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ABSTRACT

Sensitivity analysis is an important step in any gradient based optimization problem.

Eigenvalue and Eigenvector Sensitivity Analysis has been a major area for more than

three decades in structural optimization. An efficient and generalized method is re-

quired to do the sensitivity analysis as it can reduce computational time for large

industrial problems. Previous methods focus mainly on calculating the eigenvector

sensitivity for mass normalized eigenvectors only. A new generalized method is pre-

sented to calculate the first and second order eigenvector sensitivities for eigenvectors

with any normalization condition. This new generalized method incorporates the use

of normalization condition in the eigenvector sensitivity calculation in a manner sim-

ilar to the calculation of the eigenvectors themselves. This generalized method also

reduces to the well known Nelson’s method, which is generally accepted as the most

efficient and exact method for eigenvector sensitivity analysis for mass normalized

eigenvectors. Equations to compute eigenvector sensitivities when the normalization

condition is changed are also derived. The effect of the eigenvector normalization con-

dition on the eigenvector sensitivity is discussed. Examples are provided to illustrate

the generalized method for the calculation of first-order and second-order eigenvector

sensitivities and the use of rescaling equations.
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CHAPTER 1

INTRODUCTION

As modern computing capabilities increase, considerable effort is devoted to the de-

velopment of computational tools for the analysis, design, control, and optimization

of complex physical systems. A critical, and sometimes expensive, first step in the

process of computer-aided analysis and design is the formulation of a detailed and

accurate model of the system. The physical performance of the design can often be

modeled with a system of mathematical equations, usually ordinary or partial differ-

ential equations. For many engineering applications, analysis of the design requires

efficient construction and manipulation of complex geometries along with fast and ac-

curate numerical methods for solving partial differential equations. Generally, there

are a number of physical parameters (or design variables) that designers can adjust

(either manually or within a computer simulation) to improve the design. In applica-

tions such as aerodynamic design, growth and control of thin films, or design of smart

materials, some design variables may influence the shape (geometry) of the design.

Consequently, designers then become interested in how sensitive the state variables

are to small changes in the design variables. For example, when analyzing a com-

posite material, one may be interested in the sensitivity of the heat flow through the

material to small changes in orientation of the suspended fibers. Sensitivity analysis

is a mathematical tool that provides a methodology for investigating such questions.

Sensitivity Analysis has evolved over the past four decades and has been found to

be useful in many engineering applications. In the early stages, sensitivity analysis
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was used to calculate the effect of changes in design variables of analytical models.

The early development of Sensitivity theory was discussed in texts of Tomovic [1],

Brayton and Spence [2], Frank [3], and Radanovic [4]. Later, it was used in various

areas of optimization, such as finding search directions required to compute optimal

solutions in automated structural optimization [5] and optimal control [6]. In ad-

dition, researchers have developed and applied sensitivity analysis for approximated

analysis, analytical model improvement and assessment of design trends. Other ar-

eas of research such as physiology [7], thermodynamics [8], physical chemistry [9],

and aerodynamics [10–12], have also started using sensitivity analysis to quantify the

effect of varying parameters in the models.

The study of eigenvalue and eigenvector response is an area of high importance be-

cause in most vibration problems the response of the structure to dynamic excitation

is primarily a function of its eigenvalues (fundamental frequencies) and eigenvectors

(mode shapes). Structural optimization is one of the main areas in which eigenvalue

and eigenvector sensitivity analysis is used. Knowing the responses of the eigenvec-

tors with respect to physical variables can help an engineer optimize a structure’s

design or minimize its sensitivity to the variables. In structural control systems,

for example, these eigen sensitivities have direct application in system identification

and robust performance tests. With the knowledge of the derivatives, an engineer

can construct a parameterized evaluation model containing the structure’s natural

modes. Experimental data can then be used to identify best-fit values for the pa-

rameters. Alternatively, the closed-loop control system can be tested to determine if

they will perform satisfactorily for all parameter values in a given set. For structural
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design, these derivatives can be used to optimize the mode frequencies and mode

shapes of a structure by varying its design parameters. Mode shape sensitivities can

also be used to do damage assessment as shown by Parloo [13]. Due to the singularity

of the characteristic matrix associated with eigenvalues, some technical complexities

arise in the calculation of the sensitivity of eigenvalues and eigenvectors which makes

the sensitivity calculations more complicated.

Several review papers have appeared on sensitivity analysis. For example, a com-

prehensive survey by Adelman and Haftka [14] on sensitivity analysis of discrete

structural systems gives a list of the references related to various methods used for

the sensitivity analysis. Murthy and Haftka [15] authored another on eigen sensi-

tivity analysis of a general complex matrix and a review by Grandhi [16] describes

the use of eigen sensitivity analysis in structural optimization, providing extensive

references by area of application. In addition, Tortorelli and Michaleris [17] provided

an overview of design sensitivity analysis for linear elliptic systems which included

eigen sensitivities.

One of the earliest researchers to study eigenvalue sensitivity was Jacobi in 1846

who derived equations for the sensitivity of unique eigenvalues. In the early 1960s

Lancaster [18] provided equations to calculate the eigenvalue sensitivities for the re-

peated eigenvalue problem. Fox and Kapoor [19] were the first to do work on eigen-

vector sensitivities. They developed an approximate approach to calculate eigen-

vector derivatives for symmetric matrices, which showed that eigenvector derivatives

can be written as a linear combination of the eigenvectors themselves. Juang et
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al. [20], Bernard and Bronowicki [21] and Akgin [22] extended this approach to sys-

tems with repeated eigenvalues. While Akgin’s method [22] showed improved con-

vergence, Juang et al. [20] considered the repeated eigenvalue derivative case. Lim et

al. [23] used singular value decomposition to calculate eigenvector derivatives for re-

peated eigenvalues. Hou and Kenny [24] also presented an approximate analysis when

repeated eigenvalues exist. In addition, Rogers [25], Plaut and Husseyin [26], Rud-

isill [27], Rudisill and Chu [28], and Doughty [29] studied the eigenvector derivative

problem for nonsymmetric matrices.

The most significant development in the study of eigenvector derivatives appeared

in 1976, through the pivotal work of Nelson [30] which has since seen wide range of

applications throughout engineering analysis and design. The significant advantage of

Nelson’s approach for calculating eigenvector sensitivities is that it only requires those

eigenvectors that are to be differentiated. His algorithm also preserves the bandedness

and symmetry of the matrices which reduces the computing time and allows the use

of efficient storage and solution techniques. Unfortunately, this method could not be

used with repeated eigenvalues and it was valid only for the eigenvectors evaluated

using mass normalization. A decade later in 1986, Ojalvo [31, 32] extended Nelson’s

approach to incorporate repeated eigenvalues that have unique eigenvalue sensitiv-

ities. Ojalvo’s method was further modified by Mills-Curran [33] and Dailey [34],

addressing some of the issues in references [31,32]. While Mills-Curran’s method was

easy to implement on a computer, it was not robust whereas Dailey’s method was

more rigorous but difficult to incorporate into programs. But even these methods

were not perfect as they assumed unique second-order eigenvalue sensitivities, which
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is not always the case. Friswell [35] addressed this issue in 1996 with a method that

evaluates the eigenvector sensitivities when there are repeated eigenvalues and eigen-

value sensitivities. Zhang and Wang [36] addressed the same issue with a different

approach. More recently in 1997, Lee and Jung [37] presented an algebraic method

to calculate the sensitivities for both distinct and repeated eigenvalues.

Although most of the work in the eigen sensitivity involves first-order derivatives,

interest in the second and higher order eigen sensitivity has also received attention.

This is due in part to the need for more accurate approximations when large de-

sign parameter changes exist. Rudisill and Chu [28] were the first to give a direct

method to calculate the second and higher order eigenvalue and eigenvector sensitiv-

ities. Brandon [38, 39] provided an explanation for the significance of second-order

modal design sensitivities. He derived the second-order sensitivities with a series

expression of the eigenvalues and eigenvectors which has some inherent drawbacks.

Chen [40, 41] calculated the second-order sensitivities using a perturbation method

and used them for reanalysis of modified structures and to compute the eigenvalue

bounds in structural vibration systems. Tan [42] developed an iterative method to

calculate the second-order sensitivities of eigenvalues and eigenvectors. Jankovic [43]

gave an exact method to calculate n-th order sensitivity of eigenvalues and eigen-

vectors. All of the above methods were computationally expensive as they needed

large amount of data to be calculated and stored. In addition, Chen [44] developed

a second-order shape design sensitivity analysis method for three-dimensional elas-

tic solids using a continuum approach. Friswell [45] published a technical note on
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calculating the higher order sensitivities for eigenvalues and eigenvectors which ex-

tended Nelson’s method [30] for first-order sensitivity and thus solved many of the

computational efficiency issues found in the earlier methods.

Nelson’s method [30] has served as a basis for much of the eigenvector sensitivity

analysis since its introduction nearly three decades ago. Therefore, most of subse-

quent derivations and applications [31–37] consider eigenvectors with mass normaliza-

tion only, as Nelson did. As a result, little attention has been given to the role of the

normalization condition in the computation of eigenvector sensitivities. This thesis

provides a generalized approach for calculating the eigenvector sensitivities which can

accommodate any normalization condition. Nelson’s method is explained in a new

perspective and it is shown that it is indeed a specific cases of this new approach. A

series of equations are also derived such that the design sensitivities for any normal-

ization can be obtained from any other normalization. The new method is extended

to evaluate second-order sensitivities as well, and is compared to Friswell’s method.

Examples are provided to illustrate the new approach where eigenvalue and eigen-

vector design sensitivities are computed for a simple spring system and a rectangular

plate.

6



CHAPTER 2

THE EIGENVALUES AND EIGENVECTORS

Design Sensitivity Analysis is the study of the relationship between a design variable

(or design parameter) and a design performance measure (or design response). The

design variables can define geometric variables such as width, thickness etc. or ma-

terial constants which can be varied such as stiffness, mass etc. Design performance

measures can be the displacement, stress, natural frequency etc. As mentioned in

Chapter 1, it is very helpful for an engineer to accurately and efficiently calculate the

design sensitivity. In this thesis, the eigenvalues and eigenvectors are considered as

the design performance measures.

