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ABSTRACT

This dissertation is devoted to the optimum receiver design and theoretical performance

analysis of wireless communication systems operated over fading channels, and this ob-

jective is incarnated by means of design, analysis and simulation of a broad range of

wireless communication systems under various practical system configurations. First, a

statistical discrete-time system model is proposed for wireless communication systems

operated in wideband doubly selective (both time-selective and frequency-selective) fad-

ing environment, and it provides a generic analysis and simulation framework for the

design and evaluation of wireless communication systems. Based on the statistical prop-

erties of the discrete-time model, we next develop a multiuser channel estimation al-

gorithm for quasi-synchronous CDMA systems operated over doubly selective Rayleigh

fadings to compensate the impairments of multipath fading. Then an optimum diversity

receiver is proposed for systems with channel estimation error, and theoretical error prob-

ability expressions are derived for such receiver operated in time-selective flat Rayleigh

and Ricean fading channels to investigate the effects of noisy channel estimation on sys-

tem performance. By employing a new single-input multiple-output (SIMO) equivalent

system method, we next analyze the theoretical error performance of systems with dou-

bly selective fading channels to identify the relationship between system performance

and fundamental system parameters such as Doppler spread, delay spread, and receiver

timing phase offset, and closed-form error probability expressions are derived as tight

performance low bounds for M-ary phase-shift-keying (MPSK), M-ary amplitude-shift-

keying (MASK) and square M-ary quadrature-amplitude-modulation (MQAM) systems

operated in doubly selective Rayleigh fadings. Moreover, with the help of frequency-

domain analysis, the effects of receiver timing phase offset and receiver oversampling are

explicitly expressed in the statistical representation of the post-detection signal to noise
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ratio (SNR), which is further quantified in the error probability expressions, and some

interesting results about receiver timing phase sensitivity are obtained from the analyt-

ical results. Finally, spectral efficiency analysis are carried out for multiuser multi-user

cellular mobile radio systems, where the primary performance limiting factor is cochan-

nel interference (CCI) from neighboring cells due to frequency reuse. To facilitate the

analysis of the statistical properties of CCI in a wireless environment suffering from both

short-scale fading and large-scale shadowing, a flexible lognormal sum approximation is

proposed based on the Gauss-Hermite expansion of the moment generating function

(MGF). By analyzing the statistical behaviors of the post-detection signal to noise plus

interference ratio (SINR), we derive expressions for the system spectral efficiency and

outage probability, with which the joint effects of CCI, multipath fading, shadowing,

additive noise and cell sectorization on system performance are analyzed.

The theoretical performance expressions presented in this dissertation provide a set of

analytical tools for communication system design and evaluation. In addition, all of the

analytical results presented in this dissertation are rigorously verified through extensive

numerical simulations, and excellent agreements are observed between the simulation

results and theoretical expressions.
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Chapter 1

Introduction

1.1 Background and Motivation

With the ever-increasing worldwide demand for mobile and personal portable communi-

cations, the next generation wireless communication systems are required to be capable

of providing high quality reliable voice services as well as broadband data services with

communication quality and data rates far beyond the limitations of current wireless

systems. This objective, once achieved, will provide incomparable conveniences to our

everyday life; at the mean time, the hostile nature of the mobile radio channels poses

enormous challenges on the road leading to the fulfillment of this demanding yet intrigu-

ing quest.

One of the primary performance-limiting factors inherent in wireless channels is multi-

path fading, which is resulted from the reflection, diffraction or refraction of the transmit-

ted waveforms through different propagation paths. A typical propagation environment

between a base station and a mobile station is illustrated in Fig. 1.1. The superimposed

multipath radio waves could add up either constructively or destructively at the receiver

owing to their phase differences, and this will result in power fluctuation and phase

distortion of the received signals, or, multipath fading.

Doppler spread and delay spread are two fundamental parameters characterize the be-

haviors of multipath fading. Doppler spread is introduced by the relative motion between
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Figure 1.1: A typical wireless propagation environment

the base station and mobile stations, signals; while delay spread is a result of the rel-

ative propagation delays among the multipath radio waves. Doppler spread and delay

spread can be equivalently represented by channel coherence time and channel coherence

bandwidth, respectively. Coherence time (bandwidth) is defined as the time (frequency)

range over which the statistical fadings are correlated. If the channel coherence time is

less than the system symbol period, the channel is classified as time-selective; likewise, a

smaller coherence bandwidth compared to the signal bandwidth will lead to frequency-

selective fading in that different frequency components of the transmitted signals are

subject to different attenuation and phase shifts. Time-selective fading lead to time

variation of the amplitude and phase distortions of the transmitted signals, and the

direct consequence of frequency-selective fading is intersymbol interference (ISI). The

term doubly selective is used in this dissertation to describe multipath fading that is

both time-selective and frequency-selective.
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Multipath fading is a double-edged sword for wireless communication system: the uncer-

tainties and ISI introduced by doubly selective fading are detrimental to system perfor-

mance; however, if properly handled, the time selectivity and frequency selectivity could

also be utilized to facilitate system design since they provide extra degrees of freedom

in the time domain and/or frequency domain. As discussed before, signals transmitted

in doubly selective fading channels at different time and/or frequency are undergoing

statistically independent fading, thus the probabilities that all the signal components

are deeply faded simultaneously is much smaller compared to the non-selective case.

This selective property will provide extra order of diversity in the time and/or frequency

domain, which will eventually benefit system performance. It is well known that the

uncertainties of time-varying multipath fading can be compensated by adaptive channel

estimation and diversity techniques, and the effects of ISI induced by frequency-selective

fading can be effectively mitigated by equalization algorithms. However, how to quan-

tify and utilize the benefits contributed by the doubly selective fading still remains an

interesting question.

Another performance constraining factor that distinguishes wireless system from its

wireline counterpart is cochannel interference (CCI), which is a byproduct of frequency

reuse, the key feature adopted by cellular mobile radio systems to capitalize the scarce

and precious spectral resources. To increase the overall system spectral efficiency, which

is defined as the maximum data rate supported by unit bandwidth, the coverage area

of the mobile radio system is divided into cells with the same frequency channels being

reused in cells spatially separated. Inevitably, CCI is introduced due to the fact that the

same frequency resources are shared among different cells. CCI will ultimately limits

the link quality thus system capacity of the mobile radio network. Therefore, the proper

identification of the relationship between system spectral efficiency and CCI will greatly

benefit the system design.

To combat the hostile wireless environment as well as to explore the potential provided

by mobile radio channel, we in this dissertation focus on the optimum receiver design

as well as theoretical performance analysis of wireless communication systems operated
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over fading channels. By exploring the system structure and statistical properties of

the wireless channel, optimum receivers and performance enhancement algorithms can

effectively mitigate or compensate the impairments caused by the wireless channel, thus

improve the communication link quality and system spectral efficiency. Likewise, the-

oretical system performance analysis enables in depth analysis and investigation of the

fundamental relationship among system performance criteria (error probability, spectral

efficiency), system parameters (Doppler spread, delay spread, CCI, channel estimation

error, etc.), along with various performance enhancement techniques (channel estima-

tion, diversity reception, etc.). Moreover, the theoretical performance results provide a

set of analytical tools which can be in turn used to guide the design and development

of communication systems.

1.2 Objectives

The dissertation objectives lie in two aspects. First, to develop optimum receiver and

performance enhancement algorithms which are capable of combating the impairments

caused by multipath fading by exploring the properties unique to mobile radio channels,

thus to improve the overall system performance. Second, to develop generic analytical

frameworks for the investigation and evaluation of wireless communication systems, and

to provide theoretical system performance expressions that can be applied to evaluate

the performance of existent systems or to guide the development or planning of new

systems. These two objectives are incarnated throughout this dissertation by means

of practical design, theoretical analysis and extensive simulations of a broad range of

wireless communication systems under various system configurations. Specifically, spe-

cial attentions are given to quantitatively identify the influences of practical system

parameters, such as channel estimation error, receiver timing phase offset, on system

performance, so that the results obtained here will be of practical values to the design

and analysis of actual systems.
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1.3 Dissertation Outline

Chapter 2: In this chapter, a generic statistical discrete-time model is proposed to

provide an analysis and simulation framework for systems with wideband multiple-input

multiple-output (MIMO) fading channels which are doubly selective due to Doppler

spread and delay spread. The new discrete-time MIMO channel model includes the

combined effects of the transmit filter, physical MIMO multipath fading and receive

filter, and it leads to very efficient analysis and simulation of physical continuous-time

MIMO channels.

Chapter 3: Based on the statistical properties of the discrete-time channel model pre-

sented in Chapter 2, a pilot assisted minimum mean square error (MMSE) multiuser

channel estimation algorithm is proposed for quasi-synchronous CDMA systems that un-

dergo doubly selective fading. The multiuser fading channel is represented as a symbol-

wise time-varying chip-spaced tapped delay line filter with correlated filter taps. In the

development of the estimation algorithm, the channel inter-tap correlation matrix is

deemed as an essential factor, and a novel iterative method is proposed for the joint es-

timation of the channel inter-tap correlation and filter tap timing based on the received

pilot samples.

Chapter 4: In this chapter, the design and performances of coherent diversity receivers

with channel estimation error are investigated. The optimal diversity receiver for coher-

ent reception with noisy channel state information is derived. and expressions for the

average error probability of optimal diversity MPSK with noisy channel estimation are

derived for Rayleigh and Ricean fading channels.

Chapter 5: Theoretical error performance analysis of wireless communication systems

suffering doubly selective Rayleigh fadings are carried out to identify the relationship be-

tween system performance and fundamental system parameters such as Doppler spread

and delay spread. The single-input single-output (SISO) systems with doubly selec-

tive fading channels are equivalently represented as discrete-time single-input multiple-

output (SIMO) systems with correlated frequency-flat fading channels, with the corre-

lation information being determined by the combined effects of sampler timing phase,
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maximum Doppler spread, and delay spread of the physical fading as discussed in Chap-

ter 2. Based on the equivalent SIMO system representation, closed-form error probabil-

ity expressions are derived as tight lower bounds for linearly modulated systems with

fractionally spaced equalizers.

Chapter 6: we investigate the effects of timing phase offset, which is defined as the

phase difference between the transmitter clock and receiver clock, on wireless system

performance. With frequency domain analysis, the instantaneous SNR observed by the

communication receiver is expressed as an explicit function of system timing phase offset

and receiver oversampling. A tight performance low bound is then derived for system

experiencing frequency selective Rayleigh fading by examining the statistical properties

of the receiver SNR. From the analytical results, it is observed that, if the receiver

sampling rate is less than the Nyquist rate of the received signal, then the system error

probability is a periodic function of the timing phase offset; on the other hand, the

performance of oversampled system is independent of timing phase offset.

Chapter 7: A simple and novel method is presented to approximate the sum of indepen-

dent, but not necessarily identical, lognormal random variables, which are used to model

the effects of large-scale shadowing in a wireless cellular system. With the help of a short

Gauss-Hermite expansion of the moment generation function, the lognormal sum is ap-

proximated by a single lognormal random variable. Observations and comparisons are

made between the proposed method and the ones available in the literature such as the

Fenton-Wilkinson method, Schwartz-Yeh method, the recently proposed Beaulieu-Xie

method, and others. The proposed method can accurately approximate different por-

tions of the lognormal sum probability distribution function, and provides the parametric

flexibility to handle the inevitable trade-off that needs to be made in approximating both

the head and tail portions of the lognormal sum probability distribution function.

Chapter 8: This chapter is devoted to analyze the theoretical spectral efficiency of

multiuser cellular mobile radio systems with practical resource scheduling algorithms.

Co-channel interferences are modeled as independent, but non-identically, distributed

random process, with the channel power determined by the geometric layout of the
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cellular system. By analyzing the statistical properties of the post-detection signal

to interference plus noise ratio (SINR), spectral efficiency expressions are derived for

system with Max-SINR scheduler and Round Robin scheduler. The effects of modulation

alphabet size limit on system performance are quantified in the analytical expressions.

Excellent agreements are observed between the analytical expressions and the simulation

results.

Chapter 9: Conclusion remarks are drawn in this chapter. The major contributions of

this dissertation is summarized, and future work is discussed.
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Chapter 2

A Discrete-time model for

spatio-temporally correlated MIMO

WSSUS multipath channels

2.1 Introduction

The Multiple-input multiple-output (MIMO) communication architecture has recently

emerged as a new paradigm for high data rate wireless cellular communications in rich

multipath environments. Using multiple-element antenna arrays at both the transmitter

and receiver, which effectively exploits the spatial dimension in addition to time and fre-

quency dimensions, this architecture shows channel capacity potential far beyond that of

traditional techniques. In quasi-static, independent and identically distributed (i.i.d.),

frequency flat Rayleigh fading channels, the MIMO capacity scales linearly with the

number of antennas under some conditions [1], [2]. However, in practice, subchannels

of a MIMO system are usually space-selective (caused by angle spread at the transmit-

ter and/or receiver), time-selective (caused by Doppler spread), and frequency-selective

(caused by delay spread), which are referred to as triply selective MIMO channels in

this thesis. These selectivities may substantially affect the MIMO performance [3], [4].

Further work in this field necessitates a realistic and efficient MIMO channel simula-

tion model to investigate, evaluate and test new algorithms and performance of MIMO
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wireless systems under triply selective fading scenarios.

The topic of MIMO channel modeling has received great interests recently [5]- [12].

Among them, frequency-selective Rayleigh fading channels were discussed in [5] and [6]

with certain assumptions, while flat Rayleigh fading channels were explored in [12].

Physical channel models which include antenna polarization and/or angular information

were discussed in [7]- [11]. But, all of these previous models are special cases of triply

selective fading, and they are continuous-time based models. When the number of

multiple delayed fading paths is large and/or the differential delay between paths is small,

which are usually true for wideband systems in practice, then a significant amount of

computational effort is required in simulations with continuous-time channel models [13].

The discrete-time channel model was first presented by Forney [14], and simulation

models in discrete-time domain were discussed in [15]- [17] for single-input single-output

(SISO) wireless channels. These papers [15]- [17] qualitatively showed the computational

efficiency in favor of the discrete-time models, however, simulation results showed that

these discrete-time models are not statistically equivalent to their continuous-time coun-

terparts. For example, the bit error rate (BER) performance from these discrete-time

models of a mobile communication system is different from that of the corresponding

continuous-time models. This significantly reduces the practical value of these simula-

tion models in [15]- [17]. Therefore, an accurate discrete-time model for both SISO and

MIMO channels is highly desirable.

The main objective of this chapter is to establish a discrete-time MIMO channel model,

which is statistically accurate and computationally efficient to characterize the continuous-

time MIMO Rayleigh fading channel that is triply selective. The discrete-time MIMO

channel model will translate the effects of transmit filter, physical MIMO channel fading

and receive filter into the receiver’s sampling-period spaced stochastic channel coeffi-

cients. No oversampling is needed to handle multiple fractionally-delayed fading paths

or to approximate channels with possible continuous-delayed paths. The simulation

of a MIMO system is carried out in a pure discrete manner, which leads to a higher

computational efficiency and possible better statistical accuracy.
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This chapter is organized as follows. Section 2.2 describes the continuous-time MIMO

Rayleigh fading channel which includes the transmit filter, physical MIMO fading chan-

nel and receive filter. Two assumptions on the physical MIMO channel are also stated

in this section. Section 2.3 proposes a discrete-time MIMO channel model which is

statistically equivalent to the continuous-time MIMO channel model. The statistical

properties of the discrete-time MIMO Rayleigh fading channel are analyzed in detail,

and further used to generate the stochastic channel coefficients for simulation purposes.

Simulation experiments are shown in Section 2.4 to demonstrate the statistical accuracy,

computational efficiency and applications of the discrete-time MIMO channel model, in-

cluding the evaluation of MIMO channel capacity under triply selective fading scenarios.

Finally, Section 2.5 concludes this chapter.

2.2 MIMO Channel Description and Assumptions

2.2.1 MIMO Channel Description

We consider a wideband MIMO wireless channel which contains N transmit antennas

and M receive antennas. Let p
T
(t) and p

R
(t) be the time-invariant impulse responses

of the transmit filter and the receive filter, respectively, and both are normalized with

energy of unity. Let gm,n(t, τ) be the time-varying impulse response of the (m,n)th-

subchannel connecting the nth-transmit antenna and the mth-receive antenna, where

gm,n(t, τ) is defined as the response at time t to an impulse applied to the subchannel at

time t−τ [18]. The block diagram of this MIMO channel is depicted in Figure 2.1, where

{sn(k)} is a sequence of complex symbols transmitted by the nth-transmit antenna with

symbol period of Tsym, ym(t) is the received signal at the mth-receive antenna, and ym(k)

is the sampled version of ym(t) with sampling period of Ts = Tsym/η, and η is an integer

number. If η = 1, then the sampling rate at the receiver is the same as the symbol rate

at the transmitter.
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Figure 2.1: A conventional continuous-time baseband MIMO channel model.

We define the combined impulse response of the (m,n)th-subchannel as follows:

hm,n(t, τ) = p
R
(τ) � gm,n(t, τ) � p

T
(τ), (2.1)

where a(τ) � b(t, τ) =
∫
b(t, α)a(τ − α)dα represents the convolution operation. There-

fore, the received signal ym(t) =
∫
hm,n(t, τ)sn(t− τ)dτ can be expressed by

ym(t) =
N∑

n=1

∞∑

k=−∞
sn(k)hm,n(t, t− kTsym) + zm(t), m = 1, 2, · · · ,M, (2.2)

where zm(t) is the additive noise given by

zm(t) = vm(t) ~ p
R
(t) (2.3)

and vm(t) is the zero-mean complex-valued white Gaussian noise with a two-sided power

spectral density N0. The sampled version of the received signal at the mth-receive

antenna is given by

ym(kTs) =
N∑

n=1

∞∑

l=−∞
sn(l)hm,n(kTs, kTs − lνTs) + zm(kTs), m = 1, 2, · · · ,M. (2.4)

11



If we oversample the transmitted sequence {sn(k)} by inserting (ν − 1) zeros between

each symbol sn(k), then the oversampled sequence denoted by {xn(k)} can be defined

as follows:

xn(k) =





sn(k/ν), if k/ν is integer,

0, otherwise.
(2.5)

Replacing sn(k) in (2.4) by xn(k), we obtain the following equation with a single data

rate of 1/Ts:

ym(k) =
N∑

n=1

∞∑

l=−∞
xn(k − l)hm,n(k, l) + zm(k), m = 1, 2, · · · ,M, (2.6)

where hm,n(k, l) = hm,n(kTs, lTs) is the Ts-space sampled version of hm,n(t, τ), and

zm(k) = zm(kTs) is the Ts-space sampled version of z(t).

With the statistical properties of the discrete-time channel coefficients hm,n(k, l) and

the additive noises zm(k), the MIMO channel input-output can be fully characterized in

the discrete-time domain with high computational efficiency and no loss of information.

Details are given in Section 2.3.

2.2.2 MIMO Channel Assumptions

We have two assumptions on the continuous-time physical channel of wideband MIMO

wireless systems.

Assumption 2.1 : The (m,n)th-subchannel, gm,n(t, τ), of a MIMO system is a wide-sense

stationary uncorrelated scattering (WSSUS) [18], [19] Rayleigh fading channel with a

zero mean and autocorrelation given by

E
{
gm,n(t, τ) · g∗m,n(t− ξ, τ ′)

}
= J0(2πfdξ) ·G(τ) · δ(τ − τ ′), ∀m,n, (2.7)

where (·)∗ is the conjugate operator, fd is the maximum Doppler frequency, and G(τ) is

the power delay profile with

∫ ∞

−∞
G(τ)dτ = 1.
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It is important to note that this assumption is commonly employed for SISO chan-

nels in the literature [13], [15]- [17], and in wireless standards documents [22], [23] for

both TDMA-based GSM (Global System for Mobile communications), EDGE (Enhanced

Data rate for Global Evolution) systems, and CDMA-based UMTS (Universal Mobile

Telecommunications System) and cdma2000 systems. Moreover, the power delay profile

G(τ) is often assumed to be discrete and is given by

G(τ) =

K∑

i=1

σ2
i δ(τ − τi), (2.8)

where K is the number of total resolvable paths, σ2
i is the power of the ith path with

delay τi. For example, the Typical Urban (TU), Hilly Terrain (HT) and Equalization test

(EQ) profiles for GSM and EDGE systems [22], the Pedestrian and Vehicular profiles for

Channel A and Channel B of cdma2000 and UMTS systems [23] have all been defined

as discrete delayed Rayleigh fading paths, and almost all the path delays τi are not

an integer-multiple of their system’s symbol period Tsym (or chip period Tc for CDMA

systems).

This assumption implies that the fades of all the subchannels are identically distributed.

However, it does not require them to be statistically independent. This implies that the

subchannels are not necessarily i.i.d., which was commonly assumed in the literature for

MIMO channels.

Assumption 2.2 : The space selectivity or (spatial correlation) between the (m,n)th-

subchannel gm,n(t, τ) and the (p, q)th-subchannel gp,q(t, τ) is given by

E
{
gm,n(t, τ) · g∗p,q(t− ξ, τ ′)

}
= ρ(m,p)

Rx
· ρ(n,q)

Tx
· J0(2πfdξ) ·G(τ) · δ(τ − τ ′), (2.9)

where ρ(m,p)
Rx

is the receive correlation coefficient between receive antennas m and p with

0 ≤
∣∣ρ(m,p)

Rx

∣∣ ≤ ρ(m,m)
Rx

= 1, and ρ(n,q)
Tx

is the transmit correlation coefficient between

transmit antennas n and q with 0 ≤
∣∣ρ(n,q)

Tx

∣∣ ≤ ρ(n,n)
Tx

= 1.

Assumption 2.2 is a straightforward extension of the MIMO Rayleigh flat fading case

in [24] to the MIMO WSSUS multipath Rayleigh fading case. It implies three sub-

assumptions as explained in [24] and cited as follows: 1) the transmit correlation between
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the fading from transmit antennas n and q to the same receive antenna does not depend

on the receive antenna; 2) the receive correlation between the fading from a transmit

antenna to receive antennas m and p does not depend on the transmit antenna; and

3) the correlation between the fading of two distinct transmit-receive antenna pairs is

the product of the corresponding transmit correlation and receive correlation. These

three sub-assumptions are actually the “Kronecker correlation” assumption used in the

literature, and they are quite accurate and commonly used for MIMO Rayleigh fading

channels [4], [25]. However, it should be pointed out that the third sub-assumption may

not be extended to Ricean fading MIMO channels [26].

It is noted here that the spatial correlation coefficients ρ(m,p)
Rx

and ρ(n,q)
Tx

are determined by

the spatial arrangements of the transmit and receive antennas, and the angle of arrival,

the angular spread, etc. They can be calculated by mathematical formulas [4], [25] or

obtained from experimental data.

2.3 The Discrete-time MIMO Channel Model

In this section, we present a discrete-time model for triply selective MIMO Rayleigh

fading channels, then we investigate the statistical properties of this MIMO channel in

the discrete-time domain. These statistics are further used to build a computationally

efficient discrete-time MIMO channel simulator, which is equivalent to its counterpart

in the continuous-time domain in terms of various statistic measures.

2.3.1 The Discrete-Time Channel Model

It is known that the total number of Ts-spaced discrete-time channel coefficients, hm,n(k, l),

is determined by the maximum delay spread of the physical fading channel gm,n(t, τ),

and the time durations of the transmit filter and receive filter, which are usually infinite

in theory to maintain limited frequency bandwidth. Therefore, hm,n(k, l) is normally a
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time-varying non-causal filter with infinite impulse response (IIR).1 However, in prac-

tice, the time-domain tails of the transmit and receive filters are designed to fall off

rapidly. Thus, the amplitudes of the channel coefficients hm,n(k, l) will decrease quickly

with increasing |l|. When the power (or squared amplitude) of a coefficient is smaller

than a pre-defined threshold, for example, 0.01% of the total power of its corresponding

subchannel, it has very little impact on the output signal, and thus can be discarded.

Therefore, the time-varying non-causal IIR channel can be truncated to a finite impulse

response (FIR) channel. Without loss of generality, we assume that the coefficient index,

l, is in the range of [−L1, L2], where L1 and L2 are non-negative integers, and the total

number of coefficients for the truncated FIR channel hm,n(k, l) is L with L ≤ L1 +L2 +1,

where the equality is held if there are no discarded coefficients within the coefficient index

range of [−L1, L2].

Based on the above discussion and Eqn. (2.6), we can now describe the input-output

relationship of the MIMO channel in the discrete-time domain as follows:

y(k) =
L2∑

l=−L1

Hl(k) · x(k − l) + z(k), (2.10)

where x(k) = [x1(k), x2(k), · · · , xN
(k)]t, z(k) = [z1(k), z2(k), · · · , zM

(k)]t and y(k) =

[y1(k), y2(k), · · · , yM
(k)]t are the input vector, noise vector and output vector at time

instant k, respectively, with (·)t being the transpose operator; Hl(k) is the lTs delayed

channel matrix at time instant k, and defined by

Hl(k) =




h1,1(k, l) · · · h1,N(k, l)
...

. . .
...

hM,1(k, l) · · · hM,N(k, l)


 . (2.11)

The block diagram of this discrete-time MIMO channel model is shown in Figure 2.2.

It is noted that there are (MNL) stochastic channel coefficients, and an M -element

random noise vector in this MIMO Rayleigh fading model (2.10). Since all of them are

complex-valued Gaussian random variables, the first-order and second-order statistics

1It should be noted that the non-causality of hm,n(k, l) is induced by the effects of the transmit filter
and receive filter, while the physical CIR gm,n(t, τ) is always causal.
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Figure 2.2: The equivalent discrete-time MIMO channel model.

of the channel coefficients and the noise vector will be sufficient to fully characterize

the MIMO channel. For the convenience of discussion, we define the MIMO channel

coefficient vector hvec(k) as follows:

hvec(k) = [h1,1(k), · · · ,h1,N(k) | · · · | hM,1(k), · · · ,hM,N(k)]t , (2.12)

where hm,n(k) is the (m,n)th-subchannel’s FIR coefficients at time k, and given by

hm,n(k) =
[
hm,n(k,−L1) · · · hm,n(k, L2)

]
. (2.13)

We are now ready to discuss the statistical properties of the MIMO channel.

2.3.2 Statistical Properties of the Discrete-Time Channel

Proposition 2.1 : The noise vector z(k) is zero-mean Gaussian distributed with auto-

covariance matrix Rzz(k1 − k2) given by

Rzz(k1 − k2) = E
[
z(k1) · zh(k2)

]
= N0 ·Rp

R
p

R
[(k1 − k2)Ts] · IM

, (2.14)

where (·)H stands for the Hermitian of a complex-valued vector or matrix, Rp
R
p

R
(ξ) is

the auto-correlation function of the receive filter p
R
(t), N0 is the two sided power spectral

density of the complex-valued additive white Gaussian noise (AWGN) vm(t), and I
M

is

an M ×M identity matrix.
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Proof: Since zm(t) is the output of a time-invariant linear filter with the input

of zero-mean AWGN vm(t), zm(t) and its sampled version zm(kTs) are both zero-mean

Gaussian random variables. Noting that the zero-mean AWGN vm(t) is independent

from time to time and from antenna to antenna (i.e., E
[
vm1(t1)v

∗
m2

(t2)
]

= N0δ(m1 −
m2)δ(t1 − t2),) we can immediately get (2.14).

If the autocorrelation function of the receive filter, p
R
(t), satisfies the following condition

Rp
R
p

R
(kTs) = 0, k 6= 0, (2.15)

then the discrete-time Gaussian noise zm(k) is still white, from sample to sample and

from antenna to antenna, with variance of N0 due to the receive filter being normalized

to have energy of unity (i.e., Rp
R
p

R
(0) = 1).

Proposition 2.2 : The channel coefficients hm,n(k, l) and hp,q(k, l) are zero-mean Gaussian

random variables, and their covariance function is given by

E
[
hm,n(k1, l1) · h∗p,q(k2, l2)

]
= ρ(m,p)

Rx
· ρ(n,q)

Tx
· c(l1, l2) · J0 [2πfd(k1 − k2)Ts] , (2.16)

where

c(l1, l2) =





∫ +∞

−∞
R̄p

T
p

R
(l1Ts − τ)R̄∗

p
T
p

R
(l2Ts − τ)G(τ)dτ, if G(τ) is continuous

K∑

i=1

σ2
i R̄p

T
p

R
(l1Ts − τi)R̄

∗
p

T
p

R
(l2Ts − τi), if G(τ) is given by (2.8),

(2.17)

with R̄p
T
p

R
(ξ) being the convolution function of the transmit filter and receive filter.

Proof: Based on Eqn. (2.1) and gm,n(t, τ) being zero-mean Gaussian process, it is

easy to conclude that hm,n(k, l) and hp,q(k, l) are zero-mean Gaussian random variables.

Since hm,n(k, l) is the sampled version of hm,n(t, τ), we have

hm,n(k, l) =

∫ +∞

−∞
R̄p

T
p

R
(lTs − τ)gm,n(kTs, τ)dτ. (2.18)
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According to Assumption 2.2, we can obtain

E
[
hm,n(k1, l1)h

∗
p,q(k2, l2)

]
= ρ(m,p)

Rx
· ρ(n,q)

Tx
· J0 [2πfd(k1 − k2)Ts] ×∫ +∞

−∞

∫ +∞

−∞
R̄p

T
p

R
(l1Ts − τ)R̄∗

p
T
p

R
(l2Ts − µ)G(τ)δ(τ − µ)dτdµ

= ρ(m,p)
Rx

· ρ(n,q)
Tx

· J0 [2πfd(k1 − k2)Ts] · c(l1, l2), (2.19)

where c(l1, l2) is given by (2.17). Thus the proof is complete.

We are now in a position to present the statistical property of the channel coefficient

vector hvec(k) with the following theorem.

Theorem 2.1 : The channel coefficient column vector hvec(k) is zero-mean Gaussian dis-

tributed, its covariance matrix Ch(k1 − k2) = E
{
hvec(k1) · hHvec(k2)

}
is given by

Ch(k1 − k2) = (Ψ
Rx

⊗ Ψ
Tx

⊗ C
ISI

) · J0 [2πfd(k1 − k2)Ts] , (2.20)

where ⊗ denotes the Kronecker product [27] and C
ISI

is the covariance matrix of the

intersymbol interference (ISI) filter tap vector hm,n(k). Likewise, Ψ
Rx

, Ψ
Tx

and C
ISI

are given by

Ψ
Rx

=




ρ(1,1)
Rx

· · · ρ(1,M)
Rx

...
. . .

...

ρ(M,1)
Rx

· · · ρ(M,M)
Rx


 , Ψ

Tx
=




ρ(1,1)
Tx

· · · ρ(1,N)
Tx

...
. . .

...

ρ(N,1)
Tx

· · · ρ(N,N)
Tx


 , (2.21)

C
ISI

=




c(−L1,−L1) · · · c(−L1, L2)

...
. . .

...

c(L2,−L1) · · · c(L2, L2)


 , (2.22)

with c(l1, l2) being determined by (2.17).

Proof: Based on (2.13), (2.16) and (2.17), we can immediately get

E
[
htm,n(k1) · h∗

p,q(k2)
]

= ρ(m,p)
Rx

· ρ(n,q)
Tx

· C
ISI

· J0 [2πfd(k1 − k2)Ts] . (2.23)
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According to expression (2.12) of the column vector hvec(k), we can further get its

covariance matrix as follows

Ch(k1 − k2)=




ρ
(1,1)
Rx ρ

(1,1)
T x C

ISI
· · · ρ(1,1)

Rx ρ
(1,N)
T x C

ISI

...
...

...

ρ
(1,1)
Rx ρ

(N,1)
Tx C

ISI
· · · ρ(1,1)

Rx ρ
(N,N)
T x C

ISI

...

ρ
(1,M)
Rx ρ

(1,1)
T x C

ISI
· · · ρ(1,M)

Rx ρ
(1,N)
T x C

ISI

...
...

...

ρ
(1,M)
Rx ρ

(N,1)
Tx C

ISI
· · · ρ(1,M)

Rx ρ
(N,N)
T x C

ISI

...
...

...

ρ
(M,1)
Rx ρ

(1,1)
T x C

ISI
· · · ρ(M,1)

Rx ρ
(1,N)
T x C

ISI

...
...

...

ρ
(M,1)
Rx ρ

(N,1)
T x C

ISI
· · · ρ(M,1)

Rx ρ
(N,N)
T x C

ISI

...

ρ
(M,M)
Rx ρ

(1,1)
T x C

ISI
· · · ρ(M,M)

Rx ρ
(1,N)
T x C

ISI

...
...

...

ρ
(M,M)
Rx ρ

(N,1)
T x C

ISI
· · · ρ(M,M)

Rx ρ
(N,N)
T x C

ISI




×J0 [2πfd(k1 − k2)Ts]

=




ρ(1,1)
Rx

Ψ
Tx

· · · ρ(1,M)
Rx

Ψ
Tx

...
...

...

ρ(M,1)
Rx

Ψ
Tx

· · · ρ(M,M)
Rx

Ψ
Tx


⊗ C

ISI
· J0 [2πfd(k1 − k2)Ts]

= (Ψ
Rx

⊗ Ψ
Tx

⊗ C
ISI

) · J0 [2πfd(k1 − k2)Ts] . (2.24)

This completes the proof of the theorem.

2.3.3 Generation of the Discrete-Time MIMO Channel Fading

Having analyzed the statistical properties of the discrete-time MIMO channel model, we

can generate the stochastic fading channel coefficients represented by the channel vector

hvec(k), whose covariance matrix matches the theoretical one given by Theorem 2.1, for

computer simulations of MIMO systems.

Theorem 2.2 : The zero-mean time-varying Rayleigh fading channel vector hvec(k) can

be generated by

hvec(k) = Ch
1/2(0) · Φ(k) =

(
Ψ1/2

Rx
⊗ Ψ1/2

Tx
⊗ C1/2

ISI

)
· Φ(k), (2.25)

where X1/2 is the square root of matrix X = X1/2 ·
(
X1/2

)H
, which can be obtained by

a few methods shown in [28]; Φ(k) is an (MNL) × 1 vector, whose elements are uncor-

related Rayleigh flat fading, and E
[
Φ(k1) · ΦH(k2)

]
= J0 [2πfd(k1 − k2)Ts] · IMNL×MNL

.
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Proof: This theorem can be proved by using two identities of matrices [27]:

[A⊗ B] [C ⊗D] = [AC] ⊗ [BD] and [A⊗ B]H = AH ⊗ BH , where the matrices have

appropriate dimensions. Details are omitted here for brevity.

The significance of Theorem 2.2 is that it indicates that the generation of the stochastic

channel coefficients of a MIMO system can be done through the Kronecker product of the

square roots of three small matrices in the sizes of M×M , N×N and L×L, rather than

the square root of a very large matrix Ch(0) in the size of (MNL)×(MNL). The number

of operations required for the square root decomposition of Ch(0) is approximately

6M3N3L3 [28]. Alternatively, the number of operations required to decompose three

smaller matrices is approximately 6(M 3 +N3 + L3), and the Kronecker product of the

three matrices requires about (M 2N2L2)/2 operations. Therefore, the ratio between the

number of operations of decomposing one large matrix and the number of operations to

decompose three smaller matrices can be approximated by 12M3N3L3

12(M3+N3+L3)+M2N2L2 . It is

apparent that significant amount of computations will be saved by this method, and it

will additionally leads to much better numerical computation accuracy.

The generation of multiple uncorrelated Rayleigh flat fades is a classic topic with new

challenges for the number (MNL) of multiple fades being large. It has been commonly

postulated in the literature [6], [16], [17], that it can be done by Jakes’ original simulator

[29]. Unfortunately, there are two problems in the original Jakes’ simulator. First, Jakes’

simulator is a deterministic model, it has difficulty [30] to directly generate three or more

uncorrelated Rayleigh flat fading waveforms. Secondly, and more importantly, it was

shown in [31] that Jakes’ simulator is even not stationary in the wide sense, and an

improved Jakes’ simulator was proposed in [31] to remove the stationarity problem.

