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CHAPTER 1 

INTRODUCTION 
 
 
 

A Photodetector is a semiconductor device that absorbs optical energy and converts it to 

electrical energy, which usually manifests as a photocurrent. It is a key component in 

optical transmission and measurement systems. Photodetectors are important in optical-

fiber communication systems in the near-infrared region. They demodulate optical 

signals, that is, convert the optical variations into electrical variations, which are 

subsequently amplified and further processed. For such applications, photodetectors must 

satisfy stringent requirements such as high sensitivity at operating wavelengths, high 

response speed, and maximum efficiency.  

 

High efficiency and low-power photodetectors (PD’s) are always sought after in both 

long-haul and local area communication systems. High speed PD’s are used in a wide 

range of microwave photonics applications from fiber optic communication lines and 

optical wireless systems to photonic measurement systems for detection and conversion 

of optical signals, and for microwave generation, as well as for optical control of 

microwave circuits and devices. 

 

Photodetectors are a critical component in light wave systems. As data rates increase, 

implementing high-quantum efficient, short response time, low capacitance (for input to 

receivers), and large-area (for sensitivity and alignment tolerance) photodetectors 
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becomes a critical issue. However, high efficiency, short response time, and a large 

detection area involve tradeoffs that must be intelligently optimized. 

 

A special kind of photodetector called the Metal Semiconductor Metal (MSM) 

photodetector is attractive for many optoelectronic applications, such as optical 

communications, future high-speed chip-to-chip connection, and high-speed sampling, 

because of their high sensitivity-bandwidth product and their compatibility with large-

scale planar integrated circuit (IC) technology.  

 

The electrodes of the MSM photodetector are often interdigitated to increase the active 

region area, while optimizing the electric fields in the carrier collection region. An 

increase in the collection efficiency of Si MSM photodetectors therefore would make 

these devices more attractive for a wide variety of applications. One process to increase 

the collection efficiency of the MSM photodetectors is to use wall-like grated structures 

of submicron dimensions on the photodetector. This concept is used as a benchmark for 

this project.  

 

An increase in charge collection efficiency of a MSM Photodetector can be analyzed 

through two different methods: one is the semiconductor approach and other is the 

electromagnetic approach. In this project, the electromagnetic approach was chosen as 

the simulation tool.   
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The main objective of this project is to perform electromagnetic field analysis to explain 

the improved collection efficiency of grated photodetectors. This analysis of a Si MSM 

photodetector is performed by looking into the transmission of electromagnetic wave 

field components as they travel through the grated structures on the detector into the 

device’s active region. Here, it is shown that there is an increase in the collection 

efficiency for one given wavelength of the incident electromagnetic signal when the wall-

like grating structures on the detector are changed to a square lattice.  

 

The variations in the amplitude of the electric field intensity of the photodetector were 

determined by changing the area covered by the Si gratings on the detector. All the 

simulations were done using the CST Microwave Studio software which is based on the 

Finite Integration Technique. 

 

This thesis is comprised of six chapters which are organized as follows. Chapter 2 

provides the background of a photodetector and its basics. It explains the performance 

criteria of a good photodetector. This is followed by a discussion of a special kind of 

detector called an MSM Photodetector and its functioning. The fundamentals of 

electromagnetic waves and the energy transported by these waves are also presented. 

Finally, the reflection and transmission of the EM waves between two media together 

with equations related to the efficiency of the EM waves for the case of normal and 

oblique incidence are presented in detail.  
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Chapter 3 summarizes previous research work done on the MSM photodetectors. It talks 

about the various attempts involved to increase the efficiency of an MSM photodetector.  

 

Chapter 4 starts with the introduction of different numerical techniques used to solve the 

complicated electromagnetic problems, followed by a brief introduction of the Finite 

Integration Technique (FIT). This chapter ends with the incorporation of the appropriate 

equations into the software used for the analysis.     

 

Chapter 5 deals with the simulation setup and the results obtained. The research work 

done to increase the charge collection efficiency of the MSM photodetector is also 

discussed. It is shown that the square-like gratings improve the efficiency of the 

photodetector, as compared to a wall-like structure in the active region. Simulation results 

along with explanations for the case of variations in the number of Si gratings and 

variations in its dimensions are also presented. 

 

Finally, in Chapter 6, conclusions are drawn and some ideas for further study are 

discussed.  
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CHAPTER 2 

BACKGROUND 
 
 
 

2.1 Photodetector  

Photodetectors are used in many applications of everyday life, from the bar code scanner 

at the grocery store to the receiver for a remote control on a VCR, as well as the 

photoreceiver at the end of a fiber optic cable in an optical communication system. A 

photodetector is an optoelectronic device that absorbs optical energy and converts it to 

electrical energy, which usually manifests as a photocurrent. There are generally three 

steps involved in the photodetection process:  

 

1) Absorption of optical energy and generation of carriers 

2) Transportation of photogenerated carriers across the absorption and/or 

transit region 

3) Carrier collection and generation of a photocurrent, which flows through 

external circuitry 

 

The process of photodetection is sometimes associated with demodulation, when a high-

frequency optical signal is converted into a time-varying electrical signal and further 

processed and rectified. Photodetectors are used to detect optical signals ranging over a 

very wide range of the optical spectrum. The high data rate of the present day optical 

fiber transmission systems imposes severe demands on the response speed of the 

photodetector. In this application, detectors should receive the transmitted optical pulses 
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and convert them, with as little loss as possible, into electronic pulses that can be used by 

a telephone, a computer, or other terminal at the receiving end.  

 

2.1.1 Performance Criterion for a Good Photodetector 

A photodetector must satisfy very stringent requirements for effective performance and 

compatibility. The main performance criteria for good photodetectors are: 

 

1. High sensitivity at the operating wavelengths 

2. High fidelity 

3. Large optical to electrical conversion efficiency 

4. High response speed 

5. Large SNR at the output 

6. High reliability 

7. Low sensitivity of performance to ambient conditions 

 

Because the photodetector is only a part of the whole optoelectronic receiver system, 

most of which is electronic in nature, the design of the detector should be compatible 

with the design and architecture of the rest of the system. This compatibility requires that 

the detector should have a small-size, a low-bias voltage, and can be easily integrated into 

the receiver system. 

 

2.2 Metal Semiconductor Metal (MSM) Photodetector  

Metal-Semiconductor-Metal (MSM) photodetectors are a special kind of photodetectors 

which are attractive for many optoelectronic applications including the next generation of 
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high performance optical communication interconnects. MSM’s are simple to fabricate 

and are compatible with VLSI technology. MSM PD’s have simple device technology, 

fast response, small capacitance and a large active area. Metal Semiconductor Metal 

(MSM) photodetector basically consists of two Schottky barriers connected back to back 

as shown in Fig. 2.1. Light is received at the gap between the metal contacts, and the 

MSM photodetector avoids absorption of light by the metal layer as in a conventional 

Schottky photodiode. For compound semiconductors, the light absorption layer is usually 

deposited on a semi-insulating substrate.  