A discussion on the eigenvalue problem is provided before going into the details

of the sensitivities of eigenvalues and eigenvectors. The eigenvalue problem can be

discussed in terms of two different problems. First as a basic problem in the analysis

of free undamped vibration and structural stability and then for a classic problem

in linear algebra. The eigenproblem derived for the vibration and structural systems

may be written in terms of the eigenvalue λ and eigenvector Φ as

[K− λM]Φ = 0 (2.1)

where K is the stiffness matrix and M is the mass matrix in a vibration analysis.

Equation 2.1 may be used to evaluate the structures buckling load when M is replaced

by the geometric stiffness matrix. Note that all of these matrices are of dimension

n × n where n is the number of free degrees-of-freedom in the discretized system
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of equations. In the vibration problem, the eigenvalue λ = ω2 is the square of the

natural frequency ω and in a buckling analysis, λ is the load factor. The eigenvector

Φ represents the mode shape.

The eigenproblem may also be written as the classical problem from linear algebra

where an eigenvalue is computed to satisfy the system

[A− λI]Φ = 0 (2.2)

The nonzero quantity λ here is the eigenvalue or characteristic value of A. The vector

Φ is the eigenvector or characteristic vector belonging to λ. The set of eigenvalues of A

is called the spectrum of A where the largest of the absolute values of the eigenvalues

of A is called the spectral radius of A. To calculate λ and Φ the characteristic

equation is formed, which is

det(K− λM) = 0 (2.3)

for a structural system or

det(A− λI) = 0 (2.4)

for a linear algebra problem, where det() indicates the determinant.

Simplifying the above equations gives a polynomial of n-th degree in λ, the roots

of this polynomial are the eigenvalues. As the polynomial is of n-th degree, exactly

n eigenvalues are obtained. Each of these n eigenvalues will have a corresponding

eigenvector Φ. As it is known from basic linear algebra, for every polynomial the

roots can be of three different types: real distinct, real repeated and imaginary.
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Similarly eigenvalues can also be of three different types: real distinct eigenvalues,

real repeated eigenvalues, imaginary eigenvalues. In most of the physical cases the

eigenvector are real, and imaginary eigenvalues are rare.

In the sensitivity analysis presented in this thesis only the structural eigenproblem

problem is considered with both K and M symmetric and K as positive definite, which

yields real positive λ. One can always convert a structural problem in equation 2.1

into linear algebra problem in equation 3.1 by using the relation A = M−1K.

Equation 2.1 has a nontrivial solution only when the characteristic equation 2.3

is valid, the solutions of which will provide eigenvalues λi, i = 1, 2, . . . , n. When

each distinct λi is substituted into equation 2.1, the matrix [K − λiM] is rank defi-

cient by order 1, rendering each nontrivial Φi being determined within an arbitrary

scaling factor. Therefore, normalization condition is required to uniquely define each

eigenvector. Common normalization conditions for computing eigenvectors are:

1) Mass normalization: Φi ·MΦi = 1 (2.5)

2) Defining a component of Φi: b0 . . . 0

p-th︷︸︸︷
1 0 . . . 0cΦi = αi (2.6)

3) Defining the magnitude of Φi:
√

Φi ·Φi = βi (2.7)

where the p-th component is prescribed a value of αi in equation 2.6 and the magni-

tude of Φi is βi in equation 2.7. Note that there may be other normalizations which

could be used. Any one of equations 2.5 - 2.7 may replace any one of the equations
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in equation 2.1 to remove the singularity of the matrix [K− λiM]. This is achieved

by replacing one of the equations in the system of equations in 2.1 with one of the

equations 2.5-2.7. For example, when equation 2.6 is used as normalization condition,

the modified [K − λiM] becomes full rank and its bandwidth remains same as the

original [K− λiM] matrix which proves to be very useful while inverting the matrix.

Note that while other normalizations are common (see e.g. equations 2.5 or 2.7), the

modified system may become non-linear when these normalizations are used.

A unique eigenvector can be calculated for each eigenvalue with an assumed or

given normalization condition, when the eigenvalues are real and distinct. However,

when the eigenvalues are real and repeated, the matrix [K − λiM] becomes rank

deficient by N , when there are N repeated eigenvalues. There are many research

papers available on sensitivities of eigenvectors for repeated eigenvalue case (see for

e.g. [31], [33] and [35]).
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CHAPTER 3

FIRST-ORDER DESIGN SENSITIVITY

ANALYSIS

As mentioned in chapter 1, eigenvalue and eigenvector DSA has received considerable

attention during the past four decades. The most efficient and widely used method

for the non-repeated eigenvalue case was provided by Nelson [30]. Nelson presented

his method considering an algebraic eigensystem and his approach applied to the

structural problem appears in Appendix A. Nelson’s method is often been considered

the standard for eigenvector sensitivity calculations. Nelson’s approach has been

extended to the repeated eigenvalue case by many researchers, but very few have

noticed that his method was only valid for mass normalized eigenvectors. Therefore,

even after thirty years there is not much literature on calculation of sensitivities for

eigenvectors with different normalization conditions besides mass normalization.

A novel generalized method is presented here, which has some advantages over

Nelson’s method. Moreover, Nelson’s method is shown to be a subset of the new

approach present here since Nelson temporarily changes the normalization of the

eigenvector sensitivity and scales it back to the original mass normalization. In this

new approach, the normalization which is used to calculate the eigenvectors is also

employed to calculate the eigenvector sensitivity.

Design sensitivities quantify the relationship between design variables bj, j =

1, 2, . . . , N , which form the N -dimensional vector b, and computed eigenpairs (λi,Φi),

i = 1, 2, . . . , n. To better illustrate the sensitivity analysis, the dependence of the
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eigenproblem and normalization conditions on the design variable vector b is empha-

sized, respectively, as

[K(b)− λi(b)M(b)]Φi(b) = 0 (3.1)

and

G(Φi(b),b) = 0 (3.2)

which defines the scalar function G = 0, in general, having an explicit dependence on

b in addition to being implicitly defined in terms of b through the eigenvector Φi.

The various normalization conditions defined as equations 2.5 - 2.7 can be written as

scalar functions in the form of equation 3.2 as

1) Mass normalization: G1(Φi) = Φi ·MΦi − 1 = 0 (3.3)

2) Defining a component
of Φi:

G2(Φi) = b0 . . . 0

p-th︷︸︸︷
1 0 . . . 0cΦi − αi = 0 (3.4)

3) Defining the magnitude of Φi: G3(Φi) =
√

Φi ·Φi − βi = 0 (3.5)

It is possible to define any other normalization conditions that can be used to

calculate the eigenvectors, in the form of a scalar function G = 0.

3.1 First-Order Eigenvalue Sensitivity

The calculation of Eigenvalue sensitivities is known to be a simple and straightforward

computation and there are many papers which discuss this in detail. It was explained
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first by Fox and Kapoor [19] in 1968 and is summarized here. Differentiating the

eigen problem equation 3.1 with respect to the design variable bj yields

[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
Φi + [K− λiM]

dΦi

dbj

= 0 (3.6)

Premultiplying equation 3.6 with Φi and rearranging the terms yields the first-order

eigenvalue design derivative as

dλi

dbj

=
1

Ci

Φi ·
[
∂K

∂bj

− λi
∂M

∂bj

]
Φi (3.7)

where Ci = Φi · MΦi is the i-th generalized mass which is equated to unity when

mass normalization in equation 3.3 is employed. Both Fox [19] and Nelson [30] assume

mass normalization for the eigenvectors, and therefore the eigenvalue sensitivity for

that case simplifies to

dλi

dbj

= Φi ·
[
∂K

∂bj

− λi
∂M

∂bj

]
Φi (3.8)

Most of the previous work for eigenvalue sensitivity only consider mass normal-

ization and therefore use equation 3.8 instead of equation 3.7. However, when other

normalizations are considered, Ci plays a very important role in the eigenvalue sen-

sitivity as seen in equation 3.7. The numerical value of the eigenvalue sensitivity is

exactly the same for all normalization conditions since Ci appears in the equation

3.7, which is therefore the generalized equation to calculate the eigenvalue sensitivity

for any normalization condition.

Finally it is emphasized that equation 3.7 is the required expression to get the ex-

plicit sensitivity for the i-th eigenvalue. This computation only requires the matrices

∂M/∂bj and ∂K/∂bj followed by relatively simple matrix calculations which avoid
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additional computationally expensive eigenproblem solutions. Furthermore, the cal-

culation of the eigenvalue sensitivity dλi/dbj requires only the i-th eigenpair (λi,Φi)

in its calculation. This result may now be used in the vibration problem to calculate

the design sensitivity of the natural frequency ωi =
√

λi cycles/sec with respect to

the design variable bj as

dωi

dbj

=
1

2ωi

dλi

dbi
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3.2 First-Order Eigenvector Design Sensitivity

Analysis

The first-order design sensitivities of the eigenvectors with respect to the design bj,

represented by dΦi/dbj for i = 1, 2, ..., n and j = 1, 2, ..., N are calculated here.

Equation 3.6 is rearranged as

[K− λiM]
dΦi

dbj

= −
[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
Φi (3.9)

where all of the terms on the right-hand-side are known once dλi/dbj is computed

from equation 3.7.

Unfortunately, equation 3.9 cannot be solved for dΦi/dbj since the original eigen-

value solution computed each λi to make [K−λiM] singular. In this regard, problems

when computing eigenvector sensitivities from equation 3.9 are the same as those faced

when solving the original eigenvector problem of equation 2.1. In the design sensi-

tivity analysis problem in equation 3.9, it is assumed that a normalization condition

represented by equation 3.2 has been selected from equations 3.3 - 3.5 or similar to

calculate the eigenvector Φi. This normalization condition can be differentiated to

obtain

dG

dbj

=
∂G

∂Φi

· dΦi

dbj

+
∂G

∂bj

= 0 (3.10)

which can be rearranged as

∂G

∂Φi

· dΦi

dbj

= −∂G

∂bj

(3.11)

In the above equation, the term ∂G/∂Φi represents a row matrix and the term
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∂G/∂bj represents a scalar quantity. When equation 3.11 is replaces one of the equa-

tions in equation 3.9 (in a manner similar to that described above for the evaluation

of eigenvectors), the system matrix on the left-hand-side of equation 3.9 is modified

such that it becomes non-singular, making the solution of dΦi/dbj possible.

To employ equation 3.11 when computing eigenvector sensitivities with equation

3.9, ∂G/∂Φi and ∂G/∂Φj for the selected eigenvector normalization are required.

