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Abstract 
 

 

Fire disturbance plays an important role in shaping ecosystem dynamics and 

vegetation patterns in many forested landscapes. Simulation modeling is an effective tool 

to study such interactive dynamics over large areas and long time periods. This 

dissertation is dedicated to the modeling of fire disturbance in spatially explicit and 

stochastic forest landscape models. I chose LANDIS, a spatially explicit model of forest 

landscape disturbance, management, and succession as my research model. My research 

includes both theoretical and technical aspects of modeling fire occurrence patterns and 

fire spread behavior. For modeling fire occurrence I proposed a hierarchical fire 

frequency model in which the joint distribution of fire frequency is factorized into a 

series of conditional distributions. The model is consistent with the framework of 

statistically based approaches in that a fire occurrence is divided into two stages – fire 

ignition and fire initiation. The model possesses great flexibility for simulating temporal 

variation in fire frequency for various forest ecosystems. I implemented an improved fire 

module in LANDIS and conducted experiments within forest landscapes of northern 

Wisconsin and southern Missouri. The results demonstrate this new fire module can 
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simulate a wide range of fire regimes across heterogeneous landscapes with a few model 

parameters and a moderate amount of input data. For modeling fire spread, I 

implemented four representative fire spread simulation methods (complete uniform, 

dynamic percolation, fire-size-based elliptical wave propagation, and duration-based-

elliptical wave propagation) in LANDIS. I compared temporal and spatial fire patterns 

simulated using these four fire spread simulation methods under two fire occurrence 

process scenarios that are fuel-independent and fuel-dependent. The results showed that 

although primary characteristics of simulated fire regimes (e.g., fire cycle, distribution of 

fire frequency, fire size) were similar, spatial pattern of fire occurrence, temporal pattern 

of fire frequency, and the shape of burned patches were different. Furthermore, I found 

that the incorporation of fuel into fire occurrence modeling greatly changes fire patterns, 

suggesting that a mechanistic representation of fire occurrence with fuel and possible 

other drivers is important in the model building process. Lastly, I used point process 

modeling approach to study the effects of proximity to road, land cover, topography 

(slope, aspect, and elevation) on the probability of fire occurrence in the Missouri Ozark 

Highlands, where more than 90% of reported fires are human-caused. The spatial 

distribution of fire occurrence density, which is one of the results from point pattern 

modeling, can be further used in LANDIS as an input map for simulating (human-caused, 

lightning-caused, or both) fire occurrence. 
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Introduction 
 

Research problems 
 

Forest landscape modeling has a deep root in ecological theory and concepts.  

Ecological theories of succession (Odum, 1969; Pickett et al., 1987), disturbance (Pickett et 

al., 1989; Clark, 1991; Turner et al., 2003), and equilibrium or non-equilibrium ecological 

systems (Levin 1992) lay the foundations for landscape modeling (Mladenoff and Baker, 

1999). Early applications of Markov transition models in studying vegetation dynamics 

(Waggoner and Stephens, 1970), vital attribute models (Noble and Slatyer, 1980; Roberts, 

1996), distributed and aggregated models (Wu and Levin, 1994), forest growth and yield 

models (Dale et al., 1985), forest stand and gap models (Botkin et al., 1972; Shugart, 1984), 

forest planning and decision support models (Potter et al., 1979) provided fertile soil for the 

development of spatially explicit forest landscape models.   

Forest landscape change has been traditionally modeled by simulating changes in 

sample plots of up to a few hundred square meters, selected within various forest types or 

along environmental gradients (e.g., Pastor and Post, 1988; Bugmann, 1996). These models 

are referred to as gap models and they typically do not account for spatial interaction among 

plots or across a large landscape. In gap models, large-scale contagious processes such as 

seed dispersal usually have been assumed to be either constant or random. Recent models, 

such as FIRESUM (Keane et al., 1989), SORTIE (Pacala et al., 1993), and FACET (Urban et 

al., 1999), have incorporated more spatial interaction than the earlier JABOWA-FORET 

types of gap models. FACET considers interaction of directly neighboring plots when 

simulating seed dispersal (Urban et al., 1999); SORTIE tracks individual tree locations and 
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simulates seed dispersal distances and seedling density defined by each species (Ribbens et 

al., 1994). But even with state-of-the-art computers, these models are still limited to 

simulating relatively small sections of landscapes (less than 10 ha) because the computational 

loads increase exponentially with simulation area (He et al., 1999). To simulate large areas 

using these models, spatial inexplicit scaling-up (e.g., Acevedo et al., 1995; Keane et al., 

1996; Urban et al., 1999) or simplifying the representations of some ecosystem processes, are 

needed. 

One family of computer simulation models that simulate forest change across large 

heterogeneous landscapes (103 – 107 ha) over a long temporal scale (101 – 103 yr) is the 

spatial explicit and stochastic forest landscape model (SESFLM), in which spatial 

information is explicit and the randomness in the ecological process is modeled. SESFLMs 

address how forest change across heterogeneous landscapes driven by tree species succession, 

competition for environmental constraints, natural disturbances such as fire, windthrow, or 

biological disturbance; and human management and activities. They offer great potential by 

providing synergy with experiments and observational research, understanding the dynamics 

of ecological processes, and evaluating the long-term effects of management activities.  

This dissertation is dedicated to the modeling of fire disturbance in SESFLM. Fire 

disturbance is one of the most important processes driving landscape patterns and forest 

succession (Turner and Romme, 1994). A large variety of models have been developed for 

simulating landscape-scale patterns of fire effects, here I chose LANDIS, a spatially explicit 

model of forest landscape disturbance, management, and succession (Mladenoff et al., 1996; 

Mladenoff and He, 1999, Gustafson et al. 2000) as my research model. My research included 

both theoretical and technical aspects on how to improve LANDIS for a better understanding 
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fire disturbance in driving forest compositional change and feedbacks in ecosystem processes. 

The purpose of my research is to advance modeling approaches for simulating fire 

occurrence and fire spread, to implement the proposed approaches in LANDIS, and to 

explore the potential of the improved LANDIS fire module in (1) simulating various fire 

regimes on heterogeneous landscapes, (2) examining the influence of the fuel configuration, 

topography and wind on the spatial pattern of fires, and (3) calibrating the parameters against 

the observed patterns of fires. 

 

Chapter outline 
 

There are three chapters in my dissertation. Chapter one develops a hierarchical fire 

frequency model to substitute for current widely used Exponential and Weibull models in 

simulating fire occurrence. Chapter two systematically compares a full spectrum of fire 

spread simulation (i.e., purely statistical, statistical-probabilistic, and statistical-physical) 

methods on simulated spatial and temporal forest fire patterns. Chapter three applies 

statistical modeling (specifically, spatial point process modeling) to estimate the intensity of 

fire occurrence (intensity here is a term used in spatial statistics, it can be loosely interpreted 

as density), from which we can further derive a fire occurrence probability map serving as an 

input for many SESFLMs (including LANDIS) in simulating fire occurrence. 

Chapter 1 uses the theory of hierarchical modeling and mixture distributions to 

account for a commonly used strategy in fire occurrence modeling: to divide a fire 

occurrence into two consecutive events – fire ignition and fire initiation. A fire occurrence 

begins with an ignition from an external heat source, which heats the forest fuel complex up 
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to its ignition temperature. Fire ignition agents are either natural (e.g., lightning) or 

anthropogenic (e.g., arson or accidental). A fire initiation event starts with the ignition until a 

certain area whose size is equal to the grain of the model is burned (Li, 2000). However, the 

Exponential and Weibull fire interval distributions, which model a fire occurrence as a single 

event, are often inappropriately applied to these two-stage models for calculating fire 

probability. The hierarchical fire frequency model that I proposed is consistent with this two-

stage modeling. The Exponential and Weibull models are actually special cases of my 

hierarchical model. I implemented this approach as an improved fire module in LANDIS and 

conducted experiments within forest landscapes of northern Wisconsin and southern 

Missouri. The results demonstrate this new fire module can simulate a wide range of fire 

regimes across heterogeneous landscapes with a few model parameters and a moderate 

amount of input data. The hierarchical fire frequency model possesses great flexibility for 

simulating temporal variation in fire frequency for various forest ecosystems and can serve as 

a theoretical framework for future statistical modeling of fire regimes. 

Chapter 2 compares temporal and spatial fire patterns simulated using the four 

representative fire spread simulation methods (complete uniform, dynamic percolation, fire 

size based elliptical wave propagation, and duration based elliptical wave propagation) under 

two fire occurrence process scenarios that are fuel-independent and fuel-dependent. 

Specifically, I examined how statistical characteristics of fire frequency and fire size 

distribution, temporal structure (trend, autocorrelation) of fire frequency series, point pattern 

of fire occurrences, and shapes and spatial configuration of burned patches varied by those 

forest fire simulation methods. The results demonstrated that although primary characteristics 

of fire regimes (e.g., fire cycle, distribution of fire frequency, fire size) were similar, spatial 
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pattern of fire occurrence, temporal pattern of fire frequency, and the shape of burned patches 

were different. Furthermore, we found that the incorporation of fuel into fire occurrence 

modeling greatly changed fire patterns, suggesting that a mechanistic representation of fire 

occurrence with fuel and possible other drivers is important in the model building process. 

Chapter 3 uses the point process modeling approach to study the effects of proximity 

to road, land cover, and topography (slope, aspect, and elevation) on the probability of fire 

occurrence in the Missouri Ozark Highlands, where more than 90% of fires are human-

caused. Our results show that fire locations are spatially clustered, and high fire occurrence 

probability is found in areas that are close to roads (<500 meters away from the nearest road) 

and in lower (<25 degree) slopes, where forest are more accessible to human. In addition, fire 

occurrence probability is higher in pine-oak forests and woodlands and is lower at low (<900 

ft) elevations, which reflects the effects of natural factors on fire occurrence process. The 

spatial distribution of fire occurrence density, which is one of the results from this study, can 

be further used in LANDIS and other SESFLMs as an input map for simulating (human-

caused, lightning-caused, or both) fire occurrences.  



 6

References 
 

Acevedo, M. F., D. L. Urban, and M. Ablan. 1995. Transition and gap models of forest 
dynamics. Ecological Applications 5, no. 4: 1040-1055. 

Botkin, D.B., J.F. Janak, and J.R. Wallis. 1972. Some ecological consequences of a computer 
model of forest growth. Journal of Ecology 60: 849-72. 

Bugmann, H.K.M. 1996. A simplified forest model to study species composition along 
climate gradients. Ecology 77, no. 7: 2055-74. 

Clark, J.S. 1991. Disturbance and tree life history on the shifting mosaic landscape. Ecology 
72, no. 3: 1102-18. 

Dale, V.H., T.W. Doyle, and H.H. Shugart. 1985. A comparison of tree growth models. 
Ecological Modelling 29: 145-69. 
 

Gustafson, E.J., Shifley, S.R., Mladenoff, D.J., Nimerfro, K.K., and He, H.S., 2000. Spatial 
simulation of forest succession and timber harvesting using LANDIS. Can. J. Forest Res. 30: 
32-43. 

He, H.S., D.J. Mladenoff, and J. Boeder. 1999. Object-oriented design of LANDIS, a 
spatially explicit and stochastic landscape model. Ecological Modelling 119: 1-19. 

Keane, R.E., S.F. Arno, and J.K. Brown. 1989. FIRESUM - an ecological process model for 
fire succession in western conifer forests, General Technical Report INT-266. USDA Forest 
Service, Intermountain Research Station, Ogden, Utah. 

Keane, R.E., P. Morgan, and S. W. Running. 1996. FIRE-BGC--A Mechanistic Ecological 
Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the 
Northern Rocky Mountanis, INT-RP-484. USDA forest service. 

Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73, no. 6: 1943-67. 

Mladenoff, D.J., and  W.L. Baker.. 1999. Development of forest and landscape modeling 
approaches. in Spatial modeling of forest landscape change: Approaches and applications. ed. 
David J. Mladenoff, and William L. Baker, 1-13. Cambridge, United Kingdom: Cambridge 
University Press. 
 

Mladenoff, D.J. and He, H.S., 1999. Design and behavior of LANDIS, an object-oriented 
model of forest landscape disturbance and succession. In: D. J. Mladenoff and W.L. Baker 
(Editors), Spatial Modeling of Forest Landscapes: Approaches and Applications. Cambridge 
University Press, Cambridge, UK. pp. 125-162. 



 7

 

Mladenoff, D.J., Host, G.E., Boeder, J., and Crow, T.R., 1996. LANDIS: a spatial model of 
forest landscape disturbance, succession, and management. In: M.F. Goodchild, L.T. Steyaert, 
B.O. Parks, C. Johnston, D. Maidment, M. Crane, and S. Glendining (Editors). GIS and 
Environmental Modeling: Progress and Research Issues. GIS World Books, Fort Collins, CO, 
pp. 175-180. 

Noble, I.R., and R.O. Slatyer. 1980. The Use of Vital Attributes to Predict Successional 
Changes in Plant Communities Subject to Recurrent Disturbances. Vegetatio 43: 5-21. 

Odum, E.P., 1969. The strategy of ecosystem development. Science 164: 262-270.  

Pacala, S.W., C.D. Canham, and J.A. Silander,Jr. 1993. Forest models defined by field 
measurements: I. The design of a northeastern forest simulator. Canadian Journal of Forest 
Research 23: 1980-1988. 

Pastor, J., and W.M. Post. 1988. Response of northern forests to CO2-induced climate 
change. Nature 334: 55-58. 

Pickett, S.T.A., S.L. Collins, and J.J. Armesto. 1987. A hierarchical consideration of causes 
and mechanisms of succession. Vegetatio 69: 109-14. 

Pickett, S.T.A., J. Kolasa, J.J. Armesto, and S.L. Collins. 1989. The ecological concept of 
disturbance and its expression at various hierarchical levels. Oikos 54: 129-36. 

Potter, M.W., S.R. Kessell, and  P. J., Cattelino. 1979. FORPLAN: A FORest Planning 
LANguage and simulator. Environmental Management 3: 59-81. 

Ribbens, E., J.A. Silander, Jr., and S.W. Pacala. 1994. Seedling recruitment in forests:  
calibrating models to predict patterns of tree seedling dispersion. Ecology 75, no. 6: 1794-
806. 

Roberts, D.W. 1996. Landcape vegetation modelling with vital attributes and fuzzy systems 
theory. Ecological Modelling 90: 175-84. 

Shugart, H.H. 1984. A Theory of Forest Dynamics: The Ecological Implications of Forest 
Succession Models. Springer-Verlag, New York. 278 pp. 

Turner, M.G., and W.H. Romme. 1994. Landscape dynamics in crown fire ecosystems. 
Landscape Ecology. 9(1):59-77. 

Turner, M.G., S. Collins, A. Lugo, J. Magnuson, T. S. Rupp, and F. Swanson. 2003. 
Disturbance dynamics and ecological response:  the contribution of long-term ecological 
research. BioScience 53, no. 1: 46-56. 



 8

Urban, D.L., M.F. Acevedo, and S.L. Garman. 1999. Scaling fine-scale processes to large-
scale patterns using models derived from models: meta-models. Pages 70-98 in D. Mladenoff 
and W.L. Baker (eds.), Spatial modeling of forest landscape change: approaches and 
applications. Cambridge University Press, Cambridge.  

Waggoner, P.E. and G.R.Stephens 1970 Transition probabilities for a forest. Nature, 225, 
1160-1161 

Wu, J., and S.A. Levin. 1994. A spatial patch dynamic modeling approach to pattern and 
process in an annual grassland. Ecological Monographs 64, no. 4: 447-64. 

 

 

 

 

 
 

 



 9

Chapter 1. A Hierarchical Fire Frequency Model to 
Simulate Temporal Patterns of Fire Regimes in LANDIS 

 

Abstract 
 

Fire disturbance has important ecological effects in many forest landscapes. Existing 

statistically based approaches can be used to examine the effects of a fire regime on forest 

landscape dynamics. Most examples of statistically based fire models divide a fire 

occurrence into two stages -- fire ignition and fire initiation. However, the exponential and 

Weibull fire interval distributions, which model a fire occurrence as a single event, are often 

inappropriately applied to these two-stage models. We propose a hierarchical fire frequency 

model in which the joint distribution of fire frequency is factorized into a series of 

conditional distributions. The model is consistent with the framework of statistically based 

approaches because it accounts for the separation of fire ignition from fire occurrence. The 

exponential and Weibull models are actually special cases of our hierarchical model. In 

addition, more complicated non-stationary temporal patterns of fire occurrence also can be 

simulated with the same approach. We implemented this approach as an improved fire 

module in LANDIS and conducted experiments within forest landscapes of northern 

Wisconsin and southern Missouri. The results of our experiments demonstrate this new fire 

module can simulate a wide range of fire regimes across heterogeneous landscapes with a 

few parameters and a moderate amount of input data. The model possesses great flexibility 

for simulating temporal variations in fire frequency for various forest ecosystems and can 

serve as a theoretical framework for future statistical modeling of fire regimes. 
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1. Introduction 
 

Disturbances such as fire are often key factors driving the dynamics of forested 

landscapes in many ecosystems such as boreal forests (Heinselman, 1970), coastal western 

chaparral shrublands (Keeley et al., 1999; Moritz, 2003), and the northern and central 

hardwood forests (Bormann and Likens, 1979; Guyette and Larsen, 2000). Small and large 

fires of varying intensity strongly affect species composition and age distribution (Hough and 

Forbes, 1943). Fire creates a mosaic of burned and unburned forest patches, leaving complex 

heterogeneous patterns across the landscape. The resulting landscape heterogeneity can 

further influence successional processes, which in turn may affect the spatial spread of 

subsequent fires (Turner and Romme, 1994). In this light, modeling the temporal and spatial 

pattern of fire disturbance, as well as the interaction between fire disturbance and landscape 

heterogeneity, is very important for understanding forest landscape dynamics.  

