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ABSTRACT

Presented here is a Bayesian approach to test case allocation in the software

reliability estimation. Bayesian analysis allows us to update our beliefs about the

reliability of a particular partition as we test, and thus, dynamically refine our al-

location of test cases during the reliability testing process. We started with a fully

sequential sampling scheme to estimate the reliability of a software system using

partition testing. We have shown both theoretically and through simulation that

the proposed scheme always performs at least as well as fixed sampling approaches

where test case allocation is predetermined, and in all but the most unlikely cir-

cumstances, outperform them. Based on the sequential allocation, a multistage

sampling scheme is established, which is less time consuming and more efficient.

Meanwhile, an efficient sampling scheme is also developed to accommodate more

situations. In the last chapter, we extend our study from parallel systems to series

systems. We again use a Bayesian approach to allocate test cases to estimate the

reliability of a series system with two components. A second-order lower bound
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for the incurred Bayes risk is established theoretically and Monte Carlo simula-

tions with several proposed sequential designs are implemented to achieve this

second-order lower bound.
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CHAPTER 1

INTRODUCTION

Testing software to estimate reliability is most often done late in the prod-

uct development cycle, when functionality is in place, and the application is rela-

tively stable. It is at this phase when decision makers are most concerned about

estimating field reliability. Understandably, such an estimate greatly impacts the

decision to release. In critical systems, this impact is especially important, where

the tolerance for failure can be in the order of 10−3 or smaller [17]. Overestimating

reliability in this instance could have disastrous consequences, both for those who

depend on the system and the company that produces it. Alternatively, if manage-

ment has given some reliability guarantee to users, either explicitly or implicitly,

and in-house reliability estimates inaccurately fall below these benchmarks, then

release of the software may be delayed unnecessarily, sometimes at great expense

to the organization. Thus, estimates that closely approximate reality can reduce

risk and decrease the cost of software development. The goal of this paper is to

introduce a sequential sampling method to test for software reliability.

Our approach requires that we break up the domain of possible test cases

into partitions. These partitions should be non-overlapping such that if test case

i belongs to partition j then no partition other than j will contain test case i.

Software testing using samples of test cases drawn from partitions such as this is

referred to as partition testing [1], [34], [39]. There are several possible criteria

we can use to partition the software, by component for example. There are many

general approaches in the literature that address the mechanics, such as the usage

model [34] and data flow testing criteria [39], among others [10], [40].
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We begin formally by partitioning the test domain into k subdomains,

denoted here by D1, D2, . . . , Dk. For each subdomain Di, we have two associated

values: pi, which is the probability that a given post-delivery use of the software

will be of partition i (p1, p2, . . . , pk are known parameters of the operational profile

[1], [38]); and Ri, which is the conditional reliability of a use case or a test case

[22], on condition that it was randomly chosen from within partition i. Within

partition i, each test case has an equal chance of being selected. There are several

approaches for estimating the operational profile and the corresponding usage

probabilities, such as the usage model [38] and markov chain model [41].

The definition of reliability used here will be the one described by Poore et.

al. [22]: Reliability is the probability that the software will give the correct result

for a single randomly chosen [according to the operational profile] use. Using this

definition, software reliability, R, is represented by

R =
k∑
i=1

piRi, (1.0.1)

see for example [1], [34]. The impossibility of complete testing of any software

system of non-trivial size precludes us from knowing the conditional reliability

Ri of each subdomain exactly [14]. Instead, we must distribute the M test cases

allocated for reliability estimation among these k partitions, and use the results

to estimate each Ri. Specifically, sample sizes m1,m2, . . . ,mk are taken from

subdomains D1, D2, . . . , Dk respectively, where m1 +m2 + . . .+mk = M . Several

approaches have been taken in the past to allocate test cases under the criteria of

minimizing the variance of the maximum likelihood estimator of R (see for example

[34]). These allocation decisions, however, rely solely on the information obtained

from samples taken during reliability testing. To take advantage of an initial belief
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about the conditional reliability within a particular subdomain, we adopt a fully

Bayesian approach which allows us to refine these beliefs as we sample to improve

future allocation decisions.

Because the total number of test cases is fixed, it is possible to determine the

optimal allocation of test cases among the partitions before testing begins based

only on the prior distributions within the subdomains and usage probabilities

p1, . . . , pk. These allocations, which are made before sampling begins, are referred

to as fixed sampling schemes. We will show that making allocation decisions as

we sample, based on the prior distributions updated by sampling results, will

outperform the best fixed sampling scheme in terms of minimizing the expected

loss incurred by the Bayes estimator of the overall reliability.

Bayesian-based allocations were sought by [3], [13], and [18], although the

focus here is on estimating software reliability instead of software predictive reli-

ability [3], p-values estimation [13], or estimating the probability of failure [18].

Other criteria such as maximizing the payoff in expected reliability [37] have been

studied. For related work on Bayesian-based optimal test allocations in software

reliability, see [31].
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CHAPTER 2

A FULLY SEQUENTIAL TEST ALLOCATION FOR SOFTWARE

RELIABILITY ESTIMATION

In this section we propose a method to determine how to sequentially al-

locate test cases among partitions of the software to minimize the expected loss

incurred by the Bayes estimator of the overall reliability when the total number

of software test cases is fixed. In contrast to fixed sampling schemes, where the

proportion of test cases taken from each partition is determined before reliability

testing begins, we make allocation decisions dynamically throughout the testing

process. Using a fully Bayesian approach, we can take advantage of information

from previous functional testing and insights from developers. We then refine

these estimates in an iterative manner as we sample. We also compare the results

from a multistage sampling scheme with the optimal fixed sampling scheme, and

demonstrate its superiority in terms of the expected loss incurred when the over-

all reliability is estimated by its Bayes estimator both theoretically and through

Monte Carlo simulations.

2.1 The Baysian Model

We model the outcome of the jth test taken from the ith partition as a

Bernoulli random variable xi,j such that

xi,j =

 1, if test j taken from Di is processed correctly.

0, otherwise,
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where xi,j has a Bernoulli distribution with parameter Ri. We define R̂i as es-

timate of Ri after mi tests have been allocated to partition i, namely R̂i =

E[Ri|xi,1, . . . , xi,mi
]. Based on this allocation, our estimate of R, denoted as R̂,

can thus be defined as R̂ =
k∑
i=1

piR̂i.

Our objective is to seek the most accurate measure of reliability we can

obtain by allocating the M total test cases amongst the k partitions. To do this

allocation, there are several alternatives including minimizing the expected loss

[8], and maximizing expected utility [16], [42], among others [4], [15]. Since we

are using a Bayesian method, we choose to define the accuracy of our prediction

in terms of minimizing the average loss incurred by estimating R by R̂, its Bayes

estimator. Instead of determining optimal allocations, Littlewood and Wright [17]

proposed Bayesian stopping rules to meet some specified reliability.

There are several potential choices to define a loss function, such as the

absolute value of the difference between R and R̂ [4], the squared difference [8],

[33], and several others. The most common selection [8], [11], [15], [33] is the

squared error loss because of its natural correspondence to Euclidian distance.

For software reliability estimation, the squared error loss has been used often [8],

[11], [15], [33], and it is perhaps the most natural way to think of a positive

distance between two parameters. Therefore, we choose the squared error loss as

our measure of distance, and thus define the loss function as `(R, R̂) = (R− R̂)2.

Note that the squared error loss function can be extended to a more general loss

function [36] as `(R, R̂) = so(R̂ − R)rI{R̂≥R} + su(R − R̂)rI{R̂<R}, where r is the

order of the function, and so and su are the loss coefficients for overestimation and

underestimation, respectively. The general loss function reduces to the squared

error loss function when we set su = so = 1, and r = 2.
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By choosing the squared error loss, the Bayes estimator of R is the posterior

mean (see [4] pp.161). We thus seek to measure the expected loss incurred by

estimating R by its Bayes estimator R̂. This expected loss, <(P ), which is also

referred to as the Bayes Risk <(P ) = ERJ
[(R − R̂)2], is the expected loss with

respect to RJ , the joint density of R, and the observed data. Because R̂ is the

posterior mean, we can rewrite the expected loss as

<(P ) = E[V ar[R|x1,1, . . . , x1,m1 , . . . , xk,1, . . . , xk,mk
]], (2.1.1)

which is the expectation with respect to the marginal p.d.f. of x1,1, . . . , x1,m1 , . . . ,

xk,1, . . . , xk,mk
of the posterior variance of R given that the results of the M total

test cases have been observed (see [15], [16], [32]).

Now we seek a form of (2.1.1) that is useful in making allocation decisions.

We assume that the prior distributions for the partitions are independent. The

independence of the priors is a reasonable assumption when partitioning is done

by component. In these cases, the reliability of one component may be completely

unrelated to that of another, especially if one is a recent addition, and the other

is well tested; or the components were created by different groups that may use

alternate tools, methodologies, and standards internally. Under the assumption

of independence of the priors, and because R =
k∑
i=1

piRi, and p1, . . . , pk are fixed,

then

<(P ) =
k∑
i=1

p2
iE[V ar[Ri|xi,1, . . . , xi,mi

]]. (2.1.2)

Although many distributions are supported on interval (0, 1) such as Uni-

form distribution on (0, 1) and Logit-normal distribution, we choose the Beta prob-

ability distribution as our prior distribution. The Beta distribution can take a wide
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variety of shapes to accommodate many diverse situations through the choice of

the prior parameters. The Beta distribution was also found to be the most conser-

vative choice of prior distributions under uncertainty [9], and has a rich history in

probability theory [16]. For each subdomain Di, we assume that the correspond-

ing conditional reliability follows a Beta distribution such that Ri ∼ Beta(α0
i , β

0
i ).

One choice of α0
i and β0

i can be made based on what we believe to be the reliability

of the subdomain i prior to reliability testing. We refer to this estimate as µi. Our

degree of certainty in this prediction is expressed through the standard deviation

σi. The expected value of Ri before testing begins, assuming a Beta distribution

with parameters α0
i and β0

i is

E[Ri] =
α0
i

α0
i + β0

i

,

and similarly, the variance is

V ar(Ri) =
α0
iβ

0
i

(α0
i + β0

i )
2(α0

i + β0
i + 1)

.

In search of the parameters of the Beta distribution, we set E[Ri] = µi and

V ar[Ri] = σ2
i ; and by combining the two equations, and through algebraic manip-

ulation [18], we find

α0
i =

(µ2
i (1− µi)− σ2

i µi)

σ2
i

,

and

β0
i =

(µ2
i (1− µi)− σ2

i µi)(1− µi)
σ2
i µi

.

This result is true given the restriction that

0 < µ0
i < 1,

and
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0 < σ2
i < µ0

i (1− µ0
i ).

This result offers some guidance to the practitioner in that α0
i and β0

i can be

computed directly based on the values of µi and σi. The following theorem gives

the overall software reliability.

Theorem 2.1.1

Given the independence of the priors, the expected loss incurred by estimating the

overall reliability R by its Bayes estimator R̂ is

<(P ) =
k∑
i=1

p2
iE

[
Ri(1−Ri)

mi + r0
i

]
, (2.1.3)

where

r0
i = α0

i + β0
i .

Equation (2.1.3) will serve to guide the sequential allocation scheme.

Proof of theorem (2.1.1)

We will need show that

E[V ar[Ri|xi,1, . . . , xi,mi
]] = E

[
Ri(1−Ri)

mi + r0
i

]
. (2.1.4)

For the left hand side of (2.1.4), we first evaluate [4]

V ar[Ri|xi,1, . . . , xi,mi
] =

αmi
i βmi

i

(mi + r0
i )

2(mi + r0
i + 1)

,

then

E [V ar[Ri|xi,1, . . . , xi,mi
]] = E

[
αmi
i βmi

i

(mi + r0
i )

2(mi + r0
i + 1)

]
.

