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ABSTRACT 

  

 Standard statistic n-gram language models play a critical and 

indispensable role in automatic speech recognition (ASR) applications. Though helpful to 

ASR, it suffers from a practical problem when lacking sufficient in-domain training data 

that come from same or similar sources as the task text. In order to improve language 

model performance, various datasets need to be used to supplement the in-domain 

training data. This thesis investigates effective approaches to language modeling for 

telehealth which consists of doctor-patient conversation speech in medical specialty 

domain. Efforts were made to collect and analyze various datasets for training as well as 

to find a method for modeling target language. By effectively defining word classes, and 

by combining class and word trigram language models trained separately from in-domain 

and out-of-domain datasets, large improvements were achieved in perplexity reduction 

over a baseline word trigram language model that simply interpolates word trigram 

models trained from different data sources. 
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Chapter 1 

 
 
Introduction 
 
 
1.1  Language Modeling in General 

 
Knowledge about languages is important to many fields, including spoken language 

recognition and natural language understanding. The knowledge involves 1) lexical 

knowledge that is about the word definition and pronunciation, 2) syntactical knowledge 

that describes the structure of a language, and 3) semantic knowledge that shows meaning 

of words and phrases. Language modeling, whose task is to estimate the possibility of 

occurrence of a sequence of words based on pre-acquired knowledge, is a critical part of 

many applications, including ASR (automatic speech recognition), OCR (optical 

character recognition) and SMT (statistical machine translation). There are two 

approaches for modeling languages: formal language model approach and stochastic or 

statistical language model (SLM) approach. The former is also known as a rule-based 

approach, which explores a set of language grammars as rules, and parses sentences and 

analyzes sentence structural compliance with the rules. This approach is relatively 

difficult to acquire automatically, and needs manual working from linguists, since rules 

need to be generalized and explained. In addition, in real conversational applications, 

spoken language can be very ungrammatical and not follow any conventional rules, and it 

is difficult to measure the appropriateness of a sentence by matching it to manually 

established grammatical rules. The other approach, stochastic language modeling (SLM), 



is different from rule-based modeling approach in that it is a way to measure word 

sequence probabilities based on statistical information acquired from language itself, 

without involving manually-defined rules. It has been continuously improved during the 

past decade and is currently used widely. The goal of SLM approach is generally to 

measure the probability of sentences and give higher possibility value to a sentence that is 

more likely to appear in natural language. The probability value is calculated using the 

probabilistic information carried by statistic parameters that were automatically learned 

from a reasonably large and topic related training data set. These statistic parameters 

form a language model, which can be formulated as a probability distribution  over 

word string W. It is a reflection of how possible the word string can appear as a sentence. 

Unlike rule-based models, grammaticality is not a quite strong constraint to the stochastic 

language models. Even if a word string is not grammatical, it is still possible for such a 

model to assign the word string a high possibility. Here we use a very commonly used 

expression as example. In casual speech, people often say “I am doing good,” which will 

be recognized as an incorrect expression in formal English, because it uses an adjective 

“good” as a adverb to modify a verb “doing”. Although it is not grammatically correct, 

this word sequence appears in daily spoken language quite frequently. Using Switchboard, 

a conversational styled text dataset we used for language model training, as target corpus, 

we see this kind of incorrectly used phrase “doing good” 14 times in the whole dataset, 

while the total number of the expressions that should be used as “doing well” was only 36. 

This is to say that out of 36 times of the expression that should be said as “doing well”, 

only 22 instances of this expression were used grammatically correctly. Since this 

language modeling problem we present in this thesis is for an ASR project on telehealth, 

)(WP
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whose speech style is conversational, we chose and used SLM approach, hoping its 

power of automatic statistic knowledge learning will help with a satisfying recognition 

results. 

  

1.2 Language Model in ASR 

 In applications using language models, generally the tasks can be described as 

finding the word string that most likely matches a sequence of observations. The task is 

defined as: 

 

)|()(maxarg
)(

)|()(maxarg)|(maxarg WXPWP
XP

WXPWPXWPW
www

===
)

        (1) 

 

 In OCR, X in this formula is a set of handwritten characters; to SMT, X is the 

target language needing translation; while in ASR, X is an acoustic observation. Focusing 

on ASR problem that our language model is used for, we are to find the word string that 

mostly possibly is the transcript of certain acoustic observation. In the formula for this 

specific task, W is any possible word sequence, X is the acoustic observation, W
)

is 

estimated result. ASR problem can be finally decomposed to two parts, language 

modeling part  and acoustic part  corresponding to formula (1). )(WP )|( WXP

 In this thesis, I will focus on language modeling part . )(WP

 

1.3  Project Motivation 
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Statistic language modeling (SLM), whose task is to estimate the possibility of 

occurrence of sequences of words based on knowledge acquired from training text 

corpora, plays an important role in automatic speech recognition application. N-gram 

language modeling, which is the most commonly used SLM technique, predicts the 

probability of occurrence of a sentence by using a Markov process. During the past 

decade, word n-gram language models have proved to be extremely powerful when an 

adequate amount of relevant training data is available for parameter estimation. However, 

low-frequency or unseen events cannot be reliably estimated in many applications, such 

as specific topic tasks and conversational speech style tasks, where in-domain text 

materials are usually limited in amount and costly to produce. Therefore, class-based n-

gram approaches have been developed by various research groups to deal with the sparse 

data problem with word classes defined using various classification techniques [2, 4, 13, 

15]. Although class models suffer from problems such as not being portable, they have 

been accepted as good models for being able to well estimate unseen n-grams and 

especially helpful in some domain-dependent tasks and in some tasks involving small 

size dataset with a compact domain. In addition, techniques involving using large amount 

of out-of-domain data to improve in-domain language models have been proposed and 

some methods have been shown effective in certain domain-dependent problems [4, 14].  

Methods to define word classes are an active area of current research. Among these 

methods of word clustering proposed for class-based language models, some of them are 

useful, such as automatic bottom-up greedy clustering [2], hierarchical word clustering 

[15] and part-of-speech (POS) tagging method [9]. In this thesis, we will discuss some of 

these methods as well as a way we used to define word classes for subsets of words with 
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clear medical semantics, and some other word categories including names of people, 

numbers, etc., for the telehealth language modeling task.  A similar approach was 

proposed in [11] for ATIS task. Experiments were also done on clustering methods, and 

compared the performance of language models based on semantic classes and the classes 

derived from automatic clustering.  

The language modeling techniques that will be discussed in this thesis is for 

automatic recognition of conversation speech in telehealth system. Telehealth is a 

videoconference technique used in health care. With the system, patients, even staying at 

home, can get a high quality medical care taking advantages of audio/video technologies. 

This saves the time and cost for elderly people or people living in rural areas. However, 

because of possible audio/video delay and audio quality problem, people with hearing 

barriers could hardly take advantages of the current version of telehealth system. Adding 

a captioning function became necessary in order to perfect the telehealth system. The 

goal of our automatic speech recognition project in telehealth is to capture the doctor side 

conversation for recognition; hence the language model is focused on doctor’s speech. 

The captions of doctor’s speech will be provided to patients to help those with hearing 

disabilities achieve better understanding of doctors’ questions and explanations. The 

described task is a specific medical domain problem involving spontaneous dialog style 

speech, and there are little existing in-domain text corpora that we can directly use for 

language modeling. At the current stage, the telehealth conversation transcriptions we 

have collected are still insufficient for reliable language model training. Therefore, we 

need to use large amounts of data from other domains to enlarge vocabulary coverage and 

improve n-gram events estimation. The characteristics of telehealth project requires the 
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language model  1) to  provide a good coverage of medical terms that may appear in 

doctor-patient conversation and 2) to effectively deal with frequently-occurring unseen 

events (word sequence) involving medical terms and driven by different speech styles. 

Toward this goal, we tried many possible approaches to train word trigram language 

models, class trigram language models based on different class definitions obtained using 

various word clustering approaches, and to explore different interpolating methods. Also 

during the exploring course for language modeling, we found and investigated an 

intuitive but effective approach that combines class trigram language model trained by 

using in-domain text data with word trigram language model trained from out-of-domain 

data, and compared its performance in terms of perplexity with those of a baseline word 

trigram language model trained from interpolation of in-domain and out-of-domain word 

trigram models. Details of these approaches and language model performances in term of 

perplexity are covered in following chapters.  

 

 
1.4 . Thesis Organization 
 

The remainder of this thesis is organized as follows. 

We begin in chapter 2 with basics of language modeling, including word n-gram 

language models, class-based n-gram models, language model smoothing and 

interpolation methods and evaluation metrics usually used for language model 

performances. 

Chapter 3 will discuss several language modeling methods we tried in order to get a 

robust language model, and explore our own way of interpolating word and class n-gram 
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language models that yield to a satisfying performance in perplexity and recognition 

results. 

Chapter 4 focuses on word clustering methods were used in our experiments. Our 

own method of defining meaningful semantic word classes is also described in this 

chapter. 

In chapter 5, target dataset and other datasets from different resources are compared 

in speaking style and topic. Latent semantic analysis is performed to see the correlations 

between various datasets, aiming to find separate in-domain and out-of-domain datasets 

that will be used differently in language model training. 