 

Semi-Insulating Substrate

Undoped active layer 

Schottky contacts

Fig. 2.1 General Structure of a MSM Photodetector 

 

 

 

 

 

 

 

 

Metal-semiconductor-metal (MSM) photodetectors offer an attractive benefit over 

alternative photodetectors, such as conventional p-i-n photodiodes. An MSM 

photodetector is inherently planar and requires only a single photolithography step, which 

is compatible with existing field effect transistor (FET) technology. MSM photodetectors 

are very high speed devices due to their low capacitance, and they typically have very 

low dark currents (current produced without incident light). However, the responsivity 
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(total signal produced from a given optical input) is quite low compared to p-i-n 

photodiodes. The main causes for the low responsivity is the reflection from the metal 

surface and semiconductor surface, the finite carrier lifetime as the carriers traverse the 

gap between the electrodes before being collected, absorption of incident light outside the 

region in which photogenerated carriers can be collected by the electrodes, and surface 

recombination currents and deep traps within the semiconductor material, which may 

lower the detected optical signal.  

 

MSM photodiodes have a much lower capacitance per unit area than p-i-n photodiodes 

and thus are often transit-time limited. The transit time is related to the spacing between 

interdigitated electrodes. A MSM photodiode can be used to improve the feasibility of 

fabricating optoelectronic integrated circuits (OEIC’s) for a fiber optic communication 

system because of its simple and compatible fabrication process. The basic structure of an 

interdigitated MSM photodetector is shown in Figure 2.2.  

 

 

 

Metal 

Semiconductor 

Box Oxide 

Metal 
Contact

Ultra 
Thin  

 

 

 

 Fig 2.2 tor Basic Schematic of an Interdigitated MSM Photodetec
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The integrability of MSM photodiodes with pre-amplifier circuitry comes from the fact 

that 

 

1. MSM photodiodes do not require doping, which eliminates any parasitic 

capacitive coupling between the photodiode and the doped regions within the 

active transistors; and  

2. The Scottky electrodes of the MSM photodiodes are essentially identical to gate 

metallization of field effect transistors (FET’s). 

 

MSM photodetectors suffer from very low quantum efficiencies also because the 

metallization for the electrodes shadows the active light collecting region. Shadowing can 

limit the incident light from reaching the active region of the MSM detector and prevents 

the quantum efficiency from being more than 50% for equal electrode widths and 

spacing. There are design trade-offs in MSM photodiodes for optimizing the speed and 

quantum efficiency. The average carrier transit time in an MSM photodiode can be 

decreased by reducing the absorption layer thickness, increasing the applied bias, or 

reducing the interdigitated electrode spacings.  

 

However, a decrease in the absorption layer thickness results in the degradation of 

responsivity; a decrease in the electrode spacing leads to a degradation of the dark current 

and the breakdown voltage and the requirement for complex lithography. An analysis of 

the energy transported in a MSM Photodetector is possible through two different 

methods. One is the semiconductor approach and other is the electromagnetic approach.  

 

 9



In the semiconductor approach the three basic equations that provide the general 

framework for the charge transport are  

 

Poisson’s Equation: 

                                                   ρψε −=∇ )(div                                                          (2.1) 

 

Carrier Continuity Equations  

 

                                                nnn RGdivJ
qt

n
−+=

∂
∂ 1                                                   (2.2) 

                                                ppp RGdivJ
qt

p
−+=

∂
∂ 1                                                  (2.3) 

 

Where,  

ψ = Electrostatic potential, 

ρ = Space charge density, 

q = Magnitude of the charge on an electron, 

n and p = electron and hole concentrations respectively, 

nJ  and = electron and hole current densities, pJ

nG  and  = Generation rate of electron and holes, pG

nR  and  = Recombination rates for electrons and holes, pR

 

In addition, secondary equations are used to specify particular physical models for 

electron and hole generation, recombination rates and current densities. The analysis of 

the energy transported in a MSM photodetector can also be done using electromagnetic 

approach. In this project, the electromagnetic approach is chosen as the simulation tool.  
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2.3 Electromagnetic Wave Fundamentals 

2.3.1 Electromagnetic Waves 

James C. Maxwell (1831-1879) published his Electromagnetic Field Equations in 1864. 

He brought together previous experimental work and concepts of Gauss, Ampere and 

Faraday, as well as his own knowledge of mathematics to present this analysis of 

electromagnetic fields. With his field equations, Maxwell calculated the speed of 

electromagnetic propagation to be the same as the speed of light, which indicated that 

light is also an electromagnetic field. Fig. 2.3 shows the basic topology of 

Electromagnetic waves. Maxwell’s equations are the basis for the theory of 

electromagnetic fields and waves. They are used in the design of antennas, transmission 

lines, cavity resonators, fiber optics and solving radiation problems. 

  

Electromagnetic 
Waves

Electromagnetic 
Spectrum 

Energy 
Transport

Speed of 
Light 

Wave 
Equation 

Maxwell’s 
Equations 

d  escribed by the

Provide

and all travel at 

are part of 

arising from 

are described by a 

Poynting 
Vector 

Fig 2.3 Topology of the Electromagnetic Waves 
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2.3.2 Wave Equation 

The Maxwell’s equations in differential form are given below 

 

                                                     
t

HE
∂
∂

−=×∇ µ                                                         (2.4)                         

                                                    
t
EJH c ∂
∂

+=×∇ ε                                                    (2.5) 

                                                          vD ρ=⋅∇                                                              (2.6) 

                                                          0=⋅∇ B                                                                (2.7) 

 

Where, E is Electric Field intensity (V/m), H is the magnetic field intensity (A/m), D is 

the Electric Flux Density (C/m2), B is the Magnetic Flux Density (T), µ is the 

permeability (H/m),  ε  is the permittivity (F/m),  is the current density (A/mcJ 2),  and 

vρ  is the Volume charge density (C/m3). 

In free space or a lossless dielectric, Eqs. 2.5 and 2.6 become 

 

                                                         
t
EH
∂
∂

=×∇ ε                                                         (2.8) 

                                                       0=⋅∇=⋅∇ ED                                                       (2.9) 

 

Then, by taking the curl of Equation 2.4 and substituting into Eq. 2.8, 

 

                                     2

2

)(
t
E

t
HE

∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

×∇−=×∇×∇ µεµ                                   (2.10) 

 

But,                                                                                 (2.11) EEE 2).()( ∇−∇∇=×∇×∇

 

                                       2

2
2).()(

t
EEEE

∂
∂

−=∇−∇∇=×∇×∇ µε                                (2.12) 
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Hence, 

 

                                                      2

2
2

t
EE

∂
∂

=∇ µε    V/m3                                                                  (2.13)   

 

When expanded in Cartesian coordinates, Eq. 2.13 becomes, 

 

                                             2

2

2

2

2

2

2

2

t
E

z
E

y
E

x
E

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ µε     V/m3                                              (2.14)     

 

The above equation is called Maxwell’s EM Wave equation. There are many types of 

possible EM waves. All these possible EM waves must obey this special wave equation 

that describes the time and space dependence of the electric field. In an isotropic and 

linear dielectric medium, the relative permittivity is the same in all directions and is 

independent of the electric field.   