Next, we evaluate the R.H.S. of (2.1.4) yielding
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E

[
Ri(1−Ri)

mi + r0
i

]
= E

[
E

[
Ri(1−Ri)

mi + r0
i

|xi,1, . . . , xi,mi

]]
by application of the iterated expectation theorem (see [6] page 481). Because

the inner expectation is conditional on the data, mi can be taken out of the inner

expectation, yielding

E

[
Ri(1−Ri)

mi + r0
i

|xi,1, . . . , xi,mi

]
=
E[Ri(1−Ri)|xi,1, . . . , xi,mi

]

mi + r0
i

.

Now, to show that the theorem is true, all that remains is to show that

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

αmi
i βmi

i

(mi + r0
i )(mi + r0

i + 1)
. (2.1.5)

For the L.H.S. of (2.1.5), by definition of the expectation,

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

∫ 1

0
Ri(1−Ri)π(Ri|x1, . . . , xmi

)dRi,

where π(•) denotes the p.d.f. It then follows that

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

∫ 1

0

Ri(1−Ri)R
α
mi
i −1

i (1−Ri)
β
mi
i −1

β(αmi
i , βmi

i )
dRi, (2.1.6)

where

β(αmi
i , βmi

i ) =
Γ(αmi

i )Γ(βmi
i )

Γ(αmi
i + βmi

i )
, (2.1.7)

which is a constant because the expectation on the LHS of (2.1.6) is conditional

on the data. We can rewrite (2.1.6) as

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

β(αmi
i + 1, βmi

i + 1)

β(αmi
i , βmi

i )

∫ 1

0

R
(α

mi
i +1)−1

i (1−Ri)
(β

mi
i +1)−1

β(αmi
i + 1, βmi

i + 1)
dRi.

Because ∫ 1

0

R
(α

mi
i +1)−1

i (1−Ri)
(β

mi
i +1)−1

β(αmi
i + 1, βmi

i + 1)
dRi = 1.
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We have now shown that

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

β(αmi
i + 1, βmi

i + 1)

β(αmi
i , βmi

i )
.

By expanding the above through the use of (2.1.7), and using the properties of

the Gamma function, it is now trivial to show that

E[Ri(1−Ri)|xi,1, . . . , xi,mi
] =

αmi
i βmi

i

(mi + r0
i )(mi + r0

i + 1)
.

2.2 Estimating Software Reliability

It is our contention that operating with the benefit of past knowledge gives

us a distinct advantage over approaches in which test cases are distributed based

solely on usage probabilities. This knowledge, as represented by the Beta distri-

butions, is dynamic in that we update our beliefs about the softwares reliability

periodically during the reliability testing process. The prior p.d.f., which is de-

noted as π(Ri), is given by Beta(α0
i , β

0
i ) [6] such that

π(Ri) =
R
α0
i−1

i (1−Ri)
β0
i−1

β(α0
i , β

0
i )

,

where the normalizing constant β(α0
i , β

0
i ) is the complete Beta function

β(α0
i , β

0
i ) =

1∫
0

R
α0
i−1

i (1−Ri)
β0
i−1dRi.

We can determine the updated prior, referred to as the posterior distribu-

tion, of Ri given the results of the tests executed, to reflect our improved knowledge

of the system. We define mi,t as the number of tests allocated to partition i after

t total tests have been allocated. It can be shown that the posterior distribution

π(Ri|xi,1, · · · , xi,mi,t
) is given as Beta(α

mi,t

i , β
mi,t

i ) with p.d.f.

π(Ri|xi,1, · · · , xi,mi,t
) =

R
α
mi,t
i −1

i (1−Ri)
β
mi,t
i −1

β(α
mi,t

i , β
mi,t

i )
,

10



where

β(α
mi,t

i , β
mi,t

i ) =
1∫
0

R
(α

mi,t
i −1)

i (1−Ri)
(β

mi,t
i −1)dRi, α

mi,t

i = α0
i +

mi,t∑
j=1

xi,j,

and

β
mi,t

i = β0
i +mi,t −

mi,t∑
j=1

xi,j.

Using this distribution, we can estimate the reliability of subdomain i by calcu-

lating its expected value as

R̂i = E[Ri|xi,1, · · · , xi,mi,t
] =

α0
i +

mi,t∑
j=1

xi,j

α0
i + β0

i +mi,t

.

What makes this method appealing is that our starting point is a Beta

distribution. We adjust that distribution based on the results of tests, and the

result is another Beta distribution. This property is essential for dynamic decision

making. As we decide where to test next, we need only to look at these updated

distributions to select the subdomain that would most improve the accuracy of

our overall reliability estimate

R̂ =
k∑
i=1

pi


α0
i +

mi,t∑
j=1

xi,j

α0
i + β0

i +mi

 . (2.2.1)

2.3 Optimal Fixed Sampling Scheme

In a fixed sampling scheme, test cases are allocated before reliability testing

begins based solely on prior information and usage probabilities [34]. We outline

this procedure below. Recall Theorem (2.1.1). Because for fixed sampling schemes
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each mi is fixed, then equation (2.1.3) becomes

<(F ) =
k∑
i=1

p2
iE[Ri(1−Ri)]

mi + r0
i

, (2.3.1)

where

ri = α0
i + β0

i ,

and <(F ) is the Bayes risk incurred using a fixed sampling scheme.

Theorem 2.3.1

Let <(F ) and <(Fo) be the Bayes risks incurred using a fixed sampling scheme

and the optimal fixed sampling scheme, respectively. Then

<(F ) ≥ <(Fo)

with equality iff

mi =

(
M +

k∑̀
=1

r0
`

)
pi

√
α0
i β

0
i

r0i (r0i +1)

k∑̀
=1

p`

√
α0
`β

0
`

r0` (r0`+1)

− r0
i , (2.3.2)

where

<(Fo) =

(
k∑
i=1

pi

√
α0
iβ

0
i

r0
i (r

0
i + 1)

)2

M +
k∑
i=1

r0
i

and <(F ) is given in (2.3.1).

Proof of theorem (2.3.1)

Equation (2.3.1) can be rewritten as [23]

12



<(F ) =

(
k∑
i=1

pi
√
E[Ri(1−Ri)]

)2

M +
k∑
i=1

r0
i

+
1

M +
k∑
i=1

r0
i

·

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
E[Rj(1−Rj)]− (mj + r0

j )pi
√
E[Ri(1−Ri)]

(mi + r0
i )(mj + r0

j )

)2

,

which is minimized by choosing

mi + r0
i

mj + r0
j

=
pi
√
E[Ri(1−Ri)]

pj
√
E[Rj(1−Rj)]

.

Combining the above with the fact that

E[Ri(1−Ri)] =
α0
iβ

0
i

(mi + r0
i )(mi + r0

i + 1)
,

<(F ) is minimized iff

mi =

(
M +

k∑̀
=1

r0
`

)
pi

√
α0
iβ

0
i

r0
i (r

0
i + 1)

k∑̀
=1

p`

√
α0
`β

0
`

r0
` (r

0
` + 1)

− r0
i

for i = 1, · · · , k − 1, and mk = M −
k−1∑
i=1

mi with an associated Bayes risk of

<(Fo) =

(
k∑
i=1

pi

√
α0
iβ

0
i

r0
i (r

0
i + 1)

)2

M +
k∑
i=1

r0
i

.

It is interesting to note from equation (2.3.2) that the best fixed allocation

is very sensitive to the choice of prior parameters. Small inaccuracies in α0
i and β0

i

can have a large impact on the proportion of test cases allocated to a particular

subdomain. Because with fixed allocation these proportions are determined in

advance, we have no opportunity to recover from our mistakes in choosing the

parameters in light of testing results. It is this shortcoming that motivates a

dynamic allocation approach which will be discussed next.

13



2.4 Sequential Allocation

We seek a sampling approach in which we can refine our allocation of

test cases dynamically among subdomains as we learn more about the software.

Our objective is still to minimize the expected loss, but here we make allocation

decisions at various intervals during the testing process. Consider again (from

Theorem 2.1.1) the expected loss

<(P ) =
k∑
i=1

p2
iE

[
Ri(1−Ri)

mi + r0
i

]
(2.4.1)

where

r0
i = α0

i + β0
i .

In contrast to (2.3.1), mi cannot be taken out of the expectation because

it is a random variable, and therefore not fixed. Because each Ri is unknown, our

objective is to determine the values of m1, . . . ,mk that will minimize the expected

loss based on reliability estimates updated periodically during the testing process.

For any sampling rule, the expected loss of (2.4.1) can be rewritten as

<(P ) =

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

+
1(

M +
k∑
i=1

r0
i

) ·

E

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
Rj(1−Rj)− (mj + r0

j )pi
√
Ri(1−Ri)

)2

(mi + r0
i )(mj + r0

j )

 .
(2.4.2)

Our objective is to minimize <(P ) through the choice of m1, . . . ,mk. Be-

cause the sum m1 +m2 + . . .+mk = M is fixed, the first term in the sum above

14



is also fixed, and beyond our control. Thus, <(P ) is bounded below by

<(P ) ≥
E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

with equality iff

mi + r0
i

mj + r0
j

=
pi
√
Ri(1−Ri)

pj
√
Rj(1−Rj)

(2.4.3)

for each i, j. Since the actual conditional reliability Ri for each subdomain is

unknown, the optimal sampling scheme is not practical. Instead, we estimate

its value at intervals during the testing process, and choose which subdomain to

sample from to adjust the ratio such that

mi,t + r0
i

mj,t + r0
j

is close to Ĉi,j(t), where

Ĉi,j(t) =
pi
pj

E[
√
Ri(1−Ri)|Ft]

E[
√
Rj(1−Rj)|Ft]

, (2.4.4)

and Ft is the data collected after t test cases have been executed.

2.5 A Purely Sequential Sampling Scheme

In this section we present a method for allocating test cases to partitions of

the software based on the results of previous tests. In a fully sequential procedure

individual test cases must be executed in series because allocation decisions are

made after each test execution. This approach would be appropriate for software

that runs on platforms where accuracy of the reliability prediction outweighs the

time saved by executing tests on multiple machines or where obtaining time on

15



multiple machines is expensive, as is the case for mainframes or custom test hard-

ware. We proceed to test as follows:

Step 1:

Test one unit from each partition Di.

Step 2:

After ` tests have been allocated, where ` ≥ k, we take test `+ 1 from partition i

if for all j:

mi,` + r0
i

mj,` + r0
j

< Ĉi,j(`).

Step 3:

This approach is applied sequentially until all M tests are allocated.

We will show that this approach yields a smaller expected loss (Bayes

risk) than the best fixed sampling scheme. The disadvantage here is that M − k

decisions are necessary to distribute the test cases and attain our estimate. This

process can easily be automated however and is especially attractive when tests

are time consuming and expensive to run. The time needed to execute a single test

often increases with the products maturity, as most easy to find failures have been

weeded out. It is during this latter phase of the development process when decision

makers are most interested in accurate reliability estimates. Since reliability is

likely to be closer to release levels and other milestones only in the latter stages

of development, it is only here when reliability becomes worth measuring and

measuring accurately.

2.6 Sampling Scheme Comparisons

When compared purely sequential sampling scheme with the optimal fixed

design, the purely sequential sampling scheme is expected to be more effective in

16



terms of minimizing the Bayes risk, especially when M is large. It is expected

to be more effective because we use information gathered during testing in our

allocation procedures as opposed to predetermining allocation based solely on the

prior Beta distribution. We can also determine the Bayes risk of the theoretical

optimal sampling scheme. Recall Equation (2.4.2) and we see that the first term

does not depend upon the individual mi values. By choosing m1,m2, . . . ,mk such

that Equation (2.4.3) becomes equality, we see that the Bayes risk of the fully

sequential design, <(O), becomes:

<(P ) ≥
E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

.

We will present theoretical results comparing the Bayes risk of the sequen-

tial sampling schemes presented here with both the fully sequential and best fixed

designs. Section (2.9) shows the experimental results obtained through Monte

Carlo simulations comparing the fully sequential sampling scheme to the best

fixed sampling scheme.

2.7 Theoretical Results

We now compare the performance of the sampling schemes presented here

when M is large. One method of comparison is to determine the cost, in terms of

the Bayes risk, that is incurred over the Bayes risk of the optimal sampling scheme.