Chapter 6 shows experiment settings and all experiments conducted toward our goal 

to find an ideal language model for the telehealth task. Comparisons between language 

modeling techniques, between word clustering methods are also revealed in this chapter. 

The results show that our approach to combining word trigram language model training 

from in-domain data and class trigram language model trained from out-of-domain data 

outperformed word trigram language model and pure class trigram language model in 

terms of perplexity and word error rate. 

Chapter 7 summarizing the approaches we tried in language modeling for speech 

recognition task in telehealth and draw a conclusion that for a medical domain problem 

involving spontaneous conversational language, a mixture language model “in-domain 

class and out-of-domain word language model” on a specific medical term definition did 

give satisfying results and help improve recognition accuracy. 

 

 



Chapter 2  
 
 
Basics of Language Modeling 
 
 

Statistic language modeling is a task for assigning a probability to a given 

sequence of words. It is widely used in many applications. For an ASR system, a good 

language model generally helps in two ways: 1) reducing search place for word sequence 

prediction and 2) improve recognition performance by providing context information.  

For ASR system, the goal is to find a most likely sequence of words that match an 

utterance, and give the recognition results in text. A main difficulty to this problem is that 

there may be innumerable candidate words for certain word positions. For an ASR task 

involving a vocabulary of 45K words, the number of possible word sequences of a word 

string with 5 words is . This is a huge space for searching, and in practice it is 

impossible to search all possible candidate answers. Language models, providing useful 

probabilities estimated based on proper training text corpora can effectively reduce the 

search space by ignoring unlikely candidates. This is easy to understand through the 

following example. For a word sequence such as:  

5000,45 ^

“She is drinking a glass of ___.” 

Given such a word history, the possible following words may be “water”, “milk” or 

“juice” etc. The words like “elephant”, “car” and “computer” are presumably unlikely, 

and ignored with the help of a language model.  

On the other hand, language models can provide context information for ASR to 

eliminate ambiguity. For instance, to choose a word for a certain position in a sentence 
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from multiple candidates with same pronunciation, if no context information is given by 

language model, incorrect recognition may occur. The following example may explain 

this clearly. Words “blue” and “blew” can hardly be distinguished from each other if no 

left and right contexts are considered. However, in the context such as, 

“The wind ___ away the leaves,” 

the proper one of the two candidate words that can fit in this sentence is the verb “blew.” 

With the help of a language model that gives a comparatively higher possibility to the 

trigram “a wind blew” than to “a wind blue”, we can decide the word in the blanked 

position easily.  

 In our telehealth project, we used the most popular n-gram models for language 

modeling, which models language statistically by estimating probability for parameters in 

forms of unigram (a sequence consisting of one word), bigram (a sequence consisting of 

two words), trigram (a sequence consisting of three words) and so on. 

 
 
2.1 Word N-gram Language Models 

Word n-gram language model is the most popular statistic language model in use. 

Given a certain word sequence, the probability of it occurring as a sentence is denoted as 

, which can be calculated in the following way: )(WP
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where  is the probability that word  will follow the word 

sequence , and the sequence  is the word history presented 

previously. If we take entire history into consideration, for a vocabulary size V, there 

would be possible events to estimate. Using the chain rule and order-n Markov 

assumption, we assume a word appearance only depends on n previous words. Therefore, 

if we define a language model under assumption that the appearance of a possible word 

depends only on its previous two words, we get a trigram language model, with 

probability parameters estimated for a word group in form of . In the 

same way, if it is a bigram language model, the word occurrence would be thought rely 

only on previous one word. The parameter estimated is like . Although many 

different n-gram models are used in various applications, the most widely used n-gram 

language models are trigram ones, which are found to be particularly powerful, since 

usually words have strong dependence on the previous two words. A trigram language 

model estimates word sequence probability in the following way: 

),...,,|( 121 −ii wwwwP iw
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iV

),|( 12 −− iii wwwP

)|( 1−ii wwP

 

∏=

⋅⋅⋅=
=

=
−−

−−

n

i
iii

nnn

n

wwwPwwPwP

wwwPwwwPwwPwP
wwwPWP

3
12121

12213121

21

),|()|()(

),|(),|()|()(
),...,,()(

             (3) 

 

In our telehealth task, all language models we trained are trigram language models. 

In order to estimate , an adequate text data set is needed for 

parameter probability estimation. This kind of text set is called as a training corpus. And 

),|( 12 −− iii wwwP
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the parameter value is simply estimated by employing maximum likelihood (ML) 

estimation. To build the model, we calculate word trigram model parameters in the 

following way: 

 For trigrams, using ML, a parameter value is estimated as: 
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 For bigrams, it is like: 
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 And for unigrams, we estimate a parameter in a way like: 
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In the equations, is the number of appearances, or in another word, 

frequency of the word sequence  in the training dataset. And V in the formula 

represents the vocabulary. 
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2.2 Class N-gram Language Models 

We know that a word can have similar meaning to some other words, or share 

semantic similarities with some other words. We call such words with similar meanings 

to a certain word as synonyms of it, such as – words “utensil” and “instrument” to “tool”. 

And sometimes a word is found functionally similar to other words, that is, they may 

have similar grammatical function in sentences, like “red”, “blue” and “yellow” which 

are used as adjectives, modifying a noun and giving information about the color of the 

thing. This property of words makes it possible to make more reasonable predictions for 

n-grams that we have not previously seen, by grouping similar words into classes, and 

assuming words in the same class may occur in the same context or history. Once the 

words are successfully classified, it can be another effective way to handle the data 

scarcity problem.  

A word can be uniquely assigned to a certain class only, i.e. a one-to-one word-

class mapping, or assigned to more than one class, i.e. a one-to-many word-class 

mapping. A word class can have only one word as its member, or have more than one 

members, depending on different application requirements, classification algorithms and 

domain constraints. Once words are classified into corresponding classes, various 

approaches could be chosen for further training a class-based language model.  

The basic class-based language model is proposed in [2]. Supposing the 

probability of a word belonging to a certain class is , and the probability of the 

certain class following a history involving previous two words is , giving a 

)|( ii cwP

)|( 1,2 −− iii cccP
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word that is uniquely mapped to only one class, as an example, a trigram class model 

computed based on previous 2 classes is formulated as: 

 

)|()|()|( 1,21,2 −−−− = iiiiiiii cccPcwPccwP                  (7) 

 

and  is estimated by: )|( ii cwP
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)( icC  is the total number of all the words in the training set that have been categorized to 

class . And  is estimated as: ic )|( 1,2 −− iii cccP
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∑ −−c ii cccC ),( 1,2  is the summation of the counts of class trigrams starting with class 

.  12 , −− ii cc

If the words are mapped to more than one class types, a sentence that is estimated 

using a more general class trigram model can be expressed as: 
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Some other class-based n-gram language modeling techniques are also proposed by some 

research groups [4, 13, 15]. We will see a couple of them in the later chapters. 

 

2.3 N-gram Language Model Smoothing 

N-gram language model is easy to build. Given a dataset as the training corpus, 

what need to do is to count the word or word sequence frequencies. One problem that can 

appear in use of a language model, or in testing of the language model, is that we may not 

reliably estimate the probabilities for some n-grams, because those certain n-gram events 

were not seen in the training corpus which might be too small in size and therefore does 

not cover as many n-gram events as needed. However, due to the sparseness of data, this 

kind of unseen events can very possibly happen. Even when the training set is large with 

millions of words and with a vocabulary size being more than thirty thousands, it is still 

very possible for some word successions being poorly observed or unseen. Taking 

Switchboard and Broadcasting News datasets we used for training as example, although 

each dataset contains 2.9 million words, in neither of them could we find a quite 

frequently used word sequence “take any medications”.  In such a case, count of the 

certain trigram event  might be zero, thus, the probability of such 

trigram to happen  will be estimated as zero. Therefore, the model would 

give zero to the probability of a word sequence,

),,( 22 iii wwwC −−

),|( 12 −− iii wwwP

0),...,,()( 21 == nwwwPWP  once there is 

an unseen n-gram word string existing in the sequence, even if it is grammatically correct 

or logically acceptable, and highly possible to appear in practice. This problem will be 
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critical to our ASR application. Language model smoothing is needed to solve this 

problem, to make language model more robust.  

 The core issue of smoothing is to assign a nonzero probability to word strings, to 

reduce hard errors in recognition process. And this is done generally by reserving some 

small probability mass from the relative frequency calculation of the seen events (n-gram 

word strings) in the training data and assign this subtracted value to unseen events. This 

produces more robust probabilities for unseen events, therefore improves the recognition 

accuracy, while not affecting too much the estimation of seen events.  

 Several smoothing techniques have been proposed during the last decades. Some 

of them are described as linear interpolation smoothing, which interpolates higher and 

lower-order n-gram models in the following way: 

 

10   with                                                                         
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The nth-order gram is interpolated by the nth-order maximum likelihood model and the 

(n-1)th-order smoothed model. This smoothed model is defined recursively, with the 1st-

order gram (unigram) being the maximum likelihood model.  

Some other popular smoothing techniques are defined in form below: 
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In this way, if the n-gram is seen in training data, the maximum likelihood estimated 

probability will be used. Otherwise, we back off to the smoothed lower-order model, that 

is, estimate the n-gram probability using the (n-1)th-order gram 

distribution with a scaling factor ),...,|(' 12 −+− inii wwwP ),...,( 11 −+− ini wwα which is used to 

make the conditional distribution sum to one. Smoothed language models obtained in this 

way are also called backoff models. In our ASR project, two popular backoff smoothing 

algorithms were used, Katz smoothing and Kneser-Ney smoothing. In the following 

sections we will view the two smoothing techniques simply. 

