tasks were chosen to 

match those covered in an Algebra I course.   Given the focus of this study on student 

algebraic flexibility, task selection was performed with an eye toward tasks that could 

contribute to determining algebraic flexibility.  Previously published tasks were afforded 

preferred status, given that they had undergone field-testing and piloting during prior 

research.  

From this set of tasks, the problems that elicited the widest range of strategies 

while also providing appropriate levels of difficulty during the pilot study comprised the 
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corpus of tasks. Three student volunteers from a private high school participated in the 

pilot study in fall of 2004.  Each participant completed three interviews in which they 

solved seven algebraic generalization tasks.  Based on student responses to the tasks 

during the pilot study, the tasks were modified.  Changes in the tasks included 

clarification of wording and changes in input values.  

After the final selection and modifications were completed, six tasks represented 

the elements of the interview battery.  The tasks used in this study were as follows: the 

Theater Seats problem, the Calling Tree problem, the Cube Sticker problem, the Streets 

and Lampposts problem, the Carwash problem, and the Brick problem. The first three 

tasks were given in the order listed with the remaining tasks given as needed.  Three of 

these problems represented linear increasing situations (i.e. ax + b), with one each of 

exponential increasing and decreasing (ka^x), and quadratic increasing (ax^2 + bx + c).  

The tasks and their mathematical structures are listed below in Table 1.  

 

Task Mathematical Structure 
Theater Seats Linear Increasing 
Calling Tree Exponential Increasing 
Cube Sticker Linear Increasing 
Streets & Lampposts Quadratic Increasing 
Carwash Exponential Decreasing 
Brick Linear Increasing 

 
Table 1. Tasks and their mathematical structures 

 

 Theater Seats problem. The Theater Seats problem was chosen due to its ability to 

promote multiple strategies.  In prior research (Lannin, Barker, & Townsend, under 

review-a) and the pilot study, this task proved capable of eliciting four generalization 

strategies. The Theater Seats problem is provided in Figure 7.   
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Theater Seats Problem 
In a theater there are seven seats in the first row. The increase in the number of seats is 
the same from row to row. Below is a diagram of the first three rows in the theater.  

 
1. How many seats are there in the 4th row of the theater? In the 5th row? In the 10th 

row? In the 20th row? In the 38th row? 
 
2. How many seats are in the 138th row of the theater? Explain how you determined this.  

In the 139th row? 
 
3. Write a rule that would allow you to calculate the number of seats in any row. 

Explain your rule. 
 
 
Figure 7. Theater Seats problem 
 
The Theater Seats problem is a linear increasing situation that establishes a recursive 

relationship for the number of seats in consecutive rows.  The chunking strategy 

represents a useful bridge between the recursive and explicit strategies for this task.   For 

example, a student who noticed the recursive relation “add” 3 between successive rows of 

the theater could “chunk” groups of 3 together to find larger values; building on the fact 

that the third row of the theater contains 13 seats, a student could add a “chunk” of three 

3s, or 9, to find that there are 21 seats in the sixth row. From there, she might add 2 more 

3s on to the value of 21 to find the number of seats for row eight. After using the 

chunking strategy to calculate the number of seats for a few rows, a student might notice 
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that she can “chunk” together any number of rows and add that value to a particular row 

that she had already found.  At this point, the strategy moves from chunking on to the 

previous total to using an explicit strategy to find the number of seats for any row in the 

theater.   

Whole-object reasoning for the Theater Seats problem is possible and can be 

completed correctly through an adjustment. However, it would be difficult for a student 

to use the whole-object strategy correctly for this task.  For example, after calculating 19 

seats for the fifth row, a student decides that he can double this number to find the 

number of seats for the tenth row.  After investigating the effects of doubling between the 

second and fourth rows, he quickly reasons that a doubling of the output does not work in 

this case.  For the doubling to provide the correct solution, the student would have to 

realize that the initial value of seven provided in the first row cannot be included in the 

doubling since that seven seats includes the first set of “3” seats being added; only the 

multiples of three added to each row as the seats numbers increase should be doubled.  

To find the correct total, a student would have to first subtract the four “extra” seats from 

the row she is doubling, then double the amount, and add the four seats back on to 

produce the correct total.  

Development of an explicit formula for this task could also be challenging due to 

the lack of direct correspondence between the row number and the number of seats. For 

example, after discovering the recursive ”add 3” strategy that exists between each row 

and noticing that the first row has seven seats, a student might hypothesize that S = 3n + 

7, where S is the number of seats in a row and n is the row number, represents an explicit 
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rule for modeling this situation.  However, this would produce an incorrect result as the 

number of times three seats are added to each row is one less than the row number. 

 Calling Tree problem. The Calling Tree problem represents an exponentially 

increasing situation where, as in the Theater Seats problem, the recursive relationship is 

described within the context of the problem. The Calling Tree problem is presented in 

Figure 8.  

Calling Tree 
Suzy, Maria, and Dominique need to call everyone in the school about a last-minute 
change in the schedule for the upcoming dance. Fortunately they have designed a calling 
tree for just such an emergency. The calling tree is designed so that each person calls two 
other people. Suzy, Maria, and Dominique each call their two contact students in about 
one minute. Assume that it takes about one minute for each person to contact the two 
students that they are assigned to contact. 
 
1. How many students were contacted during the 5th minute? During the 7th minute?  

During the 10th minute?  During the 20th minute? 
 
2. How many students were contacted during the 37th minute? 
 
3. Explain how you could determine how many students were contacted during any 

given minute. Write a rule that would allow you to calculate the number of 
students contacted during any particular minute. Explain your rule. 

 
Figure 8. Calling Tree Problem 
 
The chunking strategy provides a useful and available extension to those students who 

use a recursive strategy.  As with the Theater Seats problem, an explicit rule is viewed as 

challenging for the student to develop.  However, for this problem, the explicit rule is 

hypothesized as more difficult to develop due to its exponential nature.  If the student 

does not have a good understanding of exponential rules, it is likely that she will continue 

to use recursive or chunking strategies to solve the problem.  A whole-object strategy is 

not useful for this situation, as a doubling of output values does not result in a correct 
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value for a doubling of input values and a linear adjustment (such as subtracting to 

correct for an overlap) does not consistently produce a correct value.   

 Cube Sticker problem. For the Cube Sticker problem (Figure 2, p. 10), a linear 

increasing situation, prior studies have demonstrated that this task elicits all four 

generalization strategies noted in the Generalization Strategy Framework (Figure 5, p. 

15).  The recursive, explicit, and chunking strategies are accessible, with a correct whole-

object strategy requiring a small adjustment.  The recursive strategy is discernable 

through the addition of another block. An explicit rule could be constructed that does not 

require adding to the length of the rod before multiplying.  For example, the explicit 

expression 4n+2 could represent the number of stickers on a rod of length n, with the 

digit four accounting for the four sides of the cubes and the two representing the stickers 

on the end of the rod.  A chunking rule could be developed through iterations of the 

recursive “add four” rule.  For example, after finding that 18 stickers are needed for a rod 

of length 4, a student could chunk together three 4’s to find the number of stickers for a 

rod of length 7. The whole-object strategy could be correctly applied if the student saw 

that that a doubling of rods leads to an overlap of two stickers.  For example, a student 

who found that a rod of length 5 required 22 stickers might assume that a rod of length 10 

would require twice as many (44 stickers).  This amount would be incorrect due to an 

over-count of two stickers produced when the ends of the two length-5 rods were put 

together to form the rod of length 10.  A correction could be made by subtracting the two 

stickers that are no longer on the outside of the rod.  

 Carwash problem. The Carwash problem represents a more challenging situation 

in that the recursive   relationship is not immediately discernable.  The change from term 
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to term is difficult to discern due to the fact that the change is not the same and 

calculation of successive terms is not possible without having already constructed an 

effective explicit or whole-object strategy.  The Carwash problem is presented in Figure 

9.  

 

 

 

 

 

 

 

Figure 9. Carwash problem 

This inverse variation situation is most readily modeled through a whole-object strategy.  

A student could reason that if 40 washers require 2 hours to wash the cars, half as many 

washers (20) would take twice as long (4 hours) to complete the job. The same reasoning 

could easily be used to find the number of hours needed for 10, 5, or even 80 washers. 

However, problems could occur if a student attempted to use whole-object reasoning for 

an input value that is not a power of two.  For example, a student who uses a whole-

object strategy to find the number of hours needed when there are 30 washers would have 

to have a more sophisticated understanding of proportional reasoning.  To answer the 

problem correctly, a student could reason that 30 washers is ¾ of the number that washed 

the cars in 2 hours.  Even this reasoning could prove problematic if the student did not 

understand how to complete the computation. Given that recursion is problematic, a 

Carwash Problem 
A team of 40 car washers can clean 100 cars in only 2 hours. Assuming that each 
car washer continues to clean at the same rate, answer the following questions: 
  

1. How long will it take a team of 20 car washers to wash 100 cars? How 
long if there are 30 car washers? How long if there are 10 car washers? 

  
2. How long will it take a team of 60 car washers to clean 100 cars? 

  
3. Write a rule or formula for how long it will take a team with any number of 

car washers to clean 100 cars. Explain your rule or formula. 
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chunking strategy would prove just as difficult, as the chunking of recursive steps 

requires prior recursion.  

 Streets and Lampposts problem. The Streets and Lampposts problem represents a 

situation in which an explicit rule is more difficult to obtain, due to its quadratic nature.   

It was hypothesized that such a task would challenge student beliefs that an explicit rule 

is always attainable and beneficial to develop.  The Streets and Lampposts problem is 

presented in Figure 10.   

 

 

 

 

 

 

 

 

 

Figure 10. Streets and Lampposts problem 

The construction of an explicit formula is likely more difficult due to the variable rate of 

change that exists as the number of streets increases.  For example, the number of posts 

needed for two, three, and four streets is 1, 3, and 6, respectively. Without a strong 

visualization of how the streets intersect each other or knowledge of developing quadratic 

formulas through given values, a student would likely not model this situation explicitly, 

as the recursive relationship does not provide for the determination of linear slope. As 

Streets and Lampposts 
In Crazytown every street intersects every other street exactly once. The streets are 
not necessarily straight. Only two streets meet at any one intersection. The city 
wishes to erect a lamppost at every intersection. 
 
1. How many lampposts would be needed if there was 1 street in Crazytown? 2 

streets? 3 streets? 5 streets?  10 streets? 20 streets?  Explain how you 
determined these. 

 
2. How many lampposts would be needed if there were 42 streets in Crazytown? 

138 streets?  139 streets?  Explain how you determined these values. 
 
3. Write a rule or formula that would allow you to find the number of lampposts 

for any number of streets. Explain your rule or formula. 
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previously noted, the rate of change between successive streets is not the same, making 

the recursive relationship less apparent than in linear situations.  However, the recursive 

strategy remains accessible to most students. For example, a student who understands 

why the number of new posts needed for four streets (3) is one more than was needed for 

three streets (2) could generalize that the number of new posts needed for each successive 

street is one more than the previous number required.  The student might also realize that 

the number of new posts needed for each new street is one less than the street number. 

While the recursively added term changes for each iteration, the chunking strategy 

remains a viable strategy for students working this task.  Once a student discovers the 

recursive pattern, it is likely that she would be able to “chunk” several values together to 

find the value for a larger input. For example, a student who understands the recursive 

relationship could take the number of posts required for four streets (6) and add a chunk 

of 15 (4+5+6) to find the number of posts needed for seven streets.  The whole-object 

strategy is essentially unusable for this task. For example, a student who reasons that 

eight streets (22 posts) should require twice as many posts as four streets (6 posts) would 

not produce a correct solution.  Any sort of correction would require an advanced 

understanding of quadratic relationships.      

 Brick Problem. The Brick problem is a task in which all four strategies are fairly 

easy to develop.  This task is a linear increasing, direct variation situation.  The Brick 

problem is provided in Figure 11.  
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Figure 11. Brick problem  

The recursive strategy is easily found as the rate of change is constant between successive 

terms (3 bricks) and the recursive relationship is illustrated in each column of the 

diagram.  Chunking is similarly accessible, as the chunks of 3 follow directly from the 

recursive relationship.  A whole-object strategy will also work as no adjustment is needed 

for any iteration of values.  For example, the number of bricks required for a path of 

length six (18) is twice the number needed for a path of length three (9).  The explicit 

strategy is also easily deduced as the length of the path multiplied by 3 produces the 

correct number of bricks; there is no “initial” value to be considered when developing an 

explicit rule for this situation. Given that all four strategies are accessible to most 

students, I hypothesized that most students would solve this problem explicitly, due to the 

utility of an explicit strategy is finding the outputs for large values.  The impetus for the 

Brick Problem 
 

 
 

1. a) How many total bricks are needed to make Tiger Path of length 7? 10? 
20? 25? 

 
2. How many total bricks are needed for a Tiger Path of length 187? Explain 

how you found this. 
 
3. Write a rule or a formula to find the total number bricks needed to make a 

Tiger Path of any length.   
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inclusion of this task was to draw a contrast between the other linear increasing situations 

and this one so that students could grapple with the proper use of the whole-object 

strategy.   

Core Task Selection 

At the beginning of the study, I created a list of core tasks that would be 

completed by each student.  Given that every student agreed to three 30-minute sessions 

or two 45-minute sessions, I felt comfortable that each student could complete at least 

three tasks.  As noted earlier in this chapter, the six tasks selected as possibilities for this 

study were chosen due to their abilities to provoke various strategies and their 

mathematical structure. The same criteria were used in the selection of the three tasks that 

comprised the core.   

The Theater Seats problem (Figure 7) and the Cube Sticker (Figure 2, p. 10) 

problem were chosen as core problems due to their propensity to elicit multiple strategies 

and for their similar mathematical structure (each represented a linear increasing situation 

that did not vary directly).  Prior research (Lannin, Barker, & Townsend, under review-a) 

that utilized these two problems demonstrated that each was capable of eliciting all four 

previously documented strategies (explicit, whole-object, chunking, and recursive).  

Given that one of the foci of this study centered on the strategies that students chose to 

employ, problems that have been shown to elicit all four strategies were critical to 

ensuring the accuracy of the results.  As previously noted, the Theater Seats and Cube 

Sticker problems share the trait of being linear increasing situations, a facet that played 

an important role in determining cross-task flexibility.   
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The Calling Tree problem was selected due to its different mathematical structure, 

along with its ability to elicit multiple strategies.  Whereas the Theater Seats problem and 

the Cube Sticker problem represent linear increasing situations, the Calling Tree problem 

is an exponential increasing situation.  By situating this problem between the two linear 

situations, the students were unable to directly apply their same strategy from one 

problem to the next.  Once again, this helped to preserve the integrity of the measure of 

cross-task flexibility by providing a mathematical context that required a different 

approach.  The Calling Tree Problem also played an important role in determining 

strategy use.  Student responses in the pilot study demonstrated that this situation elicited 

multiple strategies.  

After the core tasks were administered, the remaining tasks were selected for each 

student on a case-by-case basis.  Depending on the mathematical issues that had either 

been provoked or resolved, different tasks were used.  For example, students who 

exhibited difficulty explaining why the whole-object strategy did not work while solving 

the Theater Seats problem or the Cube Sticker problem (i.e., they did not appear to see 

the impact of the initial value in the problem) were given the Brick problem in an attempt 

to get the students to grapple with the intricacies of the strategy when used in similar, yet 

different, mathematical contexts. For example, if a student had difficulty understanding 

why the whole-object strategy was not applicable to these situations (without a 

correction), the Brick problem was given in an attempt to offer the students another 

perspective on the phenomenon.  The Brick problem is a linear increasing situation that 

varies directly, which allows for the whole-object strategy to be applied without 
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adjustment.   Responses during the pilot study suggested that this problem could help 

students grapple with the whole-object strategy.   

The final two tasks that were used were the Carwash problem and the Streets and 

Lampposts problem.  To complete either of these tasks required a significant amount of 

time, generally meaning that students would likely not attempt both tasks. Ultimately, the 

Carwash problem was given preference due to its proclivity in eliciting the whole-object 

strategy, as per the pilot study.  

Due to the wide range of participant performance levels, variation occurred in the 

number of tasks completed by each participant.  Every participant in the study, except 

one, completed the three “core” tasks that were used to determine overall strategy use. 

Once the participants had completed the three core tasks, most were given additional 

tasks to solve.  Decisions surrounding the particular tasks that each participant was given 

to complete were based on the amount of remaining time available and the particular 

participant’s responses to prior tasks and questions.  For example, Dave moved through 

the core tasks fairly quickly and was able to complete all six tasks within the three 

sessions.  Chrissy, on the other hand, worked meticulously through the problems and was 

only able to complete the three core tasks and the Carwash problem. Since Gavin seemed 

to have a good understanding of whole-object strategy and its use, he was not provided 

the Brick problem. The Brick problem was provided to participants who did not have a 

good understanding of the whole-object strategy in an effort to stimulate disequilibrium 

about the viability of the whole-object strategy in different linear increasing situations; 

the Brick problem does not require an adjustment for doubling as it has no “initial value.”  

A list of tasks completed by each participant in presented in Table 2. 
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Participant Core Tasks Other Tasks 
Adam Theater Call Cube S & L Carwash Brick 

Bridgette Theater Call Cube   Carwash   
Chrissy Theater Call Cube   Carwash   
Dave Theater Call Cube S & L Carwash Brick 

Elizabeth Theater Call Cube S & L   Brick 
Fran Theater Call         

Gavin Theater Call Cube S & L Carwash  
Hailey Theater Call Cube     Brick 

Iza Theater Call Cube     Brick 
John Theater Call Cube     Brick 

Karen Theater Call Cube   Carwash Brick 
 
Theater = Theater Seats problem 
Call = Calling Tree problem 
Cube = Cube Sticker problem 
S & L = Streets and Lampposts problem 
 
Table 2. Tasks completed by participants 
 
 Seven of the eight participants at School A attended three interview sessions, with 

the exception of Fran.  Fran declined further participation in the study after time 

constraints made subsequent participation difficult.  As noted in Table 2, 2 of the 7 

participants from School A completed all six tasks in the allotted three sessions.  

The three participants from School B each completed two interviews. Due to 

scheduling agreements made with officials at School B, two interviews were scheduled 

and completed with each participant instead of three. Given the fewer meetings, these 

participants had less total time to complete the tasks.  However, each of the participants 

from School B completed at least four tasks (Theater Seats, Calling Tree, Cube Sticker, 

and Brick problems), with one participant also engaging in the Carwash problem.   

Alternative Strategies 

Alternative strategies were developed for the Theater Seats problem (see Figure 

7).  The Theater Seats problem was the first task administered to each participant and the 

alternative strategies for the Theater Seats problem were shown to the students 
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immediately after their work with the task.  As previously noted, one alternative student 

strategy was provided for each of the four generalization strategies.  The alternative 

strategies are provided in Figure 12 in the order presented to the participants: explicit, 

whole-object, recursive, and chunking.  

 

 
Abby 
It goes up 3 each time and there are 7 seats in the first row, so my rule is 3*N + 7. 
 
Bobby 
To find the number of seats in the 40th row, just double the number in the 20th row. There 
are 64 seats in the 20th row so there are 2 x 64 or 128 seats in the 40th row. 
 
Claire 
To find the number of seats in the next row, just add 3 each time. I wrote my rule: NOW 
+ 3 = NEXT. 
 
Danny 
For the 13th row, I know there are 34 seats in the 10th row, so I added a total of 9 seats for 
the next 3 rows.  
 
 
Figure 12. Alternative Strategies 
 
 Each alternative strategy was written from the perspective of another student who 

had completed the Theater Seats problem.  The rationale for introducing these strategies 

as student generated rules was to minimize the potential for assumed correctness; it was 

hypothesized that students would be more apt to believe that the rules were correct if they 

originated from the researcher.  By situating them in the context of a potential peer, I 

hypothesized that the students would be more likely to consider the rule in light of the 

context before rendering judgment.  Given that the students in the pilot study and this 

dissertation study evaluated some rules as viable and others as not viable, depending on 
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their understanding of the context, the presentation of the rules as student responses 

seemed to be justified.  

 While the alternative strategies illustrated in Figure 12 pertain explicitly to the 

Theater Seats problem, this set of alternative strategies was presented to the students for 

consideration for each of the six problem situations.  The decision was made to use the 

same set of strategies for a few reasons.  First, it was hypothesized that maintaining the 

same set of strategies would allow students to focus on an individual strategy without 

having to consider a different presentation of each strategy for each problem.  I also 

thought that using the same set of strategies would force the students to re-conceptualize 

each strategy for the new situation. This required the students to focus on the strategy 

itself, instead of the correctness of the answers that the numbers would provide if the 

strategies were specific to each problem. 