Specifically, we seek to determine <(Sp) − <(O), where <(Sp) is the Bayes risk

of purely sequential sampling scheme and <(O) is the Bayes risk of the optimal

sampling scheme. The following theorem quantifies the order of <(Sp)−<(O) for

large M .
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Theorem 2.7.1

The excess Bayes risk incurred by the purely sequential sampling scheme over the

Bayes risk incurred by the optimal sampling scheme is of order 1/M .

Proof of theorem (2.7.1)

We need to show that M [<(Sp)−<(O)]→ 0 as M →∞, where

<(Sp) =

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

+
1(

M +
k∑
i=1

r0
i

) ·
E

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
Rj(1−Rj)− (mj + r0

j )pi
√
Ri(1−Ri)

(mi + r0
i )(mj + r0

j )

)2
,

and

<(O) =

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

.

The proof of the theorem is established if we show that in the purely sequential

sampling scheme

E

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
Rj(1−Rj)− (mj + r0

j )pi
√
Ri(1−Ri)

(mi + r0
i )(mj + r0

j )

)2
→ 0

as M →∞.

The proof of the theorem follows if one shows

mi

mj

→
pi
√
Ri(1−Ri)

pj
√
Rj(1−Rj)

as M →∞.

The proof of the theorem is similar to Rekab [25] although in this work we are

using a Bayesian methodology to estimate software reliability instead of classical

statistics to estimate the reliability of a series system. For ` large enough there

exists
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`(i) = sup{q < ` :
mi,q

mj,q

< Ci,j(q) for all j 6= i}

and `(i) →∞ as `→∞. Then

mi,`

mj,`

≤
mi,`(i) + 1

mj,`(i)
≤ Ci,j(`

(i)) +
1

mj,`(i)
.

On the other hand,

mi,`

mj,`

≥
mi,`(i) − 1

mj,`(i)
≥ Ci,j(`

(i))

(
1− 1

mj,`(i)

)
.

By the optional stopping theorem [2], Ci,j(`
(i)) is a martingale. The rest of the

proof follows from the martingale convergence theorem [2] [7].

Theorem (2.7.1) has several interesting implications. As M gets large, we

can see that the purely sequential sampling scheme approaches the optimal, in

terms of the Bayes risk. This seems reasonable because in each scheme we use the

knowledge gained from test results to improve our allocations during the testing

process.

Theorem 2.7.2

For large M ,

<(Sp)

<(Fo)
≤ 1

where <(Sp) is the Bayes risk incurred by the purely sequential sampling scheme

and <(Fo) is the Bayes risk incurred by the best fixed design.

Proof of theorem (2.7.2)

For large M, (
M +

k∑
i=1

r0
i

)
<(Sp)→ E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

,

and
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(
M +

k∑
i=1

r0
i

)
<(F )→

(
k∑
i=1

pi
√
Ri(1−Ri)

)2

.

The proof is established by showing

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

(
k∑
i=1

pi
√
E[Ri(1−Ri)]

)2 ≤ 1.

We can rewrite the ratio above as

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

= T + T1,

and (
k∑
i=1

pi
√
E[Ri(1−Ri)]

)2

= T + T2,

where

T =
k∑
i=1

p2
iE[Ri(1−Ri)],

T1 = 2
∑
i<j

pipjE[
√
Ri(1−Ri)Rj(1−Rj)],

and

T2 = 2
∑
i<j

pipj
√
E[Ri(1−Ri)Rj(1−Rj)].

Hence,

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

(
k∑
i=1

pi
√
E[Ri(1−Ri)]

)2 =
T + T1

T + T2

.

Because the square root is concave, by Jensen’s Inequality T1 ≤ T2, the proof

easily follows.
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Theorem (2.7.2) shows that for a large number of test cases, allocating tests

through one of the sequential schemes presented here will always yield estimates

of reliability that are at least as accurate as those computed by predetermining

allocations before testing begins. For large M , if the parameters chosen for the

prior correctly describe the distribution of Ri then we have equality. It is unlikely

that such parameters would be chosen correctly however, and to assume that they

would negate the need for reliability testing altogether.

2.8 Monte Carlo Simulations

Below we present the results of experimental comparisons between the

purely sequential sampling scheme described above and the best fixed sampling

scheme. Table 1 in page 64 shows the ratios of the Bayes risk of the purely se-

quential sampling scheme to the Bayes risk of the best fixed scheme.

We consider the case where the test domain is divided into two disjoint sub-

domains, D1 and D2, with reliability R1 and R2 respectively. In each subdomain

we assume that these unknown reliability statistics follow a Beta distribution such

that R1 ∼ Beta(α1, β1) and R2 ∼ Beta(α2, β2). The parameters of these distribu-

tions are chosen to be small relative to the number of test cases executed, which

indicates reasonable uncertainty as expressed through a high standard deviation.

This is by far the dominant situation in practice. For large parameter values, the

posterior distribution is dominated by the prior when the number of test cases is

small, which means the initial guess will govern our prediction. This is obviously

undesirable, as our goal is for the prior to serve as a guide to help in allocation

decisions. If we were to assume that these guesses were exceptionally accurate,

this would negate the need for reliability testing.
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Associated with each domain Di is also a usage probability pi. The tables

present results for various total sample sizes, M , and the last column indicates

the limiting value of the ratio <(Sp)/<(Fo) as M becomes very large. The ratio

in parenthesis below is the percentage of tests that were allocated to subdomain

D1 by the particular sequential sampling scheme.

In all cases, even for small sample sizes, the purely sequential sampling

scheme outperformed the best fixed sampling scheme. Intuitively, and by Theorem

(2.7.2), this is what we would expect given that the sequential sampling schemes

use information contained in the Beta priors as well as information gained during

the testing process.

Rows 1 and 2 in the table show scenarios with uniform priors where α1 =

β1 = α2 = β2 = 1. This is the most commonly used prior parameter configuration,

and from a practical point of view, this indicates that very little is known about

the reliability of each partition. In these cases, we still gain by using a sequential

approach over the best fixed allocation as is evident by ratios less than 1. As

the total sample size M increases we approach the limiting value given in the last

column. Rows 3 and 4 have identical prior distributions for the two subdomains

such that α1 = α2 = 0.5 and β1 = β2 = 0.01. This choice represents a high

expected reliability in each partition since α is much larger than β. This is a very

plausible scenario in practice and indicates that reliability in each subdomain is

assumed to be high. Under these conditions, and where the probability of use for

each subdomain is equal (p1 = p2), the sequential sampling schemes performed

exceptionally well compared to the best fixed allocation. This is consistent with

the results found separately by Shapiro [35] and Hardwick and Stout [12] when

using a fully sequential approach with equally weighted subdomains.
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Perhaps the most interesting comparison results come from rows 5 and 6 of

the table. Here, in D1, reliability is assumed to be high as expressed through the

prior parameters α1 = 0.1 and β1 = 0.001, and a uniform prior for D2 indicates

very little information about the reliability of that partition. The usage proba-

bilities p1 = .9 and p2 = .1 indicates that the usage probability of D2, is far less

than that of D1. In this instance, D1 could represent test cases that traverse the

majority of functionality of the product which has been thoroughly tested and is

assumed to be fairly reliable. Similarly, D2 may contain test paths that exercise

a recently added component for which little is known in terms of its reliability. In

this case purely sequential sampling scheme shows a marked improvement over the

best fixed scheme. This is one of the most encouraging results from a practitioners

point of view.

While these results are compelling, minimizing the variance is not the only

objective that a tester may pursue. Reliability testing may in fact just be used

as a gauge to judge the product reaching a mile stone or its fitness for release. If

system reliability is clearly insufficient in these circumstances, knowing accurately

how unreliable the system is may be useless. For circumstances where reliability is

close to meaningful levels, however, the methods presented here show significant

promise.
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CHAPTER 3

A MULTISTAGE SEQUENTIAL TEST ALLOCATION FOR SOFTWARE

RELIABILITY ESTIMATION

Consider the same problem in chapter 2 where our purpose is to determine

how to sequentially allocate test cases among partitions of the software to minimize

the expected loss incurred by the Bayes estimator of the overall reliability when the

total number of software test cases is fixed. In a fully sequential sampling scheme,

individual test cases must be executed one by one because allocation decisions

are made after each test execution. Therefore using a fully sequential sampling

scheme could be very costly in terms of both efficiency and affordability. In this

section we will propose a multistage sampling scheme that is more efficient. We

will also compare the results from a multistage sampling scheme with the optimal

fixed sampling scheme, and demonstrate its superiority in terms of the expected

loss incurred when the overall reliability is estimated by its Bayes estimator both

theoretically and through Monte Carlo simulations. A real case study will also be

introduced to demonstrate the superiority of the proposed method.

3.1 Sequential Allocation

Recall section (2.5), <(P ) is bounded below by

<(P ) ≥
E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i
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with equality iff

mi + r0
i

mj + r0
j

=
pi
√
Ri(1−Ri)

pj
√
Rj(1−Rj)

(3.1.1)

for each i, j. Note that (3.1.1) is equivalent to

mi + r0
i

M +
k∑
i=1

r0
i

=
pi
√
Ri(1−Ri)

k∑
j=1

pj
√
Rj(1−Rj)

.

Because the actual conditional reliability Ri for each subdomain is un-

known, the optimal sampling scheme is not practical. Instead, we estimate its

value at intervals during the testing process, and choose which subdomain to sam-

ple from to adjust the ratio such that

mi,t + r0
i

M +
k∑
j=1

r0
j

is close to Ĉi(t), where

Ĉi(t) =
piE

[√
Ri(1−Ri)|Ft

]
k∑
j=1

pjE
[√

Rj(1−Rj)|Ft

] , (3.1.2)

and Ft is the data collected after t test cases have been executed.

3.2 Sequential Multistage Sampling

As opposed to purely sequential sampling [25] where we make allocation

decisions one test at a time, multistage sampling allocates groups of test cases

among the partitions based on previous test results. This approach may be more

appropriate than the purely sequential sampling when M is large. If this is the

case, it may become cost effective to test in parallel given the potential time

savings.
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Another consideration is the possible cost of switching between partitions

during the testing process. In [34], Sayre and Poore discuss a partitioning scheme

that separates test cases into two groups based on whether or not a specific risky

input was part of the test path. In such a case, in general, it can be assumed

that executing a test from one subdomain followed by another test from another

subdomain would incur little overhead in switching between partitions. In other

circumstances, however, when test cases are partitioned by component for in-

stance, it could be significantly more efficient to execute a group of test cases from

one partition before executing tests from another. In these instances, the accuracy

lost by choosing a multistage sampling approach over a fully sequential scheme

may be outweighed by the time saved executing tests. In the multistage scheme,

we distribute the M test cases in L stages, which are fixed before testing begins,

such that at stage j there are Sj test cases distributed during that stage. We

define Sj,i to be the cumulative test cases allocated to partition i up to stage j.

Here is an outline of the process.

Stage 1:

Traditional approaches to multistage sampling [23], [24] use a balanced allocation

of the S1 test cases in the first stage, which may lead to over-sampling from a

particular subdomain. To eliminate this concern, we propose allocating test cases

at the first stage according to the best fixed scheme with S1 total test cases. Thus,

by (2.3.2), we allocate test cases in the first stage by the optimal fixed sampling

scheme such that

S1,i =

(
S1 +

k∑̀
=1

r0
`

)
pi

√
α0
i β

0
i

(r0i )(r0i +1)

k∑̀
=1

p`

√
α0
`β

0
`

(r0i )(r0i +1)

− r0
i (3.2.1)
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for i = 1, 2, . . . , k − 1 where S1,i is rounded to the nearest integer, and

S1,k = S1 −
k−1∑
i=1

S1,i.

Unlike the purely sequential sampling scheme, once allocations have been deter-

mined within a stage, we are no longer restricted by having to execute these test

cases in series. This advantage can be beneficial if multiple machines are available

to execute tests, or if it is expensive to switch between partitions.