However, the improved Jakes’ simulator along with the original Jakes’ simulator have

statistic deficiencies as pointed out in [32], and these statistic deficiencies were finally

removed by new Rayleigh fading models developed in [33] and [34]. These new models

can be employed for the generation of the multiple uncorrelated Rayleigh flat fading

vector Φ(k). Here, we present another Rayleigh fading simulation model which can also
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accurately generate the (MNL) × 1 vector Φ(k) as follows.

Φ(k) =
[

Φ1(k) Φ2(k) · · · Φ
MNL

(k)
]t

(2.26)

with

Φq(k) =

√
2

Ks

{
Ks∑

p=1

cos(ψp,q) · sin
[
2πfdkTs cos

(
2πp− π + θq

4Ks

)
+ φp,q

]

+j

Ks∑

p=1

sin(ψp,q) · sin
[
2πfdkTs cos

(
2πp− π + θq

4Ks

)
+ φp,q

]}
. (2.27)

It can be proved that Φ(k) defined above is a zero mean Gaussian process with auto-

covariance matrix given by

E
[
Φ(k1) · ΦH(k2)

]
= J0 [2πfd(k1 − k2)Ts] · IMNL×MNL

, (2.28)

where Ks is chosen to be no less than 8, q = 1, 2, · · · , (MNL), the random phases θq,

ψp,q and φp,q are mutually independent and uniformly distributed on [−π, π) for all p

and q.

The physical meaning of eqn. (2.27) is that each flat Rayleigh fading waveform is made

up of a number of sinusoids which have random path gain exp(ψp,q), random initial

phase φp,q, and random Doppler frequency fd cos[(2πp − π + θq)/(4Ks)]. The random

path gains assure that fades Φq and Φn are statistically uncorrelated when q 6= n. The

random initial phase assures that Φq will be stationary in the wide sense. The random

Doppler frequency assures that the Rayleigh fading Φq has the correct power spectrum

density.

2.3.4 Computational Complexity

Theorems 2.1–2.2 imply that our discrete-time MIMO channel model is statistically

equivalent to the conventional continuous-time channel model. In this subsection, we will

show that the computational complexity of our proposed discrete-time MIMO channel

simulation model is much lower than that of the conventional continuous-time simulation

model, based on the following three aspects.
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First, the sampling rate of the discrete-time model is 1/Ts, which is equal to ν/Tsym with

ν being a small positive integer. However, for the conventional continuous-time model,

when the differential delay of multiple fading paths is very small compared to the symbol

period Tsym, the sampling rate for simulation needs to be very high to implement the

multiple fading paths. Let νc/Tsym be the sampling rate for the continuous-time model,

then the sampling computational complexity ratio of the discrete-time model to the

continuous-time models is given by

ζν =
ν

νc
× 100%. (2.29)

Since νc is usually much larger than ν, the ratio ζν is usually very small. For channels

with continuous power delay profile, such as the exponential power delay profile [13], a

much higher νc is required for continuous-time model, which will lead to a even smaller

ζν.

Second, the number of uncorrelated fades used in the discrete-time model, Ld, is not

larger than the number of uncorrelated fades used in the continuous-time model, Lc.

Thus the ratio ζL = Ld

Lc
× 100% is not larger than 1.

Third, for the discrete-time model, the effects of the transmit and receive filters are

incorporated in the statistical channel coefficients with no additional filtering calculations

involved. However, the simulation of the continuous-time model must pass the input

signals through the transmit and receive filters with extra computations. Moreover,

to represent the small differential delay of multiple fading paths, the continuous-time

model has to use high sampling rate which makes the transmit and receive filters have

large number of taps. This makes the computational complexity of the continuous-time

model even higher than that of the discrete-time model. Unfortunately, an explicit ratio

between these two models is unlikely to obtain.

Combining the aforementioned three facts, we can obtain the total computational com-

plexity ratio of the discrete-time model to the continuous-time model as follows

ζ < ζνζL. (2.30)

For convenient comparison, Table 2.1 shows the computational complexity ratios for TU,
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Table 2.1: The computational complexity ratio of the proposed Discrete-time model to
the conventional continuous-time model

Profiles TU HT EQ PedA PedB VehA VehB

ζν 2.7% 2.7% 2.7% 3.8% 7.7% 3.8% 7.7%
ζL 66.7% 83.3% 100% 50% 100% 83.3% 100%

ζ < ζνζL 1.8% 2.3% 2.7% 1.9% 7.7% 3.2% 7.7%

HT and EQ propagation profiles of EDGE system, and Pedestrian A (PedA), Pedestrian

B (PedB), Vehicular A (VehA) and Vehicular B (VehB) propagation profiles of cdma2000

and UMTS systems. It is noted that these profiles are commonly used simulation test

cases for wireless system evaluation. As can be seen from the table, the newly pro-

posed discrete-time MIMO channel model has much smaller computational complexity

compared to the conventional continuous-time MIMO channel model.

2.4 Simulation Experiments

In this section, we are going to evaluate the discrete-time MIMO channel model by

simulation in three different criteria. First, we assess the statistic accuracy of the model

compared to its theoretically calculated statistics. Second, we demonstrate the statistical

equivalence between the proposed discrete-time model and the conventional continuous-

time model through BER comparison. Third, we present the application of the model

for MIMO channel capacity evaluation of a system which experiences triply selective

Rayleigh fading.

2.4.1 Spatial-Temporal Statistics

Consider a MIMO system consisting of 2 antennas at the base station as the transmitter

and 2 antennas at the mobile station as the receiver, then the correlation coefficient

matrices Ψ
Tx

and Ψ
Rx

can be calculated by the formulas derived in [4] under certain

spatial parameters. For example, if the BS and MS antennas are spaced by 12λ and

0.5λ, respectively, where λ is the wavelength, the angle of arrival is 90o and the angular
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spread is 10o as shown in Figure 2.3, then we get the two matrices as follows:

Ψ
Tx

=


 1.0000 0.2154

0.2154 1.0000


 , Ψ

Rx
=


 1.0000 −0.3042

−0.3042 1.0000


 . (2.31)

BS

MS
PSfrag replacements

12λ

λ
210o

Figure 2.3: The antenna placement of the 2 × 2 MIMO system.

If the power delay profile is exponentially decaying [13], [17] and given by G(τ) =

A · exp(τ/µs) for 0 ≤ τ ≤ 5µs, and G(τ) = 0 otherwise. Likewise, if the transmit filter

is a linearized Gaussian filter with a time-bandwidth product 0.3 [35], the receive filter

is a square root raised cosine (RRC) filter with a roll-off factor 0.3, and the sampling

period Ts is 3.69µs, then the elements c(l1, l2) of the matrix C
ISI

obtained by (2.17) are

shown in Table 2.2.

Table 2.2: The matrix C
ISI

for the exponential delay power profile

c(l1, l2) l2 = −1 l2 = 0 l2 = 1 l2 = 2
l1 = −1 0.0091 0.0426 0.0178 -0.0016
l1 = 0 0.0426 0.3664 0.3407 0.0367
l1 = 1 0.0178 0.3407 0.5583 0.1414
l1 = 2 -0.0016 0.0367 0.1414 0.0602

Having obtained the above three matrices, we can now compare the theoretical statis-

tics as defined in (2.20) of the discrete-time MIMO fading channel coefficients with
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their corresponding empirical correlations obtained from simulations. For illustration

purpose, we only show three of the comparisons here for the sake of brevity. Based

on Theorem 2.1, the theoretical autocorrelation (same as the auto-covariance for a

zero mean random variable) function of the channel coefficient h1,1(k, 1) is given by

0.5583 × J0[2πfd(k1 − k2)Ts], the theoretical cross-correlation function of the channel

coefficients h1,1(k, 0) and h1,1(k, 1) is given by 0.3407 × J0[2πfd(k1 − k2)Ts], and the

theoretical cross-correlation function of the channel coefficients h1,1(k, 0) and h2,1(k, 1)

is given by −0.1036 × J0[2πfd(k1 − k2)Ts]. Using the procedure described in Subsec-

tion 2.3.3, we have generated a set of the time-varying random channel coefficients for

h1,1(k, 0) , h1,1(k, 1) and h2,1(k, 1). Then, their correlation statistics obtained from the

simulation are compared to their corresponding theoretical ones and depicted in Figure

2.4. As can be seen, the spatio-temporal statistics of the MIMO channel simulation

model match the theoretical results very well. We have also compared the correlation

statistics of all other channel coefficients to their theoretical ones, finding good agree-

ment in all cases. Therefore, the statistical accuracy of the the discrete-time MIMO

channel model is confirmed.

We conclude this subsection with two remarks. First, the non-zero cross-correlations

between h1,1(k, 0) and h1,1(k, 1), and between h1,1(k, 0) and h2,1(k, 1) indicate that the

fading coefficients from different subchannels with different delays can be statistically

correlated (or even significantly correlated sometimes). This is quite different from

the commonly used independence assumption in the literature [6], [36], [37], where the

transmit and receive filters were not taken into consideration. Second, the conventional

continuous-time channel model needs a very high oversampling rate [13] to approximately

simulate this continuous power delay profile G(τ), but our discrete-time channel model

can efficiently and accurately simulate the continuous delay power profile as shown above.

2.4.2 Bit Error Rate Comparison

The statistical equivalence of the discrete-time channel model to the conventional continuous-

time channel model can be demonstrated by comparing their BER performances. We
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Figure 2.4: Comparison of the theoretically calculated and empirically simulated auto-
correlation of h1,1(k, 1), cross-correlation of h1,1(k, 0) and h1,1(k, 1), and cross-correlation
of h1,1(k, 0) and h2,1(k, 1).

choose the EDGE system [22], [35], as an example in this subsection. The power delay

profile G(τ) used here is the reduced 6-path Typical Urban (TU) profile provided in [22],

all the 6 paths characterized by uncorrelated Rayleigh flat fading as specified in [22].

The transmit filter, receiver filter and sampling period are the same as those used in

the last subsection. The matrix C
ISI

is given in Table 2.3. It should be pointed out

from this table that the power of this discrete-time channel is mainly concentrated on

h(k, 0) and h(k, 1) corresponding to the values of c(0, 0) and c(1, 1), respectively. The

total power of this truncated discrete-time channel is, given by the trace of C
ISI

, 0.9975,

which is slightly less than unity as expected.

It is also noted that the RRC receive filter satisfies (2.15), so the additive noise in

the discrete-time channel is still AWGN and can be directly generated by computer

simulations. Assuming perfect channel estimation at the receiver for both the discrete-

time channel model and continuous-time channel model, and by employing MLSE with
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Table 2.3: The matrix C
ISI

for the reduced 6-path Typical Urban profile

c(l1, l2) l2 = −1 l2 = 0 l2 = 1 l2 = 2 l2 = 3
l1 = −1 0.0481 0.1799 0.0678 -0.0030 0.0029
l1 = 0 0.1799 0.7401 0.3253 -0.0073 0.0121
l1 = 1 0.0678 0.3253 0.1957 0.0168 0.0052
l1 = 2 -0.0030 -0.0073 0.0168 0.0133 -0.0002
l1 = 3 0.0029 0.0121 0.0052 -0.0002 0.0002

the Viterbi algorithm for channel equalization with truncated channel memory length 4,

we have obtained the uncoded BER vs Eb/N0 shown in Figure 2.5.
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Figure 2.5: Comparison of BER performance with discrete-time model and continuous-
time model for EDGE mobile system under Typical Urban delay power profile.

Apparently, the BER performance of the discrete-time channel model is almost identical

to that of the continuous-time channel model. This demonstrates that the discrete-time

channel model is statistically equivalent to the continuous-time channel model. However,

according to Table 2.1, the discrete-time model needs only about 1.8% computations of

the continuous-time model to generate the statistical fading channel coefficients in this
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SISO example. This computational saving is very significant for discrete-time MIMO

channels, where the computational burden for the generation of MIMO channel fading

is a big issue.

2.4.3 MIMO Channel Capacity

In this subsection, the MIMO channel capacity is evaluated, using our discrete-time

channel model, for triply selective Rayleigh fading channels to indicate the effects of

spatial correlations, multipaths and number of antennas on the channel capacity.

When the MIMO channel is known to the receiver but unknown to the transmitter

and assuming that the available power is uniformly distributed over all the transmit

antennas, then the capacity of a spatially correlated MIMO WSSUS multipath Rayleigh

channel with fixed total transmission power PT is given by [38]:

C =
1

2W

∫ W

−W
log2 det

[
IM +

β

N
· H(k, f) · HH(k, f)

]
df, bps/Hz, (2.32)

where W is the one-sided bandwidth of the baseband signal, β is the average SNR at each

receiver branch, and H(k, f) is the time-varying frequency-dependent transfer function

matrix given by

H(k, f) =

L2∑

l=−L1

Hl(k)z
−l

∣∣∣∣∣
z=exp(j2πfTs)

. (2.33)

Obviously, the channel capacity C is a function of H(k, f), which is random for each

channel realization. Hence, C can be treated as a random variable. The outage capacity,

which is defined as the probability that a specified value of C cannot be achieved, is used

to evaluate the capacity of the channel. It can be represented by the complementary

cumulative distribution function (ccdf) of the random capacity C.

We take the UMTS system as an example. The power delay profile is chosen to be

the Vehicular Channel A profile specified in [23]. The transmit and receive filters are

RRC filters with roll-off factor 0.22, and the sampling period is the same as the chip

period 0.26042µs [23]. The matrix C
ISI

can be calculated based on (2.22) but details

are omitted here for brevity. For the convenience of illustration purpose, the elements
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of the correlation coefficient matrices Ψ
Tx

and Ψ
Rx

are simply chosen to be exponential

correlation matrix [39] as follows

ρ(m,p)
Rx

= r|m−p|, ρ(n,q)
Tx

= r|n−q|, |r| ≤ 1. (2.34)

The capacity ccdf’s of MIMO channels under different correlation coefficients r =

0, 0.5, 1.0, and different number of antennas with M = N are shown in Figure 2.6,

where the SISO flat fading channel is included for comparison purposes. It is noted

that the number of receive antennas M and the number of transmit antennas N are

indicated by (M,N) in the figure’s legend. As can be seen, when M = N , the MIMO

channel capacity is linearly growing with M when r ≤ 0.5, and the growing rate de-

pends on the value of r (the smaller r is, the larger the growth rate). This shows that the

spatial correlation of the MIMO channel has a strong impact on the channel capacity.

This observation for a frequency selective channel is in good agreement with the results

presented in [24] for Rayleigh flat fading.

The capacity ccdf’s of flat fading channels, and the Vehicular A profile with M -to-N

ratio being constant and r = 0.5 are plotted in Figure 2.7 to compare the flat fading and

frequency selective fading’s impact on the channel capacity. As can be seen, for 10%

or less outage capacity, i.e., the probability(capacity>abscissa) ≥ 0.9, the frequency

selective fading channels always have a larger capacity than the flat fading channels.

This supports the view point that the rich scattering environment (multipaths) provides

higher channel capacity [38]. It is also observed that when M 6= N but M/N is constant,

the MIMO channel capacity is still linearly growing with M for both flat fading and

frequency selective fading.

The capacity ccdf’s of the flat fading channel, and Vehicular Channel A profile with N

being fixed and M being fixed are plotted in Figures 2.8 and 2.9, respectively. It can be

observed from Figure 2.8 that the channel capacity is approximately linearly changing

with log2M when M ≥ N and N is fixed. It can also be concluded from Figure 2.9

that the channel capacity is linearly changing with log2N when N ≤ M and M is fixed.

It should be pointed out that the MIMO channel capacity results reported in [1], [2],

and [40] are only for i.i.d. flat Rayleigh fading channels. Hence, our simulation results
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Figure 2.6: The capacities of MIMO channels with different spatial correlation coeffi-
cients and M = N . Dash dot lines stand for r = 1, dash lines for r = 0.5, and solid lines
for r = 0. Observation: The channel capacity is linearly scaling with M when r ≤ 0.5,
and the scaling rate is depending on the value of r.
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scaling with M .

are valuable observations for triply selective MIMO Rayleigh fading channels.

Finally, it is noted that the MIMO channel capacity with continuous-time models have

also been performed by extensive simulations, and the results are all nearly identical

to those obtained with the discrete-time model. This further verifies the statistical

equivalence of the discrete-time and continuous-time channel models. However, with

the discrete-time MIMO channel model, the outage capacity for the MIMO channel can

be easier and more efficiently evaluated.

2.5 Conclusions

We have proposed a new discrete-time channel model for MIMO systems over space-

selective (or spatially correlated), time-selective (or time-varying), and frequency-selective

Rayleigh fading channels, which are referred to as triply selective Rayleigh fading chan-

nels. The stochastic channel coefficients of the new MIMO channel model have the same

31



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capacity (bps/Hz)

P
ro

ba
bi

lit
y 

(c
ap

ac
ity

 >
 a

bs
ci

ss
a)

r=0.5, SNR = 15 dB

flat (1,4) 
flat (2,4) 
flat (4,4) 
flat (8,4) 
flat (16,4)
flat (32,4)
VehA (1,4) 
VehA (2,4) 
VehA (4,4) 
VehA (8,4) 
VehA (16,4)
VehA (32,4)

Figure 2.8: The capacities of MIMO channels with N being fixed. Dash dot lines stand
for flat fading, solid lines for Vehicular Channel A profile. Observation: The channel
capacity is approximately linearly scaling with log2M when M ≥ N .

sampling period as that of the MIMO receiver, and they can be efficiently generated

from a new method, presented in this chapter. The proposed approach combines the

effects of the transmit filter, the physical MIMO channel multipath fading, and the re-

ceive filter. The new model is computationally efficient to describe the input-output of

MIMO channels, because it does not need to oversample the fractionally delayed mul-

tipath channel fading, the transmit filter, and the receive filter. It is shown through

analysis and simulation that the discrete-time stochastic channel coefficients of different

individual subchannels with different delays are generally statistically correlated even if

the physical channels have WSSUS multipath fading. The knowledge of this correlation

may be used for improving the channel estimation of MIMO systems. The statistical

accuracy of the discrete-time channel model is rigorously confirmed by extensive simula-

tions in terms of second-order statistics and BER performance of a system that uses the

model. The discrete-time MIMO channel model is further used to evaluate the MIMO

channel capacity under a triply selective Rayleigh fading environment. For the high
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Figure 2.9: The capacities of MIMO channels with M being fixed. Dash dot lines stand
for flat fading, solid lines for Vehicular Channel A profile. Observation: The channel
capacity is linearly scaling with log2N when N ≤M .

SNR scenario, from the simulation experiments, we have three observations: 1) when

the number of receive antennas M is the same as the number of transmit antennas N ,

or when M/N is constant, the MIMO channel capacity vary in a linear fashion with

M ; 2) when N is fixed, the MIMO channel capacity increases approximately linearly

with log2M when M ≥ N ; 3) when M is fixed, the MIMO channel capacity is linearly

scaling with log2N when N ≤ M . However, the scaling rates for all the three cases

are dependent on the spatial correlation coefficients (the less correlation, the larger the

scaling rate). Our observations are therefore valuable extensions to the capacity results

of triply selective MIMO Rayleigh fading channels from the special case of quasi-static,

i.i.d., flat Rayleigh fading MIMO channels.
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Chapter 3

Multiuser Channel Estimation for

CDMA Systems over Doubly

Selective Fading Channels

3.1 Introduction

In a code division multiple access (CDMA) communication system, multiple users can

access a given frequency bandwidth simultaneously with different pre-assigned spreading

codes, which may lead to multi-user interference (MUI) due to the non-perfect orthogo-

nality of the spreading codes. Multiuser detectors [41], [42] can mitigate this problem by

exploiting the information of all users present in the system, and substantial performance

gain can be obtained over single-user detectors. Most of the works on multiuser detec-

tors require knowledge of the multiuser channel states information, and this necessitates

the research of multiuser channel estimation.

The topic of channel estimation for CDMA systems has received considerable attentions

in [43]- [60]. Among them, the subspace-based blind channel estimation methods were

proposed in the literature [43]- [45], [53], [59] to obtain channel parameters by exploiting

the orthogonality of the signal and noise subspaces. The maximum-likelihood (ML)-

based techniques were discussed in [47], [50], [51] and [58] for single-user channel and/or

multiuser channel estimation with training symbols or pilots. The Kalman filter-based

34



methods were considered in [49] and [57] to estimate and track time-varying channels,

where a relatively long training sequence is required to ensure the proper identification of

the Kalman filter parameters. The minimum mean square error methods were employed

in [56] and [60] to estimate fading channels by using training sequences.

All the aforementioned algorithms appeared to work fine under certain assumptions on

the fading channels to be estimated. Specifically, it was assumed in [43]- [47], [50], [51],

[53]- [56] that the fading channels are time-invariant frequency selective during the entire

estimation block. In [49] and [52], the fading channels were assumed to be symbol-wise

time-varying (i.e., channel varies from symbol to symbol and keeps constant within one

symbol period) but frequency flat. In [60], both time-varying and frequency selective

channel was considered under the assumption that the delay spread and Doppler spread

are known to the receiver. Moreover, most of the existing algorithms assumed that the

transmit pulse shaping filer and receive matched filter are rectangular waveforms with

a single chip duration. This is quite different from the bandwidth-limited root-raised

cosine pulses adopted by the current and emerging CDMA wireless systems such as IS-95,

cdma2000 [61] and UMTS [23]. The rectangular shaping pulse assumption certainly leads

to simple system models to explore new algorithms for channel estimation, but it implies

unlimited bandwidth, which is not the case in practice. Additionally, it is commonly

assumed that, for a wide-sense stationary uncorrelated scattering (WSSUS) channel, the

uncorrelated multipaths are chip spaced [36], which is generally not common in practice

due to the random nature of multipaths. This assumption leads the fading channels

to be represented as tapped delay line filters whose taps are statistically uncorrelated

[56], [57] and [36]. However, it was shown in Chapter 2 that when fractionally spaced

WSSUS multipaths pass through the bandwidth-limited and/or time-limited receive

filter and the chip-rate sampling (or any other rate sampling after the matched filter),

the equivalent discrete-time time-varying channel taps are generally correlated. This

inter-tap correlation can affect the system performance dramatically if it is not carefully

taken.

In this chapter, we focus on the multiuser channel estimation for quasi-synchronous
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CDMA (QS-CDMA)1 systems under a time-varying and frequency selective fading en-

vironment. The composite fading channel response, which combines the effects of the

transmit filter, the physical frequency selective fading channel and the receive filter

of each user in the QS-CDMA system, is represented as a tapped delay line filter

with correlated tap coefficients, which is different from the system models presented

in [56], [57], [36], where uncorrelated tap coefficients were employed. Moreover, we will

show that the channel inter-tap correlation is critical to the performance of the chan-

nel estimation. Utilizing the channel inter-tap correlation information, we propose a

minimum mean square error (MMSE) multiuser channel estimation algorithm, with the

knowledge of the pilot symbols and spreading code of each user. In the development of

the algorithm, the channel inter-tap correlation is treated as an essential factor, and ef-

forts are put to preserve this information in the estimated channels. An iterative method

is proposed for the joint estimation of the channel inter-tap correlation and the channel

tap timing based on the received samples, and these parameters are used to form the

MMSE algorithm. Simulation results show that the bit error rate (BER) performance

of a CDMA system with our proposed multiuser channel estimation algorithm is close

to that of a CDMA system with perfect multiuser channel knowledge.

The rest of this chapter is organized as follows. Section 3.2 presents a discrete-time

representation of the multiuser CDMA system with correlated channel taps. In Section

3.3, multiuser channel estimation algorithms are summarized for a CDMA system with

pilot symbol assisted modulation. Section 3.4 discusses the estimation of the channel

statistics required by the MMSE algorithm, and a novel iterative method is presented

for the joint estimation of the channel inter-tap correlation and channel tap timing

information. Simulation results are given in Section 3.5, and Section 3.6 concludes the

chapter.

1In a QS-CDMA system, the uncertainty of the relative transmission delay of each user is limited
to a few chip periods, which can be achieved with the use of a GPS receiver at the base station and
mobile stations, [57], [63], [64].
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3.2 Discrete-time System Model

Based on the general discrete-time MIMO channel model presented in Chapter 2, a

discrete-time model of the multiuser CDMA system is described in this section. We

consider the up-link of a multiuser CDMA system consisting ofM users. The transmitted

signal sm(t) of the mth user is given by

sm(t) =

√
Pm
N

+∞∑

i=−∞

N−1∑

k=0

bm(i) · cm(k) · p
T
(t− iTs − kTc), (3.1)

where Pm is the average transmit power of the mth user, N is the processing gain, Tc is

the chip period, Ts = NTc is the symbol period, cm = [cm(0), cm(1), · · · , cm(N − 1)]T ∈
CN×1 is the mth user’s spreading code 2 with (·)T denoting matrix transpose, bm(i) is

the ith transmit data (or pilot) symbol, and p
T
(t) is the normalized root raised cosine

(RRC) filter with

∫ ∞

−∞
p

T
(t)p∗(t)dt = 1. The spreading code cm satisfies cHmcm = N ,

with (·)H representing the Hermitian transpose. In a system with pilot symbol assisted

modulation (PSAM), the transmit symbols bm(i) of each user are divided into slots, with

the pilot symbols being distributed within each slot.

Let gm(t, τ) be the time-varying fading channel impulse response for the mth user, then

at the base station, the received signal r(t) is the superposition of the fading distorted

signals from all the M users plus the additive noise. r(t) can be expressed as follows

r(t) =
M∑

m=1

sm(t− ∆m) ~ gm(t, τ) + v(t), (3.2)

where ~ denotes the convolution operation, ∆m is the differential transmission delay

experienced by the mth user, and v(t) is the additive white Gaussian noise (AWGN)

with variance N0. For a quasi-synchronous system, the relative delay ∆m is assumed to

be uniformly distributed within [−DTc,+DTc] with D � N [57]. The received signal

r(t) is passed through the receive filter p
R
(t) = p∗

T
(−t), which is matched to the transmit

2The normalized signature waveform of the mth user is given by wm(t) = 1
√

N

N−1∑

k=0

cm(k)p
T
(t− kTc).
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filter p
T
(t), and the output y(t) = r(t) ~ p∗

T
(−t) can be expressed by

y(t) =

√
Pm
N

M∑

m=1

+∞∑

i=−∞

N−1∑

k=0

bm(i)cm(k) ×
∫ ∞

−∞
Rpp(t− iTs − kTc − ∆m − α)gm(t, α)dα+ z(t), (3.3)

where

Rpp(t) =

∫ ∞

−∞
p

T
(t+ τ)p∗

T
(τ)dτ,

z(t) = v(t) ~ p∗(−t).

If we define the mth user’s composite channel impulse response (CIR) hm(t, τ) as

hm(t, τ) =

∫ +∞

−∞
Rpp(τ − ∆m − α)gm(t, α)dα, (3.4)

then the chip-rate sampled output of the matched filter can be written by

yj(n) =

√
Pm
N

M∑

m=1

+∞∑

i=−∞

N−1∑

k=0

bm(i) · cm(k) · hm[jN + n, (j − i)N + (n− k)] + zj(n),

=

√
Pm
N

M∑

m=1

+∞∑

i=−∞

+∞∑

l=−∞
bm(i) · cm[(j − i)N + (n− l)] · hm(jN + n, l) + zj(n),

for n = 0, 1, · · · , N − 1; j = 1, 2, 3, · · · (3.5)

where yj(n) is the nth chip-rate sample of jth data symbol of y(t) with t = jTs + nTc,

and zj(n) is the chip-rate sample of z(t) at the time instant t = jTs + nTc. Likewise,

hm(jN + n, l) = hm(jTs + nTc, lTc) is the discrete-time version of the CIR hm(t, τ), and

we set l = (j − i)N + (n − k) in the second equality. The noise component zj(n) is

still AWGN with variance N0 because the chip matched filter p∗
T
(−t) is normalized RRC

filter.

To simplify the representation of (3.5), we note that the chip index k of cm(k) satisfies

0 ≤ k < N . Combining this inequality with k = (j − i)N + (n− l), we can immediately

get

j +
n− l

N
− 1 < i ≤ j +

n− l

N
, (3.6)
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where i is the symbol index of the transmitted symbol bm(i), and it can only take integer

values. In the range of i described in (3.6), there exists one and only one integer value,

which must be i = j + bn−l
N

c, where b·c denotes rounding to the nearest smaller integer.

Substituting the value of i to k = (j − i)N + (n− l), we can get

k = −bn − l

N
cN + (n− l) = (n− l)

N
, (3.7)

where (x)
N

can be viewed as the residue of x/N with 0 ≤ (x)
N
≤ N − 1. The above

analysis leads to a simplified representation of (3.5)

yj(n) =

√
Pm
N

M∑

m=1

+∞∑

l=−∞
bm

(
j + bn− l

N
c
)
· cm [(n− l)

N
] · hm(jN + n, l) + zj(n),

=

√
Pm
N

M∑

m=1

+∞∑

l=−∞
dm(j, l, n) · hm(jN + n, l) + zj(n), (3.8)

where dm(j, l, n) = bm
(
j + bn−l

N
c
)
· cm [(n− l)

N
]. The relationship of j, n and l is

illustrated in Fig. 3.1, where the lth delayed version of the transmitted symbols is given

as an example, and the corresponding sampling time is t = jTs + (n− l)Tc.

PSfrag replacements

· · ·· · ·· · ·

(n − l)Tc

bn−lN cTs (n− l)
N
Tc

bm(j − 1)

bm(j) bm(j + bn−lN c)

Tc

Ts = NTc

t = jTs + (n − l)Tc

1 2 N

Ts = NTc

Figure 3.1: The lth delayed version of the transmitted symbols.

In the discrete-time system (3.8), the chip-wise time-varying and frequency selective

fading channel coefficients are represented by hm(jN + n, l), where l is the channel

tap index, j is the symbol index, n is the chip index within a symbol. Utilizing the

same procedure described in Chapter 2, we can prove that the channel tap coefficients

hm(j1N + n1, l1) and hm(j2N + n2, l2) are both temporally correlated and inter-tap

correlated in a Rayleigh fading channel. If the physical channel gm(t, τ) experiences
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WSSUS Rayleigh fading in which gm(t, τ) is a zero mean complex Gaussian random

variable with autocorrelation given by E [gm(t1, τ) · g∗m(t2, τ
′)] = J0 [2πfd · (t1 − t2)] ·

Gm(τ) · δ(τ − τ ′), where J0(·) is the zero-order Bessel function of the first kind, fd

is the maximum Doppler frequency, Gm(µ) is normalized power delay profile of the

channel with
∫ +∞
−∞ Gm(µ)dµ = 1, then the cross-correlation between hm(j1N+n1, l1) and

hm(j2N + n2, l2) contains the temporal correlation and inter-tap correlation as follows

E [hm(j1N + n1, l1)h
∗
m(j2N + n2, l2)] = J0 [2πfd(j1N−j2N+n1−n2)Tc] ρm(l1, l2), (3.9)

where ρm(l1, l2) is the inter-tap correlation coefficient given by (c.f. eqn. (2.17))

ρm(l1, l2) =

∫ +∞

−∞
Rpp(l1Tc− ∆m − µ)R∗

pp(l2Tc− ∆m − µ)Gm(µ)dµ. (3.10)

We will show in this chapter that the inter-tap correlations can be exploited to enhance

channel estimation accuracy. To achieve our objective, we would like to simplify the

discrete-time system (3.8) with taking some practical issues into considerations.

In (3.8), we assumed that the discrete-time channel hm(jN+n, l) is a non-causal infinite

impulse response (IIR) filter, where the tap index l ∈ (−∞,+∞) for all j and m. The

validity of this assumption lies in the fact that the time duration of the RRC filter p(t) is

infinite in theory to have a limited frequency bandwidth. In practice, the time-domain

tails of RRC filter p(t) falls off rapidly, and the physical channel impulse response gm(t, τ)

has finite support in the τ domain. Thus, the amplitude of hm(k, l) will decrease quickly

with the increase of |l|. When a channel tap coefficient’s average power (or squared

amplitude) is smaller than a certain threshold, this tap has very little impact on the

output signals, and thus it can be discarded. Therefore, the time-varying non-causal

IIR channel can be truncated to a finite impulse response (FIR) channel. Without

loss of generality, we use lm = [−Lm1, · · · , Lm2]
T ∈ Iλm×1 to represent the tap index

vector of the mth user 3, where Lm1 and Lm2 are non-negative integers, and λm is

the length of the vector. Furthermore, it is pointed out that the chip-wise time-varying

3It should be noted that the non-causality of the discrete-time channel model is due to the effects
of transmit filter and receive filter, and the physical fading channel is always causal. Moreover, the
non-causal effects of the discrete-time channel model can be removed by introducing proper delays at
the receiver.
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frequency selective Rayleigh fading coefficient hm(jN+n, l) in (3.8) can be approximated

by symbol-wise time-varying frequency selective Rayleigh fading coefficient hm(jN, l) if

fdTs � 1, because in this case the symbol duration Ts is much shorter than the channel

coherence time 1
fd

. It is noted that the condition fdTs � 1 is generally valid for the

current third generation (3G) CDMA systems. For example, in a worst scenario, a

UMTS mobile handset with 2GHz carrier frequency travels at a high speed of 120 km/h,

the maximum Doppler frequency fd = 222 Hz. For a high spreading gain N = 512, the

symbol duration Ts = 512Tc = 13.33ms, and therefore fdTs = 0.0296 � 1. Based on

these two aforementioned arguments, we can now simplify (3.8) as follows

yj(n) =

√
Pm
N

M∑

m=1

Lm2∑

l=−Lm1

dm(j, l, n) · hm(jN, l) + zj(n). (3.11)

We define the multiuser channel tap coefficient vector h(j) as follows

h(j) = [h1(j)
T ,h2(j)

T , · · · ,hM(j)T ]T , (3.12)

where hm(j) = [hm(jN,−Lm1), · · · , hm(jN, Lm2)]
T is the channel tap coefficient vector

of the mth user. Then (3.11) can be written into a matrix format as follows

y(j) = D(j) · h(j) + z(j), (3.13)

where y(j) = [yj(0), yj(1), · · · , yj(N − 1)]T and z(j) = [zj(0), zj(1), · · · , zj(N − 1)]T are

the received sample vector and the additive noise vector of the jth symbol, respectively,

and the matrix D(j) =

[
D1(j)

... D2(j)
... · · · ... DM(j)

]
∈ CN×λ is made up of the data

and spreading codes of all the users. The sub-matrix Dm(j) related to the mth user is

defined by

Dm(j) =

√
Pm
N

· [dm(j,−Lm1),dm(j,−Lm1 + 1), · · · ,dm(j, Lm2)], (3.14)

with the nth element of the vector dm(j, l) ∈ CN×1 being dm(j, l, n), for n = 1, 2, · · · , N .

Eqn. (3.13) is a discrete-time representation of the multiuser CDMA system, and the

time-varying and frequency selective fading channel is represented as a Tc-spaced tapped

delay line filter. With this representation, the necessary knowledge of the multiuser
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channel is the set of symbol-wise time-varying coefficients characterizing each path of the

channel, and the problem of multiuser channel estimation is converted to the estimation

of the time-varying channel coefficients hm(jN, l) and the Tc-spaced delay index vector

lm. It should be noted from (3.4) that the relative delay ∆m of each user is incorporated

into the representation of the discrete-time CIR hm(jN, l). With the estimation of h(j)

and lm, there is no need to explicitly recover the relative transmission delay ∆m of all

the users.

3.3 Multiuser Channel Estimation

In this section, we focus on the estimation of the channel coefficients at pilot positions,

which will be interpolated to obtain the time-varying channel coefficients over one entire

slot. In order to exploit the channel inter-tap correlation information, the proposed

algorithm is based on the MMSE criterion, which is capable of utilizing and preserving

the inter-tap correlation information of the fading channel.

We assume that the physical fading channels of different users are uncorrelated to each

other, then the multiuser channel inter-tap correlation matrix Rh = E[h(j)hH(j)] can

be written as

Rh =




Rh1 0 · · · 0

0 Rh2 · · · 0
...

...
. . .