Utilizing elements of an active interview, each student was asked to discuss 

whether or not they believed each fictitious student strategy would work to model a 

particular situation and justified his or her claim.  If a student considered a strategy as 

viable, he or she was asked to discuss the potential advantages and limitations of using 

the strategy. If a student did not view a strategy as viable, he or she was queried as to 

what changes, if any, could be made to the strategy so that it would apply to the particular 

situation or whether he or she could describe a situation where the strategy would be 

valid.  For example, a student considering Abby’s strategy (Figure 12) says that it is not 

valid.  However, after being asked if it could be modified to produce a correct rule, the 

student notes that it would be correct if the + 7 was changed to + 4.   Students were also 

asked how the strategy compared to other strategies in terms of preference of use and 
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likeness to their own. The questions regarding the viability and utility of strategies 

provided data to answer research questions two and three by shedding further light into 

students’ views of the strengths and limitations of various strategies.  The interview 

protocol can be found in Appendix A.   

Procedure 

Each student participated in two or three 45-minute active interviews (Holstein & 

Gubrium, 1995) conducted by the author.  Interviews were chosen as the data collection 

method due to their ability to “incite the production of meanings that address issues 

relating to particular research concerns” (Holstein & Gubrium, 1995, p. 17).  Active 

interviews were specifically selected because they “eschew the image of the vessel 

waiting to be tapped in favor of the notion that the subject’s interpretive capabilities must 

be activated, stimulated, and cultivated” (p. 17).  Active interviews focus on 

conversations with the participants instead of coaxing them into preferred answers.   

During each interview session, the participants were asked to generalize a variety 

of tasks, one at a time.  The tasks were purposefully ordered in an attempt to best capture 

cross-task flexibility.  Linear increasing situations were not presented consecutively so 

that the same strategies would not necessarily apply to successive tasks. The Theater 

Seats problem, a linear increasing situation, was the first task given to each student.  This 

task was followed by the Calling Tree problem, an exponentially increasing situation and 

another linear increasing situation, the Cube Sticker problem, to complete the core tasks 

that every student was to solve.  As each participant attempted to generalize various parts 

of a particular task, the researcher prompted the student for justifications of the various 

rules and solutions that the student constructed. The data produced from the student 
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solutions for the tasks was utilized to answer research question one concerning student 

algebraic strategy use.   

After participant completion of each task and the subsequent discussion of his or 

her strategies, I then shared sample student strategies that represented each of the four 

algebraic generalization strategies (recursive, explicit, whole-object, and chunking). 

These alternative student strategies (Figure 12, p. 65) were used in an attempt to gauge 

participant understanding of the generalization strategies, and their accompanying 

justifications, including those they might not have considered or those they chose not to 

articulate.  Information gleaned from participant work with the alternative student 

strategies aided the researcher in answering research questions two and three that deal 

with within-task and cross-task flexibility by providing data on the participants’ abilities 

to understand various strategies for a particular problem situation.  Participants were 

asked questions to determine the following about their understanding of each alternative 

strategy:  (a) whether or not the participant found the strategy to be valid (this included 

information concerning if and how the student could change the strategy to make it valid 

for the particular situation), (b) whether or not the participant could develop a rule to 

model the current task using the particular strategy, (c) whether the participant provided 

an empirical or contextual justification for their response, (d) advantages and 

disadvantages of the particular strategy (if they found it to be valid), and (e) if they would 

use the strategy (if valid). This information was used, along with the strategies used by 

the students when solving the tasks, to determine student flexibility, as noted in research 

questions two and three. 

Data Sources 



69 

 

Given the nature of the active interview and the potential richness of the available 

data, several data sources were gathered for this study.  Following the recommendations 

of Rochelle (2000), technological data gathering sources were utilized along with more 

traditional methods.   

Each student interview was captured on both digital and analog audio media so 

that no verbal cues would be missed from the interactions.  The digital audio recorder 

served as the primary recording device due to the higher quality in recording and 

preserving the data.  Written student work completed during the sessions, along with my 

observation notes, were collected to provide another layer of accuracy to the data.  The 

observation notes served to document nonverbal cues that might not have been captured 

on the audio recordings and offered a means for documenting memos for analysis and 

subsequent interview sessions. 

Analysis 

 Each interview session was transcribed verbatim, with student artifacts and 

observation notes used for triangulation.  A data reduction approach (Miles & Huberman, 

1994) was employed to capture the salient mathematical events of each session.  This 

involved the coding of the transcripts with an eye towards generalization strategy (see 

Figure 5, p. 15).  When a particular strategy was noted, the input values, calculations used 

by the student, and output values were documented.  This documentation of student 

strategies was used to answer research question one, which deals with the generalization 

strategies employed by student when solving algebraic tasks.    

 

Strategy codes   
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A chronological mapping of the strategy codes was created for each task.  These 

strategy tables (i.e. within-case displays, Miles & Huberman, 1994) helped to provide a 

visual representation of the strategies used, and the order in which they occurred, while 

working through a particular task.  An example of a strategy schematic for the Cube 

Sticker Problem is provided in Table 3. 

 
Cube Sticker    

Strategy 
Classification Input Value Calculations Output Values 

Whole-Object 4 
10-2(for the ends)=8  

8*2+2=18 18 
Recursive  5 18+4=22  22 

Whole-Object 10 22-2=20   20*2+2 42 
Whole-Object 20 Same 82 

Whole-Object 38 40*3+16*2+2 154 
Whole-Object 120 80*6+2 482 

Recursive 121 482+4 486 
Explicit R 4*N+2   

 
Table 3: Example strategy schematic for analysis 

 
 
 This particular schematic illustrates the path taken by a student in solving the 

Cube Sticker problem (Figure 2, p. 10). The student employed a whole-object strategy for 

a rod of length four by subtracting 2 stickers for the ends of the given rod, doubling the 

remaining stickers, and adding the ends back on to bring his total to 18 stickers for a rod 

of length four.  After using a recursive strategy of adding 4 to find the value for a rod of 

length five, the student returned to his whole-object reasoning for values ten, 20, 38, and 

120.  For the case of a rod of length 121, the student returned to using a recursive 

strategy.  While this schematic lists only the whole-object, recursive, and explicit 

strategies, the use of the chunking strategy would have been similarly represented in the 
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schematic as well.  After the student developed a generalization for the task, the fictitious 

student strategies that were discussed were documented in a separate schematic. A 

sample alternative student strategy schematic is provided below in Table 4. 

 

Brick       
Strategy Valid Rule Justify Explanation Advantage/Disadvantage Domain 

Explicit Y Y 
Contex

tual 
Change +7 to 

+4 A-Everything D-None 
None 
Stated 

Whole-
Object Y Y 

Contex
tual 

Because 2 rows 
would be 6 and 
4 rows would 

be 12 

D-To find twice of 
something, you'd have to 
know what 1/3 or 1/4 of 

something is. 

A lot of 
the time, 

if we 
need to 
double. 

Recursive Y Y 
Contex

tual 

It's basically his 
rule. 
+3 

A- Use if you needed the 
next row D-is harder 

because of not 
multiplying.  Would take 

longer. 
Every 
time 

Chunking Y N 
Contex

tual 

Exactly like his, 
except in words 

(incorrect).  
Every 
time 

 

Table 4. Sample alternative student strategy schematic 

The type of strategy, the student’s view of the viability of the strategy, whether or 

not the participant was able to develop a mathematically correct rule representing the 

particular strategy, the type of justification used to explain the rule (conceptual or 

empirical), the participant’s explanation of the strategy or changes she would make to the 

strategy (including any rules developed), the advantages and disadvantages noted for 

each strategy, and the values or times when the participant would use the particular 

strategy are contained in these tables.    

 Check coding for two of the eleven students was performed by a mathematics 

education faculty member to ensure that the coding accurately represented the 
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happenings of particular sessions. No discrepancies were found between my codes and 

the check-coding.  

After all sessions were coded for strategy use and alternative strategy use, within-

task and cross-task flexibility were considered.  Individual within-task flexibility was 

determined using only those codes used within a particular task.  For example, flexibility 

for a particular problem was determined by a student’s use and understanding of explicit, 

whole-object, chunking, and recursive strategies for that task.  Cross-task flexibility was 

determined by the strategies utilized by students across the various tasks.  For example, 

consider a student who completed the Theater Seats problem and the Cube Sticker 

problem. 

 If the student developed a mathematically correct explicit rule for the Theater 

Seats Problem, could provide a contextual justification for her rule, and could do the 

same for the Cube Sticker problem, the student was considered to exhibit a high level of 

cross-task flexibility for the explicit strategy.  The discourse and student justification of 

how they developed the generalization were important for determining the degree of 

cross-task flexibility demonstrated by the student.  Assisting in this analysis were the 

diagrams of participant strategy use.  When considered alongside the diagrams of 

alternative strategy understanding, a more accurate and complete description of cross-

task flexibility emerged.   

Alternative Strategy Criteria 

With a goal of determining student flexibility in strategy use, criteria were 

developed to categorize student strategy understanding. While much of the information 

used to construct the criteria emerged from the data, the determination of the levels of 
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strategy understanding relied heavily on previous research (Lannin, Barker, & Townsend, 

under review-a) to establish core tenets of what it means to have high, moderate, and low 

flexibility for each task.  While some of the requirements for a particular rating were 

dependent upon the task, a set of core elements for high, medium, and low ratings for 

each strategy were developed to provide consistency across tasks.  For example, students 

who were able to produce contextual justifications for their explicit rules appeared to 

have better understanding of the intricacies of their rules and where a strategy could be 

applied.  Therefore, contextual justifications represented one of the key factors for a 

classification of high flexibility, regardless of the task.  An outline of the core tenets for 

determination of participant understanding of the explicit strategy is provided in Figure 

13.  

High: The student states that an explicit rule exists, provides a correct general rule, and 

offers a valid contextual justification. 

 

Medium: The student states that an explicit rule exists, provides a correct general rule, 

and offers an empirical justification.  

 

Low: The student states that an explicit rule exists, but does not provide a correct general 

rule or does not offer a valid contextual or empirical justification, OR the student states 

that an explicit rule does not exist.  

 

Figure 13. Explicit strategy criteria 
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Each strategy for each problem situation was classified by two to three levels in 

the rubric, representing either high, medium, and low or high and low levels of 

understanding of the particular strategy within the problem context. The rubrics 

underwent several iterations to produce consistent descriptions of levels of flexibility by 

task. The rubrics of criteria for each problem are located in Appendix B.  

For some tasks, the participants exhibited more difficulty generating a general 

rule than for other tasks.  For example, finding a general explicit rule to model the Streets 

and Lampposts or Carwash problem was more difficult than developing one for the Brick 

problem.  This was primarily due to the mathematical structure of this task; the Streets 

and Lampposts task is a quadratic increasing situation and the Carwash problem is an 

inverse variation situation, while the Brick problem represents a linear increasing direct 

variation situation.  

Once the criteria were developed, each participant response regarding a particular 

strategy for a particular task was categorized as high, medium, or low based on the rubric.  

This initial categorization served as a key component in determining algebraic flexibility.   

However, participant strategy use also played a key role in ultimately determining 

algebraic flexibility, as well as in checking the accuracy of the alternative strategy rubric.  

In considering algebraic flexibility, the alternative strategies provided a look at 

participant understanding of different strategies, regardless of the strategies that were 

used when initially working through the problem situation. However, flexibility of 

strategy use for a particular situation inherently includes the strategies that the 

participants employed when initially generalizing the problem situation.  In short, both 
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the understanding of alternative strategies and the strategies used in solving a particular 

problem represent demonstrations of algebraic flexibility.   

 As previously noted, the categorizations of the participant interpretations of the 

alternative strategies comprised the initial flexibility framework.  The participant-

developed strategies were then categorized using the alternative strategy rubrics and 

checked against the categorizations of the alternative strategies.  In the case of a 

disagreement between the two categorizations, the assessment of the participant’s actual 

work was taken as the more representative example of the participant’s understanding of 

the particular strategy within a particular problem context.  For example, consider a 

participant that received a low classification for the explicit strategy when considering 

alternative strategies for the Cube Sticker problem.  If the same participant correctly 

employed an explicit strategy when generalizing a task, the participant produced explicit 

strategy was considered in place of the alternative strategy and was scored using the 

alternative strategy rubric.  The reason behind this decision centered on the participant 

having a better grasp of the rule that they developed than the rule that they interpreted 

and changed to represent a particular strategy.  The cases representing disagreement were 

few in number and represented only 6% of the total classifications. For example, Adam 

received a medium rating for his understanding of the whole-object strategy in terms of 

the Theater Seats problem under alternative strategy scoring, due to his empirical 

justification that a whole-object strategy would not work for the task.  Given that Adam 

employed a modified whole-object strategy for when generalizing the task initially, his 

use of the strategy was judged and compared to his alternative strategy score.  In this 

case, as in most of the cases, the scores were the same.   Most of the disagreements were 
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due to either a participant not understanding how the given rule applied to the particular 

situation or, in a few cases, the participant providing brief responses due to time 

constraints. 

Summary 

 Eleven tenth-grade students from two rural schools participated in interviews 

centered on the completion of contextualized algebraic generalization tasks.  After the 

student completed a task and answered questions about how his rules were developed, 

alternative student strategies were provided to the student for consideration.  All 

interviews were digitally audio recorded and transcribed.  The transcripts, researcher 

observation notes and student work comprised the data analyzed.  Open coding, followed 

by axial coding was performed so that salient categories could emerge. Student strategies 

were examined and classified for mathematical correctness.  Student reactions to 

alternative strategies for each problem were documented as well.  Both the student 

strategies and the students’ understandings of the alternative strategies contributed to 

their respective levels of flexibility for each problem. 

 In the next chapter, I provide my interpretations of the collected data, focusing on 

algebraic strategy use and flexibility.   
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CHAPTER IV 

 
DATA INTERPRETATIONS 

 
 
 This study documents the generalization strategies used by secondary students as 

they generalized algebraic problems as well as documents the flexibility of these students 

in understanding and using algebraic generalization strategies. Algebraic flexibility has 

two components: (a) within-task flexibility (determination of the viability of various 

strategies for a particular task), and (b) cross-task flexibility (determination of the 

applicability of a strategy across tasks).   In this chapter I provide an analysis of active 

interview sessions for which eleven participants generalized algebraic tasks and 

considered alternative student strategies.   

 This chapter begins with a look at the algebraic generalization strategies that the 

participants employed as they were solving the generalization problems, as outlined in 

research question one: What strategies do secondary students use when generalizing 

numeric situations and how do they use these strategies?  Participant strategy use data 

were analyzed and described from several perspectives.  Participant strategy use by task 

is described first, followed by a discussion of overall participant strategy use.  This 

section of the findings also includes a description of how the strategies documented in 

this study align with those noted in the Algebraic Generalization Strategy Framework.  
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The algebraic generalization strategy section of this chapter concludes with a look at the 

effectiveness of the participants in using the strategies and strategy use by participant.   

 To address research question two (To what extent do students exhibit within-task 

strategic flexibility when generalizing algebraic tasks?) and research question three (To 

what extent do students exhibit cross-task strategic flexibility when generalizing 

algebraic situations?), the data sources were analyzed with an eye towards determining 

participant algebraic flexibility.  Algebraic flexibility was analyzed separately by its 

components, within-task flexibility and cross-task flexibility.  The section of this chapter 

on flexibility begins with a look at within-task flexibility.  Individual participant within-

task flexibility ratings are discussed for each of the three core tasks, followed by a 

discussion of overall within-task flexibility for each of the eleven participants. The 

section concludes with a look at cross-task flexibility.  As with within-task flexibility, 

individual cross-task flexibility ratings are provided for each of the core tasks, with 

overall cross-task flexibility discussed for each participant.   

Participant Strategy Use 

Participant work on tasks, transcribed audio recordings of the interview sessions, 

and researcher notes were used to determine each participant’s use of algebraic 

generalization strategies for a particular task and across the corpus of tasks.  More 

specifically, the participant work on the tasks provided documentation of the particular 

strategies used for each task.  The audio taped transcriptions allowed for the 

documentation of strategies that might not have been scribed by a participant during the 

completion of a task, provided information regarding the generality of the strategies 

provided by the participants, and served as triangulation for the data gleaned from the 



79 

 

participant work.  The researcher notes offered insight into specific instances where 

participant work, remarks, or actions were of particular importance. In this section of the 

analysis, these data provided a look at the initial strategies employed by the participants 

in generalizing the algebraic tasks.   

Overall Participant Strategy Use 
 

When I selected tasks to be used for this study, algebraic generalization situations 

that harbored the capacity to elicit multiple strategies were preferred.  Ultimately, tasks 

that had been shown to elicit multiple strategies during previous research studies were 

chosen for the study.  

After I coded each participant’s interview transcripts for strategy use (utilizing the 

Generalization Strategy Framework and elements of grounded theory so that new 

strategies could emerge), participant-by-task tables were created that depicted the 

strategies that were used, the input values for the particular strategies, information on 

how the strategies were applied, and the output values resulting from the computations.  

These tables will be discussed later in this chapter under the section “Individual 

participant strategy use.” Information (i.e., the task, the participant produced strategy, 

strategy classification, and contextual/numerical determination) from these individual 

tables were combined in tables that depicted the strategies used, by problem, for this 

study.  

With the exception of the Theater Seats problem, the strategies that the 

participants produced for the various problem situations were developed after the 

participants had seen the fictitious student strategies for at least the Theater Seats 

problem.  For example, a participant working through the Cube Sticker problem was 
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previously exposed to the set of alternative strategies twice: once after completing the 

Theater Seats problem and then again after working the Calling Tree problem. While 

sharing fictitious student strategies with participants may have impacted the participants’ 

knowledge of the alternative strategies, the data supply little evidence that the impact was 

substantial. For example, Bridgette employed only a recursive strategy for the Theater 

Seats problem.  After viewing the alternative student strategies, Bridgette continued to 

use only a recursive strategy for the subsequent problems, except for the Car Wash 

problem (which is considered as a special case later in this chapter).  Dave similarly used 

two strategies for the Theater Seats problem and continued to use only those strategies 

throughout his work on the tasks.  In other cases where a new strategy did emerge, the 

factor that seemed to impact the participant’s strategy use was inherent to the task.  For 

example, Hailey did not use an explicit strategy for either of the first two tasks.  

However, when she began work on the Cube Sticker problem, Hailey developed an 

explicit rule to model the situation before she employed any other strategy.  She 

explained that there were four sides for each cube and there were two sides on the ends.  

Her ability to visualize the context of the problem seemed to lead her to the development 

of an explicit strategy for the task.   

The following table illustrates how the various strategies were employed for the 

problems in this study. 
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Table 5. Overall participant strategy use 
 

The “Total” column represents the total number of times the strategy was used by 

the participants in the study while initially generalizing the problem situations.  The next 

column, percent used, denotes the percentage of the total number of strategies used of the 

Task Strategy Total Percent Used 
Theater Seats Explicit 27 30.3 

 Whole-Object 1 1.1 
 Chunking 13 14.6 
 Recursive 46 51.7 
    

Calling Tree Explicit 23 20.7 
 Whole-Object 0 0.0 
 Chunking 13 11.7 
 Recursive 75 67.6 
    

Cube Sticker Explicit 42 45.2 
 Whole-Object 12 12.9 
 Chunking 4 4.3 
 Recursive 35 37.6 
    

Brick Explicit 38 92.7 
 Whole-Object 0 0.0 
 Chunking 0 0.0 
 Recursive 3 7.3 
    

Streets & Lampposts Explicit 2 15.4 
 Whole-Object 0 0.0 
 Chunking 0 0.0 
 Recursive 11 84.6 
    

Carwash Explicit 5 20.0 
 Whole-Object 18 72.0 
 Chunking 0 0.0 
 Recursive 2 8.0 
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particular strategy.  For example, an explicit strategy was used around 30% of the time by 

the participants in this study when solving the Theater Seats problem.   

Four Algebraic Generalization Strategies 

Although the analysis for documenting participant strategy use was done with an 

eye for emergent categorical classifications, only the four strategies listed in the 

Generalization Strategy Framework (Figure 5) are depicted in the table above. All 

strategies used by the participants in this study could be classified as explicit, whole-

object, chunking, or recursive.  Thus, the strategies that are used by elementary and 

middle grades students are the same strategies used by secondary students who have 

completed a course in algebra.  