 

2.3.1 Katz Smoothing: 

 Katz smoothing [7] follows the intuitions of the Good-Turing estimation. Good-

Turing method partitions n-grams into groups according to the frequency. And for any n-

grams that occur r times in the text corpus, a “discounting” procedure will modify the 

count r and replace it by ∗r , which is got by: 

 

r

r

n
nrr 1)1( +∗ +=                                   (13) 

 

in which  is the number of n-grams occurring exactly r times. Then the probability of 

an n-gram that occurs r times in the training corpus will be: 

rn

 

N
rP
∗

=*                                               (14) 

 16



 

where N is the total number of words in the test corpus, that is, 

 

∑= r rrnN                                          (15) 

 

Katz smoothing extends Good-Turing estimate by adding the combination of higher-

order models with lower-order models. Using bigram language model smoothing 

problem as example, it suggests estimating bigram counts as: 
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where  is called discount coefficient that approximately equals to rd ∗r /r. In this way, the 

counts for all n-grams with counts larger than zero are discounted according to the 

discount coefficient, and the subtracted counts are redistributed among the zero-count n-

grams according to the next (n-1)th-order grams. To make sure the total number of counts 

remains unchanged in the distribution, i.e., , a 

factor 
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−ii wwP  is calculated from the modified counts: 
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According to Katz, large counts, like in a range of five to eight, are reliable, and these n-

gram counts are not to be discounted. Counts lower than a certain threshold, k, are 

considered to be replaced using the coefficient .  is given by: rd rd
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So, Katz backoff model can be summarized as: 
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),...|( 11 −+− iniiKatz wwwP  is recursive defined, and the recursion is ended at the unigram 

model got by maximum likelihood estimation. 
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2.3.2 Kneser-Ney Smoothing: 

 This algorithm [8] is based on the absolute discounting technique, which is 

different from the Good-Turing discount. Considering this situation that in a text corpus, 

there are words with high frequencies, however, only following a certain history, like the 

word “Angeles" which only occurs after word “Los”. Since the number of occurrences of 

this word is big, for example, 16 times in the whole training set, the probability of word 

“Angeles" estimated from the training set can be very high. To estimate a bigram 

including the word “Angeles” with a novel history, Katz model will assign a relatively 

high probability to occurrence of an unseen bigram by backing off bigram estimation to 

unigram of “Angeles”, although the bigram might not be possible to exist in any language 

circumstances. This is a potential problem of over-estimation. Different from Katz 

smoothing technique, according to Kneser-Ney’s opinion, the unigram probability should 

not be proportional to the number of occurrences of a single word in the training dataset. 

Instead, it should be proportional to the number of different words that it follows. Thus, 

the probability of occurrence of a certain word is estimated as: 

 

∑ ••=
iw iii wCwCwP )(/)()(                                                                  (21) 

 

)( iwC •  means the number of different words that precede . And, the probabilities for 

higher-order gram models are estimated as: 

iw

 

 19



),...|()1(
),...(

}0,),...(max{
),...|(

12,...
1

1

11

11 −+−
+−

+−

−+−

−+−
−+

∑
−

= iniiKNww
w ini

ini

iniiKN

wwwP
wwC

DwwC
wwwP

ini
i

λ   (22) 

 

To make the distribution sum to 1,  

 

)...(
)...(

1 11
1

,... 11
•=− −+−

+−∑−+− ini
w ini

ww wwC
wwC

D

i

ini
λ                                (23) 

 

where  is the number of different words following the history 

, and D is a fixed discount. In this way, not only the unseen nth-order grams 

with zero counts but all grams are interpolated with the lower-order distribution.    

)...( 11 •−+− ini wwC

11... −+− ini ww

Both algorithms were used in the experiments for language modeling in our ASR 

project. Experiments and results will be covered in later chapters. 

 

 

2.4 Language Model Interpolation 

If for a task, enough in-domain data is acquired or easy to collect, it will be very 

helpful for training a satisfying language model. However, for many tasks, especially 

tasks involving conversational speech in certain specialty domains, this kind of ideal 

training material is hard to acquire. Data for this kind of task, including telehealth project, 

is costly to produce because directly related data got from transcripts of conversational 

speech with same or related topic is limited. Thus, for this kind of task the amount of 
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training data is usually insufficient. Under such circumstances, language models trained 

using some datasets about different topics, or gotten from datasets with different text 

styles might be used as supplements and combined with the one trained from the target 

text data. Among these datasets from different data sources, the ones sharing similar topic 

with the target data are mainly used for vocabulary word coverage and the ones with 

similar styles to the target data are used for better n-gram event estimation. 

 The simplest and most general way to combine several language models is linear 

interpolation, in which, weights are given to those language models needed to be 

combined according to their relevancy, similarity to the target application data, or their 

function in term of covering vocabulary or modeling style. The following formula shows 

the idea of general linear interpolation of language models using trigram language models 

as example: 

 

),|(),|( 12112 −−=−− ∑= iiij
k
j jiii wwwPwwwP λ                        (24) 

 

Here, k is the number of language models being interpolated, and jλ is the weight 

assigned to the jth language model. 

 

2.5 Language Model Evaluating Metrics: 

2.5.1 Word error rate (WER) 

 The most common metric for evaluating automatic speech recognition (ASR) is 

word error rate (WER), which is simply a ratio of the number of incorrectly recognized 
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words in ASR output to the total number of words (N) in the reference text of the test set. 

It is also used as a metric for language model performance evaluation. Recognition errors 

include insertions (I), deletions (D) and substitutions (S). Then the word error rate is 

defined as follow: 

 

%100×
++

=
N

SIDWER                          (25) 

 

2.5.2. Test Set Perplexity 

WER requires the evaluation of a speech recognition system, which is sometimes 

computational costly. Another popular and simpler way for testing the performance of a 

language model is to measure the average probability assigned by a language model to 

each word given its linguistic context in the test set W. This is a measure related to cross-

entropy called as test set perplexity [5] 
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===                 (26) 

 

It shows how the language model fits the training data and can be roughly interpreted as 

the geometric mean of the branching factor of the test text when presented to the 

language model, that is, the average number of word choices for each word position. If 

the test set perplexity for a language model is 500, it means that there are 500 possible 

choices on average for every word position. The higher the perplexity is the more 

branches may follow a word history, the more possible words needing to be predicted 
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statistically. Contrarily, lower perplexity will generally have less confusion in recognition. 

So generally speaking, lower perplexity correlates with better recognition performance. 

However, it is not always true. There have been quite a few reports that showed language 

models with lower perplexity led to worse ASR WER. Therefore, in our experiments, we 

used perplexity as a main language model metric while using ASR WER to verify the 

evaluation results as well. A consistency between the evaluation results may be seen 

using these two measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 
 
 
 
Word-Class mixture language Models 
 
 
 
3.1 Hierarchical backoff model 

The hierarchical backoff language model [15] hierarchically clusters vocabulary 

words into a tree like structure, with each node of the word tree being a cluster. Each 

cluster contains some sub clusters and words belonging to those sub clusters. The bottom 

level of the hierarchical structure, that is, the leaves, represent individual words. The 

closer the node to the root, the more general concept the cluster represented by the node 

contains. 

 The idea of this algorithm is to take advantage of both word n-gram for frequent 

events and the predictive power of class n-grams for unseen event. Concept 

generalization ability and word specificity are balanced and used to estimate probabilities 

of low-frequency or unseen events. Using a trigram event as example, if a trigram is seen 

in the training corpus, the probability of this event is estimated by word trigram model 

got from discounted maximum likelihood estimation, as mentioned in previous section 

about Good-Turing discounting. If it is an unseen event, a class-based trigram model will 

be used for estimation in form of , in which means the jth level class 

the word  belonging to. The idea is formulated as: 
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And if is not seen, the parent level of class , which is  is checked. 

If the trigram class probability in parent level  is still unseen, a more general context 

will be examined for the trigram, which is one level up in the cluster tree. A more general 

context is used recursively until the root of the tree is met, in which case, the word 

trigram back-offs to a word bigram probability. The whole process in formula is 

described as: 
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where )(•α is a factor that guarantees the probabilities sum to 1. 
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The corresponding algorithm to construct a hierarchical word classes will be talked about 

in the next chapter in details. 

 

 

3.2 Word-Class N-gram Mixture Language Model 

Word n-gram language models have been successfully used in many speech 

recognition systems in which large amounts of text data are available for language model 

training. However, low-frequency or unseen events cannot be reliably estimated in many 

applications by using word n-gram language models. Such applications include specific 

topic tasks and conversational speech style tasks, where in-domain text materials are 

usually limited in amount and costly to produce. Consider an example from our telehealth 

task. Word sequences with medical words, such as, “take the amitriptyline”, only appear 

in telehealth dataset once. The probability the system predicts this word sequence will be 

very low if a word n-gram language model is used, even if this sequence is quite possible 

to appear in practice.  