...

0 0 · · · RhM



, (3.15)

where Rhm = E[hm(j)hHm(j)] ∈ Cλm×λm is the inter-tap correlation matrix of the mth

user. With the definition of hm(j) and (3.9), Rhm can be written as

Rhm =




ρm(−Lm1,−Lm1) · · · ρm(−Lm1, Lm2)
...

. . .
...

ρm(Lm2,−Lm1) · · · ρm(Lm2, Lm2)


 . (3.16)

It can be seen from (3.10) and (3.16) that the multiuser channel inter-tap correlation

matrix Rh is a function of the power delay profile Gm(µ), the relative transmission delay
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∆m, and the tap delay index vector lm. These parameters are usually unavailable at the

receiver. Therefore, Rh is generally not known to the receiver. In this section, we focus

on the formulation of the MMSE-based channel estimation algorithm. The estimation

of Rh will be discussed in the next section.

For a QS-CDMA system, it is assumed that all the users are slot synchronized, and the

received signals at pilot positions are the superposition of the faded pilot symbols of all

the users. For convenience of representation, the symbol ‘1’ is used as pilot symbols.

According to (3.11), the received samples contributed exclusively by pilot symbols can

be written as

y(jp) = Ch(jp) + z(jp), (3.17)

where jp is the index of the pth pilot symbol for a slot with P pilot symbols, y(jp) =

[yjp(0), yjp(1), · · · , yjp(N − 1)]T , z(jp) = [zjp(0), zjp(1), · · · , zjp(N − 1)]T , and the mul-

tiuser code matrix C is defined by

C = [C1
... C2

... · · · ... CM ] (3.18)

with

Cm = [cm(−Lm1), · · · , cm(Lm2)], (3.19)

where cm(i)=[cm(N − i), · · · , cm(N − 1), cm(0), · · · , cm(N − i − 1)]T is obtained from

circularly shifting i symbols of the original code vector cm. It is important to note

that the multiuser code matrix C is determined by both the spreading codes and the

tap delay index vector lm. For a multiuser detector, the spreading code of each user is

known to the base station, while lm needs to be estimated. We will show in the next

section that lm can be jointly estimated with Rh based on a novel iterative method.

Based on (3.17), we can immediately obtain the multiuser channel estimation at pilot

symbol locations by utilizing least-squares (LS) method [69],

ĥ
LS

(jp) = C†y(jp), for p = 1, 2, · · · , P, (3.20)

where C† is the pseudo-inverse of the multiuser code matrix C, jp is the position index

of the pth pilot symbol in a slot with P pilot symbols.
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It’s apparent from (3.20) that the multiuser channel tap correlation matrix Rh is not uti-

lized in the LS estimation of the channel. To increase the channel estimation accuracy,

we resort to the MMSE estimate of the multiuser channel tap h(jp) from the correspond-

ing received vector y(jp) and the multiuser code matrix C, and the corresponding cost

function is defined as

φ = E

{
[h(jp) − ĥ(jp)]

H [h(jp) − ĥ(jp)]|y(jp),C
}
. (3.21)

The solution that minimize φ is

ĥ(jp) = E[h(jp)|y(jp),C]. (3.22)

For Rayleigh fading channel, it can be seen from (3.17) that h(jp) and y(jp) conditioned

on C are jointly zero-mean Gaussian distributed, therefore the conditional mean in (3.22)

is a linear function of y(jp), then ĥ(jp) can be written as

ĥ(jp) = Λ(jp)y(jp), (3.23)

where Λ(jp) is the MMSE estimation matrix. Substitute (3.23) in (3.21), the MMSE

solution of Λ(jp) can be derived as

Λ(jp) = E
[
h(jp)y

H(jp)
]
·
{
E
[
y(jp)y

H(jp)
]}−1

(3.24)

From (3.17) and the fact that zj(n) is AWGN with variance N0, we can get

E[y(jp)y
H(jp)] = CRhC

H +N0IN , (3.25)

E[h(jp)y
H(jp)] = RhC

H , (3.26)

where IN is an N×N identity matrix, and Rh is the multiuser channel inter-tap correla-

tion matrix defined in (3.15). Combining (3.24) - (3.26), the MMSE estimation matrix

Λ(jp) can be written as

Λ(jp) = RhC
H ·
[
CRhC

H +N0IN
]−1

. (3.27)

It can be seen from (3.27) that Λ(jp) is independent of the variable jp, hence we denote

it as Λ.
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With (3.23) and (3.27), we can get the MMSE-based estimation of the multiuser channel

tap coefficients h(jp) at pilot symbol positions,

ĥ
MMSE

(jp) = RhC
H ·
[
CRhC

H +N0IN
]−1 · y(jp), for p = 1, 2, · · · , P. (3.28)

To fulfill the MMSE-based channel estimation, we need to know the multiuser chan-

nel inter-tap correlation matrix Rh, the delay index vector lm, and the additive noise

variance N0. The estimation of these parameters are discussed in the next section.

For comparison purpose, a pilot assisted subspace-based estimation of h(jp) for quasi-

static multiuser fading channels is derived in Appendix A.

3.4 MMSE-parameter Estimation

In this section, we consider the estimation of the multiuser channel inter-tap correlation

matrix Rh, the tap delay index vector lm, and the additive noise variance N0. The

noise variance N0 is estimated by exploiting the eigen structure of the received signals.

Likewise, the matrix Rh and the vector lm are jointly estimated by a novel iterative

method.

3.4.1 Estimation of the Additive Noise Variance N0

The variance N0 of the additive noise component z(j) can be extracted by exploiting

the eigen structure of the channel correlation matrix with the help of the temporal

correlation of the fading channel.

According to the input-output relationship of the pilot symbols described in (3.17), the

correlation matrix of the received pilot symbols Ryp = E[y(jp)y
H(jp)] can be written by

Ryp = CRhC
H +N0IN . (3.29)

Within one slot duration, the correlation matrix Ryp and Rh can be approximated by
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their sample means

R̂yp =
1

P

P∑

p=1

y(jp)y
H(jp), (3.30a)

R̂h =
1

P

P∑

p=1

h(jp)h
H(jp). (3.30b)

Correspondingly, the correlation matrix of the received pilot symbols can be approxi-

mated by (c.f. eqn. (3.29))

R̂yp = CR̂hC
H +N0IN . (3.31)

In order to estimate the noise variance N0 from (3.31), we need to exploit the eigen

structure of R̂h, which is the sum of P correlated random matrices as described in

(3.30a). According to the physical properties of the doubly-selective fading channel, we

have the following theorem about the rank of the random matrix R̂h.

Theorem 3.1 : If we define the temporal correlation matrix Rt ∈ C
P×P as

Rt =




1 J0[2πfd(j1 − j2)Ts] · · · J0[2πfd(j1 − jP )Ts]

J0[2πfd(j2 − j1)Ts] 1 · · · J0[2πfd(j2 − jP )Ts]

.

..
.
..

. . .
.
..

J0[2πfd(jP − j1)Ts] J0[2πfd(jP − j2)Ts] · · · 1


 , (3.32)

where J0(·) is the zero-order Bessel function of the first kind, fd is the maximum Doppler

frequency of the time-varying fading channel, Ts is the symbol period, and jp is the index

of the pth pilot symbol of a slot with P pilot symbols, then we have the following rank

inequality between the random matrix R̂h = 1
P

∑P
p=1 h(jp)h

H(jp) and the deterministic

matrix Rt

rank(R̂h) ≤ rank(Rt). (3.33)

Proof: For each of the time-varying tap coefficient hm(jN, l) of the discrete-time

channel impulse response, define the branch CIR vector hm,l ∈ C
P×1 as

hm,l =
[
hm(j1N, l) hm(j2N, l) · · · hm(jPN, l)

]T
,

for l ∈ lm, m = 1, 2, · · · ,M, (3.34)
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where P is the number of pilot symbols of one slot. For WSSUS Rayleigh fading channel,

the vectors hm,l and hn,k are zero-mean Gaussian distributed, and their cross-correlation

matrix can be obtained from (3.9) as

Rml,nk = E[hm,lh
H
n,k] = δ(m,n) · ρm(l, k) · Rt, (3.35)

where δ(m, l) is the Kronecker delta function, ρm(l, k) is the tap correlation given in

(3.10), and Rt is defined in (3.32).

With (3.35), hm,l can be equivalently represented as the linear transformation of Gaus-

sian vector with independent and identically distributed (i.i.d.) elements

hm,l ∼ R
1/2
t · wm,l, (3.36)

where the symbol ∼ defines an equivalence relation between two random variables if they

have the same statistical distributions, the vector wm,l = [wm(1, l), wm(2, l), · · · , wm(P, l)]T

∼N (0, ρm(l, l)IP ) is Gaussian distributed with zero-mean and covariance matrix ρm(l, l)·
IP , and the cross correlation matrix between wm,l and wn,k is E[wm,lw

H
n,k] = δ(m,n) ·

ρm(l, k) · IP . The matrix R
1/2
t is the square root of Rt defined as

R
1/2
t = Ut · Λ1/2

t , (3.37)

where Λt = diag{λt1, · · · , λtP} is a diagonal matrix with λtp, for p = 1, 2, · · · , P , being

the eigen values of Rt in decreasing order, and Ut = [ut1, · · · , utP ] ∈ CP×P are the

corresponding orthonormal eigen vectors.

From the analysis above, we can see that the family of vectors {hm,l |l ∈ lm, m = 1,

· · · ,M } has exactly the same distribution as
{
R

1/2
t · wm,l |l ∈ lm, m = 1, · · · ,M

}
. There-

fore we have the following equivalent relation about the inner product of two branch CIR

vectors

hHm,l · hn,k ∼ wH
m,l(R

1/2
t )H · R1/2

t wn,k, (3.38a)

∼
R∑

p=1

λpwm(p, l)w∗
n(p, k), (3.38b)

where R = rank(Rt), and the equality (R
1/2
t )HR

1/2
t = Λt from (3.37) is used in (3.38b).
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Noting the fact that each element of the matrix R̂h defined in (3.30b) can be written as

the normalized inner product of two branch CIRs as

1

P
hHm,l · hn,k =

1

P

P∑

p=1

hm(jp, l)h
∗
n(jp, k), (3.39)

we can replace the elements of R̂h with 1
P

∑P
p=1 λpwm(p, l)w∗

n(p, k) corresponding to each

value of m,n, l and k without altering the statistical property of R̂h, and the obtained

matrix is

R̂h ∼ Sh =

R∑

p=1

λpw(p)wH(p), (3.40)

where w(p) = [wT
1 (p) wT

2 (p) · · · wT
M(p)]T , and wm(p) = [wm(p,−Lm1), · · · , wm(p, Lm2)]

T

∈ C(Lm1+Lm2+1)×1 is the branch channel impulse response vector of the mth user. There-

fore the random matrix R̂h is statistically equivalent to the sum of R rank 1 matrices.

According to the inequality rank(A + B) ≤ rank(A) + rank(B) [71, p.13], we have

rank(Sh) ≤
R∑

p=1

rank
[
λpw(p)wH(p)

]
≤ R, (3.41)

where R = rank(Rt). Since R̂h and Sh have the same stochastic property, the supermum

of their ranks should be the same, and this completes the proof.

It should be noted that the value of the actual multiuser correlation matrix Rh is de-

termined by the frequency-selective property of the fading channel, while the matrix Rt

reflects the time-varying property of the channel. According to (3.9), there should be no

interaction between Rh and Rt. However, the approximation matrix R̂h is the average

of P time-domain samples, which are correlated with each other due to the temporal

correlation of the fading channel. Therefore the properties of R̂h depend on both Rh

and Rt, and the interactions between R̂h and Rt are deployed here for the estimation

of the noise variance.

With the rank inequality given in (3.33) and the fact that rank(A ·B) ≤ min [rank(A),

rank(B)] [71, p.13], we will have

rank(CR̂hC
H) ≤ rank(Rt). (3.42)
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Combining (3.31) and (3.42), we can see that the noise variance N0 is equal to the

smallest N − rank(Rt) eigen values of the correlation matrix R̂yp. It is shown in [70]

that rank(Rt) ≈ b2NfdTsc + 1. For CDMA systems, we always have fdTs � 1, which

means b2NfdTsc+1 � N . Therefore, an estimation of N0 can be obtained by averaging

over the smallest N−b2NfdTsc − 1 eigen values of R̂yp. Since the maximum Doppler

frequency fd is not available at the receiver, we can replace fd by its maximum possible

value for practical CDMA systems, e.g., 200 Hz, without losing the estimation accuracy.

It should be noted that the value of R̂h and Rt are not required during the estimation

of the noise variance, although the estimation method is derived based on the properties

of these two matrices.

3.4.2 Joint Estimation of Rh and lm

In this subsection, an iterative method is proposed for the joint estimation of the

multiuser channel inter-tap correlation matrix Rh and tap delay index vector lm, for

m = 1, 2, · · · ,M . The elements of the inter-tap correlation matrix Rh are mainly deter-

mined by the relative transmission delay ∆m and the fading channel power delay profile

Gm(µ) of each user. In the tapped delay line representation of the fading channel, the

effects of ∆m and the delay spread of Gm(µ) are incorporated into the Tc-spaced tap

delay index vector lm = [−Lm1, · · · , Lm2]
T . Both Rh and lm are interacted to each other,

and this interaction can be utilized for the joint estimation of Rh and lm. It is pointed

out here that our algorithm does not need to estimate either Gm(µ) or ∆m.

The interactions between Rh and lm can be explored via the help of the statistical

properties of the received pilot samples. According to (3.17), the correlation matrix

Ryp = E[y(jp)y(jp)
H ] of the received pilot symbols can be written by

Ryp = CRhC
H +N0IN . (3.43)

In the equation above, the noise variance N0 can be obtained from the method de-

scribed in Section 3.4.1, Ryp can be estimated from the received pilot symbols as
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R̂yp = 1
P

∑P
p=1 y(jp)y

H(jp), while Rh and the multiuser code matrix C are two un-

known matrices to be determined. From the definition of C in (3.19), we can see

that C is determined by both the spreading codes and the tap delay index vector

lm = [−Lm1, · · · , Lm2]
T . As discussed in Section 3.2, the vector lm is obtained by dis-

carding the channel taps with power smaller than a certain threshold, and the channel

tap power E[hm(jN, l) · h∗m(jN, l)] = ρm(l, l) can be found from the diagonal of Rh. If

we know the power of all the possible channel taps, then we can obtain lm by discarding

the negligible taps. Furthermore, when lm is known, we can form the code matrix C,

with which Rh can be computed from (3.43).

Based on the reciprocal relationship between Rh and lm, an iterative method is proposed

for the joint estimation of these two parameters.

Algorithm: Joint estimation of the multiuser channel inter-tap correlation matrix Rh

and the tap delay index vector lm.

Step I: Set the initial value of the tap delay index vector as lm = [−D −
1, Lm0+D] 4, where D is the maximum relative transmission delay factor,

and Lm0 ≈ τ
(m)
max/Tc with τ

(m)
max being the maximum possible delay spread

of the mth user’s physical channel.

Step II: Based on the current value of lm, construct the multiuser code matrix

C according to (3.19). With the estimated value of Ryp, N0, and the

current value of C, compute Rh as follows

Rh = C†(Ryp −N0IN)(CH)†. (3.44)

Step III: With the diagonal elements of Rh obtained from Step II, find the

maximum power taps for each user, and represent the maximum tap

power of the mth user as Pm. For all the taps of the mth user, discard

the taps that are smaller than ε · Pm, with 0 < ε < 1 being a pre-defined

threshold value.

4The reason we choose −D − 1 as the smallest possible tap delay index lies in the fact that the
absolute amplitude of the raised cosine filter is very small for samples one chip period away from the
peak value and the physical fading channel is always causal.
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Step IV: After discarding the negligible taps for each user, a new tap delay

index vector lm for each user can be formed, and go back to Step II. If

there are no more taps to discard, or the maximum number of iterations

is reached, then the current values of Rh and lm are the desired values.

With the proposed iterative method, the value of Rh and lm can be jointly estimated

from the received pilot samples for each slot. When we set ε = 1%, simulations show

that the iterative method usually converges within 2 iterations, and it leads to accurate

estimations of Rh and lm. The estimated values of Rh, lm and N0 are utilized to form

the MMSE solution of the multiuser channel tap coefficients hm(jp) at pilot positions as

stated in (3.28).

The time-varying channel coefficients of one entire slot can be obtained by interpolat-

ing the MMSE-estimated CIR at pilot positions. The topic of channel interpolation for

systems with PSAM has been researched extensively in the literature [65]- [67]. Among

these methods, Weiner filter interpolation [65] is an optimum solution in the sense of

mean square error, provided that the temporal correlation of each time-varying channel

tap is accurately known to the receiver, which is unlikely in practice. Therefore, we

adopt a sub-optimum constant matrix interpolation method [67], which was proposed

for TDMA-based systems. The extension of this method to CDMA system is straight-

forward, and details are omitted here for brevity.

3.5 Simulation Results

Simulations are carried out in this section to evaluate the performance of the proposed

multiuser channel estimation algorithm for QS-CDMA systems undergo time-varying

and frequency selective channel fading.
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3.5.1 System Configurations

The slot structure used in our simulations is shown in Fig. 3.2. Each slot has 4 head pilot

symbols and 2 tail pilot symbols with 56 data symbols in the middle. The time duration

of each slot is 2ms, and every 2 slots are combined as a hyper-slot in the estimation

process. Gold sequences with processing gain ofN = 127 are used as the spreading codes.

The chip rate of the system is chosen to be 3.84 Mcps. The transmitted data are QPSK

modulated. Root raised cosine (RRC) filter with rolloff factor of 0.22 is used as both

the transmit filter and the chip matched filter. Vehicular A propagation profile [13] [23],

shown in Fig. 3.3, is chosen to be the power delay profile Gm(τ) for simulations with the

normalized Doppler frequency set to fdTslot = 0.1. The time varying channel fading is

generated with the method described in Section 2.3.3. The relative transmission delay

∆m of each user is uniformly distributed in [−DTc, DTc]. Unless otherwise stated, we

set D = 3 in the simulations. In the iterative estimation of Rh and lm, the maximum

number of iterations are set to 2, and the discarding threshold ε is set to 1%.

1 4 5 60

Data SymbolsH

62

T

1 4 5 60

Data SymbolsH

62

T

Figure 3.2: The slot structure to be utilized for simulations.

A successive interference canceller [42] is employed for coherent multiuser detection.

The users are sorted according to their received power, which can be obtained from the

diagonal elements of Rh. The users are then detected and canceled from the strongest to

the weakest. In the detection of each of the users, coherent Rake combining is used, with

the number of Rake fingers equal to the number of channel taps of the corresponding

user being detected, which is λm for the mth user.
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Figure 3.3: Vehicular A propagation profile. The differential delays between multiple
paths are non-integer of the chip period Tc.

3.5.2 Performance Evaluation

The proposed multiuser channel estimation algorithm requires knowledge of the additive

noise variance N0, the multiuser channel inter-tap correlation matrix Rh, and the tap

delay index vector lm. These parameters can be obtained from the received data samples

with the methods described in Section 3.4. The validity of these methods is evaluated

in the sequel.

Consider a QS-CDMA system with 5 users. The additive noise variance N0 is estimated

by utilizing the method described in Section 3.4.1. For comparison purpose, Fig. 3.4

shows the estimated noise variances along with the actual noise variances for various

values of Eb/N0. The estimation results are based on averaging 1000 estimated values.

As we can see from Fig. 3.4, the estimation of the noise variances is very accurate.

The effectiveness of the estimation for Rh and lm can be demonstrated by the bit error
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rate (BER) performance of a 5-user CDMA system which employs the proposed channel

estimation algorithm. In Fig. 3.5, four cases are depicted for BER comparison. The first

case is the BER performance of the system that has perfect knowledge of the multiuser

fading channels. This BER shall serve as a benchmark for our channel estimation per-

formance. The second case is the BER of the system with knowledge of the multiuser

channel inter-tap correlation matrix Rh and the tap index vector lm, which are utilized

to estimate (and interpolate) the multiuser fading channels. The third case is the BER

of the system that has estimated both Rh and lm, then utilize them to estimate (and

interpolate) the multiuser fading channels. The fourth case is the BER of the system

that employs the LS-based method to estimate the channel coefficients at pilot locations,

where the LS-based algorithm only utilizes the first order statistics of the fading channel,

and the results are labeled as “LS-based method”. As can be seen from Fig. 3.5, when

the receiver knows the channel inter-tap correlation matrix Rh and the tap index vector

lm, our multiuser channel estimation algorithm has nearly the same BER performance as

the ideally perfect channel estimation case. However, as expected, when the receiver has

to estimate both the channel correlation matrix and the tap index vector, our multiuser

channel estimation algorithm will have a little degradation on the BER performance

from the perfect channel estimation case, but the degradation is within an acceptable

range. For example, it is about 0.8dB when the BER is at the level of 10−4.

Comparing the four curves discussed above, we can see that the multiuser channel inter-

tap correlation matrix Rh plays a very important role in the performance of the esti-

mation algorithm. If we do not take advantage from this correlation information for

multiuser channel estimation, we will get BER performance penalty which can be sig-

nificant compared to our proposed MMSE-based algorithm.

In Fig. 3.6, we compare the BER performance of the system with our proposed MMSE-

based channel estimation algorithm to that of the pilot assisted subspace-based algo-

rithm shown in the appendix. The subspace-based estimation algorithm is derived for

quasi-static fading channels, where the channels can be viewed as deterministic dur-

ing the entire estimation process, therefore the correlation information does not play
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Figure 3.6: BER performance comparison of the system which employs our multiuser
channel estimation algorithm and the pilot assisted subspace-based channel estimation.

an important role in the estimation. For quasi-static fading channels (fdTslot = 0), we

can see from the figure that the subspace-based algorithm can achieve nearly the same

performance as the proposed MMSE algorithm. However, when we increase fdTslot to

0.1, performance degradation can be clearly observed for the subspace-based method

for Eb/N0 ≥ 10dB, while the performance of the proposed algorithm is not apparently

affected.

To further show our proposed algorithm’s ability of estimating the tap index vector lm,

we consider two cases that the maximum transmission delay factor D is set to 3 and 6.

This means that the relative transmission delay ∆m of each user is uniformly distributed

in [−3Tc, 3Tc] and [−6Tc, 6Tc], respectively. In the simulation, we consider two scenarios

for both D = 3 and D = 6 cases. First, we assume that the tap index vector lm is known

to the receiver, and the obtained BER curves are labeled “known lm” as shown in Fig.

3.7. Second, when the vector lm is estimated with our proposed iterative method, the
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obtained BER curves are labeled “estimated lm”. It is noted that all the four curves

in Fig. 3.7 are based on the estimated Rh by using our iterative algorithm. From

Fig. 3.7, we have three observations. First, when the receiver has knowledge of lm,

changing the maximum transmission delay range has no apparent effect on the system

performance. Second, whereas for a system with lm being estimated, a slight BER

degradation will occur if the maximum transmission delay range is increased. Third,

the BER performance of a system with estimated lm are close to that of a system with

perfect information of lm. These results indicate that the proposed algorithm provides

accurate estimation of lm in a wide range of Eb/N0.

We are now in a position to take a look at the normalized mean square error (MSE). Let

ĥ(j) be the estimation of the multiuser channel tap coefficient vector h(j). We define

the normalized MSE as E

{[
h(j) − ĥ(j)

]H [
h(j) − ĥ(j)

]}
/E
[
h(j)Hh(j)

]
, and present

the channel estimation errors of the LS-based method, the pilot assisted subspace-based

method and the proposed MMSE algorithm in Fig. 3.8. It is observed that given a value

of Eb/N0, the normalized MSE of the proposed MMSE method with known Rh and lm

is always smaller than that of the proposed MMSE method with estimated Rh and lm,

and the MSE of the LS-based and subspace-based method is always larger than that of

the proposed MMSE method with estimated Rh and lm. The MSE’s of these four cases

are well reflected in the BER performances listed in Fig. 3.5 and Fig. 3.6.

So far, all the simulation results are focused on the Vehicular A propagation profile,

which has discrete-time power delay profile (or discrete-time delayed multiple paths).

We would like to point out that our algorithm can be directly applied to fading channels

which have continuous-time power delay profile. For example, we replace Vehicular A

power delay profile by an exponentially decaying profile, whose power delay profile is

defined as Gc
m(τ) = A · exp

(
− τ

1µs

)
with 0 ≤ τ ≤ 1.5µs. If we keep the rest of the

simulation configurations of Fig. 3.5 unchanged, then we get the corresponding BER

comparison for Gc
m(τ) as shown in Fig. 3.9, which indicates that our multiuser channel

estimation algorithm is still very effective under continuous-time power delay profile

fading environment. However, it should be pointed out that most existing channel
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Figure 3.8: The normalized MSE performance of the system which uses the proposed
algorithm, the LS-based method, and the pilot assisted subspace-based method.

estimation algorithms will fail under this fading condition.

3.6 Conclusions

In this chapter, a pilot assisted minimum mean square error (MMSE) multiuser chan-

nel estimation algorithm was proposed for quasi-synchronous CDMA systems undergoing

time-varying and frequency selective channel fading. The algorithm was developed based

on the only assumption that the base station receiver knows the spreading codes and

pilot symbols of all the mobile users, which is very reasonable in practice. The combined

effects of the frequency selective physical fading channel, the transmit filter and receive

filter were represented as a symbol-wise time-varying chip-spaced tapped delay line filter

with correlated filter taps. A novel iterative method was then proposed for the joint

estimation of the multiuser channel inter-tap correlations and tap delays, which were

further utilized to form the MMSE-based multiuser channel tap coefficient estimation.
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The multiuser channel estimation algorithm can be used to estimate fading channels

which have either discrete-time or continuous-time power delay profiles. Simulation re-

sults showed that the information of the channel inter-tap correlations is critical to the

performance of the multiuser channel estimation, and the discrete-time composite chan-

nel taps at different delays may not be assumed uncorrelated for CDMA systems which

experience physical WSSUS fading. Furthermore, when the channel inter-tap correla-

tion is known to the receiver, the BER performance of the proposed MMSE algorithm is

nearly the same as that of the perfect channel estimation case; when the channel inter-

tap correlation is estimated from the received signals, the proposed algorithm’s BER

performance is close to that of the perfect channel estimation case.
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Chapter 4

Optimal Diversity Combining based

on Noisy Channel Estimation

4.1 Introduction

Diversity reception is a classical method used in wireless communication systems for

combating the hostile nature of fading channels, and the error performance analysis of

diversity receivers in fading channels has been a field of long-time interest, see [72]- [79]

and the references therein. A commonly used method for analyzing error probability

of digital communication systems is to obtain the conditional error probability (CEP)

P (E|γ) , where γ is the signal to noise ratio (SNR) at the output of the receiver, and

then average P (E|γ) over γ using the probability density function (pdf) p(γ). For ex-

ample, this method is applied in [73] for the performance analysis of maximum ratio

combining (MRC) receivers in uncorrelated Rayleigh fading channels, the SNR of which

is χ2-distributed with 2N degrees of freedom, with N being the diversity order [73].

However, in some cases, such as the equal gain combining (EGC) receivers with diver-

sity order higher than two [74], it is notoriously difficult or even impossible to obtain a

closed-form solution for the pdf of the output SNR γ. This problem can be eluded by

resorting to the characteristic function (CHF) E(ejωγ) [74], [75] or moment generating

function (MGF) E(esγ) [76], [77] of γ, which are usually more readily found in closed-

form. To implement the CHF or MGF method, the CEP P (E|γ) must be in the form of
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an exponential function of γ. However, the CEP for most systems with coherent, differ-

entially coherent, and non-coherent detections are in the form of Gaussian or Marcum

Q-functions. This problem is elegantly tackled by Simon and Alouini et. al. in [78]

using alternative exponential representations of the Gaussian and Marcum-Q functions.

A unified approach for error performance evaluation of systems with various modulation

and detection methods in general fading channels is given in [78].

Most previous works about performance analyses of coherent diversity systems assume

that the receiver has perfect knowledge (noiseless estimation) of the fading channels. In

order to facilitate the design of practical diversity systems, it is highly desirable to have

analytical performance expressions for systems operating with noisy channel estimation.

In the literature, only few works are devoted to the performance analyses of non-ideal

systems. In [80], the effect of Gaussian error in maximal ratio combining is studied.

However, the mathematical models assumed preclude using the analysis for independent

additive noise and the analysis is valid only for Gaussian error originating from temporal

decorrelation [81]. Further, digital modulations and error probability are not considered

in [80]. The error probabilities of systems with non-ideal channel information for non-

diversity systems are obtained in [82] and [83] by seeking the pdf of the equivalent

output noise at the receiver, which is usually non-Gaussian distributed and extremely

complicated for analyses.

In this chapter, error performances of optimal coherent diversity receivers operating on

independent and identically distributed (i.i.d.) fading channels with noisy channel es-

timation are analyzed. It is shown that the conventional MRC receiver is no longer

optimal when there is channel estimation error in the system. A new optimal decision

rule for coherent diversity receivers with noisy channel estimation is proposed to min-

imize the error probability of the system, and this decision rule is different from the

conventional MRC receiver in that it takes into account the effects of the channel esti-

mation error. Based on this decision rule, the error probabilities for optimal coherent

diversity receivers are derived for MPSK systems in both Rayleigh and Ricean fading

channels. The symbol error probability conditioned on the estimated fading channel is
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first evaluated using the polar coordinate method proposed by Craig in [84] for addi-

tive white Gaussian noise (AWGN) channels and extended here for systems using noisy

estimated fading channel information. The CEPs generated with the modified polar

coordinate method have the desired exponential forms, and the symbol error rate of the

corresponding systems can be obtained by averaging these CEPs over the estimated fad-

ing channels. For Rayleigh fading channels, the averaging operation is performed with

the MGF method, and closed-form expressions are obtained for some special cases. For

Ricean fading channels, the non-central distribution of the estimated channel prohibits

the use of the MGF or CHF method, therefore a complex Gaussian distribution based

functional equivalence is employed for the evaluation of the system error performance.

Simulation results are in excellent agreement with the theoretical results.

The rest of this chapter is organized as follows. The system models are given in Section

4.2. Section 4.3 derives a new optimal decision rule for diversity receivers operating with

noisy estimates of i.i.d. fading channels. The error probabilities of the corresponding

receivers in Rayleigh and Ricean fading channels are derived in Section 4.4. Numerical

examples are given in Section 4.5, and Section 4.6 concludes the paper.

4.2 System and Channel Models

We consider a communication system with flat fading channels and N diversity receivers.

After sampling at the receiver, the discrete-time representation of the equivalent base-

band system can be written in matrix form as

yk = hk · xk + zk, (4.1)

where yk = [y1(k), y2(k), · · · , yN(k)]T ∈ CN×1 is the sampled output of the receivers with

AT representing the transpose of matrix A, hk = [h1(k), h2(k), · · · , hN(k)]T ∈ CN×1

is the equivalent discrete-time channel gain (CG) vector of the physical time-varying

fading channels, xk is the MPSK modulated symbol transmitted at time instant k, and

zk = [z1(k), z2(k), · · · , zN (k)]T ∈ CN×1 is a zero-mean additive white Gaussian noise

vector with covariance matrix N0IN , and IN is the N ×N identity matrix.
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For Rayleigh and Ricean fading channels, the discrete-time CG vector hk is made up

of complex Gaussian random variables (CGRVs) with mean vector u and covariance

matrix Rhh, i.e., hk ∼ N (u,Rhh), and the probability density function of hk is [85, eqn.

(7-62)]

p(hk) =
1

det(πRhh)
exp

[
−(hk − u)HR−1

hh (hk − u)
]
, (4.2)

where AH is the Hermitian of matrix A. The variance σ2
hn

, power Ωn, and mean value

un of hn(k) have the following relationships,

|un| =

√
KΩn

K + 1
=
√
Kσ2

hn
, (4.3)

where K is the Ricean factor defined as the ratio of the powers of the specular component

and the scattering components of the fading channel. For Rayleigh fading channel, we

have K = 0, and, thus, u = 0.

The receiver performs coherent detection of the received samples based on the estimated

CG vector ĥk = [ĥ1(k), ĥ2(k), · · · , ĥN(k)]T ∈ CN×1. The estimated CG vector ĥk is

modeled as the sum of the true CG vector hk and the estimation error vector ek =

[e1(k), e2(k), · · · , eN(k)]T as

ĥk = hk + ek, (4.4)

where the elements of the error vector ek are assumed to be independent zero-mean

CGRVs, and they are independent of the elements of hk. Then the covariance matrices

Rhĥ = E(hHk ĥk) and Rĥĥ = E(ĥHk ĥk) can be computed as

Rhĥ = E[hk(hk + ek)
H ] = Rhh, (4.5a)

Rĥĥ = E[(hk + ek)(hk + ek)
H ] = Rhh + Ree, (4.5b)

where Ree = diag(σ2
e1
, σ2

e2
, · · · , σ2

eN
) is an N ×N diagonal matrix with σ2

en
= E[|en(k)|2]

being the power (variance) of the channel estimation error en(k). Based on these defini-

tions, we have the following proposition.
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Proposition 4.1 : The estimated CG vector ĥk and the true CG vector hk are jointly

Gaussian distributed, and the conditional pdf p(hk|ĥk) can be written as

p(hk|ĥk) =
1

det(πRh|ĥ)
exp

[
−(hk − uh|ĥ)

HR−1

h|ĥ(hk − uh|ĥ)
]
, (4.6)

where

uh|ĥ = u + Rhh(Rhh + Ree)
−1(ĥk − u), (4.7a)

Rh|ĥ = Rhh − Rhh(Rhh + Ree)
−1Rhh (4.7b)

are the conditional mean vector and conditional covariance matrix, respectively.

Proof: The proof of Proposition 4.1 is given in Appendix B.

To facilitate analysis, we define the covariance coefficient between the estimated CG

ĥn(k) and the true CG hn(k) of the nth sub-channel as

ρn =
E{[hn(k) − u][ĥn(k) − u]∗}√

σ2
hn
σ2
ĥn

=

√
σ2
hn

σ2
hn

+ σ2
en

, (4.8)

where a∗ denotes the complex conjugate of the complex number a, σ2
hn

= E[|hn(k)−u|2]
and σ2

ĥn
= E[|ĥn(k) − u|2] = σ2

hn
+ σ2

en
is the variance of hn(k) and ĥn(k), respectively.

The value of ρn is in the interval (0, 1] with ρn = 1 corresponding to noiseless (perfect)

channel information at the receiver. Since diversity receivers usually use the same chan-

nel estimation algorithm for all the branches, we assume that ρ = ρ1 = ρ2 = · · · = ρN

for systems with i.i.d. fading channels, and the coefficient ρ is assumed to be known to

the receiver once the channel estimation algorithm is chosen.

4.3 Optimal Diversity Receiver with Noisy Channel

Estimation

In this section, an optimal decision rule for coherent diversity reception is proposed to

minimize the error probability of systems with noisy channel estimation.
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In order to design the optimal coherent diversity receiver, we need to know the statistical

properties of the received sample vector yk. From Proposition 4.1, we know that hk

conditioned on ĥk is Gaussian distributed; it follows from (4.1) that yk conditioned on ĥk

and xk is also Gaussian distributed. If we assume that the symbol sm ∈ S is transmitted,

where S is the modulation alphabet set, then we have yk|(ĥk, sm) ∼ N (uy|ĥ,sm
,Ry|ĥ,sm

).

Combining (4.1), (4.7), (4.8) and the fact that Rhh = σ2
hIN for i.i.d. fading channels, we

can write the conditional pdf p(yk|ĥk, sm) as

p(yk|ĥk, sm) =
1

det(πRy|ĥ,sm
)
exp

[
−(yk − uy|ĥ,sm

)HR−1

y|ĥ,sm
(yk − uy|ĥ,sm

)
]
, (4.9)

where the conditional mean vector uy|ĥ,sm
and covariance matrix Ry|ĥ,sm

are

uy|ĥ,sm
= [ρ2ĥk + (1 − ρ2)u]sm, (4.10a)

Ry|ĥ,sm
= (ρ2σ2

eEs +N0)IN . (4.10b)

With the conditional pdf given in (4.9), we can get the following optimal decision rule

for coherent diversity receivers with noisy channel estimation stated as Theorem 4.1.