The calculation of these terms for some common normalization conditions is shown

below:

1) Mass normalization: Let us consider the case when the eigenvectors are

normalized with respect to the mass matrix as used in Nelson’s method. The

mass normalization equation 3.3 can be written in the form of the general

normalization equation 3.2 to give

G1(Φi(b),b) = Φi(b) ·M(b)Φi(b)− 1 = 0 (3.12)

differentiating the above equation with respect to the eigenvector Φi and the

design variable bi separately yields the following

⌊
∂G1

∂Φi

⌋
= 2Φi ·M

∂G1

∂bj

= Φi · ∂M

∂bj

Φi (3.13)

where the symmetry of M is used to simplify equation 3.13. Equations 3.13

may now be substituted into equation 3.10 and the result used to eliminate

the singularity issue in equation 3.9 when computing dΦi/dbj. Note that the

eigenvector Φi on the right hand side is mass normalized.
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2) Defining a component of Φi: As a second example, consider the case where

the eigenvector is normalized such that its p-th component is prescribed a value

of αi. This condition can be written in the form of equation 3.2 as

G2(Φi(b),b) = b0 . . . . . . 0

p-th︷︸︸︷
1 0 . . . 0c ·Φi(b)− αi = 0 (3.14)

where p identifies the prescribed component of Φi, i.e., (Φi)p = αi. Differenti-

ation of equation 3.14 yields

⌊
∂G2

∂Φi

⌋
= b0 . . . . . . 0

p-th︷︸︸︷
1 0 . . . 0c (3.15)

∂G2

∂bj

= 0 (3.16)

which simply states that (dΦi/dbj)p = 0. When αi = 1 and p is assigned to the

eigenvector component having the maximum absolute value, it is similar to the

assumption Nelson makes to calculate ν ij in the equation A.1. The similarity

to Nelson’s assumption is considered in detail below. Note that when G2 is used

to calculate the design sensitivities the modified matrix on the left hand side

of the sensitivity equation 3.9 is same as the modified matrix on the left hand

side of the equation used to calculate the eigenvector itself (see equation 2.1).

This property can be utilized very effectively to significantly reduce time and

cost for the calculation.

3) Defining the magnitude of Φi: As a third example, consider the case where

the eigenvector is normalized such that its magnitude is prescribed a value of

βi which is often equated to unity. This condition can be written in the form
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of equation 3.2 as

G3(Φi(b),b) = |Φi(b)| − βi = 0 (3.17)

where

|Φi(b)| =
√

Φi ·Φi (3.18)

is the magnitude of the eigenvector Φi. Differentiation of equation 3.17 yields

⌊
∂G3

∂Φi

⌋
=

1

βi

{Φi}T

∂G3

∂bj

= 0 (3.19)

As explained above using this approach, the terms ∂G/∂Φi and ∂G/∂bj can be

calculated for any selected normalization condition, therefore this method is consid-

ered as a generalized method. It is known that the eigenvectors with any normal-

ization only differ in their magnitude, i.e the direction remains the same. In other

words eigenvectors with one normalization can be scaled to another normalization by

multiplying with a constant. However this property does not hold for eigenvector de-

sign sensitivity. The sensitivities of eigenvectors with one normalization are different

in both magnitude and direction to the sensitivities of eigenvectors with a different

normalization. The sensitivities of eigenvectors with one normalization can be ob-

tained from sensitivities of eigenvectors with another normalization as illustrated in

the following section.

It should be clear from equation 3.7 that the eigenvector normalization does not

effect the eigenvalue sensitivity due to the presence of the generalized mass term
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Ci. However, it is shown here that the normalization approach directly defines the

eigenvector sensitivity, as might be expected. Further proof in this regard is provided

by the numerical examples provided in the following chapters.

The calculation of sensitivities for eigenvectors with different normalization con-

ditions have different computational advantages with this approach. When G2 is used

as the normalization condition, the band width of and symmetry of the system matrix

[K−λM] is preserved, even after the removal of singularity. If G1 and G3 are used as

normalization conditions, the sensitivity problem will always be linear even though

the original eigen problem could be non-linear. These properties could be effectively

used to reduce computational time and cost.
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3.3 Effect of Normalization Condition

In the previous section, a generalized method to calculate the design sensitivity of an

eigenvector with any normalization is presented. In some cases it might be desired

to rescale the eigenvector and then calculate its sensitivity with the modified normal-

ization condition without re-evaluating equations 3.9 to 3.11. A set of equations are

derived in this chapter using the relationship between the eigenvectors with different

normalization conditions with which the sensitivities can be easily converted from one

normalization condition to another. These equations can be very helpful in eigenvec-

tor matching problems for structural systems and they also show the difference in the

sensitivities of eigenvectors with different normalization conditions.

Once computed, an eigenvector Φi may be re-scaled by a constant c to give

Φ̂i(b) = c(b)Φi(b) (3.20)

and still satisfy equation 3.1. In other words, assuming Φi as an eigenvector vector

with a given normalization condition, it can be transformed or scaled into another

eigenvector Φ̂i with a new normalization condition using the equation 3.20. Here

we note that the scaling parameter c(b) is a function of the design variable b. The

constant c can be obtained by simple calculations shown below and it depends only

on the normalization condition of Φ̂i.

To compute the sensitivity of the scaled eigenvector Φ̂i, equation 3.20 may be

differentiated as

dΦ̂i

dbj

=
∂c

∂bj

Φi + c
dΦi

dbj

(3.21)
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where the eigenvector sensitivity with the modified normalization condition dΦ̂i/dbj

can be calculated from the eigenvector sensitivity evaluated with the original normal-

izaion condition dΦi/dbj.

For example, an eigenvector Φi(b) can be scaled such that it is normalized with

respect to the mass matrix using equation 3.20 with

c(b) = 1/
√

Ci(b) (3.22)

where

Ci(b) = Φi(b) ·M(b)Φi(b) (3.23)

is the generalized mass. Differentiating the equation 3.22 and substituting the result

into equation 3.21 yields the design sensitivity of the scaled eigenvector as

dΦ̂i

dbj

= − 1

2
√

Ci
3

dCi

dbj

Φi +
1√
Ci

dΦi

dbj

(3.24)

where equation 3.23 is differentiated to obtain

dCi

dbj

= 2Φi ·MdΦi

dbj

+ Φi · ∂M

∂bj

Φi (3.25)

In the above equation, the symmetry of M is used to simplify the expression. Note

that when a component of Φi is arbitrarily set to a prescribed value, the generalized

mass becomes a function of design. Alternatively, had Φi been normalized with

respect to the mass matrix, then Ci = 1 for all design variables b and dCi/dbj = 0

which results in dΦ̂i/dbj = dΦi/dbj, as expected.

Note that c and ∂c/∂bj depend upon the normalization to which the sensitivities

need to be converted and they are not arbitrary as suggested by elsewhere (see e.g.

[15]).
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It follows that if an eigenvector is re-scaled to satisfy G2 then c and ∂c/∂bj in

equation 3.20 and 3.21 are, respectively,

c(b) =
αi

(Φi)p

(3.26)

and

∂c

∂bj

= −c2

(
∂Φi

∂bj

)

p

(3.27)

where p is the location of the maximum component of Φi. Similarly, to rescale the

eigenvector to satisfy G3 the following equations may be employed

c(b) = βi|Φi| (3.28)

and

∂c

∂bj

= −c3 Φi · ∂Φi

∂bj

(3.29)
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3.4 Interpretation of Nelson’s Method

As mentioned in chapter 1, Nelson [30] developed a very powerful tool to calculated

the eigenvector sensitivities for mass normalized eigenvectors. In this section, the

rescaling equations from previous section are used to show that the generalized ap-

proach presented in this thesis reduces to the Nelson’s method [30] upon making the

appropriate assumptions. Let dΦ̂i/dbj represent a mass normalized eigenvector sen-

sitivity and dΦi/dbj represent a non-mass normalized eigenvector sensitivity. Nelson

method [30] presented in detail in appendix A, computes the eignevector sensitivity

as

dΦ̂i

dbj

= ν ij + cijΦ̂i (3.30)

where

cij = −Φ̂i ·Mν ij − 1

2
Φ̂i · ∂M

∂bj

Φ̂i (3.31)

and ν ij is a vector associated with the i-th mode and j-th design variable computed

from a linear combination of the eigenvectors Φm, m = 1, 2, . . . n, m 6= i. The equation

3.30 used by Nelson is similar to the re-scaling equation 3.21 derived in the previous

section. Therefore, let us rewrite all the terms on the right hand side of equation 3.21

in terms of Φ̂i. Using the re-scaling equation 3.20 for eigenvectors, equation 3.21 can

be written as

dΦ̂i

dbj

= Aij +
1

c

∂c

∂bj

Φ̂i (3.32)

where the vector Aij for mode i and design variable j is evaluated from

Aij = c
dΦi

dbj

(3.33)
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Nelson calculates ν ij by assuming the rows and columns related to component of

maximum value to zero represent in the equation A.3, which is identical to calculating

the sensitivity of the eigenvector with maximum value equal to one normalization

condition G2 represented by equation 3.14 with α equal to one. Hence, it can be said

that Aij is equal to ν ij when Φi is assumed to be normalized with maximum value

equal to one normalization condition G2.

As Φ̂i is normalized with respect to mass, equation 3.22 is used to evaluate c.

Using the values of c and ∂c/∂bj from the equations 3.22 and 3.25 respectively, the

term 1
c

∂c
∂bj

can be manipulated as

1

c

∂c

∂bj

= − 1

2c
√

Ci
3

dCi

dbj

= −c2

2

dCi

dbj

= −c2

2

{
2Φi ·MdΦi

dbj

+ Φi · ∂M

∂bj

Φi

}

= −cΦi ·Mc
dΦi

dbj

− 1

2
cΦi · ∂M

∂bj

cΦi

= −Φ̂i ·MAij − 1

2
Φ̂i · ∂M

∂bj

Φ̂i

= −Φ̂i ·Mν ij − 1

2
Φ̂i · ∂M

∂bj

Φ̂i

= cij (3.34)

where cij is used in Nelson’s method as shown in appendix A.