A few specific cases of potential new categories were noted during the analysis.  

However, each of the instances was considered individually and found to be 

representative of one of the four documented strategies, specifically whole-object or 

chunking.  For example, when working to solve the Cube Sticker problem (Figure 2, p. 

10), Chrissy began to use what was later realized to be a proportional reasoning strategy 

to approximate what she thought to be the correct solution.  To find the number of 

stickers needed for a rod of length 38, Chrissy divided the number of stickers for a rod of 

length 20 (82) by the ratio (20/38). Initially, this strategy was coded as a potential “new” 

strategy.  However, after further analysis, the strategy was marked as “whole-object,” 

after the realization that Chrissy’s strategy involved proportional reasoning.   

As can be seen in Table 5, the Theater Seats problem, Calling Tree problem, and 

Cube Sticker problem produced the greatest diversity of strategy use by the students.  For 

each of these problems, the participants used at least three of the four strategies a non-
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trivial number of times (more than five).  For the Theater Seats problem, the students 

primarily employed recursive, explicit, and chunking reasoning, with only one 

occurrence of whole-object reasoning.  Likewise, for the Calling Tree problem, recursive, 

explicit, and chunking strategies were used.  Regarding the Cube Sticker problem, 

students mostly used recursive, explicit and whole-object strategies, with the chunking 

strategy employed only four times by a single student.  

 While each of these tasks allowed students to use multiple strategies, particular 

problem situations appeared to encourage the use of particular strategies.  For example, 

students used the recursive strategy three times more than any of the other strategies to 

generalize the Calling Tree problem. The Calling Tree problem is provided in Figure 8, p. 

55. Likewise, the Cube Sticker problem (Figure 2) had the highest percentage of explicit 

strategies of the three core problems.  

 The Brick problem, Streets and Lampposts problem, and the Carwash 

problem all produced one main generalization strategy, with one or two other strategies 

used minimally.  For example, 93% of the strategies used to generalize the Brick problem 

were explicit, with recursion representing the only other strategy used. While all four of 

the strategies would have been fairly easy to visualize for the Brick problem, the fact that 

the participants overwhelmingly employed an explicit strategy would seemingly indicate 

that it is explicitly preferred, at least at the secondary level.  For the Streets and 

Lampposts problem, participants used a recursive strategy nearly 85% of the time. 

Seventy-two percent of the strategies employed when working the Carwash 

problem (Figure 9) were of the whole-object variety.  As the participants attempted to 

determine the amount of time required for 20 car washers to wash the cars given that 40 
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washers took 2 hours, they used proportional reasoning to solve the problem.  In fact, the 

participants who succeeded in developing an explicit rule for the situation were only able 

to do so by using their knowledge of division and guessing and checking with the values 

that they obtained using the whole-object strategy.  Dave explained his reasoning for the 

explicit rule that he developed.  He said, “I knew that you had to somehow divide 30 by 

40 or 40 by 30 to get a number and then multiply or divide it by two to get the time.  So I 

just guessed and checked to figure out which one would work right…Dividing is going to 

make this number bigger.” 

Effective Strategy Use 

The three core problems were considered to determine how effective participants 

were in using the various strategies. The Theater Seats, Calling Tree, and Cube Sticker 

problems were used in this analysis due to the fact that they elicited multiple strategies. 

Given that these tasks provided the most opportunities for the participants to use the 

available strategies, these problems provided the basis for the effectiveness analysis.   

By combining the number of instances in which a participant used a strategy 

correctly and incorrectly when initially attempting to generalize each of the three core 

problems, the following table was produced.  This table represents correct and incorrect 

strategy use by strategy type, as well as the percent of the strategies used correctly (% 

correct).   

 
Strategy Correct Incorrect % Correct 
Explicit 55 37 59.8 

W/O 9 4 69.2 
Chunking 27 3 90.0 
Recursive 144 12 92.3 

 
Table 6. Effective Generalization Strategy Use 
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As can be seen Table 6, not only was the recursive strategy used the most number 

of times for the three core problem situations, but it was also used most successfully.  In 

looking at the individual participant strategy tables, the recursive strategy was often the 

first strategy used and was usually used correctly with the smaller values associated with 

the beginning of the tasks.  Participants often did not move to other strategies until they 

were asked to determine the output values for larger input values and the recursive 

strategy proved inefficient.  For example, when discussing the advantages and 

disadvantages of the recursive strategy in terms of the Cube Sticker problem, John noted 

that he knew the recursive strategy would produce the correct answer, due to his 

extraction of the recursive relation from the context.  However, he added the caveat, “but 

it is going to take forever if you want to find the length for 121.” 

  While exceptions existed to the use of the recursive strategy prior to other 

strategies (e.g., Adam employed the whole-object strategy for the Cube Sticker problem 

prior to using a recursive strategy), most participants followed this pattern of strategy use. 

Participants consistently used recursion when asked to find the output value for a large 

input value after finding the input value that immediately preceded it.  For example, if a 

participant was asked to find the number of stickers for a rod of length 121, after finding 

the number of stickers for a length-120 rod, participants would often employ recursive 

reasoning.  Although there were cases where a participant would continue to use her 

explicit rule, for example, to find the next value, most of the time the participants used 

the recursive relationship to find this value.  For example, in working to find the number 

of stickers for a rod of length 121 for the Cube Sticker problem, Gavin noted, “I could 

use the (explicit) rule, but I just figured, well, I am just going to add four [stickers] more 
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again.  Because [the length of the rod] is just one ahead of 120.”  As the preceding 

statement suggests, participants were likely to arrive at a correct answer when employing 

a recursive strategy for this reason as well.   

The chunking strategy was the strategy that the participants used with the second 

greatest level of success.  While the participants did not use the chunking strategy as 

often as recursive or explicit strategies, the participants in this study were generally 

effective at using the strategy when they did employ it.  Along with recursion, chunking 

was the only other strategy used successfully at least 90% of the time.  

The explicit strategy represented the least effective strategy used by the 

participants in this study.  As can be seen in Table 6, explicit reasoning was used 

correctly 60% of the time.  

The whole-object strategy was used less frequently than the other strategies for 

the three core problems.  The fact that it was used few times made it difficult to compare 

its success to the other strategies.  However, whole-object reasoning, like explicit 

reasoning, was not used as successfully as recursive or chunking reasoning.  

Individual Participant Strategy Use 

The eleven participants of this study fell into four main groups in relation to their 

strategy use.  Each group was characterized by the generalization strategies the 

participants used to generalize the three core problems. Ultimately, consideration of 5 of 

the 6 tasks, excluding the Carwash problem, would produce the same results; the 

strategies that a particular participant used for the three core tasks (Theater Seats 

problem, Calling Tree problem, and Cube Sticker problem) were not augmented by the 

strategies that the same participant used for the Streets and Lampposts and the Brick 
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problems. The groups are named as follows: All group; Recursive, Explicit, Chunking 

(REC) group; Recursive/Explicit group; and Recursive group.   

 

Strategy Use Group Participant 

All Adam, Chrissy 

REC Elizabeth, Fran, Gavin, Hailey, Karen 

Recursive/Explicit Dave, Iza, John 

Recursive Bridgette 

 
Table 7. Participant strategy groups 
 
All Group Strategies 
 

The All group represents participants who employed all four algebraic 

generalization strategies when generalizing the three core tasks. Adam and Chrissy 

comprised the All group. Adam used all four strategies in working to solve the Theater 

Seats Problem.  He began by determining the recursive relationship that existed between 

each row of seats.  This information was used to calculate the number of seats for the 

fifth row from the number of seats in the third row.  When asked to find the number of 

seats for the tenth row, Adam tried to find the answer two different ways.  First, he used 

the recursive relationship that the number of seats increased by three for each row, and 

multiplied the increase in the number of rows from the fifth row to the tenth row (five) by 

the number of seats added from one row to the next (three).  He then added this total to 

the number of seats that he found for the fifth row (19), arriving at 34 seats in row 10.  

Noticing that the movement from the fifth row to the tenth row was a double in terms of 

rows, Adam thought he might be able to simply double the number of seats in the fifth 
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row (19) to get the number of seats for the tenth row.  However, he questioned the 

validity of this whole-object reasoning when he found that this result (38) conflicted with 

the answer found when using his previous chunking strategy (34).  Although he seemed 

to believe the chunking strategy provided the correct answer, he returned to the +3 

recursive strategy that he used to find the initial values of the problem for assurance that 

his chunking strategy produced a correct solution.  This check seemed to reinforce his 

belief that his chunking rule provided correct results for the number of seats as evidenced 

by his subsequent use of this strategy for row 20. However, after using a chunking 

strategy for row 20, he again returned to his recursive strategy to check the validity of his 

answer, beginning with seven and adding three for each row until he reached 20.  At this 

point, Adam continued to use a form of this chunking rule to find the all of the values for 

the rest of the problem.  Had he continued to build upon subsequent values, these 

strategies would have been classified as chunking strategies.  Instead, Adam continued to 

base his values off of the number of seats for the fifth row (19).  Given that this point 

remained fixed for the remainder of his attempts for the Cube Sticker problem, his 

strategy was considered to be an explicit strategy.  Adam’s strategy schematics for the 

core tasks are provided below in Table 8.  
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Theater 
Strategy In  Calcs Out   

Call 
Strategy  In Calcs Out 

Recursive 5 3+3+13 19  Recursive 1-5 

6*2=12, 
12*2=24

… 5=96 

Chunking 10 
(10-5) 
*3+19 34  Chunking 7 

96*4= 
384 384 

W/O(a) 10 

5*2=10, 
so 

19*2=38 38  Chunking 10 384*3  3072 

Recursive 10 
+3 to 
check 34  Chunking 20 

(20-
10)=10 
2^10* 

value for 
10  

3.14
m 

Chunking 20 
(20-5) 
*3+19 64  Chunking 37 

37-20 
=17  

2^17* 
value for 

20   

Recursive 20 
+3 to 
check 64  Explicit R 

2^(x-5) 
*96   

Explicit 38 
(38-5) 
*3+19 108      

Explicit 138 
(138-5) 
*3+19 418  Cube       

Explicit 139 
(139-5) 
*3+20 421  W/O 4 

10-2 
(ends) =8  
8*2+2=1

8 18 

Explicit R 
3(x-5) 
+19     5  22 

     W/O 10 
22-2=20   
20*2+2 42 

     W/O 20 Same 82 

     W/O 38 
40*3+16

*2+2 154 

     W/O 
12
0 80*6+2 482 

     Recursive 
12
1 482+4 486 

     Explicit R 4*N+2   
 
Table 8. Adam’s strategy use schematic 
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The first column of numbers in each schematic represents the input value that the 

participant was considering.  The second column depicts the calculations that the 

participant used when finding a solution for the particular input value.  The last column 

illustrates the output values that resulted from the calculations.   

As can be seen in Table 8, Adam followed a similar pattern when generalizing the 

Calling Tree problem.  After noticing the contextual recursive pattern, Adam successfully 

employed a recursive strategy to find the solutions to input values one through five.  

However, when asked to find the number of students contacted during the seventh 

minute, Adam chunked the differences together to find the answer.  As the numbers (and 

the resulting differences between the output values) became larger, Adam searched for a 

more efficient means for performing his chunking strategy.  For the 20th and 37th minutes, 

Adam used a chunking strategy that built off of the previous value by multiplying that 

value by two to the power of the difference between the number he found and the 

previous number.  His desire to not have to multiply his output repeatedly by two caused 

him to seek out the more efficient chunking strategy, which he ultimately converted into 

an explicit rule by continually building off of the value for the fifth minute (2x - 5 • 96).   

Adam used the whole-object, recursive, and explicit strategies to solve the Cube 

Sticker problem.  Whereas Adam abandoned the whole-object strategy when working the 

Theater Seats problem due to its role in the production of an incorrect solution, he was 

able to successfully adjust the whole-object strategy when working to solve the Cube 

Sticker problem.  When he began working the problem, Adam seemed to quickly develop 

an accurate visual image (Lannin, Barker, Townsend, under review-a) of what was going 
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on in the problem situation.  Given this visual image, Adam was able to employ the 

whole-object strategy to achieve correct results.  He explained,  

“I think that every time it doubles in length, it doubles in stickers and so if the 

length of five equals 22 stickers, you have to take off two for the faces, and then 

since the length of five doubles to equal the length of ten, the length of ten would 

have to be, um, take off the two front and back, the length of five which would be 

twenty, multiply by two for the length of twenty which would be forty, add the 

two faces on to it, which would be 42…” 

Adam’s visual image allowed him to effectively use the whole-object strategy to find the 

solutions for various input values for the Cube Sticker problem.  For example, to 

determine the number of stickers for a length-38 rod, he broke 38 into three groups of 10 

and two groups of 4, applying the whole-object strategy to these four segments. He then 

added the five pieces together along with the two ends.  Adam offered the following 

description of his actions: 

I think that if you can multiply halves of a number to find a whole number, then 

you can multiply thirds to get a whole number, and so to find the 38th [row, I] 

divided [38] by ten [which] is three and four-fifths… The number of [stickers for 

a rod of length] ten, subtracted by two and multiplied by three (gives the number 

of stickers for 30 cubes) and then the eight you divide into fours and subtract two, 

multiplied by two…and then I added the…ends on.  

Adam used similar reasoning to find the number of stickers for a rod of length 

120. He then used recursion to find the value for length 121.  Adam’s explanation of his 

thinking is provided below.  
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Okay, so 120 divided by 20 is 6 and if…we know what the size of 20 is and 

subtract the ends, 20 would equal 80. So 80 times 6 is 480 plus the two ends 

would be 482.  [For] 121, since you only have to add 4 more sides on to each 

cube, you add it on, and then 120 is 482 plus 4 is 486. 

Adam broke the length-120 rod into six rods of length 20.  He then mentally 

removed the ends of the length-20 rods and multiplied 20 by 4, producing the number of 

stickers for the sides of each length-20 rod (80).  Since he had six length-20 rods, he 

multiplied the number of stickers on a length-20 rod (80) by 6, and finished his 

calculation by adding the two end stickers back onto the total. Adam’s visual image of 

the problem situation led him to recognize that ends of the smaller rods had to be 

removed before iterations of the rods could be put together.  This understanding allowed 

Adam to correctly apply whole-object reasoning to various values in the task.  

Chrissy was also included in the All group. Chrissy did not use all four strategies 

during any one problem, but all four strategies were used over the course of the problems. 

Three of the four strategies (explicit, chunking, and explicit) were used in both the 

Theater Problem and the Calling Tree Problem. It should be noted that Chrissy exhibited 

considerable difficulty using any of the four strategies effectively.  In the case of the 

Theater Seats problem, most of her incorrect answers seemed to be a result of focusing on 

numeric relationships instead of the context of the situation.  For example, after correctly 

determining the number of seats for rows four, five, ten, and 20 using a recursive 

relationship that Chrissy developed from the context, she applied a chunking strategy to 

find the number of seats for row 138.  While her initial thinking seemed to be rooted in 

the context (she took 138-20 to give her the number of rows that needed to be added to 
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the 20th row and multiplied that by three because there was an increase of three seats for 

every row), she soon seemed to leave, or at least misunderstand, the context in that she 

failed to add her resulting number of seats to her prior total.  The resulting answer was, 

therefore, off by the number of seats in the 20th row.  After realizing that her rule didn’t 

produce the correct answer, Chrissy began trying to find a pattern in the numbers that 

would produce the correct answer.  Eventually, she did find a rule that would work 

((n+1)*3 +1, where n is the row number), but seemed to forget the intricacies of her rule 

(adding 1 to the row number before multiplying) later when asked to find the number of 

seats in the 300th row.  Once again, this certainly could have been due to her rule not 

being anchored in the context of the problem.   

Similar instances occurred where attempted Chrissy to find patterns in the 

numbers, remained disconnected from the context, and produced rules that ultimately did 

not generalize within a problem situation.  Chrissy’s strategy schematics are provided in 

Table 9.   
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Theater 
Strategy 

In 
put Calculations 

Out 
put  

Call 
Strategy 

In 
put Calculations 

Out  
put 

Recursive 4 +3 16  Explicit 5 5*6=30 30 
Recursive 5 +3 19  Recursive 2 6*2 12 
Recursive 10 +3 34  Recursive 3 12*2 24 
Recursive 20 +3 63  Recursive 3 12+6 18 

Chunking 138 
138-20=118  
118*3=354 354  Explicit 3 6*3 18 

Explicit 138 138*3+3  417  Recursive 4 18+6 24 
Explicit 137 138*3+1   Recursive 5 24+6 30 

Explicit 138 139*3+1 418  Recursive 
6-
10 +6  

Explicit 139 140*3+1 421  Recursive 3 12*2 24 
Explicit R (n+1)*3+1 All  Recursive 4 24*2 48 
Explicit 300 n*3+1 901  Recursive 5 48*2 96 

     Recursive 
6-
10 *2  

Cube     Recursive R Now*2=Next All 

Recursive
, W/O 4 

add a block, 
add 5 Since 

10 for length 
2, double it.   Chunking 20 

(20-10)*10 
(a)  

Recursive 5 
adding 5 
each time 25      

 3 counts 14      
Recursive 4 +5 19      
Recursive 4 +5-1 18      
Recursive 5 -1+5 22      
Recursive 10 -1+5 (rep) 42      

W/O 8 
value for 4 

*2-2 34      

W/O 10 
value of 5*2-

2 42      

W/O 20 
value of 
10*2-2 82      

W/O 38 

(20/38)=.526
(82/.52)= 
157.69 158      

W/O 120 Same 510      
W/O 2 Same 22.5      

 
Table 9. Chrissy’s strategy schematics 
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Recursive, Explicit, Chunking Group Strategies 

The Recursive, Explicit, Chunking (REC) group denotes participants who used 

recursive, chunking, and explicit strategies to generalize the tasks provided in this study.  

This group was the largest group with Karen, Elizabeth, Fran, Gavin, and Hailey 

categorized as members. The two participants in this group who worked the Carwash 

Problem employed whole-object reasoning for that task.  However, they did not use the 

whole-object strategy for any of the other tasks.   

Elizabeth typified the strategies used by the REC group.  Elizabeth, much like 

Adam in the Calling Tree problem, used a recursive strategy initially for the Theater 

Seats problem when provided small input values.  She developed a chunking strategy 

from her recursive rule that ultimately resulted in an explicit strategy [(n - 1) * 3 +7, 

where n is the row number] based on the value for the first row of the theater.  Elizabeth 

attempted to replicate this line of thinking in the Calling Tree problem, but was unable to 

develop a chunking rule to make finding the values for larger numbers more efficient.  

Although she knew that she needed to multiply her answer for the seventh minute by 2 

thirty times to find the number of students contacted in the 37th minute, she was unable to 

transfer that knowledge into an efficient chunking rule, and ultimately, an explicit rule. 

This appeared to have been due to her lack of understanding of exponents.    
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Theater 
Strategy 

In 
put Calculations 

Out 
put  

Call 
Strategy 

In 
put Calculations 

Out  
put 

Recursive 4 +3 16   1  6 

Recursive 5 +3 19  Recursive 2 

(after 
discussion) 

6*2 12 
Recursive 10 +3 34  Recursive 3 12*2 24 
Recursive 20 +3 61  Recursive 4 24*2 48 

Chunking 38 

38-20=18, 
61+(3*18) = 

115 115  Recursive 5 48*2 96 

Chunking 138 

138-38=100, 
(100*3)+115

= 415 415  Recursive 6 96*2  

Chunking Rule 

(row-row 
you 

know)*3+ # 
of seats in 
that row   Recursive 7 192*2 384 

Explicit Rule (row-1)*3+7   Recursive 37 

37-7=30 -
number of 

times she has 
to multiply 

by 2  
 
Table 10. Elizabeth’s Theater Seats and Calling Tree strategy schematics 
 

Gavin also provided an example of the REC group.  Similar to Elizabeth, Gavin 

began the Theater Seats problem with a recursive strategy rooted in the context, followed 

by a chunking rule for the 20th row as he sought a more efficient strategy. His chunking 

strategy quickly gave way to an explicit rule [(n - 1) *3 + 7, where n is the row number] 

that centered on the number of seats in the first row, once again similar to Elizabeth.  