A large variety of fire models have been developed to examine the effects of fire 

regimes (e.g., fire frequency, severity, and extent of disturbances) on the recovery of 

disturbed landscapes. Because different models have varying purposes, applicable spatial and 

temporal extents, and levels of ecological detail, they use different approaches to simulate 

fire occurrence, behavior and effects. Detailed reviews of the approaches can be found in 

Albright and Meisner (1999), and Gardner et al. (1999). Here we discuss only one family of 

these approaches, called statistically based approaches, that are often applied to forest 

landscape simulations over large spatial and temporal domains. Statistically based 

approaches use the distribution of fire frequency and fire size, and estimates of the renewal 

rate of disturbed forests from fire history studies (e.g., Heinselman, 1973) to simulate a given 

fire regime. The approaches have evolved from the theory of Weibull and exponential fire 
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history models (Van Wagner, 1978; Johnson and Van Wagner, 1985) and are used in many 

models such as DISPATCH (Baker et al., 1991), the model of Antonovski et al. (1992), 

REFIRES (Davis and Burrows, 1994), FLAP-X (Boychuk and Perera, 1997), ON-FIRE (Li 

et al., 1997), LANDIS (He and Mladenoff, 1999), and LADS (Wimberly et al., 2000). All 

these spatial models simulate fire ignition from certain probability distributions, use fire 

probability to determine whether an ignition can become an active fire, and randomly 

generate a pre-defined fire size to simulate the extent of a given fire occurrence. The 

distributions of fire frequency and fire size are used to estimate fire probability and the pre-

defined fire size for the simulation of fire occurrence and spread, respectively. The main 

differences among these models are (1) in the distributions used to model fire frequency and 

fire size, and (2) in the way fire probability is calculated. For example, the fire frequency 

distribution in DISPATCH is uniform while the distribution in LADS is Poisson, and the fire 

size distribution in LANDIS is lognormal while the distribution in LADS is exponential.  

The term fire occurrence here refers to a detected active fire that happens when the fire 

begins to spread through the forest fuel complex as a surface fire or a crown fire and emits 

significant amounts of smoke and energy (Anderson et al., 2000). Some modelers use the 

term fire ignition to refer to fire occurrence, and use other terms such as potential fire ignition 

(Davis and Burrows, 1994) or fire source (Antonovski et al., 1992) to refer to fire ignition as 

used here. No matter what terms are employed in the models, the essence of implementing a 

statistically based approach is to divide a fire occurrence into two consecutive events -- fire 

ignition and fire initiation (Li, 2000). Separating fire ignition from fire occurrence helps to 

separate the factors influencing fire ignition such as climate, topography, and human 

activities from the influences on fire spread of fuel accumulation and vegetation structure.  
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Although current statistically based fire regime models have been successfully applied 

in various studies, they typically are not flexible enough to simulate the full range of fire 

regimes observed in forested ecosystems. This is mainly because the modeling of fire 

ignition and calculation of fire probability in these models cannot fully account for the fire 

frequency distribution of various fire regimes. Fire frequency distributions in these models 

are deduced from the exponential or Weibull model in fire history studies, in which a fire 

occurrence is treated as one single event rather than two events in fire regime models. It is, 

therefore, conceptually inaccurate to apply the exponential or Weibull model directly into fire 

regime modeling. Moreover, in statistically based fire regime models, including the current 

version of LANDIS (version 3.7), there is a common mistaken practice of using the fire 

hazard function provided by the exponential or Weibull model as the fire probability function. 

Fire hazard is defined as the instantaneous rate of burning (Johnson and Van Wagner, 1985). 

In discrete time, fire hazard, denoted as )(th , is the probability of fire in year t  given that a 

fire has not yet occurred (Clark, 1989). It represents a combination of the rate of ignition and 

the probability of the fire spreading given the presence of ignition sources (McCarthy et al., 

2001). On the other hand, fire probability in fire regime models is the probability of a fire 

occurrence given the presence of an ignition. It is determined primarily by the process of fuel 

build-up, which is often assumed to be a function of time since last fire. Thus, fire probability 

is different from fire hazard. However, many fire regime models assume that fire hazard 

equals fire probability. This often causes problems in model parameterization because the 

discrepancy between fire hazard and fire probability is not properly accounted for in the 

calculation of fire probability in these models. 



 13

In this study, we use the theory of hierarchical modeling and mixture distributions to 

model fire frequency. Hierarchical modeling in statistics refers to modeling a complicated 

process by a sequence of relatively simple models placed in a hierarchy (Casella and Berger, 

2001). It is based on the fact that the joint distribution of a collection of random variables can 

be decomposed into a series of conditional models. That is, if A , B , and C  are random 

variables, we can write a factorization such as [ A , B ,C ] = [ A | B , C ] [ B |C ] [C ]. The 

notation [ A ] denotes the probability distribution of A ; [ A | B ] represents the conditional 

distribution of A  given the random variable B . Random variable A has a mixture 

distribution, because the distribution of A  depends on a quantity B  that also has a 

distribution. Because statistically based fire regime models simulate fire occurrence as two 

consecutive stages, it is natural to use the theory of hierarchical modeling to model fire 

frequency distribution as a mixture distribution. 

The objectives of this study are: (1) to design a hierarchical fire frequency model that 

accounts for the separation of fire ignition from fire occurrence; (2) to implement the 

hierarchical model as an improved fire module in LANDIS; and (3) to explore the potential 

of the improved module to simulate a wide range of temporal patterns of various fire regimes 

on heterogeneous landscapes. 

 

2. Fire frequency models 
 

2.1 Terms describing temporal patterns of fire regimes  
 

The combination of certain aspects of wildland fire disturbance, especially fire 
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frequency, size, severity, and seasonality, may be used to characterize a fire regime. Here we 

clarify the terms that will be used in fire frequency models, that include fire frequency, fire 

interval, fire cycle, and mean fire size. Fire frequency is the number of fires per unit time in a 

specific area (Agee, 1993). The size of the specific area will affect fire frequency: larger 

areas will have a higher fire frequency (Johnson and Van Wagner, 1985). The reciprocal of 

fire frequency is fire interval, which is the elapsed time between two successive fires in a 

specific place (McPherson et al., 1990). Fire interval often is modeled using a Weibull 

distribution or an exponential distribution, a special case of the Weibull distribution where 

the fire hazard is held constant (Johnson and Van Wagner, 1985). Fire cycle is the number of 

years necessary for an area equal to the entire area of interest to burn (Johnson and Van 

Wagner, 1985; Turner and Romme, 1994). This definition does not imply that the entire area 

would burn during a cycle; some sites may burn several times, while others do not burn at all. 

Fire cycle also is referred to as fire rotation (Agee, 1993). The distribution of fire size is 

usually difficult to estimate. However, mean fire size also is a common descriptor in the 

study of fire regimes, and the relationship among the size of study area (AREA), mean fire 

size (MFS), mean fire frequency (MFF), and fire cycle (FC) is depicted in the following 

equation (Boychuk et al., 1997). 

FCMFFMFSAREA ××=  (1) 

2.2 Exponential model 
 

If fire hazard is constant, then fire interval has an exponential distribution, and fire 

frequency is distributed as a Poisson process (Van Wagner 1978). Following statistical 

conventions, random variables are denoted by uppercase letters and their observed numerical 

values are denoted by lowercase letters. The probability density function (PDF) of a random 
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variable, such as X , is denoted as )(xf X , and its cumulative density function (CDF) is 

denoted as )(xFX . The relational symbol ~ means “ is distributed as”. We use U  to denote 

the number of fire occurrences per unit time in the study area, and T  to denote the time since 

last fire. U  follows Poisson distribution with parameter α . T  then has an exponential 

distribution with parameter β , which is the inverse of α  (Appendix 1). The probability 

density function of U  and T  are equation 2 and equation 3, respectively.  

!
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u
euf
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U
αα−

=   (2) 

β

β

t

T etf
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MFF is the expected value of U  that equals α , and mean fire interval (MFI) is the 

expected value of T  that equals β . Fire hazard is independent of time since last fire and it 

equals β1 , or α . 

2.3 Weibull model 
 

Fire interval is widely modeled as a Weibull distribution because it permits fire hazard 

to increase or decrease with time since last fire (Johnson and Van Wagner, 1985; Clark, 1989; 

Johnson and Gutsell, 1994; McCarthy et al., 2001). The probability density function of time 

since last fire with parameters β and γ  is 

γ

βγ

β
γ t

T ettf
1

1)(
−

−=  (4) 

The fire hazard function for the Weibull distribution is 
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1)()( −= γβγ tth   (5) 

When γ  equals 1, fire hazard is then a constant β1 , and equation 4 becomes the same 

as equation 3. Hence the exponential model is a special form of Weibull model. 

There is no explicit distributional form for fire frequency when fire interval is modeled 

as a Weibull distribution. Instead, a fairly complicated renewal function, denoted as )(tR , is 

used to give the expected number of fire occurrences during time (0,t) (Clark 1989). 

∫ −+=
t

xdFxtRtFtR
0

)()()()(   (6) 

2.4 Hierarchical fire frequency model 
 

Unlike the previous two fire interval models, our hierarchical fire frequency model 

divides a fire occurrence into two consecutive events -- fire ignition and fire initiation. A fire 

occurrence begins with an ignition from an external heat source that heats the forest fuel 

complex up to its ignition temperature. Fire ignition agents are either natural (lightning) or 

anthropogenic (e.g., arson or accidental). A fire initiation event starts with the ignition until a 

certain area whose size is equal to the grain of the model is burned (Li, 2000). Whether a fire 

ignition can result in fire initiation is dependent on the fuel loading, fuel arrangement, and 

fuel moisture content. 

Let X  denote the number of fire ignitions per unit time in a specific area. X  is a 

discrete random variable and follows a Poisson distribution with the parameter intensity λ , 

that is the expected number of ignitions per unit time (Cunningham and Martell, 1973; Van 

Wagner, 1978; Anderson et al., 2000; Pennanen and Kuuluvainen, 2002). The fire initiation 
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process can be modeled as a Bernoulli trial. Given x ignitions during the unit time, we assume 

there exist x random variables iY  ( xi  ..., 2, 1,= ) taking a value 1 if a fire ignition results in 

fire initiation and 0 otherwise. Each iY  has a Bernoulli distribution with the parameter fire 

probability ( iP ). The sum of these Bernoulli trials (i.e., fire occurrence per unit time) is fire 

frequency (U ). The conditional distribution of XU | (conditional distribution of fire 

occurrence given the fire ignitions) primarily is determined by how we define the fire 

probability function. If we assume fire probability ( P ) is independent of time since last fire, 

and constant across the fire regime, then XU |  follows a binomial distribution with the 

parameters X and P , and U  follows a Poisson distribution with the parameter Pλ (Appendix 

2). In this case, the fire frequency distribution is identical to the one in the exponential model, 

where fire hazard (α ) equals the product of fire ignition intensity (λ ) and fire probability 

( P ). Hence our hierarchical fire frequency model is consistent with previous fire frequency 

models, except that fire hazard is more accurately modeled as the combination of ignition 

rate and fire probability.  

Fire probability also can be modeled as a function of time since last fire. Here the 

form of the fire probability function is determined primarily by the fuel accumulation within 

the ecosystem that can be estimated from data on the rate of fuel accumulation and 

occurrences of fire. As long as fire probability is not a constant, fire occurrence is a complex 

inhomogeneous Poisson process, whose distribution is often difficult to explicitly formulate 

in a single equation. However, this fairly complex process can be factorized into much 

simpler probabilistic distributions as shown in equations 7-10. 

[ ] [ | ][ | ]U U X X λ=  (7) 
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)(~]|[ λλ PoissonX   (8) 

∑=
X

iYXU
1

|        (9) 

)(~]|[ iii PBernoulliPY  (10) 

 

3. Fire module in LANDIS 

3.1 LANDIS overview 
 

LANDIS is a spatially explicit and stochastic raster-based model that simulates forest 

landscape change over long time domains (101 - 103 yr) and large heterogeneous landscapes 

(103 – 107 ha). The model currently operates on 10-year time step. It is designed to model 

ecological dynamics and interactions of temporal processes such as succession, and spatial 

processes such as seed dispersal, disturbances, and forest management (Mladenoff et al., 

1996; Mladenoff and He, 1999, Gustafson et al. 2000). In LANDIS, a large landscape is 

stratified into several small relatively homogeneous fire regime units such as ecoregions or 

land types where the meteorological, physical, and biological properties as well as ecological 

factors are more uniform. LANDIS simulates fire regime units based on their fire cycles and 

statistics of fire sizes that are specified by the users. Further details about the simulation of 

fire regime and its interactions with succession can be found in He and Mladenoff (1999).  

3.2 Fire module design 
 

We incorporated the hierarchical fire frequency model into LANDIS by dividing the fire 

process into three stages: fire ignition, fire initiation, and fire spread. For a given time step 
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(i.e., 10 years), LANDIS first generates the number of ignitions ( X ) in the given fire regime 

unit from the Poisson distribution with the parameter λ (i.e., average fire ignitions per 

decade). For each ignition, LANDIS performs a Bernoulli trial, whose result is denoted by iY , 

with the parameter fire probability iP , whose value is determined by the time since last fire 

of the ignited cell. If the ignition becomes an initiation, LANDIS will select a pre-defined 

fire size, denoted by Z , from a lognormal distribution with parameters µ  and 2σ  to 

simulate fire spread (Figure 1).  

LANDIS uses a percolation algorithm similar to the algorithms of Gardner et al. (1987), 

Clarke et al. (1994), Hargrove et al. (2000), and Wimberly et al. (2000) to simulate fire 

spread. Fires simulated by the percolation algorithms spread from a burning cell to forested 

cells in the cardinal directions (up, down, left and right). These cells are entered into a 

priority queue in a random order. The first cell in the queue has a higher priority of fire 

spread. The fire will continue to spread until it reaches its pre-determined size. LANDIS does 

not allow a forested site to be burned more than once within one time step, and non-active 

land types or ecoregions (e.g., roads, lakes) may serve as fuel breaks in the landscape. 

Therefore, it is possible for a fire to be extinguished prior to burning its pre-determined size 

if the fire reaches fuel breaks or newly burned sites. In a real landscape, fires may spread 

across the boundaries of fire regime units where the fire size distribution changes. When a 

fire spreads into a different fire regime unit, the module will simulate a new ignition. If the 

new ignition results in an active fire, a new pre-determined fire size will be selected based on 

the fire size distribution for the new fire regime unit. 

For each fire regime unit, LANDIS needs to know its size of area, fire cycle, mean fire 

size (MFS), and the standard deviation of fire size (DFS). Mean fire frequency can be 
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calculated using equation 1. Fire size follows a lognormal distribution that is negatively 

skewed, consisting of many small fires and some rare large fires (He and Mladenoff, 1999; 

Wimberly, 2002). The parameters µ and 2σ  can be derived from the MFS and DFS: 

)log(
2
1log2 22 MFSDFSMFS +−=µ  (11) 

MFSMFSDFS log2)log( 222 −+=σ  (12) 

The fire probability function is essential to the distribution of fire frequency and hence 

very important in determining the realism of fires simulated by LANDIS. Different forest 

ecosystems may have different fire probability functions because of fuel accumulation. Our 

model uses Olson’s approach (Olson, 1963; McCarthy et al., 2001), in that fuel accumulation 

is assumed as a constant rate of litter input and constant decomposition of a proportion of the 

litter. Assuming fire probability is proportional to fuel load, the change in fire probability is 

given in the following equation, where t is the time since last fire, and FC is the fire cycle. 

FC
t

etP
−

−= 1)(  (13) 

 

4. Experimental design and analysis 

4.1 Case study landscapes 
 

To demonstrate the capability of the LANDIS fire module to simulate multiple fire 

regimes on heterogeneous landscapes at various spatial resolutions, we applied the module to 

two landscapes with distinct fire regimes. The first landscape is characterized by 2 forested 

ecoregions and 23 species of trees, and is located in northern Wisconsin, USA (Figure 2). 
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The area comprises more than 700,000 ha, of which the pine barren ecoregion is about 

90,000 ha and the lakeshore ecoregion is about 150,000 ha. Non-forested ecoregions (e.g., 

agriculture lands, lakes), shown as background in the map, are treated as fuel breaks in the 

simulation. Ecoregion boundaries are derived from an existing quantitative ecosystem 

classification (Host et al., 1996). This area is a largely forested, glacial region, with little 

topographic relief. Dominant tree species include sugar maple (Acer saccharum), northern 

red oak (Quercus rubra), eastern hemlock (Tsuga canadensis), yellow birch (Betula 

alleghaniensis), paper birch (B. papyrifera), quaking aspen (Populus tremuloides), white pine 

(Pinus strobus), red pine (P. resinosa), and jack pine (P. banksiana) (Curtis, 1959).  