Therefore, when the terms Aij and 1
c

∂c
∂bj

are replaced by ν ij and cij respectively,

on the right hand side of equation 3.32 it becomes equation 3.30. Therefore, the re-

scaling equation 3.21 reduces to 3.30 when Φi satisfies equation 3.4 with αi =1. This

shows that Nelson’s method [30] can be derived from our generalized approach, by
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using the re-scaling equation. In other words, Nelson first calculates the eigenvector

sensitivity for maximum value equal one normalized eigenvector in the form of ν ij

and then re-scales it to match the normalization of the original eigenvector which is

mass normalization with the equation 3.30. Note that Nelson’s method preserves the

band width and symmetry of the matrices. This technique of preserving the band

width while calculate the sensitivities for can be applied not only for mass normalized

eigenvectors but also for any other normalized eigenvectors with the help of the re-

scaling equations derived in the previous section.
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CHAPTER 4

SECOND-ORDER DESIGN SENSITIVITY

ANALYSIS

Interest in second- and higher-order sensitivities is increasing, particularly to esti-

mate the eigensystems of modified structures. For large design parameter changes,

the linear approximation inherent in the use of first-order sensitivities may not be

sufficient. When the roots are non-repeated, Nelson’s method can be extended to

derive second-order sensitivities. This was first proposed by Friswell [35] and a short

description of the method is given in Appendix B. Just as Friswell extended Nelson’s

method to second-order eigenvector sensitivity analysis, the generalized method in

this thesis can also be extended to the second-order design derivatives. Calculating

the second-order design derivatives is very similar to that of the first-order, which are

assumed to be evaluated as described above.

4.1 Second-Order Eigenvalue Sensitivity

To generalize the calculation of the second-order eigenvalue sensitivity, the design

variable bk is also considered in addition to bj from Chapter 3. The variable bk may

be the same or different than the variable bj. Differentiating equation 3.6 for first-

order eigen sensitivity with respect to the design variable bk yields

[
∂2K

∂bj∂bk

− d2λi

dbjdbk

M− dλi

dbk

∂M

∂bj

− dλi

dbj

∂M

∂bk

− λi
∂2M

∂bj∂bk

]
Φi

+

[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
dΦi

dbk

+

[
∂K

∂bk

− dλi

dbk

M− λi
∂M

∂bk

]
dΦi

dbj

+ [K− λiM]
d2Φi

dbjdbk

= 0 (4.1)
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where it is assumed that ∂2M/∂bj∂bk and ∂2K/∂bj∂bk on the right hand side are

known. Premultiplying equation 4.1 by Φi and rearranging yields the second-order

eigenvalue design derivative for the eigenvalue λi as

d2λi

dbjdbk

=
1

Ci

Φi ·
[

∂2K

∂bj∂bk

− dλi

dbk

∂M

∂bj

− dλi

dbj

∂M

∂bk

− λi
∂2M

∂bj∂bk

]
Φi

+ Φi ·
[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
dΦi

dbk

(4.2)

+ Φi ·
[
∂K

∂bk

− dλi

dbk

M− λi
∂M

∂bk

]
dΦi

dbj

where, as it was in the first-order eigenvalue sensitivity, Ci = Φi · MΦi is the i-

th generalized mass. Again the importance of Ci in the calculation of eigenvalue

sensitivity is exposed such that the second-order eigenvalue sensitivity is invariant to

the assumed normalization conditions. Therefore equation 4.2 is the explicit equation

to get the second-order sensitivity for the i-th eigenvalue.
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4.2 Second-Order Eigenvector Sensitivity Analy-

sis

The calculation of the second-order eigenvector sensitivities may be obtained by re-

arranging equation 4.1 as

[K− λiM]
d2Φi

dbjdbk

= −
[

∂2K

∂bj∂bk

− d2λi

dbjdbk

M− dλi

dbk

∂M

∂bj

− dλi

dbj

∂M

∂bk

− λi
∂2M

∂bj∂bk

]
Φi

−
[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
dΦi

dbk

−
[
∂K

∂bk

− dλi

dbk

M− λi
∂M

∂bk

]
dΦi

dbj

(4.3)

where all of the terms on the right-hand-side are known once dλi/dbj and dλi/dbk is

calculated from equation 4.2 and dΦi/dbj, dΦi/dbj are evaluated from equations 3.9

and 3.10, and d2λi

dbjdbk
are obtained from equation 4.2.

Similar to the first-order sensitivity evaluation, equation 4.3 cannot be solved as

the matrix [K−λiM] is singular. Therefore the same technique used in the first-order

differentiation is also employed to evaluate second-order derivatives as well. It follows

that the selected normalization condition may be differentiated twice to obtain

d2G

dbjdbk

=
∂2G

∂Φi∂bk

· dΦi

dbj

+
dΦi

dbk

· ∂2G

∂2Φi

dΦi

dbj

+
∂G

∂Φi

· d2Φi

dbjdbj

+
∂2G

∂bj∂bk

+
∂2G

∂bj∂Φi

· dΦi

dbk

= 0 (4.4)

which is rearranged as

∂G

∂Φi

· d2Φi

dbjdbk

= −
[

∂2G

∂Φi∂bk

· dΦi

dbj

+
dΦi

dbk

· ∂2G

∂Φ2
i

dΦi

dbj

+
∂2G

∂bj∂bk

+
∂2G

∂bj∂Φi

· dΦi

dbk

]
(4.5)

One of the equations in the system of equations 4.3 may be replaced with equation

4.5 to make the system matrix on left hand side non-singular as described above.
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For each normalization condition considered in Chapters 2 and 3 the derivatives in

equation 4.5 are calculated as follows:

1) Mass normalization: As defined above in equation 3.12 the mass normaliza-

tion equation is written in terms of the design variable b as

G1(Φi(b),b) = Φi(b) ·M(b)Φi(b)− 1 = 0

By performing partial differentiation on G1 we obtain

⌊
∂G1

∂Φi

⌋
= 2Φi ·M

⌊
∂2G1

∂Φ2
i

⌋
= 2M

∂2G1

∂bj∂bk

= Φi · ∂2M

∂bj∂bk

Φi

∂2G1

∂Φi∂bj

=
∂2G1

∂bj∂Φi

= 2Φi · ∂M

∂bj

(4.6)

Substituting these terms in equation 4.5 and then replacing one of the equa-

tions from the system of equation 4.3 with the result makes it possible to ob-

tain the second-order eigenvector sensitivity d2Φi/dbjdbk. As mentioned in the

first-order calculations, all the eigenvectors and the first-order sensitivities on

the right hand side are obtained using mass normalization. It can also be

seen that modified [K− λM] is the same for both first-order and second-order

sensitivity analysis. Therefore, once the first-order design derivatives are com-

puted, second-order sensitivities are readily evaluated by forming an additional

right-hand side vector and performing an additional back substitution into the

inverted or decomposed modified system matrix.
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2) Defining a component of Φi: Similarly, when the eigenvector is normalized

by defining one of its components, it can be represented by equation 3.14 written

in terms of b as

G2(Φi(b),b) = b0 . . . . . . 0

p-th︷︸︸︷
1 0 . . . 0c ·Φi(b)− αi = 0

which may be differentiated to obtain

⌊
∂G2

∂Φi

⌋
= b0 . . . . . . 0

p-th︷︸︸︷
1 0 . . . 0c

⌊
∂2G2

∂2Φi

⌋
= 0

∂2G2

∂bj∂bk

= 0

∂2G2

∂Φi∂bj

=
∂2G2

∂bj∂Φi

= b0 . . . . . . 0 0 0 . . . 0c (4.7)

As explained above these equations are substituted in the system of equations

to make the matrix [K−λM] non-singular. In these calculations the eigenvector

Φi is normalized by equating a component to αi.

3) Defining the magnitude of Φi: This normalization condition can be repre-

sented in terms of b as

G3(Φi(b),b) = |Φi(b)| − βi = 0
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The partial derivatives required for the equation 4.5 are calculated below

⌊
∂G3

∂Φi

⌋
=

1

βi

{Φi}T

⌊
∂2G3

∂2Φi

⌋
=

1

βi

I

∂2G3

∂bj∂bk

= 0

∂2G3

∂Φi∂bj

=
∂2G3

∂bj∂Φi

= 0 (4.8)

Where 0 and I are null matrix and identity matrix respectively. For this normalization

condition, the modified [K−λM] is the same as that used for the calculation of first-

order eigenvector sensitivity.

The calculation of the second-order sensitivities for eigenvectors offers computa-

tional advantages with the approach presented here. For all the above normalization

conditions, the modified [K−λM] matrices are same for both first-order and second-

order calculations, therefore once it is formed and inverted in the first-order sensitivity

analysis it can be used again for the second-order sensitivity. Note that for the G2

normalization, the modified [K − λiM] is the same as that used to calculate the

eigenvector itself so it can be used for all three calculations. Also when G2 is used as

the normalization condition, the band width of and symmetry of the system matrix

[K−λM] is preserved even after the removal of the singularity in all of the sensitivity

calculations. If G1 and G3 are used as normalization conditions, the sensitivity prob-

lem will always be linear even though the original eigen problem could be non-linear.

These properties could be effectively used to reduce computational time.
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4.3 Effect of Normalization Condition

A generalized method to calculate the second-order eigenvector sensitivity of an eigen-

vector with any normalization was presented in the previous section of this chapter.

In some cases it might be required to calculate the sensitivity of an eigenvector with a

different normalization after the calculation with the first normalization is performed.

Instead of again solving equation 4.3 and 4.5 for the new scaling, a set of equations

are derived below that can be used to convert the eigenvector sensitivities from one

normalization condition to another. These equations also expose the difference in the

second-order sensitivities of eigenvectors having different normalization conditions in

a manner that is similar to that considered in Chapter 3 for first-order eigenvector

sensitivity.

In this derivation, the eigenvector Φi may be re-scaled to Φ̂i with equation 3.20

shown below

Φ̂i(b) = c(b)Φi(b)

where the dependence on the design variable b is identified. To compute the second-

order sensitivity of the scaled eigenvector Φ̂i, differentiate equation 3.20 with respect

to the design variables bj and bk to obtain

d2Φ̂i

dbjdbk

=
∂2c

∂bj∂bk

Φi +
∂c

∂bj

dΦi

dbk

+
∂c

∂bk

dΦi

dbj

+ c
d2Φi

dbjdbk

(4.9)

where the first-order derivatives of c for various normalization conditions are com-

puted in Chapter 3 using equations 3.22 to 3.29. Note that all of the terms on right-

hand side of equation 4.9 are known except the second-order term ∂2c/∂bj∂bk which
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is obtained by differentiating the first-order partial derivative ∂c/∂bj with respect

to the design variable bk. For example, when Φ̂i is mass normalized, the first-order

derivative ∂c/∂bj follows from equation 3.24 as

∂c

∂bj

= − 1

2
√

Ci
3

dCi

dbj

(4.10)

which may be differentiated with respect to bk to yield

∂2c

∂bj∂bk

=
3

4
√

Ci
5

dCi

dbj

dCi

dbk

− 1

2
√

Ci
3

d2Ci

dbjdbk

(4.11)

where d2Ci/dbjdbk is obtained by differentiating equation 3.25. Now substituting

equations 4.10 and 4.11 into equation 4.9 yields the second-order eigenvector sensi-

tivity for a mass normalized eigenvector.