However, if we group words with similar semantic meaning together and make 

use the fact that semantically resembled words can share same word position in sentences, 

we can predict a word through its word class. For example, based on its semantic 

property, we classify the word “amitriptyline” into a group consisting of medicines and 

pharmacologically agents, given a class name as “MDCN”. In the same class group are 

words such as “amoxicillin,” “cimetidine,” “digoxin” and so on. If we assign these words 

with its class name “MDCN”, and count word sequence like “take the MDCN” in the 

dataset, 19 times of such sequences are found in the dataset. Such observation implies a 
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much higher possibility for sequence “take the amitriptyline” to take place, since 

amitriptyline is a kind of “MDCN”. This is just an example showing how class n-gram 

language models help estimate low frequency n-gram event. Not only can they work well 

on low-frequency words, but on unseen events also. Using the same example, suppose a 

sequence like “take the digoxin” needs to be estimated using the language model, 

however such a sequence never occurred in training dataset. Using a word n-gram 

language model, this event might be treated as an event not possible to happen if no 

smoothing technique is used, or as an event with very low possibility if a smoothing 

technique is used such as to back off the possibility of the trigram event to the unigram 

estimate of word “digoxin”. However, using class n-gram model, as long as we know the 

word class “MDCN” of the word “digoxin”, we can estimate its occurrence by the class, 

thus a reasonable estimation of probability of “take the digoxin” is gained even it never 

appears in training set. For such reason mentioned above, class n-gram model is 

considered to be suitable and useful for some domain-dependent language modeling tasks. 

And it has been a common understanding that comparing to word n-gram language 

models, class n-gram language models with good predictive capability on low frequent 

events and unseen events is powerful for some small vocabulary domain-specific 

applications with small amounts of training data. However, class n-gram language 

models are not portable, which means that for different tasks, different word class 

definitions are needed, and class n-gram models need be retrained. So, for some language 

modeling task with enough proper training data, word n-gram language models have been 

reported to perform better than class n-gram language models.  



Considering the characteristics of word and class language models, it is desirable 

to make a mixture model that retains advantages of both class and word n-grams by 

combining their word prediction. In the telehealth project, the in-domain telehealth (TH) 

data is still very small in size, with only 119k words. However, the TH dataset contains a 

large ratio of medical terms - 10.7% of the vocabulary is medical terms. Most of the 

medical terms appear in TH dataset with very low frequencies. An experiment shows that 

68.9% of these terms have frequency lower than 5 times, 57.2% of them appear not more 

than 3 times and 37.8% appear only once. Word n-gram model may miss many quite 

possible n-gram events containing medical terms, leading to poor word sequence 

estimation. A more general class language model will work better under this 

circumstance. However, for a large-sized out-of-domain corpus containing a few medical 

terms, class language model could not manifest its superiority. Therefore, an intuitively 

appealing approach is proposed to interpolate a class language model gained from in-

domain data and a word language model trained from out-of-domain datasets, so as to 

bring advantage of each kind of model into play. 

Denote in-domain class n-gram model by IC and out-of-domain word n-gram 

model by OW, the proposed interpolation method becomes: 
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where the IC and OW models are each a mixture model as well. 

In Chapter 6, experimental results will show that the proposed interpolation 

outperforms both pure word mixture language model and pure class mixture model. 
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Chapter 4 

 

Word Clustering 
 
 
 

For class-based language modeling, we need to group words into classes 

according to their similarity in term of syntactic function or semantic content or both. 

Good word class definitions will help a lot for class n-gram language modeling, by giving 

reasonable class definition to words, thus correctly estimating the word occurrence 

possibilities in a linguistic context.  In order to build meaningful word classes, we have 

experimented on three popular approaches, POS tagging approach, the hierarchical word 

clustering for hierarchical POS back-off language modeling, and automatic clustering 

algorithm. Besides, we investigated medical-term based semantic classes focusing on our 

specific medical domain task and found the latter to be superior to the first three methods 

through experiments.  

 

4.1. POS Tagging Method 

Parts of speech are the traditional name for syntactic or grammatical categories of 

words. Some important parts of speech are noun (NN), verb (VB) and adjective (AD).  

POS tagging is a task of labeling or tagging each word in a sentence with its appropriate 

part of speech. An example of POS tagging using Penn Treebank tag set is: 

He/PRP got/VBD a/DT headache/NN because/CC of/IN the/DT tension/NN. 



 In English, many words can function differently in sentences, for example, the 

word “can” is used as a modal verb in “You can do it”, however in a phrase “a can of 

tuna” it performs as a noun. So, the tagging task tries to determine which one of these 

possible parts of speech is the most likely one for a particular word in a specific sentence. 

The context the word falling into gives important information for finding a most 

appropriate tag, so a way to tag words is to look at the tags of other words in the context 

of the target word. Although the parts of speech of these words may also be ambiguous, 

the essential observation shows that some part of speech sequences are more common 

than others. Besides, the word itself gives lots of information about a correct tag too. 

Thinking about a word that can be noun and verb, say, flour, although it could work as a 

verb in “flour the pan”, the frequency for it being used as a verb is quite low than as a 

noun. Thus, both the tags of other words in the context and the probability of a word 

belonging to a certain POS class need be considered in order to tag words as correctly as 

possible.  

A POS tagging system is trained from some annotated text corpora, using 

techniques as Markov Model [10], Statistical Decision Tree [6] or maximum Entropy 

model [12]. Here we will only briefly talk about Markov Model tagging method. Given a 

manually tagged text as a training set, we can get probability of tag following  using 

the maximum likelihood estimation based on frequencies as: 
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And the probability of a word belonging to a certain POS class is obtained via maximum 

likelihood estimation as: 
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Thus the problem of giving optimal tags to a sentence is: 
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 Making use of a tagging system named “mxpostSoftware” we tagged our training 

corpus with POS tags. The system was trained on annotated Wall Street Journal corpus, 

following Penn Treebank tag set [12]. Penn Treebank tag set is one most widely used tag 

set nowadays, consisting of 45 kinds of tags, and is a simplified version of the Brown tag 

set [9]. We take use of this tagging system to tag our training data sets using the 45 types 

of tags, and then made some modification on the tags based on the need on our specific 

language modeling task for telehealth, whose details will be covered in following 

chapters and sections. 

 Since most English words have more than one part-of-speech tags, POS tagging 

mechanism can assign a word to different word classes. Again, using the word “flour” as 

an example, it can be tagged as NN (noun) or VB (verb). This kind of one-to-many 

mapping for word classes will complicate the speech decoding process, adding a process 
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for guessing the possible word class history. To simplify this problem, we considered to 

further group words with the same set of POS tags into one class. For instance, word 

“dance” is tagged by both NN (noun) and VB (verb) after tagging process, since it can 

work as a noun or a verb in different context. Same set of tags, NN and VB, is given to 

word “guarantee” too. So, in the step of merging tags, these two words are considered to 

be grouped into one class referenced by “NN_VB”. For words being classified into more 

than 3 POS classes, like “above”, which is tagged by RB (adverb), JJ (adjective), IN 

(preposition) and NN (noun), we do not want to keep all these possible POS tags for the 

word, because some of them are really rare in use, like NN for “above”. It does not make 

much sense to keep the rare ones and make the word hard to be grouped with other words 

that are actually similar to it in most of cases. Thus, we truncated the tag list given to a 

certain word by keep only the first 3 POS tags that the word most frequently functions as. 

By counting the frequency of a certain tag given to a word, we rank the tags in an order 

based on frequency from high to low. Lower-frequency tags are truncated by cutting off 

tags falling out of top three positions. And those tags with a frequency extremely lower 

than that of the top ranked tag are also discarded. If we use the example we mentioned 

above to explain this idea, the word “above” will be assigned to a class given a name as 

IN_RB_JJ. 

  

 

4.2 Hierarchical word clustering algorithm 

The method proposed in [15] is to construct the hierarchical structure of 

vocabulary words by recursively merging similar words into groups. The similarity 



between words is decided by the contextual information. Using bigram context as an 

example, the discriminative information between two words is estimated as: 
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in which  is left hand side bigram probability for word , which is the 

probability of the sequence “ , ” and is right hand side bigram 

probability for word , which is the probability for sequence “ , ”. The goal of 

partitioning vocabulary words is to find a set of centroids for clusters  which 

leads to a minimum global discriminative information: 
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And the centroid of cluster is defined as the mean of all context vectors of words 

in the cluster. 
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A context vector of word  is defined asiw }}{},{{)( iii wprwplwp = , where 

 and )},(),...,,({}{ 1 iVi wwpwwpwpl = )},(),...,,({}{ 1 Vii wwpwwpwpr = . In equation (36), 

is a simplified notation for both left hand side and right hand side bigram 

probability for word  in . 

)|( iwkp

iw cO

Thus, the clustering algorithm consists of the following steps:  

• Initial step: find the global centroid of the data space, and set the C words closest 

to the global centroid as the centroids of C clusters. 

• Step 2: for each  find the closest cluster  by calculating , and 

assign it to . 

iw cO ),( ci owD

cO

• Step 3: update clusters 

• Step 4: if GDI >t, with t being a threshold, then go to step 2 

• Step 5: if there is any O whose number of members is less than a threshold k, 

then , repeat from initial step. Else, stop. )1( −← CC

Once C classes have been defined for one level of the hierarchical tree, further clustering 

will be done in each cluster, to grow the cluster tree. 