 

The electric field and the magnetic field are important concepts that can be used to 

mathematically describe the physical nature of electromagnetic waves such as light. The 

electric field vibrates transverse (i.e. perpendicular) to the direction the electromagnetic 

wave is traveling.  The magnetic field vibrates in a direction transverse to the direction in 

which the electromagnetic wave is traveling and transverse to the electric field. 

 

 Fig. 2.4 illustrates the behavior of an electromagnetic wave that is polarized along the x-

axis and traveling in the z-direction.  These two fields oscillate in a consistent manner so 

that the wave moves forward at a constant rate, the speed of light (c). Light is an 
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electromagnetic wave with time varying electric and magnetic fields, Ex and By 

respectively, which are propagating in space in such a way that they are always 

perpendicular to each other. The direction of propagation of the wave is in the z-direction. 

Electromagnetic (EM) waves are produced by moving charges.  These are changing 

electric and magnetic fields, carrying energy through space.   

 

EM waves require no medium; they can travel through empty space. Sinusoidal plane 

waves are one type of electromagnetic waves.  Not all EM waves are sinusoidal plane 

waves, but all EM waves can be viewed as a linear superposition of sinusoidal plane 

waves traveling in arbitrary directions.  A plane EM wave traveling in the z-direction can 

be described by,  

 

                                           Ex (z, t) = Eo cos2π (ft – z/ λ)                                             (2.15) 

 

 

Electric Field 
Variation

λ

Z

By 

Ex 

Magnetic Field 
Variation

Fig. 2.4 Spatial Variations of E and H Fields for an EM wave traveling in z-direction 
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Where, Ex is the electric field at position z at time t, k is the propagation constant or wave 

number, which is equivalent to (2π/λ), λ is the wavelength, f is the frequency, and Eo is 

the amplitude of the wave. The time varying magnetic fields result in time varying 

electric fields and vice versa. A time varying magnetic field would set up a time varying 

electric field with the same frequency.  

 

2.3.3 Propagation of Electromagnetic Waves 

Electromagnetic waves are the waves which can travel through the vacuum of outer 

space. Mechanical waves, unlike electromagnetic waves, require the presence of a 

material medium in order to transport their energy from one location to another. Sound 

waves are examples of mechanical waves, while light waves are examples of 

electromagnetic waves. Electromagnetic waves are created by the vibration of an electric 

charge. This vibration creates a wave which has both an electric and a magnetic 

component. The propagation of an electromagnetic wave through a material medium 

occurs at a net speed which is less than 3 x 108 m/s.  

 

The mechanism of energy transport through a medium involves the absorption and re-

emission of the wave energy by the atoms of the material. When an electromagnetic wave 

impinges upon the atoms of a material, the energy of that wave is absorbed. The 

absorption of energy causes the electrons within the atoms to undergo vibrations. After a 

short period of vibrational motion, the vibrating electrons create a new electromagnetic 

wave with the same frequency as the first electromagnetic wave. While these vibrations 

occur for only a very short time, they delay the motion of the wave through the medium.  
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Once the energy of the electromagnetic wave is re-emitted by an atom, it travels through 

a small region of space between atoms. Once it reaches the next atom, the 

electromagnetic wave is absorbed, transformed into electron vibrations and then re-

emitted as an electromagnetic wave. While the electromagnetic wave will travel at a 

speed of ‘c’ (3 x 108 m/s) through the vacuum of interatomic space, the absorption and 

re-emission process causes the net speed of the electromagnetic wave to be less than ‘c’.  

 

The actual speed of an electromagnetic wave through a material medium is dependent 

upon the optical density of that medium. When a light passes through a medium, its 

velocity decreases. For a given frequency of light, the wavelength also must decrease. 

This decrease in velocity is quantitated by the refractive index, n, of the medium which is 

the ratio of c to the velocity of light in that medium (v), n = c / v. Since the velocity of 

light is less in media other than in a vacuum, n is always a number greater than one. 

Different materials cause different amounts of delay due to the absorption and re-

emission process.  

 

Furthermore, different materials have their atoms more closely packed, and thus the 

distance between atoms is less. These two factors are dependent upon the nature of the 

material through which the electromagnetic wave is traveling. As a result, the speed of an 

electromagnetic wave is dependent upon the material through which it is traveling. 
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2.4 Reflection and Transmission of an Electromagnetic Wave 

2.4.1 Normal Incidence on a Lossless Dielectric 

When a uniform plane wave propagating in medium 1 is normally incident on an 

interface with a second medium with a different dielectric constant as shown in Fig. 2.5, 

some of the incident wave energy is transmitted into medium 2 and continues to 

propagate to the right (+z direction). In the following discussion, it is assumed that both 

media are lossless dielectrics (i.e., 0, 21 =σσ ). Once again, it is assumed that without loss 

of generality under conditions of normal incidence on a planar boundary, that the incident 

electric field is oriented in the x-direction. It is also assumed that the amplitude  of the 

incident wave is real, with no loss of generality, since this basically amounts to the choice 

of the time origin [1]. The phasor fields for the incident, reflected, and transmitted waves 

are given as: 

iE0

 

Kr

Y

Reflected 
Wave 

Incident 
Wave 

Medium 1 
( 111 ,, ηµε ) 

Ki

Ei

Hr

X

Z

Medium 2 
( 222 ,, ηµε ) 

Et Transmitted
Wave 

 
Er

KtHt

Hi 

 

 

 

 

 

 

 

 

 Z=0

Fig 2.5 Uniform plane wave normally incident on a lossless dielectric boundary  
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Incident Wave: 

                                                                                                           (2.16) zjkii eExzE 1
0ˆ)( −=

                                                      zjk
i

i eEyzH 1

1

0ˆ)( −=
η

 

Reflected Wave: 

                                                                                                          (2.17) zjkrr eExzE 1
0ˆ)( +=

zjk
r

r eEyzH 1

1

0ˆ)( +−=
η

 

 

Transmitted wave 

                                                                                                          (2.18) zjktt eExzE 2
0ˆ)( −=

zjk
t
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Where, 111 εµω=k , 222 εµω=k  and 111 /εµη = , 222 /εµη =  are, respectively, the 

wave number and the intrinsic impedance for medium 1 and medium 2, respectively. 

Note that  is the amplitude (yet to be determined) of the transmitted wave at z =0. 