The second landscape for our case study has 8 land types and 4 dominant species, and 

is located in southern Missouri, USA. The study area is in the Ozark Highlands Section 

(Kabrick et al., 2000), approximately 130,000 ha. The area is largely forested. White oak 

(Quercus alba), post oak (Quercus stellata), black oak (Quercus velutina) and shortleaf pine 

(Pinus echinata) are the dominant tree species. Forest age structure is relatively simple due to 

historical harvesting practices. Topographic variation is high, with elevations ranging from 

140-410 m, and many slopes are greater than 30 degrees. There are eight land types: 

southwest slopes, northeast slopes, ridges or flat uplands, upland drainages, mesic coves or 

bottoms, sites with limestone, savannas, and glades (Figure 3). Private land is the collection 

of the sites where there is no national forest; we include it in our study to allow fires to 

spread across the entire forested landscape. 

Historical fire regime statistics (FC, MFS, DFS) for the fire regime units are interpreted 

from empirical studies in the Wisconsin and the Missouri regions (Heinselman, 1973, 1981; 

Cleland et al., 1997; He and Mladenoff, 1999; Gustafson et al., 2000; Shifley et al., 2000; 
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Guyette et al., 2002) (Table 1). Mean fire frequency (MFF) is calculated from equation 2. 

Fires in the lakeshore ecoregion are infrequent and fire sizes tend to be very large, whereas 

fires in the barrens ecoregion are relatively frequent and fires tend to be smaller. Fires in the 

land types of the Ozark region are frequent and fire sizes are small. 

 

4.2 Parameterization and simulation of fire disturbance 
 

According to the dendrochronological study and other historic records of fires of the 

two tested landscapes (He and Mladenoff, 1999; Guyette and Larsen, 2000), initial time-

since-last-fire for the barrens and lakeshore ecoregions in northern Wisconsin landscape was 

set to 50 and 200 years, respectively; initial time-since-last-fire for the land types in the 

Missouri landscape was set to 50 years, except that it was set to 10 years for savanna. The 

ignition rate for each fire regime unit was held constant through simulation time with the 

assumption that there were no changes of climate and human dimensions. The input of mean 

fire size was larger than the expected mean fire size due to landscape fragmentation and 

configuration. Simulation runs of northern Wisconsin were carried out on a 328 x 535 grid of 

200 x 200 m cells for 400 years. Simulation runs of Missouri Ozark highlands were carried 

out on an 1185 x 1207 grid of 30 x 30 m cells, for 300 years using the calibrated parameters 

(Table 2). The reasons for choosing different resolutions of analysis of the two study areas 

were that: (1) the ecoregions in northern Wisconsin are fairly contiguous, which reduces the 

need for analyzing fire spread at a finer resolution; and (2) an important purpose of the excise 

was to demonstrate that the new fire module in LANDIS can simulate forest landscape 

dynamics at various spatial resolutions. 
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5. Results 

5.1 Frequency and extent of fire disturbance 
 

 Simulation results show distinct differences between the Wisconsin and the Missouri 

fire regime units in terms of mean fire frequency and mean fire size, as expected (Table 3). 

The module also captures subtle differences of fire pattern at the finer land type scale. For 

instance, in Missouri, simulated mean fire size on southwest slopes is slightly larger than on 

northeast slopes, whereas simulated mean fire frequency is less than on northeast slopes. 

After calibration, the percentage absolute errors of simulated MFS and MFF on the fire 

regime units are very small (less than 10%), and simulated fire cycles on the fire regime units 

are close to the expected fire cycles (Table 3). Meanwhile, the temporal dynamics of fire 

frequency exhibit high variability, reflecting the non-stationary behavior of fire occurrences 

(Figures 4 and 5). Although fire ignition is simulated as a stationary process in our model 

(i.e., ignition rate is held constant during the simulation time), the simulated fire occurrences 

on the tested landscapes are still non-stationary because fire probability in our model 

increases exponentially with time-since-last-fire rather than being held constant. 

 

5.2 Fire spread behavior over heterogeneous landscape 
 

Simulated mean fire size for the lakeshore ecoregion seems to have a negative 

temporal autocorrelation (Figure 6), which suggests that if few fires occur for a relatively 

long period, then there will be more suitable, contiguous fuel left in the lakeshore ecoregion, 
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resulting in large, severe fires during the subsequent period. A similar pattern also is found in 

the simulation results for the relatively contiguous land types (e.g., Flat) in southern Missouri 

(Figure 7). This demonstrates that our module can simulate the correlations between fire 

frequency and fire size to some extent by having fires spread across the patches with 

different time since last fire, thus different fire probabilities within a fire regime unit. 

Another scale of landscape heterogeneity also affects fire spread -- the spatial 

configuration of patches of different fire regime units. In our simulations of northern 

Wisconsin fires, fires initiated in the barrens ecoregion often stop in the lakeshore ecoregion 

or at the boundary of non-forest ecoregions, which serve as fuel breaks. Fire occurrences in 

the lakeshore ecoregion are usually caused by fire spreading from the barrens ecoregion. 

Similar fire spreading patterns occur in the southern Missouri highlands, where land types are 

highly dispersed. For example, only 35% of fires reach their pre-determined size completely 

within the southwest slope land type in the simulation; the other 65% of the fires spread into 

other land types, especially the northeast slope land type.  

 

6. Discussion 

6.1 Implications of the hierarchical fire frequency model 
 

The hierarchical fire frequency model presented here depicts fire frequency as a mixture 

distribution where parameters also follow relatively simple distributions. Although our model 

does not have an explicit fire frequency distribution or fire interval distribution as do the 

exponential and Weibull models, it is more flexible in that it can represent a wider range of 

fire regimes than these other models. The exponential and Weibull models are stationary in 

the sense that the parameters are fixed and the sampling occurs from a single fixed 
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probability distribution assumed static (Polakow and Dunne, 1999). On the other hand, our 

hierarchical model incorporates variability about the parameter estimates; hence it can be 

used to replicate more complicated, non-stationary temporal patterns of fire occurrence. 

Moreover, the hierarchical model conceptually is consistent with statistically based fire 

regime models, because it separates fire ignition from fire occurrence as most of these 

models do. Therefore, ours is a better model for application in statistically based modeling of 

fire regimes than widely used exponential or Weibull fire interval models. 

 

6.2 Improvements in LANDIS fire simulation using the hierarchical fire 
frequency model 
 

The fire module implemented in LANDIS (version 4.0) is an application of our 

hierarchical fire frequency model. The results of our experiments demonstrate this new fire 

module can simulate multiple fire regimes across heterogeneous landscapes with a few 

parameters and a moderate amount of input data. The simulated fire cycle, fire frequency 

distribution, and fire size distribution are consistent with historical data on fire occurrences. 

Compared to previous fire simulations using LANDIS 3.x, which applies the exponential 

model to simulate fire occurrences, four major advances have been achieved: 1) In earlier 

versions of LANDIS, the fire algorithm fails to simulate fire regimes characterized by many 

small fires, and some applications of LANDIS have had to artificially modify the fire 

algorithm to circumvent such limitations (e.g., Sturtevant et al., 2004). As our results 

demonstrate, the new fire module can simulate a much wider range of fire regimes. 2) Earlier 

versions of LANDIS assume fire hazard is constant across the fire regime throughout the 

entire simulation period. Results attained from these versions simulated stationary temporal 
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patterns of fire disturbance (He and Mladenoff, 1999). However, even fire ecologists who 

utilize the exponential model assess fire frequency in terms of temporally distinct epochs and 

recognize the variability in the parameters for fire frequency distribution (Johnson and 

Gutsell, 1994; Reed et al, 1998). The new LANDIS fire module simulates fire probability as 

increasing with fire interval, and hence can simulate non-stationarity of temporal patterns of 

fire disturbance. 3) Our new fire module is able to simulate subtle differences among 

multiple fire regime units within a large landscape, which are often hard to simulate in earlier 

versions of LANDIS due to the difficulty in parameterization. For instance, simulated mean 

fire size on southwest slopes is slightly larger than on northeast slopes; this is consistent with 

the fact that prevailing winds in the Ozark highlands are southerly and strongest in the spring 

season (Kabrick et al., 2000). 4) The new fire module captures more realistic fire-spread 

patterns than do previous approaches that use only one distribution of fire size for the entire 

landscape. From the simulation results, we observe that if few fires occurred in some decades, 

then the subsequent fires tend to be larger and more intense (unpublished data), and that fires 

often extinguish near the boundaries of less flammable fire regime units. This is consistent 

with empirical observations by Bergeron (1991) on the influence of island and lakeshore 

landscapes on boreal fire regimes.  

 

6.3 Further research needs 
 

The new LANDIS fire module assumes ignition density is uniform within a fire regime 

unit without explicitly considering the effects of human population, site, topography, and 

vegetation. A generalized linear mixed model (GLMM) can be used to describe temporal and 



 27

spatial distributions of ignition density (Diaz-Avalos et al. 2001). The module also assumes 

fire probability increases exponentially with the time-since-last-fire. This assumption may 

not be valid for forest ecosystems different from those selected (McCarthy et al., 2001). A 

model of fire probability with respect to fuel loading and weather conditions can be 

incorporated into the module. Such future work will allow us to model fire regimes more 

dynamically with fewer predetermined fire regime statistics required as inputs to the module; 

simulated fire cycle and fire size will be emergent properties of the simulations rather than 

predetermined inputs. 
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7. Appendix 

7.1 Relation between Poisson process and exponential process 
 

We use U  to denote the number of fire occurrence per year, and T  to denote the time 

since last fire. If U  follows Poisson distribution with parameter α , then T  has an 

exponential distribution with αβ /1= . 

Proof:  

The cumulative distribution function for T  is given by 

]Pr[1]Pr[)( tTtTtFT >−=≤=  

]Pr[ tT >  is the probability of having the first fire occurring after time t , which  means 

no fire occurrences in the time interval ] ,0[ t . Let W  denote the number of fire occurrences 

in this time interval. W  is a Poisson process with parameter tα . Thus 
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By substitution we obtain 
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Because the PDF is the derivative of CDF for a continuous random variable 
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This is the PDF for an exponential random variable with αβ /1=  
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7.2 A special case of hierarchical fire frequency model 
 

When both ignition rate and fire probability are constant, fire ignition is a Poisson 

process with λ , conditional distribution of fire occurrence given fire ignition is binomial 

with X  and P , i.e., 

)(~]|[ λλ PoissonX  

),(~| PXBinomialXU  

Then the mixture distribution of fire occurrence becomes a Poisson distribution with 

Pλ . 

Proof: 

The PDF of discrete random variable U  (fire frequency) is 
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where we substitute PDFs of binomial and Poisson distribution into the expression. If 

we now simplify this expression, we get 

( ) ( )( )
( )∑

∞

=

−−

−
−

===
ux

uxu

U ux
p

u
epuUuf

! 
1

!
]Pr[)( λλ λ

 

( ) ( )( )∑
∞

=

− −
=

0 !
1

! t

tu

t
p

u
ep λλ λ

 (change of variable) 



 30

( ) ( )λ
λλ p

u

e
u

ep −
−

= 1

!
 (Maclaurin series for exponential function) 

( ) p
u

e
u
p λλ −=
!

(a kernel for a Poisson distribution), therefore 

)(~][ pPoissonU λ  



 31

References 
 

Agee, J.K., 1993. Fire ecology of Pacific Northwest forests. Island Press, Washington DC. 
493 pp. 

 

Albright, D. and Meisner, B.N., 1999. Classification of fire simulation systems. Fire 
Management Notes 59(2): 5-12. 

 

Anderson, K., Martell, D.L., Flannigan, M.D., and Wang, D., 2000. Modeling of fire 
occurrence in the boreal forest region of Canada. In: E.S. Kasischke and B.J. Stocks (Editors), 
Fire, Climate Change and Carbon Cycling in the Boreal Forest, Springer-Verlag, New York, 
pp. 357-367. 

 

Antonovski, M.Y., Ter-Mikaelian, M.T., and Furyaev, V.V., 1992. A spatial model of long-
tem forest fire dynamics and its applications to forests in western Siberia. In: H.H. Shugart, R. 
Leemans, and G.B. Bonan (Editors), A Systems Analysis of the Global Boreal Forest, 
Cambridge University Press, pp. 373-403. 

 

Baker, W.L., Egbert, S.L., and Frazier, G.F., 1991. A spatial model for studying the effects of 
climatic change on the structure of landscapes subject to large disturbances. Ecol. Model. 56: 
109-125. 

 

Bergeron, Y., 1991. The influence of island and mainland lakeshore landscapes on boreal 
forest fire regimes. Ecology 72(6): 1980-1992. 

 

Bormann, F.H. and Likens, G.E., 1979. Pattern and Process in a Forested Ecosystem. 
Springer-Verlag, New York. 253 pp. 

 

Boychuk, D. and Perera, A.H., 1997. Modeling temporal variability of boreal landscape age-
classes under different fire disturbance regimes and spatial scales. Can. J. Forest Res. 27(7): 
1083-1094. 

 

Boychuk, D., Perera, A.H., Ter-Mikaelian, M.T., Martell, D.L., and Li, C., 1997. Modelling 
the effect of spatial scale and correlated fire disturbances on forest age distribution. Ecol. 
Model. 95: 145-164. 

 



 32

Casella, G. and Berger, R.L., 2001. Statistical Inference. Second edition. Duxbury Press, 660 
pp. 

 

Clark, J.S., 1989. Ecological disturbance as a renewal process: theory and application to fire 
history. Oikos 56:17-30. 

 

Clarke, D.C., Brass, J.A., and Riggan, P.J., 1994. A cellular automaton model of wildfire 
propagation and extinction. Photogramm. Eng. Remote Sens. 60: 1355–1367. 

 

Cleland, D., Avers, P., McNab, W., Jensen, M., Bailey, R., King, T., and Russell, W., 1997. 
National hierarchical framework of ecological units. In: M.S. Boyce and A. Haney (Editors), 
Ecosystem Management Applications for Sustainable Forest and Wildlife Resources, Yale 
University Press, New Haven, CT, pp. 181-200. 

 

Cunningham, A.A. and Martell, D.L., 1973. A stochastic model for the occurrence of 
mancaused forest fires. Can. J. Forest Res. 3: 282–287. 

 

Curtis, J.T., 1959. The Vegetation of Wisconsin. The University of Wisconsin Press, 
Madison. 657 pp. 

 

Davis, F.W. and Burrows, D.A., 1994. Spatial simulation of fire regime in mediterranean-
climate landscapes. In: M.C. Talens, W.C. Oechel and J.M. Moreno (Editors), The Role of 
Fire in Mediterranean-Type Ecosystems, Springer-Verlag, New York, pp. 117-139. 

 

Diaz-Avalos, C., Peterson, D.L., Alvarado, E., Ferguson, S.A., and Besag, J.E., 2001. Space-
time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Can. J. Forest 
Res. 31: 1579-1593. 

 

Gardner, R.H., Milne, B.T., Turner, M.G., and O'Neill, R.V., 1987. Neutral models for the 
analysis of broad-scale landscape pattern. Landsc. Ecol. 1: 19-28. 

 

Gardner, R.H., Romme, W.H., and Turner, M.G., 1999. Predicting forest fire effects at 
landscape scales. In: D. J. Mladenoff and W.L. Baker (Editors), Spatial Modeling of Forest 
Landscapes: Approaches and Applications. Cambridge University Press, Cambridge, UK. pp. 
163-185. 

 



 33

Gustafson, E.J., Shifley, S.R., Mladenoff, D.J., Nimerfro, K.K., and He, H.S., 2000. Spatial 
simulation of forest succession and timber harvesting using LANDIS. Can. J. Forest Res. 30: 
32-43. 

 

Guyette, R.P. and Larsen, D., 2000. A history of anthropogenic and natural disturbances in 
the area of the Missouri Ozark Forest Ecosystem Project. In: S.R. Shifley and B.L. 
Brookshire (Editors), Missouri Ozark Forest Ecosystem Project: site history, soils, landforms, 
woody and herbaceous vegetation, down wood and inventory methods for the landscape 
experiment. Gen. Tech. Rep. NC-208. St. Paul, MN: USDA, Forest Service, North Central 
Research Station, pp. 19-40. 

 

Guyette, R.P., Muzika, R.M., and Dey, D.C., 2002. Dynamics of an anthropogenic fire 
regime. Ecosystems 5: 472-486. 

 

Hargrove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H., and Despain, D.G., 2000. 
Simulating fire patterns in heterogeneous landscapes. Ecol. Modelling 135: 243-263. 

 

He, H.S. and Mladenoff, D.J., 1999. Spatially explicit and stochastic simulation of forest 
landscape fire disturbance and succession. Ecology 80(1): 81-99. 

 

Heinselman, M.L., 1970. The natural role of fire in northern conifer forests. Naturalist 21(4): 
14-23. 