 In our experiment about POS hierarchical backoff language modeling, we follow 

the technique mentioned in section 3.1., however, considering our specific medical 

domain task, we defined the hierarchical levels of word vocabulary in our own way. 

 Words in vocabulary are tagged with the help of POS tagging system. To 

construct hierarchical levels for a vocabulary, we further group words with most related 

or functionally highly similar tags into a more general class and give the class a new tag. 

For example, words belonging to NNS (plural noun), NNP (proper noun) and NNPS 
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(plural proper noun) are grouped into a more general class named as “noun” represented 

by NN. In the table bellow, we can see more examples of word class hierarchies. 

Moreover, considering the topic of the telehealth task, we added a class for medical terms 

at the second level named as NNM, and further classified nouns in this NNM class into 

four subclasses, which are, disease (D), medicine (M), body structure (S) and meditation 

techniques (T). Also, we added one category for medically related adjectives and gave a 

class name as JJM. It is also in the second level and is a subclass of JJ (adjective). Table 

1 shows three levels of the word class hierarchy with examples. As we can see, some of 

the classes do not have subclasses, while some of them are further splitted into smaller 

classes. It is all depends on word class properties. 

 

Table 1 Basic POS Hierarchical Structure Defined for POS Language Modeling on 

telehealth 

Level 1 Level 2 Level 3 example 
CC (conjunction)   and, or 

CD (number)   one, two 
DTC (common 

determiner)  the, a 

WDT (question 
determiner)  which, whatever 

WP$ (possessive 
determiner)  whose 

DT (determiner) 

PRP$ (possessive 
determiner)  their, your 

FW (foreign 
word)   donde 

IN (preposition)   in, on 
JJC (common 

adjective)  red, good 

Root 

JJ (adjective) 

JJR (comparative 
adjective)  better, happier 
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JJS (superlative 
adjective)  best, happiest 

JJM (medical domain 
adjective)  dizzy, numb 

MD (model)   would, must 

NNC (common noun)  bank, tree 

NNCS (plural noun)  books, cats 

NNP (proper noun)  Missouri, Jackson 

NNPS (plural proper 
noun)  Australians, 

Methodists 

D (disease) anoxia, 
emphysema 

M (medicine) emetin, metformin
S (body 

structure) elbow, neck 

NN (noun) 

NNM (medical 
related noun) 

T (curing 
techniques) 

intubation, 
phototherapy 

POS (possessive)   Jack’s, Emily’s 
PRPF (reflexive 

pronoun)  himself, ourselves 

PRPO (object 
pronoun)  him, us 

PRPS (subjective 
pronoun)  I, we 

PRP (pronoun) 

WP (question 
pronoun)  who, whoever 

RBC (common 
adverb)  fast 

RBR (comparative 
adverb)  faster 

RBS (superlative 
adverb)  fastest 

RB (adverb) 

WRB (question 
adverb)  when, how 

TO (to)   to 
UH (filled pause)   um, huh 
UNKN (unknown 

token)    

VBC (verb, present 
tense)  read VB (verb) 

VBD (verb, past 
tense)  wrote 



VBG (verb, present 
participle)  reading 

VBN (verb, past 
participle)  written 

VBZ (verb, -s)  reads 

 

 The POS hierarchical backoff language models being adopted are based on a class 

definition that maps each individual word to only one class. For words with multiple 

classes, we redefined the classes using the same method we explained in section 4.1., i.e. 

assigning a word using the merged tag got from merging the top ranked tags assigned to 

it. To define a multiple level tags for a word, we followed the 3 level hierarchy 

mentioned above. For instance, if a word is assigned to a class NNC_VBD, its parent 

level class will be assigned as NN_VB with NN and VB being the parent level classes for 

NNC and VBD respectively. 

 
 
 
4.3 Automatic Word Clustering Algorithm 

This is also recognized as Brown’s algorithm [2], which attempts to cluster words 

into n clusters using a greedy clustering method. The idea is to assign each word to a 

distinct class initially. Then at each merging step, two clusters for which the loss in 

average mutual information is least are merged to a larger class. The average mutual 

information at a certain merging step, which is a summation of all pair wise information, 

is defined as: 

 

)()(
),(log),(, mprlpl

mlpmlpI ml∑=            (37) 
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In the equations (37) and (38), l and m are words in class C(l)  and  respectively. 

is the probability that a word in class  follows a word in class C(l) . If 

we use the notation i+j to represent the cluster obtained by merging classes C(i)andC(j) , 

the average mutual information remaining after merging the two classes C(i)and  is 

then: 

C(m)
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By comparing all cluster pairs, we find the two clusters which lead to a loss in average 

mutual information ),(),( jiIIjiL −≡  the least, and merge them into a larger cluster. 

The iterating process ends when the number of clusters becomes n. Further more, 

according to Brown’s finding, the average mutual information can be made larger by 

moving some words from one class to another. So, after a set of classes have been 

derived, the algorithm cycles through the vocabulary moving each word to the class for 

which the resulting partition has the greatest average mutual information. When average 

mutual information could be not be further gained by any potential reassignment of a 

word, the whole clustering process stops. This algorithm is an algorithm, which is 

not effective in terms of processing time.  

)( 3nO

 To see how well the clustering algorithm will work on our language modeling 

task and to see how the numbers of classes defined would affect the performances of the 

language models, in which we attempted several class definitions. 

  

4.4 Medical term classification 
 

Based on the characteristics of telehealth tasks on a medical domain, we 

investigated a method of grouping words into semantic classes for only medical related 

terms, instead of all words from the vocabulary. Currently, our telehealth project is 

 40
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concerned with the medical specialty domain of neuropsychology. Neuropsychology is 

the study of cognitive (language, memory, etc.) and behavioral symptoms that occur in 

people with brain disorders. This branch of psychology covers many medical areas 

involving a large amount of medical terms cross over the fields. Because of this, ASR in 

telehealth project chose data from this area for training aiming to train models that have 

reasonable medical term coverage. The task characteristic determines that the application 

involves quite a large number of medical terms like “neurotransmitter,” “sulfonylurea,” 

etc. To make word classes more meaningful to this particular medical domain problem 

and to avoid overly smoothing data, we propose to group together only words by medical 

semantic categories, such as the names of medicines, diseases and therapeutic techniques. 

In addition, classes such as digits, people’s names are also categorized. The rest words 

falling outside of these categories stand by themselves as singleton word classes. Table 2 

shows the defined classes. Language model trained based on the proposed word class 

definition surpasses the POS and automatic clustering based word classes in performance 

of perplexity. 

Our consideration on grouping only semantically similar words, especially the 

medically-related words together into classes has two aspects. First, telehealth data is in a 

medical domain, which consists of large quantity of medical words. However, these 

words themselves appear only a couple of times or less in the small telehealth dataset. 

Therefore, to estimate their possibility of appearance, we need to group them into 

corresponding classes, and use context information of the class to help estimating word 

occurrence probability. Second, these words with high resemblance in meaning are 

usually found falling into same context. For a word sequence, even though we never saw 



such a string in training data we can assume that this event is possible if similar words 

were seen in such a context. 

 

 

Table 2 Word classes defined for telehealth and examples 

 

  
Description Example # distinct 

words 
Disease acalculia, paraplegia 382 

Medicine phenobarbital, 
precipitant 

525 

Human Body & Organs follicle, capsule 138 

Meditation Method intubation, 
phototherapy 

91 

Medical Equipment & 
Facility 

sigmoidoscopy, 
inhalator 

24 

Symptom(noun) numb, stiffness 37 

Symptom(adjective) dizzy, drowsy 6 

Medical &Chemical 
Object peroxide, triglyceride 66 

Profession Name ophthalmologist, 
oncologist 

65 

Person Name Garrett, Lewis 35 

Number One, two 33 
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Chapter 5 

 

In-domain and Out-of-domain Data Analysis 
 
 

Data directly gained from telehealth (TH) dataset is insufficient for reliable 

language model training. Therefore, large amounts of data from other sources are needed 

for better estimation of n-gram parameters and vocabulary coverage. For proper 

utilization of the heterogeneous datasets, we examine target application data and consider 

proper complementary data sources that match or partially match the target task in 

speaking style and/or content topic. 

 

5.1 Speech style 
 

The TH dataset is characterized by spontaneous conversational speech between 

doctors and patients. The speech style can be categorized as an unplanned dialogue. The 

transcribed data is full of dialogic text, such as sentences beginning with “ok”, “so”, 

“yeah/yep/ya” and “well”. In the dataset, we found 1389 sentences out of totally 10759 

sentences beginning with word “ok”, 437 sentences beginning with “so”, 117 sentences 

beginning with “yeah” or “yep” or “ya” and 148 sentences beginning with “well”. 

Besides, colloquial words like “wanna” and “gonna” also appear in the dataset with 

“wanna” counted 141 times, and “gonna” for 107 times. These kinds of phrases or word 

strings appear with very high frequency in the whole dataset. Focusing on this 
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characteristic, conversational datasets are chosen that share similar speech styles. Such 

datasets include Switchboard (SW) dataset which is transcribed from spontaneous 

telephone conversational speech and Broadcasting News (BN) dataset which includes 

spontaneous conversational speech from talk shows as well as read speech in the form of 

news and voice-overs. Both of these datasets we used for training contains 2.9 million 

words. In addition, Callhome (CH) dataset of telephone conversations is also used 

involving 0.2 million words. 