From Fig. 2.5 the polarities of  and  have been defined to be the same and to be 

in the –y direction, so that 

tE0

iE rE rH

rr HE × is in the –z direction. Note that, at this point, the 

selected orientations of E and H for the different waves (incident, reflected and 

transmitted) are simply convenient choices. The boundary conditions will determine 

whether the phasor fields at the boundary are positive or negative according to these 

assumed conventions. 
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Assuming the incident wave as given, the next step is to determine the properties of the 

reflected and transmitted waves so that the fundamental boundary conditions for 

electromagnetic fields are satisfied at the interface, where all the three waves are related 

to one another. There are two unknown quantities and to be determined in terms of 

the incident field amplitude . Two boundary conditions will be used to determine them. 

The boundary conditions to be employed are 1) the tangential components of the electric 

field should be continuous across the junction and 2) the tangential components of the 

magnetic field intensity differ by any surface current that is located at the interface. It is 

reasonable in practice to assume that this current is equal to zero.  This implies that the 

tangential components of the magnetic field intensity will also be continuous at the 

interface. Thus, the two boundary conditions are the continuity of the tangential 

components of both the electric and magnetic fields across the interface. We thus have, 

rE0
tE0

iE0
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The solution of these two equations yields,  
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The reflection and transmission coefficients are defined as follows 
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The quantities  and Γ τ are called the Reflection Coefficient and Transmission 

Coefficient, respectively. For lossless dielectric media, 1η  and 2η are real quantities; 

consequently, both and Γ τ are real also. Note that, physically, the above coefficients are 

derived from the application of the boundary conditions, which are valid for all media in 

general. Complex reflection and transmission coefficients may result when 2η and/or 

1η are complex (i.e., one or both of the media are lossy), meaning that in addition to the 

differences in amplitudes, phase shifts are also introduced between the incident, reflected 

and transmitted fields at the interface. From Eqs. (2.21) and (2.22) it can be easily shown 

that Γ and τ are interrelated by the simple formula, 

 

                                                              Γ+=1τ                                                          (2.23) 

For nonmagnetic media,  
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Where, 0η is the intrinsic impedance of free space, in which case Eqs. (2.21) and (2.22) 

may be written as,  
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For most dielectrics and insulators, the magnetic permeability does not differ appreciably 

from the free space value. Hence, 021 µµµ ==  and since the characteristic impedance, 

εµ /=Z . Eqs. (2.25) and (2.26) can be written as, 
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Hence, knowing the characteristic impedance of the materials allows one to determine the 

propagation characteristics and amplitudes of the wave that is transmitted into the second 

material and of the wave that is reflected at the interface and propagates back into the 

first material.  If the characteristic impedances on both sides of the interface are equal, all 

of the incident electromagnetic energy will be transmitted into region 2 and none re-

flected back into region 1. This is called matching the media, which has many practical 

applications.   

 

2.4.2 Oblique Incidence at a Dielectric Boundary 

For normal incidence, the reflection coefficient Γ and transmission coefficient τ of a 

boundary between two different media is independent of the polarization of the incident 
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wave, because the electric and magnetic fields of a normally incident plane wave are both 

always tangential to the boundary regardless of the wave polarization. This is not the case 

for oblique incidence at an angle θi ≠ 0. A wave with any specified polarization may be 

described as the superposition of two orthogonally polarized waves, one with its electric 

field parallel to the plane of incidence (parallel polarization) and another with its electric 

field perpendicular to the plane of incidence (perpendicular polarization) [1]. These two 

kinds of polarizations will now be briefly discussed. 

 

2.4.2.1 Perpendicular Polarization 

The expressions for the wave electric and magnetic field phasors of the incident, 

reflected, and refracted (transmitted) waves shown in Fig. 2.6 can be expressed as  
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Reflected Wave: 
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Transmitted wave 

                                                                                     (2.31) )cossin(
0

2ˆ),( tt zxjktt eEyzxE θθ +−=

 22



)cossin(

2

0 2)sinˆcos(),( tt zxjk
tt

t
t ezxEzxH θθθθ

η
+−+−=  

 

Reflected 
Wave 

Incident 
Wave 

Medium 1 
( 0,, 111 =σµε

Hi 

Ki

Ei

Ht

KtEt

Z=0

X

Medium 2 
( 0,, 222 =σµε ) 

Z

Transmitted
Wave

 

Y

θt 

θi 

θr 

Kr

Er 

Fig. 2.6 A perpendicularly polarized wave incident on a dielectric boundary 

Hr

 

 

 

 

 

 

 

 

 

 

 

To determine the amplitudes of the reflected and transmitted wave fields in terms of the 

incident field amplitude , one can apply the boundary condition concerning the 

continuity of the tangential component of the wave electric field across the interface. 

Considering the field orientations as defined in Fig. 2.6, then, at z = 0, 

iE0
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Since this condition has to be satisfied for all values of x, all three components must be 

equal. Thus,  

                                             tri xkxkxk θθθ sinsinsin 211 ==                                        (2.33) 

The first equality in (2.33) leads to  
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Eq (2.34) is commonly referred to as Snell’s law. The second equality in (2.33) leads to 
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Eq. (2.35) is commonly referred to as Snell’s law of refraction. Rewriting the boundary 

condition at any given value of x, (say at x=0) 
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On the basis of the conservation of power we must have, 
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Now substituting Eq. (2.36) into Eq. (2.38) and manipulating the result to solve for i

r

E
E

0

0  

(by eliminating ), the result is, tE0
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Where, is called the reflection coefficient for perpendicular polarization. For 

magnetically identical media (

⊥Γ

21 µµ = ), and using Eq. (2.35), one can obtain the alternate 

expression for , ⊥Γ
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The transmission coefficient ⊥τ can be found from Eqs. (2.38) and (2.39) as  
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For magnetically identical media ( 21 µµ = ), Eq. (2.41) becomes, 
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Hence, 

                                                                ⊥⊥ =Γ+ τ1                                                     (2.43) 

 

2.4.2.2 Parallel Polarization 

The expressions for the wave electric and magnetic field phasors of the incident, 

reflected, and refracted (transmitted) waves shown in Fig. 2.7 can be expressed as  

 

Incident Wave: 
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Fig 2 ary .7 A parallel polarized wave at a dielectric bound

 

 

Reflected Wave: 

                                                          (2.45) )cossin(
0

1)sinˆcosˆ(),( rr zxjk
rr

rr ezxEzxE θθθθ −−+=

)cossin(

1

0 1ˆ),( rr zxjk
r

r eEyzxH θθ

η
−−−=  

 

Transmitted wave 
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Following a procedure similar to that used for the perpendicular polarization case to find 

the amplitudes of the reflected and transmitted waves in terms of , apply the boundary iE0
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condition concerning the continuity of the tangential component of the wave electric field 

across the interface. Therefore, at z = 0,  
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Substituting Eq. (2.47) into Eq. (2.38) and manipulating the result to solve for (by 

eliminating ), the result is, 
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For magnetically identical media ( 21 µµ = ), 
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which is the reflection coefficient for parallel polarization, then eliminating  we find, rE0
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For magnetically identical media ( 21 µµ = ), 
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From Eqs. (2.49) and (2.51) it is noted that, 

 27



)
cos
cos(1 ||||

i

t

θ
θτ=Γ+  

 

These wave propagation concepts can be applied for the analysis of an MSM 

photodetector as the EM wave incident on the gratings of the photodetector reaches the 

device active region.    