 

---. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area. Minnesota. Quarter. 
Res. 3: 329-382.  

 

---. 1981. Fire intensity and frequency as factors in the distribution and structure of northern 
ecosystems. In: Fire Regimes and Ecosystem Properties. U.S. For. Serv. Gen. Tech. Rep. 
WO-26, pp. 7-57.  

 

Host, G.E., Polzer, P.L., Mladenoff, D.J., White, M.A., and Crow, T.R., 1996. A quantitative 
approach to developing regional ecosystem classifications. Ecol. Appl. 6(2): 608-618. 

 

Hough, A.F. and Forbes, R.D., 1943. The ecology and silvics of forests in the high plateaus 
of Pennsylvania. Ecol. Monogr. 13(3): 299-320. 

 

Johnson, E.A. and Gutsell, S.L., 1994. Fire frequency models, methods and interpretations. 
Adv. Ecol. Res. 25: 239-287.  



 34

 

Johnson, E.A. and Van Wagner, C.E., 1985. The theory and use of two fire history models. 
Can. J. Forest Res. 15: 214-220.  

 

Kabrick, J., Meinert, D., Nigh, T., and Gorlinsky, B.J., 2000. Physical environment of the 
Missouri Ozark forest ecosystem project sites. In: S.R. Shifley and B.L. Brookshire (Editors), 
Missouri Ozark Forest Ecosystem Project: site history, soils, landforms, woody and 
herbaceous vegetation, down wood and inventory methods for the landscape experiment. 
Gen. Tech. Rep. NC-208. St. Paul, MN: USDA, Forest Service, North Central Research 
Station, pp. 41-70. 

 

Keeley, J.E., Fotheringham, C.J., and Morais, M., 1999. Reexamining fire suppression 
impacts on brushland fire regimes. Science 284: 1829-1832. 

 

Li, C., 2000. Reconstruction of natural fire regimes through ecological modelling. Ecol. 
Model. 134: 129-144. 

 

Li, C., Ter-Mikaelian, M.Y., and Perera, A.H., 1997. Temporal fire disturbance patterns on a 
forest landscape. Ecol. Model. 99: 137-150. 

 

McCarthy, M.A., Gill, A.M., and Bradstock, R.A., 2001. Theoretical fire interval 
distributions. Int. J. Wildl. Fire 10: 73-77. 

 

McPherson, G.R., Wade, D.D., and Phillips, C.B., 1990. Glossary of Wildland Fire 
Management Terms Used in the United States. Society of American Foresters, Washington 
DC, 138 pp.  

 

Mladenoff, D.J. and He, H.S., 1999. Design and behavior of LANDIS, an object-oriented 
model of forest landscape disturbance and succession. In: D. J. Mladenoff and W.L. Baker 
(Editors), Spatial Modeling of Forest Landscapes: Approaches and Applications. Cambridge 
University Press, Cambridge, UK. pp. 125-162. 

 

Mladenoff, D.J., Host, G.E., Boeder, J., and Crow, T.R., 1996. LANDIS: a spatial model of 
forest landscape disturbance, succession, and management. In: M.F. Goodchild, L.T. Steyaert, 
B.O. Parks, C. Johnston, D. Maidment, M. Crane, and S. Glendining (Editors). GIS and 
Environmental Modeling: Progress and Research Issues. GIS World Books, Fort Collins, CO, 
pp. 175-180. 

 



 35

Moritz, M.A., 2003. Spatiotemporal analysis of controls on shrubland fire regimes: age 
dependency and fire hazard. Ecology 84: 351-361. 

 

Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in 
ecological systems. Ecology 44: 322-331. 

 

Pennanen, J. and Kuuluvainen, T., 2002. A spatial simulation approach to natural forest 
landscape dynamics in boreal Fennoscandia. Forest Ecol. Manage. 164: 157-175. 

 

Polakow, D.A. and Dunne, T.T., 1999. Modelling fire return interval T: stochasticity and 
censoring in the two-parameter Weibull model. Ecol. Model.121: 78-102. 

 

Reed, W.J., Larsen, C.P.S., Johnson, E.A., and MacDonald, G.M., 1998. Estimation of 
temporal variations in historical fire frequency from time-since-fire map data. Forest Sci. 44: 
465-475. 

 

Shifley, S.R., Thompson III, F.R., Larsen, D.R., and Dijak, W.D., 2000. Modeling forest 
landscape change in the Missouri Ozarks under alternative management practices. Comp. 
Electron. Agric. 27: 7-24. 

 

Sturtevant, B.R., Zollner, P.A., Gustafson, E.J., and Cleland, D.T., 2004. Human influence 
on fuel connectivity and the risk of catastrophic fire in mixed forests of northern Wisconsin.  
Landsc. Ecol. in press. 

 

Turner, M.G., and Romme, W.H., 1994. Landscape dynamics in crown fire ecosystems. 
Landsc. Ecol. 9(1): 59-77.  

 

Van Wagner, C.E., 1978. Age-class distribution and forest fire cycle. Can. J. Forest Res. 8: 
220-227.  

 

Wimberly, M.C., 2002. Spatial simulation of historical landscape patterns in coastal forests 
of the Pacific Northwest. Can. J. Forest Res. 32: 1316-1328. 

 

Wimberly, M.C., Spies, T.A., Long, C.J., and Whitlock, C., 2000. Simulating historical 
variability in the amount of old forests in the Oregon Coast Range. Conserv. Biol. 14: 167–
180.  



 36

Tables 
 

Table 1. Characteristics of fire regimes of test landscapes for LANDIS simulations 

Fire regime unit Area (ha) FC (years) MFS (ha) DFS (ha) MFF (# per 
year) 

Barren, WI 87,752 100 400 300 2.19 

Lakeshore, WI 151,200 800 2000 2000 0.09 

Private land, MO 57,585 300 5.4 1.8 35.55 

Southwest slope, MO 21,054 415 2.7 1.8 18.79 

Northeast slope, MO 18,177 415 2.3 1.8 19.04 

Flat, MO 26,141 415 2.3 1.8 27.39 

Savanna, MO 255 10 1.5 0.9 17 

Updrain, MO 3,484 415 2.3 0.9 3.65 

Lime, MO 842 415 1.8 0.9 1.13 

Mesic, MO 1,189 415 1.8 0.9 1.59 
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Table 2. Calibrated parameters of fire regimes for LANDIS simulations. 

Fire regime unit Initial time-
since-last-fire 
(years) 

Ignition density 
(# per decade) 

Input MFS (ha) Input DFS (ha) 

Barren, WI 50 48 500 200 

Lakeshore, WI 200 3.15 3000 2000 

Private land, MO 50 1520 5.4 1.8 

Southwest slope, MO 50 1020 4.5 1.8 

Northeast slope, MO 50 920 3.33 1.8 

Flat, MO 50 1300 2.7 1.8 

Savanna, MO 10 350 25 7 

Updrain, MO 50 210 3 0.9 

Lime, MO 50 46 2.5 0.9 

Mesic, MO 50 61 2.5 0.9 
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Table 3. Simulated results of fire regimes from LANDIS simulations. 

Fire regime unit MFF (# per 
year) 

MFS (ha) FC (years) Error of MFF 
(%) 

Error of MFS 
(%) 

Error of FC 
(%) 

Barren, WI 2.24 390 100 5.0 -2.5 0.0 

Lakeshore, WI 0.095 1997 797 5.6 -0.2 -0.4 

Private land, MO 38.34 5.17 290 7.8 -4.3 -3.3 

Southwest slope, MO 19.39 2.54 428 3.2 -5.9 2.9 

Northeast slope, MO 19.22 2.16 438 0.9 -6.1 5.1 

Flat, MO 26.59 2.14 459 -3.0 -7.0 9.6 

Savanna, MO 18.23 1.36 425 7.2 -9.3 2.4 

Updrain, MO 3.67 2.24 424 0.5 -2.6 2.1 

Lime, MO 1.15 1.78 411 1.8 -1.1 -0.9 

Mesic, MO 1.47 1.96 412 -7.5 8.9 -0.6 
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Figure 1. The overview of the fire module design 
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Figure 2. Study region, location, and land types within the study area in northern Wisconsin. 
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Figure 3. Study region, location, and land types within the study area in southern Missouri 
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Figure 4. Simulated fire frequency for barrens land type in northern Wisconsin and lakeshore 

land type in northern Wisconsin 
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Figure 5. Simulated fire frequencies for the eight land types in southern Missouri 



 44

 

 

 

 

 

Simulation time (yrs)

0 50 100 150 200 250 300 350 400

M
ea

n 
fir

e 
si

ze
 (h

a)

0

1000

2000

3000

4000

5000
Barren
Lakeshore

 
Figure 6. Simulated dynamics of mean fire size (MFS) for barren and lakeshore land types in 

northern Wisconsin 
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Figure 7. Simulated dynamics of mean fire size for the eight land types in southern Missouri 
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Chapter 2. Comparing the effects of different modeling 
methods on simulated spatial and temporal forest fire 

patterns 
 

Abstract 
 

We compared temporal and spatial fire patterns simulated using four representative 

fire spread simulation methods (complete uniform, dynamic percolation, fire size based 

elliptical wave propagation, and duration based elliptical wave propagation) under two fire 

occurrence process scenarios that are fuel-independent and fuel-dependent. Specifically, we 

examined how statistical characteristics of fire frequency and fire size distribution, temporal 

structure (trend, autocorrelation) of fire frequency series, point pattern of fire occurrences, 

and shapes and spatial configuration of burned patches varied by forest fire simulation 

methods. The comparison was carried out using a spatially explicit and stochastic forest 

landscape model (LANDIS) that has the entire spectrum of fire spread simulation methods 

implemented and is capable of simulating the interaction of fire, fuel, and vegetation 

succession. The results demonstrate that primary characteristics of fire regimes (e.g., fire 

cycle, distribution of fire frequency, fire size) are similar among fire spread and fire 

occurrence simulation methods, but spatial pattern of fire occurrence, temporal pattern of fire 

frequency, and the shape of burned patches are somewhat different. Incorporation of fuel into 

fire occurrence modeling greatly changes fire patterns, suggesting that a mechanistic 

representation of fire occurrence with fuel and possible other drivers is important in the 

model building process. 
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1. Introduction 
 

Fire disturbance plays an important role in shaping ecosystem dynamics and 

vegetation patterns in many forested landscapes (e.g., Heinselman, 1970; Romme, 1982; 

Johnson, 1992; Miller and Urban, 1999; Ehle and Baker, 2003). Small and large fires of 

varying intensities create a mosaic of burned and unburned patches, affect tree species 

composition and age classes, and generate spatially heterogeneous fuel beds. The resulting 

fuel heterogeneity in turn influences the spatial pattern of subsequent fires (Turner and 

Romme, 1994). The dynamic interaction of fire and vegetation at landscape scales is further 

complicated by other important ecological drivers such as tree species dispersal, successional 

recovery of disturbed landscapes, weather and climate shifts, and land management (Bessie 

and Johnson, 1995; Schoennagel et al., 2004). 

Although empirical studies using dendrochronology (e.g., Agee, 1996) and charcoal 

stratigraphic analysis (e.g., Clark 1990) that provide insights into the complex interaction of 

fire, vegetation, climate and human activities, simulation modeling is also regarded as an 

effective tool to study such interactive dynamics over large areas and long time periods 

(Keane et al., 2004). Forest landscape fire simulation models can be used to reconstruct the 

historical range and variability of landscape patterns (Boychuk and Perera, 1997; Li, 2000; 

Keane et al., 2002; Wimberly, 2002), to study the effects of climate change on the structure 

of landscapes subject to fire disturbance (Baker et al., 1991), to examine human influence on 

fuel heterogeneity and fire patterns (Sturtevant et al., 2004), and to evaluate forest 

management alternatives and fire suppression plans (Gustafson et al., 2004).  
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A large variety of forest landscape fire simulation models have been developed. 

These models use different methods to simulate fire occurrence, fire spread, and fire effects 

at landscape scales and are implemented with varying levels of ecological detail.   

Because of the prevalence of forest landscape fire simulation models and the diversity of 

simulation methods, it is important to understand the premises and behavior of various 

modeling methods.  

Efforts have been made to classify landscape fire simulation models. For example, 

Gardner et al. (1999) provided a 6-category (Theoretical, Exploratory, Physical, Probabilistic, 

Shape, and Statistical) classification scheme to characterize a broad range of models that 

simulate fire effects at landscape scales. Keane et al. (2004) described each of the four 

simulation components (succession, fire ignition, fire spread, fire effects) of a landscape fire 

succession model in three dimensions by the gradients of stochasticity, complexity, and 

mechanism inherent in the simulation component. They proclaimed that the resulted 12 

elements (4 components by 3 gradients) could represent a formal description of the model 

that can be objectively compared to other models. Although these classification schemes 

have organized the diversity of model approaches in a systematic way, the lack of a 

comparison of simulated fire patterns across different fire simulation methods limits their use 

for fire managers/modelers in selecting an appropriate model/method to best meet their needs. 

There are only a few published papers that compared simulated fire patterns across different 

methods. Li et al. (1997) compared mean interval between successive fires simulated using 

four fire probability functions in investigating modeling effects on temporal fire disturbance 

patterns on a boreal forest landscape. Cary et al. (in press) assessed the sensitivity of four 

existing landscape-fire-succession models (EMBRY, FIRESCAPE, LANDSUM and SEM-
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LAND), in terms of area burned, to variation in environmental factors and complexity of 

model formulation. Their studies laid groundwork for examining the effects of different 

methods on fire patterns, but such examinations are far from comprehensive because there 

are many important aspects of fire patterns need to be compared beside the primary 

characteristics of fire interval and fire size.  

Our study expands the scope of measures of fire patterns into the following five 

aspects: (1) statistical characteristics (central tendency and variability) of fire frequency 

distribution and (2) fire size distribution, (3) temporal structure (trend, autocorrelation) of fire 

frequency series, (4) spatial pattern of fire occurrences, and (5) fire shapes. The aspects (1), 

(3) and (4) are primarily affected by the way that a model simulates fire occurrence, the 

aspect (2) and (5) by fire spread simulation methods. We are interested in comparing spatial 

and temporal differences in fire pattern simulated using various fire spread and occurrence 

algorithms, to understand the implications of selecting a specific algorithm to answer 

research or management questions. Moreover, we want to find out if there are any interactive 

effects of fire spread simulation methods and fire occurrence simulation methods. 

Our approach was to examine a spectrum of fire spread simulation methods from the 

simplest statistical methods, which essentially do not simulate fire growth, to the 

probabilistic-based percolation methods, and to the most complicated physical methods. 

These fire spread methods were further compared under two fire occurrence process 

scenarios. The first scenario assumes fuel loads have no effects on fire occurrence, whereas 

the second scenario assumes that the probabilities of fire occurrence increase with fuel loads. 

This modeling factorial design allows us to study the interactions between fuel and fire 

simulated across different simulation methods. We tested the null hypothesis that there is no 
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significant difference among spatial and temporal fire patterns simulated using different fire 

spread methods under the two fire occurrence process scenarios. The test was carried out 

using a single spatially explicit and stochastic forest landscape model that has the entire 

spectrum of fire spread simulation methods implemented and is capable of simulating the 

interaction of fire, fuel, and vegetation succession for our study requirements. We held all 

other ecological processes such as succession and dispersal constant. Because of the 

stochasticity inherent in these fire simulation methods, comparison of cell-by-cell patterns 

carries very little meaning for our purposes. Instead, we examined aggregate measures of 

simulated landscape patterns of burned patches and statistical characteristics (e.g., frequency, 

size, timing, intensity) of the simulated fire regime.   

 

2. Methods 

2.1 Fire simulation methods 
 

 Fire simulation consists of three components (fire occurrence, fire spread, and fire 

effects). The fire occurrence component simulates the initiation of a fire event defined as a 

fire start that consumes at least one cell in the grid which represents the simulation landscape 

(Keane et al., 2004). The most commonly used method to simulate fire occurrence uses fire 

frequency distributions (e.g., Poisson, Weibull) to derive a fire probability function (Johnson 

and Van Wagner, 1985) in which time-since-last-fire is the independent variable. A fire 

occurrence is usually modeled as two consecutive stages – fire ignition and fire initiation 

(Antonovski et al., 1992; Davis and Burrows, 1994; Li, 2000). We developed a hierarchical 

fire frequency algorithm to simulate this two-stage process (Yang et al., 2004). In a given 



 51

time step, the number of ignitions in the given fire regime unit (a spatial area where the 

characterization of historic, natural fires are homogeneous, e.g., an ecological land type or an 

ecoregion) is generated from a Poisson distribution whose parameter ignition intensity is 

assumed to be homogeneous within the fire regime unit. For each ignition attempt, the 

simulator performs a Bernoulli trial with parameter fire probability, whose value is 

determined by the amount of fine fuels in the cell. If the result is successful, a fire is initiated. 

The amount of fine fuels is derived primarily from vegetation types and stand age, and 

modified by land type and disturbance history (He et al., 2004).  