Stage 2 through L:

For Stages 2 through L, we distribute the test cases to the partitions based on the

prior distribution updated by testing results from previous stages, and determine

Sj,1, Sj,2, . . . , Sj,k−1 sequentially such that, at each stage j, 2 ≤ j ≤ L, for partition

i,

Sj,i =

((
j∑
`=1

S`

)
+

(
k∑
`=1

r0
`

))
Ĉi(S̄j−1)− r0

i , (3.2.2)

and

Sj,k =
j∑̀
=1

S` −
k−1∑̀
=1

Sj,`,

where

S̄j−1 =
j−1∑
y=1

Sy.

Therefore, at stage L, the total number of tests allocated to partition i is

Mi = min{M −
k∑

j = 1

j 6= i

SL−1,j,max((M +
k∑
`=1

r0
` )Ĉi(S̄L−1)− r0

i , SL−1,i)}. (3.2.3)

Note that (3.2.3) means Mi should be at least the total number of tests allocated

up to stage L − 1, i.e., SL−1.i. In addition, Mi has to be at most M −
k∑
j=1
j 6=i

SL−1,j
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because there are only this many tests left. However, in the last stage, we are still

allocating the tests sequentially, which leads to the max part, and thus (3.2.3).

There are several potential approaches to choosing the number of test cases

allocated to each sampling stage. The simplest is to pick

S1 = S2 = · · · = SL = M/L,

and thus distribute the tests equally among the stages. There is much to be gained

by choosing these stage sizes analytically, however. As a result, extensive work

has been done on determining such allocations for two and three stage sampling

procedures. In [23], Rekab shows that for a two stage procedure we should choose

S1 such that

lim
M→∞

S1

M
= 0, and lim

M→∞
S1 =∞.

Although such criteria do not offer practical guidance toward selecting S1, this

result seems to indicate a choice of S1 of the form Mλ, where 0 < λ < 1. Hardwick

and Stout [11] offer more specific guidance for some particular cases.

3.3 Theoretical Results

When choosing a sampling strategy, it is important to be aware of the

tradeoffs involved in selecting one particular strategy over another. In this sec-

tion, we will compare the Bayes risk incurred by the multistage to the Bayes risk

incurred by the optimal sampling and to the Bayes risk incurred by the best fixed

design when M is large. Specifically, we seek to determine <(Sm)− <(O), where

<(Sm) is the Bayes risk of sequential sampling scheme S, and <(O) is the Bayes

risk of the optimal sampling scheme. Below, we state the theoretical results of

this difference for multistage sampling schemes.
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Theorem 3.3.1

The excess Bayes risk incurred by the multistage sampling schemes over the Bayes

risk incurred by the optimal sampling scheme is of the order of 1/M .

Proof of theorem (3.3.1)

We need to show that M [<(Sm)−<(O)]→ 0 as M →∞, where

<(Sm) =

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

+
1(

M +
k∑
i=1

r0
i

)
E

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
Rj(1−Rj)− (mj + r0

j )pi
√
Ri(1−Ri)

(mi + r0
i )(mj + r0

j )

)2
,

and

<(O) =

E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

.

The proof of the theorem is established if we show that

E

k−1∑
i=1

k∑
j=i+1

(
(mi + r0

i )pj
√
Rj(1−Rj)− (mj + r0

j )pi
√
Ri(1−Ri)

(mi + r0
i )(mj + r0

j )

)2
→ 0

as M →∞.

Thus it suffices to show that in the multistage scheme

mi

M
→

pi
√
Ri(1−Ri)

k∑
j=1

pj
√
Rj(1−Rj)

with probability one as M → ∞. The rest of the proof is similar to Rekab and

Tahir [26]. A sketch of it is as follows.

Let Ui,L−1 = E[
√
Ri(1−Ri)|=S̄L−1

], because E[
√
Ri(1−Ri)] is finite then

Ui,L−1 is a uniformly integrable martingale and S̄L−1 →∞ as M →∞. It follows

from the martingale convergence theorem that
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Ui,L−1 →
√
Ri(1−Ri)

with probability one as M →∞. Then

Ĉi(S̄L−1)→
pi
√
Ri(1−Ri)

k∑
j=1

pj
√
Rj(1−Rj)

with probability one as M → ∞. Divide mi in (3.2.3) by M, take the limit as

M →∞, the proof follows.

Theorem 3.3.2

For large M , we have <(Sm)/<(Fo) ≤ 1, where <(Sm) is the Bayes risk incurred

by the multistage sampling scheme, and <(Fo) is the Bayes risk incurred by the

best fixed design.

The proof is similar to the proof of theorem (2.7.2) and thus be skipped here.

3.4 Monte Carlo Simulations

We consider a real application which is the administration feature in an

operations support system developed at AT&T, which dealt with the maintenance

and scheduling of maintenance tasks performed by on-site work personnel [20].

To test the application, we divide the test domain into 64 sub-domains based

on grouping factors identified by the requirements of the screen field, and the

software development process. As shown in Table (2) on page 65, there are 4 ×

2 × 2 × 4 = 64 possible combinations with each combination corresponding to a

partition of the input domain. In each subdomain, we assume that these unknown

reliability statistics follow a Beta distribution such that Ri ∼ Beta(αi, βi), as

shown in Table (3) on page 66, which also shows the usage probability pi. The
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parameters of these distributions are chosen to be small relative to the number of

test cases executed, which indicates reasonable uncertainty as expressed through

a high standard deviation. This type of result is by far the dominant situation in

practice.

Table (4) on page 67 presents the simulation results for various total sample

sizes, and the limiting value of the ratio <(Sm)/<(Fo) as M becomes very large.

It is obvious from the simulation results that the sequential sampling scheme

outperformed the best fixed sampling scheme, even with relatively small sample

sizes. Intuitively, and by Theorem (3.3.2), this result is what we would expect

given that the sequential sampling schemes use information contained in the Beta

priors, as well as information gained during the testing process.

Table (5) on page 68 shows the percentage allocated to each subdomain

after the sequential sampling scheme in the case when M = 50, 000. Subdomains

D1-D10 show a uniform setting with different usage probabilities. Subsequently,

D11-D30 illustrate a choice of prior parameters where the conditional reliabilities

have equal means but different variances, while D31-D50 illustrate the situation

when the conditional reliabilities have the same variance but different means.

What is interesting to note is that the allocations among the partitions closely

track with the usage probabilities, and appear to be uninfluenced by the differ-

ences in the means of the conditional reliabilities. This appearance is reasonable,

however, because allocation decisions are based on the ratio of (3.1.2), which is

closely linked to the ratio of the standard deviations of the conditional reliabilities.

While these results are compelling, minimizing the variance is not the only

objective that a tester may pursue. Reliability testing may in fact just be used

as a gauge to judge the product reaching a milestone, or its fitness for release. If
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system reliability is clearly insufficient in these circumstances, knowing accurately

how unreliable the system is may be useless. For circumstances where reliability is

close to meaningful levels, however, the methods presented here show significant

promise.
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CHAPTER 4

AN EFFICIENT TEST ALLOCATION FOR SOFTWARE RELIABILITY

ESTIMATION

In this section we will propose an efficient sampling scheme in the software

reliability estimation. Unlike fully sequential sampling schemes where individual

test cases must be executed one by one and multistage sampling schemes where

test cases are executed in batches, an accelerated sampling scheme is less time-

consuming than the fully sequential sampling scheme but achieves more accuracy

than the multistage sampling scheme. The superiority of the accelerated sampling

scheme over best fixed sampling scheme is presented theoretically. Meanwhile,

comparisons between the accelerated sampling scheme and other sampling schemes

such as balanced design, best fixed design and multistage sampling scheme will

be drawn through Monte Carlo simulations to demonstrate its merit. A real case

study is presented as well to better illustrate the proposed method.

4.1 Sequential Allocation

Recall section (2.5), <(P ) is bounded below by

<(P ) ≥
E

[(
k∑
i=1

pi
√
Ri(1−Ri)

)2
]

M +
k∑
i=1

r0
i

with equality if

mi + r0
i

mj + r0
j

=
pi
√
Ri(1−Ri)

pj
√
Rj(1−Rj)

(4.1.1)
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for each i, j. Since the actual conditional reliability Ri for each subdomain is

unknown, the optimal sampling scheme is not practical. Instead, we estimate

its value at intervals during the testing process, and choose which subdomain to

sample from to adjust the ratio such that

mi,t + r0
i

mj,t + r0
j

is close to Ĉi,j(t), where

Ĉi,j(t) =
pi
pj

E[
√
Ri(1−Ri)|Ft]

E[
√
Rj(1−Rj)|Ft]

. (4.1.2)

Or equivalently,

mi,t + r0
i

M +
k∑
j=1

r0
j

is close to Ĉi(t), where

Ĉi(t) =
piE

[√
Ri(1−Ri)|Ft

]
k∑
j=1

pjE
[√

Rj(1−Rj)|Ft

] , (4.1.3)

and Ft is the data collected after t test cases have been executed.

4.2 Accelerated Sampling Schemes for Estimating Reliability

Below we discuss the accelerated sampling approach. The method is par-

ticularly appropriate in the case of automated testing, where test cases may be

generated randomly. If the application is partitioned by component for instance

and one test case is defined as a random path through a particular software com-

ponent from invocation to termination or entry into a particular function or com-
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ponent to exit. In these cases, time for generation is relatively small [41]. With

the goal of reliability estimation, the information which would be most helpful is

”which component do I select for the next test case?”. There are several other

scenarios such as these that the methods proposed in this section are reasonable

in a practical implementation sense.

In the accelerated scheme, we distribute the M test cases in L stages,

which are fixed before testing begins, such that at stage j there are Sj test cases

distributed during that stage. We define Sj,i to be the distinct test cases allocated

to partition i during stage j. We outline the accelerated sampling approach as

below.

Stage 1:

We allocate test cases in the first stage according to the best-fixed scheme with

S1 total test cases where

lim
M→∞

S1

M
= 0 and lim

M→∞
S1 =∞ [23].

Thus by equation (2.3.2) we allocate test cases in the first stage such that:

S1,i =

(
S1 +

k∑̀
=1

r0
`

)
pi

√
α0
i β

0
i

(r0i )(r0i +1)

k∑̀
=1

p`

√
α0
`β

0
`

(r0i )(r0i +1)

− r0
i (4.2.1)

for i = 1, 2, . . . , k − 1 where S1,i is rounded to the nearest integer, and

S1,k = S1 −
k−1∑
i=1

S1,i.

Stage 2 through L− 1:

We continue with the method for stages 2 to L − 1 and distribute tests within

these stages to the k partitions based on the prior distribution updated by testing
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results from previous stages and determine Sj,1, Sj,2, . . . , Sj,k−1 sequentially such

that at each stage j, 2 ≤ j ≤ L− 1, for partition i, by equation (4.1.3),

Sj,i =

(
Sj +

(
k∑
`=1

r0
`

))
Ĉi(S̄j−1)− r0

i , (4.2.2)

and

Sj,k = Sj −
k−1∑̀
=1

Sj,`,

where

S̄j−1 =
j−1∑
y=1

Sy.

Note here for j = 2, . . . , L− 1, Sj are chosen such that

lim
M→∞

Sj

M
= 0 and lim

M→∞
Sj =∞.

In Stage 2 to Stage L − 1, instead of making allocation decisions one at a time,

we allocate groups of test cases among the partitions based on the previous stage

results, which may become cost effective to test in parallel given the potential time

savings.

Stage L:

By (4.1.2), we allocate one test from partition i if

mi,` + r0
i

mj,` + r0
j

< Ĉi,j(`)

for all j 6= i where mi,` is the cumulative test cases allocated to partition i after a

total of ` test cases has been allocated, where

L−1∑
j=1

Sj,i ≤ ` ≤
L−1∑
j=1

Sj,i +M −
L−1∑
i=1

Si.

We proceed sequentially in this manner until all the remaining SL test cases have

been allocated, where
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SL = M −
L−1∑
j=1

Sj.