 

2.5 Energy Transported by the EM Waves 

Electromagnetic waves transport energy through space. In free space, this energy is 

transported by the wave with speed c.  The magnitude of the energy flux, S, is the amount 

of energy that crosses a unit area perpendicular to the direction of propagation of the 

wave per unit time.  It is given by 

 

                                                      )(/ 0µHES ×=                                       (2.52) 

 

Since, for electromagnetic waves cEH /= , 0µ is a constant called the permeability of 

free space, . The Poynting vector is the energy flux vector. Its 

direction is the direction of propagation of the wave, i.e. the direction in which the energy 

is transported. 
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Energy per unit area per unit time is power per unit area. S represents the power per unit 

area in an electromagnetic wave. If an electromagnetic wave falls onto an area A where it 

is absorbed, then the power delivered to that area is  
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This concept of the transmission of energy can be applied for an MSM photodetector as 

the wave, after propagating in the Si grating region, reaches the active region of the 

detector. Eq. (2.54) will be used in later chapters for analyzing the variations in the 

amplitude of the electric field intensity of an MSM photodetector with and without 

gratings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29



CHAPTER 3 

LITERATURE REVIEW 

 

Photodetectors are semiconductor devices that can detect optical signals through 

electronic processes. The extension of coherent and incoherent light sources into the far-

infrared region on one hand, and the ultraviolet region on the other, has increased the 

need for high speed, sensitive photodetectors.  

 

High speed and high-sensitivity photodetectors have been studied extensively in the past 

ten years [2], owing to their application in broad-band optical communication network 

and optical generation of high-power microwave/millimeter waves [3].  R. G. DeCorby et 

al. [4] developed techniques to improve the speed and efficiency of the photodetectors. In 

this paper they discussed how photodetectors are generally designed with a balance of 

bandwidth, efficiency, and power-handling considerations that are to be used in 

telecommunications and optoelectronics.  

 

The Metal-Semiconductor-Metal photodetector (MSM PD), which is a special kind of 

photodetector, was proposed and demonstrated by Sugeta et al. in 1979 [5]. MSM PD’s 

have excellent potential as high-performance components for high-speed light wave 

communication systems and optoelectronic integrated circuits due to their low 

capacitance per unit area and their high speed. MSM PD’s deserve special attention due 

to their high electrical bandwidth and ability to generate ultrashort electrical pulses [6]. 
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Metal-silicon-metal cladding layers exhibit coupling and absorption characteristics which 

make them useful as photodetectors for integrated optical applications.  

 

In the past few years MSM PD’s have become very popular in the field of optical 

communications because of their numerous advantages [3], [7]. One of the most 

important properties of this type of detector is its high response speed, determined by the 

geometry of the structure and by the low capacity of the detector. The other most 

important property is the efficiency of the MSM photodetector. The basic aim in further 

development of MSM PD’s is to achieve an improvement of these properties. There is 

therefore an increasing interest in the modeling of MSM PD’s and the computer 

simulation of their response. Although this device has a high bandwidth, it suffers from 

relatively low quantum efficiency due to high metal–reflection loss.  

 

Both Si and GaAs metal-semiconductor-metal (MSM) photodetectors are viable 

candidates for monolithically integrated optical receivers in fiber optic communications 

and as free space interconnects [8]. GaAs is more attractive due to its short absorption 

length (~1.0 µm at λ = 850 nm), making it possible to combine large bandwidth with 

good responsivity [9]. These detectors operate at very high frequencies (UV and visible 

spectral range). Si offers the potential of lower cost; direct integration with VLSI 

optoelectronic circuits with good sensitivity, but poor response times have been reported 

[10].   
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Silicon MSM photodetectors have been used since 1960. The use of these silicon 

photodetectors is continually growing in various fields of science such as astronomy, 

medicine, material testing, etc. More recently, with the fast development of 

biotechnology, the need for a photodetector that works in the UV range with high 

responsivity has become clear. M. Caria et al. [11] demonstrated that commercial silicon 

photodetectors have a high responsivity in the UV range (200-400 nm).  In the UV range 

of interest, the absorption length in silicon is approximately 50–800 Ao. They have 

investigated the properties of different types of commercial silicon photodetectors 

including pixel and microstrip devices with different bulk and surface composition from 

different vendors.  

 

Liu et al. [12] have reported improved response speed by fabricating MSM 

photodetectors on Si-on-insulator (SOI) substrates. The key feature in speed enhancement 

is the buried oxide layer that limits the active Si thickness. By reducing the Si film 

thickness to 100 nm, a photo detector bandwidth of 140 GHz at a 780-nm wavelength 

was achieved, however, at the cost of very low quantum efficiency.  

 

Lee et al. [13] have proposed a MSM detector configuration on a 5-µm thick Si 

membrane, where the trapping of light in a thin membrane results in minimal reduction in 

responsivity, while reducing carrier transit times. Other attempts to improve the 

absorption of Si by hydrogenated amorphous Si (a-Si:H) have focused on modifying the 

long-range structural symmetry of crystalline Si by relaxing the k-selection rule for 

optical transition [14]. 
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Over the past few years’ interest has grown in the interdigitated MSM detector due to its 

ease of integration with IC processes, its very low capacitance, and its high speed. Using 

this type of detector, optical communication receivers have been fabricated on integrated 

circuits. Interdigitated finger MSM detectors have been used widely as high-speed 

photodetectors and have also been used as (OE) optoelectronic mixers to generate radio-

frequency sub-carriers in fiber optic microwave links [15]. Recently, an MSM detector 

has been utilized as an OE mixer in a frequency modulated continuous-wave laser 

detection and ranging (LADAR) system [16]. 

 

The response speed of the MSM-PD is largely limited by the transit time of the 

photogenerated carriers, and thus the inter-electrode spacing should be small. As the 

fabrication technology advances, the finger spacing of the MSM-PD decreases down to 

the sub-micrometer and even nanometer scale. MSM-PD’s with only 25 nm finger width 

and spacing were fabricated using e-beam lithography [17]. When the finger spacing of a 

MSM photodetector is smaller than the wavelength of light, the transmission of TE and 

TM waves through the detector fingers becomes strongly dependent on the wavelength 

and polarization of the incident light. 

 

For optimum performance of the MSM photodetector, the amount of energy reaching the 

interface of the detector should be maximum, which also depends on the geometric and 

optical parameters of the structures as well as on the properties of the incident radiation 

(wavelength, polarization, angle of incidence etc.). J.J. Kuta et al [18] demonstrated how 

polarization and wavelength account for the response of a MSM photodetector. For 
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structures which are large compared to the wavelength, sufficiently good approximations 

can be obtained by means of simple geometrical optics models. As feature sizes become 

smaller, the errors caused by neglecting diffraction and interference effects increase. 