In this study, we developed two types of fire probability functions. In the constant fire 

probability function, the fire probability is fuel-independent, and in the step fire probability 

function the fire probability is a function of the level of fuel, which is typical of many fire 

occurrence simulators (e.g., Keane et al., 2002). This comparison enables us to explore the 

effects of vegetation dynamics (through fuel) on fire occurrence. 

 The fire spread component simulates the growth of individual fire events. There are 

many simulation techniques requiring different levels of computation effort, parameterization, 

and input data preparation. We implemented four representative methods for this study: (1) 

complete random, (2) probability-based percolation, (3) fire size distribution based elliptical 

wave propagation, and (4) duration based elliptical wave propagation. 

 The complete random method is the simplest but it is used when only coarse scale 

characteristics of a fire regime need to be simulated (Baker, 1991; Lenihan et al., 2003). It 

selects a maximum fire size from a user specified size distribution and lets the fire to spread 

from the burning cell to its (four directional or eight directional) neighboring forested cells 

uniformly until it reaches the maximum fire size or all available forested cells have been 
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disturbed. The effects of vegetation characteristics on fire spread are not simulated in this 

method. 

 The percolation method represents the landscape as a lattice of square, triangular, or 

hexagonal sites. A fire in one cell spreads to neighboring sites that contain forest, just as the 

complete random method does. However, the direction of fire spread can be adjusted by a 

spread probability that is affected by factors such as wind direction and speed, topography, 

and fuel types (Gardner et al. 1999; Hargrove et al., 2000; Wimberly et al., 2000). We 

employed a version of dynamic percolation in which spread probability interacts with fuel 

types, topography and wind, and fire size distribution. The simulator randomly selects a 

maximum size from a user-defined lognormal distribution. The spread probability increases 

in the beginning, but the rate of change decreases as the fire grows toward its maximum size 

and fluctuates with respect to the effects of fuel types, topography, and wind. When the rate 

of change becomes a negative value, the probability will begin to decrease hence the spread 

reaches an extinguishment phase. The algorithm can produce burned patches with a compact 

core and a fractal boundary, similar to the geometric features of real wildfires as shown by 

Caldarelli et al. (2001). 

 The elliptical wave propagation methods are based on Huygens’ Principle, which 

asserts that wave fronts can be propagated independently from discrete points. The method 

we chose is the minimum travel time method developed by Finney (2002). It uses algorithms 

developed from graph theory (e.g., Dijkstra, 1959) to search for minimum cumulative travel 

times of waves along straight-line paths among cells of a lattice. Travel times along the line 

segments were calculated from rate of fire spread in the underlying cells of the lattice using 

Rothermel model in which the shapes of fires are assumed to be elliptical under uniform fuel 
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conditions (Rothermel, 1972; Andrews, 1986). The paths producing minimum travel time 

between cells were then interpolated to reveal the fire perimeter positions. The method can 

produce spatial fire growth and behavior data identical to perimeter expansion techniques 

used in models such as FARSITE (Finney, 1998). Furthermore, it is simpler to implement 

and computes much faster than perimeter expansion techniques. We designed two versions of 

minimum travel time methods. The fire size based version uses a fire size randomly selected 

from a user-defined fire size distribution to truncate the elliptical wave propagation 

simulation of fire spread when the fire size reaches the pre-selected fire size. The duration 

based version randomly selects a burning time from a user-specified burning duration 

distribution and uses it to determine when the fire is extinguished. 

 Fire effects were simulated using a rule-based strategy. Fire intensity is calculated by 

the amount of fine fuel and coarse fuel consumed. Because fire is a bottom-up disturbance, 

fires affect younger age classes first and older cohorts are killed by fires of greater intensity. 

However, fire tolerance varies among species and age classes so that not all cohorts are 

affected similarly by a fire of a given intensity. To implement these characteristics, species 

fire tolerance classes, containing five categories from 1 to 5, are designed to reflect the 

differences of fire tolerance among species, and species age susceptibility classes are 

designed to reflect differences related to age within a species. Fire tolerance class combined 

with age susceptibility class determines whether an age cohort of a certain species can 

survive a fire event of a given intensity class (He and Mladenoff, 1999). 

 The combination of the two fire occurrence process scenarios (with and without) and 

the four fire growth modeling methods results in eight fire modeling experiments, which 

were carried out using LANDIS 4.0 (Table 1).  
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2.2 LANDIS model 
 

 The LANDIS model simulates spatial forest dynamics including forest succession, 

seed dispersal, species establishment, various disturbance including wind, fire and forest 

management, and their interactions (Mladenoff and He, 1999; Gustafson et al., 2000) across 

large (103 – 107 ha) landscapes and over long time domains (101 - 103 years). The model 

currently operates on 10-year time step. In LANDIS, a landscape is represented by a grid of 

cells, where each cell contains information on the presence and absence of tree species and 

their 10-year age-cohorts. The model does not track individual trees, which differs from most 

forest stand simulation models. It has been demonstrated that tracking age cohorts rather than 

individuals does not significantly reduce realism for landscape-scale applications (Bugmann, 

1996). Additionally, computational loads are greatly reduced (He et al., 1999). 

 LANDIS stratifies a heterogeneous landscape into land types, which are generated 

from GIS layers of climate, soil, or terrain attributes. The model requires parameters for 

species establishment, fire disturbance characteristics, and fuel accumulation regime for each 

land type. LANDIS 4.0 (He et al., 2005) allows users to stratify the landscape into fire 

regime units, which can be different from the land type delineation (Yang et al., 2004). The 

fuel module tracks fine fuel and coarse fuel for each cell. Fine fuel load is derived from 

vegetation types (species composition) and species age, and coarse fuel load is derived from 

stand age in combination with disturbance history (He et al., 2004).  
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2.3 Case study area 
 

 Our case study area, 128,725 ha in size, is located in the Mark Twain National Forest 

and within the Missouri Ozark Highlands (Figure 1) in southern Missouri, USA. The area is 

largely forested, with white oak (Quercus alba), post oak (Quercus stellata), black oak 

(Quercus velutina) and shortleaf pine (Pinus echinata) as the dominant tree species. Forest 

age structure is relatively simple due to historical harvesting practices. Historical records of 

wildfire and dendrochronology studies in the study area show that the fire cycle (average fire 

return interval) varied from 17.7 years in the depopulated period (1580 – 1700) and 12.4 

years in the Native American repopulation period (1701 – 1820), to 3.7 years in the Euro-

American settlement period (1821 – 1940) (Guyette et al., 2002). Recent effective fire 

suppression policy has resulted in a dramatically extension of fire cycle, which is about 450 

years. The average of fire size of current fire regime in the study area is about 8 hectares 

(Guyette and Larsen, 2000). 

 

2.4 Comparing the effects of different modeling methods 
 

 We conducted 10 replicates of a 450-year simulation for each of the eight fire 

simulation experiments. The parameters of each experiment were calibrated interactively to 

produce acceptable simulated fire cycle and mean fire size (within 5% of actual values of 

empirical estimates for the case study fire regime). The simulated results were then analyzed 

using box plots, time series analysis, point pattern data statistics, and analysis of variance of 

landscape metrics to explore the following four aspects of fire pattern.  
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2.4.1 Fire frequency and fire size distributions 

 We used box plots to explore simulated fire frequency and fire size distributions. A 

box plot provides an excellent visual summary of many important aspects of a distribution. 

The box stretches from the lower hinge (defined as the 25th percentile) to the upper hinge 

(the 75th percentile) and therefore contains the middle half of the scores in the distribution. 

The median is shown as a line across the box. A group of box plots is particularly useful for 

detecting and illustrating central tendency and variation changes between different 

experimental treatments. 

 

2.4.2 Temporal structure of fire frequency series 

 We used the techniques in time series analysis to identify the internal structure (such 

as autocorrelation, trend or seasonal variations, and stationarity) for the simulated fire 

frequency series. We used the autocorrelation function (ACF) and partial ACF to test for 

randomness (i.e., that there is no time dependence in the data) and to identify an appropriate 

time series model (e.g., white noise, autoregressive or moving average process) for our 

simulated fire frequency data. Structureless white noise is an independent and identically-

distributed random process with a mean of zero through time and zero autocorrelation for all 

time lags except lag zero. With the exception of lag 0, this is always 1 by definition, almost 

all of the autocorrelations fall within the 95% confidence limits (Figure 2a). Non-stationary 

processes (e.g., random walk) exhibit a characteristic where the correlogram does not decay 

to zero (Figure 2b). The ACF of autoregressive (AR) processes usually decays exponentially 

to zero, and there is a sharp cut-off in partial ACF (Figure 2c). The ACF of moving 
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averaging (MA) processes has one or more spikes, and the rest are essentially zero (Figure 

2d). We also used the Box-Jenkins (Ljung and Box, 1978) approach to fit autoregressive 

integrated moving average (ARIMA) processes to the data. A non-stationary time 

series }{ tY is an ARIMA process of order p, d, q, written ),,(ARIMA~ qdpYt , if the dth 

difference of tY is a stationary autoregressive moving averaging (ARMA) process of order p, 

q. 

t
d

t YX ∇=  

qtqttptptt ZbZbZXaXaX −−−− +++++++= "" 1111µ  

where tX is the dth difference of tY , µ is the intercept (mean) of differenced series }{ tX , 

}{ tZ is the white noise with zero mean, paa "1 are coefficients of AR(P), and qbb "1 are 

coefficients of MA(q) (Brockwell and Davis, 1996). If our fitted ARIMA has zero order d, 

we can then conclude that our simulated fire frequency is a stationary process. 

 

2.4.3 Spatial pattern of fire occurrence 

We chose the K function (also called Ripley’s K) and kernel estimation for spatial 

point pattern analysis of simulated fire occurrence maps to ascertain whether there is a 

tendency for fire occurrences to exhibit a systematic pattern (regularity or alternatively 

clustering), as opposed to being distributed randomly, and to determine whether or not fires 

are more likely to occur in some regions than in others. The K function is defined as  

event)arbitrary  an of  distance  withinevents ofnumber ()( hEhK =λ  
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where ()E is the expectation operator, and λ is the intensity or mean number of events per 

unit area. The estimate of K is usually compared to the true value of K for a homogeneous 

Poisson process, often called complete spatial randomness (CSR), which is 2)( hhK π= . 

Deviations between the empirical and theoretical K curves may suggest spatial clustering or 

spatial regularity: under regularity 2)( hhK π< , whereas under clustering 2)( hhK π> (Bailey 

and Catrell, 1995). The K function measures the second order effects (local-scale variations 

resulting from spatial correlation structure) of point pattern data, while the kernel estimation 

is concerned with exploring the first order properties (large-scale variations in the mean 

value) of a spatial point pattern, i.e., estimating the way in which the intensity varies in the 

study region. The K function and kernel estimation of simulated fire occurrence data were 

computed using a spatial point pattern analysis package (spatstat) of R (Baddeley and Turner, 

2005). 

  

2.4.4 Simulated fire shapes  

We created a map of the simulated fires for each replicate and each time step, in 

which a pixel value is either 0 when it never burned or 1 if it burned at least once in that time 

step (10 years). These maps were imported into the FRAGSTATS (McGarigal et al., 2002) to 

quantify the shape and spatial configuration of burned patches. We selected only the shape 

index (SHAPE) and clumpiness index (CLUMPY) to avoid analysis of correlated indices 

(Hargis et al., 1998). SHAPE equals patch perimeter divided by the minimum perimeter 

possible for a maximally compact patch of the corresponding patch area. SHAPE equals 1 

when the patch is maximally compact (i.e., square or almost square) and increases without 
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limit as patch shape becomes more irregular. CLUMPY equals the proportional deviation of 

the proportion of like adjacencies involving the corresponding class from that expected under 

a spatially random distribution. CLUMPY equals -1 when the focal patch type is maximally 

disaggregated, equals 0 when the focal patch type is distributed randomly, and approaches 1 

when the patch type is maximally aggregated. 

 

3. Results 

3.1 Primary characteristics of simulated fire frequency and size 
distributions 
 

 The location (i.e., central tendency) and variability of simulated fire frequency and 

fire size distributions resulting from the eight fire simulation experiments are shown in the 

box plots in figure 3. The statistical measures of location, both the mean and median, for the 

simulated fire frequency and fire size are not distinctively different. The mean fire frequency 

simulated from A2 and D2 experiment (Table 1) exhibits observable departure from the 

empirical mean fire frequency, but such departure is less than 5% and is an artifact of the 

calibration process in which a 5% departure from empirical values was tolerated. 

Nevertheless, the variability of fire frequency data simulated using the step fire probability 

function (A2, B2, C2, and D2) is much higher than those simulated from the constant 

probability function (A1, B1, C1, and D1) (Figure 3a). The larger inter-quartile range (IQR) 

in D1, D2 (Figure 3b) illustrates that the duration based elliptical wave propagation fire 

growth simulation method produces higher variability of fire size. The distributions of fire 

size resulting from all eight experiments are skewed to the right, manifested by the median 

being less than the mean and the many outliers above the upper whisker in the box plots 
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(Figure 3b). Such strongly skewed fire size distributions are consistent with the observation 

of the fire regime in our study area, which consists of many small-size fires and very few 

large fires (Guyette et al., 2002). 

 

3.2 Temporal structure of chronological fire frequency 
 

 By examining the ACF and partial ACF of each one of the total 80 simulated fire 

frequency series, we found that fire frequency data simulated using a constant fire probability 

function exhibit no temporal structure (i.e., white noise, Figure 4e, 4g). When using a step 

function there is a discernible trend (Figure 4b, 4d), and a strong serial dependence: 

significant strong positive autocorrelation at the first few lags (10-year to 60-year lag), and 

weak negative autocorrelation for longer lags (around 300-year lag), as shown in the 

correlograms (Figure 4f and 4h).  

 All the simulated fire frequency series can be identified as realizations of a stationary 

process. The ones simulated from constant fire probability function (experiment A1, B1, C1, 

and D1) can be fitted to a white noise process tt ZX += µ (table 2), and there is no 

significant difference in the fitted intercept among all the four fire spread methods (ANOVA, 

p value = 0.396, table 2). The fire frequency series simulated from the step function 

(experiment A2, B2, C2, and D2) can be fitted to a first order autoregressive 

processes ttt ZXaX ++= −11µ , and fire spread approach D (duration based elliptical wave 

propagation) produces significantly (alpha = 0.05) lower autocorrelation (coefficient 1a ) than 

the other fire spread methods (Table 2). This can be seen when the realizations take relatively 

short excursions above or below the intercept level (Figure 4d vs. 4b). 
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3.3 Point pattern of fire occurrences 
 

The point pattern exhibited from our simulated fire occurrence data is greatly affected 

by fire probability functions; whereas fire spread simulation does not play a role. For fire 

occurrence data simulated using the step function, regardless of fire spread simulation 

approaches, the kernel estimation maps show the same pattern that the spatial intensity of fire 

occurrence is high in the center of the landscape and it progressively decreases towards the 

boundary of the landscape (Experiments A2 and D2 are shown in the right part of figure 5). 

B2 and C2 produce the same pattern, although not shown in the figure. The computed K 

function begins to show spatial clustering at approximately a scale of 100 cells (i.e., 3 

kilometers). Clustering becomes more evident as the scale gets larger (example A2 is shown 

in figure 6, experiment B2, C2, and D2 produce a similar pattern). As a test of significance, 

the computed K function is compared with not only the theoretical K function under complete 

spatial randomness (CSR), but also the upper and lower “simulation envelopes”: -- the 99 K 

functions calculated from point data simulated independently under CSR but with the same 

intensity as the test data (Figure 6 and figure 7). The K function graphs and spatial intensity 

maps suggest that the point pattern of fire occurrence data simulated using constant fire-fuel 

probability function exhibit CSR: the spatial intensity of fire occurrence is homogeneous 

across the entire landscape (as shown in the left part of figure 5) and there is no spatial 

dependency among fire occurrences (as shown in figure 7). 
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3.4 Shape and configuration of burned patches 
 

 The shapes simulated using the fire spread method of elliptical wave propagation (i.e., 

method C and D) are much simpler than those simulated using completely uniform fire 

spread and percolation methods (Figure 8a). This reflects the algorithms of the fire spread 

methods since elliptical wave propagation is deterministic (in particular, physical-statistical) 

and is fire shape driven, while the other two are probabilistic and are burn extent driven. The 

Percolation method produces the most irregular burned patch shapes, and fire size based 

elliptical wave propagation produces the most regular shapes. ANOVA tests showed that fire 

probability functions have no significant (p> 0.05) effects on the simulated fire shapes. 

Similarly, the burned patches simulated using elliptical wave propagation methods are most 

aggregated and the two fire probability functions have no significant effects on the simulated 

spatial configuration of burned patches given the same fire spread simulation method is used 

(Figure 8b). 

 

4. Discussion 
 

 Our study suggests that – although all our designed experiments are able to simulate 

primary characteristics of fire regimes (e.g., fire cycle, distribution of fire frequency, fire size) 

– spatial pattern of fire occurrence, temporal pattern of fire frequency, and the shape of 

burned patches are generally different by fire spread and fire occurrence simulation methods. 