 

5.2 Topic/Domain 
 
For the telehealth task, medical word coverage is critical. To cover possible events 

involving medical terms, we need more datasets that match the telehealth domain. For 

this purpose we acquired a dataset that comes from conversational speech transcripts in 

telehealth but on topic of dermatology, referred to as TH-D. A slight speech style 

difference exists between these two datasets, with TH-D data being simple question-

answer style which is short in length, while TH data involves long sentences containing 

more explanation on medical issues. Although its topic is on dermatology, TH-D text 

contains a large number of disease names and medicine names which could be quite 

helpful in class parameter estimation. About 7.7% words in the vocabulary of this text set 

are medical terms. Unfortunately, the dataset is also very small with only 37.9k words 

and 2.6k vocabulary. To further improve medical term coverage, we acquired a dataset of 

written style hospital reports (MR) containing 1.5 million words and with a 7.4% of its 

vocabulary being medical terms. 



 The following table shows statistics about the ratio of medical term in the 

vocabularies of each dataset we used for language modeling. 

 

Table 3 Ratio of medical terms in vocabulary of each dataset 

 Vocabulary 
size(k) 

Medical words in 
vocabulary(k) 

Medical 
vocabulary 

ratio(%) 

TH 5.6 0.6 10.7 
TH-D 2.6 0.2 7.7 
SW 26.5 0.3 1.1 
BN 34.6 0.3 0.9 
MR 14.9 1.1 7.4 
CH 6.9 0.2 2.9 

 

 

5.3  Latent Semantic Analysis (LSA) 
 

Latent Semantic Indexing is a method for dimensionality reduction that maps co-

occurring terms onto the same dimensions of the reduced space [9]. It can also be viewed 

as a method of word co-occurrence analysis. Here its function of co-occurrence analysis 

is used to compare correlations between different datasets for language model training.  

Documents for analysis are transformed into term-by-document matrix . SVD 

projection is then computed by decomposing the document-by-term matrix into the 

product of three matrices,  

dtA ×

 

T
ndnnntdt DSTA )( ×××× =                                 (43) 
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in which T is a term by dimension matrix, S is a matrix of singular values of the SVD 

with n be the smaller one of t (number of terms in vocabulary) and d (number of 

documents) and D is a document by dimension matrix. Document correlations are 

calculated as  where  with length-normalized columns. BBCoR T= T
ndnn DSB ××=

 The correlation matrix is in form of document by document matrix with each 

value in it representing the similarity between the ith and jth documents. Thus, the 

correlation matrix is a symmetric one with the diagonal values being 1.0 which implies 

complete similarity (as shown in tables 4, 5, and 6). 

ijV

We used LSA in our project with the purpose basically to identify the datasets that 

are most similar to our target TH dataset, and such datasets may be potentially treated as 

in-domain ones and therefore trained as a class n-gram language model, as talked about 

in section 3.2. 

All datasets involved in our language modeling task are treated as documents to 

form the document-by-term matrix for LSA. Not only unigram terms, but also bigram 

and trigram word sequences are examined to see the relationship of these datasets to the 

target TH dataset. Table 4 shows such relationships at unigram level, from which we can 

see a closer relationship between TH and TH-D which can possibly be viewed upon as an 

in-domain dataset. Correlation coefficients consistent to the unigram case are also seen at 

bigram level which is shown in table 5 and trigram levels which is shown in table 6.  
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Table 4 LSA of unigrams of all datasets 
 

 TH TH-D SW BN CH MR 
TH 1.00 0.47 0.20 0.04 0.10 0.07 

TH-D 0.47 1.00 0.89 0.02 0.06 0.001 
SW 0.20 0.89 1.00 0.04 0.13 0.01 
BN 0.04 0.02 0.04 1.00 0.15 0.04 
CH 0.10 0.06 0.13 0.15 1.00 0.03 
MR 0.07 0.001 0.01 0.04 0.03 1.00 

 

 

Table 5 LSA of bigrams of all datasets 
 

 TH TH-D SW BN CH MR 
TH 1.00 0.68 0.07 0.08 0.07 0.01 

TH-D 0.68 1.00 0. 06 0.49 0. 11 0.001 
SW 0.07 0.06 1.00 0.07 0.14 0.01 
BN 0.08 0.49 0.07 1.00 0.26 0.02 
CH 0.07 0.11 0.14 0.26 1.00 0.02 
MR 0.01 0.001 0.01 0.002 0.002 1.00 

 

 

Table 6 LSA of trigrams of all datasets 
 

 TH TH-D SW BN CH MR 
TH 1.00 0.25 0.06 0.05 0.03 0.01 

TH-D 0.25 1.00 0.04 0.22 0.06 0.0004 
SW 0.06 0.04 1.00 0.1 0.13 0.01 
BN 0.05 0.22 0.1 1.00 0.2 0.002 
CH 0.03 0.03 0.13 0.2 1.00 0.001 
MR 0.01 0.0004 0.01 0.002 0.001 1.00 

 

 



 48

Chapter 6 

  

Experiments 

 A series of experiments were conducted in order to compare modeling techniques 

and corresponding word class definitions. Table 7 is an overview of the experiments 

performed. 

Table 7 An overview of the experiments performed 

Experiment 
target Methods compared 

Weight 
adjustment 
methods 

FWA EM 

LM 
Smoothing 
algorithms 

Katz Kneser-Ney 

POS hierarchical back-off LM Word LM 
LMs Word LM Class LM In-domain class out-

of-domain word LM 

Medical term definition method Automatic clustering 
algorithm POS tagging 

Clustering 
algorithms Medical term definition method 

Automatic clustering 
algorithm on medical 

terms only 

POS tagging on 
medical terms only 

In-domain 
dataset 

definitions 
TH only TH and TH-D TH, TH-D and MR 

 

 

6.1 Datasets description 

 Since telehealth text dataset drawn from transcripts is too small both in 

vocabulary size (5.6k) and total word number (119.7k) for training a good language 

model, we use 5 other datasets coming from other text resources as supplement data, 

which are telehealth-Dermatology (TH-D), Switchboard (SW), Broadcasting News (BN), 
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Callhome (CH) and Medical Report (MR). The general characteristics about topic and 

speaking style of each dataset has been described in chapter 5, here we further summarize 

the properties of each dataset in the following table 8: 

Table 8 A summary of speaking style and topic of each dataset used for language model 

training 

 Speaking style Topic 

TH Conversational unplanned dialogue medical, about 
neurophychology 

TH-D Conversational unplanned dialogue medical, about 
dermatology 

SW spontaneous telephone conversational speech various 

BN spontaneous conversational speech from talk shows; read 
speech in the form of news and voice-overs various 

CH spontaneous telephone conversational speech various 
MR written style, report medical 

 

In addition, the number of words contained in each dataset and the size of 

vocabulary of each of them are shown in Table 9.  

 

Table 9 Size of each dataset and their vocabulary 

 Total 
words(k) 

Vocabulary 
size(k) 

TH 119.7 5.6 
TH-D 37.9 2.6 
SW 2930.6 26.5 
BN 2957.8 34.6 
MR 1467.7 14.9 
CH 164.8 6.9 

Total for 
Training  7678.5 45.4 
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 For pure word trigram and pure class trigram language modeling, each dataset is 

individually used to train language model, and then interpolated to be one large language 

model for project usage. 

 For the word-class mixture language modeling, datasets are treated differently 

based on its property as in-domain or our-of-domain data. 

TH and TH-D data, both containing large ratio of medical terms and coming 

directly from telehealth transcripts, are used for class trigram modeling as in-domain 

datasets. Among other datasets, SW and BN are two large datasets both containing 2.9M 

words for training, which are aimed to cover as many word n-gram events as possible. 

CH, which is a dataset very similar to SW, is used for word trigram language model 

training also. MR which is a written style text on a medical topic is a dataset that needs to 

be considered carefully. Containing large amount of medical terms, it is very helpful to 

cover possible occurring medical terms in practice. Thus, we might be able to treat it as 

in-domain data, with its medical domain property. However, since it has a totally 

different style from the target telehealth data, experiments need be performed to see 

whether it is better to use it as in-domain data for training class trigram language model, 

or to use it as out-of-domain data for training word trigram language model.  

Experiments were also conducted to see how a language model using only 

telehealth data as in-domain data and all others as out-of-domain data will perform. 

 

6.2 Testset description 
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 To test the language models, two test sets are prepared, each of which is taken 

from a certain doctor’s speech and transcripts, we call them Testset1 and Testset2 in this 

thesis. Testset1 contains 5K words and Testset2 is 2K in size.  

 

6.3 Weight Adjustment 

Because we need to combine or interpolate language models trained separately 

from each dataset and to finally form one large mixture language model, how to measure 

or adjust the weight for each language model in the mixture model using interpolating 

technique is the problem that needs to be discussed. Usually, the weight is determined by 

the importance of the language model, or the function it might perform for a certain task. 

The more relevant a dataset is to the target language, the higher weight the language 

model got from it will be discussed. There are a couple of ways helpful for determining 

the weights, which are all tried in our experiments. 