When the feature sizes are below the order of a few wavelengths, rigorous 

electromagnetic models are necessary to obtain reasonably accurate results. 

 

It was found from [19] that approximately 30% of the incident light is reflected at the 

interface between the air and the detector surface. If one neglects the grating effect of fine 

metal fingers, these effects, in combination with occultation of the possible absorbing 

surface area by the metal electrodes of, typically, at least 25%, can reduce the overall 

quantum efficiency to much less than 25%.  

 

A special kind of detector called the Resonant Cavity Enhanced (RCE) photodetector, 

having high quantum efficiency was demonstrated by Kishino et al. [20]. This is achieved 

by utilizing reflectors around the active region. The photons make multiple passes across 

the active region, improving the probability of absorption, thereby increasing the 

quantum efficiency. Some attempts have been aimed at improving the Si MSM detector 

quantum efficiency at visible and near IR wavelengths by fabricating vertical and U-

shaped trench electrodes using reactive ion etching and wet chemical etching methods 

[21], [22].   

 

A. K. Sharma [23] proposed a technique to improve the efficiency of the MSM 

Photodetector. A simple ion implantation step was used on a Ni-Si-Ni metal-
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semiconductor-metal photodetector to create a highly absorbing region (~ 1 µm) below 

the Si surface, whereby, the internal quantum efficiency was improved by a factor of ~ 3 

at 860 nm (up to 64 %) and a full factor of ten at 1.06 µm (up to 23 %) as compared with 

otherwise identical non-implanted devices.  

 

S. H. Zaidi and A. K. Sharma [24] demonstrated the performance of a Si MSM 

photodetector incorporating one-dimensional (1-D) arrays of rectangular (wall) and 

triangular-shaped nanoscale structures within their active regions. It has been shown that 

these gratings account for higher transmission of energy, thereby increasing the charge 

collection efficiency.  

 

A new technique was proposed by Stéphane Collin et al. [25] for efficient light 

absorption in MSM photodetectors. It was shown that the confinement of light in sub 

wavelength metal–semiconductor gratings can be achieved by Fabry–Pérot resonances 

involving vertical transverse magnetic and transverse electric guided waves, thereby 

increasing the quantum efficiency. 

 

Recently, Sang-Woo Seo et al. [26] demonstrated a new kind of MSM photodetector 

called an inverted metal semiconductor metal (IMSM) photodetector that has higher 

efficiency. These are thin film MSM’s without the growth substrate. IMSM’s have 

fingers at the bottom of the device to enhance the efficiency. 
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In this thesis, it is shown that having a wall-like Si grating on the active region of the 

detector increases the charge collection efficiency and rearranging the wall lattice to a 

square lattice could improve the collection efficiency further. It has been demonstrated 

how these structural changes at the interface accounts for higher transmitted energy and 

the subsequent generation and collection of carriers at the interface, thus contributing to 

enhanced collection efficiency. Variations in the electric field intensity due to the change 

in the number and the dimensions of square gratings are also demonstrated. It is also 

shown that cladding the detector gratings increases the concentration efficiency of the 

photodetector. 
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CHAPTER 4 

THE SIMULATION METHOD 
 
 
 

4.1 Introduction 

The previous chapter gave an idea about the previous research work done on MSM 

Photodetectors. It discussed the various attempts to increase the efficiency of the 

photodetector. This chapter outlines the different numerical techniques used to solve the 

complicated electromagnetic problems, followed by the basic concepts of the Finite 

Integration Technique (FIT). It concludes with a brief introduction to the simulation 

software used in the current analysis.  

 

Numerical techniques are extremely useful in solving real-life problems with complex 

materials and geometries. There are a variety of electromagnetic modeling techniques. 

For solving complicated electromagnetic scattering problems, there are three main 

numerical techniques. First is the Finite Difference Time Domain (FDTD) technique, 

which was first proposed by Yee in 1966 [27]. This technique is a computational method 

that calculates the temporal evolution of the electromagnetic field within a region of 

space by stepping through time. At each time step, centered finite difference 

approximations are used to calculate the space and time differences on a Cartesian grid. 

The electric and the magnetic fields are defined by six field components, which all lie on 

a different point on the grid, especially defined to fit into the FDTD scheme. This leads to 

an explicit time stepping algorithm which is of second order accuracy in both time and 

space.  
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The category of calculations can be subdivided into steady state and transient analysis. In 

the steady state analysis, the excitation is harmonic. Time stepping is carried out until 

steady state is reached, i.e. all transients have vanished. The excitation used for the 

transient analysis can have any time function. It may be an incident plane wave or an 

impressed voltage or current at discrete points. The result is a function of time, which is 

transformed to the frequency domain with a special FFT to obtain the frequency response 

of the system.  

 

Local methods such as the FDTD method are by necessity formulated as initial value 

problems on a finite portion of space (the computational domain). As such, the solution 

of scattering and radiation problems requires a mechanism to enforce the radiation 

condition which prescribes the behavior of the electromagnetic fields at infinity. This is 

achieved by applying second-order absorbing boundary conditions which truncate the 

FDTD space grid and compensate for reflections on the boundary of the problem space.  

 

The second method is the Electric Field Integral Equation (EFIE) method. The scattering 

of arbitrarily-shaped perfectly-conducting bodies is solved using a surface integral 

equation formulation for the electric field. The electric field (surface) integral equation is 

solved by using the method of moments in which the testing functions of the electric field 

and the expansion functions of the electric surface current density are both appropriate 

triangular-patch functions. The system of equations is then solved by using a LU 

factorization algorithm.  

 

 38



EFIE method is applicable to both open and closed surfaces. However, the EFIE fails 

near internal resonances of a closed body. Several methods are available for eliminating 

this difficulty, but all involve significant additional computation. Another difficulty is 

that the EFIE solution procedure becomes unstable when the dimensions of the scatterer 

become very small with respect to the wavelength of the incident field. The principal 

modification to the original EFIE code includes the use of a new matrix factorization 

routine, which results in a significant reduction in computer time.  

 

The third technique is the Finite Integration Technique (FIT). This technique is discussed 

in detail in the following section, and this method has been used for all the simulations in 

this thesis. 

 

 

4.2 The Finite Integration Technique (FIT) 

The Finite Integration Technique (FIT), was first proposed by Weiland in 1976/77 [28]. 