Theorem 4.1 : For diversity receivers with noisy estimation of i.i.d. fading channels, if

the transmitted symbols are equiprobable, then the detection rule that minimizes the

system error probability is

x̂k = argmin
sm∈S

{|αk − sm|2}, (4.11)

where S = {sm =
√
Ese

−j2π m
M |m = 1, 2, · · · ,M} is the modulation alphabet set, and

αk = [ρ2ĥk + (1 − ρ2)u]Hyk is the decision variable.

Proof: The system error probability Pe can be expressed as

Pe =

M∑

m=1

P (sm) ·
{

1 −
∫

{ĥk}

[∫

Rm

p(yk|ĥk, sm)dyk

]
dĥk

}
, (4.12)

where P (sm) = 1
M

for equiprobable transmitted symbols, and the N dimensional com-

plex plane Rm is the decision region for the symbol sm, i.e., yk ∈ Rm implies x̂k = sm.

68



The error probability given in (4.12) can be minimized by the maximum a posteriori

(MAP) rule, which selects the decision region Rm so that the conditional pdf p(yk|ĥk, sm)

is maximized,

Rm =
{
yk | p(yk|ĥk, sm) ≥ p(yk|ĥk, sn), ∀n 6= m

}
. (4.13)

Combining the decision region given in (4.13) with the conditional pdf of (4.9), we can

get the decision rule as

x̂k = argmin
sm∈S

{‖yk − [ρ2ĥk + (1 − ρ2)u]sm‖2}, (4.14)

where ‖a‖ =
√

aHa is the l2-norm of vector a.

To simplify the representation of the decision rule given in (4.14), we let dk = ρ2ĥk +

(1 − ρ2)u, and expand the term in (4.14) to be minimized as

‖yk − dksm‖2 = yHk yk + dHk dkEs − 2<(dHk yksm), (4.15)

where the operation <(a) returns the real part of a. Noting that yk and dk are inde-

pendent of sm, we can get the following equivalent decision rule

x̂k = argmin
sm∈S

{−2<(dHk yksm)}. (4.16)

After some algebraic manipulations, we can show that (4.16) is equivalent to (4.11), and

this completes the proof.

If the receiver has perfect knowledge of the fading channel, i.e., ρ = 1, then the decision

variable becomes αk = ĥHk yk, and the decision rule specializes to the conventional MRC

diversity receiver. However, when ρ < 1, it can be seen from the decision rule given

in (4.11) that the conventional MRC receiver is not optimal in the presence of channel

estimation error.

4.4 Error Performance Analyses

Based on the optimal decision rule presented in Theorem 4.1, we evaluate the error

performance of diversity receivers with non-perfect channel information, in both Rayleigh

and Ricean fading channels.
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4.4.1 Conditional Error Probability

We first evaluate the conditional error probability (CEP) P (E|ĥk), which will be used

to obtain the error probability of the diversity system in Rayleigh and Ricean fading

channels.

It can be seen from the decision rule of (4.11) that the detected symbol x̂k should have the

smallest Euclidean distance from the decision variable αk. Based on this decision rule,

the detection region for αk of the MPSK symbol sm should be a 2π
M

angle sector centered

around sm as shown in Fig. 4.1, and the conditional error probability P (E|ĥk, sm) equals

to the probability that αk is outside of the detection region of sm when sm is transmitted.

����

PSfrag replacements

θ

R(θ)

sm‖dk‖2sm

π
M

Figure 4.1: The decision region for MPSK modulation.

Since the received sample vector yk conditioned on ĥk is Gaussian distributed, the deci-

sion variable αk = [ρ2ĥk + (1− ρ2)u]Hyk conditioned on ĥk is also Gaussian distributed

with the conditional pdf given by

p(αk|ĥk, sm) =
r

πuα|ĥ,sm

exp

[
−
|αk − uα|ĥ,sm

|2
σ2
α|ĥ,sm

]
. (4.17)

where

uα|ĥ,sm
= ‖dk‖2sm (4.18a)

σ2
α|ĥ,sm

= ‖dk‖2(ρ2σ2
eEs +N0) (4.18b)
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with dk = ρ2ĥk + (1 − ρ2)u.

To simplify the derivations of the CEP, we represent the conditional pdf p(αk|ĥk, sm) in

a polar coordinate system with origin at uα|ĥ,sm
= ‖dk‖2sm, and the corresponding pdf

written in the polar coordinate system is

p(r, θ|ĥk, sm) =
r

πσ2
α|ĥ,sm

exp

(
− r2

σ2
α|ĥ,sm

)
. (4.19)

With (4.19) and the decision region shown in Fig. 4.1, the CEP P (E|ĥk) can be computed

as

P (E|ĥk) = 2
M∑

m=1

P (sm)

∫ π− π
M

0

∫ +∞

R(θ)

p(r, θ|ĥk, sm)drdθ,

=
1

π

∫ π− π
M

0

exp

{
−‖dk‖4Es sin2( π

M
)

σ2
α|ĥ,sm

sin2(φ)

}
dφ, (4.20)

where R(θ) = ‖dk‖2|sm|sin(π/M)
sin(θ+π/M)

, P (sm) = 1
M

for equiprobable transmitted symbols, and

we have changed the integration variable to φ = π − (θ + π
M

) in the second equality. If

we define the average SNR γn as

γn =
ΩnEs
N0

=
(K + 1)σ2

hn
Es

N0
(4.21)

where Ωn is the power of the nth fading channel, then the CEP can be written in the

following form

P (E|ĥk) =
1

π

∫ π− π
M

0

N∏

n=1

exp

{
−
ρ2γn|ĥn(k) − un(1 − 1

ρ2
)|2 sin2( π

M
)

σ2
ĥn

[γn(1 − ρ2) +K + 1] sin2(φ)

}
dφ, (4.22)

where σ2
ĥn

is the variance of the estimated CG ĥn(k), and the identity ρ2 = σ2
hn
/σ2

ĥn

from (4.8) has been used.

The polar coordinate method was used by Craig in [84] for the evaluation of error

probability of communication systems with 2-dimensional modulation constellations in

AWGN channels. It is extended here for diversity systems with noisy estimated fading

channels. The CEP obtained with this method only involves one integration with finite

integration limits, and the integrand is the product of exponential functions. We will

show next that expressing the CEP in this form can lead to relatively simple evaluations

of the unconditional error performance in fading channels.
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4.4.2 Error Probability in Rayleigh Fading Channels

The unconditional error probability P (E) of the optimal diversity receiver in Rayleigh

fading channels is derived in this subsection based on the CEP presented in (4.22).

For Rayleigh fading channels, the Ricean factor K = 0, and both the true CG hk and

the estimated CG ĥk are zero-mean CGRVs, i.e., u = 0. The CEP described in (4.22)

for Rayleigh fading channels can be simplified to

P (E|ĥk) =
1

π

∫ π− π
M

0

N∏

n=1

exp

{
−γ̃ray

|ĥn(k)|2 sin2( π
M

)

σ2
ĥn

sin2(φ)

}
dφ (4.23)

where

γ̃ray =
ρ2

γn(1 − ρ2) + 1
γn (4.24)

is the equivalent SNR for systems with channel estimation error, and is obtained from

scaling the average SNR γn by a factor β = ρ2

γn(1−ρ2)+1
. Based on the fact that 0 < ρ ≤ 1,

it can be easily shown that γ̃ray ≤ γn, and equality holds when ρ = 1.

If we let gn = |ĥn(k)|2, then the random variable gn is χ2-distributed with 2-degree of

freedom and the unconditional error probability can be directly evaluated with the MGF

method. The MGF of the χ2-distributed random variable gn is [76, p. 19]

Φg(s) = E(esgn) = (1 − sσ2
ĥn

)−1 (4.25)

where σ2
ĥn

= E(|ĥn(k)|2) = E(gn) is the variance of the estimated Rayleigh fading

channel. Using the identity presented in (4.25), the unconditional error probability

P (E) = E[P (E|ĥk)] for i.i.d. Rayleigh fading channels can be computed as

P (E) =
1

π

∫ π− π
M

0

N∏

n=1

[
1 + γ̃ray

sin2( π
M

)

sin2(φ)

]−1

dφ. (4.26)

Note that the result in (4.26) agrees with [78, eqn. (24)] for the special case of ρ = 1,

corresponding to the case when the receiver has perfect knowledge of the fading channel.

For communication systems with BPSK modulation, we have M = 2, and (4.26) can be

written as

P (E) =
1

π

∫ π
2

0

[
1 +

γ̃ray

sin2(φ)

]−N
dφ (4.27)
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Putting the substitution z = cot(φ) in (4.27) yields

P (E) =
1

π(γ̃ray + 1)N

∫ +∞

0

1

(1 + z2)(1 +
γ̃ray

γ̃ray +1
z2)N

dz (4.28)

which can then be written in closed-form [87, eqn. (3.259.3)] as

P (E) =
1

2π(γ̃ray + 1)N
B(

1

2
, N +

1

2
) 2F1(N,

1

2
;N + 1;

1

γ̃ray + 1
) (4.29)

where B(·) is the Beta function, and 2F1(·) is the Gauss hypergeometric function. With

the alternative representation of B(x, y) = Γ(x)Γ(y)
Γ(xy)

[87, eqn. (8.384.1)] and noting that

Γ(1
2
) =

√
π [87, eqn. (8.338.2)], we get the closed-form representation of the error

probability for BPSK systems as,

P (E) =
Γ(N + 1

2
)

2
√
πN !(γ̃ray + 1)N

2F1(N,
1

2
;N + 1;

1

γ̃ray + 1
) (4.30)

where Γ(x) is the Gamma function.

When there is no diversity in the system, i.e. N = 1, the error probability (4.26) for the

MPSK system can be expressed in closed-form by changing the variable of integration

to z = cot(φ). Substituting N = 1 and z = cot(φ) in (4.26), we will have

P (E) =
1

π

∫ +∞

α

(
1

z2 + 1
− 1

z2 + b+ 1
)dz, (4.31)

where α = π− π
M

, and b = (γray sin2( π
M

))−1. According to the indefinite integral
∫

(a2 +

z2)−1dz = 1
a
arctan z

a
+ C, where C is a constant, we can write (4.31) into closed-form,

P (E) =
1

π

[π
2
− arctan (cot(φ))

]
− 1

π
√
b+ 1

[
π

2
− arctan

(
1

a+ 1
cot(φ)

)]
. (4.32)

Noting that φ = π− π
M

is in the range of [0, π], and put b = (γray sin2( π
M

))−1 in the above

equation, we can obtain the closed-form error probability expression for non-diversity

MPSK system as

P (E)=
M − 1

M
−
√

γ̃ray sin2( π
M

)

1 + γ̃ray sin2( π
M

)

[
1

2
+

1

π
arctan

(√
γ̃ray sin2( π

M
)

1 + γ̃ray sin2( π
M

)
cot
( π
M

))]
.(4.33)

For the special case of perfect channel information, we have γ̃ray = γn, and (4.33) agrees

with the result previously obtained in [83, eqn. (36)] through a different approach.
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For diversity systems withM > 2, the symbol error rate given in (4.26) must be evaluated

numerically. The expression for the SER in (4.26) contains one integration with finite

limits, and the integrand is constituted of only elementary functions. Thus, it can be

easily evaluated with simple numerical methods. In this thesis, all the numerical integrals

are performed with the composite Simpson’s method.

4.4.3 Error Probability in Ricean Fading Channels

The unconditional error probability in Ricean fading channels is derived in this subsec-

tion.

For i.i.d. fading channels, the pdf of the estimated CG ĥk is

p(ĥk) =

N∏

n=1

1

πσ2
ĥn

exp

[
−|ĥn(k) − un|2

σ2
ĥn

]
, (4.34)

Combining (4.22) with (4.34), we obtain the unconditional error probability P (E) =
∫
{ĥk} P (E|ĥk)p(ĥk)dĥk in a Ricean fading channel as

P (E) =
1

π

∫ π− π
M

0

N∏

n=1

λn(φ)dφ, (4.35)

where

λn(φ) =
1

πσ2
ĥn

∫

{ĥn}
exp

{
−
γ̃

rice
|ĥn − un(1 − 1

ρ2
)|2 sin2( π

M
)

σ2
ĥn

sin2(φ)
− |ĥn − un|2

σ2
ĥn

}
dĥn, (4.36)

with the equivalent SNR γ̃
rice

for the Ricean fading channel being defined as

γ̃
rice

=
ρ2

γn(1 − ρ2) +K + 1
γn, (4.37)

and the dependence on k has been suppressed by replacing ĥn(k) by ĥn in going from

(4.34) to (4.36) because the integral does not depend on k. Since the integrand of (4.36)

is an exponential function of the square of the integration variable ĥn, we can write it

as the product of a Gaussian pdf and a constant term.

If we let

g =
γ̃

rice
sin2( π

M
)

sin2(φ)
, (4.38a)

a = (1 − 1

ρ2
), (4.38b)
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then (4.36) can be simplified to

λn(φ) =
1

πσ2
ĥn

∫

{ĥn}
exp

[
−g|ĥn − aun|2 + |ĥn − un|2

σ2
ĥn

]
dĥn. (4.39)

In order to rewrite the integrand of (4.39) in the functional form of a Gaussian pdf, we

need to expand the exponential term ζ = g|ĥn(k) − aun|2 − |ĥn(k) − un|2,

ζ = g|ĥn − aun|2 + |ĥn − un|2,

= (g + 1)|ĥn|2 − 2(ga+ 1)unĥn + (ga2 + 1)|un|2,

= (g + 1)

∣∣∣∣ĥn −
ga+ 1

g + 1
un

∣∣∣∣
2

+
g(a− 1)2

g + 1
|un|2. (4.40)

Using (4.40), the integrand of (4.39) can be written as the product of a Gaussian pdf

and a constant, and λn(φ) can be written as

λn(φ) =
1

g + 1
exp

[
− g(a− 1)2

(g + 1)σ2
ĥn

|un|2
]∫

{ĥn}

1

πσ2
ĥn
/(g + 1)

exp

[
−
|ĥn − ga+1

g+1
un|2

σ2
ĥn
/(g + 1)

]
dĥn,

=
1

g + 1
exp

[
− g(a− 1)2

(g + 1)σ2
ĥn

|un|2
]
. (4.41)

Substituting g and a from (4.38) into (4.41) yields

λn(φ) = exp(− |un|2
ρ4σ2

ĥn

)

[
1 +

γ̃
rice

sin2( π
M

)

sin2(φ)

]−1

exp

{
|un|2
ρ4σ2

ĥn

[
1 +

γ̃
rice

sin2( π
M

)

sin2(φ)

]−1
}
.(4.42)

From (4.3) and (4.8), we have

|un|2 = K · σ2
hn

= K · ρ2σ2
ĥn
. (4.43)

Combining (4.42) with (4.43), we get the closed-form representation of λn(φ), which is

expressed as

λn(φ) = e
− K

ρ2

[
1 + γ̃

Ricean

sin2( π
M

)

sin2(φ)

]−1

exp

{
K

ρ2

[
1 + γ̃

Ricean

sin2( π
M

)

sin2(φ)

]−1
}
. (4.44)

Replacing λn(φ) in (4.35) with (4.44), we have the symbol error probability for diversity

receivers in estimated Ricean fading channels

P (E) = e
−N K

ρ2

∫ π− π
M

0

N∏

n=1

[
1 + γ̃

rice

sin2( π
M

)

sin2(φ)

]−1

exp

{
K

ρ2

[
1 + γ̃

rice

sin2( π
M

)

sin2(φ)

]−1
}
dφ, (4.45)
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where K is the Ricean factor, ρ is the covariance coefficient between the true CG and

the estimated CG, and γ̃
rice

is defined in (4.37). When K = 0, which corresponds to a

Rayleigh fading channel, it can be seen that γ̃
rice

= γ̃ray and (4.45) will specialize to the

error probability for a Rayleigh fading channel given in (4.26).

4.5 Numerical Examples

Numerical examples are given in this section to illustrate the influences of noisy channel

estimation on the error performances of diversity receivers in fading channels. Some

simulation results are also shown to validate our analytical results.

We are using the signal to channel estimation error ratio (SCER) λ as the measure of

the quality of the estimated channel since it is independent of the Ricean factor K for

a certain channel estimation algorithm. The SCER λ is defined as

λ =
EsΩ

σ2
e

, (4.46)

where Es is the energy of the transmitted symbol, Ω is the power gain of the fading

channel, and σ2
e is the power (variance) of the corresponding channel estimation er-

ror. Combining this definition with (4.8), we can get a relationship between λ and the

covariance coefficient ρ given by

λ = Es(K + 1)
ρ2

1 − ρ2
. (4.47)

The values of λ and ρ are computed for the pilot assisted polynomial interpolation

channel estimation algorithm with off-line training [67] for channels with different Ricean

factors, and the results are shown in Fig. 4.2. We can see that for a given signal to noise

ratio, the SCER remains almost constant for different values of K, while the covariance

coefficient ρ decreases with the increase of K.

The first example is used to validate the analytical error probability expressions derived

for a system with a practical channel estimation algorithm. The channel estimation

algorithm used in this example is the pilot assisted polynomial interpolation method

with off-line training of [67], and the results are shown in Fig. 4.3 and 4.4 for BPSK
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Figure 4.2: The a) SCER λ and b) covariance coefficient ρ vs. the Ricean factor K.

and 8PSK systems, respectively. We observe excellent agreement between the results

obtained from Monte-Carlo simulation and analysis for various values of the Ricean

factor K and the diversity order N in both of these two figures.

Next we evaluate the influence of channel estimation error on system performances.

The system error probabilities for different values of SCER are shown in Fig. 4.5 and

4.6 for Rayleigh and Ricean fading channels, respectively. From the figures, we can see

that the symbol error rates of all the systems decrease monotonically with the increase

of SCER, as expected, but at different rates for different values of constellation size

M and diversity order N . The larger the value of M or N , the larger the rate of

decrease. Observe from these figures that systems with higher diversity order and larger

constellation size are more sensitive to channel estimation error, as expected. Therefore,
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Figure 4.3: The SER of BPSK systems with polynomial interpolation channel estimation.
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more accurate channel estimation algorithms should be employed for systems with larger

M or N .
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Figure 4.5: The effect of SCER on system performance for Rayleigh fading channels.

The last example is used to study the relationship between channel estimation error and

constellation size. Fig. 4.7 shows the SERs of systems with different constellation sizes

versus the corresponding diversity orders. The absolute values of the curves’ slopes are

proportional to the value of SCER, and inversely proportional to the constellation sizeM .

An interesting observation from Fig. 4.7 is that the SER performance of the system with

SCER=+∞ dB,M = 8 is close to the performance of the system with SCER= 10 dB and

M = 4. The same observation holds for the curve with SCER= +∞ dB, M = 16 relative

to the curve with SCER= 10 dB and M = 8. This observation highlights the importance

of having good channel estimation for MPSK systems operating in fading environments.

Fig. 4.6 shows that SCER= 25 dB gives essentially the same SER performance as SCER=

+∞ dB. Thus increasing the SCER from 10 dB to 25 dB allows doubling M while

maintaining approximately the same SER.
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Figure 4.6: The effect of SCER on system performance for Ricean fading channels.

4.6 Conclusion

It has has been shown that the conventional MRC diversity receiver structure which

is optimal when perfect channel state information is available is not optimal when the

channel estimation is corrupted by additive noise. A novel diversity receiver structure

which is optimal for noisy channel state information has been derived. Exact, closed-form

expressions for the average error probability of the optimal diversity receiver operating

with noisy channel state information have been derived for MPSK modulation in both

Rayleigh and Ricean channels. The new results for systems with noisy channel state

information include systems with perfect channel state information as special cases.

Simulation results are in excellent agreement with the theoretical results. Numerical

examples considered showed the expected sensitivity of higher-order modulation formats

to channel estimation error. A useful observation of significant practical design value was

that improving the channel estimation SNR beyond 25 dB does not achieve worthwhile

decrease in the SER. A second, interesting and useful observation was that improving
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Figure 4.7: The system performance for different constellation sizes and diversity orders.

the channel estimation SNR about 15 dB, from 10 dB to 25 dB allows doubling the

constellation size while maintaining approximately the same SER. These observations,

and others that can be obtained using the new receiver structures and analytical results

given in this chapter, provide useful insights into the design of practical diversity systems.
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Chapter 5

On the Performance of Wireless

Systems with Doubly Selective

Rayleigh Fadings

5.1 Introduction

Error performance analysis of wireless communication systems experiencing frequency-

selective fading has been a field of long time interests [14], [89]- [98]. One of the most

popular analytical methods used for performance analysis of systems with frequency-

selective fading channels (or other trellis structured systems) is the union bound tech-

nique [14], [76], [89]- [92], with which system performance upper bounds are evaluated by

summing over pairwise error probabilities (PEP) of mutually overlapped error events.

Based on the methods used for the computation of the error events PEP, the union

bounds are classified as union Chernoff bound and true union bound (TUB) in [76].

Most of the union bound results are for systems with symbol spaced equalizers, i.e., the

sampling period Ts at the receiver is equal to the system symbol period Tsym. It is well

known that the performance of symbol spaced systems depends critically on the sampler

timing phase [99], [100]. The timing phase sensitivity of symbol spaced equalizers is

induced by the effects of spectrum aliasing of the sampled signals, and it can be avoided

by the implementation of fractionally spaced equalizers with Ts < Tsym [100]. The
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design and union bounds of fractionally spaced receiver with MLSE equalizers are briefly

discussed in [73]. The union bound technique provides an effective way to evaluate the

upper bounds of system performances. However, the results obtained with union bound

are very loose, and the bounds usually diverge at low signal to noise ratio (SNR).

More efficient matched filter bounds are derived in [93]- [97] by assuming that ideal

equalization are available at the receiver and the receive filter is perfectly matched

to the combined impulse response of the transmit filter and the channel fading. The

matched filter bound for a simple two ray fading channel is analyzed in [93], and systems

with general power delay profiles are discussed in [94] and [97] with the help of frequency

domain analysis and Karhunen-Loève expansion. With the ideal receiver assumption, the

matched filter bounds defines the best performance that may be achieved under certain

system configuration, whereas it is usually far below the actual error performances of

systems with practical receivers.

In this chapter, error performance analysis is carried out for systems with doubly selective

Rayleigh fading channels and practical system configurations, and new, tight, closed-

form error performance lower bounds are derived for linearly modulated systems with

both symbol spaced equalizers and fractionally spaced equalizers. The combined effects

of the transmit filter, receive filter, and the physical doubly selective fading channel

are represented as a Ts-spaced discrete-time tapped-delay-line filter with correlated tap

coefficients, with the correlation information being determined by the sampler timing

phase, maximum Doppler spread, and power delay profile of the physical channel fading.

Instead of resorting to the complex trellis structure analysis utilized in union bound

technique, the new performance bound is evaluated on a sample by sample basis with

an equivalent single-input multiple-output (SIMO) system method, where the single-

input single-output (SISO) communication systems with doubly selective fading chan-

nels and additive white Gaussian noise (AWGN) are equivalently represented as SIMO

systems with mutually correlated frequency flat fading channels and colored Gaussian

noise, with the noise correlation introduced by the time span of the receive filter and

receiver oversampling [101]. Compared to the frequency domain analysis utilized by
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the matched filter bound [94], much simpler time domain analysis is employed in the

derivation of the new bounds. It is shown by simulations that our new analytical results

can accurately predicate the error performances of maximum a posteriori (MAP) and

maximum likelihood sequence estimation (MLSE) equalizers at both low SNR and high

SNR. Moreover, it is observed from the analytical results that for systems with practical

power delay profiles, fractionally spaced equalizer can not only overcome the problem

of timing phase sensitivity, but also achieve significant performance gain over systems

with symbol spaced receivers.

The rest of this chapter is organized as follows. Section 5.2 presents a discrete-time

representation of the communication systems with doubly selective fading channels, and

the statistical properties of the discrete-time system model are analyzed. In Section 5.3,

an equivalent SIMO system representation is presented to facilitate the error performance

analysis. Based on an optimum decision rule proposed for the equivalent SIMO system,

closed-form expressions of the new error probability bounds for doubly selective fading

channels are derived in Section 5.4. Numerical examples and simulation results are given

in Section 5.5, and Section 5.6 concludes this chapter.

5.2 Discrete-time System Model

An equivalent discrete-time system model is derived in this section for systems experi-

encing time-varying and frequency-selective channel fadings.

Let p
T
(t) and p

R
(t) be the time-invariant impulse response of the transmit filter and the

receive filter, respectively, and both are normalized with energy of unity. Let g(t, τ) be

the time-varying impulse response of the doubly selective fading channel, and it can be

viewed as the response of the fading channel at time t to an impulse input applied at

time t− τ . We define the composite impulse response (CIR) of the channel as follows

h(t, τ) = p
R
(τ) � g(t, τ) � p

T
(τ), (5.1)

where a(t, τ)�b(t, τ) =
∫ +∞
−∞ b(t, µ)a(t−µ, τ−µ)dµ represents the convolution operation
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of time-varying systems. Therefore, the received signal y(t) can be represented by

y(t) =
+∞∑

n=−∞
s(n)h(t, t− nTsym) + z(t), (5.2)

where s(n) is the modulated information symbol with symbol period Tsym, z(t) = p
R
(t)�

v(t) is the noise component at the output of the receive filter, and v(t) is the zero-mean

complex-valued white Gaussian noise with variance N0. The sampled output of the

receive filter at the sampling instant kTs + τ0 can be expressed by

y(k) =
L−1∑

l=0

x(k − l)h(k, l) + z(k), (5.3)

where the sampling period Ts satisfies Ts = Tsym/ν with the integer ν being the over-

sampling factor, τ0 ∈ [−Ts

2
, Ts

2
] is the sampler timing offset, y(k) = y(kTs + τ0) and

z(k) = z(kTs + τ0) are the time-shifted Ts-spaced samples of the received signals and

noise components, respectively, h(k, n) = h(kTs + τ0, nTs + τ0) is the sampled version

of the continuous-time composite impulse response h(t, τ), and x(k) is the over-sampled

version of the transmitted signals s(k) defined as

x(k) =





s(k/ν), k/ν is integer,

0, otherwise.

In the representation of (5.3), the CIR h(k, l) is represented as a causal finite impulse

response (FIR) filter in the delay domain l by discarding negligible channel taps. This

FIR representation can be verified by the facts that the power delay profile (PDP)

G(µ) of the physical fading channel has finite time domain support, and the tails of the

transmit filter and receive filter fall off rapidly in the time domain. Moreover, systems

with non-causal CIR can always be made causal by appropriate delays at the receiver.

Equation (5.3) is a discrete-time representation of the communication system, and the

doubly selective fading channel is represented as a Ts-spaced tapped-delay-line filter. It

has been shown in Chapter 2 that the tap coefficients of h(k, l) are mutually correlated

in both the temporal domain k and the delay domain l. If the channel experiences wide

sense stationary uncorrelated scattering (WSSUS) Rayleigh fadings, then the correlation
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function ρ(k1 − k2; l1, l2) = E [h(k1, l1)h
∗(k2, l2)] can be expressed as (Proposition 2.2)

ρ(k1 − k2; l1, l2) = J0 [2πfd(k1 − k2)Ts] · c(l1, l2), (5.4)

with c(l1, l2) =

∫ +∞

−∞
Rp

T
p

R
(l1Ts + τ0 − µ)R∗

p
T
p

R
(l2Ts + τ0 − µ)G(µ)dµ, (5.5)

where Rp
T
p

R
(t) = p

T
(t)�p

R
(t) is the convolution of the transmit filter and receive filter,

J0(x) is the zero-order Bessel function of the first kind, fd is the maximum Doppler

spread of the channel fading, and G(µ) is the normalized channel power delay profile

with
∫ +∞
−∞ G(µ)dµ = 1. It needs to point out that (5.5) holds for the condition that

fdTs � 1, which is satisfied for most practical conditions. The delay domain correlation

c(l1, l2) of the discrete-time CIR is introduced by the effects of the time span of the

filters p
T
(t) and p

R
(t), and the underlying WSSUS physical fading channels are white

in the delay domain τ . As defined in (5.4) and (5.5), the values of the temporal-delay

two-dimensional correlation ρ(k; l1, l2) are jointly determined by the maximum Doppler

spread fd, the power delay profile G(µ) of the physical channel fading, the sampler

timing offset τ0, and the effects of the transmit filter p
T
(t) and receive filter p

R
(t).

The noise component z(k) of the discrete-time system is a linear transformation of the

AWGN v(t), thus it is still Gaussian distributed with zero-mean, and the auto-correlation

function is given by (Proposition 2.1)

E [z(m + n)z∗(m)] = N0 ·Rp
R
p

R
(nTs), (5.6)

where Rp
R
p

R
(nTs) =

∫ +∞
−∞ p

R
(nTs + τ)p

R
(τ)dτ is the autocorrelation function of the

receive filter. It should be noted that the statistical properties of the noise component

are not affected by the timing offset τ0. If Rp
R
p

R
(nTs) = 0 for n 6= 0, then the discrete-

time noise component z(k) is still white, and this is valid for Tsym spaced receivers

with Nyquist filter. For fractionally spaced receivers, z(k) becomes a colored Gaussian

noise process, and the correlation among noise samples is introduced by the effects of

oversampling and the time span of the receive filter. It will show in this chapter that

the temporal-delay correlation information of h(k, l) along with the noise correlation are

critical to the performances of the communication systems.
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5.3 Equivalent System Representation

An equivalent SIMO representation of system with doubly selective channel fadings is

presented in this section to facilitate the system error performance analysis.

Based on the discrete-time representation of the system given in (5.3), the input-output

relationship of the system can be written in matrix format as

yk = hk · x(k) + H̃k · x̃k + zk, (5.7)

where the vectors yk = [y(k), y(k + 1), · · · , y(k + L− 1)]T ∈ CL×1, z(k) = [z(k), z(k+

1), · · · , z(k + L − 1)]T ∈ CL×1 comprises all the received samples and noise samples

related to the transmitted symbol x(k), with AT representing the operation of matrix

transpose, hk = [h(k, 0), h(k+1, 1), · · · , h(k+L−1, L−1)]T ∈ CL×1 is the CIR vector re-

lated to x(k), x̃k = [x(k−L+1), · · · , x(k−1), x(k+1), · · · , x(k+L−1)]T ∈ C2(L−1)×1

is the interference vector relative to x(k), and H̃k ∈ C
L×2(L−1) is the corresponding in-

terference CIR matrix defined as

H̃k =




hk(L− 1) · · · hk(1) 0 · · · 0

0 hk+1(L− 1) · · · hk+1(2) hk+1(0) 0
...

...
...

...
...

...

0 · · · 0 hk+L−1(L− 2) · · · hk+L−1(0)



. (5.8)

In the representation of (5.7), x(k) is treated as the desired information symbol being

transmitted in L parallel frequency-flat fading channels, and the SISO systems with

doubly selective fading channels are equivalently represented as an SIMO system with

mutually correlated flat fading channels hk and colored additive noise zk. The ISI

components Ik = H̃kx̃k = [I(k), I(k + 1), · · · , I(k + L − 1)]T are represented as cross-

channel interference in this equivalent system. The block diagrams of the original SISO

system along with its SIMO counterpart are depicted in Fig. 5.1. With such system

configurations, the system error performances can be analyzed on a sample-wise basis

without resorting to the trellis structure utilized by union bound techniques. Moreover,

we are going to show by simulations that the results obtained by this method is more

accurate than those obtained from union bounds and matched filter bound.
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z−1 z−1z−1

...

· · ·

· · ·
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x(k − 2) x(k −L+1)

Σ

z(k)

y(k)

h(k, 0)x(k) h(k, 2)x(k − 2)

(a) The discrete-time SISO system with doubly selective fading channel.

PSfrag replacements

...
...

...
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h(k+1, 1) I(k+1) z(k+1)
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(b) The equivalent SIMO system representation.

Figure 5.1: The block diagrams of the SISO system and its equivalent SIMO system
representation.
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If the interference components Ik = H̃kx̃k are fully canceled by the receiver, then the

error probability of the SIMO system can be minimized. It is well known that MLSE

equalizers and MAP equalizers are optimum in the sense of maximizing the likelihood

functions or a posteriori probabilities of the transmitted symbols. In this chapter, we

are going to show by simulations that the MLSE equalizers and MAP equalizers are also

asymptotic optimum for the equivalent SIMO systems in the sense of interference cancel-

lation, i.e., the interference components Ik will tend to 0 if MAP or MLSE equalization

algorithms are employed to systems with long enough decoding length. Therefore, tight

error probability lower bounds of MLSE and MAP equalizers can be obtained by assum-

ing Ik = 0.

It’s worth pointing out that the interference free assumption is also employed in the

derivation of the matched filter bounds [93]- [97], where ideal lower bounds are obtained

by assuming that the receive filter is perfectly matched to the combined response of the

transmit filter and channel fadings. The ideal receiver assumption makes the matched

filter bounds unachievable for most practical systems. On the other hand, by considering

the effects of practical receive filter and sampler timing phase, the error performance

bounds obtained by the equivalent SIMO system method can accurately predicate the

performance of systems with practical equalizers.

From (5.7), the interference free SIMO system can be represented as

yk = hk · xk + zk, (5.9)

where zk is a zero-mean colored Gaussian noise vector. The correlation among the noise

samples is introduced by the time span of the receive filter as expressed in (5.6), and

the covariance matrix of zk is Rz = E
[
zkz

H
k

]
= N0 ·Rp, where AH denoting the matrix

Hermitian operation, and Rp is the receive filter correlation matrix defined as

Rp =




Rp
R
p

R
(0) Rp

R
p

R
(Ts) · · · Rp

R
p

R
[(L−1)Ts]

Rp
R
p

R
(Ts) Rp

R
p

R
(0) · · · Rp

R
p

R
[(L−2)Ts]

...
...

...
...

Rp
R
p

R
[(L−1)Ts] Rp

R
p

R
[(L−2)Ts] · · · Rp

R
p

R
(0)



. (5.10)
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The Rayleigh fading channel vector hk contains zero-mean complex Gaussian random

variables (CGRVs) with covariance matrix Rh = E
[
hkh

H
k

]
given by

Rh =




ρ(0; 0, 0) ρ(1; 0, 1) · · · ρ(L−1; 0, L−1)

ρ(1; 1, 0) ρ(0; 1, 1) · · · ρ(L−2; 1, L−1)
...

...
...

...

ρ(L−1;L−1, 0) ρ(L−2;L−1, 1) · · · ρ(0;L−1, L−1)



. (5.11)

The correlation coefficient ρ(k; l1, l2) is defined in (5.4), and it contains the information

of both the temporal correlation J0(2πfdkTs) and the delay domain correlation c(l1, l2),

which are in turn determined by the maximum Doppler spread fd, the timing phase

offset τ0, and the power delay profile G(µ) of the channel fadings.

Based on the statistical properties of the noise vector zk and the CIR vector hk, the

error probabilities of the communication system are analyzed in the next section.

5.4 Error Performance Analysis

Closed-form expressions of symbol error rate (SER) of linearly modulated systems are

derived based on an optimum decision rule of the interference free SIMO system, and

SERs obtained by this methods are tight lower performance bounds of the corresponding

SISO system.

5.4.1 Optimum Combining

An optimum decision rule is presented in this subsection for the interference free SIMO

system based on the statistical properties of the colored noise vector zk.