At this final stage, all test cases are allocated one at a time to achieve the best

accuracy for reliability estimation.

4.3 Theoretical Results

In this section the comparison between the Bayes risk incurred by the

accelerated sampling scheme to the Bayes risk incurred by the optimal sampling

scheme as well as the best fixed design is demonstrated in theory.

Theorem 4.3.1

The excess Bayes risk incurred by the accelerated sampling schemes over the Bayes

risk incurred by the optimal sampling scheme is of the order of 1/M .

The proof is similar to the proof of theorem (2.7.1) and thus be skipped here.

Theorem 4.3.2

For large M , we have <(Sa)/<(Fo) ≤ 1, where <(Sa) is the Bayes risk incurred

by the accelerated sampling scheme, and <(Fo) is the Bayes risk incurred by the

best fixed design.

The proof is similar to the proof of theorem (2.7.2) and thus be skipped here.

4.4 Monte Carlo Simulations

In this section the accelerated sampling scheme is compared to multiple

sampling schemes in terms of incurred Bayes risk through Monte Carlo simula-

tions. We consider the case where the test domain is divided into two disjoint
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subdomains, D1 and D2, with reliability R1 and R2 respectively. In each subdo-

main we assume that these unknown reliability statistics follow a Beta distribution

such that R1 ∼ Beta(α1, β1) and R2 ∼ Beta(α2, β2). Associated with each domain

Di is also a usage probability pi.

Table (6) on page 69 presents results for comparison between accelerated

sampling scheme and equal allocation sampling scheme, which allocates equal test

cases to each domain. The results show that Bayes risk ratios under various initial

parameter settings and different total sample sizes. With no surprise, even with

equal usage probability accelerated sampling scheme outperforms equal allocation

scheme in a significant way.

Table (7) on page 70 presents results for comparison between the acceler-

ated sampling scheme and the best fixed sampling scheme. As shown in Table (7),

even for small sample sizes, the accelerated sequential sampling scheme outper-

forms the best fixed sampling scheme. Intuitively, and by Theorem (4.3.2), this

is what we would expect given that the sequential sampling scheme uses informa-

tion contained in the Beta priors as well as information gained during the testing

process.

In Table (8) on page 71 a comparison is drawn between accelerated sam-

pling scheme and two-stage sampling scheme. A two-stage sampling scheme is also

a multistage sampling allocation scheme with only 2 stages. As observed in Table

(8), accelerated scheme outperforms two-stage scheme even for small sample sizes,

which makes sense because allocating test cases one by one in the last stage really

gives a better estimation accuracy in terms of Bayes risk. It is interesting to note

that as M becomes very large they have the same performance, which also makes

sense because as M becomes very large allocating test cases one by one does not
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play a role any more. However, in practice accelerated scheme will definitely have

a better accuracy then two-stage scheme.

4.5 Real Case Study

We consider a real application [19] [21] that is a data driven telephone

billing system where the operations are classified by two types of service (residen-

tial or business), usage of three discount calling plans (none, national or interna-

tional) and two types of payment status (paid of delinquent). The profile thus

results in K = 2 × 3 × 2 = 12 operations (subdomains) with occurrence prob-

abilities (usage probabilities) given in Table (9) on page 72. Beta distributions

are assumed for every subdomain with different parameters. As we can see in Ta-

ble (10) on page 73, it is obvious that the accelerated sampling scheme performs

better than the best fixed sampling scheme in every setting.
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CHAPTER 5

TEST ALLOCATION FOR ESTIMATING RELIABILITY OF SERIES

SYSTEMS WITH TWO COMPONENTS

In the previous chapters, we are dealing with parallel systems where the

reliability is the weighted sum of reliabilities of each component (subdomain), as

in (1.0.1). The reliabillity of a series system, however, is defined as the product of

reliabilities of each component. In this chapter, we adopted a Bayesian approach to

estimate the reliability of a series system with two components under the squared

error loss. We derived an asymptotic second-order lower bound for the Bayes risk

of a sequential procedure that allocates M test cases to one component and t−M

to the other component, where M is determined according to a sequential design

and t denotes the total number of test cases.

5.1 Introduction

Let P1,P2 be two components in a series system with associated values θ

and ω, respectively, where θ and ω is the conditional reliability of a use case or a

test case [22], on condition that it was randomly chosen within two components.

Within each component, each test case has an equal chance to be selected. Note

that θ and ω are unknown parameters [14]. Then the reliability of the series system

with two components is defined as

R = θ · ω. (5.1.1)

The problem is to distribute t test cases into two components and use the
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results to estimate θ and ω. Specifically, sample sizes M and N are taken from

components P1 and P2, respectively. Rekab [25] has studied this problem and

proposed a fully sequential sampling scheme that is nearly optimal and performs

better than the balanced design. However, the fully sequential sampling scheme

only reaches the first-order optimality. It is desired to derive an asymptotic second-

order lower bound for the Bayes risk of a sequential design.

5.2 The Bayesian Model

We model the outcome of the jth test taken from the first component as a

Bernoulli random variable Xj such that

Xj =

 1, if test j taken from P1 is processed correctly.

0, otherwise,

where Xj has a Bernoulli distribution with parameter θ.

Similarly, the outcome of the jth test taken from the second component is modeled

as a Bernoulli random variable Yj such that

Yj =

 1, if test j taken from P2 is processed correctly.

0, otherwise,

where Yj has a Bernoulli distribution with parameter ω.

Within each component, we assume that the corresponding conditional

reliability follows a Beta prior distribution such that θ ∼ Beta(a, b) and ω ∼

Beta(c, d). Then the posterior density of θ when M observations are sampled

from population P1 is

dΠM(θ) =

M∏
i=1

dΠ(Xi|θ)dΠ(θ)

∫ M∏
i=1

dΠ(Xi|θ)dΠ(θ)dθ
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=

(
M∏
i=1

θXi(1− θ)1−Xi) · θa−1(1− θ)b−1dθ

c(aM , bM)

=
θ
a+

M∑
i=1

Xi−1
(1− θ)

b+M−
M∑
i=1

Xi−1
dθ

c(aM , bM)
,

where

c(aM , bM) =
∫
θ
a+

M∑
i=1

Xi−1
(1− θ)

b+M−
M∑
i=1

Xi−1
dθ.

Therefore,

dΠM(θ) ∼ Beta(a+
M∑
i=1

Xi, b+M −
M∑
i=1

Xi). (5.2.1)

Similarly,

dΠN(ω) ∼ Beta(a+
N∑
i=1

Yi, b+N −
N∑
i=1

Yi). (5.2.2)

Theorem 5.2.1

The following equations hold.

V ar[θ|X1, . . . , Xj] = E[
θ(1− θ)
a+ b+ j

|X1, . . . , Xj], (5.2.3)

and

V ar[ω|Y1, . . . , Yk] = E[
ω(1− ω)

a+ b+ k
|Y1, . . . , Yk]. (5.2.4)

Proof of theorem (5.2.1)

By equation (5.2.1),

dΠj(θ) ∼ Beta(a+
j∑
i=1

Xi, b+ j −
j∑
i=1

Xi),

Then, we have

42



V ar[θ|X1, . . . , Xj] =

(a+
j∑
i=1

Xi)(b+ j −
j∑
i=1

Xi)

(a+ b+ j)2(a+ b+ j + 1)
.

Let B(x, y) stands for the Beta function of x and y, then

E[
θ(1− θ)
a+ b+ j

|X1, . . . , Xj] =

∫ θ(1− θ) · θ
a+

j∑
i=1

Xi−1
(1− θ)

b+j−
j∑

i=1
Xi−1

(a+ b+ j) ·B(a+
j∑
i=1

Xi, b+ j −
j∑
i=1

Xi)

dθ =

∫ θ
a+

j∑
i=1

Xi

(1− θ)
b+j−

j∑
i=1

Xi

(a+ b+ j) ·B(a+
j∑
i=1

Xi, b+ j −
j∑
i=1

Xi)

dθ =

B(a+
j∑
i=1

Xi + 1, b+ j −
j∑
i=1

Xi + 1)

(a+ b+ j) ·B(a+
j∑
i=1

Xi, b+ j −
j∑
i=1

Xi)

·

∫ θ
a+

j∑
i=1

Xi+1−1
(1− θ)

b+j−
j∑

i=1
Xi+1−1

B(a+
j∑
i=1

Xi + 1, b+ j −
j∑
i=1

Xi + 1)

dθ =

B(a+
j∑
i=1

Xi + 1, b+ j −
j∑
i=1

Xi + 1)

(a+ b+ j) ·B(a+
j∑
i=1

Xi, b+ j −
j∑
i=1

Xi)

· 1 =

Γ(a+
j∑
i=1

Xi + 1)Γ(b+ j −
j∑
i=1

Xi + 1)

Γ(a+ b+ j + 2)

(a+ b+ j)Γ(a+
j∑
i=1

Xi)Γ(b+ j −
j∑
i=1

Xi)

Γ(a+ b+ j)

=

(a+
j∑
i=1

Xi)(b+ j −
j∑
i=1

Xi)

(a+ b+ j)2(a+ b+ j + 1)
.

This proves equation (5.2.3). A similar argument can be used to show equation

(5.2.4). This concludes the proof.
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Our objective is to estimate the reliability of the series system R(θ, ω) = θω

with squared error loss

L∗(R, R̂) = (R− R̂)2, (5.2.5)

where R̂ is the Bayes estimate, i.e., the estimate that minimizes the expected

posterior loss, namely

f(R̂) = E[(R− R̂)2] = E(R2)− 2E(RR̂) + 2E(R̂2)

f(R̂) = R̂2 − 2E(R)R̂ + E(R2)

f
′
(R̂) = 2R̂− 2E(R),

set f
′
(R̂) = 0 to get R̂ = E(R).

f
′′
(R̂) = 2 > 0.

Therefore f(R̂) is minimized at R̂ = E(R), and the value of the minimum of f(R̂)

is

E(R− E(R))2 = V ar(R).

Let Fm,n be the sigma algebra generated by X1, . . . , Xm, Y2, . . . , Yn for

m,n = 1, 2, . . .. A sequential desgin ∆ is a sequence of indicator variables

∆1, · · · ,∆t, each of which takes the values 0 or 1 (0 if the test case is allocated to

P2 and 1 if the test case is allocated P1) and such that ∆k+1 is Fmk,nk
-measurable

for all k = 2, · · · , t− 1 where

nk = ∆1 + . . .+ ∆k and mk = k − nk

for k = 1, . . . , t.

Theorem 5.2.2

Let mt = M and nt = N . If M,N ≥ 1, then the posterior expected loss, given
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FM,N is

L∗(M,N) =
A

M + r
+

B

N + s
− C

(M + r)(N + s)
, (5.2.6)

where r = a+ b, s = c+ d and

A = Et[θ(1− θ)ω2],

B = Et[ω(1− ω)θ2],

C = Et[θ(1− θ)ω(1− ω)].

(5.2.7)

Here Et represents the posterior expectation given the sigma algebra FM,N .

Proof of theorem (5.2.2)

Throughout the proof, we will skip the phrase given FM,N in all the expressions

involving Et and V art:

Et(R− R̂)2 = V art(R)

V art(R) = Et(θω)2 − E2
t (θω),

by definition of conditional variance.

V art(R) = Et(θ
2ω2)− E2

t (θ)E
2
t (ω),

by independence. Using the fact:

V art(θ) = Et(θ
2)− E2

t (θ),

the latter equality can be rewritten as

V art(R) = Et(θ
2)Et(ω

2)− [Et(θ
2)− V art(θ)][Et(ω2)− V art(ω)].

Multiplying the expressions inside the brackets gives:

V art(R) = Et(θ
2)Et(ω

2)− Et(θ2)Et(ω
2)

+Et(θ
2)V art(ω) + Et(ω

2)V art(θ)− V art(θ)V art(ω).
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In the latter equality, the first two terms cancel. By theorem (5.2.1),

V art(θ) =
1

M + r
Et(θ(1− θ)),

and

V art(ω) =
1

N + s
Et(ω(1− ω)).