To convert second-order sensitivity of eigenvectors with any normalization to

eigenvectors normalized by defining the maximum value, equations 3.26 and 3.27

are employed from the first-order sensitivity repeated here as

c(b) =
αi

(Φi)p

∂c

∂bj

= −c2

(
∂Φi

∂bj

)

p

to obtain

∂2c

∂bj∂bk

= 2c3

(
∂Φi

∂bj

)

p

(
∂Φi

∂bk

)

p

− c2

(
∂2Φi

∂bj∂bk

)

p

(4.12)
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Similarly, to rescale second-order sensitivities computed for Φi with any normal-

ization to Φ̂i which is normalized by defining its magnitude, substitute equations 3.28

and 3.29 repeated here

c(b) =
βi

|Φi|

∂c

∂bj

= −c3 Φi · ∂Φi

∂bj

into equation 4.9 along with the second-order derivative of the scaling factor c given

as

∂2c

∂bj∂bk

= 3c5

(
Φi · ∂Φi

∂bj

)(
Φi · ∂Φi

∂bk

)
− c3

(
∂Φi

∂bk

· ∂Φi

∂bj

+ Φi · ∂2Φi

∂bj∂bk

)
(4.13)

This concept can also be extended to higher-order sensitivities of eigenvectors.

4.4 Interpretation of Friswell’s Method

Friswell [35] in his technical note extended Nelson’s approach [30] to calculate the

second- and higher-order eigenvector sensitivities while retaining all the advantages

associated with it. In his extension, only the eigenvalue and eigenvector of interest

and their lower-order derivatives are required to calculate the second- or higher-order

derivatives. A brief summary of Friswell’s technical note is provided in Appendix

B. Following Nelson, Friswell assumes the second-order sensitivity as equation B.3,

which is

∂2Φi

∂bj∂bk

= ν ijk + cijkΦi
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where

cijk = −1

2
Φi · ∂2M

∂bj∂bk

Φi − Φi · ∂M

∂bj

dΦi

dbk

−Φi · ∂M

∂bk

dΦi

dbj

− dΦi

dbj

·MdΦi

dbk

−Φi ·Mν ijk

ν ijk is calculated by replacing the row and column corresponding to the maximum

value to zero in the second-order eigen problem equation similar to Nelson’s method

for first-order sensitivity. Friswell’s method can be interpreted similar to the inter-

pretation of the Nelson’s method in Chapter 3. For example, consider equation 4.9

rewritten as

d2Φ̂i

dbjdbk

=
∂2c

∂bj∂bk

Φi +
∂c

∂bj

dΦi

dbk

+
∂c

∂bk

dΦi

dbj

+ c
d2Φi

dbjdbk

The last term on the right hand side c(d2Φi/dbjdbk) reduces to cijkΦi after some

manipulations and the remaining terms on the right-hand-side are equivalent to ν ijk.

This again shows that first the second-order sensitivity of maximum value equals one

normalized eigenvector is calculated in ν ijk and then it is scaled back using the re-

scaling equation to get the second-order sensitivity of mass normalized eigenvectors.
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CHAPTER 5

NUMERICAL EXAMPLES

5.1 Simple Spring-Mass System

Consider an example problem where the design sensitivity of the eigenvalues and

eigenvectors is computed for the simple spring-mass system shown in figure 5.1. The

number of degrees-of-freedom in this example is n = 2 and the stiffness and mass

matrix for the system are, respectively,

K =

[
k1 + k2 −k2

−k2 k2 + k3

]
and M =

[
m1 0

0 m2

]

First the eigenproblem of equation 2.1 is solved for k1 = 4, k2 = 5, k3 = 3, m1 = 2

and m2 = 3 to yield the eigenvalues and the mass-normalized eigenvectors

λ1 = 1.34571 Φ1 =

{
0.38417

0.48471

}

λ2 = 5.82095 Φ2 =

{
−0.59365

0.31367

}

The design problem for this example considers N = 2 design variables b = bk1 m1cT

where b1 = k1 = 4 and b2 = m1 = 2. To evaluate the design sensitivities for the

eigenproblem, first the design derivatives of the system matrices are evaluated as

[
∂K

∂b1

]
=

[
1 0

0 0

]
,

[
∂K

∂b2

]
=

[
0 0

0 0

]
,

[
∂2K

∂b2
1

]
=

[
0 0

0 0

]
,

[
∂2K

∂b2
2

]
=

[
0 0

0 0

]
,

[
∂M

∂b1

]
=

[
0 0

0 0

]
,

[
∂M

∂b2

]
=

[
1 0

0 0

]
,

[
∂2M

∂b2
1

]
=

[
0 0

0 0

]
,

[
∂2M

∂b2
2

]
=

[
0 0

0 0

]
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Figure 5.1: Spring Mass Model for Eigenproblem Design Sensitivity Analysis Exam-
ple.

5.1.1 First-Order Eigenvalue Design Sensitivity Analysis

The first-order eigenvalue sensitivities are computed from equation 3.7 for mode 1 as

dλ1

db1

= 0.14759

dλ1

db2

= −0.19861

and similarly for mode 2

dλ2

db1

= 0.35242

dλ2

db2

= −2.05139

It has to be noted here that C1 = C2 = 1 from equation 3.7 since the eigenvectors

here are mass normalized and that no additional eigenproblem solutions or matrix

inverse computations are required to obtain the final results. It can be seen that

increasing the stiffness k1 increases the natural frequencies and increasing the mass

m1 decreases them, as expected.

37



5.1.2 First-Order Eigenvector Design Sensitivity Analysis

The first-order sensitivity of the eigenvectors with respect to the design variable b are

evaluated here for the spring-mass system. First consider mode 1 where the system

matrix on the left-hand-side of equation 3.9 is

K− λ1M =

[
9 −5

−5 8

]
− (1.34571)

[
2 0

0 3

]

=

[
6.30857 −5

−5 3.96286

]

which is singular, as expected. For the design variable b1 = k1, the right-hand-side of

equation 3.9 becomes

−
[
∂K

∂b1

− dλ1

db1

M− λ1
∂M

∂b1

]
Φ1

= −
[[

1 0

0 0

]
− 0.14759

[
2 0

0 3

]
− 1.34571

[
0 0

0 0

]]{
0.38417

0.48471

}

=

{
−0.27077

0.21461

}

Substituting these results into equation 3.9 gives the system of equations

[
6.30857 −5

−5 3.96286

]
dΦ1

db1

=

{
−0.27077

0.21461

}

which contains only one linearly independent equation. Since the eigenvectors have

been normalized with respect to the mass matrix, equation 3.13 with equation 3.10

is used to obtain

2Φ1 ·MdΦ1

db1

= −Φ1 · ∂M

∂b1

Φ1

which for this example becomes

2

{
0.38417

0.48471

}
·
[

2 0

0 3

]
dΦ1

db1

= −
{

0.38417

0.48471

}
·
[

0 0

0 0

]{
0.38417

0.48471

}

38



or

b−1.53667 − 2.90826cdΦ1

db1

= 0

Now this result is combined with the first equation from the previous singular system

to obtain the following modified non-singular system of equations

[
6.30857 −5

−1.53667 −2.90826

]
dΦ1

db1

=

{
−0.27077

0

}

where it is noted that the second equation could have been chosen to be retained

from the singular system, instead. Finally, the eigenvector sensitivity becomes

dΦ1

db1

=

{
−0.03025

0.01599

}

Likewise, dΦ1/db2 where b2 = m1 may be computed and equation 3.9 becomes

[
6.30857 −5

−5 3.96286

]
dΦ1

db2

=

{
0.36438

−0.28880

}

Note that the system matrix on the left-hand-side is the same as that computed above

for b1 which is singular rendering the calculation of dΦ1/db2 impossible. However,

as before, the normalization condition is introduced from equation 3.13 for design

variable b2 to yield

b−1.53667 − 2.90826cdΦ1

db2

= −0.14758

The modified non-singular system of equations is again formed by replacing the second

equation in the singular system above with this result to give

[
6.30857 −5

−1.53667 −2.90826

]
dΦ1

db2

=

{
0.36438

−0.14758

}
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which has the same system matrix on the left-hand-side as that used to compute

dΦ1/db1 above. Therefore, without any further matrix inverse computations, the

eigenvector sensitivity is obtained as

dΦ1

db2

=

{
0.01236

−0.05728

}

In a similar manner, the design sensitivities of the eigenvector associated with the

second mode are evaluated

dΦ2

db1

=

{
−0.01958

−0.02470

}
and

dΦ2

db2

=

{
0.21856

0.08851

}

5.1.3 Second-Order Eigenvalue Design Sensitivity Analysis

Equation 4.2 is used to calculate the second-order sensitivities of the first eigenvalue

with respect to the design variables b1 and b2 to get

d2λ1

db2
1

= −0.02324

d2λ1

db2
2

= 0.01653

Similar calculations for the second eigenvalue are performed to obtain the sensitivities

and are presented in table 5.1
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Table 5.1: Eigenvalue and eigenvalue design sensitivity for spring-mass example with
respect to design variables b1 and b2.

mode λ design dλ/db d2λ/db2

number (1/s2) variable (1/in · s2) (1/in2 · s2)