While Gavin noted that he would use his explicit rule for most values, he returned to his 

recursive rule to find the number of seats for the 139th row, as it was only one row away 

from a previously calculated row (138).  
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Theater 
Strategy Input  Calculations Output  

Recursive 4 +3 16 

Recursive 5-7 +3   
Recursive 10 +3 34 

Chunking 20 
(20-10)*3 to see how many seats to add. 

+34 64 
Explicit 138 (138-1)*3 +7 418 

Recursive 139 +3 421 
Explicit Rule (#-1)*3+7 All 

 
Table 11. Gavin’s Theater Seats strategy schematic 
 
Recursive/Explicit Group Strategies 

The Recursive/Explicit group included participants who used only recursive and 

explicit strategies, outside of the Carwash problem.  Three participants, Iza, John, and 

Dave, comprised this group.  The difference between the Recursive/Explicit group and 

the REC group centered on the Recursive/Explicit participants’ lack of use of the 

chunking strategy. Not using a chunking strategy, however, did not appear to benefit or 

hinder the participants of the Recursive/Explicit group.  In fact, John and Dave performed 

well without the use of a chunking strategy, while Iza struggled with moving from 

successful recursive reasoning to correct explicit reasoning.  For example in the Theater 

Seats problem, Dave was able to make the jump from finding the number of seats for the 

first few rows using a recursive strategy to employing an explicit rule for the rest of the 

input values.  His ability to develop an explicit rule seemed to be aided by his connection 

to the context.  Dave noted, “So then I made the equation, because you added three to 

every row, but the first row.  Then you multiply…So then you have to subtract one…”   
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Dave also developed an explicit rule (4c + 2 = s, where c is the number of cubes 

in the rod and s is the number of stickers needed) for the Cube Sticker problem, due to his 

accurate visual image of the problem situation.  Describing how he constructed his rule, 

he said, “Cause there is four sides exposed on every one and then there is two on each 

end that you are going to have to add.”  This visual image also allowed him to utilize the 

recursive relationship to find the value for a rod of length 121 when he knew the value 

for length 120.   

 
Cube 

Strategy Input  Calculations Output  
Explicit Rule 4c+2=s All 
Explicit 120 4(120)+2 482 

Recursive 121 +4 486 
 
Table 12. Dave’s Cube Sticker strategy schematic 

Iza, on the other hand, drew little connection between the recursive relationship 

and her quest for an explicit rule.  For example, after using a recursive relationship to find 

the values for the second and third minutes in the Calling Tree problem, Iza mistakenly 

believed that she could multiply the input value by six to attain the number of people 

contacted during that minute. This assertion was not supported by the context and the 

relation only provided an accurate empirical value (6 people contacted) for the first 

minute.  Although she later recognized this as an error and returned to her recursive 

strategy, she repeated this behavior when working on the Cube Sticker problem.  

Presented as a given in the context of the problem, a length-two rod has ten stickers.  

Seeing this as a direct variation situation involving a multiplication by 5, Iza mistakenly 

applied this rule to the entire domain.  It was not until she was asked to physically draw 

and count length-three and length-four rods that she realized the recursive relationship 
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existed.  Ultimately, she used the recursive strategy to calculate the number of stickers 

needed for rods of length 1 through 10.    

 
Cube 

Strategy Input  Calculations 
Out
put  

Explicit Rule(a) Length*5 All 
Explicit 4 4*5 20 
Explicit 5 *5 25 
Explicit 10 *5 50 
Explicit 20 *5 100 
Explicit 38 *5 190 
Explicit 3 *5 15 

Explicit 3 
 counted 
&*5-1 14 

  4 Counted 18 
  1   6 

Recursive 5 +4 22 
Recursive Rule +4   
Recursive 1-10 +4   

 
Table 13. Iza’s Cube Sticker strategy schematic 
 
Recursive Preferred Group 

The final “group,” the Recursive preferred group, might be considered an outlier 

as there is only one participant, Bridgette, in this group. Regardless of the problem 

situation, Bridgette used only a recursive strategy to determine output values for each 

input value in the problem situation. Larger input values did not prompt her to use 

another strategy.  In each problem that she attempted, outside of the Carwash problem, 

Bridgette recognized the recursive relationship that existed between consecutive values 

and used it extensively.  For example, when pressed as to how she would find the 139th 

row in the Theater Seats problem, Bridgette reasoned, “Um, you divide them, but I don’t 

know by what.  If this was a test, I would probably divide them by three just so I would 
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have an answer, because I don’t know.”  It appeared that outside of recursion, arbitrary 

number operations represented her only alternative strategy.  

 
Theater 
Strategy 

In 
put  

Calcula
tions 

Out 
put   

Call 
Strategy 

 In 
put 

Calcula 
tions 

Out  
put  

Recursive 4 +3 15/16    1   6 
Recursive 5 +3 18  Recursive 2 6*2 12 

Recursive 10 +3 34  Recursive 5 

12*2=24, 
24*2=48 
48*2=96 96 

Recursive 20 +3    Recursive 7 96*2*2 384 

     Recursive 10 384*2*2*2 
307
2 

Cube        Recursive 37 Same   
Recursive 4 +5 20      

  1 Counted 6      
  3 Counted 14      
  4   18      

Recursive 5 +4 22      
Recursive 10 +4 42      
Recursive 20 +4 82      
Recursive 38 +4 152      
Recursive Rule Add 4        

 
Table 14. Bridgette’s strategy schematics 

Algebraic Flexibility 
 

Another important element of this study centers on determining the algebraic 

flexibility of secondary students. As noted in Chapter I, the mathematics classrooms 

advocated by NCTM (2000) center on mathematical discourse from multiple 

perspectives.  A critical element of a student’s algebraic flexibility, and ultimately their 

respective success, is that student’s ability to consider, make sense of, and determine the 

usefulness of other strategies. Given these reasons, it was important for the participants in 

this study to consider and grapple with other potential strategies to determine their ability 

to understand, use, and value them.  The participants’ understandings of these strategies, 
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along with their respective strategy use, for each task determined their algebraic 

flexibility.   

Algebraic flexibility is discussed by its parts: within-task flexibility and cross-task 

flexibility.  Within-task flexibility refers to a student’s understanding of the applicability 

of the four algebraic generalization strategies for a particular problem. Cross-task 

flexibility entails a student’s understanding of the applicability of a particular 

generalization strategy to various algebraic tasks.   This section details the within-task 

flexibility and cross-task flexibility of the participants in this study.  

Determination of Flexibility 

Transcribed audio recordings of the interview sessions, researcher notes, and 

participant work on tasks were used to ascertain each participant’s understanding of the 

various algebraic generalization strategies for a particular task and across the corpus of 

tasks.  More specifically, the audio taped transcriptions allowed for the documentation of 

participant responses to questions regarding the viability, utility, and nature and 

generality of alternative student strategies.  My notes provided additional insight into 

specific instances where participant work, remarks, or actions were of particular 

importance.  The participant work served to document the participant-developed 

strategies for the particular tasks, which provided triangulation for the participant work 

with alternative participant strategies. 

The theoretical framework for within-task flexibility (Figure 3, p. 12) illustrates 

the importance of ascertaining the strategies that a student believes accurately model a 

particular situation, as well as those that the student thinks do not provide a correct 

generalization for the task.   Alternative student strategies prompted the participants of 
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this study to grapple with four algebraic generalization strategies, even when they had not 

considered each strategy when initially solving the problems.  

Alternative Student Strategies 

As mentioned in Chapter III, after each participant finished working through each 

of the problem situations, they were given a set of alternative student strategies (Figure 

12, p. 65) representing each of the four strategy types to consider, based on the Theater 

Seats problem.  Each participant was asked whether or not they thought something like 

the “student’s rule” provided as an alternative strategy would work for the particular 

situation that they had just completed working.  The participants were also asked if they 

could develop a particular rule for each strategy, the advantages and disadvantages to 

each of the strategies that they thought would work for a particular situation, and were 

always asked to explain their reasoning.  

Within-Task Flexibility 

  As previously noted, each participant’s understanding of each strategy in the 

context of each task was assessed and categorized using the student strategy rubrics.  The 

following represents Karen’s strategy classifications for the core tasks that she 

completed.  

Task Explicit W/O Recursive Chunking Within 
Cube Sticker M M M H M 
Calling Tree L H H M M 

Theater H L H H H 
   
Table 15. Karen’s strategy ratings 
 
 To demonstrate how these scores were determined, the following section provides 

examples of high, medium, and low classifications for Karen, illustrated through excerpts 

from the interview transcripts.   Each example references the strategy rubric 
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qualifications for determining each instance.  The strategy criteria can be found in 

Appendix B.   

For the Cube Sticker problem, Karen received a medium score for her 

understanding of the explicit strategy due to her ability to develop a correct explicit rule 

and her numeric justification. Her development of a rule was fairly easy to gauge.  

However, the justification of the elements of her rule proved much more difficult.  To 

illustrate the process involved in determining Karen’s understanding of the explicit 

strategy for the Cube Sticker problem, several vignettes are needed.  The first excerpt is 

from the discussion of the alternative explicit strategy regarding the Cube Sticker 

problem.  This excerpt demonstrates her ability to produce a mathematically correct rule.  

For more information regarding the explanation she is considering, see Figure 12 (p. 65) 

for the Alternative Strategies. 

Brian: So do you think that there is a rule like Abby’s [explicit rule] that 
applies to this  situation? 

 
Karen:   Yeah, cause it is kind of the same thing [as her rule], it is only 

written backwards. 
 
Brian:   Okay. 

Karen:   Cause like 3 is where they would put 4, n is where the number of  
  boxes added [to length one] would be…and instead of 7 you would 
  put 6 and it would basically be the same thing. 
 
Brian:   Basically be the same thing? 
 
Karen:   Yeah 
 
Brian:   Okay, so Abby’s is basically like your last rule there? 
 
Karen:   Yes, my last rule. 
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Karen was able to see the alternative explicit rule as similar to the chunking-turned-

explicit rule [6 + 4 (number of boxes added)] that she used to calculate several values. 

However, this vignette does not provide information about the nature of her 

understanding of the rule.  A return to her development of the rule is needed to determine 

whether she provided a contextual or numeric justification.  A vignette focused on her 

development of this rule is provided below.  

Karen:   Yes, so you have 6 the first time and then you add 1 box, 4 times 1, 
  would give you 6 times 4 and that would equal 10. 
 
Brian:   Oh, so this is even a different rule. 
 
Karen:   Well, it is, but it is kind of what I did the first time, only I started  
  with 2 instead of 1, cause I knew 2. 
 
Brian:   So to find the length, the number of stickers for length 10, what  
  would you plug in there? 
 
Karen:   6 plus 4 times 9 
 
Brian:   Okay, and is that always going to work? 
 
Karen:   Yeah, it will. 
 

This exchange provides context for her understanding of the alternative explicit rule. 

However, Karen did not explain why she added multiples of 4 to her initial value.  In 

order to ascertain her justification for that element of her rule, I looked to a discussion on 

her understanding of the recursive “plus 4” relationship.  A dialogue centering on her 

development of a recursive rule is provided to demonstrate her view of the 4 in her rule.   

Karen:   You add on 4. 
 
Brian:   How does that work out, where are the 4 coming from? 
 
Karen:   The 4 are coming from the 4 sides that you added. 
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Brian:   The 4, which 4 are they?  So like if I add on, if I just added on this  
  block to the first one, where are the 4 sides that I added? 
 
Karen:   I don’t know now.  Because like I know that you add them   
  together, and so like you have that shape and that shape and you  
  put them together, you take away those 2 sides and that is how we  
  got 10. 
 
Brian:   Okay,  
 
Karen:   But I don’t know like which ones. 
 
Brian:   Okay, but do you think that it adds 4 each time? 
 
Karen:   Yes. 

Although Karen could see that 4 stickers were added for each additional length, she was 

unable to pinpoint these stickers within the problem context.  In terms of generalization, 

this is problematic in that this lack of knowledge prohibits her from understanding why 

these four stickers should continue to be added.   

In line with the strategy rubric, her ability to generate a correct explicit rule and to 

justify the rule numerically results in a medium score for flexibility in terms of the Cube 

Sticker Problem.   

Determination of Karen’s understanding of the whole-object strategy in terms of 

the Cube Sticker problem was more straight-forward.  For the whole-object strategy, 

Karen received a medium rating due to her numeric justification that the whole-object 

strategy does not work for this situation.  

Brian:   Would a rule like Bobby’s work here? 

Karen:   No, because you don’t double it.  You just add 4 each time,  
   nothing doubles.   

 
Brian:   Okay, so like from the 10th to the 20th length, it doesn’t double? 

Karen:   Well, no it doesn’t. 
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Brian:   And why don’t you think it works to double? 

Karen:   Because you are adding 4 each time, it is not, like doubling. [It] is  
  going up the same amount, but each time it has to increase. 
 

Karen could see that the whole-object strategy did not work for the problem situation.  

However, her reasoning seemed to center on the empirical evidence that doubling did not 

produce the correct answer.  Her justification that adding four is not the same as doubling 

seemed to confirm that she did not have a good understanding of why the situation did 

not allow for a whole-object doubling.   

  For the Calling Tree problem, Karen received a low rating for her understanding 

of the explicit strategy.  While she initially thought that an explicit rule existed for the 

situation, she never developed an explicit rule and ultimately claimed that such a rule did 

not exist for this problem.  The following transcript illustrates her thinking.   

Brian:   So do you think that there is a rule like Abby’s that applies to the  
  calling tree situation? 
 
Karen:   Yes. 
 
Brian    Okay.   
 
Karen:   Maybe. 
 
Brian:   And why do you think that? 
 
Karen:   Because it has got to increase each time, but I don’t think it would  
  work exactly because it doesn’t increase by the same amount each  
  time.   
 
Brian:   I see. 
 
Karen:   Like it doubles, but you can’t …multiply the same thing by a  
  number because it changes each time.   
 
Brian:   Okay, so you think that something like Abby’s would work or  
  something like Abby’s won’t work? 
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Karen:   It won’t work, I don’t think. 
 
Brian:   Okay.  Because that goes up steadily each time? 
 
Karen:   Yeah, and this one doesn’t. 
 

Karen did not think that an explicit rule could model the change that occurs in this 

exponential situation.  This belief kept her from producing an explicit rule and resulted in 

her low rating for the explicit strategy in the Calling Tree problem.   

 A high rating was determined for Karen’s understanding of the recursive strategy 

for the Theater Seats problem.  She produced a correct general rule to model the situation 

and provide a valid contextual justification for the rule.  As illustrated in the transcription 

below, Karen succeeded in doing both.   

Brian:   Okay, how about Claire’s [recursive] rule? 
 
Karen:   Um, like it would but the first one, like you have 7 seats plus 3, but 
  then like it really couldn’t tell you, I mean, you would have to go  
  up by each increment to find it.  You couldn’t like skip around.   
 
Brian:   Okay, so you think that it would work? 
 
Karen:   Yeah, but it would just take longer. 
 
Brian:   Take longer. 
 
Karen:   Cause you could put like 7 plus 3 and then you know it would  
  equal 10, but then you couldn’t skip from like the 1st to like the  
  13th row, cause you wouldn’t know what you had for like the 12th  
  row. 
 
Brian:   But for what numbers do you think that it would work, Claire’s  

   rule? 
 
Karen:   Um 
 
Brian:   Will it work for anything?  I mean,  
 
Karen:    It would, probably it would only work on like the 1st one and then,  
  I don’t know. 



108 

 

 
Brian:   What if I wanted to find the 20th row, could I use Claire’s rule? 
 
Karen:   You could, but it would take you a long time. 
 
Brian:   Okay, so it would work for the 20th row. 
 
Karen:   Yeah, it is just not the fastest. 

 
While Karen seemed somewhat ambivalent about the use of a recursive rule for this 

situation, her responses seem to indicate that she was concerned about the amount of time 

it would take to use the rule for larger numbers, and not the ability of the rule to generate 

correct values.  However, this vignette did not provide information regarding her 

understanding of the nature of this rule.  To determine this facet, I looked at her use of the 

recursive strategy during her initial solving of the problem.  In this vignette, Karen refers 

to the incremental increase in the context of the problem.   

Brian:   Okay for the 4th row, you have 16.  Fifth row you have 19.  How  
  did you find those? 
 
Karen:   I just added 3 to 13.   
 
Brian:   Okay, and why did you do that? 
 
Karen:   Because it says there that it increases by the same amount for every 
  row and I counted that it increases by 3 each row. 
 

While the recursive relationship was easily deduced, due to its reference in the problem 

context, Karen effectively used this information to ground her understanding of the 

recursive relationship.  This understanding allowed her to achieve a high rating in terms 

of the recursive strategy for the Theater Seats problem.  
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Overall Within-Task Flexibility by Task 

As demonstrated in the previous section, each participant received an individual 

score for his or her understanding of each strategy in terms of each task.  While each of 

these ratings provide important information for teachers trying to improve their students’ 

understanding of algebra, overall individual student flexibility for a particular task 

provides a measure of how well a student can algebraically model the problem situation.  

This measure of a student’s understanding of the applicability of the four generalization 

strategies to a particular task is within-task flexibility (see Figure 3, p. 12). To determine 

overall within-task flexibility for a particular task, all strategies considered for a 

particular task were considered together.  The following classification guide (Table 16) 

was developed to classify within-task flexibility for each task.   

Four Independent Strategy Classifications Result 
H H H H H 
H H H M H 
H H H L H 
H H M M M 
H H M L M 
M M M M M 
H M M M M 
H M M L M 
H H L L L 
H M L L L 
M M L L L 
H L L L L 
M L L L L 
L L L L L 

 
Table 16. Classification Guide for within-task flexibility by task 
 
Discussion of Within-Task Flexibility Ratings 
 

Although each individual strategy rating for each problem provides information 

about how well a student understands each strategy in terms of the particular problem 
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context, research question number two necessitated that an overall rating be determined 

so that task-specific flexibility could be discussed and comparisons could be made across 

the students in terms of within-task flexibility.   

To achieve such a rating, task-specific flexibility was determined for each 

participant for each task.  This rating represents a composite of the four ratings given for 

each of the strategies for a particular task.  If a participant received three or four of the 

same rating for each strategy, then their overall flexibility for that particular task was 

classified with the rating that included the three or four individual ratings (e.g., medium, 

medium, high, medium was classified as medium).  However, cases where a participant 

had only two ratings the same also had to be considered.  For example, a participant who 

received two low scores, one medium, and one high score represents a less clear picture 

of task-specific flexibility.  To determine the within-task flexibility rating in these cases, 

the core tenets of what it means to be flexible were considered.  Ultimately, I decided that 

a participant needed at least three of a particular rating to be considered in that category.  

For example, the participant described above would have been considered to exhibit 

“low” task-specific flexibility for the particular task.  A participant that received a low, 

medium, and two high ratings would be considered “moderately” flexible for a particular 

problem, given that the participant received three scores of at least medium.   

Using Table 16, each participant was classified as exhibiting high, medium, or 

low flexibility for each of the problem situations.  Table 17 depicts the ratings of a few 

sample participants by strategy and by task and includes the within-task flexibility 

classification.   
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Task Participant Explicit  W/O Recursive Chunking Within 
Cube 

Sticker Dave H H H H H 
Calling 

Tree Dave M H H H H 
Theater Dave H H H H H 

       
Cube 

Sticker Hailey H H L L L 
Calling 

Tree Hailey L H H L L 
Theater Hailey H H H H H 

       
Cube 

Sticker Iza L M H M M 
Calling 

Tree Iza L L H M L 
Theater Iza L L H M L 

 
Table 17. Participant flexibility ratings by strategy and within-task flexibility by task 
 

Table 17 provides an example of the ratings of within-task flexibility for each 

strategy that were developed for each participant.  When these within-task participant 

strategy ratings were combined by task, a picture of the within-task flexibility for each 

task emerged. Table 18 below represents within-task flexibility by task. 
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Theater Seats Flexibility  Cube Sticker Flexibility 

High 
Adam, Dave, Elizabeth, Gavin, 
Hailey, Karen  High Adam, Dave, Gavin 

Medium Chrissy, Fran, John  Medium 
Bridgette, Elizabeth, 
Hailey, Iza, John, Karen 

Low Bridgette, Iza  Low Chrissy 
     
Calling Tree Flexibility  Brick Flexibility 

High Adam, Dave, Fran, Gavin  High 
Adam, Dave, Elizabeth, 
Hailey, Iza, John, Karen 

Medium Chrissy, Karen  Medium   
Low Elizabeth, Hailey, Iza, John  Low   
     
Carwash Flexibility  Streets & Lampposts Flexibility 
High Adam, Dave  High Dave, Gavin 
Medium    Medium Elizabeth 
Low Karen  Low   

 
Table 18. Within-Task flexibility 
 

As can be seen in Table 18, particular participants scored consistently high, 

regardless of the task.  In fact, Adam, Dave, and Gavin were classified as highly flexible 

for every task that they attempted.  These participants are characterized by their abilities 

to correctly identify the applicability of the generalization strategies, to generate correct 

rules to model the situations for each applicable strategy, and to provide contextual 

justifications for their rules.   