Thus, the null hypothesis is rejected. The fire probability step function, which is used to 

simulate a fuel-dependent fire occurrence process, greatly increases simulated variability of 

fire frequency distribution (Figure 3a), and imposes conspicuous temporal autocorrelation in 
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fire frequency series (Figure 4b, 4d) and spatial point pattern in fire occurrences (e.g., Figure 

6). This result suggests that it is important for landscape fire succession models to 

incorporate fuel in simulating fire occurrence. This may be especially true for many eastern 

U.S. forest ecosystems in which heterogeneous fuel beds are common (Barbour and Billings, 

1988) in contrast with relatively homogenous fuel beds (largely due to live fuels) found in 

boreal forest and many western U.S. forest ecosystems (Bessie and Johnson, 1995). Fire 

spread simulation methods (statistical, probabilistic, and physical ones) primarily affect the 

shape of burned patches (Figure 8), but exert very little influences in fire frequency, fire size 

and fire occurrence. This result implies that choosing a suitable fire spread method is 

important only when the shape of burned patches is of model’s major concern. For example, 

the complete random fire spread method appears to be suitable for coarse scale dynamic 

global vegetation models in which the explicit simulation of fire growth is not needed or too 

computationally expensive (Keane et al. 2004). The probabilistic fire growth simulation 

methods (e.g., percolation), by their stochastic nature, produce more irregular and fractal 

shape of burned patches than the physical methods such as those fire perimeters based 

elliptical wave propagation methods. If we are to model a forest landscape that is 

topographically rugged and experiences surface fire regimes where fuel fragmentation 

becomes a major factor limiting the propagation of surface fires, the probabilistic fire growth 

simulation methods are then preferable. 

Furthermore, we found very little interactive effects of fire occurrence and fire spread 

simulation methods in our results. This finding first appeared to contradict intuition that 

different fire spread simulation methods produce different fuel beds, which in turn should 

produce different fire patterns, especially when the step fire probability function is used to 
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simulate fire occurrence. Our explanation lies in the characteristics of the fire regime of our 

study area and the scale that we chose for this study. The case study area (Missouri Central 

Hardwood region) has a predominantly anthropogenic fire regime, where ignitions are 

abundant and mostly caused by humans (Guyette et al., 2002). Hence the effect of fuel on 

fire occurrence process has been mitigated. In addition, the fuel types are fairly simplex 

(largely oak-pine forests) in this area, and because low-intensity and small-size fires are 

much more common than the catastrophic crown fires, fuel loads are not greatly reduced in 

the burned patches. Moreover, fine fuel of the disturbed sites needs only a few years to 

accumulate to undisturbed levels (Kolaks et al., 2004) while we used a 10-year time step. All 

these factors contributed to make the presumed interactive effects imperceptible. We intend 

to apply our comparison to some other forest ecosystems with different fire regimes in the 

future to find out what fire regimes may bring such interactive effects discernible. 

Evaluating inter-model behavior is an important issue and a systematic framework is 

lacking. This study fills in the gap by providing a framework of comparing model behavior in 

a statistically rigorous manner. Previous modeling studies have rarely examined the temporal 

pattern of fire frequencies. Currently used primary measure of temporal fire patterns is the 

average interval between two successive fires (e.g., Li et al., 1997), which not only conveys 

little information on temporal structure such as trend and autocorrelation but also impractical 

when fires are frequent enough to make the average interval less than the research temporal 

resolution. In this study we used time series analysis to compare different modeling 

experiments against temporal structure (trend, autocorrelation, stochasticity) of fire 

frequency. Our results demonstrate that this method is effective in examining simulated 
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temporal fire patterns. This method is not limited to fire frequency series and it can also be 

used for chronological series of burned area, landscape metrics, and so on.   

It is not our intention in this study to examine the validity of the fire simulation 

approaches that were compared in this study. All these approaches have been implemented in 

the respective forest landscape fire models and have demonstrated that they can achieve 

satisfactory results for the intended use. As Rykiel (1996) pointed out, validation 

demonstrates that a model meets some specified performance standard under specified 

conditions, which include all implicit and explicit assumptions about the real system the 

model represents as well as the environmental context. A model is declared validated within 

a specific context which is an integral part of the certification. In that sense, all of the chosen 

approaches have been validated elsewhere before. Yet, each of the approaches embodies its 

own modeling purpose, the degree of realism it intends to simulate, and assumptions and 

context it upholds. Therefore, the difference in simulated spatial and temporal landscape 

forest fire patterns discovered here should not lead us to discuss which simulation approach 

is superior to others without providing an appropriate context. Rather, it sheds lights on the 

exploration of modeling behavior of each approach and lay grounds for modelers/decision 

makers to select any particular type of forest fire simulation method to meet their modeling 

purpose and context. In our specific context, fire probability function is proved to be the 

crucial component in determining simulated temporal fire patterns and interactions of forest 

fires and fuel dynamics, hence particular attention to the functional form and corresponding 

parameters is needed during the model building process.  
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Tables 
 

Table 1. Eight fire modeling experiments 

Experiment  Fire occurrence  Fire spread Fire effects 

A1 Complete uniform 

B1 Percolation 

C1 Fire size based elliptical wave propagation 

D1 

 

 

Constant function 

Duration based elliptical wave propagation 

A2 Complete uniform 

B2 Percolation 

C2 Fire size based elliptical wave propagation 

D2 

 

 

Step function 

Duration based elliptical wave propagation 

 

 

 

 

Rule-based 

Note: We use the alphabet A-D to represent four different fire spread simulation methods and 

number 1 and 2 to represent two fire probability functions used in fire occurrence simulation.   
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Table 2. The coefficients of ARIMA (Autoregressive integrated moving average) processes 

that the simulated 80 (10 replicates x 8 experiments) fire frequency time series were fitted 

into 

Intercept µ  The coefficient 1a  average p value 
for Ljune-Box 
statistic 

Experiment 

Mean S.D. Mean S.D.  

Fitted to white noise: tt ZX += µ  

A1 357 2   0.278 

B1 357 3   0.579 

C1 356 4   0.502 

D1 358 2   0.484 

 

Fitted to the 1st order autoregressive process: ttt ZXaX ++= −11µ  

A2 327* 10 0.870 0.048 0.443 

B2 345 4 0.850 0.033 0.615 

C2 344 4 0.832 0.039 0.480 

D2 339 3 0.798* 0.030 0.616 

* The mean is significant different at the 0.05 level. 
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Figures 
 

  

Figure 1. Study area 
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Figure 2 A realization of some typical time series processes and its corresponding 
autocorrelation function (ACF) and partial ACF: (a) white noise, (b) random walk, (c) 
autoregressive (AR) process, and (d) moving average (MA) process. 
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Figure 3 Box plots of (a) fire frequency and (b) fire size data simulated from the eight fire 
modeling experiments over 450 year span. The black solid diamond points represent 
calculated mean values. The dashed horizontal lines represent the empirical average fire 
frequency (357 per decade) and mean fire size (8 ha).  
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Figure 4 chronological mean fire frequency (black solid point) and its standard deviation 
(vertical error bar) calculated from 10 replicates over 450 year simulation from the 
experiments (a) A1, (b) A2, (c) D1, and (d) D2, and their corresponding average 
autocorrelation functions (e, f, g, and h). The dashed horizontal lines on each correlogram 
represent the upper and lower limits used for informal assessment of departure from white 
noise.  
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Figure 5 Spatial intensity (i.e., mean number of events per unit area) of fire occurrence maps 
estimated from the fire occurrence data simulated over 450 years from experiments A1 
(upper left), A2 (upper right), D1 (low left) and D2 (low right). The unit of the intensity is 
number of fire occurrence per cell (900 square meters). 
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Fig
ure 6 K function computed from fire occurrence data simulated from experiment A2, The 
dotted line represents the theoretic K function from a CSR (Complete Spatial Random) 
process. The dashed lines represent the lower and upper simulation envelopes. The graph 
suggests that there is clustering pattern starting approximately from 100-cell scale. Note that 
only A2 is shown because the other experiments (B2, C2, D2) that use step fire probability 
functions produce very similar K functions 
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Figure 7 K function computed from fire occurrence data simulated from experiment A1. The 
dotted line represents the theoretic K function from a CSR (Complete Spatial Random) 
process. The dashed lines represent the lower and upper simulation envelopes. The graph 
suggests that there is no systematic pattern exhibited in fire occurrence data. Note that only 
A1 is shown because the other experiments (B1, C1, D1) that use constant fire probability 
functions produce very similar K functions 
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Figure 8 landscape metrics calculated from the burned patch maps simulated from the eight 
fire simulation experiments 
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Chapter 3. Spatial patterns of human-caused fire 
occurrence in the Missouri Ozark Highlands, 1970-2002 

 

Abstract 
 

The spatial pattern of forest fire locations is important in the study of dynamics of fire 

disturbance. Many existing fire occurrence studies focus on only natural (e.g., lighting) 

caused fires, hence are not adequate in studying anthropogenic fire regimes where human-

caused fires are predominant. In this paper, we used spatial point process modeling approach 

to quantitatively study the effects of proximity to road, land cover, and topography (slope, 

aspect, and elevation) on the probability of fire occurrence in the Missouri Ozark Highlands, 

where more than 90% of fires are human-caused. Data on the starting location of fires in our 

study area between 1970 and 2002 and covariate information were mapped using GIS. 

Kernel intensity estimation and Ripley’s K function were derived to explore spatial patterns 

in the data. We used the AIC (Akaike Information Criterion) method to select an appropriate 

spatial point process model to account for both spatial heterogeneity (‘trend’ or covariate 

effects) and dependence among fire occurrences (inter-point interaction, such as clustering or 

regularity). The fitted model was then diagnosed using residual analysis. Our results show 

that fire locations were spatially clustered, and high fire occurrence density was found in 

areas that are close to road (<500 meters away from nearest road) and on lower (<25 degree) 

slopes, where forests are accessible to humans. In addition, fire occurrence density was 

higher in pine-oak forests and woodlands and lower in low (<900 ft) elevation, which reflects 

the effects of natural factors on fire occurrence. The spatial point process modeling approach 
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presented here can be utilized in other forest ecosystems where spatial distribution of fire 

occurrence is inhomogeneous because of complex biotic and abiotic factors. 
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1. Introduction 
 

The spatial pattern of fire occurrence is one of major aspects in the study of dynamics 

of forest fire and its role in determining landscape structure and vegetation community 

composition (Turner and Romme, 1994; Guyette et al., 2002; Ryan, 2002; Larjavaara et al., 

2005; Mermoz et al., 2005), and has drawn of attention from forest landscape ecologists, fire 

historians, and spatial statisticians.  

There are many biotic and abiotic factors that, besides the inherent stochasticity, may 

determine occurrence of forest fires. Among them fuel characteristics (fuel type, fuel loading, 

fuel moisture, and fuel inflammability) are considered to be prominent (Latham and Williams, 

2001; Wotton and Martell, 2005). However, the effect of fuel characteristics on fire 

occurrences in different forest ecosystems at different spatial and temporal scales can vary. 

For example, Tanskanen et al. (2005) showed that differences in the moisture regime of 

surface fuels between stands of different age classes dominated by Picea abies or pinus 

sylvestris can result in significantly different ignition conditions in boreal forests of southern 

Finland. On the other hand, Moritz et al. (2004) analyzed several hundred wildfires over a 

broad expanse of California shrublands, and their results revealed that there was generally 

not a strong relationship between fuel age and fire probabilities in their study area. These 

appeared contradicting results suggest that fire occurrence is a complex process in which fuel 

characteristics alone cannot provide the full explanation. Recent studies have incorporated 

other important abiotic factors such as elevation, slope, and aspects in describing spatial 

patterns of lightning-caused fires (e.g., Kushla and Ripple, 1997; Diaz-Avalos et al., 2001). 
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Human effects, however, are not yet considered in modeling spatial distribution of fire 

occurrences. 

Fire ecologists and historians have found that fire regimes of many forest ecosystems 

are anthropogenic and shaped largely by human settlement and management (e.g., Veblen et 

al., 1999; Guyette et al., 2002; Bergeron et al., 2004; Hessburg et al., 2005). They have 

successfully identified, mainly using dendrochronology, temporal stages (e.g., pre-European-

settlement and modern eras) of fire regimes related to human population density levels and 

shifting cultural behaviors. There are usually more human-caused fires than lightning-caused 

fires in modern-era fire regimes. For example, lightning-caused fires only contribute 35% of 

the fires reported in the boreal forest of Canada (Weber and Stocks, 1998) and less than 1% 

of the fires reported in Missouri in 1970 – 1989 (Westin, 1992). Many existing fire 

occurrence studies focus on only natural caused fires. Hence they are not adequate in 

describing, modeling, or predicting the locations of fires in modern-era anthropogenic fire 

regimes. 

In this study, we used spatial point pattern (SPP) analysis to examine spatial patterns 

of both human-caused and lightning-caused fires reported in 1970 – 2002 in the Missouri 

Ozark Highlands. Analyzing fire occurrence data is challenging because conventional 

statistical approaches are not adequate to address spatial correlation exhibited in the data. 

Spatial statistics are therefore necessary (Wagner and Fortin, 2005). Cressie (1993) identifies 

three major branches of spatial statistics, namely geostatistics (the variable of interest is 

spatially continuous), lattice data statistics (the variable of interest has values only within a 

fixed set of areas or zones covering the study area) and spatial point pattern analysis (the 

important variable to be analyzed is the location of “events”). Whilst these three topics are to 
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some extent interlinked, they nevertheless give rise to distinct stochastic models and 

associated statistical methods, and can therefore be applied into different research problems. 

Point pattern and marked point pattern analysis methods have been used in forestry, 

particularly for describing the variability of forest stands in which the “points” are tree 

locations and the “marks” are tree characteristics such as tree species and diameter at breast 

height (e.g., Stoyan and Penttinen, 2000; Kokkila et al., 2002). To our knowledge Podur et al. 

(2003) are the first group who applied SPP in analyzing forest fire occurrences. They 

computed the K function (also called Ripley’s K) and kernel intensity estimation of the 

lightning-caused fires reported from 1976 to 1998 in Ontario, Canada. They found that fire 

locations were clustered at a scale of approximately 150 – 200 km and these clusters were 

located in the northwest and in the southeastern regions of northern Ontario. The statistics 

that they used are non-parametric and exploratory, and offered limited inferential power 

because different point pattern processes may result in the same spatial pattern (Wiegand and 

Moloney, 2004). On the other hand, recent theoretical development within the realm of SPP, 

the provision of formal likelihood-based methods of inference for a wide range of models, 

provides tools for statistically rigorous modeling of spatial patterns of fire occurrence. This 

study uses both non-parametric and parametric statistical analysis to describe and model 

spatial point patterns of fire occurrences in a modern-era anthropogenic fire regime. The 

primary objectives of our study are (1) to characterize spatial point patterns exhibited in the 

fire occurrence data, (2) to model the human-caused fire occurrence process with the 

consideration of both environmental heterogeneity (including human effects) and interactions 

of neighbored fire occurrences (if there are any), (3) to estimate spatial distribution of fire 
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occurrence density and fire occurrence probability, and (4) to determine how specific spatial 

covariates (biotic or abiotic factors) contribute to the probability of fire occurrence. 

 

2. Study area 
 

The study area, located in the Missouri Ozark Highlands, is measured about 1287 km2 

in size (Figure 1). The geographical bounding coordinates are: 91.5ºW, 91.1ºW, 37.0ºN, 

36.7ºN. It includes portions of four Missouri counties: Shannon, Carter, Ripley, and Oregon. 

A large proportion (86%) of the study area is forested, and 71% of the area is in the Mark 

Twain National Forest. White oak (Quercus alba), post oak (Quercus stellata), black oak 

(Quercus velutina) and shortleaf pine (Pinus echinata) are the dominant tree species. 

Topographic variation is high, with elevations averaging 260 m and ranging from 140 m to 

350 m. There is a river (Eleven Point) across the study area, and the landscape is dissected by 

steep ridges and streams. There were 1,299 fires reported to either Mark Twain National 

Forest or Missouri Department of Conservation (MDC) in this study area during 1970 – 2002, 

among which only 16 (1.2%) fires were caused by lightning, 608 (46.8%) fires were caused 

by arson, and others were caused by campfire, smoking, debris burning, or not-specified 

(unknown) reasons. 

 

3. Approach and Methods 
 

The overall approach is shown in the Figure 2. Reported fire locations, which are 

geographically referenced using the UTM (Universal Transverse Mercator) coordination 
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system, and spatial covariates such as roadway coverage, land cover, and topography data 

were mapped and processed using the GIS (detailed description in section 3.1). Non-

parametric spatial statistics such as Kernel intensity estimation and Ripley’s K function 

(described in section 3.2.1) were calculated to characterize spatial patterns (e.g., clustering or 

regularity pattern of points) of the fire occurrence data. Parametric modeling was then 

performed in order to study the effects of humans and other biotic or abiotic factors on spatial 

patterns of fire occurrence. The fire occurrence process was modeled as an inhomogeneous 

Poisson process. That is, we assumed there were no effects of interaction between fire 

occurrence points, and spatial patterns of fire occurrence solely resulted from the effects of 

environmental heterogeneity in the landscape. Maximum likelihood estimation method 

(described in section 3.2.2 and 3.2.3) was used to estimate model parameters. We used 

residual analysis (section 3.2.4) and the AIC method to select a best inhomogeneous Poisson 

process model to fit the data (section 3.3). Finally, the assumption of inhomogeneous Poisson 

process was validated by calculating generalized K function of the best fit model we found.  