1 1.3457 b1 0.1475 -0.0232
b2 -0.1986 0.0165

2 5.8209 b1 0.3524 0.0232
b2 -2.0514 2.2334

5.1.4 Second-Order Eigenvector Design Sensitivity Analysis

To calculate the second-order eigenvector sensitivity the right-hand-side of the equa-

tion 4.3 is calculated to obtain

−
[
∂2K

∂b2
1

− d2λ1

db2
1

M− 2
dλ1

db1

∂M

∂b1

− λ1
∂2M

∂2b1

]
Φ1

−2

[
∂K

∂b1

− dλ1

db1

M− λ1
∂M

∂b1

]
dΦ1

db1

=

{
0.0247

−0.0195

}

Substituting the above results and the value of [K− λ1M] from the first-order sensi-

tivity into equation 4.3 gives the system of equations

[
6.30857 −5

−5 3.96286

]
d2Φ1

db2
1

=

{
0.02477

−0.01959

}

which has only one linearly independent equation. Since the eigenvectors are mass

normalized, equation 4.5 is used to obtain

2Φ1 ·Md2Φ1

db2
1

= −
[
4Φ1 · ∂M

∂b1

dΦ1

db1

+ 2
dΦ1

db1

·MdΦ1

db1

+ Φ1 · ∂2M

∂b2
1

Φ1

]

which for this example becomes

b1.53667 2.90826cd
2Φ1

db2
1

= −0.00517
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this result is combined with the first equation from the previous singular system to

obtain the following modified non-singular system of equations

[
6.30857 −5

1.53667 2.90826

]
d2Φ1

db2
1

=

{
0.02477

−0.00517

}

here it is noted first, that the second equation could have been retained from the

singular system, instead and second, that the modified [K− λM] is same as the one

obtained for the first-order sensitivity and therefore it is not required to be inverted

again. Finally, the second-order eigenvector sensitivity becomes

d2Φ1

db2
1

=

{
0.00177

−0.00272

}

Likewise, d2Φ1/db2
2 can be computed where b2 = m1 and equation 3.9 becomes

[
6.30857 −5

−5 3.96286

]
d2Φ1

db2
2

=

{
−0.1164

0.0923

}

Note that the system matrix on the left-hand-side is the same as that computed above

for b1 which is singular making the calculation of d2Φ1/db2
2 impossible. However, as

before, the normalization condition is introduced from equation 4.5 for design variable

b2 to yield

b1.53667 2.90826cd
2Φ1

db2
2

= −0.0393

The modified non-singular system of equations is again formed by replacing the second

equation in the singular system above with this result to give

[
6.30857 −5

1.53667 2.90826

]
d2Φ1

db2
2

=

{
−0.1164

−0.0393

}

which again has the same system matrix on the left-hand-side as that used to compute

d2Φ1/db2
1 above. Therefore, without any further matrix inverse computations, the
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eigenvector sensitivity is obtained as

d2Φ1

db2
2

=

{
−0.02055

−0.00264

}

In a similar manner, the design sensitivities of the eigenvector associated with

mode 2 are evaluated to be

d2Φ2

db2
1

=

{
−0.00333

−0.00144

}
and

d2Φ2

db2
2

=

{
0.143140

0.031342

}

All the sensitivity results obtained here have been verified with forward finite

difference calculations with an increment of 10−10. Numerical results associated with

the calculation of the sensitivities for this example have been tabulated and presented

systematically in the next few pages. Table 5.2 gives the eigenvectors and their

sensitivities for various normalization conditions. It can be seen from the table that

the normalization condition changes both the magnitude and the direction of the

eigenvector sensitivity. For the G2 = 0 normalization condition which is maximum

value equals one, the first- and second-order sensitivities are zeros for the component

of φ with the maximum value, which is expected as the maximum value is fixed

to unity. Table 5.3 shows the re-scaling factors and their derivatives for various

normalization conditions. To re-scale the eigenvectors and their sensitivities with

G2 = 0 normalization to G1 = 0 normalization, the values for c1, ∂c1/∂b1, ∂
2c1/∂b2

1

from the G2 column are used in the re-scaling equations for eigenvectors (cf. equation

3.20) and their sensitivities (cf. equations 3.21 and 4.9). Consider, for example,

computing the eigenvector design sensitivities when the first eigenvector is re-scaled

with equation 3.20 from having a unity magnitude (i.e., G2 = 0 and αi = 1 in
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equation 2.6) to a mass normalized eigenvector where G1 = 0 in equation 2.5. From

the G2 normalization column under mode 1 in Table 5.3 c1 = 0.4847, dc1/db1 = -

0.0159 are obtained and from Table 5.2 the eigenvector Φ1 with G2 = 0 normalization

and its sensitivity Φ11 = −0.7925, dΦ11/db1 = −0.0885 are obtained, so that the

value of the eigenvector derivative with G1 = 0 normalization becomes dΦ11/db1 =

(−0.0159)(−0.7925) + (−0.0885)(0.4847) = −0.03025 from equation 3.21. It has to

be noted here that the eigenvectors can be multiplied by a negative sign and still

remain the same. In a similar manner, values in the G1 normalization column under

mode 1 of Table 5.3 may also be used to calculate values of the second-order design

derivative when eigenvector is re-scaled for G2 = 0. In this case, equation 4.9 yields

d2Φ11/db1 = (0.0160)(0.3841)+2(−0.068)(−0.0302)+(2.0631)(0.00177) = 0.01394 as

seen in Table 5.2. Similar calculations may be performed for mode 2. The diagonal

terms in this table are ones and zeros as the re-scaling factors are directly related to

their corresponding normalization conditions.
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Table 5.2: Eigenvectors and eigenvector design sensitivities with respect to design
variable b1 for spring-mass example when ΦI is normalized by G1 - G3 from equations
2.5 - 2.7, respectively, for α = 1 and β = 1 (p indicates vector component).

Normalization G1 G2 G3

Φ1

p = 1

p = 2

0.38417

0.48471

0.79257

1.00000

0.62114

0.78370

Φ2

p = 1

p = 2

0.59365

−0.31367

1.00000

−0.52838

0.88416

−0.46718

dΦ1

db1

p = 1

p = 2

−0.030252

0.015985

−0.088551

0.000000

−0.042623

0.033782

dΦ2

db1

p = 1

p = 2

0.019577

0.024701

0.000000

0.059034

0.021560

0.040804

d2Φ1

db2
1

p = 1

p = 2

0.001772

−0.002722

0.013946

0.000000

0.001201

−0.004726

d2Φ2

db2
1

p = 1

p = 2

−0.003334

−0.001447

0.000000

−0.009298

−0.004227

−0.003441

Table 5.3: Eigenvector re-scaling factors and their design sensitivities with respect to
design variable b1 for spring-mass example when ΦI is normalized by G1 - G3 (from
equations 2.5 - 2.7, respectively) for α = 1 and β = 1.

Mode Φ1 Φ2

Normalization G1 G2 G3 G1 G2 G3

c1 1.0000 0.4847 0.6184 1.0000 0.5936 0.6714

c2 2.0631 1.0000 1.2759 1.6845 1.0000 1.1310

c3 1.6168 0.7837 1.0000 1.4894 0.8841 1.0000

dc1/db1 0.0000 -0.0159 0.0062 0.0000 -0.0195 -0.0057

dc2/db1 -0.0680 0.0000 -0.0550 -0.0555 0.0000 -0.0275

dc3/db1 0.0163 0.0337 0.0000 -0.0128 0.0215 0.0000

d2c1/db2
1 0.0000 -0.0009 0.0024 0.0000 -0.0011 0.0009

d2c2/db2
1 0.0160 0.0000 0.0124 0.0131 0.0000 0.0067

d2c3/db2
1 -0.0017 -0.0047 0.0000 0.0020 -0.0042 0.0000
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Table 5.4: Eigenvectors and eigenvector design sensitivities with respect to design
variable b2 for spring-mass example when ΦI is normalized by G1 - G3 from equations
2.5 - 2.7, respectively, for α = 1 and β = 1 (p indicates vector component).

Normalization G1 G2 G3

Φ1

p = 1

p = 2

0.38417

0.48471

0.79257

1.00000

0.62114

0.78370

Φ2

p = 1

p = 2

0.59365

−0.31367

1.00000

−0.52838

0.88416

−0.46718

dΦ1

db2

p = 1

p = 2

0.01236

−0.05727

0.11916

0.000000

0.05735

−0.04546

dΦ2

db2

p = 1

p = 2

−0.21856

−0.08851

0.000000

−0.34363

−0.04546

−0.23751

d2Φ1

db2
2

p = 1

p = 2

−0.02055

−0.002649

−0.00991

0.000000

−0.01475

0.00486

d2Φ2

db2
2

p = 1

p = 2

0.14314

0.03134

0.000000

−0.07283

−0.05477

0.05080

Table 5.5: Eigenvector re-scaling factors and their design sensitivities with respect to
design variable b2 for spring-mass example when ΦI is normalized by G1 - G3 (from
equations 2.5 - 2.7, respectively) for α = 1 and β = 1.

Mode Φ1 Φ2

Normalization G1 G2 G3 G1 G2 G3

c1 1.0000 0.4847 0.6184 1.0000 0.5936 0.6714

c2 2.0631 1.0000 1.2759 1.6845 1.0000 1.1310

c3 1.6168 0.7837 1.0000 1.4894 0.8841 1.0000

dc1/db2 0.0000 0.0572 0.0372 0.0000 0.2185 0.1518

dc2/db2 0.2437 0.0000 0.0740 0.6201 0.0000 0.1605

dc3/db2 0.0972 -0.0454 0.0000 0.3369 -0.1254 0.0000

d2c1/db2
2 0.0000 -0.0010 -0.0092 0.0000 0.2172 0.2163

d2c2/db2
2 0.0688 0.0000 0.00067 0.0505 0.0000 0.1156

d2c3/db2
2 0.0418 0.0048 0.0000 -0.2032 -0.0547 0.0000

46



5.2 Finite Element Calculation Procedure

The eigenvector sensitivities are shown for various eigenvector normalizations since

the choice of normalization condition does directly influence the design derivative

of the eigenvector. First the steps involved in calculating the sensitivities for the

isoparametric plate example problem are explained here.

• Build the model in ABAQUS CAE: First a plate model with the given

dimensions and physical properties is built in the finite element software ABAQUS

CAE [46]. All of the dimensions, boundary conditions and the mesh are obtained

accurately using CAE which is used to generate the input (.inp) file which has all the

plate model information in it. The eigenvalues and eigenvectors are calculated using

ABAQUS to validate the MATLAB [47] results.

• Develop the MATLAB-based finite element code to calculate the sen-

sitivities: A MATLAB based finite element code is developed which calculates the

first- and second- order sensitivities of the eigenvectors with respect to a given design

variable. This code reads in an .txt input file which has all the information about the

problem. The K and M are formed for the structure.

• Generate the input file for the finite element code: The input file for the

MATLAB code has to be created manually. To get the mesh of the plate, the input

file from the first step is taken and manually re-formatted to fit the requirements.