The ability to determine the applicability of each of the generalization strategies 

for each of the problems provided these participants with a strong foundation for 

attacking algebraic problems in a classroom environment.  These participants had the 

capacity to consider several strategies and pick out those that provided the best solutions 

for the particular instance.   
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The ability to generate a correct rule for each of the applicable strategies allowed 

these participants to move from the consideration of potential strategies to adapting these 

strategies to accurately model a new situation.  The participants demonstrated an ability 

to modify a strategy considered in a different context to fit the constraints of a new 

problem.  This knowledge should provide these participants with the ability to apply their 

understanding of the various strategies to various contexts presented in the classroom or 

outside world.   

The ability of Adam, Dave, and Gavin to consistently provide contextual 

justifications for their algebraic generalizations implies that these participants have a 

strong understanding of the generality of their rules. In describing how various facets of 

their rules related to the context of the problem, these participants appeared to see not 

only the domain for their particular rules, but also the reason that their rules would apply 

to that domain.  These participants understood how their rules modeled the facets of the 

situation that changed and those that stayed the same, and they understood why this 

pattern would continue.  For example, Adam provided the following justification for his 

development of an explicit rule for the Cube Sticker problem.   

Adam:   Alright…. I think I have it.  Alright.  You would take 4 times the  
  number of lengths that you have and add 2.   
 
Brian:    Now how did you figure that out?  How did you figure out 4 times  
  the length times 2? 
 
Adam:   Well, I used, I just took off the ends completely, and I am thinking  
  that if you can have a length of 2 equals 8 sides not including the  
  ends, and 1 equals 4, and the other equals 8, and the 3rd one equals  
  12, without the ends, then it would be like multiplying 4 by 4 by 4  
  and so in essence it would only be multiplying 4 by the number of  
  lengths you were trying to figure out in order to find the stickers. 
 
Brian:    Okay, so the 4 is represented by… 
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Adam:   The lengths of sides you have for one cube, without the ends. 
 
Brian:    Without the ends.  And the 2? 
 
Adam:    It would be with the [number of sides on the] ends. 
 

Adam’s understanding of his 4n +2 rule stemmed directly from his view of the context.  

He could see that each additional cube added to the rod added four new sides that 

required stickers.  As he noted, this was represented in his rule by the multiplication of 4.  

Using this rule and his understanding of the context, Adam appeared to have generalized 

the task, in terms of the explicit strategy, at a high level.  Dave and Gavin exhibited 

similar capabilities and understandings with respect to the Cube Sticker problem. In 

working to answer research question two, this finding represents a good start towards 

determining the group of participants who could be considered highly flexible.  

None of the other participants displayed consistent understandings of the 

strategies across the tasks.  Even if only the three core tasks are considered, none of the 

remaining participants were scored consistently as high, medium or low in terms of their 

overall use and understanding of the four generalization strategies for the tasks. 

Specifically, Hailey appeared highly, moderately, and lowly flexible, depending on the 

particular situation.  Hailey is discussed later as a special case.   

 As was the case with initial strategy use, the Brick problem was accessible to all 

participants in terms of flexibility.  Every participant in the study was able to use and 

understand all four generalization strategies at a high level for this task.  Given the low 

level of difficulty presented by this task, it was not surprising to find that all of the 

participants could use and understand all four strategies for this problem.   
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Overall Within-Task Flexibility 

 To develop a system to meaningfully group these participants in terms of 

flexibility, I considered the variation of within-task flexibility along with other factors, 

including the reality that not every participant had the opportunity to work every 

problem.  I detail the development of the overall within-task flexibility below. 

As described in Chapter III, a total of six problems were used with the 

participants in this study.  However, given that each participant worked through the 

problems at a different pace, not every participant had the opportunity to complete each 

of the six tasks in the three allotted research sessions.  Therefore, it would be difficult to 

accurately compare and group participants in terms of overall within-task flexibility, and, 

later, cross-task flexibility, when participants completed different numbers of tasks or 

different tasks.  To alleviate this difficulty, I considered those tasks that were completed 

by most of the participants.  The Streets and Lampposts problem and the Carwash 

problem were eliminated, leaving the Cube Sticker problem, the Calling Tree problem, 

the Theater Seats problem, and the Brick problem for consideration.   

The Brick problem represented another difficulty in that it ultimately did not 

prove overall problematic to any of the participants in the study.  Whether it was the 

nature of the problem (it was the only direct variation problem in the set) or the fact that 

the alternative strategies were rather easily deduced given the numerical similarities 

shared by the Brick problem and the Theater Seats problem, on which the alternative 

strategies were based.  Consequently, every participant was able to understand each of 

the strategies at a high level within the context of the Brick problem. Therefore, this 

problem provided little discrimination among levels of flexibility.  Ultimately, the Brick 
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problem was removed from consideration in determining overall within-task flexibility.  

However, it was analyzed to determine within-task flexibility for that particular problem.  

This analysis yielded little information outside of the fact that every participant displayed 

a high level of within-task flexibility for the Brick problem. 

After the removal of the Brick problem for consideration of overall within-task 

flexibility, three tasks remained for use in making the determination: the Cube Sticker 

problem, the Calling Tree problem, and the Theater Seats problem.  As previously noted 

in this chapter, these problems comprised the “core tasks” that every participant 

completed. These tasks represented the problems with the greatest capacity to elicit all 

four generalization strategies.  The Cube Sticker problem and the Theater Seats problem 

are examples of linear increasing situations that do not vary directly.  The Calling Tree 

problem is exponential in nature.  The overall rankings of each participant’s use of the 

various strategies for these three problems were used to determine overall within-task 

flexibility for each participant.   

Whereas the scheme used to determine the overall within-task flexibility for each 

task considered four separate classifications, the determination of overall within-task 

flexibility for the participant involved only three classifications (one overall task 

classification for each of the three tasks).  In a sense, having to consider only three 

classifications made decisions regarding the determination of overall within-task 

flexibility somewhat easier; two or three high, medium, or low rankings resulted in the 

same high, medium, or low overall participant classification.  If a participant received at 

least two ratings that were the same for the three problems, it made sense to provide the 

participant with an overall score consistent with this majority.  A participant scoring one 
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each of high, medium, and low was considered to exhibit a medium level of overall 

within-task flexibility.  With no consistency between the ratings, the average rating was 

given.  These classifications covered each of the participants who had completed the 

three tasks under consideration.  However, two cases existed where the particular 

participant had only completed two of the tasks.  In each of the cases, the participant’s 

scores were only one classification apart; one had a low/medium combination while the 

other had been scored medium/high.  For both cases, I returned to the transcripts to see if 

a holistic, overall within-task flexibility could be ascertained.  In each case, I determined 

that the participant should be classified as the lower of the two rankings, given their 

overall understandings of the strategies for the two problems.  

The table below illustrates the results of overall within-task flexibility 

classification.  

 
Overall Within-Task Flexibility 

Classification Participant  
High Adam, Dave, Gavin 

Medium 
Chrissy, Elizabeth, Fran, 
John, Karen 

Low Bridgette, Hailey, Iza 
 
Table 19. Overall within-task flexibility 
 
 Overall high within-task flexibility. Adam, Dave, and Gavin were classified as 

exhibiting a high level of within-task flexibility for the three core tasks.  A high within-

task flexibility rating meant that these four participants demonstrated the ability to 

employ at least three out of the four algebraic generalization strategies at a high level for 

at least 2 of the 3 core problem situations.  In fact, Adam, Dave, and Gavin were judged 

to have exhibited high levels of within-task flexibility for the three core tasks.   
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 Adam, Dave, and Gavin are characterized by their abilities to determine the 

applicability of and to develop correct contextually-justified rules for the explicit, 

recursive, and chunking strategies of the three core problems.  These participants 

understood how and when these strategies could be applied to these situations and 

developed rules representing these strategies for the tasks. Overall, these participants 

were able to tie their rules to the context of each situation, demonstrating the general 

nature of their rules in modeling each task.  For example, Gavin’s understanding of the 

Cube Sticker problem allowed him to generalize the chunking strategy at a high level.  A 

part of Gavin’s discussion of the chunking strategy for the Cube Sticker problem is 

provided below.   

 Brian:   Okay.  And how about Danny’s rule? 
  
 Gavin:   Depends on how it is stated, like, he, right now he has it set for  
   rows, and he is taking the difference in the rows and what they  
   would be, and like adding them, so he knows like if between  
   sticker 4 and 5 is a 1 cube difference and if he knew that for a 1  
   cube difference you are adding 4 sides, you could figure it like  
   that and be right all the way through. 
  
 Brian:   I see.  So if he wrote his from say the 10th to the 20th, which we  
   have over there, what would he do? 
  
 Gavin:   Then he would figure that there is a 10-cube difference, which  
   multiply that by 4 would give us a 40 sticker difference, and that  
   works adding them together. 
  
 Brian:   So Danny’s rule works? 
  
 Gavin:   Yeah 
  
 Brian:   Will it always work in this situation? 
  
 Gavin:   I think so.  Except for when 0 is in there. 
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This vignette provides a look at Gavin’s understanding of the whole-object strategy for 

the Cube Sticker problem and offers evidence regarding his ability to contextually justify 

his rule.  Specifically, he mentioned that there were 4 sides added for each cube, which 

could then be multiplied by the number of additional lengths.  For corroboration for this 

view, Gavin’s work in solving the Cube Sticker problem provides useful data.  Gavin had 

developed the explicit rule 4n + 2 and was describing how he had developed the rule.   

 
 Gavin:   I determined that for each cube that around it there would be 4 

sides and then there would be the top and the bottom of the rod 
which would count for another two sides, and so I made a formula 
that said that 2 plus 4 multiplied by whatever the number of cubes 
is would give me the total number of stickers.  Two being counting 
for the top and the bottom of the rod, and the four being the 
number of sides multiplied by x which was cubes, to determine 
how many number of sides would be added for each of the cubes. 

  
 Brian:   Okay, and you did that before you even answered the first   
   question?   
  
 Gavin:   Yeah 
  
 Brian:   So how were you able to do that?   Were you just looking at the  
   picture? 
  
 Gavin:   Looking at the picture and by that I mean, just looking at the  
   picture like cause I know the picture has 2 cubes and it has the top  
   and the bottom ends plus the 4 to go around it.  And that was 12.  
 
As evidenced in these vignettes, Gavin exhibited the ability to develop an explicit rule for 

the Cube Sticker problem, even though he had not employed such a rule when initially 

solving this task.  Adam and Dave also displayed the ability to develop rules and 

contextual justifications for most of the strategies for most of the problem situations.  

 Outside of their abilities to correctly develop rules for strategies and provide 

contextual justifications, these participants, in general, seemed to better understand 
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exponential growth, and the vocabulary surrounding it, as presented in the Calling Tree 

problem. Adam, Dave, Fran, and Gavin were the only participants to be classified as 

highly flexibly in terms of the Calling Tree Task.  Dave described the Calling Tree 

problem as representing “exponential” growth, while Adam used the word “power.”  

Adam explained his chunking strategy in the following manner. “Whatever the minute is 

and I multiply that by 2 to the power of the difference between the minute given, okay, so 

the difference between the minute given and the number that I am wanting to find.” 

While these three participants were able to understand and describe how the four 

strategies could be used in the various contexts of the core tasks, Adam, Dave, and Gavin 

represented different groups in terms of strategy use when generalizing problem 

situations.  Adam used all four strategies in solving the core tasks.  Gavin used recursion, 

chunking, and explicit thinking to solve the core tasks.  Dave employed only recursive 

and explicit reasoning in solving the three core tasks.  

 Overall Medium Within-Task Flexibility.  Chrissy, Elizabeth, Fran, John, and 

Karen were categorized as moderately flexible in terms of overall within-task flexibility.  

As previously noted, a classification of “moderately flexible” was slightly different in 

terms of the various students with this label.  For example, Elizabeth was determined to 

be moderately flexible due to her receiving one each of low, medium, and high 

classifications for the three tasks. John was rated as moderately flexible for receiving two 

medium rankings and one low ranking for the core problems.  Due to a different number 

of problems worked, Fran received her classification of medium due to one high rating 

and one medium rating.  On the other hand, Bridgette was considered medium due to one 

low and one medium ranking.  While these students certainly differed in their overall 
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understandings of the strategies in terms of the different tasks, they shared the common 

trait of inconsistency regarding their abilities to understand and use these strategies for 

different tasks.   

 The group of participants classified as exhibiting overall medium flexibility for 

the three core tasks are characterized by several factors.  First, these participants were 

often capable of determining when a strategy could or could not be used for a particular 

situation, and they were generally able to develop rules for the applicable strategies for 

each of the problem situations. A main difference between the overall algebraic 

understanding of these participants and the highly flexible participants lies in their 

justification of their rules.  The participants classified as exhibiting medium flexibility 

commonly did not provide contextual justifications for their rules.  In many of these 

cases, the justification centered on a numeric pattern that the participant noticed between 

particular values.  For example, Fran provided the following assessment of the chunking 

strategy for the Theater Seats problem.  

 Fran:  For Danny’s [chunking strategy], is it asking like if you are at the 
13th row, you add 9? 

  
 Brian:   Right, let’s see, he added 9, a total of 9, for the next three rows to  
   get to the 3rd row. 
  
 Fran:   I think that would work, because it is a lot easier than 3 and 3 and  
   3.  It would be 9 difference for the 3 rows. 
 
During this discussion, Fran did not provide explicit evidence of her view of the domain 

for this strategy.  Later in the interview, she offered some evidence of her view.  She said, 

“If you are trying to find like every third row, that [the chunking rule] would be easier 

than someone else’s [rule]. 
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 Participants classified as medium were characterized by their overall 

inconsistency in understanding the strategies for the core tasks.  Elizabeth, for example, 

was classified as exhibiting medium within-task flexibility for the Cube Sticker problem, 

high within-task flexibility for the Theater Seats problem, and low within-task flexibility 

for the Calling Tree problem.  Within that inconsistency existed more inconsistency, as 

Elizabeth’s understanding of the explicit strategy was categorized as low for the Calling 

Tree problem and high for the Cube Sticker and Theater Seats problems.  Her 

understanding of the chunking strategy was equally variant, as she scored low for the 

Cube Sticker problem, medium for the Calling Tree problem, and high for the Theater 

Seats problem.   

 Overall low within-task flexibility. Bridgette, Hailey, and Iza were categorized as 

having low flexibility in terms of their understandings of the four algebraic strategies for 

the three core problems.  A classification of low in terms of overall within-task flexibility 

means that these participants demonstrated little ability to understand and use half of the 

four strategies for at least two of the three tasks.   

 Bridgette, Hailey, and Iza were characterized by their inability to correctly 

determine the applicability of the four algebraic generalization strategies to the core task 

situations, their inability to develop a mathematically correct generalization for the 

particular strategy, and/or their inability to provide a correct justification for the rules 

they developed.  While these participants may have had good understandings of some of 

the strategies for some of the problems, their overall understandings were lacking power.  

A low rating for within-task flexibility for a particular problem means that a participant 

was unable to determine the applicability, develop a rule, and/or correctly justify their 
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rule for two out of the four generalization strategies.  Bridgette, for example, received 

low scores for her understanding of half of the strategies, with the other half scored as 

medium.  Iza provided a different perspective, struggling with the explicit and whole-

object strategies for the three tasks. Hailey was unique in that she received two low 

scores and two high scores for the Cube Sticker and the Calling tree problems.  Iza was 

an example of a participant who was unable to produce a rule for a strategy while also not 

providing a correct justification.  Her is an excerpt from Iza’s examination of the explicit 

strategy for the Cube Sticker problem. 

 Brian:   Do you think that there is a rule like Abby’s [explicit rule] that 
will apply in this situation? 

  
 Iza:    Yeah. 
  
 Brian:   Okay, why do you think that? 
  
 Iza:    There is going to be a formula. 
  
 Brian:   Okay, there is going to be a formula.  Why do you think that there  
   is going to be a formula? 
  
 Iza:    Cause it just does.  Everything does. 
 
Iza had similar difficulty in developing an explicit rule and justifying her reasoning when 

working the Theater Seats problem.  The following is a vignette taken from her 

consideration of the explicit strategy for the Theater Seats problem.   

 Brian:   It is interesting cause you look at the first person, Abby, it goes up  
   3 each  time and there are 7 seats in the row, so my rule is 3n plus  
   7.  Which is exactly what you had.  So do you think that a rule like  
   that is going to work? 
  
 Iza:    No. 
  
 Brian:   Something like that is going to work? 
  

Iza:    Yeah, I couldn’t find it, but yeah. 
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 Brian:   But not 3n plus 7 exactly. 
  
 Iza:    No. 
  
 Brian:   But something like that is going to work.  Why do you think that  
   something like that is going to work in this situation? 
  
 Iza:     Cause you just plug in the numbers.   
  
 Brian:   Okay.  And so you think that if we have a situation like this there is 
   going to be a rule where I can just plug in a number and find out  
   the answer? 
  
 Iza:    Yes 
 

In neither instance was Iza able to produce an explicit rule.  This is somewhat surprising 

given the fact that the explicit alternative strategy for the Theater Seats problem was an 

adjustment of the constant term away from being correct.  Iza provided the same 

reasoning for an explicit rule existing in both instances; an explicit rule always exists.  

Such justification appeared to be informed by a connection to the context of the situation, 

but instead on an underlying belief that every mathematical situation can be modeled 

through the use of an explicit rule.   

Similar to the group classified as highly flexible, each member of this group 

represented a different strategy group in terms of the strategies that were used in actually 

solving the problems.  Hailey, like Gavin in the previous example, used the three 

strategies of recursive, chunking, and explicit to solve the problems.  Iza used recursive 

and explicit thinking exclusively, just as Dave did above.  Bridgette, however, 

represented the opposite end of the spectrum of Adam in terms of within-task flexibility 

and strategy use; she was characterized as having low flexibility and used only the 

recursive strategy throughout the core tasks.   
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Cross-task Flexibility 
 
As with within-task flexibility, cross-task flexibility was determined by a 

participant’s use and understanding of the generalization strategies; the same ratings (see 

Table 16) that were used to determine a participant’s task-specific flexibility for a 

particular problem were used to determine that participant’s cross-task flexibility for each 

strategy.  However, instead of looking across the ratings for the various strategies for a 

particular problem, a participant’s use of a particular strategy across several problems 

was examined.  As can be seen in Figure 4, a participant’s ability to use and understand a 

particular strategy in different problem contexts defines that participant’s cross-task 

flexibility.  

Similar to within-task flexibility, each participant received a rating for each 

strategy for each problem based upon the strategy criteria (Appendix B). As with the case 

of overall within-task flexibility, only the core tasks were considered in the determination 

of cross-task flexibility for the reasons cited in the overall within-task flexibility section; 

the Carwash, Streets and Lampposts, and Brick problems were eliminated from 

consideration when determining cross-task flexibility. This left, once again, the Cube 

Sticker, Calling Tree, and Theater Seats problems for determining cross-task flexibility.   