3.1 Data acquisition and processing 
 

The most important factor affecting spatial distribution of fire occurrence that we 

suspected is the roadway coverage, because most fires in this area are human-caused and 

spatial distribution of roadway determines the human access to forests. Places that are close 

to roads should have higher probability of human-caused fires. We obtained the digital 

roadway coverage published by the Missouri Department of Transportation (MoDOT) in 

2004. The data layer contains all US highways, state highways (Missouri numbered routes 

and Missouri lettered routes), county roads, and city streets in this area. The spatial accuracy 

is generally ± 3 meters. We calculated the proximity to roads as a measure of human 
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accessibility. We used ArcGIS Spatial Analyst tool to calculate the Euclidean distance from 

each cell (30 meter resolution) to its nearest roads. The resultant raster grid image (Figure 3) 

was then used as one spatial covariate for our point process modeling. 

A 30-meter resolution grid of the land cover of the state of Missouri published by 

Missouri Resources Assessment Partnership (MoRAP) in 1999 was used as another spatial 

covariate in the modeling. This dataset is an amalgam of classified Landsat Thematic Mapper 

(Landsat TM) satellite image data ranging from 1991 to 1993. There are 12 classes of land 

cover in our study area, and we aggregated them into 4 classes (Table 1) because otherwise 

some of land cover classes (e.g., open water, Urban Impervious) contain such a small portion 

of cells in the study area that regression estimation would fail. We assumed that land cover 

for any cell within our study area was constant over the time 1970 – 2002. The grid image of 

aggregated land cover (Figure 4) was also used as one spatial categorical covariate. 

We also obtained a 60-meter resolution grid of digital elevation model (DEM) data 

(Figure 5) published by Missouri Spatial Data Information Service (MSDIS) in 1999. We 

calculated slope (Figure 6), aspect (Figure 7) from the DEM data using the surface analysis 

provided in the ArcGIS Spatial Analyst tool. 

 

3.2 Spatial point process modeling 

3.2.1 The basics of SPP 

A spatial point pattern data is a dataset 1{ ,..., }nx x=x with n points observed in a 

bounded region D of the plane 2\ . A spatial pattern is often the result of a mixture of both 

first order and second order effects. First order effects are related to variation in the mean 
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value of the spatial process, a global or large scale spatial trend. Second order (local or small 

scale) effects result from the spatial correlation structure or the spatial dependence in the 

process (Bailey and Gatrell, 1995). The first-order properties in spatial point pattern data are 

described by an intensity function. For any locationu D∈ , the intensity (the mean number of 

events per unit area.) is defined as 

[ ]
0

( )
( ) lim

du

E N du
u

du
λ

→

  =  
  

,  

Where [ ]E i denotes the expectation of a random variable, and ( )N du denotes number of 

events in the infinitesimal region ofu . 

For a stationary process, ( )uλ assumes a valueλ constant over the entire space. To 

avoid confusion of statistical intensity with fire intensity used in fire ecology, we shall use 

fire occurrence density to denote the intensity used in spatial statistics in the results section. 

The second-order intensity function is similarly defined as 

[ ]
2 , 0

( ) ( )
( , ) lim

 du dv

E N du N dv
u v

du dv
λ

→

  =  
  

 

An alternative statistics that characterizes the second-order properties of a stationary, 

isotropic process is the K function. It is defined as 

(number of events within distance  of an arbitrary events)( ) E hK h
λ

=  

The K function is widely used to describe the small-scale spatial correlation structure 

of the point pattern. The estimate of K is usually compared to the true value of K for the null 

model of complete spatial randomness (CSR), which is 2)( hhK π= . Deviations between the 
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empirical and theoretical K curves may suggest spatial clustering or spatial regularity: under 

regularity 2)( hhK π< , whereas under clustering 2)( hhK π> (Bailey and Gatrell, 1995). Edge 

effects (i.e., the circles centered at the point that is close enough to the boundary cannot be 

evaluated without a bias) can be either mitigated by edge-correction methods or safely 

ignored for some kind of exploratory analysis (Diggle, 2003). Any spatial patterns suggested 

by the estimated K function could be due more to spatial inhomogeneity rather than to inter-

point interactions if the intensity is not approximately constant in the study region. A 

generalisation of the K function iK  for inhomogeneous point processes, proposed by 

Baddeley et al. (2000), can be used in evaluating the second-order patterns after taking into 

account of the first-order effects. 

 

3.2.2 Conditional intensity 

For any finite spatial point process whose probability density function ( )fθ x satisfies 

the positivity condition 

( ) 0 implies ( ) 0 for all f fθ θ> > ⊂x y y x , 

the Papangelou conditional intensity for any locationu D∈ is defined as 
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θ

λ
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

x x
x

x
x x

x

  (1) 

It may be loosely interpreted as the conditional probability that there is a point at u 

given that the rest of the point process coincides with x. For the homogeneous Poisson 
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process in which intensity function is a constantλ , the conditional intensity is the same 

constantλ . The inhomogeneous Poisson process with intensity function ( )θλ ⋅ has conditional 

intensity ( ; ) ( )u uλ λ=x . The fact that the conditional intensity at any points u does not 

depend on the configuration of x is a consequence of the independence properties of the 

Poisson process.  

 

3.2.3 Parametric model-fitting using likelihood-based methods 

The Papangelou conditional intensity is used in the definition of the pseudo-

likelihood of a point process (Besag, 1982). For any sub-region A D⊂ , the pseudo-likelihood 

is defined to be  

 ( ; ) ( ; ) exp ( ; )
i

A i
x A A

PL x u duθ θθ λ λ
∈

   
= −       
∏ ∫x x x  (2) 

Hence the log-pseudo-likelihood when A D=  is 

 
( )

1
( ; ) log ( ; ) ( ; )

N

i
i D

logPL x u duθ θθ λ λ
=

= −∑ ∫
x

x x x  (3) 

The integral term on the right-hand side of (3) can be further approximated by a finite 

sum using different quadrature schemes (Berman and Turner, 1992). 

 
1

( ; ) ( ; )
m

j j
jD

u du u wθ θλ λ
=

≈∑∫ x x  (4) 

Where { , 1,... }ju j m= are points in D and jw are quadrature weights summing into D . 

Baddeley and Turner (2000) showed that with a proper quadrature scheme ensuring all data 



 92

points are in quadrature points list, { , 1,... ( )} { , 1,... }i jx i N u j m= ⊂ =x , equation (3) and (4) 

can yield 
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j j j

j j

z
logPL u u w

w θ θθ λ λ
=

 
≈ −  

 
∑x x x  (5) 

Where jz are indicators, defined as 

1  if 
0  if 

j
j

j

u
z

u
∈

=  ∉

x
x

  

Expression (5) can be maximized using standard statistical software for generalized 

linear or additive models, provided that the conditional intensity takes an exponential family 

form (Baddeley and Turner, 2000). 

In practice, the conditional intensity is often specified through a log-linear regression 

model with two components: 

 ( )1 2( ; ) exp ( ) ( , )u B u C uθλ θ θ= +x x  (6) 

or equivalently,  

 1 2log ( ; ) ( ) ( , )u B u C uθλ θ θ= +x x  (7) 

where 1 2( , )θ θ θ= are parameters to be estimated. 

 The trend term ( )B u depends only on the spatial location u, so it represents spatial 

trend or spatial covariate effects. The interaction term ( , )C u x depends on not only the point u, 

but also the configuration of x, hence it represents stochastic interactions between the points. 

The term ( , )C u x  is reduced to zero for the Poisson process. 
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3.2.4 Residual analysis 

 Residual analysis for spatial point processes, recently formulated by Baddeley et al. 

(2005), is considered a milestone of the development of point pattern statistics in that it 

provides us an excellent technique for determining the need of model refinement or for 

diagnosing the quality of the model-fitting for spatial point process in a statistically rigorous 

way. The method is analogous to the usual residual analysis for non-spatial generalized linear 

models. The basis of various forms of residuals is the Georgii-Nguyen-Zessin (GNZ) formula: 

 ( ; \{ }) ( ; ) ( ; )
i

i i
x D

E h x x E h u u duθλ
∈

   
=   

  
∑ ∫

X
X X X  (8) 

where ( ; )uθλ x is the conditional intensity defined in (1), and ( ; )h u x is any non-negative 

function. The h-weighted innovations for spatial point process (analogous to errors in a linear 

model) are defined as 

 ( , , ) ( ; \{ }) ( ; ) ( ; )
i

i i
x B B

I B h h x x h u u duθλ λ
∈ ∩

= −∑ ∫
X

X X X  (9) 

for any set B D⊆ . The innovations have mean zero, from (8).  

 The h-weighted residuals after fitting a parametric model to data x are defined by 

 � � � � � � �( , , ) ( , , ) ( ; \{ }) ( ; ) ( ; )
i

i i
x B B

R B h I B h h x x h u u duθ λ λ
∈ ∩

= = −∑ ∫
x

x x x  (10) 

where �θ  is the estimated parameters of the model (often using maximum-likelihood based 

methods), �λ is the fitted conditional intensity � �( ; ) ( ; )u u
θ

λ λ=x x , and �h is the fitted weight 

function when the weight function depends on the parameterθ , �( ; ) ( ; )h u h uθ=x x . 
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 Different weight functions can yield different types of innovations (errors) and 

residuals. Two types are used in this study. One choice is ( ; ) 1h u =x , which yields the raw 

innovation measure  

( ,1, ) ( ) ( ; ) ( ; )
B

I B N B h u u duθλ λ= ∩ − ∫X X X  

and raw residual measure 

� �( ,1, ) ( ) ( ; )
B

R B N B u duθ λ= ∩ − ∫x x . 

The other choice is ( ; ) 1/ ( ; )h u uλ=x x . It yields the Pearson innovation measure 

1 1( , , ) ( ; )
( ; )ix B Bi

I B u du
x

λ λ
λ λ∈ ∩

= −∑ ∫
X

X
X

, 

which has mean zero and variance B  (it is analogous to the usual Person residuals for 

generalized linear models in that the variance is standardized, ignoring effects of parameter 

estimation), and the corresponding Pearson residual measure 

�
�

�
�1 1( , , ) ( ; )

( ; )ix B Bi

R B u du
x

θ λ
λ λ∈ ∩

= −∑ ∫
x

x
x

. 

One important application of residual analysis is to plot the residual against a spatial 

covariate (or one of Cartesian coordinates) to investigate the presence of spatial trend for 

point process models, called lurking variable plot. For a spatial covariate ( )Z u , which must 

be spatially continuous in the study region D , we may evaluate the residual measure on each 

sub-region defined by 

 ( ) { : ( ) }B z u D Z u z= ∈ ≤ , (11) 
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yielding a cumulative residual function 

 � �( )( ) ( ), ,A z R B z h θ= . (12) 

The function ( )A z should be approximately zero if the fitted model is correct, and any 

systematic pattern in the lurking variable plot suggests an appropriate modification of the 

model to better account for that spatial covariate. 

 

3.3 Model selection 
 

The compiled fire occurrence data and GIS-processed spatial covariates were 

analyzed and modeled using a spatial point pattern analysis package (spatstat) of R 

(Baddeley and Turner, 2005). The major task at this step was to identify a best choice of 

model that would balance fit to the data, model size (parameters within the model), and 

model complexity. The goal was: 1) to determine the interaction term ( , )C u x  specified in the 

log-linear regression model of equation 7, and 2) to select predictor variables (Cartesian 

coordinates, spatial covariates, and their transformations) for the trend term ( )B u . Three 

major tools were used in this stage: residual analysis (described in section 3.2.4), the 

generalized K function iK  (described in section 3.2.1), and the Akaike information criterion 

(AIC). The AIC (Akaike, 1974) is widely used as a measure for selecting the best among 

competing models for a fixed data set. It is defined as  

2max(log-likelihood) 2(number of parameters)AIC = − + . 

The model with the smaller AIC is considered to be a better fit to the data. It is sometimes 

useful to note that the log-likelihood ratio statistic takes the form  
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0 1 0 12 log( / ) ( ) ( ) 2L L AIC H AIC H d− = − + , 

where 0L , 1L denote the maximized likelihood under model 0H , 1H  respectively, and 

d denotes the difference between the numbers of parameters in 0H  and 1H . The statistic 

0 12 log( / )L L− is expected to have a chi-squared distribution with d degrees of freedom when 

the null model 0H is true (Ogata, 1988).  

We started our quest in computing non-parametric statistics K function, and the 

kernel smoothed intensity function from our fire occurrence point data for exploratory 

purposes. The data were first fitted to the null model (a homogeneous Poisson model), and 

we used residual analysis (especially, lurking variable plots) to find out whether the point 

pattern depends on tested spatial covariates. We then assumed the fire occurrence process is 

an inhomogeneous process (hence ( , )C u x  is zero) and included those spatial covariates that 

were revealed to affect the fire occurrence patterns into the trend term ( )B u of the log-linear 

regression model one by one. Those included spatial covariates could be transformed, and we 

used polynomial function (up to power of four) to transform spatial covariates or Cartesian 

coordinates. We calculated AIC as well as performed residual analysis for every alternative 

model. We kept “diagnostics  variable selection (with possible transformation)  

diagnostics” strategy until we were satisfied with the model-fitting results. Finally, we 

computed the generalized K function iK for the fitted model for checking of our assumption 

that fire occurrence is a Poisson process. If there were still any second-order patterns after we 

weighted the trend fitted from the model, then the Poisson assumption should not be 

considered to be sound, and other point process (e.g., pair-wise interaction point process, 

Strauss process) might be assumed.  
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4. Results 

4.1 Characteristics of fire occurrence patterns 
 

The kernel-smoothed intensity (Figure 8) estimated from the fires reported in 1970 – 

2002 showed a “hot bed” (where fire occurrence density is high) on the north center of the 

study area (near the town Winona) and a “cold bed” (where fire occurrence density is low) on 

the southwest (near the town Alton), suggesting fire occurrence process is far from 

homogeneous. The estimated K function (Figure 9) is larger than that of theoretical CSR 

from the scale of about 500 meters. Spatial clustering pattern is observable for almost any 

scale that is larger than 500 meters. However, it doesn’t necessarily suggest there is a strong 

dependence among fire occurrences, since the environmental heterogeneity (e.g., clustering 

of camping sites or vegetation distribution) may also be the reasons for explaining this 

clustering pattern. Our model-fitting exercises showed that the spatial clustering pattern 

could be in deed explained by the environmental heterogeneity (section 4.2).  

 

4.2 The fitted model and its diagnostics 
 

The null model (homogeneous Poisson) fitted to the data has a constant intensity, 

valued 1.009116e-06 per m2 over the entire region. This constant intensity can be interpreted 

as an average of 1.009116 fire occurrences every 1 km2 in our study area over 33 years (1970 

– 2002). We plotted the cumulative Pearson residuals against the four spatial covariates 

(distance to nearest road, slope, aspect, and elevation) and the two (x and y) Cartesian 
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coordinates for the null model (Figure 10). The cumulative residual function defined by 

equation (12) should approximate zero if the null model adequately addresses effects of the 

spatial covariate. In Figure 10a, the cumulative Pearson residuals are larger than 2σ+ limit 

for the scale of distance to nearest road < 1500 m. This suggests the null model 

underestimates fire occurrence at this scale. In other words, there are more fires occurring at 

the spatial locations that are close (< 1500 m) to roads than the null model predicts. The peak 

of the curve rises in the 500 m scale and the cumulative Pearson residuals decrease with the 

increase of the distance to nearest road after the 500 m scale, which indicates that there are 

actually fewer fires occurring at 500 m – 1500 m scale than the null model predicts. The 

steepest increases in the curve are observed at less than 150 meters away from roadways, 

implying that many human-caused fires were set in the places that are very close to roads 

(refer to Figure 3). The peak in Figure 10b rises in slopes of about 25 degree and the steepest 

increase falls within the range of slopes of 10-20 degrees, suggesting that more fires occur on 

lower slopes than higher slopes. Effects of aspect on fire occurrence patterns are less 

conspicuous based on Figure 10c. Nevertheless, we can infer that there are fewer fires in the 

northeast/east extreme than the south/southwest extreme because there is a relatively large 

decrease of cumulative Pearson residuals within the range of aspects of 25-100 degrees 

(northeast to east) and an increase within the range of 150-210 degrees (south to southwest). 

There are obvious systematic patterns observed in Figure 10d: the nadir of the curve is much 

less than the 2σ− limit of error bounds, and there is a steep increase of cumulative residuals 

after the nadir point (900-1050 ft). The patterns suggest that the null model overestimates 

intensity of fire occurrence for spatial locations with less than 900 ft (i.e., 274 m) elevation, 

and more fires are ignited at higher elevations (refer to Figure 5). The patterns revealed from 
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Figure 10e and Figure 10f are easier to explain using the kernel smoothed intensity map 

(Figure 8). The intensity of fire occurrence estimated from kernel smoothed estimation is in 

general smaller than the constant intensity 1.009116e-06, estimated from the null model, 

within the area that is x-coordinated less than 64,550 m (x-coordinate of the first inflection 

point in Figure 10e), and larger than the average within the area that is x-coordinated 

between 64,550 m and 65,550 m (x-coordinate of the second inflection point in Figure 10e). 