Input files for small problems like the first spring problem can be typed in easily, but

the mesh of the plate problem has 240 elements, the input file for which is very long

therefore the input file from ABAQUS CAE is used. The input file for the spring
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problem is given in Appendix C.

• Obtain the results from the code in NASTRAN punch format: The MAT-

LAB code is written such that it writes the results in NASTRAN [48] punch format.

These files are recognized by Hypermesh [49] and are translated into Hypermesh re-

sult files. To view these files in Hypermesh, a model which contains all the nodes and

elements corresponding to the result files is needed.

• Import the plate model from ABAQUS to Hypermesh to view the

results: The ABAQUS input file created earlier is now imported to Hypermesh and

saved as a Hypermesh model. All of the nodes, elements, element properties and

boundary conditions are imported into the Hypermesh model. This model is now

used to view the results obtained from the MATLAB code which were converted into

Hypermesh result files. The results at each node are mapped on to the corresponding

node on the model and a contour plot is obtained. This contour plot can also be

viewed in animation. The complete procedure is shown as a flowchart for better

understanding in figure 5.2
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Figure 5.2: Flow chart for Eigenvector Design Sensitivity Analysis.
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5.3 2-D Plate Problem

To further illustrate the eigenvalue and eigenvector design sensitivity computations

described in the previous chapter, consider the rectangular plate appearing in figure

5.3 where the thickness is 1 inch in the regions marked A and 1.2 inch in the region

marked B. Note that if a square or rectangular plate of uniform thickness was chosen,

the eigenvalues or eigenvalue first-order sensitivities, respectively, would have been

repeated, in which case the method presented above would no longer be valid. In

this analysis, the plate is clamped around its perimeter. The plate is assumed to be

made of a homogeneous isotropic material with a modulus of elasticity E = 2.07E11,

a Poisson’s ratio ν = 0.3, and a density ρ = 7750.3. Only the vibration problem is

considered here and the buckling analysis is ignored.

Eigenvalues, eigenvectors, and the design sensitivities of interest are evaluated us-

ing the finite element method, where the stiffness and mass matrices are, respectively,

evaluated from the expressions

K =
∑

e

∫

Ae

BTDB t3 dA (5.1)

and

M =
∑

e

∫

Ae

NTN ρt dA (5.2)

where N is the element shape function matrix, D is the linear elastic modulus matrix,

B is the shape function derivative matrix, t is the plate thickness, and A,Ae are the

total area and elemental area of the plate respectively, in the xy-plane shown in figure

5.3. These equations were obtained from references [50] and [51]. The summation
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is performed over all elements. The plate in figure 5.4 is modeled with 20 equally

spaced elements in the x-direction, and 12 in the y-direction. A design variable b1 is

defined which describes the thickness t in the A regions of figure 5.3.
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Fig. 2  Plate geometry for eigenvector sensitivity example problem.
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Figure 5.3: 2-D Plate Example.

Figure 5.4: Finite Element Mesh of 2-D Plate.
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Partial derivatives used in all of the sensitivity computations described above

are evaluated by differentiating equations 5.1 and 5.2 with respect to b = t for the

elements in regions A. The expressions for ∂M/∂b and ∂K/∂b are obtained as

∂K

∂b
= 3

∑

ê

∫

Aê

BTDB t2 dA (5.3)

and

∂M

∂b
=

∑

ê

∫

Aê

NTN ρ dA (5.4)

where the integrations are limited to region ’A’ elements ê only (cf. figures 5.2 and

5.3). Differentiating these expressions again with respect to the design variable b = t

yields the second-order partial differentials for mass and stiffness matrices. For this

plate problem the second-order partial derivative of the mass matrix is the zero matrix

as the mass is linearly dependent on t. The expression for ∂2K/∂b2 is

∂2K

∂b2
= 6

∑

ê

∫

Aê

BTDB t dA (5.5)

These expressions are incorporated into a MATLAB based finite element code

which generates K, M and their partial derivatives, and evaluates various equations

to calculates the eigenvalues, eigenvectors and their sensitivities. The eigen equation

2.1 is solved first to get the eigenvalues and their corresponding eigenvectors. Figures

5.5 - 5.9 here represent the eigenvectors for the above plate example with maximum

value equated to unity which is represented as G2 = 0 in the equation 3.4. These
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figures, obtained using the method described in the last section, are contours of out-

of-plane displacement magnitude only, the rotational components of the eigenvectors

are not shown.

Figure 5.5:Plate Model First Mode Shape.

Figure 5.6:Plate Model Second Mode Shape.
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Figure 5.7: Plate Model Third Mode Shape.

Figure 5.8:Plate Model Fourth Mode Shape.

Figure 5.9:Plate Model Fifth Mode Shape .
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The eigenvalues obtained from the MATLAB code which uses the above expres-

sions are compared to the eigenvalues obtained from ABAQUS for the same Plate

model and boundary conditions. Because of the different approximations used to cal-

culate the mass and stiffness matrices there is a slight difference in these two results.

This difference increase for higher eigenvalues as seen in the table 5.6.

Table 5.6: Eigenvalues from the MATLAB code and ABAQUS

Mode F E Code ABAQUS
number λ λ

1/sec2 1/sec2

1 2.207E+04 2.25E+04

2 4.747E+04 4.802E+04

3 1.181E+05 1.305E+05

4 1.361E+05 1.353E+05

5 1.766E+05 2.063E+05

Recall that the mode shape itself does not change when other normalizations are

considered, but are instead simply scaled by equation 3.20. The shape of the mode

remains the same whereas the magnitude is different. Scaling factors appear as c1,

c2 and c3 in Table 5.7. Looking at the mode shapes closely it is seen that the step in

the middle of the plate does not have much effect on the mode shape itself, but its

effect is seen further in the first and second order sensitivities.
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Table 5.7: Eigenvector re-scaling factors (i.e c values) and their design sensitivities for
simply supported plate example when ΦI is normalized by G1 - G3 (from equations
2.5 - 2.7, respectively) for modes 1 and 2 only with α = 1 and β = 1.

mode Φ1 Φ2

normalization G1 G2 G3 G1 G2 G3

c1 1.000 128.532 1417.36 1.000 171.415 1830.82

c2 0.0078 1.000 11.027 0.0058 1.000 10.680

c3 0.0007 0.0907 1.000 0.0005 0.0936 1.000

dc1/db 0.000 -1500.20 1.72E+4 0.000 1.10E+03 5.31E+4

dc2/db -0.0908 0.000 -262.5848 0.3743 0.000 375.368

dc3/db 0.0085 2.1593 0.000 0.0158 -3.2905 0.000

d2c1/db2 0.000 -1.12E+6 -2.18E+7 0.000 -1.17E+6 -2.15E+7

d2c2/db2 565.322 0.000 8.41E+05 1472.273 0.000 2.69E+6

d2c3/db2 -2.1786 -6818.91 0.000 -0.9780 -2.33E+4 0.000
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5.3.1 First- and Second-Order Eigenvalue Design Sensitivity
Analysis

Table 5.8 contains the lowest 5 eigenvalues λ that solve equation 2.1 for the plate

example. Also shown are the eigenvalue design sensitivities computed from equa-

tion 3.7. Note that the computed eigenvalue sensitivities are not a function of the

eigenvector normalization, as described in the previous section.

Table 5.8: Eigenvalue and eigenvalue design sensitivity for fixed plate example.

Mode λ dλ/db d2λ/db2

number

1 2.207E+04 9.092E+05 -1.792E+08

2 4.747E+04 3.955E+06 -9.867E+08

3 1.181E+05 1.032E+07 -2.294E+09

4 1.361E+05 4.852E+06 -1.529E+09

5 1.766E+05 1.259E+07 -3.168E+09

5.3.2 First-Order Eigenvector Design Sensitivity Analysis

Figures 5.10 through 5.14 show the first-order eigenvector design sensitivities of the

first 5 modes for three normalization conditions. Note that in all of the following

eigenvector sensitivity plots, the first figure of each page is the eigenvector sensitivity

for the eigenvector normalized with respect to the mass matrix as given by G1 = 0 in

equation 2.5. The second and the third plots in each figure represent the sensitivities

of eigenvectors normalization with maximum value equals unity and magnitude equals

unity normalizations, respectively. In all these cases, as it can be seen from the plots,

the eigenvector sensitivity is not simply scaled when the normalization condition is
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changed. Instead, the shape of the eigenvector sensitivity itself is changed as expected

from equation 3.21.

The derivatives of the scaling factors ci appear in Table 5.7 which may be used

with equation 3.21 to compute new eigenvector design derivatives when the normal-

ization condition on Φ is changed. It is clearly seen from the eigenvector plots that

the eigenvector sensitivities vary with a change in the normalization condition. The

effect of change in normalization condition is more pronounced in the first few modes

and the effect reduces for higher modes. In figure 5.10, sensitivities for the first

mode for three normalizations are shown. Note that for mass normalized eigenvector,

the sensitivity follows the design of the plate as a step in the sensitivity is clearly

visible. For the sensitivity of the eigenvector normalized with maximum displace-

ment equal to unity, the center of the plate is zero as the maximum out-of-plane

displacement is fixed to unity at that point. Also, since the magnitude is fixed to

unity for G3 = 0 normalization, the amplitude for its sensitivity very low compared

to the other normalization conditions. Table 5.7 shows the re-scaling factors and

their derivatives for various normalization conditions. For example, to re-scale the

eigenvectors and their sensitivities with G3 = 0 normalization to G1 = 0 normaliza-

tion, the values for c1, ∂c1/∂b, ∂2c1/∂b2 from the G3 column are used in the re-scaling

equations for eigenvectors and their sensitivities, as explained for the spring-mass

example. Consider, for example, computing the eigenvector design sensitivities when

the mode 1 eigenvector appearing in figure 5.5 is re-scaled with equation 3.20 from

having a unity maximum displacement (i.e., G2 = 0 and αi = 1 in equation 2.6,
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where i represents the component with maximum displacement) to a mass normal-

ized eigenvector where G1 = 0 in equation 2.5 (cf. figure 5.14b for the shape of

the sensitivity of mode 1 with unity magnitude). From the G2 normalization col-

umn under mode 1 in Table 5.7 c1 = 128.53 and dc1/db = −1.5E + 03 are obtained

so that the value of the eigenvector derivative at the plates center in figure 5.14a

is dΦ1/db = (−1.5E + 03)(1) + (128.53)(0) = −1.5E + 03 from equation 3.21. In

a similar manner, values in the G2 normalization column under mode 1 of Table

5.7 may also be used to calculate values of the second-order design derivative when