The coding scheme used to classify overall within-task flexibility for each 

participant was once again employed to determine cross-task flexibility for each strategy, 

due to similar factors being considered. Table 20 depicts the ratings of a few sample 

participants and includes the cross-task flexibility classification of each participant by 

strategy.  
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Task Participant Explicit  W/O Recursive Chunking 
Cube 

Sticker Dave H H H H 
Calling 

Tree Dave M H H H 
Theater Dave H H H H 
Overall Dave H H H H 

      
Cube 

Sticker Hailey H H L L 
Calling 

Tree Hailey L H H L 
Theater Hailey H H H H 
Overall Hailey H H H L 

      
Cube 

Sticker Iza L M H M 
Calling 

Tree Iza L L H M 
Theater Iza L L H M 
Overall Iza L L H M 

 
Table 20. Example of cross-task flexibility ratings 
 
 As was the case with within-task flexibility, when the cross-task participant 

strategy ratings are combined by strategy, a picture of the overall cross-task flexibility for 

each strategy emerges. Below are tables depicting cross-task flexibility by strategy. 
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Explicit   Whole-Object  

High 
Adam, Dave, Elizabeth, 

Gavin, Hailey  High Dave, Hailey 

Medium Fran, John, Karen  Medium 
Adam, Chrissy, Fran, 
Gavin, John, Karen 

Low Bridgette, Chrissy, Iza  Low 
Bridgette, Elizabeth, 

Iza 
     

Recursive   Chunking  

High 

Adam, Chrissy, Dave, 
Elizabeth, Fran, Gavin, 
Hailey, Iza, John, Karen  High 

Adam, Dave, Gavin, 
Karen 

Medium   Medium 
Elizabeth, Fran, Iza, 

John 

Low Bridgette  Low 
Bridgette, Chrissy, 

Hailey 
 
Table 21. Cross-task flexibility by generalization strategy  

 

Table 21 illustrates the participants that exhibited high, medium, and low cross-task 

flexibility for each generalization strategy.   

Examples of Cross-Task Flexibility (Explicit Strategy) 

While cross-task flexibility was determined for each of the four generalization 

strategies, cross-task flexibility for the explicit strategy is used to illustrate the 

characteristics of the participants in each category.  

High cross-task flexibility. As can be seen in Table 21, Adam, Dave, Elizabeth, 

Gavin, and Hailey were all classified as exhibiting a high level of cross-task flexibility 

for the explicit strategy for the three core tasks.  A high cross-task flexibility rating means 

that, most of the time, these participants were able to determine that an explicit rule could 

be used to model the situation, develop an explicit rule, and justify that rule within the 

context of the problem situation.  Gavin, for example, modified the alternative explicit 
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strategy for the Theater Seats problem to mimic his own.  An excerpt from his discussion 

follows.  

Gavin:   The first one (explicit alternative strategy) doesn’t [work].  They 
made the mistake that I first made. They are not subtracting 1 from 
the number of rows. 

  
 Brian:   So you think that is like what you did.  Can you fix it to make it  
   work? 
  
 Gavin:   Yeah, just by doing what I did, by putting the n in parentheses and  
   then subtracting 1 from it. 
  
 Brian:   Okay, so now you think it will work? 
  
 Gavin:   Yeah 
 
In this vignette, Gavin stated that an explicit rule would model the situation and described 

his explicit rule. To examine his justification for determination of his view of generality, 

an excerpt from a discussion about his development of an explicit rule is provided.   

 Brian:   To find row 138, you started off, you said 7 were in the first row. 
  
 Gavin:   Yeah. 
  
 Brian:   So you needed to add 7 
  
 Gavin:   So, cause that is the start of the pattern and so I had to subtract the  
   first, cause I have already done the first row by putting 7 in   
   there.  I had to subtract one from the 138, so I got 137, and   
   multiply by 3, because by my pattern, the first one increased by 3  
   each time. 
  
 Brian:   I see. 
  
 Gavin:   And then I added those two together to figure out what it would be. 
  
 Brian:   Okay, now I am going to ask you some questions about that.   So  
   you started with 7, because the first row has 7. 
  
 Gavin:   Yeah. 
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 Brian:   And now you said that you multiplied by 3 because it increases by  
   3 each  time.  How does multiplying by 3 relate to the problem? 
  
 Gavin:   Well, not multiplying 7 by 3, but by the number of other rows by  
   3. 
  
 Brian:   How does multiplying the number of rows by 3 do the same thing  
   as adding 3? 
 
 Gavin:   Well, it is the same thing as adding 3 since what I am doing is  
   multiple times, more than once and by doing it this way, I don’t  
   have to sit here and go 3 plus 3 plus 3 plus 3 plus 3 over and over  
   again. 
  
 Brian:   Okay, and so multiplying by 3 does that for you? 
  
 Gavin:   Yeah. 
  
 Brian:   Okay, and now you said that you have to subtract one row first.   
   Why is that?  I know you said you started with 7. 
  
 Gavin:   It is because otherwise I would be counting row 1 twice.  I would  
   be adding an additional 3 that is not required. 
  
 Brian:   Interesting.  Very interesting.  So the first row already has its 3  
   being accounted for in the 7? 
 
 Gavin:   Well, the first row is where the pattern started so it doesn’t get 3 

added to it, because that is the base where I started getting the 
pattern where I got row 2 and 3.So I have to get rid of it from the 
138 otherwise I would be counting it twice and adding an 
additional 3, instead of having 7 as the starting number, I would 
have 10. 

 
In this discussion, Gavin provides a strong justification for how each element of his 

explicit rule relates to the context of the problem.  His ability to determine that an explicit 

rule is applicable, develop an explicit rule to model the problem situation, and 

contextually justify his rule led to his high rating for this problem, as well as the other 

two tasks.  The other participants classified as exhibiting a high level of within-task 

flexibility demonstrated similar abilities with respect to the core-tasks.   
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 Medium cross-task flexibility. Fran, John, and Karen were classified as exhibiting 

medium within-task flexibility for the explicit strategy.  Each participant in this category 

earned his/her rating due to an inconsistent depth of understanding of this strategy. John 

and Karen each received a high, medium, and low rating that resulted in their medium 

status.  Likewise, Fran, who completed only the Calling Tree and Theater Seats 

problems, was rated as exhibiting low and high levels of understanding for these tasks 

respectively.  In each case, the participants “averaged” to their medium rating.  This 

means that the participants in this group were able to understand and use the explicit 

strategy at a high level (noted the strategy was applicable and developed a correct, 

contextually-justified explicit rule to model the situation) in the context of one particular 

task.  These participants also were unable to understand the applicability of the explicit 

strategy and/or were unable to develop a contextually-justified explicit rule for one of the 

three problem situations.  For example, Karen could not see how an explicit rule could be 

developed for the Calling Tree problem.  Below is an excerpt in which she contemplates 

the explicit alternative student strategy for the Calling Tree problem.   

 Brian:   So do you think that there is a rule like Abby’s that applies to the  
   calling  tree situation? 
  
 Karen:   Yes. 
  
 Brian:   Okay.   
  
 Karen:   Maybe. 
  
 Brian:   And why do you think that? 
  
 Karen:   Because it has got to increase each time, but I don’t think it would  
   work exactly because it doesn’t increase by the same amount each  
   time.   
  
 Brian:   I see. 
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 Karen:   Like it doubles, but you can’t do like, I don’t think that you can  
   take like, you can’t multiply the same thing by a number because it 
   changes each time.   
 
 Brian:   Okay, so you think that something like Abby’s would work or  
   something like Abby’s won’t work? 
 
 Karen:   It won’t work, I don’t think. 
 
Karen did not seem to think that an explicit strategy could be used to model the 

exponential situation presented in the Calling Tree problem.  This perception kept her 

attempting to construct an explicit rule, and resulted in her low rating for her 

understanding of the explicit strategy for the Calling Tree problem.   

Low cross-task flexibility. Bridgette, Chrissy, and Iza were classified as exhibiting 

a low level of cross-task flexibility for the explicit strategy.  These participants were 

characterized by their belief that an explicit strategy does exist for each of tasks but were 

unable to develop such a rule, for thought that an explicit strategy did not exist for 

particular tasks.   

As previously noted, participants exhibited varying levels of understanding of the 

whole-object, recursive, and chunking strategies as well.  The respective cross-task 

flexibility categorizations for these strategies were similar to those discussed regarding 

the explicit strategy.  Likewise, the characteristics of the participants in these groups were 

also similar.   

While each of the four strategies had at least two participants who were 

considered highly flexible in terms of cross-task flexibility, only one participant was 

consistently categorized as highly flexible: Dave. In almost every instance, Dave was 

able to understand how the strategy applied to the particular situation, develop a rule 
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representing the strategy to model the situation, and provide a contextual justification of 

his rule.   

 As was the case with the highly flexible category, only one participant was 

consistently rated as having low flexibility for all four strategies: Bridgette. Although it 

seems somewhat likely that Bridgette would have been classified as having low 

flexibility in terms of the explicit, whole-object, and chunking strategies, I was surprised 

to see Bridgette rated as lowly flexible in using the recursive strategy.  It is even more 

surprising that Bridgette was the only participant to be categorized as lowly flexible for 

the recursive strategy.  As previously noted in the strategy use section of this chapter, 

Bridgette employed the recursive strategy exclusively for each of the core tasks.  

Overall Cross-task Flexibility 

 Overall cross-task flexibility was determined by looking at the four cross-task 

flexibility ratings given for each strategy. As with within-task flexibility ratings by task, 

these four strategy ratings were combined into one overall cross-task flexibility rating so 

that comparisons among groups could be made.  To this end, the classification guide (see 

Table 16, p. 109) used to determine within-task flexibility by task was utilized to 

determine overall cross-task flexibility, due to the consideration of similar factors.  

 

Overall Cross-Task Flexibility 
Classification Participant 

High Adam, Dave, Gavin, Hailey 
Medium Elizabeth, Fran John, Karen 

Low Bridgette, Chrissy, Iza 
 
Table 22. Overall cross-task flexibility 
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 High overall cross-task flexibility. As can be seen in the above table, Adam, 

Dave, Gavin, and Hailey exhibited a high level of cross-task flexibility.  In other words, 

these participants demonstrated the ability to use a particular strategy at a high level for at 

least two of the three core problem situations and received this high score for at least 

three of the four generalization strategies.      

 While Adam, Dave, Gavin, and Hailey were able to develop rules and contextual 

justifications for the explicit, recursive, and chunking strategies for most of the tasks, 

only Dave was able to consistently develop rules and provide contextual justifications for 

all four strategies.  Adam and Gavin appeared to have good understandings of the 

explicit, recursive, and chunking strategies for the core tasks.  However, both of these 

participants struggled in their understanding of the whole-object strategy.  For example, 

Adam scored low in terms of his understanding of the whole-object strategy in terms of 

the Calling Tree problem.  After initially believing that a whole-object strategy would 

work, he quickly decided that it would not.  The following is Adam’s explanation as to 

why a whole-object strategy would not apply to the Calling Tree problem. 

 Adam:   Yes, that’s correct.  No actually that is not correct, because um, it  
   wouldn’t. 
 
 Brian:   It wouldn’t?  Why not? 
  
 Adam:   Because the 20th minute multiplied by 2 would be …It would not  
   work because you would be finding the square root of   
   everything…. That 40 subtracted by 20 would be 20 and since  
   that would be, I don’t think that you could just square that   
   number to find the 40th.  If you could square the number in the 20th  
   row than you could find the number in the 40th row.  That did not  
   work.  
  
Adam did not seem to understand the whole-object strategy in terms of the Calling Tree 

problem.  Therefore, he was not able to provide a valid justification for why the strategy 
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would not work.  While Gavin did not struggle to this extreme with the whole-object 

strategy, his understanding of this strategy was not on par with his understanding of the 

other three.  Similarly, Hailey seemed to have a good overall understanding of the 

explicit, whole-object, and recursive strategies for the core tasks.  However, Hailey 

struggled with the chunking strategy, receiving a low score for her understanding of 

chunking for the Cube Sticker and Calling Tree tasks.   

 Due to Dave’s overall understanding of each of the strategies for each of the core 

tasks, Dave was considered the most flexible participant in this study, with respect to 

cross-task flexibility.  Regardless of the situation, Dave was generally able to understand 

each of the strategies and how they applied to the situation.  He was also able to 

consistently develop a rule, when applicable, and describe the rule within the context of 

the situation.  The only exception to Dave’s outstanding performance was his lone 

medium score for his understanding of the explicit strategy for the Calling Tree problem.  

Hailey was unique in that she struggled somewhat consistently only with the 

chunking strategy. Hailey received an overall low rating for her understanding of the 

chunking strategy.  This stood in contrast to her apparent understanding of the other three 

strategies.  For example, Hailey received a low rating for her understanding of the 

chunking strategy for the Calling Tree problem.  Below is a part of Hailey’s conversation 

about the chunking rule for this problem.   

 Brian:   Okay. How about Danny’s [chunking] rule?  Is a rule like Danny’s  
   going to work here? 
  
 Hailey:   It could work. 
  
 Brian:   How is it going to work? 
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 Hailey:   You could take, I don’t know if this would apply better to Danny  
   or Abby, but you could take like maybe, oh that wouldn’t work  
   either.  No I guess it wouldn’t work.  Because what I was thinking  
   of was taking something like the third minute and trying to find the 
   fifth minute, so there are 2 different minutes between the third 
   and fifth.  
  
 Brian:   Right. 
  
 Hailey:   Multiply the 2 minutes times the 24 people for the third minute,  
   but that would give you the number in between which would be  
   48.   
  
 Brian:   So is there anything that we can multiply to make that jump? 
  
 Hailey:   Maybe from the third to the seventh, you could multiply between  
   the third and the seventh minute, there is 4 minutes in between, 4  
   times 24 would be 96, which would give me the fifth minute. 
  
 Brian:   So you decided to multiply by 4 because of the 4 minutes in 

between? 
  
 Hailey:   Yes. 
  
 Brian:   Okay.  Is that going to work?  Do you think that is going to give  
   you something? 

 
Hailey:  If you do the subtracting of minutes and then multiplying the  

   remaining minutes by the number of people, I suppose that would  
   work, but that would be more Abby, not Danny. So I suppose that  
   Danny wouldn’t work. 

 

Hailey seemed to have difficulty with the chunking strategy due to her inability to adjust 

her linear chunking reasoning to match an exponential situation.  Her difficulty in 

understanding the explicit strategy for this problem seemed to support this idea. 

However, Hailey also struggled to develop a chunking rule for the Cube Sticker problem, 

which is a linear situation.  For that problem, Hailey was able to develop a contextually-

justified explicit rule.  However, she did not believe that a chunking rule would work and 

provided little information regarding her thinking, even after several prompts.   
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 Medium overall cross-task flexibility. Elizabeth, Fran, John, and Karen comprised 

the medium overall cross-task flexibility group.  This group was characterized by their 

strength in understanding the recursive strategy and their abilities, for the most part, to 

develop rules to model the other three strategies for each of the situations.  However, 

these participants were not able to tie their rules to the context of the situation.  This left 

ambiguity as to why their rule would continue to work for various input values in the 

situation.  Without this evidence of the generality of their rules, they were not categorized 

as having a high level of understanding.   

One participant in this group, Elizabeth, received a low rating for his 

understanding of the whole-object strategy.  While this rating was low, her understanding 

of the explicit and recursive strategies was rated as high, which, along with his medium 

rating for the chunking strategy, resulted in his overall medium cross-task flexibility 

rating.   

Low overall cross-task flexibility. Bridgette, Chrissy, and Iza comprised the low 

overall cross-task flexibility group.  This group was characterized by an inability to 

understand the applicability of at least two of the algebraic generalization strategies for 

the three core tasks.  Chrissy seemed to have a fairly good understanding of the recursive 

strategy, but her work with the explicit and chunking strategies was representative of a 

low level of understanding.  Iza was similar, in that she also seemed to understand the 

recursive strategy well, but struggled with recursive and whole-object strategies.  

Bridgette’s overall understanding of each of the generalization strategies was low.  

While she seemed to understand the whole-object, recursive, and chunking strategies at a 

medium level with regard to the Cube Sticker problem, she exhibited a low level of 
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understanding for each of these strategies when working the Theater Seats problem.  At 

no time was she able to produce a contextual justification for the rules that she developed.  

In fact, most of the time, she seemed to see rules as working for particular cases, but not 

in general.  Bridgette’s work on the Theater Seats problem provides an illustration of her 

disjunctive thinking with respect to the recursive strategy.   

 Brian:   Okay so what do you have here?  You have 18 for the 5th row, 34  
   for the  10th row, and so what are you doing to find each of these  
   rows? 
  
 Bridgette:   Just adding 3 
  
 Brian:   Do you think that will work all the time? 
  
 Bridgette:   No. 
  
 Brian:   When do you think that wouldn’t work? 
  
 Bridgette:   Uh, Like, I don’t know 
 

After she had completed her work on the Theater Seats problem, Bridgette once again 

encountered recursive reasoning in her consideration of the alternative strategies.  After 

experiencing some initial difficulty in understanding the terminology (now, next), 

Bridgette seemed surprised that a “plus 3” rule would work to model the situation.  She 

remarked, “Whoa, that did work.”  This indicated that not only had she not generalized 

the recursive strategy that she had developed when initially solving the problem, but she 

did not connect her initial understanding of the recursive strategy for this situation to the 

very same recursive strategy presented as an alternative strategy.  

 While these last measures of overall within-task and cross-task flexibility allow 

for the comparison of the participants in this study across the three core tasks, the more 

important measures, from a teacher’s perspective, are likely to be the individual within-
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task flexibility determinations for each task and the cross-task ratings for each 

generalization strategy.  These pieces of information describe a student’s understanding 

of the group of strategies in terms of a particular task and how that student’s ability to 

effectively apply a particular generalization strategy to various tasks.  These measures 

represent the heart of student algebraic flexibility and the assessment of these qualities 

can provide a foundation for student growth in algebra.   

Summary of the Results 

 The participants employed four algebraic generalization strategies when 

generalizing the tasks for this study.  These strategies were explicit, whole-object, 

recursive, and chunking.   

 The participants used a recursive strategy to model their algebraic thinking more 

than they used the other strategy types combined. This was often due to the participants’ 

beliefs that a recursive strategy would provide a correct answer, due to their 

understanding of the connection of the recursive strategy to the context of the problem.  

After recursion, the explicit strategy was used the most often.  This was often due to their 

belief that an explicit rule exists for every problem situation. The participants employed 

correct recursive reasoning 92% of the time, which was the highest of all the 

generalization strategies.  The chunking strategy was used correctly 90% of the time, but 

was used far less frequently than recursion.  Whole-object and explicit reasoning were 

used far less successfully than the other two strategies, with whole-object strategies 

correctly employed 69% of the time and explicit strategies used correctly 60% of the 

time.   
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 Four participant strategy-use groups emerged from the data: the All Group 

(participants used all four generalization strategies), the REC group (participants 

employed recursive, explicit, and chunking strategies), the Recursive/Explicit Group 

(participants reasoned recursively and explicitly), and the Recursive Group (only 

recursion was used to generalize the tasks).  Most of the participants fell into one of two 

groups, the REC group or the Recursive/Explicit group.   

 Participant flexibility was categorized in two parts: within-task and cross-task.  In 

terms of within-task flexibility, every participant was classified as exhibiting at least 

medium flexibility for at least one of the three core tasks.  Thus, every participant was 

able to determine the applicability of and develop a rule for most of the generalization 

strategies for at least one of the core tasks.  When overall within-task flexibility was 

considered, three of the participants were classified as exhibiting high flexibility for the 

core tasks, while five participants were classified as medium, and three as low.   

 Concerning cross-task flexibility, most of the participants exhibited at least a 

medium rating for their ability to understand the applicability of the generalization 

strategies across tasks. Only one participant was classified as consistently exhibiting 

cross-task flexibility.  Cross-task flexibility was highest for the recursive strategy and 

lowest for whole-object reasoning.  In terms of overall cross-task flexibility, a relatively 

equal number of participants were classified as exhibiting high, medium, and low cross-

task flexibility.     
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CHAPTER V 

SUMMARY, DISCUSSION, AND CONCLUSIONS 

 This study investigated secondary students’ use of algebraic generalization 

strategies and their respective within-task and cross-task flexibility. Specifically, this 

study documented secondary student strategy use when generalizing contextual algebraic 

tasks.  In addition, I constructed a definition for algebraic flexibility consisting of two 

parts: within-task flexibility and cross-task flexibility. Conceptual frameworks for these 

aspects of algebraic flexibility were developed so that within and cross-task flexibility 

could be assessed. This chapter provides a summary of the study and a discussion of the 

findings in relation to the current research base.  The limitations of this study, the 

implications for curriculum and instruction, and the recommendations for future research 

are also addressed.  

Summary of the Study and its Findings 

Research (Healy & Hoyles, 1999; Lannin, 2001; Stacey, 1989; Swafford & 

Langrall, 2000) has shown that elementary and middle grade students naturally employ 

various generalization strategies when working to solve algebraic situations.  To date, no 

studies have employed a similar perspective to document the algebraic generalization 

strategies employed by students at the secondary level.   
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Standards documents  (NCTM, 2000; NRC, 2000) have called for students to 

become flexible problem solvers. In terms of algebra, research (Davis & McGowen, 

2002; Lewis, 1981; Star, 2001) on flexibility has focused mainly on representational 

flexibility or flexibility in algebraic manipulation.  This study expands the literature 

concerning these issues by documenting the algebraic strategies of secondary students 

when generalizing algebraic situations and measuring their flexibility. 