This numerical method provides a universal spatial discretization scheme, applicable to 

various electromagnetic problems, ranging from static field calculations to high 

frequency applications in the time or frequency domain. In the following section, the 

main aspects of this procedure will be explained and afterwards extended to specialized 

forms concerning the different solver types. Unlike most numerical methods, the FIT 

discretizes the following integral form of Maxwell’s equations, rather than the 

differential one:  
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In order to solve these equations numerically, a finite calculation domain is defined, 

enclosing the considered application problem. By creating a suitable mesh system, this 

domain is split up into several small cuboids, so-called grid cells. This first or primary 

mesh can be visualized in CST Microwave Studio [29] in the Mesh View; however, 

internally a second or dual mesh is set up orthogonally to the first one. The Spatial 

discretization of Maxwell’s equations is finally performed on these two orthogonally grid  

 

Figure 4.1 Allocation of the grid voltages and facet fluxes on the primary and dual grids 
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systems, where the new degrees of freedom are introduced as integral values as well. The 

electric grid voltages e and magnetic facet fluxes b are allocated on the primary grid G 

and the dielectric facet fluxes d as well as the magnetic grid voltages h on the dual grid 

G~  (indicated by the tilde) as shown in Fig 4.1. 

 

Now, Maxwell’s equations are formulated for each of the cell facets separately as will be 

demonstrated in the following. Considering Faraday’s law, the closed integral on the left 

side of Eq. (4.1) can be rewritten as a sum of four grid voltages without introducing any 

supplementary errors. Consequently, the time derivative of the magnetic flux defined on 

the enclosed primary cell facet represents the right-hand side of the Eq. (4.1), as 

illustrated in Figure 4.2 below. By repeating this procedure for all available cell facets, 

the calculation rule can be summarized in an elegant matrix formulation, introducing the 

topological matrix C as the discrete equivalent of the analytical curl operator. Applying 

this scheme to Ampere’s law on the dual grid involves the definition of a corresponding 

discrete curl operatorC~ . 

Figure 4.2 Time derivative of the magnetic flux defined on the enclosed primary cell facet 
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Similarly, the discretization of the remaining divergence equations (Eq. (4.2)) introduces 

discrete divergence operators S and S~ , belonging to the primary and dual grid, 

respectively. As previously indicated, these discrete matrix operators just consist of 

elements ‘0’, ‘1’ and ‘-1’, representing merely topological information. Finally, the 

complete discretized set of the so-called Maxwell’s Grid Equations (MGE’s) is obtained. 
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Compared to the continuous form of Maxwell’s equations, the similarity between both 

descriptions is obvious. Once again, it should be mentioned that no additional error has 

yet been introduced. This essential point of the FIT discretization process is reflected in 

the fact that important properties of the continuous gradient, curl and divergence 

operators are still maintained in grid space: 

 

                                     0~~
== CSSC         ⇔         div rot    ≡   0                                  (4.5) 

                                          0~~
== TT SCSC         ⇔        rot grad   ≡   0                                 (4.6) 

 

At this point, it should be mentioned that even the spatial discretization of a numerical 

algorithm could cause long term instability. However, based on the presented 

fundamental relations (Eqs. 4.5 and 4.6), it can be shown that the FIT formulation is not 

affected by such problems, since the set of MGE’s (Eqs. 4.3 and 4.4) maintain energy and 

charge conservation [30].   
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Finally, the missing material equations introduce the inevitable numerical inaccuracy due 

to the spatial discretization. By defining the necessary relations between voltages and 

fluxes, their integral values have to be approximated over the grid edges and cell areas, 

respectively. Consequently, the resulting coefficients depend on the averaged material 

parameters as well as on the spatial resolution of the grid and are summarized again in 

correspondent matrices as follows: 
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Now, all matrix equations are available to solve electromagnetic field problems on the 

discrete grid space. The fact that the topological and metric information are divided into 

different equations has important theoretical, numerical and algorithmic consequences 

[30].  Therefore, the FIT formulation is a very general method and can be applied to all 

frequency ranges, from DC to high frequencies. 

 

4.3 Implementation of FIT Equations into Simulation Software 

The simulation method used for the analysis is based on Finite Integration Technique 

capable of analyzing broadband structures, specifically in the high-frequency range. CST 

Microwave Studio is a fully featured software package for electromagnetic analysis and 

design in the high frequency range [29]. It simplifies the process of inputting the structure 

by providing a powerful solid modeling front-end which is based on the ACIS modeling 

kernel. Strong graphic feedback simplifies the definition of your device even further. 
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After the component has been modeled, a fully automatic meshing procedure (based on 

an expert system) is applied before the simulation engine is started. The simulators 

feature the Perfect Boundary Approximation (PBA method) and its Thin Sheet Technique 

(TST) extension, which increases the accuracy of the simulation by an order of 

magnitude in comparison to conventional simulators. Since no method works equally 

well in all application domains, the software contains four different simulation techniques 

(transient solver, frequency domain solver, eigenmode solver, and modal analysis solver) 

which best fit their particular applications.  

 

4.3.1 Transient Solver 

The most flexible tool is the transient solver, which can obtain the entire broadband 

frequency behavior of the simulated device from only one calculation run (in contrast to 

the frequency stepping approach of many other simulators). This solver is very efficient 

for most kinds of high frequency applications, such as connectors, transmission lines, 

filters, antennas and many more. A very important feature of the transient solver is the 

excellent linear scaling of the computational resources with structure size. Currently, 

modern personal computers allow the simulation of structures with a size of up to roughly 

100 wavelengths. This simulator is equipped with the new Multilevel Subgridding 

Scheme (MSS), which helps to improve the meshing efficiency and thus, can 

significantly speed up simulations, especially for complex devices. This solver is used for 

all the simulations performed in this thesis. These are some of the important features of 

the Transient Solver: 
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• Efficient calculation for loss-free and lossy structures 

• Broadband calculation of S-parameters from one single calculation run by 

applying DFT’s to time signals 

• Calculations of field distributions as a function of time or at multiple selected 

frequencies from one simulation run 

• Adaptive mesh refinement in 3D 

• Plane wave excitation (linear, circular or elliptical polarization) 

• S-parameter symmetry option to decrease solve time for many structures 

• Calculation of various electromagnetic quantities such as: Electric fields, 

magnetic fields, surface currents, power flows, current densities, power loss 

densities, electric energy densities, magnetic energy densities, voltages in time 

and frequency domain 

• Antenna farfield calculation (including gain, beam direction, side lobe 

suppression, etc.) with and without farfield approximation. Farfield probes to 

determine broad band farfield data at certain angles 

• Simultaneous port excitation with different excitation signals for each port 

 

4.3.2 Eigenmode Solver 

However, an efficient filter design often requires the direct calculation of the operating 

modes in the filter rather than an S-parameter simulation. For these cases, CST 

Microwave Studio also features an eigenmode solver which efficiently calculates a finite 

number of modes in closed electromagnetic devices. When investigating highly resonant 

structures such as narrow bandwidth filters, a time domain approach may become 
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inefficient, because of the slowly decaying time signals. The usage of advanced signal 

processing techniques (AR-filters) provided by CST Microwave Studio allows the 

speeding up of these simulations by orders of magnitude compared to standard time 

domain methods. These are the important features of the Eigenmode Solver. 