Φ1 is re-scaled for G1 = 0 (cf. equation 2.5). In this case, equation 4.9 yields

d2Φ1/db2 = (−1.12E + 06)(1) + 2(−1.5E + 03)(0) + (128.53)(0) = −1.12E + 06 as

seen in figure 5.15a. Similar calculations may be performed for mode 2. The diagonal

terms in this table are ones and zeros as the re-scaling factors are directly related to

their corresponding normalization conditions.
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.10: First-order sensitivity for the first mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.11: First-order sensitivity for the second mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.12: First-order sensitivity for the third mode63



a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.13: First-order sensitivity for the fourth mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.14: First-order sensitivity for the fifth mode
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5.3.3 Second-Order Eigenvector Design Sensitivity Analysis

Figures 5.15 through 5.19 present the second-order eigenvector design sensitivities of

the first 5 modes for three normalization conditions. Again it is seen from these plots

that the normalization condition does have an effect on the second-order sensitivities

of the mode shapes. The effect of normalization is not the same in all the modes, it

has greater effect on the first and fourth modes whereas for the eigenvector sensitivity

shapes of other modes does not appear to be as dependent on the normalization. Even

though the plate problem presented here is a very simple symmetric structure the

effect of normalization condition is very clearly seen. For more complicated problems

like a 3-D dashboard or an airplane wing problems the effects may be more pronounced

and therefore should be accounted for in the design and analysis of structures.
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.15: Second-order sensitivity for the first mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.16: Second-order sensitivity for the second mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.17: Second-order sensitivity for the third mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.18: Second-order sensitivity for the fourth mode
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a: Mass normalization (G1 = 0)

b: Maximum displacement equals unity (G2 = 0) normalization

c: Magnitude equals unity (G3 = 0) normalization

Figure 5.19: Second-order sensitivity for the fifth mode
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CHAPTER 6

CONCLUSIONS

Eigenvector design sensitivity is important in many structural and optimization prob-

lems. Nelson’s algorithm has been considered a benchmark for calculating eigenvector

sensitivity for over three decades. His method is applicable to mass normalized eigen-

vectors only, and is, therefore, not valid for eigenvector with other normalization

conditions. A generalized method to calculate the eigenvector sensitivities for any

normalization condition is presented in this thesis.

In this new method the the modified [K−λM] matrix on the left hand side of the

design sensitivity equation is the same for both the first- and second-order sensitivi-

ties for all normalizations, which can be used very effectively to reduce the calculation

time and cost. For the normalization that specifies the maximum value equals unity

normalization condition, which is the most commonly used normalization, the mod-

ified [K − λM] matrix on the left hand side for first- and second-order sensitivity is

same as that used to compute the eigenvector itself. Therefore this method is most

effective for maximum value equals unity normalization.

Following the evaluation of eigenvector sensitivities for a given normalization con-

dition, the need may arise for the eigenvector sensitivities for another normalization

condition. Instead of repeating the entire process, the scaling properties of the eigen-

vectors are used to calculate new eigenvector sensitivities for the rescaled eigenvectors.

These equations to calculate the scaling factors and re-scale the eigenvector sensitivi-

ties were derived. A change in normalization condition for an eigenvector only effects
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its magnitude, the shape of the eigenvector remains the same. But that is not the

case for eigenvector sensitivity. Changing the normalization condition is shown to

effect both the shape and magnitude of the eigenvector sensitivity. This was shown

using the theoretical equations and the examples provided above.

The equations presented here can be easily incorporated into a finite element

program to calculate the sensitivities for various normalization condition. This was

done by writing a MATLAB-based finite element code to calculate the sensitivities.

Two examples are provided to further illustrate the methodology involved in the

calculation of the eigenvalues, eigenvectors and their sensitivities. A spring-mass

example is provided to show a step-by-step explanation of how eigenvector sensitivities

are calculated with the proposed general procedure. In addition, a plate example

showed that this method can be applied to more complicated problems and also

further illustrates the usefullness of this research. The calculation for these examples

was performed in the MATLAB code discussed earlier, although the spring example

can be done manually.

This approach can be extended to more practical problems like composite struc-

tures, dashboard problems and aircraft wings etc. The finite element code can be

made more efficient by utilizing the memory and time saving properties of this

method. This approach can also be incorporated into commercial analysis packages

such as ABAQUS, ANSYS [52] etc.
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APPENDIX A

NELSON’S METHOD

Though eigenvalue sensitivities are the most commonly required sensitivities, eigen-

vector sensitivities are also desired in applications. Nelson [30] presented a powerful

algorithm for computing the eigenvalue and eigenvector derivatives of general real

matrices with non-repeated eigenvalues. His method is a significant advance as it

requires knowledge of only those eigenvectors that are to be differentiated. All of the

previous methods required calculation of all or most of the eigenvectors, which may

require significant calculations. Nelson’s method also preserved the band structure

and symmetry of the matrices. Nelson gives his method with the an algebraic eigen-

system of the form [A−λiI]Φi = 0 which can be interpreted as a structural problem

of the form [K−λiM]Φi = 0 where Φi is the eigenvector, λi is the eigenvalue and K

and M are real symmetric matrices. He also assumes that the eigenvectors are mass

normalized as given in equation 2.5.

Solution for Eigenvector Derivatives

The derivatives of the eigenvector with respect to the design parameter bj, is

obtained by differentiating equation 3.1 with respect to bj which gives equation 3.6

shown below

[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
Φi + [K− λiM]

∂Φi

∂bi

= 0

The eigenvector sensitivity cannot be calculated directly from equation 3.6 as [K −
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λiM] is singular as its rank is n − 1 for distinct λ. Therefore Nelson [30] proposed

that the eigenvector derivative be written as

∂Φi

∂bj

= ν ij + cijΦi (A.1)

for some vector ν ij and a scalar constant cij which can be calculated. Substituting

equation A.1 in equation 3.6 and simplifying to yield

[K− λiM] ν ij = Fij (A.2)

the vector on the right-hand-side of equation A.2 is computed from

Fij = −
[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
Φi

[K − λM] on the left hand side of the equations is still singular, therefore Nelson

proposed that the pth component of ν ij be set to zero, where p is the location at which

the eigenvector Φ has the maximum absolute value. He achieves this by replacing

the pth row and column of [K− λM] matrix with zeros except for the diagonal term,

which is set to one and setting the kth component of the vector Fij to zero. The

resulting partitioned form can be represented in the equation form as




[K− λiM]11 0 [K− λiM]13

0 1 0

[K− λiM]31 0 [K− λiM]33


 ν ij =





{Fij}1

0

{Fij}3





(A.3)

The new matrix formed is now non-singular and it is possible to calculate ν ij

using any numerical methods available. Once ν ij is calculated, the value of the
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scalar constant cij is determined by differentiating the mass normalization condition

in equation 2.5 with respect to bj as

Φi · ∂M

∂bj

Φi + 2Φi ·M∂Φi

∂bj

= 0 (A.4)

Substituting the expression for eigenvector sensitivity from equation A.1 in equation

A.4 and using the mass normalization condition itself gives the solution for cij as

cij = −1

2
Φi · ∂M

∂bj

Φi −Φi ·Mν ij (A.5)

Once ν ij, cij and Φi are known, they may be substitute back into equation A.1 to get

the the eigenvector sensitivity ∂Φi/∂bj . This method works with mass normalized

eigenvectors having non-repeated eigenvalues.
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APPENDIX B

FRISWELL’S METHOD

Friswell [45] developed a procedure similar to that used to calculate the first-order

eigenvector sensitivities, developed by Nelson [30], for the second-order eigenvector

sensitivity. Consider the second-order sensitivity equation 4.1 which may be written

as

[K− λiM]
d2Φi

dbjdbk

= Fijk (B.1)

where

Fijk =

[
∂2K

∂bj∂bk

− d2λi

dbjdbk

M− dλi

dbk

∂M

∂bj

− dλi

dbj

∂M

∂bk

− λi
∂2M

∂bj∂bk

]
Φi

+

[
∂K

∂bj

− dλi

dbj

M− λi
∂M

∂bj

]
dΦi

dbk

+

[
∂K

∂bk

− dλi

dbk

M− λi
∂M

∂bk

]
dΦi

dbj

(B.2)

It is known that [K− λiM] is singular and the sensitivity cannot be directly

calculated from equation B.1. Therefore, as Nelson did in the first-order derivative,

Friswell’s evaluations suggest that the eigenvector sensitivity can be of the form

∂2Φi

∂bj∂bk

= ν ijk + cijkΦi (B.3)

where ν ijk is a non-unique vector and cijk is a constant. Equation B.3 when substi-

tuted in equation B.1 will reduce to

[K− λiM] ν ijk = Fijk (B.4)
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The component of ν ijk corresponding to that having the largest absolute value

in the eigenvector is set to zero. Now it is possible to calculate a unique ν ijk vector

which satisfies the above equation.

To calculate the value of the scalar constant cijk, the mass normalization equation

2.5 is differentiated twice to yield

2

[
Φi · ∂M

∂bj

dΦi

dbk

+ Φi · ∂M

∂bk

dΦi

dbj

+
dΦi

dbj

·MdΦi

dbk

+ Φi ·M d2Φi

dbjdbk

]
(B.5)

+Φi · ∂2M

∂bj∂bk

Φi = 0

Substituting the equation B.3 in equation B.5 and using mass normalization condition

will give the expression for cijk as

cijk = −.5Φi · ∂2M

∂bj∂bk

Φi − Φi · ∂M

∂bj

dΦi

dbk

−Φi · ∂M

∂bk

dΦi

dbj

(B.6)

− dΦi

dbj

·MdΦi

dbk

−Φi ·Mν ijk

All the terms required to calculate the second-order eigenvector sensitivity using

the equation B.3 are known. Substituting the values of cijk, ν ijk and Φi in the

equation gives the required second-order sensitivity. Note that this is very similar to

what was done by Nelson for the first-order sensitivity and therefore the interpretation

of Nelson’s method given in the previous section can also be extended to Friswell’s

second-order calculations. Friswell [45] also mentions that higher order eigenvalue and

eigenvector sensitivities for non-repeated eigenvalues can be calculated by extending

his method and provides general equations for m-th order sensitivities.
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