We write the latter equality as

V art(R) = Et(θ
2)

1

N + s
Et(ω(1− ω)) + Et(ω

2)
1

M + r
Et(θ(1− θ))

− 1

M + r
Et(θ(1− θ))

1

N + s
Et(ω(1− ω))

=
1

N + s
Et(θ

2)Et(ω(1− ω)) +
1

M + r
Et(ω

2)Et(θ(1− θ))

− 1

M + r

1

N + s
Et(θ(1− θ))Et(ω(1− ω))

=
1

N + s
Et(θ

2ω(1− ω)) +
1

M + r
Et(ω

2θ(1− θ))

− 1

M + r

1

N + s
Et(θ(1− θ)ω(1− ω))

=
A

M + r
+

B

N + s
− C

(M + r)(N + s)
.

This concludes the proof.

5.3 Second Order Lower Bound

Recall the Bayes risk incurred in the sequential design is

<(∆) = Eθ,ω[L∗(M,N)] = Eθ,ω{
A

M + r
+

B

N + s
− C

(M + r)(N + s)
}, (5.3.1)

where A,B and C are of the form in (5.2.7).

Theorem 5.3.1

Suppose that

a > 0, b > 1 and c > 0, d > 1. (5.3.2)
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Then for any sequential design ∆

<(∆) ≥ 1

t+ r + s
Eθ,ω[(ω

√
θ(1− θ) + θ

√
ω(1− ω))2]+

1

(t+ r + s)2
Eθ,ω

[
(3− 4θ)2

√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

(3− 4ω)2
√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

]
−

1

(t+ r + s)2
Eθ,ω

[
θ(1− θ)ω(1− ω)

(
2 +

ω
√
θ(1− θ)

θ
√
ω(1− ω)

+
θ
√
ω(1− ω)

ω
√
θ(1− θ)

)]

+o(1/t2)

(5.3.3)

where r = a+ b and s = c+ d.

To prove theorem (5.3.1), we need to break up the Bayes risk into two parts as

follows.

<(∆) = Eθ,ω

{
A

M + r
+

B

N + s
− C

(M + r)(N + s)

}
= Eθ,ω

{
A

M + r
+

B

N + s
} − E{ C

(M + r)(N + s)

}
= <1 −<2

where

<1 = Eθ,ω

{
A

M + r
+

B

N + s

}
, (5.3.4)

and

<2 = Eθ,ω

{
C

(M + r)(N + s)

}
, (5.3.5)

where A,B and C are of the form in (5.2.7).

The following propositions are needed for the proof of theorem (5.3.1).
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Proposition 5.3.1.1

<1 ≥
1

t+ r + s
Eθ,ω[(ω

√
θ(1− θ) + θ

√
ω(1− ω))2]+

1

(t+ r + s)2
Eθ,ω

[
(3− 4θ)2

√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

(3− 4ω)2
√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

]
+ o(1/t2).

(5.3.6)

The following lemmas are required for the proof of the proposition (5.3.1.1).

Lemma 5.3.1.1

Given α, let X1, . . . , Xk be i.i.d. random variables that follow a distribution in the

form of one-parameter exponential family, that is

dFα(x) = exp{αx− ψ(α)}dx, (5.3.7)

where α has the conjugate prior distribution in the form of

dΠ(α) =
exp{λµα− λψ(α)}

c(λ, µ)
dα. (5.3.8)

Let g(α) = ψ
′
(α)
√
ψ′′(α), if

∫
[g
′
(α)]2

ψ′′(α)
dΠ(α) <∞, (5.3.9)

then

V ar [g(α)|Fk] ≤ E

[
[g
′
(α)]2

(k + λ)ψ′′(α)
|Fk

]
(5.3.10)

where Fk is the sigma algebra generated by X1, . . . , Xk.
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The proof of lemma (5.3.1.1) is established directly from the proof of lemma 1 in

[27] by changing g(α) from
√
ψ′′(α) to ψ

′
(α)
√
ψ′′(α).

Lemma 5.3.1.2

Suppose condition (5.3.2) holds, then the following inequalities hold.

V art

[
θ
√
θ(1− θ)

]
≤ Et

[
θ2(3− 4θ)2

4(M + r)

]
and

V art

[
ω
√
ω(1− ω)

]
≤ Et

[
ω2(3− 4ω)2

4(N + s)

]
.

Proof of lemma (5.3.1.2)

Since X1, . . . , XM are i.i.d. Bernoulli distributed with parameter θ and that θ has

Beta distribution that is the conjugate prior of Bernoulli distribution, it follows

that each Xi has the distribution in the form of (5.3.7) with

α = log
p

1− p
,

ψ(α) = log(1 + eθ)

and that α has the conjugate prior distribution in the form of (5.3.8). Since

g(α) = ψ
′
(α)
√
ψ′′(α) = θ

3
2 (1− θ) 1

2

and

g
′
(α) = 1

2
θ

3
2 (3− 4θ)(1− θ) 1

2 ,

then ∫ [g
′
(α)]2

ψ′′(α)
dΠ(α) =

∫ θ(3− 4θ)2

4(1− θ)
dθ

=
∫ 9θ

4(1− θ)
− 6θ2

1− θ
+

4θ3

1− θ
dθ

=
9B(a+ 1, b− 1)

4B(a, b)
− 4B(a+ 2, b− 1)

B(a, b)
+

4B(a+ 3, b− 1)

B(a, b)
.
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By condition (5.3.2)

∫ [g
′
(α)]2

ψ′′(α)
dΠ(α) <∞.

Therefore, by lemma (5.3.1.1), the first inequality follows. A similar argument can

be used to show the second inequality. This concludes the proof.

Lemma 5.3.1.3

Let Zt = V art{θ3/2(1− θ)1/2ω3/2(1− ω)1/2},

and suppose that condition (5.3.2) holds, then

Zt ≤ Et{
θ2(3− 4θ)2ω3(1− ω)

4(M + r)
+
ω2(3− 4ω)2θ3(1− θ)

4(N + s)
}.

Proof of lemma (5.3.1.3) Zt = V art{θ3/2(1− θ)1/2ω3/2(1− ω)1/2}

= Et{θ3(1− θ)ω3(1− ω)} − Et{θ3/2(1− θ)1/2ω3/2(1− ω)1/2}2

= Et{θ3(1− θ)}Et{ω3(1− ω)}

−Et{θ3/2(1− θ)1/2}2Et{ω3/2(1− ω)1/2}2

= (Et{θ3(1− θ)} − Et{θ3/2(1− θ)1/2}2)Et{ω3(1− ω)}

+(Et{ω3(1− ω)} − Et{ω3/2(1− ω)1/2}2)Et{θ3/2(1− θ)1/2}2

= V art{θ3/2(1− θ)1/2}Et{ω3(1− ω)}

+V art{ω3/2(1− ω)1/2}Et{θ3/2(1− θ)1/2}2

≤ V art{θ3/2(1− θ)1/2}Et{ω3(1− ω)}

+V art{ω3/2(1− ω)1/2}Et{θ3(1− θ)}.

By Lemma (5.3.1.2) the proof follows.

Lemma 5.3.1.4

Suppose that condition (5.3.2) holds, and

M + r

t+ r + s
→

ω
√
θ(1− θ)

ω
√
θ(1− θ) + θ

√
ω(1− ω)

(5.3.11)
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with probability one, then

(t+ r + s)Zt →
θ3/2(3− 4θ)2ω2(1− ω)

4
√

1− θ
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

ω3/2(3− 4ω)2θ2(1− θ)
4
√

1− ω
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

with probability one as t→ +∞.

Proof of lemma (5.3.1.4)

By lemma (5.3.1.3), it follows that

limsup(t+ r + s)Zt ≤

limsupEt{
t+ r + s

M + r
· 1

4
θ2(3− 4θ)2ω3(1− ω) +

t+ r + s

N + s
· 1

4
ω2(3− 4ω)2θ3(1− θ)}.

Now, observe that

Et{
t+ r + s

M + r
· 1

4
θ2(3− 4θ)2ω3(1− ω) +

t+ r + s

N + s
· 1

4
ω2(3− 4ω)2θ3(1− θ)}

→ θ3/2(3− 4θ)2ω2(1− ω)

4
√

1− θ
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

ω3/2(3− 4ω)2θ2(1− θ)
4
√

1− ω
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

with probability one as t→ +∞, by the martingale convergence theorem. So

limsup(t+ r + s)Zt ≤
θ3/2(3− 4θ)2ω2(1− ω)

4
√

1− θ
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

ω3/2(3− 4ω)2θ2(1− θ)
4
√

1− ω
(ω
√
θ(1− θ) + θ

√
ω(1− ω)).

The reverse inequality will follow by showing that

liminf(t+ r + s)V art{θ3/2(1− θ)1/2}Et{ω3(1− ω)} ≥

θ3/2(3− 4θ)2ω2(1− ω)

4
√

1− θ
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

(5.3.12)
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and

liminf(t+ r + s)V art{ω3/2(1− ω)1/2}Et{θ3/2(1− θ)1/2}2 ≥

ω3/2(3− 4ω)2θ2(1− θ)
4
√

1− ω
(ω
√
θ(1− θ) + θ

√
ω(1− ω)).

(5.3.13)

Observe that the left hand side of (5.3.12) can be written as

(t+r+s)
M+r

(M + r)V art{θ3/2(1− θ)1/2}Et{ω3(1− ω)}.

Now recall the exponential family notation in lemma (5.3.10),

V art{θ3/2(1− θ)1/2} = V art{g(α)}

where g(α) = ψ
′
(α)
√
ψ′′(α) and ψ(α) = log(1 + eθ). By using the fact that the

posterior distribution of α is asymptotically normal with mean α̂m and variance

1/((M + r)ψ
′′
(α̂m)) [5] and the fact that

V ar[f(X)] ≈ f
′
(E[X])2V ar[X],

we have

V art{g(α)} ≈ g
′
(α̂m)2

(M + r)ψ′′(α̂m)
.

Now, by conditions (5.3.2) and (5.3.11) and Fatou’s Lemma, we have

lim inf
(t+ r + s)

M + r
(M + r)V art{g(α)}Et{g2(β)} ≥

ω
√
θ(1− θ) + θ

√
ω(1− ω)

ω
√
θ(1− θ)

· g
′
(α)2

ψ′′ (α)
· ω3(1− ω)

=
θ3/2(3− 4θ)2ω2(1− ω)

4
√

1− θ
(ω
√
θ(1− θ) + θ

√
ω(1− ω)).

Therefore we proved the inequality (5.3.12). A similar argument can be used to

show that the inequality (5.3.13) holds. This concludes the proof of the lemma

(5.3.1.4).
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Now we can prove the proposition (5.3.1.1). Note that the proof is similar to [27]

in spirit although we are estimating product of means instead of sum of means.

Proof of Proposition (5.3.1.1)

Recall <1 in equation (5.3.4),

<1 = Eθ,ω[
A

M + r
+

B

N + s
]

= Eθ,ω{
(
√
A+
√
B)2

t+ r + s
+

[(N + s)
√
A− (M + r)

√
B]2

(t+ r + s)(M + r)(N + s)
}

≥ Eθ,ω[
(
√
A+
√
B)2

t+ r + s
] = Eθ,ω{

A+B + 2
√
AB

t+ r + s
}

= Eθ,ω[
A+B

t+ r + s
] + 2Eθ,ω[

√
AB

t+ r + s
]

where A = Et[ω
2θ(1− θ)] and B = Et[θ

2ω(1− ω)].

Let Wt =
√
AB = Et[θ

√
θ(1− θ)ω

√
ω(1− ω)], therefore

Zt = AB −W 2
t

where Zt is defined in lemma (5.3.1.3).

Notice that Wt is uniformly integrable martingale, then by martingale convergence

theorem,

Eθ,ω[Wt] = Wo =
∫
θ
√
θ(1− θ) · ω

√
ω(1− ω)dΠθ,ω.

Note that

√
AB = Wt +

Zt√
AB +Wt

,

so

Eθ,ω[
√
AB] = Wo + Eθ,ω[

Zt√
AB +Wt

].