The eigenvalue decomposition (EVD) of the receive filter correlation matrix Rp is

Rp = VΩpV
H, (5.12)

where Ωp = diag [ω1, · · · , ωL] ∈ RL×L is a diagonal matrix with the decreasing sequence

ωl, for l = 1, · · · , L being the eigenvalues of Rp, and the matrix V = [v1, · · · ,vL] are

formed by the corresponding eigenvectors. Since the eigenvectors form an orthonormal
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basis of the dimension L vector space, V is an unitary matrix satisfying VHV = VVH =

IL. For systems with rank deficient receive filter correlation matrix Rp, the statistical

properties of the SIMO system cannot be directly evaluated due to the fact that the

probability density function (pdf) of the CGRV vector zk involves the inverse of the

covariance matrix Rz = N0Rp [85, eqn. (7-62)]. To avoid the inverse operation of a

rank deficient matrix, we define a new matrix Ψp based on the non-zero eigenvalues of

Rp,

Ψp = V̄Ω̄−1
p V̄H ∈ C

L×L, (5.13)

with V̄ =
[

v1 v2 · · · v
Lp

]
∈ C

L×Lp, (5.14a)

Ω̄p = diag
[
ω1 ω2 · · · ω

Lp

]
∈ R

Lp×Lp, (5.14b)

where Lp is the number of non-zero eigenvalues of Rp, Ω̄p is a diagonal matrix with

its diagonal elements being the non-zero eigenvalues of Rp, and the corresponding or-

thonormal eigenvectors vl, for l = 1, 2, · · · , Lp form the reduced eigenvector matrix V̄.

With these definitions, the error probability minimizing decision rule of the interference

free SIMO systems can be stated as follows.

Theorem 5.1 : For SIMO systems with colored Gaussian noise, if the transmitted symbols

are equiprobable and the fading vector hk are known perfectly to the receiver, then the

decision rule that minimizes the system error probability is

x̂(k) = argmin
sm∈S

|ηk − qk · sm|2,
k

ν
is integer. (5.15)

where x̂(k) is the detected symbol at time instant k, S is the modulation alphabet

set with Cardinality M , ηk = hHk Ψpyk is the decision variable, the real-valued scalar

qk = hHk Ψphk is a quadratic form of the CGRV vector hk, and the Hermitian matrix

Ψp is defined in (5.13) based on the non-zero eigenvalues of the colored noise covariance

matrix Rz = N0Rp.

Proof: Multiplying both sides of the SIMO system described by equation (5.9)

with the reduced eigenvector matrix V̄H, we will have an equivalent system

ȳk = V̄Hhk · x(k) + z̄k, (5.16)
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where ȳk = V̄Hyk ∈ CLp×1, z̄k = V̄Hzk ∈ CLp×1 are the sample vector and noise vector

of the system, respectively. The noise vector z̄k is obtained from linear transformation

of the colored Gaussian vector zk ∼ N (0, N0Rp), thus z̄k is still Gaussian distributed

with zero-mean. The covariance matrix Rz̄ = E[z̄kz̄
H
k ] of z̄k is

Rz̄ = V̄HRzV̄z = N0Ω̄p, (5.17)

where Rz = N0Rp is the covariance matrix of the colored noise vector zk, Ω̄p is a diagonal

matrix containing the non-zero eigenvalues of Rp, and the second equality of (5.17) is

based on the orthonormality of the eigenvectors of Rp. Since the covariance matrix Rz̄

is diagonal, the elements of z̄k are uncorrelated, and the system with colored Gaussian

noise zk is equivalently converted to a system with white Gaussian noise z̄k as described

in (5.16).

From (5.16), the sample vector ȳk conditioned on the fading vector hk and the transmit-

ted symbol x(k) = sm is Gaussian distributed with mean V̄Hhksm and covariance matrix

N0Ω̄p, i.e., ȳk|(hk, sm) ∼ N (V̄Hhksm, N0Ω̄p), and the conditional pdf p(ȳk|hk, sm) is

p(ȳk|hk, sm) =
1

det
(
πΩ̄pN0

) exp

[
− 1

N0

(
ȳk − V̄Hhksm

)H
Ω̄−1
p

(
ȳk − V̄Hhksm

)]
.(5.18)

If the transmitted symbol are equiprobable, then the error probability of the system

described in (5.16) can be minimized by the maximum a posteriori (MAP) rule as

x̂k = argmin
sm∈S

[(
ȳk − V̄Hhksm

)H
Ω̄−1
p

(
ȳk − V̄Hhksm

)]
. (5.19)

Expanding the cost function of (5.19), and noting that the term ȳHk Ω̄−1
p ȳk is independent

of the selection of sm, the decision rule can be equivalently represented as

x̂k = argmin
sm∈S

[
hHk Ψphk · |sm|2 − 2<(hHk Ψpyk · s∗m)

]
,

= argmin
sm∈S

[
qk · |sm|2 − 2<(ηk · s∗m)

]
, (5.20)

where Ψp is defined in (5.13), ηk = hHk Ψpyk is the decision variable, <(a) is the real

part operator, and qk = hHk Ψphk. Based on the fact that qk is a real-valued scalar, it’s

straightforward that (5.20) is equivalent to (5.15), and this completes the proof.
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The decision rule given in (5.15) states that the detected symbol multiplied by qk =

hHk Ψphk should have the smallest Euclidean distance with the decision variable ηk.

Based on this decision rule, symbol error probabilities are derived for linearly modulated

systems with correlated channel fadings and colored Gaussian noise.

5.4.2 Conditional Error Probabilities

The conditional error probabilities (CEP) are derived in this subsection based on the

optimum decision rule given in Theorem 5.1.

From (5.9), the decision variable ηk = hHk Ψpyk can be expressed as

ηk = hHk Ψphk · x(k) + hHk Ψpzk. (5.21)

If the modulated symbol sm ∈ S is transmitted, then the decision variable ηk condi-

tioned on the fading vector hk and sm is Gaussian distributed with the conditional pdf

p(ηk|hk, sm) given by

p(ηk|hk, sm) =
1

πσ2
η|h,sm

exp

(
−|ηk − µη|h,sm|2

σ2
η|h,sm

)
, (5.22)

with the conditional mean µη|h,sm and conditional variance σ2
η|h,sm

defined as

µη|h,sm = qksm, (5.23a)

σ2
η|h,sm

= qkN0, (5.23b)

where qk = hHk Ψphk is a quadratic form of the CGRV vector hk, and the identity

V̄HRpV̄ = Ω̄p is used in the derivation of (5.23b). Since the conditional mean µη|h,sm

and the conditional variance σ2
η|h,sm

are explicit functions of the quadratic form qk, the

conditional pdf p(ηk|hk, sm) can also be equivalently represented as p(ηk|qk, sm), and

ηk|(qk, sm) ∼ N (qksm, qkN0).

To simplify the derivation of the CEP, we represent the conditional pdf p(ηk|qk, sm) in a

polar coordinate system with origin at µη|h,sm = qksm, and the corresponding pdf written

in the polar coordinate system is

p(r, θ|qk, sm) =
r

πqkN0

exp

(
− r2

qkN0

)
. (5.24)
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Based on the conditional pdf of the decision variable ηk, the CEPs for M-ary phase-shift-

keying (MPSK), M-ary amplitude-shift-keying (MASK) and square M-ary quadrature-

amplitude-modulation (MQAM) systems are derived as follows.

� MPSK:

Based on the decision rule given in (5.15), the decision region for ηk of the MPSK symbol

sm should be a 2π
M

angle sector centered around qksm, and the CEP PMPSK(E|qk, sm) equals

to the probability that ηk is outside of the decision region.

With (5.24) and the analysis in Section 4.4.1, the CEP P (E|qk) can be computed as

PMPSK(E|qk) = 2

M∑

m=1

P (sm)

∫ π− π
M

0

∫ +∞

R(θ)

p(r, θ|qk, sm)drdθ,

=
1

π

∫ π− π
M

0

exp

{
−γ · qk sin2

(
π
M

)

sin2 φ

}
dφ, (5.25)

where R(θ) = qk|sm| sin(π/M)
sin(θ+π/M)

, P (sm) = 1
M

for equiprobable transmitted symbols, γ = Es

N0

is the average signal to noise ratio without fading, and we have changed the integration

variable to φ = π − (θ + π
M

) in the second equality.

� MASK:

The decision regions for the MASK signal sm is shown in Fig. 5.2, where ∆ is the

minimum Euclidean distance between two adjacent MASK symbols. Consider the error

probability of both the M − 2 inner symbols and 2 marginal symbols of the MASK

constellation, the CEP PMASK(E|qk) can be computed as

PMASK(E|qk) =
1

M
[(M − 2) × 4 + 2 × 2]

∫ π
2

0

∫ +∞

R(θ)

p(r, θ|hk, sm)drdθ,

= 2

(
1 − 1

M

)
· 1

π

∫ π
2

0

exp

{
− 3γ · qk

(M2 − 1) sin2 φ

}
dφ, (5.26)

where R(θ) = qk ·
√

3Es

(M2−1) cos2 θ
, with Es = ∆2(M2−1)

12
being the average symbol energy

of the MASK constellation, γ = Es

N0
is the average SNR, and the integration variable is

changed to φ = π
2
− θ in the second equality. With the alternative representation of the

Gaussian-Q function [76, eqn. (4.2)], the CEP can also be written as

PMASK(E|qk) = 2

(
1 − 1

M

)
·Q
(√

6γ · qk
M2 − 1

)
, (5.27)
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where Q(x) =
∫ +∞
x

1√
2π

exp
(
−y2

2

)
dy is the Gaussian Q-function.

PSfrag replacements qksm

qk∆

θ

R(θ)

(a) The decision region for the inner symbol sm of
the MASK constellation is a strip area defined by the
dashed-lines.

PSfrag replacements qksm

qk∆

θ

R(θ)

(b) The decision region for the marginal
symbol sm of the MASK constellation is a
half-plane to the left of the dashed-line.

Figure 5.2: the decision region for MASK symbol

� MQAM:

The square MQAM can be viewed as the orthogonal combination of two independent
√
M −ASK signals, each with average symbol energy Es

2
. The event of correct decision

of the MQAM system is equivalent to the event that correct decisions are made on both

of the two independent
√
M -ASK systems. Based on (5.27), the CEP PMQAM(E|qk) can
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Table 5.1: Parameters of the Unified Error Probability Expressions for Linearly Modu-
lated Systems

Parameters ζ β1 β2 ψ1 ψ2

MPSK sin2 π
M

1 0 π
(
1 − 1

M

)
0

MASK 3
M2−1

2(1 − 1
M

) 0 π
2

0

MQAM 3
2(M−1)

4
(
1 − 1√

M

)
4
(
1 − 1√

M

)2
π
2

π
4

be expressed by

PMQAM(E|qk) = 1 −
[
1 − P√

M-ASK,Es
2

(E|qk)
]2
,

= 4

(
1 − 1√

M

)
·Q
(√

3γqk
M − 1

)
−

4

(
1 − 1√

M

)2

·Q2

(√
3γqk
M − 1

)
. (5.28)

With the alternative expressions of the two-dimensional Gaussian Q-function [76, eqn.

(4.2), (4.9)], the CEP PMQAM(E|qk) can be written in the desired exponential form,

PMQAM(E|qk) =
4

π

(
1 − 1√

M

)∫ π
2

0

exp

{
− 3γ · qk

2(M − 1) sin2 φ

}
dφ−

4

π

(
1 − 1√

M

)2 ∫ π
4

0

exp

{
− 3γ · qk

2(M − 1) sin2 φ

}
dφ. (5.29)

Eqns. (5.25), (5.26) and (5.29) are the conditional error probabilities for MPSK, MASK,

and MQAM systems, respectively. Since all of the CEPs contain integrations with

integrand in the form of an exponential function of qk = hHk Ψphk, the CEPs for the

three modulated systems can be written in a unified form as follows,

P (E|qk) =

2∑

i=1

βi
π

∫ ψi

0

exp
{
−ζ · γ · qk

sin2 θ

}
dθ, (5.30)

where γ is the average SNR without fading, and the values of ζ, βi and ψi for the various

modulation schemes are listed in Table 5.1.

5.4.3 Symbol Error Rate

The unconditional error probabilities P (E) of the linearly modulated systems with col-

ored noise and correlated Rayleigh fading channels are derived in this subsection with
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the help of the characteristic function (CHF) of quadratic form of CGRV vector.

For Rayleigh fading channels, the fading vector hk is zero-mean Gaussian distributed

with covariance matrix Rh given in (5.11), i.e., hk ∼ N (0,Rh). In the unified represen-

tation of the CEPs in (5.30), the integrands have the form of an exponential function of

the real-valued random variable qk = hHk Ψphk. Since Ψp is a Hermitian matrix, qk is a

quadratic form of the zero-mean CGRV vector hk, and the CHF of qk is [102]

Φq(w) = E
(
ejwqk

)
= [det (IL − jwRhΨp)]

−1 , (5.31)

where w is a dumb variable, and IL is an L× L identity matrix.

With the CHF defined in (5.31) and the unified CEP P (E|qk) given in (5.30), the

unconditional error probability P (E) = E [P (E|qk)] in Rayleigh fading channels can be

computed as

P (E) =
2∑

i=1

βi
π

∫ ψi

0

[
det

(
IL +

ζγ

sin2 θ
RhΨp

)]−1

dθ,

=

2∑

i=1

βi
π

∫ ψi

0

{
det

[
IL +

ζγ

sin2 θ
Ψ

1
2
pRh

(
Ψ

1
2
p

)H]}−1

dθ, (5.32)

where Ψ
1
2
p is the square root of the matrix Ψp satisfying

(
Ψ

1
2
p

)H
Ψ

1
2
p = Ψp, and the

identity det(I + AB) = det(I + BA) is used in (5.32).

Performing eigenvalue decomposition of the product matrix R = Ψ
1
2
pRh

(
Ψ

1
2
p

)H
, we will

have

R = UΛUH , (5.33)

where Λ = diag[λ1, · · · , λL̃, 0, · · · , 0] ∈ R
L×L is a diagonal matrix with the diagonal

elements being the eigenvalues of R, L̃ is the number of non-zero eigenvalues of R, and

the columns of the unitary matrix U are the corresponding orthonormal eigenvectors

with UUH = IL. The values of L̃ and λl, for l = 1, 2, · · · , L̃ are determined by both Ψp

and the temporal-delay correlation matrix Rh, which are in turn related to the sampler

timing offset, and the statistical properties of the colored Gaussian noise and the doubly

selective channel fadings.
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Substituting (5.32) with (5.33), we can write the symbol error probability as

P (E) =
2∑

i=1

βi
π

∫ ψi

0

{
det

[
U

(
IL +

ζγ

sin2 θ
Λ

)
UH

]}−1

dθ

=

2∑

i=1

βi
π

∫ ψi

0

L̃∏

l=1

[
1 + γ · ζλl

sin2 θ

]−1

dθ. (5.34)

The closed-form expressions of the SER given in (5.34) can be obtained by partial fraction

expansion. For all systems with practical PDPs, e.g., the exponential profile [94], the

Typical Urban profile [22], the non-zero eigenvalues λl, for l = 1, · · · , L̃ are different

from each other, and the SER can be expressed as

P (E) =
2∑

i=1

L̃∑

l=1

βidl
π

∫ ψi

0

[
1 + γ · ζλl

sin2 θ

]−1

dθ (5.35)

where the value of dl can be computed by

dl =

L̃∏

j=1

j 6=l

[
1 + γ · ζλj

sin2 θ

]−1

sin2 θ=−γ·ζ·λl

=

L̃∏

j=1

j 6=l

λl
λj − λl

, for l = 1, 2, · · · , L̃. (5.36)

The integral in (5.35) can be expressed in closed-form as,

1

π

∫ ψ

0

[
1 +

γζλl

sin2 θ

]−1

dθ=
ψ

π
−
√

γζλl
1 + γζλl

×
[

1

2
− 1

π
arctan

(√
γζλl

1 + γζλl
cotψ

)]
, ∀ψ ∈ [0, 2π], (5.37)

and the derivation of (5.37) is outlined in Appendix C.

From (5.35)-(5.37), the unified closed-form SER solutions of the linearly modulated

systems can be expressed by

P (E) =
2∑

i=1

L̃∑

l=1

L̃∏

j=1

j 6=l

βiλl
λj − λl

{
1

π
−
√

γαλl
1 + γαλl

×

[
1

2
− 1

π
arctan

(√
γαλl

1 + γαλl
cotψi

)]}
. (5.38)
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With the variables of ζ, βi, and ψi in (5.38) substituted by the values given in Table 5.1,

the closed-form expressions of the SER lower bounds for MPSK, MASK, and MQAM

systems with doubly selective channel fadings can be written as follows.

� MPSK:

PMPSK(E) =
L̃∑

l=1

L̃∏

j=1

j 6=l

λl
λj − λl

{
M − 1

M
−
√

γλl sin
2( π
M

)

1 + γλl sin
2( π
M

)
×

[
1

2
+

1

π
arctan

(√
γλl sin

2( π
M

)

1 + γλl sin
2( π
M

)
cot
( π
M

))]}
. (5.39)

� MASK:

PMASK(E) =

L̃∑

l=1

L̃∏

j=1

j 6=l

λl
λj − λl

[
M − 1

M

(
1 −

√
3γλl

M2 − 1 + 3γλl

)]
. (5.40)

� MQAM:

PMQAM(E)=
L̃∑

l=1

L̃∏

j=1

j 6=l

λl
λj − λl

{
2

(
1 − 1√

M

)(
1 −

√
3γλl

3γλl + 2M − 2

)
+

(
1 − 1√

M

)2

×

[
4

π

√
3γλl

3γλl + 2M − 2

(
π

2
− arctan

√
3γλl

3γλl + 2M − 2

)
− 1

]}
. (5.41)

For the special case of frequency-flat fading channel, we have L̃ = 1, and (5.39) and

(5.41) agree with the exact error probability expressions previously obtained in [83, eqn.

(36), (43)] for systems with flat fading channels.

In some special cases, such as the equal gain Tsym-spaced PDP with Tsym-spaced receiver,

some of the eigen values of R may have identical values. To avoid the complexity

of partial fraction expansion of expressions with roots multiplicity, an approximation

method is presented in [102], where identical eigenvalues are slightly modified without

apparently affecting the system performance. By subtracting different small positive

random numbers from identical eigenvalues, a valid error probability lower bound can

still be obtained from (5.38). Moreover, exact values of P (E) can still be computed
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from numerical integration of (5.34), which can be easily evaluated since it has finite

integration limits and the integrand contains only elementary functions.

In the SER expressions given in (5.34) and (5.39)-(5.41), the effects of receiver over-

sampling, sampler timing offset τ0, Doppler spread fd and power delay profile G(µ) of

the physical channel fadings are quantified as the eigenvalues of the matrix R, which is

a function of the temporal-delay correlation matrix Rh and the matrix Ψp. It should

be noted that the dependence of P (E) on fd is introduced by the relative time delay

among the elements of the fading vector hk. For conventional SIMO systems in flat

fading channels, i.e., a system with one transmit antenna and L receive antennas, the

uncoded performances are usually not affected by the Doppler spread of the channel.

5.5 Numerical Examples

Numerical examples are given in this section to illustrate the error performances of

wireless communication systems with doubly selective fading channels, and simulation

results are also provided to validate our analytical expressions.

In the examples, the symbol period is set to Tsym = 3.69µs, and the maximum Doppler

spread fd is assumed to be 200Hz, which corresponds to a mobile speed of 120 km/hr at

the carrier frequency of 1.8 GHz. Unless otherwise specified, root raised cosine (RRC)

filter with roll-off factor α = 0.3 is used as both the transmit filter and receive filter.

In the first example, we are going to compare our new analytical results with the well-

known union Chernoff bounds and TUB [76]. Since the inter-tap correlation information

will lead to “considerable analytical difficulty” [73] to obtain the union bounds, a simple

two ray equal-gain Tsym-spaced power delay profile with uncorrelated channel gains are

used in this example. The analytical results along with the corresponding simulation

results obtained with MLSE and MAP equalizers are shown in Fig. 5.3. In the com-

putation of the union bounds, the trellis structure of the system is analyzed based on

the error state transition matrix method [90]. It is clearly from the figure that our new

performance results are superior than both of the two union bounds. The new SER
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lower bound can accurately predict the performances of MLSE and MAP equalizers at

both low SNR and high SNR. On the other hand, the union Chernoff bound and TUB

converges only when Eb/N0 is higher than 20dB. Even at high SNR, the union Chernoff

bound is still 1dB away from the actual error performances. Moreover, Since the error

probabilities of the newly proposed methods are analyzed on a symbol by symbol basis,

considerable computation efforts can be saved compared to the trellis structure analysis

used by the union bounds.
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Figure 5.3: Comparison of performance bounds of systems with two ray equal gain
channel profile. Decoding length for the equalizers: 1024 symbols.

The performances of systems with practical power delay profiles are illustrated in the

next example, and the Typical Urban (TU) profile [22] is used to model the frequency-

selective channel fading. Root raised cosine filters with 100% excessive bandwidth (α =

1) are used as the transmit filter and receive filter. Fig. 5.4 shows the theoretical error

performances as well as the simulation results obtained with the MAP equalizer, and

the matched filter bound is also listed in the figure for comparison. From the figure, it
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Figure 5.4: Performances of systems with Typical Urban profile. ν: oversampling factor.
τ0: sampling timing offset. Decoding length of the equalizers: 1024 symbols.

is interesting to note that for systems without oversampling (ν = 1), the performance

of the system with sampler timing offset τ0 = −0.25Tsym is superior than that of the

system with τ0 = 0. This phenomenon is due to the fact that the power of the TU

profile is dominated by the delayed scattering rays of the physical channel fadings, and

the power of the first ray (or the zero-delay scattering ray) of the channel accounts for

only 19.0% of the total channel power.

Moreover, excellent agreements between the simulation results and our new performance

bounds can be observed from the figure for Eb/N0 ≥ 10dB. The results in Fig. 5.3

and 5.4 shows that the performances of MLSE and MAP equalizers coincide with the

performance of interference free systems at high SNR, which means the MLSE and MAP

equalizers are asymptotic optimum in the sense of interference cancellation. Even at low

SNR, the lower bounds are still very tight compared to the simulation results. It can also

be observed from Fig. 5.4 that the matched filter bound is a loose lower bound for such
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system configuration. At the SER level of 10−5, there is a 7dB difference between the

matched filter bound and the simulation results of systems with τ0 = 0. This difference

is mainly induced by the ideal matched filter assumptions adopted in the derivation of

the matched filter bound, and the effects of timing phase offset can not be represented

by the matched filter bound either.

The effects of sampler timing phase and oversampling on system performance are further

analyzed in the third example, where the SER lower bounds are plotted against the

sampler timing offset τ0 for systems with and without oversampling. Fig. 5.5 shows the

performances of systems with the two ray equal-gain uncorrelated Tsym-spaced power

delay profile, and the performances of systems with TU profile are displayed in Fig.

5.6. For systems without oversampling, i.e., ν = 1, the system performances vary

dramatically with the timing phase offset τ0. This variation is induced by the effects of

spectrum aliasing [100] of the received signals, since the sampling rate 1/Tsym is smaller

than the Nyquist rate (1 + α)/Tsym of the received signals, where α is the roll-off factor

of the RRC filter. For different values of sampler timing phase, the amplitude of the

overlapped spectrum could add up constructively or destructively, which will lead to

performance improvement or degradation. The effects of spectrum aliasing becomes

more serious for systems with larger excessive bandwidth (or larger value of α), thus

the performances of systems with larger α are more sensitive to the sampler phase

offset. From Fig. 5.5, we can see that for systems with the equal gain two ray profile,

the optimum sampler timing offset is τ0 = 0. However, for systems with TU profile,

τ0 = −0.3Tsym is the optimum timing offset due to the power dominance of the delayed

scattering rays of the channel fadings.

As pointed out in [100], the timing phase sensitivity of the receiver can be avoided by

oversampling. For systems with at most 100% excessive bandwidth, spectrum aliasing

at the receiver can be completely removed by setting the oversampling factor ν = 2.

This statement is supported by our new performance bounds illustrated in Fig. 5.5

and Fig. 5.6, where the SERs for oversampled systems keep constant regardless of the

values of the sampler timing offset τ0. For systems with TU profile, the performance
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of the oversampled system improves with the increase of the roll-off factor, since more

bandwidth are consumed by the signal and there is no aliasing in the receiver.

So far, all of the examples are focused on systems with discrete-time power delay pro-

files, where the frequency-selective fadings have discrete-time delayed multipaths. The

analytical results proposed in this chapter can also be directly applied to systems with

continuous-time power delay profiles, such as the exponentially decaying power delay

profile defined as G(µ) = A exp(−τ/Tsym), for 0 ≤ τ ≤ 2Tsym, with A being a nor-

malization factor. The timing phase sensitivity of systems with exponentially decaying

profile are shown in Fig. 5.7. From this figure, we can see that systems with exponen-

tially decaying profile has similar performances with the TU profile, and the optimum

sampling timing offset for the exponentially decaying profile is τ0 = −0.1Tsym.

5.6 Conclusions

New, tight theoretical performance bounds were derived for wireless communication

systems with time-varying and frequency-selective channel fading and sampler timing

offset. The SISO systems with doubly selective Rayleigh fading channels and fraction-

ally spaced receivers were equivalently represented as an SIMO system with mutually

correlated frequency-flat fading channels and colored Gaussian noise. Closed-form error

probability expressions were derived as lower bounds of symbol error probabilities for

systems suffering both doubly selective channel fading and sampler timing offset. The

information of timing phase offset, the statistical properties of the channel fading, as

well as the effects of fractionally spaced receiver are quantified in the error probability

expressions.

Compared to the loose union bound and matched filter bound, our new analytical results

can accurately predict the error performances of MLSE and MAP equalizers in practi-

cal system configurations at a wide range of SNR, and the results are obtained with a

simple time domain equivalent SIMO system method. Moreover, with the help of the

theoretical expressions, the effects of receiver oversampling and timing phase sensitivity
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of communication systems are analyzed, and we have the following observations. 1) For

systems with symbol spaced receiver and practical power delay profiles, zero sampler

timing offset (τ = 0) is not always optimum. 2) For systems with at most 100% ex-

cessive bandwidth, two times oversampling at the receiver can completely remove the

phenomenon of timing phase sensitivity, which agrees with the theoretical analysis pre-

sented in [100]. 3) The timing phase sensitivity of systems with symbol spaced receivers

becomes more serious with the increase of the bandwidth of the received signals.
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Chapter 6

Receiver Timing Phase Sensitivity

of Systems with Frequency Selective

Rayleigh Fading Channels

6.1 Introduction

The results presented in Chapter 5 show that the performance of communication system

with symbol spaced sampler suffers from extreme sensitivity to receiver timing phase

offset, which is introduced by the phase difference between the transmitter clock and

receiver clock. It is pointed out in [99] and [100] that the dependence of system per-

formance on timing phase offset is introduced by the effects of spectrum aliasing of the

sampled signals at the receiver. For different system configurations, the overlapped spec-

tral components of the signal samples at the receiver could add up either constructively

or destructively based on their phase differences, and this leads to performance enhance-

ment or degradation, accordingly. The phase differences among the overlapped spectral

components is a direct result of timing phase offset at the receiver, and the relationship

between receiver timing phase and system performance fluctuation is heuristically dis-

cussed in [99] and [100]. However, no analytical result is available in the literature to

quantify the effects of timing phase offset on system error performance. In this chap-

ter, with the help of the matched filter bound technique, we are going to derive a tight
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theoretical performance bound that is able to quantitatively identify the effects of both

timing phase offset and receiver oversampling.

The matched filter bound is a well known technique used to predict the performance

for systems experiencing frequency selective fading [93]- [96]. By assuming there is no

intersymbol interference (ISI) present at the receiver, matched filter bound defines the

best possible error performance for certain system configurations. The matched filter

bounds for system with discrete-time power delay profiles are discussed in [93] and [95],

and the performance of systems with arbitrary power delay profiles is derived in [94]

and [97] with the help of frequency domain analysis. The assumption of quasi static (or

slowly time varying) fading is adopted by [93]- [97], and matched filter bound results for

systems with time varying channel is reported in [96].

The matched filter bounds presented in most previous works are loose performance

low bounds, and they are usually far below the actual error performance of practical

communication systems. At the first glance, it seems that the performance difference is

a result of the ISI free assumption. However, it is shown in [107] that both maximum

likelihood sequence estimation (MLSE) and maximum a posteriori (MAP) equalizers are

asymptotic optimum in the sense of interference cancellation, i.e., the ISI components at

the output of MLSE equalizer or MAP equalizer tend to zero provided that the decoding

length is long enough. Indeed, conventional matched filter bounds fail to capture the

effects of timing phase offset and receiver oversampling, both of which have significant

impact on communication system performance. We are going to show in this chapter that

the performance difference between matched filter bound and actual system performance

is mainly contributed by the overlook of sampler timing phase and spectrum aliasing at

the receiver.

To remove the effects of spectrum aliasing at the receiver, fractionally spaced equalizers

are discussed in [99], [104]- [105]. In [104], the performances of systems with various frac-

tionally spaced receivers are investigated with simulations. The theoretical performance

of fractionally spaced equalizer is analyzed in [105] with the union bound technique,

where the pair wise error probabilities of mutually overlapped error events are added
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up as an upper bound of system error probability. It is well known that union bound

is rather loose compared to the actual system performance, especially at low signal to

noise ratio. Moreover, union bound technique cannot quantify the effects of timing phase

offset and spectrum aliasing.

In this chapter, a tight performance low bound for systems with frequency selective

fading channels is derived by considering the effects of both receiver oversampling and

timing phase offset. The ISI free assumption used in the conventional matched filter

bound is adopted in the development of this new bound. With the help of Karhunen-

Loève expansion, a unified error probability expression is derived as a tight low bound

for the performance of various linearly modulated communication systems. The effects

of timing phase offset, receiver oversampling, as well as the power delay profile of the

frequency selective fading are explicitly expressed in the statistical representations of

the instantaneous SNR observed by the receiver, and they are further quantified in the

analytical error probability expressions. The conventional matched filter bound can be

treated as a special case of the new performance bound. With the help of the analytical

results, it is proved in this chapter that when there is no spectrum aliasing present at the

receiver, system with receive filter matched to the time-invariant transmit filter have the

same performance as system with statistical receive filter matched to the joint response

of transmit filter and frequency selective fading. Hence time varying matched filter

in oversampled systems can be replaced by simple time-invariant receive filter without

sacrificing system performance.

Simulation results show that the performance bound derived in this chapter can ac-

curately predict the performance of communication systems with practical receivers in

a wide range of SNR. Moreover, It is observed that perfect synchronization between

transmitter and receiver (timing phase offset is 0) doesn’t guarantee optimum system

performance. Rather, the choice of optimum timing phase offset at the receiver de-

pends on specific channel realizations. The optimum sampling time for various system

configurations are investigated with the help of numerical examples.

The rest of the chapter is organized as follows. Section 6.2 presents the system model
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used for analysis. In Section 6.3, a tight error performance bound for systems expe-

riencing timing phase offset is derived by analyzing the statistical properties of the

instantaneous SNR at the receiver. Based on the new performance bound, case studies

of several exemplary communication systems are carried out in Section 6.4 to investi-

gate the effects of timing phase offset, receiver oversampling, as well as receiver filter on

system performances. Numerical examples are provided in Section 6.5, and Section 6.6

concludes the chapter.

6.2 System Model

To adopt the ISI free assumption employed by matched filter bound, it is assumed that

the information symbol is transmitted in isolation, i.e., at each transmission epoch, only

one symbol is being sent out by the transmitter. The baseband representation of the

transmitted waveform can be expressed as

s(t) = x0 · pT
(t), (6.1)

where x0 is the M -ary modulated information symbol with symbol period Tsym and

symbol energy Es, and p
T
(t) is the time-invariant impulse response of the transmit filter

with unit energy, i.e.,
∫ +∞
−∞ p

T
(t − µ)p∗

T
(µ)dµ = 1, with a∗ denoting complex conjugate

of a.

In the channel, the transmitted signal is corrupted by both frequency selective fading and

additive noise. Let g(t) be the impulse response of the frequency selective channel. The

channel is assumed to be quasi static, meaning that the impulse response g(t) remains

invariant per transmission burst buy may change from burst to burst. Thus the signal

at the receiver can be represented by

y(t) = x0 · pT
(t) ⊗ g(t) + n(t), (6.2)

where ⊗ denotes the operation of convolution, and n(t) is the additive white Gaussian

noise (AWGN) with variance N0.
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The received signal y(t) is passed through the receive filter p
R
(t). The signal at the

output of p
R
(t) is

z(t) = x0 · pT
(t) ⊗ g(t) ⊗ p

R
(t) + v(t), (6.3)

where v(t) = n(t) ⊗ p
R
(t) is the noise component at the output of the receive filter.

If we define the composite impulse response (CIR) of the system as

h(t) = p
T
(t) ⊗ g(t) ⊗ p

R
(t), (6.4)

then the sampled output of the receive filter at sampling instant t = kTs + τ0 can be

expressed as

z(k) = x0 · h(k) + v(k), (6.5)

where z(k) = z(kTs + τ0), v(k) = v(kTs + τ0) are the received signal and noise samples,

respectively, Ts = Tsym/µ is the sampling period, with the integer µ being the oversam-

pling factor, τ0 ∈
[
−Ts

2
, Ts

2

]
is the phase difference between the sampler clock and the

transmitter clock, and h(k) = h(kTs + τ0) is the discrete-time version of the CIR h(t).

The noise sample v(k) is a linear transformation of AWGN n(t), hence it is zero-mean

Gaussian distributed with the auto-correlation function rvv(m−n) = E [v(m)v∗(n)] given

by [101]

rvv(m− n) = N0 · rp
R
p

R
[(m− n)Ts] , (6.6)

where E(x) is the operation of mathematical expectation, and rp
R
p

R
(t) =

∫ +∞
−∞ p

R
(t +

τ)p∗
R
(τ)dτ is the auto-correlation function of the receive filter p

R
(t). Due to the time span

of the receive filter and the effects of oversampling, the noise component z(k) becomes

a colored Gaussian process with auto-correlation function defined in (6.6), even though

the original additive noise n(t) is white in the time domain. The power spectral density

(PSD) R̂vv(f) of v(k) is

R̂vv(f) = N0R̂p
R
p

R
(f), − f0 ≤ f ≤ f0, (6.7)

where f ∈ [−1/2, 1/2] is the digital frequency of discrete-time signals, f0 ∈ (0, 1/2] is

the digital bandwidth of the receive filter, R̂vv(f) and R̂p
R
p

R
(f) are the discrete-time
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Fourier transform (DTFT) of rvv(k) and rp
R
p

R
(k), respectively. Let Rp

R
p

R
(F ) be the

Fourier transform (FT) of the continuous-time auto-correlation function rp
R
p

R
(t), where

F = f/Ts is the analog frequency. According to the sampling theorem, the PSD R̂zz(f)

can also be written as

R̂vv(f) =
N0

Ts

+∞∑

n=−∞
Rp

R
p

R

[
f − n

Ts

]
, − f0 ≤ f ≤ f0. (6.8)

It should be noted from (6.8) that the statistical property of the sampled noise compo-

nent z(k) is independent of the timing phase offset τ0.

With the PSD of the noise component given in (6.8), the instantaneous signal to noise

ratio (SNR) of the ISI free system is

γ = γ0Ts ·
∫ f0

−f0

|Ĥ(f)|2
∑+∞

n=−∞Rp
R
p

R

[
f−n
Ts

]df, (6.9)

where γ0 = Es/N0 is the SNR without fading, and Ĥ(f) is the DTFT of the discrete-time

CIR h(k). Based on (6.4) and the sampling theorem, Ĥ(f) can be written by

Ĥ(f) =
ej2πf

τ0
Ts

Ts

+∞∑

n=−∞
P

T

(
f − n

Ts

)
G

(
f − n

Ts

)
P

R

(
f − n

Ts

)
e−j2πn

τ0
Ts , (6.10)

where j2 = −1 is the imaginary part symbol, P
T
(F ), P

R
(F ) and G(F ) are the Fourier

transforms of p
T
(t), p

R
(t) and g(t), respectively. It should be noted that the frequency

domain support of Ĥ(f) is smaller than or equal to that of R̂p
R
p

R
(f) because the effect

of receive filter p
R
(t) is included in the CIR h(k).