Purpose of the Study 

 This study investigated the secondary students’ algebraic reasoning and flexibility 

through the use of active interviews (Holstein & Gubrium, 1995) in which participants 

generalized various algebraic situations.  Alternative “fictitious student” strategies were 

used to assist in determining the degree to which the participants understood four 

generalization strategies (explicit, whole-object, chunking, and recursive) in various 

situations. 

 Specifically, this study investigated the following questions: 

1. What strategies do secondary students use when generalizing numeric situations 

and how do they use these strategies?  

2. To what extent do students exhibit within-task strategic flexibility when generalizing 

algebraic tasks? 

3. To what extent do students exhibit cross-task strategic flexibility when generalizing 

algebraic situations? 

Methodology 

 Eleven tenth grade students participated in two to three interviews where they 

generalized contextualized algebraic situations. Following the development of an initial 
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generalization, the participants were prompted to examine fictitious student strategies for 

each task and to determine the viability, usefulness, and domain of these strategies. The 

fictitious student strategies were developed to mimic the algebraic generalization 

strategies noted in the extant literature. Data sources (transcripts, participant work, and 

field notes) were analyzed as to allow the natural strategies of the participants to emerge.  

Had a new strategy been employed, it would have been represented by a new fictitious 

student strategy.  However, no new strategies emerged during the initial or retrospective 

analyses.  

 The interview data were analyzed with an eye for the generalization strategies 

employed by the participants and for the participants’ understanding of the various 

strategies in terms of the different tasks. Criteria were developed to determine participant 

understanding of strategies for each task.  Participant classification according to these 

criteria provided the basis for determination of within-task and cross-task flexibility.  

Most of the study employed qualitative analysis, while measures of efficient strategy use 

required rudimentary quantitative means.  

Results of the Study 

 The participants employed four algebraic generalization strategies when 

generalizing the tasks for this study.  These strategies were explicit, whole-object, 

recursive, and chunking.   

 The participants used a recursive strategy to model their algebraic thinking more 

often than they used the other strategy types combined.  This seemed to be because of 

their belief that a recursive strategy would provide a correct answer, due to their 

understanding of the connection of the recursive strategy to the context of the problem.  
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Other than recursion, the explicit strategy was used the most often.  This often appeared 

to be due to the participants’ beliefs that an explicit rule exists for every problem 

situation.  

 Participants employed correct recursive reasoning 92% of the time, which was the 

highest of all the generalization strategies.  The chunking strategy was used correctly 

90% of the time, but was used far less frequently than recursion.  Whole-object and 

explicit reasoning were used less successfully than the other two strategies, with whole-

object strategies correctly employed 69% of the time and explicit strategies used correctly 

60% of the time.   

 Four participant strategy-use groups emerged from the data: the All Group (used 

all four generalization strategies), the REC group (employed recursive, explicit, and 

chunking strategies), the Recursive/Explicit Group (reasoned recursively and explicitly), 

and the Recursive Group (used only recursion).  Most of the participants fell into one of 

two groups, the REC group or the Recursive/Explicit group.   

 Participant flexibility was categorized in two parts: within-task and cross-task.  In 

terms of within-task flexibility, every participant was classified as exhibiting at least 

medium flexibility for at least one of the three core tasks.  Thus, every participant was 

able to determine the applicability of and develop a rule for most of the generalization 

strategies for at least one of the core tasks.  When overall within-task flexibility was 

considered, three participants were classified as exhibiting high flexibility for the core 

tasks, five participants were classified as medium, and three were determined to have low 

flexibility.   
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 Concerning cross-task flexibility, most participants exhibited at least a medium 

rating for their ability to understand the applicability of the generalization strategies 

across tasks. Only one participant was classified as consistently exhibiting cross-task 

flexibility.  Cross-task flexibility was highest for the recursive strategy and lowest for 

whole-object reasoning.  In terms of overall cross-task flexibility, participants were 

evenly distributed among the categories of high, medium, and low cross-task flexibility.  

Discussion of the Findings 

 This study examined secondary student use of algebraic generalization strategies 

when solving contextualized generalization tasks and determined the algebraic flexibility 

of these students in terms of generalization strategies for these tasks. In this section, I 

discuss the strategies used by the participants and their algebraic flexibility in light of 

current literature.   

Generalization Strategy Use 

All strategies employed by the secondary students in this study could be classified 

as explicit, whole-object, chunking, or recursive.  Research (Healy & Hoyles, 1999; 

Lannin, 2001; Stacey, 1989; Swafford & Langrall, 2000) has demonstrated that upper 

elementary and middle school children use these generalization strategies when solving 

algebraic generalization situations.  Since prior research had not examined strategy use in 

this manner above the middle grades, this study adds to the research base by extending 

this classification of algebraic generalization strategies to the secondary level.   

 Effective Strategy Use.  Similar to findings by Lannin (2005) and Swafford and 

Langrall (2000), the participants had difficulty developing explicit rules.  The explicit 

strategy was used correctly less than 60% of the time, which was far less than the 
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recursive and chunking strategies (participants used both correctly over 90% of the time) 

and was around 10% less than the whole-object strategy.  

 The ineffective use of the explicit strategy appeared to occur for several reasons.  

One factor that led to the participants’ misuse of the explicit strategy involved the 

participants appearing to notice an explicit relation for a particular value and incorrectly 

apply it to other cases.  For example, Iza noticed that taking the length of the rod in the 

Cube Sticker problem, times five, provided the correct number of stickers for a rod of 

length two.  Although her rule generated the correct value for a rod length two, it did not 

apply to other instances of the problem situation.  Her success in finding the value for a 

length-two rod seemingly reinforced by her mistaken mental image of the problem 

context. When asked how she came up with her rule, Iza explained, “five, because each 

time you add a cube you have five faces to add.”  She then incorrectly applied this rule to 

several other instances.  Iza eventually realized her mistake, after sketching additional 

cubes onto the two that were provided and counting the resulting faces. This mistaken 

explicit strategy rarely proved successful.   

The whole-object strategy was used less frequently than the other strategies for 

the three core problems.  The fact that it was used few times made it difficult to compare 

its success to the other strategies.  However, whole-object reasoning, like explicit 

reasoning, was not used as successfully as recursive or chunking reasoning.  Research 

(Lannin, Barker, & Townsend, under review-a) has shown that for the whole-object 

strategy to be used correctly, the participant has to have an accurate visual image of the 

problem situation. For example, when Adam correctly used the whole-object strategy 

throughout the Cube Sticker problem, it was due to his seemingly strong mental image of 
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the problem situation.  A detailed description of how Adam’s visual image helped him to 

use the whole-object strategy to solve the Cube Sticker problem is provided in the 

“Individual Participant Strategy Use” section (p. 86).   

 In contrast, mistakes made when using the whole-object strategy appeared to be 

due to the participant not having an accurate visual image of the problem situation.  For 

example, when Chrissy attempted to find the number of stickers for a rod of length four 

in the Cube Sticker problem, she incorrectly doubled the number of stickers for a rod of 

length two.  In performing this operation, Chrissy failed to recognize how doubling the 

number of the stickers for one rod to get the number of stickers for a rod of twice its 

length would effect the number of stickers required for this situation.   

 

 

 

Figure 14.  Illustration of whole-object doubling 
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As illustrated in Figure 14, a simple doubling would lead to one of the end 

stickers from each rod being covered when the two sections are put together.  

Adam seemed to account for the overlap produced by this action through his 

understanding of mental image of the situation.  He subtracted two stickers (representing 

the ends of the rod), and then employed whole-object reasoning and doubled the amount.  

He finished the computation by adding two stickers back on to the total, to cover the ends 

of the rods.  This adjustment to the whole-object doubling allowed the participant to use 

the strategy to compute the mathematically correct value.  While a participant’s mental 

image of the problem situation always played a role in that participant’s success in using 

a particular strategy, it appeared critical to the successful use of the whole-object 

strategy. 

 Recursion and its use. The recursive strategy often served as a starting point for 

the participants when working to generalize the problems in this study.  This is similar to 

the findings of Lannin, Barker, and Townsend (under review-a). Every participant in the 

study employed a recursive strategy for each of the three core tasks, with one exception 

(Gavin did not use a recursive strategy for the Cube sticker problem). Regardless of their 

ability, their visualization of the task, and their previous success with other strategies, the 

participants that generalized the three core tasks found utility in employing a recursive 

strategy at some point during their solution of the problems.  This phenomenon occurred 

only with recursion.  It should be noted, however, that the participants’ use of recursion 

was likely impacted by the generalization tasks.   

 Not only was recursion used by virtually every participant for each of the three 

core problems, but recursion was, in general, used correctly by almost every participant 
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for each of the three core tasks. As previously noted, recursion was often the first strategy 

employed when generalizing the problem situations.  Consequently, recursive strategies 

were used for smaller values in the domain, which likely contributed to the high level of 

correct usage.  Nevertheless, it is important to consider the participants’ seemingly 

natural tendencies to employ recursive reasoning and to exploit this fact in working to 

expand their abilities in algebraic reasoning.   

 Recursion as a gateway to other strategies. While others (e.g., Stacey & 

MacGregor, 2001) have noted that a focus on recursive reasoning can inhibit younger 

students’ abilities to advance to “more efficient” strategies, such as explicit reasoning, 

Lannin, Barker, and Townsend (under review-b) argued that exploring the ties between 

recursive and explicit reasoning can lead to a stronger understanding of how both can 

serve to effectively model a particular problem situation.  The authors discussed the 

importance of facilitating the connection of students’ recursive and explicit strategies, to 

help ensure that the contextual understanding that students exhibited in their recursive 

rules could carry over to their explicit rules. While the teacher plays an important role in 

helping students to consider other strategies and the relation between them, the 

participants of this study demonstrated that students could make the move from recursive 

reasoning to explicit reasoning essentially on their own, using the chunking strategy as a 

bridge from their recursive reasoning to explicit thinking.  For example, Adam used a 

chunking rule to move from his recursive rule in the Calling Tree problem to an explicit 

one. He knew that he needed to multiply by 2 for each additional minute.  Adam reasoned 

that he could “chunk” these multiplications of 2 together and multiply the current output 

by this chunk.  After using a recursive strategy to find the number of people contacted for 



149 

 

the first five minutes, Adam used a chunking strategy to find the number of people 

contacted for minutes 7, 10, 20, and 37.  In each case, the new total built upon the total 

for the previously computed minute.  In the end, Adam was able to use this chunking 

strategy as a springboard into explicit reasoning as evidenced by his development of an 

explicit rule that built off of the number of students contacted during the fifth minute.  

Adam noted that his rule, 2x-5 * 96 would work for any value in the domain. In this 

example, Adams recursive rule led to the development of a chunking strategy, which in 

turn helped him to develop his explicit strategy.  

 Iza represented another participant whose knowledge of recursion, and chunking, 

could help her to better understand other strategies.  Iza’s Flexibility Schematic is 

provided below. 

 

Task Explicit 
Whole 
Object Recursive Chunking Overall 

Cube 
Sticker L M H M M 
Calling 

Tree L L H M L 
Theater L L H M L 

 

Table 23. Iza’s flexibility schematic 

Iza scored consistently low in terms of her understanding of the explicit strategy and the 

whole-object strategy for the three core tasks.  However, she seemed to have a better 

understanding of the chunking strategy for these tasks, as she received a ranking of 

medium for all three.  Iza also demonstrated strong understanding of when the recursive 

strategy could be used for the three tasks, as she received a high rating for each. Iza’s 

consistently correct understanding of the recursive strategy would seem to indicate that 
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this strategy represents an area of strength for her.  Her recursive reasoning should be 

encouraged as it provides a foundation for her understanding of other generalization 

strategies.  Iza’s consistently medium scorings for the chunking strategy seem to imply 

that this is an area that, through appropriate task selection and guidance in building on her 

knowledge of recursion, could become an area of strength for her.  Her consistently low 

classifications for her understanding of the explicit strategy indicate she has been unable 

to connect her reasoning with recursion and chunking to developing explicit; 

interventions that focus on the connections between recursive and explicit reasoning and 

chunking and explicit strategies would likely improve Iza’s ability to reason explicitly.  

 Chunking as a window toward explicit reasoning. The chunking strategy provided 

an effective tool for developing correct explicit strategies.  As previously mentioned in 

this chapter, not every problem situation can be modeled explicitly.  However, for those 

tasks that can be modeled explicitly, participants struggled to produce correct explicit 

generalizations. When working through a problem situation, the participants in this study 

often found the use of a recursive strategy to be too time-consuming and tedious when 

the input values increased.  At these times, the participants developed what they 

considered to be more efficient strategies; most of the time, this dissatisfaction led these 

participants to search for an explicit rule.  In the move from a recursive rule to an explicit 

generalization, the participants experienced mixed success.  However, those participants 

who moved from a recursive strategy to an explicit rule via a chunking strategy often 

proved successful in the transition.  For example, Adam employed a chunking strategy 

for input values 7, 10, 20, and 37 in the Calling Tree problem.  Through this experience, 

Adam realized that he could build a “chunk” to calculate any input value (greater than 5) 
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and could determine the correct output by connecting the chunk to his calculation for the 

number of people contacted during the fifth minute.  By expanding the constraints of his 

chunking strategy, Adam was able to develop an explicit rule based on the context of the 

situation that provided him with correct solutions to the task.      

 Strategy-Preferred Tasks. While each of generalization tasks used in this study 

allowed students to employ multiple strategies, particular problem situations appeared to 

encourage the use of particular strategies.  As noted in Chapter IV, students used the 

recursive strategy three times more than any of the other strategies to generalize the 

Calling Tree problem (Figure 8, p. 55.) This was likely due to how the incremental 

mathematical relationship was presented within the context and the mathematical 

structure of the task. The recursive relationship between consecutive terms is clearly 

stated within the problem situation (each person calls two other people).  In terms of the 

mathematical structure, the exponential nature of the task appeared to make the 

development of an explicit rule more difficult to construct than for the linear situations. 

In addition, student depth of understanding of exponents may not be as strong as their 

understanding of the operations of addition, subtraction, multiplication, and division. 

Likewise, the Cube Sticker problem (Figure 2, p. 10) had the highest percentage 

of explicit strategies of the three core problems.  This was likely due to students being 

more readily able to visualize an explicit relationship that exists within the context of the 

problem, due to the visual image provided in the situation and the mathematical structure 

of the task.  

The visual image provided for the Cube Sticker problem allows the student to 

simultaneously view two consecutive iterations of the problem situation.  While this 
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would seemingly provide the students with information for a recursive rule, this 

presentation can also serve as an illustration of the variant and invariant conditions that 

exist in the problem.  In this case, the number of stickers on the sides changes with the 

length, while the two stickers on the end stay the same.  Considering the mathematical 

structure of the problem, explicit forms could be easily constructed that did not require 

adding to the length of the rod before multiplying.  For example, the explicit rule 4L+2 

could be used to represent the number of stickers on a rod of length L.  This particular, 

and most often used for this study, rule does not require an addition, or subtraction, from 

the length before the multiplication.   

 The Brick problem, Streets and Lampposts problem, and the Carwash problem all 

produced one primary generalization strategy, with one or two other strategies used 

minimally.  For example, the 93% of the strategies used to generalize the Brick problem 

were explicit in nature, with recursion representing the only other strategy used.  Use of 

the explicit strategy was likely due to the mathematical structure of the task and visual 

representation provided in the problem. The participants often recognized the 

mathematical structure of the task as direct variation and quickly developed an explicit 

rule to model it. As noted by Adam, “Because each row increases by 3 and multiplying is 

just increasing…by the same number every time.”  Hailey said, “There are four lengths 

and in each length there is three bricks…so I just multiplied the length by three.”  The 

pictorial representation provided for the task also helped to highlight the direct variation 

structure that underpinned the task; the bricks were illustrated by a pictorial array of three 

bricks by four bricks.  
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For the Streets and Lampposts problem, participants used a recursive strategy 

nearly 85% of the time.  The use of a recursive strategy for this problem was likely 

precipitated by the mathematical structure of the problem.  As previously noted, the 

Streets and Lampposts problem represented the only quadratic task in the set.  Given that 

the recursive relationship is much more accessible than the quadratic rule (due to the 

variable rate of change that exists as the number of streets increases), it seems appropriate 

that the participants often employed recursive reasoning.  The only instances of non-

recursive strategy use for this problem occurred when a participant was able to develop a 

less apparent explicit rule for the problem situation.  Dave initially thought that his rule, 

(n/2 - 0.5)*n where n represents the number of streets, only applied to odd cases in the 

domain, but later realized that he could use it for any value greater than one.  Similar to 

the Calling Problem, which was the only exponential problem in the set of six tasks, the 

Streets and Lampposts problem was a recursively-preferred problem for these 

participants.   

Finally, 72% of the strategies employed when working the Carwash problem 

(Figure 9, p. 57) were of the whole-object variety.  Once again, the use of the whole-

object strategy was likely due to the mathematical structure of the problem situation. 

Given that the Car Wash problem represents an inverse-variation situation, it would be 

difficult for participants to “chunk” together recursive pieces to arrive at a reasonable 

solution.  A similar argument could be made as to why the recursive strategy was rarely 

used for this task, and never used mathematically appropriately.  

 As the participants attempted to determine the amount of time required for 20 car 

washers to wash the cars given that 40 washers took 2 hours, they used proportional 
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reasoning to solve the problem.  In fact, the participants who succeeded in developing an 

explicit rule for the situation were only able to do so by using their knowledge of division 

and guessing and checking with the values that they obtained using the whole-object 

strategy.  Dave explained his reasoning for the explicit rule that he developed.  He said, 

“I knew that you had to somehow divide 30 by 40 or 40 by 30 to get a number and then 

multiply or divide it by two to get the time.  So I just guessed and checked to figure out 

which one would work right…Dividing is going to make this number bigger.”  

Within and Cross-Task Flexibility 

 The number of strategies that a participant used to solve a particular problem was 

not necessarily an indication of the strategies that the participant understood or could use 

to solve a problem situation.  For example, Dave used only recursive and explicit 

strategies in initially solving the three core tasks.  However, Dave was able to understand 

the applicability of each of the four generalization strategies for these tasks and 

developed a contextually justified rule for almost every one.  Had Dave’s strategic 

flexibility been judged by only his work in solving the tasks, a complete picture of his 

understanding would not have been realized.   

 Most of the participants were fairly flexible.  While only three participants in this 

study (Adam, Dave and Gavin) were found to be highly flexible in terms of both within 

and cross-task flexibility, only two participants were rated as consistently low in terms of 

flexibility.  In fact, 9 out of the 11 participants in this study demonstrated a relatively 

solid understanding of when the various generalization strategies are applicable and have 

the ability to develop a rule that models the situation using each strategy.  Even though 

the participants of this study had experienced algebra classes that had not focused on 
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multiple strategies, the participants could still use and could understand different 

algebraic rules for generalization situations.   

 The participants of this study recognized that generalization strategies can be 

modified and applied across tasks and recognized how various strategies can be used to 

solve particular tasks.  Krutetskii’s (1976) work on algebraic flexibility provided a look at 

the ability of students to develop different strategies for solving various algebraic tasks, 

including contextualized problems and symbol manipulations.  It is unclear, however, 

how the students in Krutetskii’s study viewed the generality of the generalizations that 

they created.  Krutetskii’s research was focused on the participants’ speed in moving 

from one correct method of solution to another and not on the participants’ views of their 

generalizations.  The within-task flexibility framework that guided this study looked 

beyond the strategies that a student produced to the student’s understanding of the 

strategies and their applicability to a particular situation.  This view of within-task 

flexibility provides a new perspective of a student’ ability to model and generalize 

mathematical situations, which is key to developing mathematical power.    

 Krutetskii’s research included a measure of how contextually similar, yet 

mathematically different tasks impacted a students ability to produce solutions. 

Participants were judged on how “bounded” they were to the previous problem situation 

by how long it took them to produce a new solution. Unlike Krutetskii’s view of cross-

task “flexibility,” I did not consider the amount of time that a student required to 

generalize a task. The cross-task flexibility framework in this study provided a tool for 

looking at how students could adjust and apply a particular generalization strategy to new 

problem situations. This ability to apply prior knowledge to new situations is what others 
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(Holyoak, 1984; Novick and Holyoak, 1991) have termed transfer.  “Students develop 

flexible understanding of when, where, why, and how to use their knowledge to solve 

new problems if they learn how to extract underlying themes and principles from their 

learning exercises” (NRC, 2000, p. 236). The cross-task flexibility framework was 

designed to model this process.  