Then by Lemma (5.3.1.4), it follows that
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(t+ r + s)Zt√
AB +Wt

→ 1

2

(3− 4θ)2
√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

+
1

2

(3− 4ω)2
√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

with probability one as t→ +∞. Then by Fatou’s Lemma, we have

liminfEθ,ω{(t+ r + s)
Zt√

AB +Wt

} ≥

Eθ,ω{
(3− 4θ)2

√
ω(1− ω)

8(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

+
(3− 4ω)2

√
θ(1− θ)

8(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))}.

Therefore

<1 = Eθ,ω[
A+B

t+ r + s
] + 2Eθ,ω[

√
AB

t+ r + s
]

≥ Eθ,ω[
A+B

t+ r + s
] +

2Wo

t+ r + s

+
1

(t+ r + s)2

{
(3− 4θ)2

√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

+
(3− 4ω)2

√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

}
=

1

t+ r + s
Eθ,ω[(ω

√
θ(1− θ) + θ

√
ω(1− ω))2]

+
1

(t+ r + s)2

{
(3− 4θ)2

√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

+
(3− 4ω)2

√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

}
.

This concludes the proof of proposition (5.3.1.1).

Proposition 5.3.1.2

Suppose the condition (5.3.11) holds

<2 → Eθ,ω

{
θ(1− θ)ω(1− ω)

(t+ r + s)2

(
2 +

ω
√
θ(1− θ)

θ
√
ω(1− ω)

+
θ
√
ω(1− ω)

ω
√
θ(1− θ)

)}
(5.3.14)

with probability one.
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Proof of proposition (5.3.1.2)

Recall <2 in equation (5.3.5),

<2 = Eθ,ω{
C

(M + r)(N + s)
} = Eθ,ω{

Et[θ(1− θ)ω(1− ω)]

(M + r)(N + s)
}

=
1

(t+ r + s)2
Eθ,ω{Et[

t+ r + s

(M + r)

t+ r + s

(N + s)
θ(1− θ)ω(1− ω)]}.

Then by condition (5.3.11),

t+ r + s

(M + r)

t+ r + s

(N + s)
θ(1− θ)ω(1− ω)→ θ(1− θ)ω(1− ω)·

ω
√
θ(1− θ) + θ

√
ω(1− ω)

ω
√
θ(1− θ)

·
ω
√
θ(1− θ) + θ

√
ω(1− ω)

θ
√
ω(1− ω)

so that

t+ r + s

(M + r)

t+ r + s

(N + s)
θ(1− θ)ω(1− ω)→

1

(t+ r + s)2
θ(1− θ)ω(1− ω)

(
2 +

ω
√
θ(1− θ)

θ
√
ω(1− ω)

+
θ
√
ω(1− ω)

ω
√
θ(1− θ)

)
almost surely.

The proof will follow if we establish that t2

MN
θ(1− θ)ω(1− ω) is uniformly

integrable. To show uniform integrability, we must show that there exsits p > 1

such that

sup
t
Eθ,ω[

t2

MN
θ(1− θ)ω(1− ω)]p <∞.

Let

At = {min(M,N) < εt}.

Then

E[
t2

MN
θ(1− θ)ω(1− ω)]p ≤ 1

ε2p
E[θ(1− θ)ω(1− ω)]p

+(2t)pE[θ(1− θ)ω(1− ω)]pIAN .
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This completes the proof of the proposition (5.3.1.2).

Now we can prove our second-order lower bound for the Bayes risk incurred

by the sequential design under the squared loss.

Proof of Theorem (5.3.1)

Since <(∆) = <1 −<2,

by proposition (5.3.1.1) and (5.3.1.2), theorem (5.3.1) is proved.

5.4 Sequential Allocation

Recall equation (5.3.3), the second order lower bound for <(∆) is

<(∆) ≥ 1

t+ r + s
Eθ,ω[(ω

√
θ(1− θ) + θ

√
ω(1− ω))2]+

1

(t+ r + s)2
Eθ,ω

[
(3− 4θ)2

√
ω(1− ω)

4(1− θ)
(ω
√
θ(1− θ) + θ

√
ω(1− ω)) +

(3− 4ω)2
√
θ(1− θ)

4(1− ω)
(ω
√
θ(1− θ) + θ

√
ω(1− ω))

]
−

1

(t+ r + s)2
Eθ,ω

[
θ(1− θ)ω(1− ω)

(
2 +

ω
√
θ(1− θ)

θ
√
ω(1− ω)

+
θ
√
ω(1− ω)

ω
√
θ(1− θ)

)]
+o(1/t2)

with the condition in equation (5.3.11)

M + r

t+ r + s
→

ω
√
θ(1− θ)

ω
√
θ(1− θ) + θ

√
ω(1− ω)

with probability one. Since the actual value of θ and ω is unknown, sequential

allocation using this condition is not practical. Instead, we estimate the ratio

at intervals during the test allocation process, and choose which component to

sample from to adjust the ratio such that

M + r

t+ r + s
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is close to Ĉ(t), where

Ĉ(t) =
E[ω

√
θ(1− θ)|Ft]

E[ω
√
θ(1− θ) + θ

√
ω(1− ω)|Ft]

, (5.4.1)

and Ft is the data collected after t test cases have been allocated.

5.5 Fully Sequential Sampling Scheme

In this section we present a fully sequential sampling scheme where indi-

vidual test case must be allocated in series because allocation decisions are made

after each test case is executed. We proceed to test as follows:

Step 1:

Allocate one test case to each component P1 and P2.

Step 2:

After ` test cases have been allocated, where ` ≥ 2, we allocate test case `+ 1 to

component Pi if

mi,` + r

t+ r + s
< Ĉ(`),

where mi,` is the cumulative test cases allocated to component Pi.

This approach is applied sequentially until all t test cases are allocated.

5.6 Multistage Sampling Scheme

In this section the multistage scheme is presented where we allocate t test

cases in L stages, which are fixed before testing begins, such that at stage j there

are Sj test cases distributed during that stage. We define Sj,i to be the cumulative

test cases allocated to component Pi up to stage j. Here is an outline of the
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process.

Stage 1:

We allocate test cases in the first stage with S1 total test cases such that

lim
t→∞

S1

t
= 0 and lim

t→∞
S1 =∞ [23].

Thus by equation (5.4.1) we allocate test cases in the first stage such that:

S1,1 = (S1 + r + s)E

[
ω
√
θ(1− θ)

ω
√
θ(1− θ) + θ

√
ω(1− ω)

]
− r (5.6.1)

where the expectation is calculated based on the prior parameters and S1,1 is

rounded to the nearest integer, and

S1,2 = S1 − S1,1.

Stage 2 through L:

For Stages 2 through L, we allocate test cases to two components based on the

prior distribution updated by test results from previous stages, and determine

Sj,1, Sj,2 sequentially such that, at each stage j, 2 ≤ j ≤ L,

Sj,1 =

((
j∑
`=1

S`

)
+ r + s

)
Ĉi(S̄j−1)− r, (5.6.2)

and

Sj,2 =
j∑̀
=1

S` − Sj,1,

where

S̄j−1 =
j−1∑
y=1

Sy.
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Therefore, at stage L, the total number of test cases allocated to component P1 is

M = min{t− SL−1,2,max((t+ r + s)Ĉi(S̄L−1)− r, SL−1,i)}. (5.6.3)

Note that (5.6.3) means M should be at least the total number of test cases

allocated up to stage L−1, i.e., SL−1,1. In addition, M has to be at most M−SL−1,2

because there are only this many test cases left. However, in the last stage, we are

still allocate test cases sequentially, which leads to the max part, and thus (5.6.3).

5.7 Accelerated Sampling Scheme

In this section the accelerated sampling scheme is proposed where we al-

locate t test cases in L stages, which are fixed before testing begins, such that at

stage j there are Sj test cases distributed during that stage. We define Sj,1 and

Sj,2 to be the distinct test cases allocated to component P1 and P2 during stage

j. We outline the accelerated sampling approach as below.

Stage 1:

We allocate test cases in the first stage with S1 total test cases such that

lim
t→∞

S1

t
= 0 and lim

t→∞
S1 =∞ [23].

Thus by equation (5.4.1) we allocate test cases in the first stage such that:

S1,1 = (S1 + r + s)E

[
ω
√
θ(1− θ)

ω
√
θ(1− θ) + θ

√
ω(1− ω)

]
− r (5.7.1)

where the expectation is calculated based on the prior parameters and S1,1 is

rounded to the nearest integer, and

S1,2 = S1 − S1,1.
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Stage 2 through L− 1:

We continue with the method for stages 2 to L− 1 and allocate test cases within

these stages to two components based on the prior distribution updated by ob-

servations from previous stages and determine Sj,1, Sj,2 sequentially such that at

each stage j, 2 ≤ j ≤ L− 1, by equation (5.4.1),

Sj,1 =

((
j∑
`=1

S`

)
+ r + s

)
Ĉi(S̄j−1)− r, (5.7.2)

and

Sj,2 = Sj − Sj,1,

where

S̄j−1 =
j−1∑
y=1

Sy.

Note here for j = 2, . . . , L− 1, Sj are chosen such that

lim
t→∞

Sj

t
= 0 and lim

t→∞
Sj =∞.

Stage L:

By (5.4.1), we allocate one test case to component Pi if

mi,` + r

t+ r + s
< Ĉ(`)

for i = 1, 2 where mi,` is the cumulative test cases allocated to component Pi after

` total test cases have been allocated, where

L−1∑
j=1

Si,j ≤ mi,` ≤
L−1∑
j=1

Si,j + t−
L−1∑
i=1

Si.

We proceed sequentially in this manner until all the remaining SL test cases have

been allocated, where

SL = t−
L−1∑
j=1

Sj.
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5.8 Monte Carlo Simulations

Numerical results are presented in this section to illustrate the proposed

sampling schemes to achieve the second-order optimality of Bayes risk when esti-

mating the reliability of a series system with two components.

Table (11) on page (74) present the results for a fully sequential design

with various prior settings. The results show the trend of the difference between

incurred Bayes risk and optimal Bayes risk as the total number of test cases t

increases. It is indicated that as t increases, the incurred Bayes risk is approaching

the optimal Bayes risk in the order of t2, which is expected.

The results of the multistage design are illustrated in Table (12) on page

(75). Without surprises, the difference also converges to zero in the order of t2

which agrees with our theory. However, when compared with the results from the

fully sequential design, the difference is bigger than the fully sequential design in

almost every situation. This is because fully sequential design allocates test cases

one by one and thus has more accuracy over the multistage design, which saves

execution time while maintaining an acceptable accuracy.

We present the results of the accelerated design in Table (13) on page (76).

As revealed in the table, the difference decreases in the order of t2 as in the other

two sequential designs. We noticed by comparing results with other two designs

that the accuracy of the accelerated design is just in between, which also makes

sense because it only allocate test cases in series at the last stage. We could

utilize this more balanced sequential design when both accuracy and efficiency are

pursued under certain circumstances.
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SUMMARY AND CONCLUSION

Reliability estimation for software is rarely undertaken blindly. There is

almost always some notion by those responsible for this task about the reliability

of a system before reliability testing begins. Traditional approaches to partition

based reliability estimation use this information alone to establish fixed test allo-

cations before reliability testing begins. Therefore, once testing begins we do not

use the intermediate results of test execution to refine the allocation of test cases

among the partitions. If the prior parameters are chosen poorly, the accuracy in

estimating reliability using a fixed test case allocation could suffer greatly.

In this dissertation we took a Bayesian approach to test case allocation.

Bayesian analysis allows us to update our beliefs about the reliability of a partic-

ular partition as we test, and thus, dynamically refine our allocation of test cases

during the reliability testing process.

After introducing some background in the first chapter, we presented purely

sequential sampling scheme in chapter 2 to estimate the reliability of a software

system using partition testing. We have shown both theoretically and through

simulation that the purely sequential sampling scheme always performs at least

as well as fixed sampling approaches where test case allocation is predetermined.