Combining (6.9) and (6.10), the instantaneous SNR at the output of the sampler can be

expressed as

γ = γ0 ·
∫ F0

−F0

∣∣∣∣
+∞∑

n=−∞
RP

T
P

R
(F − nFs)G (F − nFs) e

−j2πn τ0
Ts

∣∣∣∣
2

+∞∑
n=−∞

Rp
R
p

R
(F − nFs)

dF (6.11)

where Fs = 1/Ts is the sampling rate, F0 = f0/Ts ∈ (0, 1
2Ts

] is the analog bandwidth,

RP
T
P

R
(F ) = P

T
(F )P

R
(F ), and the integration variable has been changed to the analog

frequency F = f/Ts in (6.11).
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It is interesting to note that the SNR γ is a periodic function of the timing phase offset

τ0 with the fundamental period equal to the sampling period Ts, and this result justifies

our assumption that τ0 is in the range of [−Ts/2, Ts/2]. The statistical properties of the

instantaneous SNR γ are analyzed in the next section, and the results are used to derive

the theoretical system performance.

6.3 Error Performance of System with Timing Phase

Offset

The error performance of linearly modulated system with timing phase offset is investi-

gated in this section by analyzing the statistical properties of the instantaneous SNR at

the receiver.

6.3.1 Statistical Properties of SNR

If we define

Ψ(F ) =

+∞∑
n=−∞

RP
T
P

R
(F − nFs)G (F − nFs) e

−j2πn τ0
Ts

√
+∞∑

n=−∞
Rp

R
p

R
(F − nFs)

, (6.12)

then the SNR γ given in (6.11) can be alternatively written as

γ = γ0 ·
∫ F0

−F0

|Ψ(F )|2dF. (6.13)

For Rayleigh fading channel, the Fourier transform G(F ) of the channel impulse response

is zero-mean complex Gaussian distributed, thus the function Ψ(F ), which is a linear

combination of G(F ), is also a zero-mean Gaussian process in the frequency domain F .

To facilitate the analysis of the statistical properties of the instantaneous SNR γ,

Karhunen-Loève expansion is applied to the Gaussian process Ψ(F ) in the frequency

domain, and the result is

Ψ(F ) =
L∑

l=1

√
λl

Kl∑

k=1

wl,kφl,k(F ), (6.14)
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where {wl,k} are a set of independent identically distributed (i.i.d.) zero-mean Gaussian

random variables with unit variance, {λl} are a set of distinct eigenvalues of the function

Ψ(F ), {φl,k(f)} the corresponding orthonormal eigenfunctions with frequency domain

support [−F0, F0], and they satisfy
∫

F0

−F0
φl,k(f)φ∗

m,i(f)df = δl,mδk,i, with δl,m being the

Kronecker delta function.

Given the fact that the set of eigenfunctions {φl,k(f)} are orthonormal, we can get an

alternative representation of the instantaneous SNR by substituting (6.14) into (6.13),

γ = γ0 ·
L∑

l=1

λl

Kl∑

k=1

|wl,k|2, (6.15)

In (6.15), the instantaneous SNR γ is expressed as the summation of L independent

χ2-distributed random variables
∑Kl

k=1 |wl,k|2. Thus the characteristic function (CHF) of

γ can be expressed as [76]

Φγ(ω) = E
(
ejωγ

)

=

L∏

l=1

(1 − jωλlγ0)
−Kl. (6.16)

It’s apparent from (6.15) and (6.16) that the statistical properties of γ is uniquely

determined by the eigenvalues λl of the random function Ψ(F ) as defined in (6.14).

The analysis of the statistical properties of γ requires the knowledge of the eigenvalues

λl. To solve the eigenvalues, we formulate the following eigensystem representation from

(6.14) by utilizing the orthonormal properties of the eigenfunctions φl,k(f),
∫ F0

−F0

R
Ψ
(F1, F2)φl,k(F2)dF2 = λlφl,k(F1), (6.17)

where R
Ψ
(F1, F2) = E [Ψ(f1)Ψ

∗(f2)] is the frequency domain auto-correlation function

of the random function Ψ(F ), and the mathematical expectation operation is performed

over the statistical channel response G(F ).
The eigenvalues λl and the corresponding eigenfunctions φl,k(f) can be obtained by solv-
ing the eigensystem described in (6.17) given the knowledge of R

Ψ
(F1, F2). For systems

with fixed receive filter, the frequency domain auto-correlation function R
Ψ
(F1, F2) can

be expressed by [c.f. (6.12)]

RΨ(F1, F2) =

+∞
P

m=−∞

+∞
P

n=−∞
Rp

T
p

R
(F1−mFs)R∗

p
T

p
R
(F2−nFs)RG

[(F1−F2)−(m−n)Fs ] e
−j2π

(m−n)τ0
Ts

s

+∞
P

m=−∞

+∞
P

n=−∞
Rp

R
p

R
(F1 −mFs)R∗

p
R

p
R
(F2 − nFs)

(6.18)
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where R
G
(F1, F2) = E [G(F1)G

∗(F2)] is the frequency domain auto-correlation function

of the impulse response of the physical channel. For system with uncorrelated scattering

(US) [19] fading, the function R
G
(F1, F2) can be calculated from

R
G
(F1, F2) =

∫ +∞

0

∫ +∞

0

E [g(t1)g
∗(t2)] e

−j2π(F1t1−F2t2)dt1dt2,

=

∫ +∞

0

ϕ(t)e−j2π(F1−F2)tdt, (6.19)

where ϕ(t) is the power delay profile (PDP) of the frequency selective channel. From

(6.19), the function R
G
(F1, F2) is wide sense stationary (WSS) in the frequency domain

F , i.e., R
G
(F1, F2) = R

G
(F1 − F2); in addition, R

G
(F ) can be interpreted as the FT of

the PDP ϕ(t).

For most wireless communication systems, the PDP can be represented in the form of a

discrete-time function

ϕ(t) =
I∑

i=1

ϕiδ(t− ti), (6.20)

where I is the number of resolvable multipaths of the frequency selective channel, ϕi

and ti are the average power and relative delay of the lth multipath, respectively, and
∑I

i=1 ϕi = 1 for normalized PDP. The function R
G
(F ) of such system configuration can

be calculated from the Fourier transform of (6.20), and the result is

R
G
(F ) =

I∑

i=1

ϕie
−j2πFti. (6.21)

Another commonly used PDP is the exponentially decaying profile. The exponential

PDP along with its FT RG(F ) can be expressed as

ϕ(t) =
1

Tsym

[
exp

(
τmax

Tsym

)
− 1
] exp

(
−t− τmax

Tsym

)
, 0 ≤ t ≤ τmax, (6.22a)

RG(F ) =
1[

exp
(
τmax

Tsym

)
− 1
]
[1 + j2πTsymF ]

[
e

τmax
Tsym − e−j2πFτmax

]
, (6.22b)

where τmax is the maximum delay spread of the frequency selective channel.

Given transmit filter p
T
(t), receive filter p

R
(t), and the PDP ϕ(t), we can formulate

the frequency domain auto-correlation function RΨ(F1, F2) by using (6.18), (6.21) or
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(6.22b). Substituting the resultant function RΨ(F1, F2) into the eigensystem of (6.17)

leads to the solution of the eigenvalues λl, which are then used in (6.15) and (6.16) to

represent the statistical properties of the SNR γ.

From (6.15), (6.17) and (6.18), we conclude that the statistical properties of the instan-

taneous SNR γ are jointly determined by the transmit filter p
T
(t), the receive filter p

R
(t),

the channel power delay profile g(t), the sampling frequency Fs, and the sampler tim-

ing phase offset τ0. Moreover, it’s apparent that the frequency domain autocorrelation

function R
Ψ
(F1, F2), the form of which depends on individual receiver implementations,

plays a critical role in determining the properties of γ.

6.3.2 Error Performance Bound

Based on the statistical properties of the instantaneous SNR γ, theoretical performance

low bounds of systems with M -ary phase-shift-keying (MPSK), M -ary amplitude-shift-

keying (MASK), and M -ary quadrature-amplitude-modulation (MQAM) are derived in

this subsection.

The derivation of the theoretical performance bounds is based on the assumption that

the information symbol x0 is transmitted in isolation, i.e., there is no intersymbol inter-

ference present at the receiver. Based on the ISI free assumption, the conditional error

probability (CEP) P (E|γ) for MPSK, MASK, and MQAM systems can be written in a

unified form as [107]

P (E|γ) =

2∑

i=1

βi
π

∫ ψi

0

exp
{
−ζ · γ

sin2 θ

}
dθ, (6.23)

where the parameters ζ, βi and ψi for various modulation schemes are listed in Table

5.1.

The unconditional error probability can be evaluated by averaging over the statistical

distribution of the instantaneous SNR as P (E) = E [P (E|γ)]. Since the CEP given

in (6.23) is in the form of an exponential function of the instantaneous SNR γ, the

expectation operation can be performed with the help of the CHF of γ as defined in

(6.16). Combining (6.16) and (6.23), we have the unconditional error probability P (E)
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as

P (E) = E [P (E|γ)] ,

=
2∑

i=1

βi
π

∫ ψi

0

L∏

l=1

(
1 +

ζγ0λl
sin2 θ

)−Kl

dθ. (6.24)

The closed-form expression of the unconditional error probability P (E) can be obtained

by partial fraction expansion of the integrand in (6.24), which is

L∏

l=1

(
1 +

ζγ0λl
sin2 θ

)−Kl

=
L∑

l=1

Kl∑

k=1

cl,k

(
1 +

ζγ0λl
sin2 θ

)−k
, (6.25)

with the partial fraction coefficient cl,k defined as

cl,k =

(
sin2 θ

ζγ0

)Kl−k ∂Kl−k

∂λKl−k
l

[
L∏

i6=l

(
1 +

ζγ0

sin2 θ
λi

)−Ki

]∣∣∣∣∣
λl=− sin2 θ/(ζγ0)

. (6.26)

Substituting (6.25) into (6.24), we have the unconditional error probability P (E) repre-

sented by

P (E) =
2∑

i=1

βi
π

L∑

l=1

Kl∑

k=1

cl,k

∫ ψi

0

L∏

l=1

(
1 +

ζγ0λl
sin2 θ

)−k
dθ. (6.27)

The integral in (6.27) can be solved by employing the definition of the Appell Hyperge-

ometric function F1(α; β, β ′; γ; x, y) [106], and the results is

P (E)=
2∑

i=1

βi
π

L∑

l=1

Kl∑

k=1

cl,k(ζγ0λl)
−kF1

[
1

2
+ k, k, 1,

3

2
+ k,−

(
1 +

1

ζγ0λl

)
tan2 ψ,− tan2 ψ

]
.(6.28)

Eqn. (6.28) gives a unified closed-form expression of the performance low bound for

MPSK, MASK, and MQAM systems with frequency selective fading, and the values

of the parameters ζ, βi, ψi are given in Table 5.1. For the special case that Kl = 1,

for l = 1, 2, · · · , L, which is true for most practical PDPs, the closed-form solutions

of the error probability low bound can be solved without resorting to hypergeometric

functions, and the results are given in [107]. Moreover, the integral in (6.24) only involves

elementary functions and finite integration limits, thus it can be easily evaluated with

numerical methods.
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In (6.24) and (6.28), the effects of frequency selective fading, timing phase offset τ0, and

receiver oversampling are quantified in the error probability expressions via the eigenval-

ues λl of the eigensystem defined in (6.17. Since the eigensystem is fully characterized

by the frequency domain auto-correlation function RΨ(F1, F2), the error performance

of linearly modulated systems with frequency selective fading is uniquely determined

by RΨ(F1, F2), where the effects of receiver oversampling and timing phase offset are

explicitly expressed.

Before concluding this section, we summarize the process of performance bounds evalu-

ation for systems with frequency selective fading and timing phase offset.

Step 1: Given transmit filter p
T
(t), receive filter p

R
(t), and channel PDP ϕ(t), evaluate

their respective Fourier transforms P
R
(F ), P

T
(F ), and G(F ).

Step 2: With the FTs obtained in step 1, formulate the frequency domain auto-correlation

RΨ(F1, F2) as defined in (6.18) for certain timing phase offset τ0 and oversampling

factor µ.

Step 3: Substitute RΨ(F1, F2) into (6.17), and solve the eigenvalues λl. One of the methods

for solving the eigensystem is presented in [94].

Step 4: With the eigenvalues λl from step 3 and the parameters defined in Table 5.1,

evaluate the system error probability low bounds by using either (6.24) or (6.28).

6.4 Case Studies

In this section, we perform case studies of various representative communication systems

to further investigate the effects of timing phase offset and receiver oversampling on sys-

tem performance. In the analysis, we only consider system with at most 100% excessive

bandwidth, i.e., the frequency domain support of the composite impulse response h(t) is

in the range of [−2/Tsym, 2/Tsym], and the analysis can be directly extended to systems

with arbitrary amount of excessive bandwidth.
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As highlighted in Section 6.3, system error performance is uniquely determined by the

eigensystem defined (6.17), which is in turn fully characterized by the frequency domain

auto-correlation function RΨ(F1, F2) as given in (6.18). In addition, the timing phase

offset τ0 is explicitly expressed in the representation of RΨ(F1, F2). For this reason, to

investigate the effects of τ0 on system performance, it suffices to examine the statistical

properties of RΨ(F1, F2) for the various representative system configurations.

6.4.1 Case 1: Tsym-spaced Receiver (µ = 1), Arbitrary PDP

ϕ(t).

For system with symbol spaced (Tsym = Ts) receiver and at most 100% excessive band-

width, there are at most three frequency components overlapped in the frequency range

of [− 1
2Ts
, 1

2Ts
]. If the receive filter p

R
(t) is matched to the time-invariant transmit filter

p
T
(t), or P

R
(F ) = P ∗

T
(F ), then the instantaneous SNR γ can be written by [c.f. (6.11)]

γ = γ0 ·
∫ 1

2Ts

− 1
2Ts

|Ψ(F )|2dF, (6.29a)

Ψ(F ) =

|P
T

(F )|2 G (F ) +
∑
n=±1

|P
T

(F − nFs)|2G (F − nFs) e
−j2nπ τ0

Ts

√
|P

T
(F )|2 +

∑
n=±1

|P
T
(F − nFs)|2

. (6.29b)

The statistical distribution of γ can be evaluated with the help of the eigensystem

defined in (6.17), which is in turn characterized by the frequency domain auto correlation

function R
Ψ
(F1, F2) = E[Ψ(F1)Ψ

∗(F2)]. Based on the definition of Ψ(f) given in (6.29b),

the frequency domain auto correlation function R
Ψ
(F1, F2) is

R
Ψ
(F1, F2) =

+1∑
m=−1

+1∑
n=−1

|P
T
(F1−mFs)PT

(F2−nFs)|2RG
[(F1−F2)−(m−n)Fs] e

−j2π (m−n)τ0
Ts

√
+1∑

m=−1

+1∑
n=−1

|P
T
(F1 −mFs)PT

(F2 − nFs)|2
.(6.30)

where R
G
(F1 − F2) = E [G(F1)G

∗(F2)] is the FT of the channel PDP ϕ(t).

In the representation of (6.29) and (6.30), the values and statistical properties of the

instantaneous SNR γ is explicitly expressed as periodic functions of the timing phase
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offset τ0, and the function period is equal to the sampling period Ts. Moreover, it’s

apparent from (6.29) that the dependence of γ on τ0 is introduced by the effect of

spectrum aliasing. Since the eigenvalues λl and error probability P (E) are uniquely

determined by the eigensystem characterized by the periodic function R
Ψ
(F1, F2) as

described in (6.17), we can conclude that both λl and P (E) are periodic with respect to

τ0. As an example, the eigenvalues and the corresponding error performance bounds of

a system with two path equal gain channel profile ϕ(t) =
∑1

i=0 0.5δ(t− iTsym) is plotted

in Fig. 6.1. Root raised cosine (RRC) filters are used as both transmit filter and receive

filter. It’s apparent from these two figures that the values of both λl and P (E) fluctuates

periodically with respect to τ0 with period Ts.
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Figure 6.1: The variations of eigenvalues and performance bound with respect to timing
phase offset for systems with two path equal gain profile. α: roll-off factor of the RRC
filter.

The performance fluctuation is a result of the τ0 dependent phase difference among the

overlapped spectral components of the receiver signal samples. For different values of

timing phase offset τ0, the overlapped spectrum could add up either constructively or

destructively due to the phase difference between the overlapped spectral components,
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Figure 6.2: The overlapped power spectrum of the received signal samples for systems
with two path equal gain profile. µ: oversampling factor. τ0: receiver timing phase
offset. α: roll-off factor of the RRC filter.

and this will lead to performance improvement or degradation, correspondingly. To il-

lustrate the effects of spectrum aliasing, one example of the overlapped power spectrum

|Ψ(F )|2 of the received signal samples is plotted in Fig. 6.2 for various values of τ0.

It’s clear from this figure that the shape of the overlapped power spectrum varies dra-

matically with respect to the timing phase offset τ0. The corresponding analytical error

performance bounds are shown in Fig. 6.3. As expected, system with τ0 = 0.5Ts has

the worst performance of all the three curves, and the best performance is achieved by

system with zero timing phase offset. The symbol error rate (SER) presented in Fig.

6.3 agrees with the power spectrum results shown in Fig. 6.2.

It’s worth pointing out that the timing phase sensitivity was qualitatively discussed

in [100]. However, no analytical result was available in the literature to quantitatively

describe the relationship between the timing phase offset and system performance. In

this chapter, the timing phase offset τ0 is explicitly expressed in the representation of the

instantaneous SNR γ as described in (6.29), and the effects of τ0 and oversampling factor

µ are quantified in the unified error performance bound expression via the eigenvalues
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Figure 6.3: The SER performance bounds for two path equal gain channels with different
values of timing phase offset. µ: oversampling factor. τ0: receiver timing phase offset.
α: roll-off factor of the RRC filter.

λl, which clearly describes the dependence of system performance on receiver timing

phase.

6.4.2 Case 2: Tsym-spaced Receiver (µ = 1), PDP ϕ(t) =
∑L−1

l=0 ϕlδ(t−
lTs)

The functions Ψ(F ) and RΨ(F1, F2) for system with symbol spaced receiver can be

further simplified if the impulse response of the frequency selective fading can be repre-

sented as a Ts-spaced tapped delay line filter, i.e., ϕ(t) =
∑L−1

l=0 ϕlδ(t − lTs). It can be

easily shown that for such system configuration, both the frequency impulse response

G(F ) and the Fourier transform of the channel PDP R
G
(F ) are periodic functions in

the frequency domain with period Fs. Thus the SNR given in (6.29) can be simplified
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to

γ = γ0 ·
∫ 1

2Ts

− 1
2Ts

|Ψ(F )|2dF. (6.31a)

Ψ(F ) = G(F )

+1∑
n=−1

|P
T

(F − nFs)|2 e−j2nπ
τ0
Ts

√
+1∑

n=−1

|P
T
(F − nFs)|2

, (6.31b)

and the corresponding frequency domain auto-correlation function RΨ(F1, F2) is

R
Ψ
(F1, F2) = R

G
(F1−F2)

+1∑
m=−1

+1∑
n=−1

|P
T
(F1−mFs)PT

(F2−nFs)|2 e−j2π
(m−n)τ0

Ts

√
+1∑

m=−1

+1∑
n=−1

|P
T
(F1 −mFs)PT

(F2 − nFs)|2
. (6.32)

So far, all the analyses are carried out by assuming that the receive filter p
R
(t) is matched

to the time-invariant transmit filter p
T
(t). However, in the development of conventional

matched filter bound, a statistical receive filter matched to the joint response of the

transmit filter and the frequency selective fading is assumed to be available at the receiver

[94]. We have the following proposition about the relationship between the performances

of systems with fixed receive filter and statistical receive filter.

Proposition 6.1 : If the channel impulse response of the frequency selective channel can

be represented as a sample spaced tapped delay line filter, then system with receive

filter matched to the joint response of the transmit filter and fading has the same error

performance as that of system with receive filter matched to the transmit filter only.

Proof: The frequency response of the receive filter matched to the joint response

of frequency selective fading and transmit filter can be written as

P
R
(F ) = P ∗

T
(F )G∗(F ), (6.33)

and the receive filter becomes a statistical filter due to its dependence on the frequency

domain channel impulse response G(F ).
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Substituting (6.33) into (6.12) leads to

Ψ(F ) =

+1∑
n=−1

|P
T

(F − nFs)G(F − nFs)|2 e−j2nπ
τ0
Ts

√
+1∑

n=−1

|P
T
(F − nFs)G(F − nFs)|2

. (6.34)

For system with g(t) in the form of Ts-spaced tapped delay line filter, G(F ) is a periodic

function with period Fs, thus the function Ψ(F ) of (6.34) can be alternatively written

as

Ψ(F ) = |G(F )|

+1∑
n=−1

|P
T

(F − nFs)|2 e−j2nπ
τ0
Ts

√
+1∑

n=−1

|P
T
(F − nFs)|2

, (6.35)

and the corresponding SNR for system with statistical receive filter is

γ = γ0 ·
∫ 1

2Ts

− 1
2Ts

|G(F )|2
+1∑

n=−1

|P
T

(F − nFs)|2 e−j2nπ
τ0
Ts

+1∑
n=−1

|P
T
(F − nFs)|2

dF. (6.36)

It’s apparent that this SNR expression is exactly the same as the one given in (6.31),

which is obtained for system with fixed receive filter. Since the statistical properties

of the SNR γ fully determine the system error probability as expressed by (6.15) and

(6.24), we conclude that fixed receive filter and statistical receive filter will yield the

same system error performance, given the condition that the channel impulse response

can be represented as a Ts-spaced tapped delay line filter, and this completes the proof.

Proposition 6.1 states that for system with channel impulse response in the form of a

sample spaced tapped delay line filter, system error performance is independent of the

choice of fixed filter or statistical filter at the receiver.

A special case of the tapped delay line channel is flat fading, where there is only one

channel tap with zero delay. For system with flat fading, the error probability expressions

given in (6.24) or (6.28) are exact because there is no ISI present at the system.
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6.4.3 Case 3: Tsym/2-spaced Receiver (µ = 2).

For systems with at most 100% excessive bandwidth, two times oversampling (µ = 2)

is enough to remove the phenomenon of spectrum aliasing at the receiver. We first

consider the performance of system with receive filter matched to the transmit filter,

i.e., P
M

(f) = P ∗
T
(F ), and the instantaneous SNR γ can be simplified to

γ = γ0 ·
∫ 1

2Ts

− 1
2Ts

|Ψ(F )|2dF. (6.37a)

Ψ(F ) = P
T

(F )G (F ) . (6.37b)

With the definition of Ψ(F ) given in (6.37b), the frequency auto-correlation function

R
Ψ
(F1, F2) is

R
Ψ
(F1, F2) = P

T
(F1)P

∗
T

(F2)RG
(F1 − F2), (6.38)

Substituting (6.38) into (6.17) will lead to the solution of the eigenvalues λl, for l =

1, · · · , L, which are used in the error performance bound evaluation as described in

(6.24) and (6.28).

It can be seen from (6.37) and (6.38) that the statistical properties of SNR γ are in-

dependent of the timing phase offset τ0 thanks to the the removal of spectrum aliasing

at the receiver. Since the system performance is uniquely determined by the statisti-

cal properties of SNR γ, it can be concluded that the system performance for systems

without spectrum aliasing is independent of the receiver timing phase.

For system with statistical receive filter matched to the joint response of the frequency-

selective channel and the transmit filter, we have the following proposition about the

performance of the oversampled system.

Proposition 6.2 : For system without spectrum aliasing at the receiver, the system error

performance is independent of the sampler timing offset. Moreover, system with receive

filter matched to the transmit filter has the same performance as that of system with

statistical receive filter matched to the joint impulse response of the transmit filter and

the frequency selective fading.
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Proof: The frequency response of the statistical matched filter is P
R
(F ) = P ∗

T
(F )G∗(F ).

Substituting P
R
(F ) into (6.11) yields the SNR expression for oversampled systems with

statistical matched filters

γ = γ0 ·
∫ 1

2Ts

− 1
2Ts

|P
T

(F )G (F )|2 dF. (6.39)

The SNR expression given in (6.39) is exactly the same as the SNR defined in (6.37),

which is the instantaneous SNR for oversampled systems with fixed transmit filter.

Given the fact that the system error performance is uniquely determined by the statisti-

cal properties of the instantaneous SNR γ, it’s apparent that the choice of fixed matched

filter or statistical matched filter doesn’t affect the performance of system without spec-

trum aliasing.

Since it is much simpler to implement a filter matched to the fixed impulse response

of the transmit filter, we can always use simple time-invariant matched filter at the

receiver of oversampled system without sacrificing the system performance. It worth

pointing out that similar observation was made in [73]. In this chapter, we not only

provide rigorous proof of the receive filter independence observation for systems without

spectrum aliasing, but also obtained tight performance low bounds for such system.

It should be noted that even both Proposition 6.1 and Proposition 6.2 are about the

independence of system performance on the choice of fixed filter or statistical filter at

the receiver, these two propositions are built on different conditions. Proposition 6.1

holds for system with channel impulse response in the form of a tapped delay line filter,

while Proposition 6.2 is true for arbitrary channel profile as long as there is no spectrum

aliasing at the receiver.

To further verify this receive filter Independence statement for oversampled systems,

we perform simulations to compare the symbol error rates of two oversampled systems

equipped with fixed receive filter and statistical receive filter, respectively. In the simu-

lation, one information symbol is sent out at each transmission epoch such that no ISI

is present at the receiver. RRC filter with rolloff factor α = 0.5 (50% execessive band-

width) is used as the transmit filter. The oversampling factor is µ = 2. The channel

power delay profile used in the simulation is the Typical Urban profile [22]. Figure 6.4
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Figure 6.4: Comparison of the performances of ISI-free systems with fixed receive filter
and statistical receive filter. µ = 2: oversampling factor. α = 0.5: roll-off factor of the
RRC filter.

shows the simulation results along with the corresponding theoretical error probability

under such system configuration. As predicted by the theoretical analysis, perfect match

are observed between the symbol error rates of the two oversampled systems with fixed

filter and statistical filter.

After studying the statistical properties of the three representative communication sys-

tems, we conclude this section by the following remarks about the performance of systems

with frequency selective fading and sampler timing offset.

Remark 1: If there is spectrum aliasing present at the receiver, then the system error

performance is a periodic function of the timing phase offset τ0, with the period equal

to sampling period Ts. On the other hand, for system without spectrum aliasing, the

timing phase offset has no effect on system performance.

Remark 2: If the channel impulse response can be represented as a Ts-spaced tapped

delay line filter, then the performance of system with fixed receive filter matched to the
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transmit filter is the same as that of system with statistical receive filter matched to the

combined impulse response of the transmit filter and the frequency selective channel.

Remark 3: When there is no spectrum aliasing at the receiver, the choice between

fixed receive filter or statistical receive filter has no effect on system performance. Thus

simple time-invariant receive filter can always be used in oversampled systems without

sacrificing performance.

Remark 4: For systems without spectrum aliasing at the receiver, the performance

bounds derived in this chapter coincide with the conventional matched filter bound

previously obtained in [93]- [97]. Therefore the conventional matched filter bounds can

be viewed as special cases of the performance low bounds derived in this chapter.

6.5 Numerical Examples

In this section, the analytical error performance expressions derived in this chapter are

verified with Monte-Carlo simulations, and some numerical examples are provided to

reveal the effects of receiver timing phase offset on system performances.

The analytical SER performance low bounds along with the corresponding simulation

results for system with symbol spaced receiver and Typical Urban PDP are shown in

Fig. 6.5. In the simulation, MAP equalizers are employed at the receiver to fight against

ISI. For comparison purpose, the conventional matched filter bound [94] is also plotted

in the figure. RRC filters with roll-off factor α = 1 (100% excessive bandwidth) are

used as both transmit filter and receive filter. The symbol error rate results presented

in Fig. 6.5 show that the performance bound derived in this chapter is very tight com-

pared to the empirical simulation results obtained from system with ISI present at the

receiver. Moreover, for Eb/N0 > 10dB, excellent agreement are observed between the

theoretical expressions and simulation results. This verifies the claim that MAP equal-

izer is asymptotic optimum in the sense of ISI cancellation. On the other hand, the

conventional matched filter bound is significantly lower than the actual system perfor-

mance. For example, at the SER level of 10−5, there is a 5dB performance difference
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between the conventional matched filter bound and the simulation results for system

with τ0 = 0. This performance difference is mainly contributed by the overlook of the

effects of spectrum aliasing and receiver timing phase by conventional matched filter

bound. An interesting observation from Fig. 6.5 is that systems with zero timing phase

offset (τ0 = 0) doesn’t yield the best error performance. This phenomenon can be ex-

plained by the fact that the power of the Typical Urban profile is dominated by the

delayed paths.
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Figure 6.5: Comparison of performance bounds with simulation results of systems with
Typical Urban channel profile. Decoding length for the MAP equalizers: 1024 symbols.
µ: oversampling factor. τ0: receiver timing phase offset. α: roll-off factor of the RRC
filter.

The effects of timing phase offset on system performance are further illustrated in Fig.

6.6 and Fig. 6.7, where the results are plotted against τ0 for systems with exponentially

decaying power profile. Fig. 6.6 shows the variations of the non-zero eigenvalues λl of

the eigensystem defined in (6.17) with respect to the timing phase offset τ0. As analyzed

in Section 6.4, the non-zero eigenvalues and performance bounds of system with symbol
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Figure 6.6: The variations of non-zero eigenvalues λl of the eigensystem (6.17) with
respect to the timing phase offset. Exponentially decaying profile with τmax = 3Tsym. α:
roll-off factor of the RRC filter.

spaced receiver are both periodic functions of τ0. It can be seen from Fig. 6.7 that

the optimum sampling time for Typical Urban profile is τ̂0 = −0.12Tsym. For systems

with at most 100% excessive bandwidth, two-times oversampling (µ = 2) will completely

avoid spectrum aliasing in the received signals. Fig. 6.7 shows that the performance of

systems with µ = 2 and α up to 1 keeps unchanged regardless of the values of τ0.

Moreover, the results displayed in Fig. 6.7 also reveals the effects of signal bandwidth

(as represented by the roll-off factor α) on the timing sensitivity of the system perfor-

mance. For systems with symbol spaced receivers, the numerical results show that the

performances of systems with larger signal bandwidth (or larger value of α) is more sen-

sitive to the timing phase offset τ0. This phenomenon can be explained by the fact that

larger excessive bandwidth will result in more spectral components being aliased. On

the contrary, for systems without spectrum aliasing, the system performance improves

with the increase of α, because more bandwidth is consumed in transmission.

The results presented in the previous examples show that the optimum sampling time
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Figure 6.7: The effects of receiver timing phase and excessive bandwidth on the error
performance of system with Exponentially Decaying profile with τmax = 3Tsym. µ:
oversampling factor. α: roll-off factor of the RRC filter.

τ̂0 is a function of the power distribution of the channel profile. To investigate the

relationship between the PDP and optimum receiver sampling time, we use a simple two

path equal gain channel profile ϕ(t) = 0.5δ(t)+0.5δ(t− τmax) in this example. The SER

performance of systems with various values of τmax are shown in Fig. 6.8. It’s clear from

this figure that the optimum sampling time τ̂0 varies with the change of τmax. In this

example, the optimum sampling time for systems with τmax = Tsym is 0 as expected, and

τ̂0 = −0.2Tsym, 0.2Tsym for systems with τmax = 0.6Tsym, 1.4Tsym, respectively.

The relationship between optimum sampling time and power delay profile is illustrated

from a different perspective in Fig. 6.9, where the SER performance low bounds of sys-

tems with various values of τ0 are plotted against the maximum delay spread τmax for two

path equal gain channel profiles. From this figure, we have the following observations. 1)

For systems without spectrum aliasing (µ = 2), the SER decreases monotonically with

the increase of τmax when τmax ≤ Tsym, and it keeps constant after τmax > Tsym since

no extra diversity gain can be achieved. 2) For systems with symbol spaced sampling,
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between the two channel paths. µ: oversampling factor. τ0: receiver timing phase offset.
α: roll-off factor of the RRC filter.

the SER performances fluctuate with respect to the max delay spread τmax. 3) System

without spectrum aliasing always outperforms systems with symbol spaced receivers,

this conforms to the fact that the conventional matched filter bound is a theoretical

low bound for systems with frequency selective fading. 4) For systems with τ0 = 0 and

τmax = Tsym, the performance of symbol spaced receiver is the same as that of system

without spectrum aliasing. For this special case, all the overlapped spectral components

have the same phase and are added up constructively, therefore no information is lost

due to spectrum aliasing.

6.6 Conclusions

The effects of timing phase offset and receiver oversampling on the performance of sys-

tems with frequency selective fading was investigated based on a tight error performance
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low bound derived in this chapter. The effects of timing phase offset and receiver over-

sampling were explicitly expressed in the statistical representation of the receiver SNR,

which was further quantified in the error probability bound expressions. The conven-

tional matched filter bound can be viewed as a special case of the performance bound

derived in this chapter. Simulation results showed that the new error probability bound

can accurately predict the performance of practical communication systems by taking

into account the effects of sampler timing phase offset and receiver oversampling.

Both theoretical analysis and numerical examples showed that for system with spec-

trum aliasing, the system error performance is a periodic function of the receiver timing

phase offset, with the period equal to the sampling period; for system without spectrum

aliasing, the system error performance is independent of the timing phase offset. More-

over, if the effect of spectrum aliasing is completely removed at the receiver, then the

choice between fixed receive filter or statistical receive filter doesn’t affect system error

performance. Therefore, simple time-invariant receive filter can always be employed by
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oversampled systems without sacrificing system performance. An interesting observation

from numerical examples is that the optimum sampling time of communication systems

depends on the power distribution of channel profiles, and zero timing offset doesn’t

always yield the best system performance.
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Chapter 7

Flexible Lognormal Sum

Approximation based on

Gauss-Hermite Expansion of

Moment Generating Function

7.1 Introduction

The lognormal distribution models the attenuation due to shadowing in wireless chan-

nels. Therefore, in the analysis of wireless systems, one often encounters the sum of log-

normal random variables (RV). It arises, for example, in cellular systems when modeling

the co-channel interference (CCI) power from transmissions in neighboring cells. It also

occurs in outage probability analysis [73, Chp. 3] and in ultra wide band systems [108].

Given the importance of the lognormal sum distribution, considerable efforts have been

devoted in wireless communications as well as in other fields to analyze its statistical

properties. While exact closed-form expressions for the lognormal sum probability dis-

tribution functions (pdf) are unknown, several analytical approximation methods exist

in the literature [109–114].

The methods proposed in the literature can be classified into two broad categories.

The methods by Fenton-Wilkinson [109], Schwartz-Yeh [110], and Beaulieu-Xie [112]
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approximate the lognormal sum by a single lognormal RV. The proven permanence of

the lognormal pdf when the number of summands approaches infinity lends credence

to these methods [111, 115]. The methods by Farley [73, 110], Ben Slimane [113], and

Schleher [114] instead compute a compound distribution. Of these, the first two specify

the approximating distribution in terms of strict lower bounds of the cumulative distri-

bution function (cdf), while the last one partitions the lognormal sum range into three

segments, with each segment being approximated by a distinct lognormal RV.

Beaulieu et al. [112, 116] have studied in detail the accuracy of several of the above

methods, and shown that each method has its own advantages and disadvantages; none

is unquestionably better than the others. Farley’s method and, more generally, the

formulae derived in [113] are strict bounds that can be loose approximations for certain

typical parameters. The methods also differ considerably in their complexity. Only the

Fenton-Wilkinson method offers closed-form solution for the underlying parameters of

the approximating lognormal pdf.

In this chapter, we present a flexible lognormal sum approximation method motivated

by the fact the MGF of an RV can be interpreted as the weighted integral of the pdf.

As elaborated later, the weight function can be adjusted to emphasize the accuracy

in approximating different portions of the lognormal sum pdf. Moreover, the MGF of

a sum of independent RVs can be easily calculated from the MGFs of the individual

RVs. By using an approximate Gauss-Hermite expansion of the lognormal MGF, the

proposed method circumvents the requirement for very precise numerical computations;

it is not recursive; it is numerically stable and accurate; and offers considerable flexibility

compared to previous approaches.