Similarly, kernel-smoothed intensity is in general lower than the intensity estimated from the 

null model within the area that is y-coordinated between 4,065,000 m and 4,085,000 m (y-

coordinates of the first and second inflection point in Figure 10f respectively), and is higher 

than the average within the area that is y-coordinated larger than 4,085,000 m. These patterns 

manifested in lurking variable plots against Cartesian coordinates are possibly resulted from 

diverse drivers, which may include road proximity, topography, and other factors that were 

not included in our study. 

Table 2 gives the maximum log-likelihoods and AIC values for the models 

considered in our model selection stage. The models were fitted to the data using the 

maximum pseudo-likelihood method that was described in section 3.2.3. All models 

considered are for Poisson point processes, in which case maximum pseudo-likelihood is 

equivalent to maximum likelihood (Baddeley and Turner, 2005). Although AIC is useful for 

the comparison of competing models, we didn’t rely solely on AIC in selecting the best 

model. Residual analysis was also exercised for every fitted model. When we didn’t include 

Cartesian coordinates as predictor variables in the log-linear regression models, the best one, 

denoted as 1H , has identified the predictor variables as the distance to the road, land cover, 

elevation and the square of elevation, and slope. Aspect, however, was eliminated in the 
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model selection procedure. The lurking variable plots (Figure 11) for the fitted model, 

showed that the model has captured the effects of road proximity, slope, and elevation on fire 

occurrence patterns fairly well comparing to the lurking variable plots for the null model 

(Figure 10). Nevertheless, the glaring violation of error bounds in the lurking variable plots 

against Cartesian coordinates as shown in Figure 11e and Figure 11f implied that there was 

still presence of spatial trend not captured in this model. Hence proposed spatial covariates 

(road proximity, land cover, and topography) were not sufficient for characterizing spatial 

variation of fire occurrence density. We then added Cartesian coordinates into the models. 

The selected model 2H  having 22 parameters (Table 2) was much more complicated than 1H , 

but also showed greater improvement in terms of model diagnostics (Figure 12).  

We calculated the generalized K function for inhomogeneous Poisson point process 

(Baddeley et al., 2000), Ki for our final full model 2H . The calculated Ki function (Figure 13) 

was within the envelopes of 99 simulations of inhomogeneous Poisson point process with the 

same distribution of conditional intensity as the one of model 2H , indicating our assumption 

of inhomogeneous Poisson process was valid. 

 

4.3 Distribution of fire occurrence density and fire occurrence probability 
in space 
 

The spatial intensity calculated from our point process model can be loosely 

interpreted as fire occurrence density. Figure 14 provided two spatial distributions of fire 

occurrence density calculated from the two models 1H and 2H . Both parametric models 

showed spatial trend affected by the road proximity, land cover, and topography, which were 
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not characterized in the non-parametric estimated intensity of fires (Figure 8) using the 

kernel smooth technique. Based on these spatial covariates alone (in 1H model), fire 

occurrence density is estimated to be high for all spatial locations that are close to roads, 

even for those within the buffer areas of the town of Birch Tree and Alton (northwestern and 

southwestern areas in Figure 14a) – where very few fires were actually reported in 1970 – 

2002 (Figure 3). We suspected that the effects of spatial covariates that we included were 

overwhelmed by some factors we did not have knowledge of. The factors could be the 

efficient execution of fire suppression for these two towns, the lack of fire reporting, or 

others. Nevertheless, the more complicated model 2H  did not show this contradiction to the 

fire occurrence data in the estimated spatial distribution of fire occurrence density (Figure 

14b) by incorporating Cartesian coordinates in the regression. The estimated fire occurrence 

density in the buffer area of Alton is smoothed low (left bottom area in Figure 14d), and high 

fire occurrence density is mostly found in the places that are not only along roadways but 

also within the specific “hot bed” areas (e.g., the upper middle area right below Winona, 

Figure 14b).  

We therefore used the model 2H as our final full model to derive fire occurrence 

probability in space. The study area was represented as a grid in which each cell has the size 

of 1 ha (100 by 100 meters). The normalized fire occurrence density (λ , number of fires per 

m2 per decade) was then estimated using the model 2H . The fire occurrence probability of 

one cell is defined as the probability of having at least one fire occurrence within the 1-ha 

cell over a decade. It is calculated from the Poisson probability density function as 

*1000( 1) 1 ( 0) 1P x P x e λ−≥ = − = = − , 
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Where x denotes number of fire occurrence within the cell. The calculated fire occurrence 

probability for each cell is shown in Figure 15. It is obvious that spatial pattern of fire 

occurrence probability is identical to the pattern of fire occurrence density shown in Figure 

14b. 

 

4.4 Effects of proximity to roads, topography, and land cover on fire 
occurrence probability 
 

The lurking variable plots against spatial covariates for the null model have already 

provided some rough ideas on how these factors affect fire occurrence. The coefficients of 

the chosen models estimated from the fire occurrence data further provided quantitative 

information on how each spatial covariate affects fire occurrence density, and consequently 

fire occurrence probability. Table 3 gives the coefficients of predictor variables related to the 

spatial covariates for the model 2H . The model is a log-linear regression of intensity as 

showed in equation (7), where the conditional intensity is equivalent to the intensity for 

Poisson point processes. The intensity is a product of several multiplicative components, and 

each component represents the contribution of a predictor variable. Because the variables in 

the model take non-negative values, variables with positive coefficients have positive 

contributions to fire occurrence density and hence fire occurrence probability while the ones 

with negative coefficients have negative contributions. Fire occurrence probability in the 

locations that are away from roads is in general lower, and a one-meter increase in distance 

to nearest road makes log-intensity decrease 9.144732e-04 when all other factors are fixed. 

Fire occurrence probability is also lower in steep places, and one-degree increase in slope 

makes log-intensity decrease -3.336604e-03 provided other factors are fixed. Fire occurrence 
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probability first decreases then increases with regard to elevation, since the coefficient for 

elevation is negative and relatively high (-6.094904e-03) but the coefficient for the square of 

elevation is positive and relatively low (5.418072e-06). The inflection value is about 1125 ft 

(i.e., 343 m) when other factors are not considered. Land cover is modeled as a factor in the 

regression, and the ranking of land cover class in terms of fire occurrence probability is urban 

(corresponding coefficient is -1.189284) < grassland (corresponding coefficient is 0) < 

deciduous forest and woodland (corresponding coefficient is 0.5558712) < mixed forest and 

woodland (corresponding coefficient is 0.6762037).  

 

5. Discussion 
 

5.1 Why topography and fuel are still important in anthropogenic fire 
regimes 
 

Studies of dendrochronological fire histories from the Missouri Ozarks have 

identified cultural effects such as roads and agricultural development are replacing fuel and 

topography to affect the spread, frequency, and size of fires during the modern-era fire 

regime stage (Guyette et al. 2002). Our results further showed that fire occurrences are 

spatially clustered, and the accessibility to humans is one of the most important determinants 

of spatial locations of human-caused fires. Proximity to roads is one aspect of human-

accessibility, and the places close to roads (< 500 m) are in general associated with high fire 

occurrence probability. The roads are often located either on the ridge tops or in the valley 

bottoms in this region, but most fires are set along the roads in ridge tops (elevation > 900 ft 

a.s.l.) as shown in the results (e.g., Figure 10d). This is may be because that (1) many roads 
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in the valleys are eroded more or less by floods, and (2) the moisture of fuels along the 

valleys is higher than ridge tops, making these places unfavorable for people to start a fire. 

Steep slope is also a limiting factor because high (> 25 degree) slopes (e.g., bluffs) are 

difficult for humans to access. The differential effects of various land cover classes 

(substitute for fuel types) on human-caused fire occurrence probability can also be explained 

by the characteristics of human behaviors. If an arsonist intends to set a fire, he or she is 

more likely to choose flammable fuel types such as shortleaf pine and oak forests and 

woodlands in this region. Therefore, fuel type and topography, which are often modeled in 

lightning-caused fire occurrence process (e.g., Wotton and Martell, 2005), may still be 

prominent ingredients in human-caused fire occurrence process, although the explanations of 

such effects are different. This finding suggests that for an anthropogenic fire regime, 

vegetation dynamics still interacts with dynamics of fire occurrence process. 

 

5.2 Applications of modeling results 
 

The map of fire occurrence probability estimated from the model can be directly used 

in fire risk analysis for forest managers. The map helps us not only to pinpoint “hot spot” 

(high fire occurrence probability) areas, but also to identify areas that should be paid more 

attention in terms of fire risk. For example, The Irish Wilderness, a 66 km² wilderness area 

established in 1984 and a part of the Mark Twain National Forest, is located in the southeast 

of our study area. The area is primarily covered by shortleaf pine and oak forests and 

woodlands, and deciduous forests. There are no drivable roads in the Wilderness area and 

motorized or mechanical equipment including bicycles is prohibited. Hence the fire 
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occurrence probability in this area is very low (Figure 15). However, the fire occurrence 

probability surrounding this area (especially to the east and west) is high (Figure 15). This 

makes the chance for the Wilderness area to be burned by the propagation of fire ignited 

from surroundings be relatively high.  

Another important application of our results is in forest landscape modeling of 

succession and fire disturbance. Fire occurrence simulation is one of the three components in 

fire simulation. The other two are fire spread simulation and fire effects simulation. A fire 

occurrence is usually modeled as two consecutive stages – fire ignition and fire initiation 

(e.g., Antonovski et al., 1992; Davis and Burrows, 1994; Li, 2000; Yang et al., 2004). For 

these forest landscape models, the number of ignitions is often simulated from a Poisson 

distribution whose parameter intensity (i.e., fire ignition density) is provided by users as a 

model input. The most common parameterization of the fire ignition density is purely based 

on fire frequency distributions in which fire cycle is the only descriptor variable. It hence 

fails to incorporate the effects of roads and topography on the fire occurrence process. We 

can derive fire ignition density map from our modeling results and use it as the input data for 

these models. It will then greatly improve simulation realism in terms of spatial patterns of 

fire occurrence. 

 

5.3 Implications of the approach and methods 
 

We used a spatial point process modeling approach in analyzing spatial patterns of 

human-caused fires in Mark Twain National Forest in the southern Missouri Ozark 

Highlands, reported in 1970 – 2002. Inhomogeneous Poisson process was assumed and a log-
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linear regression was used for modeling intensity of fire occurrence with regard to road 

proximity, elevation, slope, aspect, and land cover. Spatial distribution of fire occurrence 

density was also affected by some unobserved factors, which were evaluated using Cartesian 

coordinates as substitutes in the model. The residual analysis was proved to be a very 

powerful tool in selecting predictor variables and charactering the effects of spatial covariates. 

The approach used here is statistically rigorous and can be applied elsewhere in the modeling 

of human-caused or natural-caused fire occurrence process and other point processes in 

forestry. The approach allows input spatial grid data to have different resolutions (e.g., the 

resolution of DEM data is 60 m, whist the resolution of land cover GIS data is 30 m), but it 

requires all the spatial covariates to be either spatially continuous (e.g., distance to nearest 

road) or lattice data (e.g., land cover). It is possible in the future studies that a newly added 

explanatory variable is observed only in the locations of fire occurrence. In this case, one 

could use geostatistical methods to interpolate from the observed values to the entire region 

(Rathbun, 1996). 
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Tables 
 

Table 1. Land cover classes from the MoRAP data and the aggregated classes used in the 

analysis. 

 
Land cover class Count of cells Aggregated class 

Urban Impervious 1260 

Urban Vegetated 1392 

Barren or Sparsely Vegetated 456 

Grown Crops 158 

Glade Complex 1407 

Open Water 595 

Urban 

Cool-season Grassland 220606 Grassland 

Eastern  Redcedar-Deciduous Forest and Woodland 28887 

Deciduous Woodland 47433 

Upland Deciduous Forest 742449 

Deciduous 

Shortleaf Pine-Oak Forest and Woodland 239844 

Shortleaf Pine Forest and Woodland 145808 

Shortleaf Pine-Oak 

SUM 1430295  
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Table 2. Comparison of Poisson point process models fitted to the fire occurrence data  

 
Model Max log-

likelihood 
Number of 
parameters 

AIC 

Null model (homogeneous Poisson) -19233.56 1 38469.12

 

Alternative models that only includes spatial covariates 

 

poly (D,1) -19084.67 2 38173.34

poly (D,3) -19081.01 4 38170.02

poly (D,2) + factor(L)  -19002.73 6 38017.46

poly (D,1) + factor(L) + poly (E,2)  -18974.99 7 37963.98

poly (D,1) + factor(L) + poly (E,1) + poly(S,1) -18971.76 7 37957.52

*poly (D,1) + factor(L) + poly (E,2) + poly(S,1) -18969.36 8 37954.72

poly (D,1) + factor(L) + poly (E,2) + poly(S,1) + poly(A,1) -18968.43 9 37954.86

 

Cartesian coordinates are also considered in the models 

 

poly(x,y,4) -18896.74 15 37823.48

poly(x,y,4) + poly (D,1) + factor(L) + poly (E,1) + poly(S,1) + poly(A,1) -18754.29 22 37552.58

**poly(x,y,4) + poly (D,1) + factor(L) + poly (E,2) + poly(S,1)  -18752.33 22 37548.66

 

Where poly() denotes polynomial function, D denotes distance to nearest road, L denotes 
land cover class, E denotes elevation, S denotes slope, and A denotes aspect. 

* denote this model is the best one based on AIC in the group of models that only use spatial 
covariates as predictor variables. The model is denoted as 1H in this paper. 

** denote this model is the best one based on AIC in the group of models that use both 
spatial covariates and Cartesian coordinates as predictor variables. The model is denoted as 

2H in this paper. 
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Table 3. Coefficients of spatial covariates for the model 2H  

 
Predictor variable Coefficient 

Intercept -6.308161e+09 

Distance to nearest road -9.144732e-04 

Grassland 0 (assumed) 

Deciduous Forest and Woodland 5.558712e-01 

Shortleaf Pine (mixed with Oak) Forest and Woodland 6.762037e-01 

Urban/Barren -1.189284e+00 

Slope degree -3.336604e-03 

Elevation height -6.094904e-03 

Square of elevation height  5.418072e-06 
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Figures 
 

 
Figure 1. Study area 
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Figure 2. The flowchart of the overall approach. Each rectangle stands for a specific 
procedure, and each rounded rectangle stands for the method used in the corresponding 
procedure.
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Figure 3. The grid image of proximity to primary roads overlaid with primary roadway 
coverage and reported fire occurrences. The major roads includes US highway 60 and 160, 
numbered state highway 19 and 99, and lettered state highways (e.g., route K, route AA). 
The three towns (Alton, Birch Tree, and Winona) are located in the boundary of the study 
area. 
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Figure 4. The grid image of aggregated land cover overlaid reported fire occurrences 
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Figure 5. 60-meter resolution DEM data, coupled with reported fire occurrences 
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Figure 6. The grid image of slope Calculated from the DEM data, and fire occurrences 
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Figure 7. The grid image of aspect Calculated from the DEM data, and fire occurrences 
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Figure 8. Kernel smoothed intensity (expected number of fires per meter) estimated from the 
fire occurrence data reported in 1970 – 2002 
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Figure 9. Estimated K function for the observed fires in 1970 – 2002 
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Figure 10. Lurking variable plots against (a) distance to nearest road, (b) slope, (c) aspect, (d) 
elevation, (e) x-coordinate, and (f) y-coordinate for the null model fitted to the data. The 
solid lines are empirical curve of cumulative Pearson residuals. The dotted lines denote two-
standard-deviation error bounds. 
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Figure 11. Lurking variable plots against (a) distance to nearest road, (b) slope, (c) aspect, (d) 
elevation, (e) x-coordinate, and (f) y-coordinate for the 1H  model fitted to the data. The solid 
lines are empirical curve of cumulative Pearson residuals. The dotted lines denote two-
standard-deviation error bounds. 
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Figure 12. Lurking variable plots against (a) distance to nearest road, (b) slope, (c) aspect, (d) 
elevation, (e) x-coordinate, and (f) y-coordinate for the 2H  model fitted to the data. The solid 
lines are empirical curve of cumulative Pearson residuals. The dotted lines denote two-
standard-deviation error bounds. 
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Figure 13. Generalized K function, Ki for the final full inhomogeneous Poisson point process 
model 2H . The solid line represents the observed Ki,, the dotted line is the theoretical Ki 
function, and the two dashed lines are the upper and lower bounds calculated from 99 
simulations. 
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Figure 14. Fire occurrence density (fires per m2) for all the years 1970 – 2002 calculated 
from the model (a) 1H  and (b) 2H , and their corresponding 3D perspective graphs: (c) 1H and 
(d) 2H .  
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Figure 15. The grid image of estimated fire occurrence probability, defined as the probability 
of having at least one fire occurrence for the given 1-ha size cell over a decade. 
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