 While the participants of this study were, in general, able to demonstrate solid 

understanding of the generalization strategies, they occasionally over-generalized the use 

of particular strategies, seemingly lacking a precise demarcation for when and when not 

to use particular strategies.  For example, Karen believed that, most of the time, the 

whole-object strategy would not work.  In the Brick problem, where whole-object 

reasoning did produce correct results, she felt that it was a “coincidence” and would 

generalize to other instances in the task.  Likewise, many of the participants over-

generalized the applicability of the explicit strategy, noting that an explicit strategy exists 

for every problem situation, even if they were not able to develop or find it.  In many 

cases, this could be due to their experiences in algebra classes where, as Gavin remarked, 

“There is always a general rule…There has usually been a pattern to follow in almost 

every problem that I have ever done.” Adam echoed this sentiment when asked if there 

would be a rule like Abby’s (explicit) for the Theater Seats problem.  He said, “Yeah, I 

think so, because, like I said that math works in patterns so there will always be a pattern, 

like 3n + 7 would be something like that.  And the same for all of these [tasks].” 
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Limitations 

The limitations of this study fall into three categories: voluntary sample, task 

issues, and the nature of alternative strategies. As is the case for many educational 

research studies, the students chosen to participate in the study did not represent a 

random sample. The nature of the extensive interviews used in this study limited the 

population of potential participants.  

Along with the voluntary nature of the students selected for participation, the fact 

that all of the participants in this study resided in two geographically similar locales could 

be cause for concern.  However, in line with prior research in this area, the fact that the 

population is not geographically diverse should not adversely affect the results; this study 

sought to document the algebraic strategies and flexibility of algebra students at the 

secondary level and the results provide a foundation for future research in different 

demographics.    

While every student who participated in the study had a chance to solve the 

Calling Tree problem, only three participants had the opportunity to work the Carwash 

problem and/or the Streets and Lampposts problem.  While it would have been preferable 

to have each participant in the study work these tasks, the limited number of sessions did 

not allow all participants to complete these tasks.  Ultimately, the inclusion of these tasks 

might have encouraged the participants to reconsider the utility of other strategies.  

However, the limited length of this study is considered a limitation and offers an area for 

future investigation.  

The particular tasks used in this study to elicit generalization strategies likely 

impacted strategy use.  Each of the tasks encouraged generalization through patterning.  
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In most of the cases, smaller values in the domain were either illustrated or provided with 

accompanying outputs to provide reference points for patterns.  The often smaller and 

consecutive input values seemed to make recursive reasoning an attractive option, due to 

its ease of implementation and utility in producing correct solutions, from the students’ 

perspectives.   

 The alternative strategies that the participants considered following their work 

with each of the tasks were presented in different contexts. The explicit and recursive 

rules were presented as generalities while the whole-object and chunking strategies were 

given as particular instances.  For example, the recursive strategy was presented using the 

following example: “To find the number of seats in the next row, just add 3 each time. I 

wrote my rule: NOW + 3 = NEXT.”  For this strategy, no particular row number is 

provided for when this rule should work; it is provided as a general rule.  On the other 

hand, the chunking strategy was illustrated in the following manner: “For the 13th row, I 

know there are 34 seats in the 10th row, so I added a total of 9 seats for the next 3 rows.”  

For this strategy, a particular instance is used to demonstrate the strategy.  For a student 

to generalize this rule, they would have to see the general in the particular (Mason & 

Pimm, 1984). While the participants were asked whether they could apply their rule to 

other cases in an effort to minimize the differences, the fact that there were differences in 

the implied generality of the fictitious student strategies could be a limitation.    

Implications for Curriculum and Instruction 

 The results of this study can serve as a guide for curriculum and instructional 

decisions regarding the development of algebraic thinking in the secondary school.  The 

curriculum recommendations describe how generalizing algebraic situations can be used 
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as a means for facilitating the development of algebraic flexibility in terms of strategy 

use.  The instructional implications emphasize the importance of facilitating this 

flexibility through sociomathematical norms (Cobb, 2000) that include student 

interactions that focus on acceptable justification.  

Implications for Curriculum 

 This study demonstrates the range of strategies that students naturally employ 

when solving contextualized generalization tasks.  Curriculum developers seeking to 

integrate NCTM’s (2000) recommendations regarding algebra should consider such tasks 

for introducing and developing algebraic concepts.  Given NCTM’s position on the value 

of multiple strategies and conceptual understanding, contextualized generalization tasks 

can allow students to use and nurture their understanding of the strategies they develop.   

 The tasks that I selected for the study impacted the strategies used. Lannin, 

Barker, and Townsend (under review-a) discussed how certain task factors, such as the 

mathematical structure and input values, can impact the generalization strategies used by 

students.  They also noted that cognitive factors play a key role in determining student 

strategy use.  These findings were supported by the data in this study.  For example, the 

participants in this study believed that an explicit rule always existed, regardless of the 

context, even if they could not develop or find it.  In many cases, this was due to their 

prior experiences with algebra where an explicit rule could always be developed to model 

the situation.  It makes sense, then, that for most of the problems, this “prior knowledge” 

cognitive factor was evident, as the participants made efforts to develop explicit rules to 

model the algebraic situations.  
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While it may be the case for many of the problems that these participants have 

experienced, including this study, it is certainly not the case, in general, that every 

problem can be represented with an explicit generalization.  As noted by Kaput (1995), 

few situations can actually be modeled explicitly. This is where the understanding of task 

factors can prove beneficial.  As students work to solve various problem situations, it 

would be to the students’ advantage for them to experience mathematical situations 

where an explicit rule cannot be found to model the situation.  While such tasks serve the 

purpose of expanding the students’ horizons in terms of mathematical sophistication and 

knowledge of mathematical modeling, these tasks would also highlight the importance of 

other generalization strategies that the students might not have considered or might have 

deemed inappropriate or inefficient for most mathematical situations.   

The inclusion of problems that do not allow for an explicit rule, or at least do not 

allow for an easily-developed explicit rule, was important to this study.  To that end, 

three tasks were employed during the sessions that represented algebraic situations in 

which the explicit generalization was difficult to deduce.  The three tasks were the 

Calling Tree problem, the Carwash problem, and the Streets and Lampposts problem.  

The Calling Tree problem was considered difficult in terms of producing a 

mathematically correct explicit equation due to its exponential nature.  In fact, this 

hypothesis proved correct with 10 of the 11 participants in this study employing an 

explicit strategy for this task a total of only four times, with only two of those four 

representing correct explicit strategies.  The other participant used an explicit strategy a 

total of 19 times, but only one of those 19 represented a mathematically correct explicit 
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strategy.  In other words, the Calling Tree problem was difficult to solve explicitly, 

meaning that the participants had to employ other methods of solution.   

The Streets and Lampposts and the Carwash problems provided similar difficulty 

vis-à-vis developing a mathematically correct explicit generalization.  Once again, this 

was likely due to their mathematical structure.  The Carwash problem represented an 

inverse-variation situation while the Streets and Lampposts task was quadratic.  The 

participants that worked these problems experienced difficulty in producing a 

mathematically correct explicit generalization.   

Using tasks such as the Calling Tree problem, the Streets and Lampposts problem, 

and the Carwash problem could allow students to discover that the explicit strategy does 

not always provide the most efficient and accurate method of solution, when the trials of 

establishing such rules are factored into the equation.  Similar tasks that actually cannot 

be modeled explicitly would help to bring more advanced students who might have 

developed explicit rules for these three tasks to the same realization.   

Implications for Instruction 

 Student-generated/alternative strategies. As was hypothesized initially in this 

study, students do not always use all of the strategies that they consider or that they 

understand.  To accurately gauge a student’s understanding and ability to use different 

strategies, the student must be presented with opportunities to consider viable strategies 

that they may not have articulated.  Whether this is done through the normal course of 

classroom discourse or through the use of fictitious student strategies, providing students 

opportunities to grapple with other strategies for a particular task should increase their 

within-task flexibility.  As students generalize algebraic tasks, the teacher should have 
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students who have employed different strategies share their ideas.  As they share, the 

teacher should encourage the students to explain their reasoning, so that class can better 

understand their ideas and see how they developed. These explanations should connect 

their generalizations to general relations that exist in the problem context (Lannin, 2005). 

The teacher could have the students grapple with differences and similarities between the 

strategies, as well as advantages and disadvantages.  Such discourse should allow the 

students to build on their knowledge of strategies and improve in terms of within-task 

flexibility.   

 As more tasks are explored, the teacher should ask students to consider how the 

strategies used to solve the new task compare to the strategies used to solve previous 

tasks. By focusing on how each strategy is alike or different from previous strategies 

should improve the students’ cross-task flexibility.  

 Individual versus overall classifications. While the measures of overall within-

task and cross-task flexibility allow for the comparison of the participants in this study 

across the three core tasks, potentially more important for classroom teachers is the 

determination of within-task flexibility by task and cross-task flexibility by strategy.  The 

overall categorizations provide a global assessment of a particular student’s abilities to 

understand if and how different strategies can be used for a range of tasks or how well the 

student understands the four algebraic generalization strategies in general.  However, the 

individual classifications of within-task flexibility and cross-task flexibility might prove 

even more useful.  This information describes a student’s understanding of the group of 

strategies in terms of a particular task and how that student’s ability to effectively apply a 

particular generalization strategy to various tasks.  These measures represent the heart of 
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student algebraic flexibility and the assessment of these qualities can provide a 

foundation for student growth in algebra. 

Recommendations for Future Research 

 Future research needs to examine student flexibility at various age levels and 

track flexibility over time.  While prior studies have shown that students utilize different 

strategies when solving contextualized algebra tasks at the elementary and middle levels, 

little research has been done to document younger students’ abilities to reflect on and 

adapt others’ strategies.  Given that the framework for determining algebraic flexibility is 

presented in this study, no research has documented algebraic flexibility at the 

elementary, middle, or post-secondary levels.  Studies focusing on these areas would 

provide a more complete picture of student algebraic flexibility.  Research that 

documents how the flexibility of a group of students develops over time would provide 

further insight into student algebraic flexibility and how it develops at different grade 

levels.   

 Additionally, the use of a more diverse sample of participants would allow a more 

descriptive picture of flexibility to emerge.  As previously noted, the participants for this 

study were drawn from two, similar Midwestern high schools that did not use NSF-

funded curricular materials at any level.  While any student population might contain 

participants classified as high, medium, and low in terms of flexibility, future research 

conducted in different locales could provide alternative perspectives that would allow for 

comparisons and the determination of influencing factors.  For example, studies focused 

on the algebraic flexibility of participants who have completed an integrated high school 
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mathematics curriculum could provide a comparison for that particular treatment versus a 

more traditional approach.   

 Finally, this study analyzed student flexibility when solving algebraic 

generalization situations, specifically linear and exponential tasks. Future research that 

focuses on other algebraic topics, such as quadratically- and cubically-modeled tasks, 

would provide a look at the applicability of the flexibility frameworks of this study to 

other algebraic topics.  Such work would also extend the knowledge base by providing a 

more complete picture of flexibility within the domain of algebra.     
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Interview Protocol 
 

Give the task to the participant. Have the participant work through a few instances and 
see if he or she can generalize the task. Have the participant write a general rule (in words 
or symbols) and consider the possible values that could exist for N. 
 
Questions: 

• How did you develop your rule? 
• How does your rule relate to the problem situation? 
• Will your rule always work? 
• How do you know that your rule will work for (a large input value?) 

 
Have the participant examine the alternative strategies for this situation. Have the 
participant discuss the viability of each strategy.   
 
If the strategy is viable, ask the participant if she can develop a rule to model the situation 
using the particular strategy.  Then ask her to describe the strengths and weaknesses of 
the strategy for the situation.   
 
Additional Questions: 

• How does the strategy relate to the problem situation?   
• Would you use this strategy?  If so, for what values?   

 
If the student does not view the strategy as viable, ask the student if changes can be made 
to the strategy so that it is viable.  If yes, then ask about strengths and weaknesses etc.  
  
Have the student discuss which of the rules are preferable for the particular situation.  
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Theater Seats 
Explicit: 

H The participant states that an explicit rule exists and provides a correct general 
rule for all values in the domain with contextual justification.  

M The participant states that an explicit rule exists and provides a correct general 
rule for all values in the domain with empirical justification.  

L The participant states that an explicit rule exists, but does not provide an explicit 
rule for the problem situation OR 
The participant states that an explicit rule does not exist for the problem situation.  

 
W/O: 

H The participant states that a whole-object rule does not exist and provides a valid 
contextual justification.  

M The participant states that a whole-object rule does not exist and provides an 
empirical justification.  

L The participant states that a whole-object rule does not exist and does not provide 
a valid justification OR 
The participant states that a whole-object rule exists.  

 
Recursive: 

H The participant states that a recursive rule exists and provides a valid justification.  
L The participant states that a recursive rule exists, but does not provide a valid 

justification OR 
The participant states that a recursive rule does not exist.  

 
Chunking: 

H The participant states that a chunking rule exists and describes how it would work 
in general.  

M The participant states that a chunking rule exists and describes how it would work 
for particular cases.  

L The participant states that a chunking rule exists and notes that it works for the 
10-13 case OR  
The participant states that a chunking rule exists, but does not provide a valid 
justification OR 
The participant states that a chunking rule does not exist.  
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Calling Tree 
Explicit: 

H The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers a valid contextual justification. 

M The participant states that an explicit rule exists and provides a description of the 
type of rule that would be used for the situation.  

L The participant states that an explicit rule exists, but changes rule to represent a 
different strategy OR 
The participant states that an explicit rule exists due to most problems having an 
explicit rule OR 
The participant states that an explicit rule does not exist for this situation.  
 

W/O 
H The participant states that a whole-object rule exists, changes the supplied rule to 

a recursive doubling, and provides a valid justification OR  
 The participant states that a whole-object rule does not exist and provides a valid 
 general justification.  
M The participant states that a whole-object rule exists and provides a description of 

the type of rule that would be used for all values in the domain OR 
 The participant states that a whole-object rule does not exist and provides an 
 empirical justification.  
L The participant states that a whole-object rule does or does not exist and does not 

offer a valid justification.  
 
Recursive: 

H The participant states that a recursive rule exists, provides a correct general rule 
for all values in the domain, and offers a valid justification.  

L The participant states that a recursive rule exists, but does not provide a correct 
general rule for all values in the domain and a valid justification OR 
The participant states that a recursive rule does not exist.  

 
Chunking: 

H The participant states that a chunking rule exists, provides a correct rule for the 
situation, and offers a valid justification.  

M The participant states that a chunking rule exists and provides a rule for finding a 
particular instance (i.e. determining minute thirteen from minute ten) and offers a 
valid justification.  

L The participant states that a chunking rule exists, but changes rule to represent a 
different strategy OR  
The participant states that a chunking rule exists, but does not provide a correct 
general rule for all values in the domain and a valid justification OR  
The participant states that a chunking rule does not exist for this situation.  
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Cube Sticker 
Explicit: 

H. The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers a valid contextual justification.  

M. The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers an empirical justification.  

L. The participant states that an explicit rule exists, but does not provide a correct 
general rule for all values in the domain and a valid justification OR 
The participant states that an explicit rule does not exist for the problem situation. 

 
W/O: 

H The participant states that a whole-object rule exists and provides a correct rule 
with contextual justification of the rule OR 
The participant states that a whole-object rule does not exist for the situation and 
provides correct contextual justification as to why the rule does not work.  

M The participant states that a whole-object rule exists and provides a correct rule 
with empirical justification of the rule. OR 
The participant states that a whole-object rule does not exist for the situation and 
provides empirical justification as to why the rule does not work.  

L The participant states that a whole-object rule exists and does not provide a 
correct justification as to why the rule would work. OR 
The participant states that a whole-object rule does not exist and does not provide 
a correct justification as to why the rule would not work.  

 
Recursive: 

H The participant states that a recursive rule exists, offers a valid contextual 
justification, and provides a correct general rule for the situation.  

M The participant states that a recursive rule exists, offers an empirical justification, 
and provides a correct general rule for the situation.  

L The participant states that a recursive rule exists, but does not provide a valid 
justification and/or rule OR 
The participant states that a recursive rule does not exist. 

 
Chunking: 

H The participant states that a chunking rule exists, offers a valid justification, and 
describes the rule as working for all values in the domain.  

M The participant states that a chunking rule exists, offers a valid justification, and 
describes the rule as working for particular cases.  

L The participant states that a chunking rule does not exist, or states that a chunking 
rule exists and does not offer a valid justification.  
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Streets & Lampposts 
Explicit: 

H The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers a valid contextual justification.  

M The participant states that an explicit rule exists and provides a description of the 
type of rule that would be used for all values in the domain.  

L The participant states that an explicit rule exists, but does not provide a correct 
general rule for all values in the domain and a valid justification OR 
The participant states that an explicit rule does not exist for this situation.  

 
W/O: 

H The participant states that a whole-object rule does not exist for this situation and 
provides a valid justification.  

L The participant states that a whole-object rule exists for this situation OR 
The participant states that a whole-object rule does not exist for this situation and 
does not provide a valid justification.  

 
Recursive: 

H The participant states that a recursive rule exists for this situation, provides a 
correct rule, and offers a valid contextual justification.  

M The participant states that a recursive rule exists for this situation and provides a 
correct rule, and offers an empirical justification.  

L The participant states that a recursive rule does not exist for this situation OR 
The participant states that a recursive rule exists for this situation, but does not 
provide a correct rule and/or a valid justification.  

 
Chunking: 

H The participant states that a chunking rule exists, provides a correct rule for the 
situation, and offers a valid contextual justification.  

M The participant states that a chunking rule exists and provides a correct rule for 
the situation, and offers an empirical justification. 

L The participant states that a chunking rule exists, but does not provide a correct 
rule for the situation and/or a valid justification OR 
The participant states that a chunking rule does not exist for this situation.  
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Carwash 
Explicit: 

H The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers a valid contextual justification.  

M The participant states that an explicit rule exists, provides a correct general rule 
for all values in the domain, and offers an empirical justification.  

L The participant states that an explicit rule exists, but does not provide a correct 
general rule for all values in the domain and a valid justification OR 
The participant states that an explicit rule does not exist for this situation.  

 
W/O: 

H The participant states that a whole-object rule exists for this situation, provides a 
valid rule, and offers a valid justification.  

L The participant states that a whole-object rule does not exist for this situation OR 
The participant states that a whole-object rule exists for this situation, but does not 
provide a valid rule and a valid justification.  

 
Recursive 

H The participant states that a recursive rule does not exist for this situation and 
provides a valid justification. 

L The participant states that a recursive rule does not exist for this situation, but 
does not provide a valid justification OR 
The participant states that a recursive rule does exist for this situation. 

 
Chunking 

H The participant states that a chunking rule does not exist for this situation and 
provides a valid justification. 

L The participant states that a chunking rule does not exist for this situation and 
does not provide a valid justification. 
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Brick 
Explicit: 

H The participant states that an explicit rule exists for this situation, provides a 
correct general rule, and offers a valid contextual justification. 

M The participant states that an explicit rule exists for this situation, provides a 
correct general rule, and offers an empirical justification. 

L The participant states that an explicit rule exists for this situation, but does not 
provide a correct general rule and a valid justification OR 
The participant states that an explicit rule does not exist for this situation.  

 
W/O: 

H The participant states that a whole-object rule exists for this situation and provides 
a valid contextual justification.  

M The participant states that a whole-object rule exists for this situation and provides 
an empirical justification.  

L The participant states that a whole-object rule exists for this situation, but does not 
provide a valid justification OR 
The participant states that a whole-object rule does not exist for this situation.  

 
Recursive: 

H The participant states that a recursive rule exists for this situation and provides a 
valid contextual justification.  

L The participant states that a recursive rule exists for this situation, but does not 
provide a valid justification OR 
The participant states that a recursive rule does not exist for this situation.  

 
Chunking: 

H The participant states that a chunking rule exists for this situation and provides a 
valid contextual justification.  

L The participant states that a chunking rule exists for this situation, but does not 
provide a valid contextual justification OR 
The participant states that a chunking rule does not exist for this situation.  
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