As mentioned, the moment generating function (MGF) and the characteristic function

(CHF) possess the desirable property that the MGF (CHF) of a sum of independent RVs

is the product of the MGFs (CHFs) of the individual RVs [117].1 This property of the

CHF has been exploited by Barakat [111] and Beaulieu-Xie [112] to numerically evaluate

1While the CHF can be considered a special case of the MGF, we choose to treat the two as separate
to keep the discussion clear.
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the exact distribution function of lognormal sum. However, their methods require very

accurate numerical computation of the characteristic function and are quite involved.

Barakat numerically computed the CHF of the lognormal distribution using Taylor series

expansion, and inverse Fourier transform was then applied to the product of lognormal

CHFs to determine the pdf of lognormal sum. However, the oscillatory property of

the Fourier integrand as well as the slow decay rate of the lognormal pdf tail make

the numerical evaluation difficult [112]. Also, no effort was made to find the analytical

expressions of the approximate distribution. A similar approach was also suggested by

Anderson [118]. Beaulieu-Xie’s elegant and conceptually simple method first numerically

evaluates the lognormal sum cdf, to a high degree of accuracy, at several points. Given

the stringent precision requirements, a modified Clenshaw-Curtis method had to be used.

The composite cdf is obtained by numerically calculating the inverse Fourier transform,

and is plotted on ’lognormal chapter’. The parameters of the approximating lognormal

distribution, which is a straight line on lognormal chapter, are determined by minimizing

the maximum error in a given interval. While the method is optimal in the minimax

sense on lognormal chapter, this does not imply optimality in directly matching the

probability distribution.

The chapter is organized as follows: Section 7.2 reviews the lognormal sum approx-

imation methods in the literature and investigates the reasons behind their observed

behaviors. Section 7.3 motivates and defines the Gauss-Hermite integration-based MGF

method proposed in this chapter. Numerical examples based on an actual cellular layout

are used to demonstrate the accuracy of the proposed method and compare it with other

methods in Section 7.4. The conclusions follow in Section 7.5.

7.2 Comparison of Various Lognormal Sum Approx-

imation Methods

Let X1, . . . , XK be K independent, but not necessarily identical, lognormal RVs with

pdfs, p
Xi

(x), for 1 ≤ i ≤ K. Then each Xi can be written as 100.1Yi such that Yi is
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a Gaussian random variable with mean, µ
Yi

dB, and standard deviation, σ
Yi

dB, i.e.,

Yi ∼ N (µ
Yi
, σ2

Yi
).

General closed-form expressions for the pdf or cdf of the lognormal sum
∑K

i=1Xi are not

available. However, the lognormal sum can be well approximated by a new lognormal

RV X = 100.1Y , where Y is a Gaussian RV with mean µ
Y

and variance σ2
Y
. Thus, the

problem is now equivalent to estimating the lognormal moments µ
Y

and σ2
Y

given the

statistics of the lognormal RVs Xi, for i = 1, . . . , K.

The Fenton-Wilkinson (F-W) method computes µ
Y

and σ2
Y

by exactly matching the first

and second central moments of X with that of
∑K

i=1Xi:

∫ ∞

0

xp
X

(x)dx =

K∑

i=1

∫ ∞

0

xp
Xi

(x)dx, (7.1a)

∫ ∞

0

(x− µ
X

)2p
X
(x)dx =

K∑

i=1

∫ ∞

0

(x− µ
Xi

)2p
Xi

(x)dx, (7.1b)

where µ
X

and µ
Xi

are the means of X and Xi, respectively. If the K lognormal RVs

are identically distributed, then the approximating lognormal moments µ
Y

and σ
Y

can

even be expressed in closed-form. While the F-W method accurately models the tail

portion (large values of X) of the lognormal sum pdf, it is quite inaccurate near the head

portion (small values of X) of the sum pdf, especially for large values of σ
Yi

[116]. The

mean square error in µ
Y

and σ
Y

increases with a decrease in the spread of the mean

values or an increase in the spread of the standard deviations of the summands [119].

Also, in modeling the behavior of 10 log10

(∑K
i=1Xi

)
the method breaks down when

σ
Yi
> 4 dB [73].

The Schwartz-Yeh (S-Y) method instead matches the moments in the log-domain, i.e.,

it equates the first and second central moments of log10X with those of log10(
∑K

i=1Xi):

∫ ∞

0

(log10 x) pX
(x)dx =

∫ ∞

0

(log10 x) p(
PK

i=1
Xi)

(x)dx, (7.2a)

∫ ∞

0

(log10x−µY
)2 p

X
(x)dx=

∫ ∞

0

(
log10x−µYi

)2

p
(

PK
i=1

Xi)
(x)dx, (7.2b)

where µ
Y

and µ
Yi

are the mean values of Y = 10 log10X and Yi = 10 log10Xi, respec-

tively. While the match is exact for K = 2, an iterative technique needs to be used
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for K > 2. The parameters µ
Y

and σ
Y

are evaluated numerically. The S-Y method is

more involved than the F-W method because the expectation of the logarithm sum can-

not be directly written in terms of the expectations of the individual random variables.

It is inaccurate near the tail portion of the distribution function and can significantly

underestimate small values of the cdf [116].

Interpreting the moments as weighted integrals of the pdf, both the F-W method and

the S-Y method can be generalized by the following system of equations for m = 1, 2:

∫ ∞

0

wm(x)p
X
(x)dx =

∫ ∞

0

wm(x)p
(PK

i=1
Xi)

(x)dx. (7.3)

The F-W method uses the weight functions w1(x) = x and w2(x) = (x− µ
X
)2, both of

which monotonically increase with x. Thus, errors in the tail portion of the sum pdf

are penalized more. This explains why the F-W method tracks the tail portion well.

On the other hand, the S-Y method employs the weight function w1(x) = log10 x and

w2(x) = (log10 x− µ
Y
)2. Due to the singularity of log10 x at x = 0, mismatches near

the origin are severely penalized by both these weight functions. Compared to the F-W

method, the S-Y method gives less weight to the pdf tail. For these reasons, it does

a better job tracking the head portion of the distribution function. However, both the

F-W and the S-Y methods use fixed weight functions and offer no way of overcoming

their respective shortcomings.

Similarly, Schleher’s cumulants matching method [114] accords a polynomially increasing

penalty to the approximation error in the tail portion of the pdf. This is because the

first three cumulants are, in effect, the first three central moments of an RV [120]. By

plotting the x-axis in dB scale on lognormal chapter, the Beaulieu-Xie method also

accords a higher priority to the tail portion.

Motivated by the weighted integral interpretations of these approximation methods, a

simple method is proposed in the next section that exploits the desirable properties of

the MGF.
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7.3 Lognormal Sum Approximation Using Gauss-

Hermite Expansion of MGF

7.3.1 Motivation

The simplicity of the F-W method arises from the fact that the mean and variance of a

sum of independent RVs can be written directly as the sum of the mean and variance of

the individual RVs. The MGF of the sum of independent RVs also possesses this desirable

property, in that it can be written directly in terms of the MGFs of the individual RVs.

The MGF of an RV X is defined as

Ψ
X
(s) =

∫ ∞

0

exp(−sx)p
X
(x)dx, (s ≥ 0). (7.4)

From (7.4), the MGF can also be interpreted as a weighted integral of the pdf p
X
(x), with

the weight function being a monotonically decreasing exponential function exp(−sx) for

real and positive values of s. Varying s from 0 to ∞ adjusts, as required, the weights

allocated to the head and tail portions of the sum pdf. Figure 7.1 compares in log scale

the absolute values of the various weight functions discussed above. Moreover, since the

lognormal RVs Xi, (1 ≤ i ≤ K), are independently distributed, the MGF of
∑K

i=1Xi is

given by

Ψ
(PK

i=1
Xi)

(s) =

K∏

i=1

Ψ
Xi

(s). (7.5)

Based on the discussion above, we can see that the MGF posses two desirable properties.

First, the MGF is a weighted integral of the pdf with a weight function that is adjustable.

Second, the MGF of the sum pdf can be easily expressed as the product of the MGFs

of the individual RVs. These two properties make the MGF a preferable candidate for

the lognormal sum approximation problem.

7.3.2 MGF-based Lognormal Sum Approximation

The development of the MGF-based lognormal sum approximation method requires a

closed-form expression for the MGF of lognormal RV. While no general closed-form
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expression for the lognormal MGF is available, it can be readily expressed by a series

expansion based on Gauss-Hermite integration.2 The MGF of a lognormal RV X can

be written as

Ψ
X
(s) =

∫ ∞

0

ξ exp(−sx)
xσ

Y

√
2π

exp

[
−(ξ loge x− µ

Y
)2

2σ2
Y

]
dx, (7.6a)

=
N∑

n=1

wn√
π

exp

[
−s exp

(√
2σ

Y
an+µ

Y

ξ

)]
+R

N
, (7.6b)

where µ
Y

and σ
Y

are the mean and standard deviation of the Gaussian RV Y =

10 log10X. Eqn. (7.6b) is the Gauss-Hermite series expansion of the MGF function,

N is the Hermite integration order, ξ = 10/ loge 10 is a scaling constant, and RN is a

remainder term. The weights, wi, and the abscissas, ai, are tabulated in [120, Table.

25.10] for N ≤ 20. From (7.6b), we can define the Gauss-Hermite representation of the

MGF, Ψ̂
X
, by removing R

N
as follows:

Ψ̂
X
(s;µ, σ) =

N∑

n=1

wn√
π

exp

[
−s exp

(√
2σan + µ

ξ

)]
. (7.7)

The lognormal sum
∑K

i=1Xi can now be approximated by a lognormal RV X = 100.1Y ,

where Y ∼ N (µ
Y
, σ2

Y
), by matching the MGF of X with the MGF of

∑K
i=1Xi at

two different, real and positive values of s: s1 and s2. This sets up a system of two

independent equations to calculate µ
Y

and σ2
Y
, as follows:

N∑

n=1

wn√
π

exp

[
−sm exp

(√
2σ

Y
an + µ

Y

ξ

)]
=

K∏

i=1

Ψ̂
X
(sm;µ

Yi
, σ

Yi
),

for m = 1 and 2. (7.8)

Note that the right hand side of the above two equations is a constant number. These

non-linear equations in µ
Y

and σ
Y

can be readily solved numerically using standard

functions such as fsolve in Matlab and NSolve in Mathematica.

Better estimates of µ
Y

and σ
Y

are obtained by increasing the Hermite integration order

N at the expense of additional computational complexity. Figure 7.2 shows the impact

2Naus [121] has derived a formula for the MGF of the sum of two lognormal RVs, which can be
extended to handle the sum of any even number of lognormal RVs. However, formula applies only to i.
i. d. RVs and is in the form an infinite series.
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Figure 7.1: Weight functions employed by F-W, S-Y, and MGF methods

of N on the accuracy of the Gauss-Hermite representation of the MGF. We have found

N = 6 to be sufficient to accurately determine µ
Y

and σ
Y
. This is small compared

to the 20 to 40 terms required to achieve numerical accuracy in the S-Y method [122].

Furthermore, unlike the S-Y method, no iteration in K is required – the right hand side

of eqn. (7.8) can be computed for any K at the very beginning at s = s1 and s2.

Most importantly, as highlighted before, the penalty for pdf mismatch can be adjusted

by choosing s appropriately. Increasing s penalizes more the errors in approximating

head portion of the sum pdf, while reducing s penalizes errors in the tail portion, as

well. For example, when the lognormal sum arises because various signal components

add up [108], the main performance metric is the outage probability. For this, the tail

of the cdf needs to be computed accurately. On the other hand, head portion of the

sum pdf that needs to be calculated accurately when the lognormal sum appears as

a denominator term, for example, when the co-channel interference powers are added

up in the signal to noise plus interference ratio calculation. The proposed method can

handle both of these applications by using different pairs (s1, s2). Guidelines for choosing

(s1, s2) are developed in the following section.
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7.4 Numerical Examples

Given the importance of CCI in cellular systems, we use a representative hexagonal

cellular layout with one and two rings of interfering base stations (BS) to compare the

performance of the Hermite-MGF method with other methods. The lognormal RVs in

the examples below arise in the downlinks of cellular systems. Due to pathloss, the mean

values of the CCI from the second-tier interferers differ considerably from those of the

first-tier interferers.

Figure 7.3 shows the cell layout with 6 first-tier interferers and 12 second-tier interfer-

ers as well as the location of the desired mobile station (MS). In this system, the ith

lognormal RV Xi observed by the MS is given by Xi = γ0

(
di

R

)−η
100.1Yi , where γ0 is the

signal to noise ratio (SNR) at the corner of the center cell, R is the cell radius, η is

the pathloss exponent, di is the distance between the kth BS and the MS, and Yi is a

zero-mean Gaussian RV with variance, σ, which varies from 4 to 12 dB. The examples
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that follow use γ0 = 10 dB, η = 3.7, and assume that the MS is at a distance of R/2

from the serving (central) BS.3

In the examples, we plot the cdf and complementary cdf (ccdf) and use these results

to provide guidelines on choosing generic values for s1 and s2. Small values of the cdf

reveal the accuracy in tracking the head portion of the pdf, while small values of the

ccdf reveal the accuracy in tracking the tail portion of the pdf.

Figure 7.4 plots the cdf of the CCI from the first-tier interferers, which corresponds

to the sum of K = 6 non-identical lognormal RVs, for σ = 8 dB. It can be seen that

the Hermite-MGF method matches the head portion of the distribution function very

well when (s1, s2) = (1, 100), and is more accurate than both the F-W and the S-Y

methods. The ccdf for the same parameters is plotted in Figure 7.5. While the S-Y

method diverges from the actual ccdf in this scenario, the proposed method matches the

simulation results well for (s1, s2) = (0.01, 0.1), and is as accurate as the F-W method.

3The pathloss factor
(

dk

R

)−η
affects only the mean of Xk, but not its variance.
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The above two figures (Figures 7.4 and 7.5) also plot the cdf for (s1, s2) = (0.01, 0.1) and

ccdf for (s1, s2) = (1, 100), respectively, and show the inevitable trade-off that needs to

be made in approximating both the head and tail portions of the pdf.

Figure 7.6 shows the cdf of CCI from the first-tier interferers for different values of the

lognormal variance and shows that the MGF method remains accurate. The effect of

increasing the number of interferers is shown in Figure 7.7, which plots the cdf of the

CCI from both first-tier and second-tier interferers, i.e., K = 18. It can be seen from

these two figures that (s1, s2) = (1, 100) provides a good fit for various values of σ and K

for approximating the head portion of the pdf. Similarly, (s1, s2) = (0.01, 0.1) is suitable

for approximating the tail of the pdf. Variance-specific optimization of s1 and s2 (not

shown here) can further improve the accuracy of the method.
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7.5 Conclusions

We proposed a simple and novel method to approximate the sum of several independent,

but not necessarily identical, lognormal random variables with a single lognormal ran-

dom variable. The method was motivated by an interpretation of MGF as a weighted

integral of the pdf. The weighted integral interpretation also explains the observed

shortcomings of some of the methods currently available in the literature. Matching

the Gauss-Hermite representation of the MGFs of the approximating lognormal RV and

the lognormal sum at a sufficient number of points leads to a system of independent

equations to compute the parameters of the approximating lognormal distribution. The

computational complexity is similar to that of the Schwartz-Yeh method. A cellular

layout with multiple rings of interferers was used to verify its accuracy. It also pro-

vides the flexibility required to handle the inevitable trade-off required in accurately

approximating both the head and tail portions of the pdf.
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Chapter 8

Spectral Efficiency Analysis of

Multiuser Cellular System with

Channel Aware Schedulers

8.1 Introduction

In a multiuser multi-cell mobile radio system, cochannel interference (CCI) from neigh-

boring cells and the radio resource competition among the same cell users are two pri-

mary performance limiting factors. Therefore, the proper identifications of the effects

of both CCI and multiuser resource competition on system performance are critical for

cellular system planning.

Theoretical performance analysis of systems with CCI has received considerable atten-

tions recently [123] - [127]. In [123], Alouini and Goldsmith formulated an analytical

framework to quantify the spectral efficiency of an interference-limited systems, where

CCI is the dominant channel impairment such that the effect of additive noise is negligi-

ble. The average spectral efficiencies under various system configurations are expressed

as functions of reuse distance of the cellular system. The outage probability and spec-

tral efficiency of interference-limited systems with successive interferences cancellation

receivers is analyzed in [124], and the theoretical performances of systems with smart

receiver antenna array are discussed in [125].
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The works mentioned above share the same critical assumption: all the interferences

are identically distributed. This assumption fails to capture the actual behaviors of

practical cellular systems. For example, for a cellular layout with a center cell surrounded

by two tiers of interfering cells, the CCI from the first tire interferers and second tire

interferers cannot be modeled as identically distributed due to the effects of pathloss.

The spectral efficiency of interference-limited systems with non-identical interferers and

multiple-input multiple-output (MIMO) antennas are studied in [126] with Monte-Carlo

simulation, and asymptotic spectral efficiency of MIMO interference-limited systems

with non-identical CCI is obtained in [127] by assuming that the number of receive

antennas tends to infinity.

In a multiuser cellular system, the users in the same cell (or sector) are competing with

each other for the limited radio resource. Therefore, resource scheduling algorithms, or

schedulers, are employed in the mobile radio system to manage the radio resource alloca-

tion among users. Various schedulers are proposed and analyzed in [129]- [135] . Among

them, Round Robin (RR) scheduler [129], [130] provides a fair resource sharing environ-

ment for all the users by sacrificing the overall system throughput; maximum signal to

interference plus noise ration (Max-SINR) [131] scheduler maximize the system through-

put at the expense of fairness among users. All the other algorithms are classified as

proportional fair (PF) schedulers since they are designed based on the trade-off between

the user fairness and the overall system throughput. The spectral efficiency or system

throughput of various schedulers are evaluated in [129], [131]- [133] with Monte-Carlo

simulations. In [134], the analytical throughput were obtained via numerical integration

for a noise-limited system, i.e., no CCI is present at the system. To the best of the

authors’ knowledge, no analytical spectral efficiency results for systems with both CCI

and multiuser scheduling are available in the literature.

In this chapter, theoretical spectral efficiencies are investigated for multiuser cellular

mobile radio systems operating in a Rayleigh fading and lognormal shadowing envi-

ronment and with both cochannel interference and resource competition among users.

Based on the geometric layout of the cellular system, the cochannel interferences from
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neighboring cells are modeled as independent but non-identically distributed random

processes, with the power of interferers being determined by the distance between the

desired user and the corresponding interferer. By analyzing the statistical properties

of post detection signal to interference plus noise ratio (SINR) at the receiver, spectral

efficiency expressions are derived for multiuser multi-cell systems with RR schedulers

and Max-SINR schedulers, and some results are expressed in closed-form. The spectral

efficiency of all the other schedulers should fall within the performance range defined by

these two schedulers due to the fairness and throughput trade off.

In addition, most of the previous works on theoretical spectral efficiency analysis assume

that systems with adaptive modulation can employ modulation schemes with unlimited

constellation size given the SINR is good enough [123], [126]- [128], [134]. However, in

practical system configuration, there is an upper limit on the modulation constellation

size. The effects of constellation limit on system spectral efficiency are analyzed in this

chapter as well.

The rest of this chapter is organized as follows. The model of the cellular mobile ra-

dio network to be analyzed is introduced in Section 8.2. In Section 8.3, the theoretical

spectral efficiency systems with RR scheduler is derived based on the statistical proper-

ties of SINR of each individual users. The multiuser spectral efficiency of systems with

Max-SINR scheduler is investigated in Section 8.4. Numerical examples and simulation

results are provided in Section 8.6, and Section 8.7 concludes the letter.

8.2 System Model

In this section, we present the system model representing the downlink of a multiuser

cellular environment, The corresponding analysis and the results obtained therein can

be directly applied to the cellular uplink. In the downlink of a mobile radio system with

N active users, the received signal at the nth mobile station can be modeled as

rn =
√
αn0hn0 · xn0 +

M∑

m=1

√
αnmhnm · xnm + zn, (8.1)
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where M is the number of cochannel interferers, xn0 is the normalized desired signal with

unit symbol power, xnm, for m = 1, · · · ,M , are mutually independent, normalized inter-

fering signals as observed by the nth mobile station, and zn is additive white Gaussian

noise with variance N0. In the system representation given in (8.1), the fading channel

between the nth mobile station (MS) and the mth base station (BS) is represented as
√
αnmhnm, where hnm, for n = 1, · · · , N , and m = 1, · · · ,M , are independent complex

Gaussian random variables (CGRV) with zero-mean and unit variance. The coefficient

αnm denotes the power of the signals received by the nth mobile station from the mth

base station. The power coefficient αnm is determined by both the transmission power

of the mth BS and the corresponding BS-MS distance dnm following the exponential

path-loss rule.

The number of interferers M depends on the geometric layout and configurations of the

cellular system. For example, if we only consider the cochannel interferences from the

first tier neighboring cells in a hexagonal cellular system with frequency reuse factor of

1, then M = 6 for non-sectored system, and the value of M is reduced to 2 and 1 for

3-sector and 6-sector systems, respectively [73].

From the system defined in (8.1), the instantaneous SINR γn at the receiver of the nth

MS can be expressed by

γn =
αn0|h0|2∑M

m=1 αnm|hnm|2 + 1/γ0

, (8.2)

where γ0 = 1/N0 is the normalized signal to noise ratio (SNR) for system with unit

transmission power.

With the definition of the instantaneous post detection SINR γn, we can find the spectral

efficiency of each individual user in the cellular system. Spectral efficiency identifies the

highest data throughput per unit bandwidth that can be achieved by a mobile user or the

entire cellular system. If we assume that the mobile user is being able to continuously

adapt their transmission rates according to the condition of the channel such that the

bit error rate (BER) tends to 0, then the instantaneous spectral efficiency C(γn) of the
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nth user is defined by the Shannon capacity as

C(γn) =





log2(1 + γn), γn ≤ γ
T
,

log2(T ), γn > γ
T
,

(8.3)

where T is the maximum constellation size allowed in the system, and γ
T

is the corre-

sponding maximum capacity achieving SINR, i.e., log2(T ) = log2(1+γ
T
), or γ

T
= T −1.

For system with unlimited constellation size, we have T = +∞.

The instantaneous spectral efficiency C(γn) varies with time due to the time-varying

nature of the fading channel, and the average spectral efficiency of the nth user can be

obtained by averaging the instantaneous spectral efficiency over the SINR γn as

Cn =

∫ +∞

0

C(γ)fγn(γ)dγ, (8.4)

where fγn(γ) is the probability density function (pdf) of the nth user’s SINR γn. The

average spectral efficiency for multiuser cellular systems with both limited and unlimited

constellation size are discussed in the next section by analyzing the statistical properties

of the post detection SINR as well as the properties of the RR and Max-SINR scheduler.

8.3 Spectral Efficiency of Round Robin Scheduler

In this section, the spectral efficiency of a multiuser cellular system with Round Robin

Schedulers are analyzed based on the average spectral efficiency analysis of individual

users in the system.

In a system with Round Robin scheduler, mobile users are being served on a rotating

basis, i.e., after a particular user is served by the base station, it will not be served

again until all the other users in the system have been served for exactly once. By

providing equal opportunities to all the users in the system regardless of their channel

condition, Round Robin scheduler guarantees the fairness among users. It can be easily

shown that Round Robin scheduler has the same spectral efficiency as random scheduler,

which randomly schedule a user from all the users with equal probabilities. Based on the

analysis above, we have the following theorem about the multiuser spectral efficiency of

cellular systems with Round Robin scheduler.
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Lemma 8.1 : For a multiuser cellular system with Round Robin scheduler, the average

spectral efficiency C̄RR of the system is

C̄RR =
1

N

N∑

n=1

Cn, (8.5)

where N is the number of active users in the system, Cn is the average spectral efficiency

of the nth user as defined in (8.4).

Proof: For systems with Round Robin scheduler, all the users have equal proba-

bility of being served at any time instant regardless of the specific channel condition. If

there are N active users in the system, then the probability that the nth user is going to

be served at the current time instant is 1/N . With the analysis above, the instantaneous

spectral efficiency of the N -user system can be expressed by

CRR =
1

N

N∑

n=1

C(γn), (8.6)

where C(γn) is the instantaneous spectral efficiency of the nth user, r = [γ1, γ2, · · · , γN ]

is the time-varying SINR vector, and the mathematical expectation is operated over all

the N users. The average multiuser spectral efficiency can be obtained by averaging

CRR(r) over the time-varying SINR vector r as

C̄RR = Er [CRR(r)] , (8.7)

and this immediately leads to (8.5).

Lemma 8.1 states that the multiuser spectral efficiency of a cellular system with Round

Robin scheduler can be computed by averaging over all the user’s individual spectral

efficiencies. This is in consistence with the fact that all the users in such system have

equal opportunities of being served, i.e., the Round Robin scheduler is a fair scheduler.

On the other hand, since the post detection SINR of each user is not considered in

the scheduling process, the fairness among users is achieved by sacrificing the system

throughput. Thus the spectral efficiency obtained from Round Robin scheduler can be

used as a lower bound to the spectral efficiency of systems with practical scheduling

algorithms.
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In order to evaluate the average spectral efficiency of Round Robin system in a Rayleigh

fading environment, we need to know the average spectral efficiency Cn of each individual

users as defined in (8.4), which is in turn determined by the statistical properties of the

post detection SINR γn. Next we analyze the statistical properties of γn, which is further

utilized in the derivation of the single user average spectral efficiency Cn.

8.3.1 Statistical Properties of Post Detection SINR

The statistical properties of the post detection SINR at the receiver of the individual

users are analyzed in this subsection to facilitate the spectral efficiency analysis.

Lemma 8.2 : For a user inside a cellular system experiencing Rayleigh fading and cochan-

nel interference, the probability density function of the post detection SINR of the nth

user can be expressed by

fγn(γ) = − ∂

∂γ

[
M∏

m=1

(
1 +

αnm
αn0

γ

)−1

× exp

(
− γ

γ0

· 1

αn0

)]
, (8.8)

where αn0 is the average power from the signal channel as observed by the nth user,

αnm, for m = 1, 2, · · · ,M , are the power coefficients of the interfering channels, and

γ0 = 1/N0 is the normalized signal to noise ratio.

Proof: If we define

η =

M∑

m=1

αnm|hnm|2 +
1

γ0
, (8.9)

then the instantaneous SINR γn given in (8.2) conditioned on η is χ2-distributed with

2-degree of freedom, and the conditional pdf can be written as

fγn(γ|η) =
1

α0/η
exp

(
− γ

α0/η

)
. (8.10)

With the conditional pdf fγn(γ|η) defined in (8.10), the pdf fγn(γ) can be written as

fγn(γ) =

∫ +∞

0

fγn(γ|η)f(η)dη,

=

∫ +∞

0

η

α0

exp

(
− γ

α0

η

)
f(η)dη, (8.11)
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where f(η) is the pdf of the random variable (RV) η as defined in (8.9).

It can be seen from (8.9) that η is the sum of M independent χ2-distributed random

variables αnm|hnm|2 plus a constant 1/γ0. The power coefficient αnm depends on the dis-

tance between the MS and the BSs, thus the χ2-distributed random variables αnm|hnm|2

could be either identically or non-identically distributed for different locations inside the

cell. Since it’s extremely complicated to find the pdf of the sum of non-identically dis-

tributed χ2-distributed random variables, we resort to the moment generating function

(MGF) of η, which can be written as

Mη(s) =

∫ +∞

0

eηsf(η)dη, (8.12a)

=

M∏

m=1

(1 − αnms)
−1 × es/γ0 . (8.12b)

Comparing (8.11) with (8.12a), we note that the pdf fγn(γ) can be alternatively written

as

fγn(γ) =
1

α0

∂

∂s
Mη(s)

∣∣∣∣
s=−γ/α0

. (8.13)

Combining (8.12b) and (8.13) will lead to (8.8), and this completes the proof.

In Lemma 8.2, the pdf of the post detection SINR is expressed in a form involving

function differentiation, even though more direct form is readily to be expressed. We

opt for the differentiation form because it can simplify the derivation of the cumulative

distribution function (cdf) and average spectral efficiency.

Corollary 8.1 : For the nth user inside the multiuser cellular system defined by (8.1),

the cumulative distribution function of the post detection SINR γn can be expressed by

Fγn(γ) = 1 −
M∏

m=1

(
1 +

αnm
αn0

γ

)−1

× exp

(
− γ

γ0

· 1

αn0

)
. (8.14)

Proof: According to the definition of cdf, Fγn(γ) can be written as

Fγn(γ) = P (γn < γ) =

∫ γ

0

fγn(x)dx. (8.15)

Substituting (8.8) into (8.15) will lead to (8.14).
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It’s worth pointing out that the cdf of the post detection SINR can be directly used to

evaluate the user’s outage probability, which is defined as the probability of failing to

achieve a specified SINR γ
th

sufficient to provide satisfactory link qualities [125]. Based

on this definition, we have

Pout = P (γn < γ
th

) = Fγn(γ
th

). (8.16)

The outage probability Pout defines a measure for assessing the quality of services pro-

vided by the cellular system. The smaller the outage probability, the better the quality

of service of the system. It can be seen from Corollary 8.1 that for a certain γ
th

, the out-

age probability can be reduced by increasing either the individual signal to interference

ratio γn0/γnm or the receiver single to noise ratio γ0αn0.

8.3.2 Average Spectral Efficiency for Single User

To facilitate the derivation of the nth user’s spectral efficiency, the (M + 1) power

coefficients αnm, for m = 0, · · · ,M , are grouped into Ln subsets, such that the elements

belonging to the same subset sharing the same value of αnm, and the values of αnm

of different subsets are distinct. Without loss of generality, it is assumed that the

cardinality of the lth subset is mnl, and M =
∑Ln

l=1mnl. Based on this partitioning

scheme of channel power coefficients, we have the following theorem about the average

spectral efficiency for a single user in the cellular system.

Theorem 8.1 : For a given user inside the cellular system operating in Rayleigh fading

environment with both CCI and additive noise, the average spectral efficiency of the nth

user can be expressed by

Cn = log2 e ·
Ln∑

l=1

mnl∑

i=1

βli ·
(
αn0

αnl

)mnl

· γ̄i−mnl
n0 · e

1
γ̄nl ×

[
Γ

(
i−mnl,

1

γ̄nl

)
− Γ

(
i−mnl,

1

γ̄nl
+
T − 1

γ̄n0

)]
, (8.17)

where Γ(k, x) is the incomplete Gamma function, Ln is the number of distinct values

of the (M + 1) power coefficients αnm, T is the maximum modulation constellation size
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allowed in the system, γ̄nl = γ0αnl, and βli is defined as

βli =
1

(i− 1)!

∂i−1

∂γi−1

[
(1 +

αnl
αn0

γ)mnl

M∏

m=0

(1 +
αnk
αn0

γ)−1

]∣∣∣∣∣
γ=−αn0/αnl

,

for l = 1, · · · , Ln, i = 1, · · · , mnl. (8.18)

Proof: Combining (8.3) and (8.4), we can write the average spectral efficiency for

the nth user as

Cn = −
∫ γ

T

0

log2(1 + γ)d [1 − Fγn(γ)] +

∫ +∞

γ
T

log2(T )fγn(γ)dγ (8.19a)

= log2 e

∫ γ
T

0

1

1 + γ
[1 − Fγn(γ)]dγ (8.19b)

where integral by part is applied to the first integral in (8.19a), and the identity log2(γT
) =

log2(T ) is used in the derivation of (8.19b).

Substituting the cdf Fγn(γ) in (8.19) with that given in Corollary 8.1, we have the

spectral efficiency as

Cn = log2 e

∫ γ
T

0

exp

(
− γ

γ0αn0

) M∏

m=0

(
1 +

αnm
αn0

γ

)−1

dγ, (8.20a)

= log2 e

∫ γ
T

0

exp

(
− γ

γ0αn0

) Ln∏

l=1

(
1 +

αnl
αn0

γ

)−mnl

dγ, (8.20b)

where the identity α0/α0 = 1 is used in the expression of (8.20a), and the second equality

is based on the subset partition of the power coefficients set {αnm}Mm=0, with Ln being

the number of distinct values of αnm, and mnl is the cardinality of the lth subset.

Performing partial fraction expansion of the product term in the integrand of (8.20b),

we will have

Cn = log2 e

Ln∑

l=1

mnl∑

i=1

β̄li

∫ +γ
T

0

(
1 +

αnl
αn0

γ

)−(mnl−i+1)

exp

(
− γ

γ0αn0

)
dγ, (8.21)

where β̄li is the partial fraction coefficient expressed by

β̄li =
αi−1
n0

αi−1
nl (i− 1)!

∂i−1

∂γi−1

[
(1 +

αnl
αn0

γ)mnl

M∏

m=0

(1 +
αnm
αn0

γ)−1

]∣∣∣∣∣
γ=−αn0/αnl

. (8.22)
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Combining (8.21), (8.22) and the definition of the incomplete Gamma function [87],

Γ(k, x) =

∫ +∞

x

tk−1e−tdt, (8.23)

we will have (8.17) and (8.18), and this completes the proof.

Theorem 8.1 gives the closed-form representation of the average spectral efficiency of

a specified user inside a cellular system with maximum constellation size of T . The

spectral efficiency is expressed as a function of the signal power αn0 and interfering

power {αnm}Mm=1 observed by the user, which are in turn determined by the relative

position between the mobile user and the serving or interfering base stations. The single

user spectral efficiency of system with no modulation limit can be obtained by setting

T = +∞ in (8.17).

If all the channel power coefficients αnm are distinct, which is true for most practical

system configurations due to the effect of path-loss and shadowing, then the spectral

efficiency can be simplified from (8.17) to

C = log2 e ·
M∑

m=0

αn0

αnm
·
M∏

i=0
i6=m

αnm
αnm − αni

· e 1
γ̄nm ·

[
Γ

(
0,

1

γ̄nm

)
− Γ

(
0,

1

γ̄nl
+
T − 1

γ̄n0

)]
.(8.24)

A direct consequence of Theorem 8.1 is the spectral efficiency of noise-limited system,

where the cochannel interference is so small compared with additive noise that the

effects of CCI can be ignored. By setting M = 0 in (8.17) or (8.24), we have the spectral

efficiency of noise-limited system summarized in the following Corollary.

Corollary 8.2 : The average spectral efficiency of a given user in a noise-limited environ-

ment (or single cell system) can be expressed by

Cn = log2 e · e
1
γ̄ n0 ·

[
Γ

(
0,

1

γ̄ n0

)
− Γ

(
0,
T

γ̄ n0

)]
, (8.25)

where γ̄n0 = γ0αn0 is the average SNR at the receiver. �

By recognizing the identity Γ(0, x) = expint(x), where expint(x) =
∫ +∞
x

e−t/t dt is the

exponential integral, we can easily find that the result presented in (8.25) with T = +∞
agrees with the result previously obtained in [128, eqn. (12)] for noise-limited systems

with unlimited modulations.
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Combining the single user average spectral efficiency results with Theorem 8.1, we can

get the multiuser spectral efficiency for Round Robin system operating in Rayleigh fading

environments.

8.4 Spectral Efficiency of Max-SINR Scheduler

The average spectral efficiency of systems with Max-SINR scheduler is analyzed in this

section. At any time instant, base station equipped with Max-SINR scheduler will always

serve the mobile station with the highest SINR among all the mobile users. If we define

γmax = max {γ1, γ2, · · · , γN} , (8.26)

then the average spectral efficiency of system with Max-SINR scheduler can be written

by [c.f. (8.3] and (8.4) )

C̄MSINR =

∫ γ
T

0

log2(1 + γ)fγmax(γ)dγ + log2(T ) [1 − Fγmax(γT
)] . (8.27)

where fγmax(γ) and Fγmax(γ) are the pdf and cdf of the Max-SINR γmax, respectively,

T is the maximum modulation constellation size allowed in the system, and γ
T

is the

corresponding SINR threshold.

8.4.1 Statistical Properties of Post Detection SINR

Before moving on to the average spectral efficiency analysis, we have the following lemma

about the cdf of γmax.