 

6.3.1 Forward weight adjustment (FWA) 

 This is a method that manually adjusts the weights using cross validation set 

perplexity as a criterion. It borrows the idea of the forward searching method for best 

feature searching, thus we name it forward weight adjustment. For one test set, the test set 

perplexity of each individual model is calculated. Language models are ranked according 

to the perplexities value on the test set in an order from low to high. The top two ranked 

models with the first and second lowest perplexities are chosen as candidates, and 

interpolated. Different weights are tried and the best weights are then decided for the two 

candidates by minimizing test set perplexity value. Then the third ranked model is added 



and interpolated in the same way, and so for the fourth model and others. This method 

although does not guarantee to find the optimal weights combinations, however, it is 

simple and experiments show that it is a fairly practical one, and performs very well. 

 

6.3.2 EM algorithm (EM) 

 EM algorithm is an iterative optimization method to estimate some unknown 

parameters given measurement data. It contains two steps, E step and M step. The E step 

is the expectation step which calculates the auxiliary function, )]|,([ Θ= SXPEQ where 

X is observable data, S is hidden states and Θ  is the parameter set. The M step, which is 

maximization step, maximizes Q function over previous iteration parameter  to 

obtainΘ . This method is used in our experiments supposed to find a set of weight values 

for language models that need to be interpolated by minimizing perplexity.  

1−Θt

 The E step in our task is to compute the expectation: 
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in which,  is the word sequence observation, S is the hidden state which represents the 

language model in this case and k is the number of language models need to be 

interpolated. is the weight estimate of current iteration t. 

Nw1

tα

 To meet the constraint that  

 

 52



1
1

=∑
=

k

s
sα                                                                          (45) 

 

The function is reformed to: 
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Then based on (44), (46) is simplified to: 
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To maximize (47), we need to calculate: 
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Solving this equation, we got: 
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The iteration will stop when convergence is reached, that is, when , where δαα <− −1t
s

t
s

δ is a threshold. In the experiments, the threshold is set to be 0.01, which is a reasonable 

small number for convergence. 

 

6.3.3 Cross-validation test 

 Cross validation is a widely used model evaluation method. The main idea is to 

remove some data from the whole dataset, and use the remaining data for model training. 

After training process is done, the removed data is then used as evaluation data for 

checking the performance of the model.  

K-fold cross validation is one kind of cross validation tests. The dataset is divided 

into k subsets. Each time, one out of the k subsets will be used as the evaluation set, and 

the other k-1 sets will be put together to work as the training data. This kind of training 

and evaluation process will be rerun k times, and then the average error across all k trials 

is computed, as the final evaluation result. 

In our experiments, as we mentioned in 6.2, we kept a portion of data as test set 

from each doctor’s dataset, and using the rest data as training data. For the weight 

adjusting process, we used 10-fold cross validation on the training data to run forward 

weight adjustment and EM algorithm, and get average weight values for mixture 

language model training. The reserved test set is later used to test the perplexity and word 

error rate after the LM is gained by interpolating the models trained from all datasets. 

 

6.3.4 Interpolation Weight for Each Dataset 
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 10-fold cross validations were run on TH-D, SW, BN, CH and MR datasets as 

well as the two sub datasets of TH. Each of the TH dataset is one of the two doctors’ 

speech transcripts notified as Dr.  A and Dr. B. For one run on a certain doctor’s data, one 

of the 10 subsets is held as the evaluation data, while the other 9 subsets are used for 

training. A language model gained from this training set is then interpolated with other 

language models got from SW, BN datasets etc. Weights are adjusted using the forward 

weight adjustment method and EM algorithm on the holdout data. Average weight values 

are calculated after 10 rounds of this kind of evaluations on each doctor’s dataset. The 

following tables show the results of such adjustment process. 

Table 10 Average weights got using forward weight adjustment by a 10-fold cross 

validation 

Average Weights for each LM gained from corresponding dataset: Datasets 

TH TH-D SW BN CH MR 

Dr. A 0.46 0.08 0.22 0.12 0.04 0.07 

Dr. B 0.45 0.06 0.24 0.1 0.06 0.09 

 

 

Table 11 Average weights got from EM algorithm by a 10-fold cross validation 

Average weights for each LM gained from corresponding 
dataset: Datasets 

TH TH-D SW BN CH MR 

Dr. A 0.53    0.06 0.21    0.11    0.03     0.05    

Dr. B 0.61    0.04 0.19    0.07    0.04     0.05    
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 The two sets of weights adjusted using the two methods differ from each other to 

some extent. The most obvious difference is on the weights given to language model 

trained from CH dataset. EM algorithm gives more weights to this language model than 

forward weight adjustment does. To see which method works better in this specific task, 

trigram word language models interpolated using weights decided by each method are 

tested in term of test set perplexity. The test set reserved before validation test is now 

used as the test set. The following table is a comparison between these two weight 

adjusting methods. 

 

Table 12 Validation sets PPL on word trigram language models comparing FWA and EM 

weight adjusting methods 

 testset1 Testset2
FWA 130.44 89.63 
EM 131.56 92.47 

 

Experiments show that the word trigram language model with interpolation weights 

decided by EM algorithm got slightly higher perplexity than FWA. Word error rate tests 

were also done with the language models. The results show no obvious superiority of 

either LM gained using the FWA method or that gained using EM method. In our 

following experiments, we interpolated language models using weights adjusted by the 

FWA. 

 

 

6.4 Experiments on Katz and Kneser-Ney smoothing methods 
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 To see which backoff smoothing is more suitable for language modeling of 

telehealth conversations, we tried both Katz and Kneser-Hey smoothing algorithms in our 

experiments. The following table shows comparisons between performances of word 

trigram language models using Kats smoothing and Kneser-Ney smoothing respectively.  

 

Table 13 Testset PPL on both word trigram language models 

 testset1 testset2
Katz 130.58 86.38 

Kneser-Ney 130.52 89.64 
 

From the results shown above, we see that for testset1, Kneser-Ney smoothing 

method worked a little bit better than Katz smoothing in term of test set perplexity, 

however, for testset2, Katz smoothing won the competition by 2.6% (absolute). WER 

rates were tested on the word trigram language models. The results show that, for testset1, 

Kneser-Ney smoothing method got a lower WER by 1.8% (absolute), while for testset2, 

Katz smoothing performed better than Kneser-Ney smoothing method by 1.9% (absolute). 

Thus in model training for telehealth project, we used Kneser-Ney smoothing on 

language modeling for testset1, and Katz smoothing on language modeling for testset2. 

However, in subsequent experiments, we used Kneser-Ney smoothing methods for both 

test sets. 

 

6.5 Experiments on POS hierarchical back-off language model 
 
 These experiments were conducted on training data from TH, SW, BN, CH and 

MR datasets only. Three levels of POS hierarchical structure were used in language 
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modeling process, as mentioned in section 4.2. To see how well this kind of language 

model will work on our telehealth task, we compared it with a word language model also 

trained from the same datasets. The following table shows the results in test set perplexity 

and recognition accuracy. 

 

Table 14 Experiments on test set perplexity of POS Hierarchical backoff language model 

compared with word language model 

 Testset 1 Testset 2 

Word LM 165.80 98.73 

POS Hierarchical backoff LM 220.82 179.23 

 

 The results on test set perplexity show that the POS hierarchical backoff language 

model didn’t work as well as the word language model trained from the same training set 

on telehealth task. The possible problem for POS hierarchical backoff language model 

not working well on the specific task may firstly lie on the difference among the variety 

of dataset styles. As we discussed in chapter 5, the datasets we used come from text 

sources of different styles and topics. Texts of all datasets we used are tagged by the 

same system, while the class n-grams may vary from dataset to dataset. Like in a 

conversational text set, the following sequence of words and tags might happen 

You_PRP are_VBP how_WRB old_JJ 

with a much higher frequency than in a written style where it is nearly impossible to see 

such a sequence because of its grammatical illegality. Such variety of class level n-gram 
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in different datasets may affect the language model performance. Secondly, the POS 

tagging method we used to give tags to a text corpus based on statistic information was 

trained from a manually tagged training corpus – Wall Street Journal. The word classes 

defined in this corpus is mainly based on syntactical rules. However, for text corpora 

coming from spontaneous conversational speech, such tagging system may tag words 

incorrectly. Like we showed in previous sections, a phrase “I am doing good” which is 

not grammatically correct however widely used in daily conversation will be tagged as  

I_PRP am_VBC doing_VBG good_RB 

While “good” is a JJ (adjective). The tagging accuracy reported by the mxpostSoftware 

authors are 96.5% on Wall Street Journal corpus. A small experiment we conducted to 

see the accuracy of this tagging system on our datasets shows a tagging accuracy about 

92%. Incorrect tagging may be a potential problem for this kind of language model too. 

Lastly, the number of classes we defined using POS tagging is small, with 56 classes in 

first level, 101 classes in level 2 and only 5 classes in level 3. Over smoothing data into 

small number of classes may be one of the reasons for the POS language model to lose 

the competition with word language model, too. 