The content of this chapter is published in Journal of Applied Statistical Science

[29].

In the third chapter, the multistage sampling scheme is presented. Unlike

the purely sequential sampling scheme, the multistage sampling scheme allocate

test cases in batches instead of one at a time. It is thus less costly and highly imple-

mentable while maintaining trustworthy results. The proposed sampling scheme
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is applied to a real world application with 64 subdomains and shows superiority

over fixed sampling schemes. The content of this chapter is published in IEEE

Transactions in Reliability [30].

To balance accuracy and efficiency, we proposed the accelerated sampling

scheme in chapter 4. Before the last stage, the accelerated sampling scheme will

allocate test cases in batches just like the multistage sampling scheme. In the last

stage, however, test cases will be allocated one by one in order to achieve a better

accuracy. Comparisons have been made through Monte Carlo simulations among

accelerated sampling scheme, equal allocation, multistage sampling scheme and

purely sequential sampling scheme. It is indicated that the acclerated sampling

scheme outperforms all the other sampling schemes in terms of incurred Bayes risk

except purely sequential sampling scheme, which is much more time-consuming

than the proposed sampling scheme. The content of this chapter is published in

Applied Mathematics and Computation [28].

We extend our studies to series systems in chapter 5. We start with a

series system with two components. A second-order lower bound is established for

the incurred Bayes risk. Purely sequential, multistage and accelerated sampling

schemes are then proposed in order to achieve this second-order lower bound. The

simulation result is very promising. The problem could be more general if we

study finite components instead of two components, which will be our focus of the

future researches.
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APPENDIX

TABLES

Table 1
Bayes Risk ratios of fully sequential vs. the best fixed (<(Sp)/<(Fo))

α1, β1 α2, β2 p1, p2
M = 40

(% to D1)
M = 100
(% to D1)

M = 1000
(% to D1)

M →∞

1,1 1,1 .5,.5
.975

(50%)
.968

(50%)
.964

(50%)
.963

1,1 1,1 .1,.9
.989
(8%)

.986
(10%)

.986
(11%)

.986

.5,.01 .5,.01 .5,.5
.730

(50%)
.637

(50%)
.552

(50%)
.529

.5,.01 .5,.01 .1,.9
.941

(18%)
.903

(20%)
.841

(21%)
.830

.1,.001 1,1 .5,.5
.934
(6%)

.922
(5%)

.896
(2%)

.884

.1,.001 1,1 .1,.9
.723

(22%)
.665

(17%)
.602
(9%)

.563

1,.05 .1,.005 .5,.5
.783

(69%)
.676

(70%)
.641

(73%)
.618

1,.05 .1,.005 .1,.9
.828

(36%)
.772

(39%)
.738

(43%)
.704

1,2 2,1 .5,.5
.979

(50%)
.969

(50%)
.965

(50%)
.963

1,2 2,1 .1,.9
.997
(6%)

.991
(9%)

.989
(11%)

.987
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Table 2
Partitioning of the input domain obtained by grouping the factors

Factor A: Unique Tasks Factor B: Replicates Factor C: Replicate Type Factor D: User Entry
A1: Single Task B1: Single C1: Defined in Data Base D1: Null
A2: 2-5 Tasks B2: two or more C2: Defined by User D2: Invalid
A3: 6-10 Tasks D3: Partial
A4: ≥ 11 Taks D4: Complete
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Table 3
Initial Parameter Settings

Domain D1−D5 D6−D10 D11−D15 D16−D20 D21−D25 D26−D30
(αi, βi) (1,1) (1,1) (1,.05) (1,.05) (.1,.005) (.1,.005)
pi .01 .02 .01 .02 .01 .02

Domain D31−D35 D36−D40 D41−D45 D46−D50 D51−D55 D56−D60
(αi, βi) (1,2) (1,2) (2,1) (2,1) (.5,.01) (.5,.01)
pi .01 .02 .01 .02 .01 .02

Domain D61−D62 D63−D64
(αi, βi) (.1,.001) (.1,.001)
pi .01 .04
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Table 4
Bayes risk ratios of two-stage vs. the best-fixed (<(Sm)/<(Fo))

M <(Sm)/<(Fo)
1000 94.18%
10000 85.9%
50000 79.47%
∞ 69.36%
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Table 5
Percentage to each subdomain after simulation (M=50,000)

Domain D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
% to Di 2.04% 2.04% 2.05% 2.05% 2.04% 4.09% 4.09% 4.1% 4.09% 4.11%
Domain D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
% to Di .36% .36% .36% .36% .35% 0.75% 0.75% 0.74% 0.72% 0.74%
Domain D21 D22 D23 D24 D25 D26 D27 D28 D29 D30
% to Di .08% .09% .08% .09% .08% .16% .17% .17% .17% .18%
Domain D31 D32 D33 D34 D35 D36 D37 D38 D39 D40
% to Di 2.03% 2.04% 2.04% 2.05% 2.05% 4.09% 4.08% 4.07% 4.09% 4.08%
Domain D41 D42 D43 D44 D45 D46 D47 D48 D49 D50
% to Di 2.04% 2.04% 2.05% 2.03% 2.05% 4.09% 4.08% 4.1% 4.07% 3.69%
Domain D51 D52 D53 D54 D55 D56 D57 D58 D59 D60
% to Di .1% .09% .1% .09% .09% .2% .19% .2% .2% .19%
Domain D61 D62 D63 D64
% to Di .02% .02% .1% .09%
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Table 6
Bayes risk ratios of accelerated vs. equal allocation (<(Sa)/<(Fe))

α1, β1 α2, β2 p1, p2
M = 40

(% to D1)
M = 100
(% to D1)

M = 1000
(% to D1)

M →∞

1,1 1,1 .5,.5
.976

(50%)
.966

(50%)
.963

(50%)
.963

1,1 1,1 .1,.9
.608
(8%)

.604
(10%)

.601
(11%)

.601

.5,.01 .5,.01 .5,.5
.696

(50%)
.648

(50%)
.555

(50%)
.529

.5,.01 .5,.01 .1,.9
.605

(18%)
.533

(19%)
.524

(21%)
.506

.1,.001 1,1 .5,.5
.568
(6%)

.545
(5%)

.522
(2%)

.507

.1,.001 1,1 .1,.9
.415

(28%)
.348

(21%)
.309

(11%)
.286

1,.05 .1,.005 .5,.5
.666

(68%)
.578

(70%)
.552

(72%)
.534

1,.05 .1,.005 .1,.9
.637

(33%)
.542

(36%)
.522

(42%)
.522

1,2 2,1 .5,.5
.985

(50%)
.976

(50%)
.963

(50%)
.963

1,2 2,1 .1,.9
.608
(6%)

.603
(9%)

.602
(11%)

.602
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Table 7
Bayes risk ratios of accelerated vs. the best fixed (<(Sa)/<(Fo))

α1, β1 α2, β2 p1, p2
M = 40

(% to D1)
M = 100
(% to D1)

M = 1000
(% to D1)

M →∞

1,1 1,1 .5,.5
.978

(50%)
.969

(50%)
.964

(50%)
.963

1,1 1,1 .1,.9
.991
(8%)

.988
(10%)

.986
(11%)

.986

.5,.01 .5,.01 .5,.5
.710

(50%)
.665

(50%)
.559

(50%)
.529

.5,.01 .5,.01 .1,.9
.949

(18%)
.896

(19%)
.843

(21%)
.830

.1,.001 1,1 .5,.5
.949
(6%)

.931
(5%)

.907
(2%)

.884

.1,.001 1,1 .1,.9
.751

(28%)
.671

(21%)
.609

(11%)
.563

1,.05 .1,.005 .5,.5
.771

(68%)
.680

(70%)
.656

(72%)
.618

1,.05 .1,.005 .1,.9
.866

(33%)
.778

(36%)
.749

(42%)
.704

1,2 2,1 .5,.5
.989

(50%)
.981

(50%)
.967

(50%)
.963

1,2 2,1 .1,.9
.994
(6%)

.989
(9%)

.988
(11%)

.987
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Table 8
Bayes risk ratios of accelerated vs. two-stage (<(Sa)/<(Sm))

α1, β1 α2, β2 p1, p2
M = 40

(% to D1)
M = 100
(% to D1)

M = 1000
(% to D1)

M →∞

1,1 1,1 .5,.5
.997

(50%)
.991

(50%)
.993

(50%)
1

1,1 1,1 .1,.9
.993
(8%)

.992
(10%)

.998
(11%)

1

.5,.01 .5,.01 .5,.5
.985

(50%)
.974

(50%)
.986

(50%)
1

.5,.01 .5,.01 .1,.9
.992

(18%)
.973

(19%)
.998

(21%)
1

.1,.001 1,1 .5,.5
.995
(6%)

.999
(5%)

.992
(2%)

1

.1,.001 1,1 .1,.9
.949

(28%)
.968

(21%)
.940

(11%)
1

1,.05 .1,.005 .5,.5
.983

(68%)
.955

(70%)
.986

(72%)
1

1,.05 .1,.005 .1,.9
.997

(33%)
.948

(36%)
.971

(42%)
1

1,2 2,1 .5,.5
.990

(50%)
.999

(50%)
.997

(50%)
1

1,2 2,1 .1,.9
.999
(6%)

.998
(9%)

.990
(11%)

1
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Table 9
Operational profile and usage probabilities for billing system

Subdomain Usage Probability (α, β)

Residential, no calling plan, paid 0.5940 (1,1)

Residential, national calling plan, paid 0.1580 (1,1)

Business, no calling plan, paid 0.1485 (.5,.01)

Business, national calling plan, paid 0.0396 (.5,.01)

Residential, international calling plan, paid 0.0396 (.1,.005)

Business, international calling plan, paid 0.0099 (.1,.005)

Residential, no calling plan, delinquent 0.0060 (1,.05)

Residential, national calling plan, delinquent 0.0016 (1,.05)

Business, no calling plan, delinquent 0.0015 (1,2)

Business, national calling plan, delinquent 0.0004 (1,2)

Residential, international calling plan, delinquent 0.0004 (2,1)

Business, international calling plan, delinquent 0.0001 (2,1)
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Table 10
Bayes risk ratios of accelerated vs. the best-fixed (<(Sa)/<(Fo))

M <(Sa)/<(Fo)
5000 97.63%
10000 93.78%
50000 91.22%
∞ 89.02%
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Table 11
t2 ∗ (<(∆)−<(o)) By Fully Sequential Design

(a, b) (c, d) t = 100 t = 300 t = 500 t = 800 t = 1000
(2,2) (2,2) 1.00 0.97 1.12 0.792 0.42
(4,3) (4,3) 1.19 1.57 1.77 1.42 1.03
(4,3) (3,4) 0.78 0.84 0.63 0.65 0.49

(0.1,2) (1,20) 0.007 0.009 0.005 0.004 0.001
(5,2) (4,3) 1.19 1.23 1.11 0.98 0.83
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Table 12
t2 ∗ (<(∆)−<(o)) By Multistage Design

(a, b) (c, d) t = 100 t = 300 t = 500 t = 800 t = 1000
(2,2) (2,2) 1.56 1.44 1.77 1.23 1.11
(4,3) (4,3) 1.76 1.98 1.83 1.56 1.22
(4,3) (3,4) 1.33 1.04 0.97 0.84 0.81

(0.1,2) (1,20) 0.012 0.008 0.013 0.008 0.005
(5,2) (4,3) 1.45 1.72 1.56 1.44 1.32
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Table 13
t2 ∗ (<(∆)−<(o)) By Accelerated Design

(a, b) (c, d) t = 100 t = 300 t = 500 t = 800 t = 1000
(2,2) (2,2) 1.23 1.11 1.24 1.02 0.95
(4,3) (4,3) 1.34 1.75 1.88 1.53 1.11
(4,3) (3,4) 0.88 0.93 0.72 0.74 0.63

(0.1,2) (1,20) 0.009 0.007 0.009 0.006 0.004
(5,2) (4,3) 1.23 1.65 1.44 1.32 1.11
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