Lemma 8.3 : In a cellular environment with Rayleigh fading and M cochannel interferers,

the cdf of the Max-SINR γmax = max {γ1, γ2, · · · , γN} is

Fγmax(γ) = 1 +
N∑

n=1

(−1)n
(N

n)∑

k=1

exp (−σnkγ)
∏

i∈Ck(N,n)

M∏

m=1

(1 + λimγ)
−1 , (8.28)

where λim = αim/αi0 is the ratio between the power coefficients αim of themth interfering

channel and αi0 of the signal channel observed by the ith user, the binomial coefficient
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(
N
n

)
is the number of ways choosing n elements from a set with N distinct members,

Ck(N, n) is an n-element set with its members corresponding to the kth combination of

choosing n elements from the index set {1, 2, · · · , N}, for k = 1, 2, · · · ,
(
N
n

)
, and σnk is

defined as

σnk =
∑

i∈Ck(N,n)

1

γi0αi0
. (8.29)

.

Proof: The cdf of γmax is defined as

Fγmax(γ) = P (γ1 < γ, · · · , γ
N
< γ) . (8.30)

Since γn, for n = 1, 2, · · · , N , are mutually independent, (8.30) can be rewritten as

Fγmax(γ) =

N∏

n=1

Fγn(γ), (8.31)

where Fγn(γ) is the cdf of the post detection SINR of the nth user. Substituting the

results of Corollary 8.1 into (8.31), we can write the cdf Fγmax(γ) as

Fγmax(γ) =
N∏

n=1

[
1 −

M∏

m=1

(
1 +

αnm
αn0

γ

)−1

× exp

(
− γ

γ0

· 1

αn0

)]
, (8.32)

which can be further expanded to

Fγmax(γ) = 1 +

N∑

n=1

(−1)n
(N

n)∑

k=1

∏

i∈Ck(N,n)

exp

(
− γ

γ0
· 1

αi0

) M∏

m=1

(
1 +

αim
αi0

γ

)−1

.(8.33)

Eqn. (8.28) immediately follows (8.33), and the proof is completed.

One byproduct of Lemma 8.3 is the outage probability Pout of the multiuser system with

Max-SINR scheduler. As discussed in Section 8.3.1, Pout is directly related to the cdf of

the post detection SINR, and it can be written as

Pout = Fγmax(γth), (8.34)

where γth is the minimum SINR required by the system to provide satisfying services to

the mobile users. Eqn. (8.34) states that the outage probability of a multiuser cellular

system with Max-SINR scheduler is equal to the probability that the SINRs of all the

users in the systems fail to achieve the minimum system requirement γth.
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8.4.2 Spectral Efficiency Analysis

In Lemma 8.3, the cdf of the Max-SINR is expressed as the summation of a group

of finite products exp (−σnkγ)
∏

i∈Ck(N,n)

∏M
m=1 (1 + λimγ)

−1. To facilitate the average

spectral efficiency analysis of system with Max-SINR scheduler, we define the following

function

Φn,k(γ) =
1

1 + γ

∏

i∈Ck(N,n)

M∏

m=1

(1 + λimγ)
−1 ,

for n = 0, · · · , N, and k = 1, · · · ,
(
N

n

)
, (8.35)

with λim = αim/αi0. The Mn+1 product terms (1 + λimγ)
−1 of Φn,k(x) can be grouped

into L(n, k) subsets, such that all members beckoning to the same subset are sharing

the same value of λim = αim/αi0, and the values of λim are distinct from subset to

subset. Without loss of generality, it is assumed that there are ml(n, k) elements in the

lth subset. With such partitioning scheme, Φn,k(γ) can be rewritten as

Φn,k(γ) =

L(n,k)∏

l=1

[1 + λl(n, k)γ]
−ml(n,k) , (8.36)

where λl(n, k) equals to the value of αim/αi0 in the lth subset. With Lemma 8.3 and the

definition given in (8.35) and (8.36), we have the following theorem about the average

spectral efficiency of systems with Max-SINR scheduler.

Theorem 8.2 : For a cellular mobile radio system with Max-SINR scheduler, if there are

N active users experiencing Rayleigh fading and cochannel interference, then the average

spectral efficiency of the multiuser system can be expressed by

C̄MSINR = log2 e

N∑

n=0

(−1)n−1

(N
n)∑

k=1

L(n,j)∑

l=1

λl(n, k)
−ml(n,k)

ml(n,k)∑

i=1

βli(n, k) · σml(n,k)−i
nk ×

exp

[
σnk

λl(n, k)

]{
Γ

[
i−ml(n, k),

σnk
λl(n, k)

]
−

Γ

[
i−ml(n, k),

σnk
λl(n, k)

+ σnk(T − 1)

]}
, (8.37)
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where σnk is given in (8.29), the coefficient βli(n, k) can be written as

βli(n, k) =
1

(i− 1)!

∂i−1

∂γi−1

[
(1 + λlγ)

ml(n,k) × Φn,k(γ)
]∣∣∣∣
γ=−1/λl(n,k)

,

for i = 1, · · · , ml(n, j). (8.38)

and the function Φn,k(γ) is defined in (8.35) and (8.36).

Proof: From (8.27) and integral by part, the average spectral efficiency can be

written as

C̄MSINR = log2 e

∫ γ
T

0

1

1 + γ
[1 − Fγmax(γ)] dγ, (8.39)

where Fγmax(γ) is the cdf of γmax defined in Lemma 8.3.

From (8.28) and (8.35), the integrand in (8.39) can be written by

[1 − Fγmax(γ)]

1 + γ
=

N∑

n=1

(−1)n−1

(N
n)∑

k=1

e−σnkγ × Φn,k(γ). (8.40)

To obtain the closed-form expression of the average spectral efficiency, we perform partial

fraction expansion expansion of Φn,k(γ) defined in (8.36), and the result is

Φn,k(γ) =

L(n,k)∑

l=1

ml(n,k)∑

i=1

β̄li(n, k)[1 + λl(n, k)γ]
−ml(n,k)+i−1 , (8.41)

with the partial fraction coefficients β̄li(n, k) defined by

β̄li(n, k) =
λ
−(i−1)
l

(i− 1)!

∂i−1

∂γi−1

{
[1 + λl(n, k)γ]

ml(n,k) × Φn,k(γ)
}∣∣∣∣∣

γ=−1/λl(n,k)

,

for i = 1, · · · , ml(n, k). (8.42)

Substituting (8.40) - (8.42) into (8.39), we can rewrite the average spectral efficiency as

C̄MSINR = log2 e

N∑

n=0

(−1)n−1

(N
n)∑

k=1

L(n,k)∑

l=1

ml(n,k)∑

i=1

β̄li(n, k) ×
∫ γ

T

0

[1 + λl(n, k)γ]
−ml(n,k)+i−1 e−σnkγdγ. (8.43)

Combining (8.43) with (8.23) will lead to (8.37), and this completes the proof.
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The outage probability and average spectral efficiency of a noise-limited system with

Max-SINR scheduler can be obtained by setting the number of interferers M = 0 in the

derivation of (8.28) and (8.37), and the results are given by the following two corollaries.

Corollary 8.3 : The cdf of the post detection SINR of a noise-limited system with Max-

SINR scheduler is

Fγmax(γ) = 1 +

N∑

n=1

(−1)n
(N

n)∑

k=1

exp (−σnkγ) , (8.44)

where σnk is defined in (8.29). �.

Corollary 8.4 : For a noise-limited system with Max-SINR scheduler, the average mul-

tiuser spectral efficiency is

C = log2 e
N∑

n=1

(−1)n+1

(N
n)∑

k=1

exp(σnk)[Γ(0, σnk) − Γ(0, σnkT − σnk)], (8.45)

where σnk is defined in (8.29), and T is the maximum modulation constellation size.

Proof: Combining the spectral efficiency expression in (8.27) with the cdf given in

Corollary 8.4, we will have

C = − log2 e

N∑

n=1

(−1)n
(N

n)∑

k=1

∫ γ
T

0

1

1 + γ
exp(−σnkγ)dγ, (8.46)

and (8.45) immediately follows.

8.5 Spectral Efficiency in Composite Fading Shad-

owing Environment

So far, all the analyses are carried out for system with small scale fading only. In most

cellular environments, due to large terrain features between transmitter and receiver, the

propagation radio waveforms also undergo long term power variation, or, shadowing. In

this section, we investigate the spectral efficiency of systems suffering from both short

term fading and long term shadowing.
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To simplify the spectral efficiency analysis, we follow the convention of most previous

works [126], [123]- [127] and consider a system operating in an interference limited envi-

ronment, where the additive noise power is negligible compared to CCI, . i.e., the SNR

γ0 → ∞. For interference limited environment, the post detection SINR γn of the nth

user degrades to signal to interference ratio (SIR) γ̃n, which can be written as [c.f. (8.2)]

γ̃n =
αn0|hn0|2∑M

m=1 αnm|hnm|2
, (8.47)

where the signal power or the interference power observed by the receiver are affected

by both fading and shadowing.

8.5.1 Statistical Properties of Post Detection SIR

The statistical properties of shadowing can be well described by lognormal distribution.

The pdf of a lognormal RV x is

f(x) =
ξ√

2πσxx
exp

[
−(ξ ln x− µx)

2

2σ2
x

]
, (x ≥ 0), (8.48)

where µx and σ2
x are the mean and variance of the Gaussian RV 10 log10 x = ξ ln x, and

ξ = 10/ ln 10 is a constant. Both µx and σx are in the unit of dB.

For a wireless environment with both Rayleigh fading and lognormal shadowing, the

distribution of the received signal power can be modeled as a χ2-distributed RV (square

of Rayleigh RV) superimposed by a lognormal RV, and the pdf of the resultant composite

fading-shadowing distribution is [137]

f(v) =

∫ +∞

0

1

x
exp

(
−v
x

) ξ√
2πσxx

exp

[
−(ξ ln x− µx)

2

2σ2
x

]
dx, (v ≥ 0). (8.49)

where µx and σ2
x are the log-domain mean and variance of the underlying lognormal RV.

This distribution is also called Suzuki distribution.

In (8.49), the pdf of the composite fading-shadowing distribution is expressed in an

integral form, and it eludes closed-form solution. This integration representation of the

pdf makes the SIR analysis extremely complicated. Fortunately, it is pointed out in [73]

that the composite fading-shadowing distribution can be accurately approximated by a
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new lognormal RV y, with the log-domain moments µy and σ2
y expressed as [73, eqn.

(2.188)]

µy = ξ[ψ(1) − ln1] + µx, (8.50a)

σ2
y = ξ2ζ(2, 1) + σ2

x, (8.50b)

where µx and σx are the parameters of the composite distribution, ψ(a) is the Euler psi

function, and ζ(a, b) is Riemann’s zeta function.

With the lognormal approximation of the composite fading-shadowing distribution, the

post detection SIR of the nth user can be expressed by

γ̃n =
yn0∑M

m=1 ynm
, (8.51)

where ynm, for m = 0, 1, · · · ,M , are lognormal RVs used to approximate the composite

fading-shadowing RV αnm|hnm|2, and their respective log-domain moments µnm and σ2
nm

can be calculated from (8.50).

In the SIR representation of (8.51), the total interference power
∑M

m=1 ynm is the sum

of M non-identically distributed lognormal RVs. Again, no closed-form expression is

available in the literature for the sum of lognormal RVs. However, it is widely accepted

that the lognormal sum distribution can be well approximated by another lognormal

distribution [109]- [112], i.e., xn ≈∑M
m=1 ynm, where xn is a new lognormal RV used to

approximate the lognormal sum. lognormal distributed with the log-domain moments

being µxn and σ2
xn., which are the mean and variance of ξ ln xn.

The approximating lognormal RV xn has two parameters µxn and σ2
xn, which are the

mean and variance of the underlying Gaussian RV ξ ln x. Hence the problem of lognormal

sum approximation is equivalent to find the values of µxn and σ2
xn of the approximat-

ing RV xn based on the statistical properties of the original lognormal RVs ynm, for

m = 1, · · · ,M . Several analytical methods exists in the literature for lognormal sum

approximation. Among them, the method by Fenton-Wilkinson [109] provides closed-

form expressions of the approximating log-domain moments µxn and σ2
xn by directly

matching the first and second central moment of the approximating lognormal RV and
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the lognormal sum. Schwartz and Yeh, instead, iteratively compute µxn and σxn by

performing moment matching in the log-domain [110].

In the SIR analysis, we actually want to use a lognormal RV to approximate the sum

of M independent but non-identically distributed Suzuki RVs. This approximation is

justified by the facts that both Suzuki distribution and lognormal sum distribution can

be well approximated by lognormal distribution. Therefore, to find the parameters

µxn and σ2
xn of the approximating lognormal RV, two approximation steps needs to be

performed according to conventional approximation methods.

Motivated by the fact that the moment generating function (MGF) of an RV can be

interpreted as the weighted integral of the pdf, we presented in Chapter 7 a simple and

flexible approximation method which is capable of directly matching the sum of inde-

pendent Suzuki RVs into a new lognormal RV in one shot. Based on this method, we

can directly solve the values of µxn and σxn based on the statistical properties of the

composite fading-shadowing RVs |hnm|2 for the CCI component in the SIR representa-

tion.

With the lognormal approximation, the SIR γ̃n is expressed as the ratio of two lognormal

RVs as γ̃n = yn0/xn. Since the ratio of two lognormal RVs is still a lognormal RV, the

SIR γ̃n is lognormal distributed with the lognormal mean and variance given by

µγ̃ = µyn − µxn, (8.52a)

σ2
γ̃ = σ2

yn + σ2
xn, (8.52b)

where (µyn, σ
2
yn) and (µxn, σ

2
xn) are the log-domain moments of the lognormal RV yn0

and xn, respectively.

The CDF of the lognormal distributed instantaneous SIR γ̃n can be written as

Fγ̃n(γ) = 1 −Q

(
ξ ln γ − µγ̃n

σγ̃n

)
, (8.53)

where Q(x) = 1√
2π

∫ +∞
x

exp(−y2

2
)dy is the Gaussian-Q function.

For systems with Max-SINR scheduler, the post detection SIR at the receiver is γ̃max =
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max{γ̃1, γ̃2, · · · , γ̃N}. The CDF of γ̃max can be written as

Fγ̃max(γ) =

N∏

n=1

Fγ̃n(γ),

=
N∏

n=1

[
1 −Q

(
ξ ln γ − µγ̃n

σγ̃n

)]
. (8.54)

With the statistical properties of the post detection SIR, we can move on to the spectral

efficiency analysis for systems with both small scale fading and large scale shadowing.

8.5.2 Spectral Efficiency Analysis

The average spectral efficiency for the nth user in a system with lognormal shadowing

can be computed by substituting (8.53) into (8.19b), and the result is

Cn = log2 e

∫ γ
T

0

1

1 + γ
Q

(
ξ ln γ − µγ̃n

σγ̃n

)
dγ. (8.55)

where γ
T

is the SIR cap imposed by modulation limit. Even though this spectral effi-

ciency can not be expressed in closed-form, it can be easily evaluated with numerical

methods.

Combining the result in (8.55) and Lemma 8.1 leads to the spectral efficiency expression

for system with Round Robin scheduler and shadowing

C
RR

=
log2 e

N

∫ γ
T

0

1

1 + γ

N∑

n=1

Q

(
ξ ln γ − µγ̃n

σγ̃n

)
dγ. (8.56)

For system with Max-SINR scheduler, the spectral efficiency expression can be obtained

by substituting (8.54) into (8.39), which yields

C
MSINR

= log2 e

∫ γ
T

0

1

1 + γ

{
1 −

N∏

n=1

[
1 −Q

(
ξ ln γ − µγ̃n

σγ̃n

)]}
dγ. (8.57)

The result presented in (8.57) can be evaluated with numerical integrations.

For systems operating in a environment with both short term fading and long term

shadowing, Eqns. (8.56) and (8.57) give the spectral efficiency expressions of Round

Robin scheduler and Max-SINR scheduler, respectively. It should be noted that these
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spectral efficiency expressions are also applicable to system operating in a shadowing

only environment, where the SIR can still be approximated by a lognormal RV, and the

only adjustment required is the re-computation of lognormal parameters µn and σ2
n.

Moreover, for noise limited environment, the SINR expression given in (8.2) degrades to

SNR since the effects of CCI are negligible. For such system configuration, the SNR γn

is composite fading-shadowing distributed, which can be approximated by a lognormal

RV. Therefore, Eqns. (8.56) and (8.57) with appropriate γn and µn can also be applied

to noise limited system operating in lognormal shadowing environment.

8.6 Numerical Examples

Numerical examples along with simulation results are provided in this section to inves-

tigate the multiuser spectral efficiency under various system configurations. A represen-

tative hexagonal cellular layout with one and two tires of interfering BSs is used in the

examples. Fig. 7.3 shows the system geometric layout with 6 first-tier interferers and 12

second-tier interferers. The spectral efficiency of the center cell is to be analyzed, and

the frequency reuse factor of the system is assumed to be 1.

For a given position inside the center cell, the power coefficients αnm observed by the

users are affected by the BS transmission power, path-loss and lognormal shadowing.

Since the effects of shadowing can be effectively averaged out at the receiver, it is assumed

in the examples that αnm is determined by transmission power and path-loss. The

examples that follow use a pathloss exponent of 3.7.

8.6.1 Effects of CCI

Fig. 8.1 plots the Max-SINR spectral efficiencies of a 10-user system with different

number of interferers. The distance between the MSs and the serving BS is R/2, with

R being the cell radius. The results presented in the figure demonstrate that CCI has

significant impact on system spectral efficiency. The spectral efficiency of a noise limited

system (1-cell system) increases almost linearly with the increase of cell corner SNR µ,
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while the performance improvement of systems with CCI becomes negligible after µ > 12

dB. This is because for system with CCI, both the signal power and interference power

become larger with the increase of µ, thus there is no apparent improvement in the

post detection SINR. The results also show that the spectral efficiency decreases as the

increase of the number of interferers. For µ = 15 dB, the spectral efficiency of system

with only first-tier interferes (7-cell system) is 0.5 bps/Hz better than the system with 2

tiers interferers (19-cell system). Moreover, perfect agreements between the simulation

results and analytical results can be observed in the results.
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Figure 8.1: The spectral efficiencies of systems with Max-SINR scheduler with different
number of cochannel interferers. Number of MS: N = 10. Number of sectors per cell: 1.

8.6.2 Effects of Schedulers

The spectral efficiencies of cellular systems with Max-SINR scheduler and RR scheduler

are plotted in Fig. 8.2 as a function of the number of MS in the system. In this example,

the distance between the serving BS and MS is half of the cell radius R, and the SNR

at cell corner is assumed to be mu = 10 dB. It can be seen from Fig. 8.2 that the
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Figure 8.2: Spectral efficiencies of systems with Max-SINR scheduler and RR scheduler.
SNR at cell corner: µ = 10dB. Number of sectors per cell: 1.

average spectral efficiency of RR scheduler is independent of the number of users in the

system. On the other hand, the Max-SINR spectral efficiency increases with the number

of active users in the system thanks to the multiuser diversity inherent in the Max-SINR

scheduler. The spectral efficiency of systems with proportional fair schedulers should fall

between the performance range defined by the RR scheduler and Max-SINR scheduler.

Moreover, as expected, the 7-cell system outperforms the 19-cell system for both RR

scheduler and Max-SINR scheduler due to the decrease of CCIs.

8.6.3 Effects of Limit on Modulation Constellation Size

In all the previous examples, it is assumed that there is no limit for the modulation

constellation size used in the system. However, in practical system, the modulation

constellation size cannot be infinitely large. The spectral efficiencies of systems with

different constellation size limits are shown in Fig. 8.3. It is assumed there are 5 users

circling around the serving BS in the system, and the spectral efficiency is plotted as a
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function of the distance between MS and serving BS. When the mobile users are close

enough to the serving BS, the SINR of all the users are so good such that the system

always choose the the modulation scheme with the largest constellation size. Under this

situation, the RR scheduler and Max-SINR scheduler have the same spectral efficiency

log2(T ), where T is the largest constellation size allowed by the system. When the

MSs move away from the serving BS, the spectral efficiency decreases accordingly. It’s

interesting to note when the MSs are close to cell edge, the constellation limit has no

apparent effect on system performance. This can be accounted by the fact that only

modulation schemes with smaller constellation size are employed by the system due to

the poor SINR quality at cell edge.

8.6.4 Effects of Cell Sectorization

The effects of cell sectorization on system performance are analyzed in this subsection.

For sectored cells, the base station antenna pattern is defined as follows [138]

A(θ) = −min

[
12

(
θ

θ0

)2

, A0

]
dB, for − 180o ≤ θ ≤ 180o, (8.58)

where θ is the angle between direction of interest and the boresight of the antenna.

For 3-sector cell, θ0 = 70o, A0 = 20 dB; for 6-sector cell, θ0 = 35o, and A0 = 23 dB.

Omni-directional antennas are assumed for non-sectored cells.

To illustrate the effects of antenna pattern on spectral efficiency, Fig. 8.4 shows the

single user spectral efficiency at different positions inside the center cell. Since the base

station antenna is no longer omni-directional, the mobile spectral efficiency of a given

user becomes a function of the line of sight direction between the desired user and the

serving base station. As expected, for a given mobile-cell center distance d0, the mobiles

positioned along the direction of antenna boresight has larger spectral efficiency than

mobiles at other directions.

The multiuser spectral efficiency of the cellular system with RR scheduler are depicted

in Fig. 8.5 for systems with different sectorization schemes. The users are assumed to be

uniformly distributed in the center cell. It’s apparent from this figure that sectorization
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will benefit the overall system performance thanks to the decrease of cochannel interfer-

ers, and the largest performance improvement occurs at the transition from non-sector

cell to 3-sector cell.
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Figure 8.3: Spectral efficiencies of systems with different modulation constellation size
limits. 7-cell system. SNR at cell corner: µ = 15dB. Number of MS: N = 5. Number of
sectors per cell: 1.

8.6.5 Effects of Shadowing

So far, all the examples are carried out for system with Rayleigh fading. In the last

example, we evaluate the spectral efficiency for systems operating in a environment with

both short term fading and long term shadowing. The analytical and simulation spectral

efficiency results for systems with Round Robin scheduler and Max-SIR scheduler are

presented in Fig. 8.6. The analytical results are evaluated with the help of the lognormal

approximation of the sum of Suzuki RVs, while the simulation results are exact, i.e., the

power of the received signal or interference undergoes the fading-shadowing composite

distribution. The results in Fig. 8.6 show that the approximation analytical results are

very close to the actual spectral efficiency obtained by means of Monte-Carlo simulation.

174



−2000

−1000

0

1000

2000

−2000

−1000

0

1000

2000
0

5

10

15

20

25

x (m)

Average Spectral Efficiency for Single User

y (m)

S
pe

ct
ra

l E
ffi

ci
en

cy
 C

 (
bp

s/
H

z)

Figure 8.4: The single user spectral efficiency at various positions inside the center cell.
7-cell system. SNR at cell corner: µ = 15 dB. Number of sectors per cell: 6.

This verifies that the new MGF based lognormal approximation method presented in this

chapter is very accurate. Moreover, it’s observed from Fig. 8.6 that larger shadowing

sigma will benefit multiuser diversity. On the contrary, the performance of system with

RR scheduler degrades with the increase of shadowing sigma.

8.7 Conclusions

In this chapter, theoretical spectral efficiency of multiuser multi-cell mobile radio systems

with Round Robin scheduler and Max-SINR scheduler was analyzed. By identifying the

statistical properties of the non-identically distributed cochannel interferers and the post

detection SINR in a Rayleigh fading environment or composite fading-shadowing envi-

ronment, we obtained spectral efficiency expressions for systems with RR scheduler and

Max-SINR scheduler, and the effects of limited modulation constellation size was also
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Figure 8.5: The spectral efficiency of the center cell with RR scheduler and various
sectorization schemes. The MS are uniformly distributed inside the center cell

considered. The spectral efficiencies are expressed as functions of the signal and inter-

fering channel power coefficients, which are in turn determined by the geometric layout

of the cellular system. Numerical examples were used to illustrate the effects of CCI,

scheduler, constellation limit and cell sectorization on system performance. Moreover,

simulation results showed that the theoretical expressions obtained in this chapter can

accurately predict the performance of cellular systems with practical system configura-

tions.
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Figure 8.6: The spectral efficiency of the center cell undergoing fading and shadowing.
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Chapter 9

Conclusions

This final chapter summarizes the main contributions of the dissertation, and directions

for future research are outlined and discussed.

9.1 Contributions

The contents presented in this dissertation focused on the optimum receiver design as

well as theoretical performance analysis of wireless communication systems operated

in multipath fading environments, and the main contributions of this dissertation are

summarized as follows.

First, a generic analytical discrete-time system model was presented for MIMO sys-

tems experiencing WSSUS Rayleigh fadings. It was discovered via this model that the

discrete-time sample-spaced tapped delay line representation of frequency selective chan-

nel fadings has correlated tap coefficients due to the time span of the bandlimited pulse

shaping filter, and this correlation information is essential to both system design and per-

formance analysis. Moreover, based on the statistical properties of the analytical model,

a new simulation model was also presented for efficient simulation of wireless communi-

cation systems. The statistical accuracy of the discrete-time MIMO channel model was

rigorously verified through theoretical analysis and extensive simulations under various

system configurations.

Second, based on the statistical properties of the discrete-time system model, an MMSE

based multiuser channel estimation algorithm was proposed for quasi-synchronous CDMA
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systems, and it can effectively compensate the impairments caused by doubly selective

fadings. The channel inter-tap correlation information of the discrete-time channel model

was deemed as an essential factor in the development of the algorithm, and simulation

results showed that this correlation information is critical to the accuracy of channel

estimation.

Third, an optimum diversity receiver was developed for systems with practical chan-

nel estimation algorithms by analyzing the statistical properties of channel estimation

error. Theoretical error probability expressions of systems employing this optimum re-

ceiver structure were derived for Rayleigh and Ricean fading environments. Simulation

results validated the new theoretical results, and some interesting observations regarding

practical diversity receiver design for higher-order modulation formats were drawn.

Fourth, the impacts of Doppler spread, delay spread, receiver oversampling, and receiver

timing phase offset on system performance were identified via theoretical performance

analysis of systems with doubly selective Rayleigh fadings, and closed-form error proba-

bility expressions were derived as tight low performance bounds for linearly modulated

systems. Specifically, with the help of frequency-domain analysis, the effects of receiver

timing phase offset and receiver oversampling were explicitly expressed in the represen-

tations of post detection SINR, which was further quantified in the error probability

expressions. Simulation results showed that the new analytical results can accurately

predict the error performances of MLSE and MAP equalizers for practical wireless com-

munication systems.

Finally, spectral efficiency and outage probability expressions were derived for multiuser

cellular mobile radio systems with Round Robin scheduler and Max-SINR scheduler.

The statistical properties of the receiver SINR are affect by small-scale fading, large-

scale shadowing, and non-identically distributed CCI. With the help of the analytical

results, the relationship between system performance and CCI was analyzed, which

provides useful insights for the design of cellular mobile radio systems.

In summary, this dissertation covered algorithm design and performance analysis of a
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broad range of wireless communication systems under various practical system configu-

rations. The proposed algorithms can effectively combat the impairments caused by the

harsh wireless environment by exploring the properties unique to wireless communica-

tion systems. In addition, the theoretical error performance derived in this dissertation

can not only accurately predict the performance of practical communication systems,

they also provide a set of analytical tools which can be applied for both communication

system design and evaluation.

9.2 Future Works

Inspired by the contents presented in the earlier chapters of this dissertation, we now

list some future research directions that might lead to promising and fruitful research

discoveries.

First, the design of advanced transceiver technique which are capable of fully exploit-

ing the diversity potential inherent in doubly selective fading channel. The theoreti-

cal error performance results presented in Chapter 5 for systems with doubly selective

Rayleigh fadings are able to quantitatively identify the potential benefits offered by time-

selectivity and frequency-selectivity wireless channel. However, the question of how to

make use of these benefits so as to achieve full diversity order in both time-domain

and frequency-domain remains unanswered. Therefore, the design of advanced channel

coding along with efficient decoding technique with the capability of fully appreciating

the potential offered by wireless channel will be of great values to the design of next

generation wireless communication systems.

Second, error probability analysis of systems with interference is another promising topic

worth studying. For example, spatial multiplexing of MIMO system will significantly

improve system spectral efficiency. However, it will also introduces interferences among

signals transmitted from different antennas. It’s well known through simulation that suc-

cessive interference canceller can asymptotically achieve the capacity advantages offered

by the system. However, how to evaluate the performance of such systems analytically
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is still an open question need to be answered.

Finally, the test bed development of wireless communication system will be another

rewarding research topic in the future study. All the results presented in this dissertation

are based on theoretical analysis or computer simulation. The practical values of the

research results will be improved immensely if they can be implemented and evaluated in

a practical wireless communication environment. Wireless communication system test

bed provides a hardware based evaluation environment to satisfy this purpose, and it

can serve as a pipeline between abstract theories and practical products. Moreover, the

results obtained from test bed development might be in turn help the advancement of

wireless communication system theories.
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Appendix A

Subspace-based Channel Estimation

with Pilot Symbols

In this appendix, a subspace-based channel estimation algorithm with pilot symbols is

derived for systems with quasi-static fading channels. The assumption of quasi-static

fading is required for the purpose of proper identification of the signal subspace and noise

subspace [43]- [45], and the channel is assumed to be constant during the estimation

process, which is one slot for this system. From (3.17), we will have

Ryp = E[y(jp)y
H(jp)],

= Ch · hHCH +N0IN . (A.1)

where h = h(j), j = 1, 2, · · · , J , for quasi-static fading channels. Since C · h is a

column vector, the rank of the matrix R̃yp = Ryp −N0IN is 1. Therefore, an eigenvalue

decomposition of R̃yp defines a signal subspace of dimension 1 and a noise subspace of

dimension N − 1,

R̃yp =
[

us Un
]

 λs 0

0 Λn




 uHs

UH
n


 , (A.2)

where the scalar λs contains the largest eigenvalue of R̃yp, us ∈ CN×1 is the corresponding

eigenvector defining the signal subspace, and Un = [u2,u3, · · · ,uN ] ∈ CN×(N−1) are the

N − 1 orthonormal eigenvectors spanning the (N − 1)-dimension noise subspace.
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It follows from the analysis above that the vector C · h should be orthogonal to the

noise subspace spanned by Un, i.e., (C · h)H · uk = 0, for k = 2, · · · , N . Therefore, an

estimation of the CIR vector h can be obtained by

h̃ = argmin
h

{
hHCH

(
N∑

k=2

uku
H
k

)
Ch

}
, (A.3)

and the solution under the constraint hhH = 1 is the eigenvector corresponding to the

smallest eigenvalue of the matrix CH
(∑N

k=2 uku
H
k

)
C up to a multiplicative factor [53],

i.e., the estimated CIR h can be expressed as the product of h̃ obtained from (A.3) and

a complex-valued scalar ζ

ĥSSp = h̃ · ζ. (A.4)

For blind channel estimation, the value of ζ is not attainable, and it is argued in [53] that

this problem can be alleviated via differential encoding and decoding, which may result

in performance degradation compared to coherent systems. To solve the ambiguity of

ζ, we apply subspace-based method in systems with pilot assisted modulation, and the

value of ζ can be estimated with the help of the transmitted pilot symbols.

From (3.17) and (A.4), we have

1

P

P∑

p=1

y(jp) = Ch̃ · ζ + z̄, (A.5)

where P is the number of pilot symbols within one slot, and z̄ = 1
P

∑P
p=1 z(jp). This is

a linear system with N equations and 1 unknown variable, and the value of ζ can be

estimated as

ζ =
1

P
· (Ch̃)† ·

[
P∑

p=1

y(jp)

]
. (A.6)

Combining (A.3), (A.4) and (A.6), we will have the subspace estimation of the CIR h.
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Appendix B

Proof of Proposition 4.1

The conditional pdf p(hk|ĥk) is derived in this appendix. Since both hk and ek are

Gaussian distributed, the estimated CG vector ĥk = hk + ek and the true CG vector ĥk

are jointly Gaussian distributed, and the pdf of the estimated CG vector ĥk is

p(ĥk) =
1

det(πRĥĥ)
exp

[
−(ĥk − u)HR−1

ĥĥ
(ĥk − u)

]
, (B.1)

where E(ĥk) = E(hk) = u, and Rĥĥ is given in (4.5b). In order to obtain the conditional

pdf p(hk|ĥk), one needs to know the joint Gaussian pdf p(hk, ĥk). We define the joint

channel vector gk = [hk, ĥk]
H . Then, the joint pdf of hk and ĥk can be written as

p(hk, ĥk) =
1

det(πRgg)
exp

[
−(gk − v)HR−1

gg (gk − v)
]
, (B.2)

where

v = E(gk) =


 u

u


 , Rgg = E(gkg

H
k ) =


 Rhh Rhĥ

Rĥh Rĥĥ


 , (B.3)

with Rhĥ = E(hkĥ
H
k ) = RH

ĥh
. Using the pdf of p(ĥk), p(hk, ĥk) given in (B.1) and (B.2),

one can get the conditional pdf p(hk|ĥk) = p(hk ,ĥk)

p(ĥk)
as

p(hk|ĥk) =
1

det[π(Rhh − RhĥR
−1

ĥĥ
Rĥh)]

×

exp
[
−(gk − v)HR−1

gg (gk − v) + (ĥk − u)HR−1

ĥĥ
(ĥk − u)

]
, (B.4)

where the equation det(Rgg) = det(Rhh − RhĥR
−1

ĥĥ
Rĥh) det(Rĥĥ) [86, p. 535] is used to

obtain (B.4). The conditional pdf given in (B.4) can be further simplified by expanding
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Rgg of (B.3) with the following equations [86, pp. 534-535]


 A B

C D



−1

=


 (A−BD−1C)−1 −(A− BD−1C)−1BD−1,

−(D − CA−1B)−1CA−1 (D − CA−1B)−1


(B.5a)

(D − CA−1B)−1 = D−1 +D−1C(A− BD−1C)−1BD−1. (B.5b)

Applying (B.5) in (B.4), and after some tedious though straightforward algebraic ma-

nipulations, we obtain

p(hk|ĥk) =
1

det(πRh|ĥ)
exp

[
−(hk − uh|ĥ)

HR−1

h|ĥ(hk − uh|ĥ)
]
, (B.6)

where

uh|ĥ = u + RhĥR
−1

ĥĥ
(ĥk − u), (B.7a)

Rh|ĥ = Rhh − RhĥR
−1

ĥĥ
Rĥh. (B.7b)

Substituting (4.5) in (B.7) will lead to (4.6), and this completes the proof.
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Appendix C

Derivation of Eqn. (5.37)

The closed-form solution of the integral 1
π

∫ ψ
0

[
1 + a

sin2 θ

]−1
dθ, for ψ ∈ [0, 2π] is derived

in this Appendix. Changing the integration variable to z = cot(θ), we will have

1

π

∫ ψ

0

[
1 +

a

sin2 θ

]−1

dθ =
1

π

∫ +∞

cotψ

[
(z2 + 1)(az2 + a + 1)

]−1
dz,

=
1

π

∫ +∞

cotψ

(z2 + 1)−1dz − 1

π

∫ +∞

cotψ

(
z2 +

a+ 1

a

)−1

dz.(C.1)

The first integral of (C.1) can be evaluated as

1

π

∫ +∞

cotψ

(z2 + 1)−1dz =
1

2
− 1

π
arctan(cotψ) =

ψ

π
, (C.2)

where the fact that ψ ∈ [0, 2π] is used in the second equality, and the second integral in

(C.1) can be computed as

1

π

∫ +∞

cotψ

(
z2 +

a+ 1

a

)−1

dz =
1

π

√
a

1 + a
arctan

(√
a

1 + a
z

)∣∣∣∣
+∞

cotψ

,

=

√
a

1 + a

[
1

2
− 1

π
arctan

(√
a

1 + a
cotψ

)]
. (C.3)

Combining (C.1)-(C.3) leads to (5.37).
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