 

6.6 Comparison among clustering algorithms 
 

To see how various clustering algorithms will work on language modeling for this 

task, we trained class-based language models using several class sets defined by different 

word clustering methods mentioned in chapter 4. Table 15 shows the test set perplexities 

resulting from these models. CMed is the class language model based on medical term 
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class definition of Table 2. For class definitions got from automatic clustering and POS 

tagging techniques, 1000 top frequent words were assigned to singleton classes, that is, a 

word with the highest number of occurrence in the training data is assigned to a class 

with only one class member which is the word itself, and the name of the class is 

presented by the word itself too. C43, C273 and C958 models used automatic clustering 

method defining 43, 273 and 958 classes, respectively. Adding the 1000 singleton class, 

they have 1043, 1273 and 1958 word classes for training respectively. POS language 

model used POS tagging technique defining 120 classes, with the 1000 additional 

singleton classes, the total number of tags used in training is 1120. 

All these class language models were obtained through linear interpolation on 

language models trained from each dataset. Class language models trained from 

automatic clustering and combined POS tagging methods failed to beat baseline word 

language model in term of perplexity. A plausible explanation is that these datasets were 

 
Table 15 Test set perplexities of LMs defined using different class definitions 

 
Perplexity 

LM # unigrams 
Testset1 Testset2 

Word 45,5k 130.52 89.64 
CMed 44,2k 127.73 87.92 
C43 1000 + 43 189.39 122.41 
C273 1000 + 273 164.52 109.50 
C958 1000 + 958 150.45 102.99 
POS 1000 + 120 196.19 129.52 
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of different styles and the class clustering grouped together words that were not highly 

correlated syntactically or semantically, and therefore over smoothed data. However, 

class language model trained with medical term class definition decreased perplexity for 

both test sets over the word trigram language model, by 2.18% (relative) for testset1 and 

1.9% (relative) for testset2. Correlated improvements were also seen in speech 

recognition result - word error rate was decreased by 3.4% (relative) for testset1 and 

1.6% (relative) for testset2. This set of experiments showed advantage of grouping only 

medical terms and semantically similar words into classes, which produced meaningful 

classes for our specific telehealth domain task. 

Another set of experiments was conducted to compare the effect of different word 

class definitions by grouping only medical terms as well as people’s names and digits 

using the clustering technique, POS tagging method and CMed. Besides the special 

words that are clustered using these methods, all other words were assigned into singleton 

classes. Three sets of class definitions are defined using automatic clustering methods, 

which contain 50, 300 and 1000 classes respectively, and referred as CM50, CM300 and 

CM1000 models in the following table showing the perplexity results. One set of class 

definition with 120 classes came from combined POS tagging approach, denoted as 

POS120 model. The results in Table 16 still show superiority of CMed to other models. 
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Table 16 Comparison on using different class definitions that only group medical terms, 
names and digits 

 
Perplexity 

LM # unigrams 
Testset1 Testset2 

CMed 44,2k 127.73 87.92 
CM50 42.2k 137.95 94.03 
CM300 44.3k 132.77 92.22 
CM1000 44.5k 132.16 91.31 
POS120 43.9k 139.16 93.62 

 
 

 

6.7 Comparison among language model combinations 
 

In this set of experiments, language models using different interpolation methods 

are compared, and perplexity results are shown in Table 17.   

 
Table 17 Test Set Perplexities of word LM, CMed and CIWO 

 
 Testset1 Testset2 

Word 130.52 89.64 

CMed 127.73 87.92 

CIWO 114.64 86.16 

 
 

In Table 16, CIWO language model was obtained by interpolating class trigram 

language models trained from TH and TH-D datasets which were in-domain data with 

word trigram language models trained from out-of-domain data from other datasets, like 

SW and BN. Significant improvements were made by such mixture models. CIWO 
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model for testset1 reduced the test set perplexity of the pure class language model CMed 

by 10.25% (relative), and reduced the test set perplexity of word language model by a 

12.17% (relative). On testset2, although improvements were not as striking, CIWO still 

decreased perplexity by 2% (relative) on pure class model and by 3.9% (relative) over 

word language model. Tests on recognition accuracy showed consistent results as well, 

with word error rate of testset1 reduced from the case of pure class language model by 

3.4% (relative) and that of baseline word language model by 6.6% (relative). For testset2, 

CIWO reduced word error rate by 0.8% (relative) over pure class language model and by 

2.4% (relative) over word language model. 

 We also tried to train language models by regarding MR as in-domain data, due to 

its medical topic property. Also, a mixture language model using only telehealth dataset 

as in-domain data, while using all other datasets as out-of-domain data was trained and 

tested. The following table shows a comparison among three mixture language models, 

defining in-domain and out-of-domain data differently. 

 

 

 

Table 18 Test Set Perplexities of CIWO language model with different definition on in-
domain and out-of-domain data 

 

LM In-domain Out-of-domain Testset1 Testset2

TH_INDOM TH TH-D,SW,BN,CH 
and MR 114.14 86.23 

TH-TH-D_INDOM TH,TH-D SW,BN,CH and MR 114.64 86.16 

TH-TH-D_MR_INDOM TH,TH-D and 
MR SW,BN,CH 119.05 87.22 
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Results show that language models adding MR data as in-domain data were inferior to 

those using only TH and TH-D as in-domain data. An explanation is that although MR is 

a topic related data, its style is quite different from that of the target telehealth task. It is 

interesting to see inconsistent perplexity results between the two test sets on training 

language model using only TH data as in-domain data. For testset1, this language model 

had lower perplexity than the one using TH and TH-D both as in-domain data. However, 

for testset2, the situation is reversed. Tests on word error rate were made to see how the 

models work in recognition. And the WER result shows that either for testset1 or for 

testset2, language models using both TH and TH-D data as in-domain data perform better 

than those using only TH data as in-domain one.  For testset1, language model with TH 

combining TH-D as in-domain data beats that using only TH as in-domain data by 0.6% 

(relative). For testset2, WER was lowered by TH combing TH-D language model by 

0.2% (relative). 
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Chapter 7 

 

Conclusions 

 

Language modeling is a significant component element for speech or natural 

language application, including automatic speech recognition. Statistic n-gram language 

modeling is a powerful technique for modeling a language. How well a language model 

will work on a task is influenced by the nature of training data. To train a robust language 

model, we need enough training data that are similar to the task data in term of speaking 

style or/and topic domain. Our telehealth project, of a spontaneous conversational styled 

speech in medical domain, is a challenging task facing difficulty of insufficient in-

domain data for language model training. To solve such a problem, efforts were made in 

this work to utilize data from different sources related to target data source either in text 

style or in topic domain, and to combine them in an intuitive but efficient way. This 

thesis mainly focuses on these problems and investigated ways to train such a language 

model for the specific automatic speech recognition task on telehealth. 

 

7.1 Solutions for handling insufficient training data 

 

7.1.1 Data from different sources 
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 To enlarge the training data, data from different sources are collected in for 1) 

reasonable medical terms coverage and 2) n-gram word sequence event estimation. These 

datasets include conversational Switchboard, Broadcast News and Call Home datasets, 

written styled Medical Report dataset and telehealth-Dermatology dataset from telehealth 

but from another medical domain. In order to make a good use of the data, datasets were 

categorized in term of speaking style and topic. Some statistics were also extracted from 

the datasets too. And by using latent semantic analysis, similarity between datasets and 

the target telehealth dataset were measured, which is meaningful for further utilization of 

these datasets in class or word language modeling process. 

   

7.1.2 A novel way to combine in-domain class language model and out-of-domain 

word language model 

Besides choosing data from different data sources, we discussed how to 

efficiently use these data. Approaches to train basic class trigram language models and 

hierarchical POS back-off language models were experimented and compared with basic 

word trigram language models. Based on the characteristics of the specific telehealth 

project, an intuitive but efficient approach was investigated and proposed in this thesis, 

which is to interpolate class trigram language model from in-domain datasets and word 

trigram language models trained from out-of-domain datasets. This kind of mixture 

language model takes advantages of both word language model which is powerful when 

enough training data exists and class model which is able to predict unseen events better. 

By comparing this mixture language model with word trigram and class trigram language 

models, we proved its reasonability and usefulness. 
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7.1.3 A better word class definition on telehealth 

 For class-based and POS backoff language models, a couple of word clustering 

methods, including automatic clustering algorithm, POS tagging were examined, and 

compared in experiments. For the telehealth project, we proposed our own way defining 

semantically meaningful word classes and grouping only medical terms and words with 

obvious semantic resemblance. Definition made in this way considered the properties of 

the medical domain task, and show superiority in language model performance. 

 

7.2 Summery of the Results 

 On our way toward constructing a language model for the task of automatic 

speech recognition task in telehealth, dozens of experiments were conducted to compare 

different language modeling approaches, class definitions, and ways to interpolate 

language models and so on. Although POS hierarchical language models worked well in 

some small domain-dependent task, to our telehealth task, it did not work well. For 

methods combining language models trained from different datasets, experiment results 

show that the way of combining class-based trigram language models trained from in-

domain data and word trigram language models trained from out-of-domain data 

outperformed word trigram and class trigram language models. This novel way has been 

proved to be reasonable and helpful to our telehealth project, with significant 

improvement on test set perplexity and word error rate reduction as well. Regarding word 

clustering approaches, neither automatic clustering technique nor POS tagging method 

could beat the word class definitions based on semantics, where only words with highly 
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similar semantic meanings are grouped, because the latter is defined based on the domain 

properties of this specific task. 

 Experimental results strongly indicate the efficiency of our language modeling 

approach involving reasonable combination of in-domain and out-of-domain data, word 

and class trigram language interpolation and meaningful word class definition. 
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