 

• Calculation of modal field distributions in closed loss free or lossy structures 

• Adaptive mesh refinement in 3D 

• Calculation of losses and Q-factors for each mode (direct or by using a 

perturbation method) 

• Automatic parameter studies using the built in parameter sweep tool 

• Automatic structure optimization for arbitrary goals using the built-in optimizer 

 

4.3.3 Modal Analysis Solver 

Furthermore, CST Microwave Studio also contains a so-called modal analysis solver 

which works in combination with the eigenmode solver. After the modes of a filter have 

been calculated, this very efficient technique can be used to derive the S-parameters for 

the filter with little additional simulation time. These are the important features of the 

Modal analysis solver. 

 

• Broadband calculation of S-parameters from the modal field distributions 

calculated using the eigenmode solver 

• Re-normalization of S-parameters for specified port impedances 

• Calculation of losses and Q-factors for each mode (perturbation method) 

• Automatic parameter studies by using the built-in parameter sweep tool 
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• Automatic structure optimization for arbitrary goals by using the built-in 

optimizer 

 

4.3.4 Frequency Domain Solver 

The transient solver becomes less efficient for low frequency problems where the 

structure is much smaller than the shortest wavelength. In these cases it can be 

advantageous to solve the problem by using the frequency domain solver. This approach 

is most efficient when only a few frequency points are of interest. The important features 

of the Frequency domain solver are: 

 

• Efficient calculation for loss-free and lossy structures including lossy wave guide 

ports 

• Automatic fast broadband adaptive frequency sweep 

• User defined frequency sweeps 

• Direct and iterative matrix solvers with convergence acceleration techniques 

• Port mode calculation by a 2D eigenmode solver in the frequency domain 

• High performance radiating/absorbing boundary conditions 

• Periodic boundary conditions including phase shift or scan angle 

• Antenna farfield calculation (including gain, beam direction, side lobe 

suppression, etc.) with and without farfield approximation 

• RCS calculation 

• Calculation of SAR distributions 

• Discrete elements (lumped resistors) as ports 
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Each of these solver’s simulation results can then be visualized with a variety of different 

options. Again, a strongly interactive interface will help to quickly achieve the desired 

insight into a selected device. The last, but not the least, outstanding feature is the full 

parameterization of the structure modeler, which enables the use of variables in the 

definition of the selected device. In combination with the built-in optimizer and 

parameter sweep tools, CST Microwave Studio is capable of both the analysis and design 

of electromagnetic devices and hence can solve virtually any high frequency field 

problem. 
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CHAPTER 5 

RESEARCH APPROACH 
 
 
 

5.1 Introduction 

The previous chapter introduced photodetectors, fundamentals of the EM waves, and 

previous work on MSM photodetectors. The basic simulation equation and the software 

used for analysis were also discussed. This chapter presents the methods and models used 

to simulate the MSM photodetector to study mechanisms for increased charge collection 

efficiency in sub-micron scale grated photodetectors. The charge collected is a function 

of the number of carriers produced in the active region of the detector, which in turn 

depends on the energy available to create electron-hole pairs in that region.  

 

The semiconductor photodetector can be studied in terms of the energy deposited by an 

electromagnetic wave of an appropriate wavelength in the detector active region. Besides 

penetration of the electromagnetic wave, it is also important that the incident wave have 

energy equal to or greater than the material bandgap. This chapter deals with the 

electromagnetic field analysis to explain the collection efficiency of grated 

photodetectors. Increase in the collection efficiency for a given wavelength of the 

incoming electromagnetic signal is explained. A normal incident wave is considered for 

the analysis of the Si MSM detector by looking into the transmission of the 

electromagnetic wave field components as they travel through the grated walls into the 

device active region.  
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5.2 Analysis of Square and Wall like Grating Structures 

For silicon detectors the wavelength of interest is 1100 nm, which corresponds to the 

bandgap energy. Thus, it is of interest to know why the grating structures aid in the 

deposition of more energy in the detector surface, thereby increasing carrier generation 

and collection. In the first simulation setup, a silicon substrate was placed in between two 

aluminum contacts as shown in the Fig 5.1. The dimension of the Si substrate was 10 × 

10 × 2 µm3. The device was studied using a plane wave port (PWP) in the z direction 

with a continuous sinusoidal wave (λ 

= 1100 nm) as an excitation signal as 

shown in Fig. 5.2. One can also use a 

double exponential pulse with an 

excitation equation given in (5.1) as 

the input signal, but a continuous sine 

wave has been chosen in order to get a better view of the concept.  

2 µm 

10 µm 10 µm 

Fig. 5.1 Simulated Structure without any gratings 

 

                   Excitation Function = )exp()exp( 21 dtimeEdtimeE ×−+×−−                 (5.1) 

 

Where, and are constants. 1E 2E

 

E-fields were calculated by placing the probe at the interface of the photodetector. Fig. 

5.3 shows the E-field amplitude changes for a detector without any gratings as the EM 

wave reaches the surface of the detector.  
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Fig 5.2 Input Excitation Signal (Continuous Sine wave) 
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In the second simulation setup a silicon substrate was placed in between two aluminum 

contacts over which the Si sub-micron scale wall-like protrusions were placed, as shown 

in Fig. 5.4. The dimension of the Si substrate was 10 × 10 × 2 µm3. The dimension of the 

wall protrusion was 1 × 10 × 1.2 µm3. Another structure with square gratings was also 

reated for comparison as shown in Fig. 5.4 (b). 

 probes at the interface 

between the substrate and the Si protrusions (walls and squares). 

c

 

 

2 µm 

 1 µm 

 1 µm 

 10 µm 

 10 µm 

1 µm 

10 µm

10 µm

(a) 

1.2 µm 

2 µm 

 1.2 µm

 

 

 

 

 

 

 

 

 

 (b) 

 Fig 5.4 Simulated Structure for (a) walls and, (b) square Gratings 

 

The square grating’s dimension was 1 × 1 × 1.2 µm3. The device was studied using a 

plane wave port (PWP) in the z direction with a continuous sinusoidal wave (λ = 1.1 µm) 

as an excitation signal. E-fields were calculated by placing the
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Figure 5.5 shows the E-Field amplitude changes for a wall-like grating, and a detector 

without grating, as the incident electromagnetic wave travels from the restrictive grating 

region to the substrate region. The objective here was to compute the E-fields near the 

interface of the two regions as the electromagnetic pulse penetrates the protective layer 

towards the interior of the surface. Since there is a sudden change in the structure 

dimensions, a change in the impedances of the two areas would likely affect the  
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Fig. 5.5 Incident wave amplitude changes as it travels from the wall-like grating to the substrate 
regions 

reflection and transmission data. The increase in amplitude is noticeable for the wall-like 

structure as shown in Fig. 5.4(a). Fig. 5.6 shows the transmitted wave amplitude using the 

square gratings as compared with the wall-like grating and a detector without any grating. 

It can be seen that there is higher amplitude for a square-shaped grating (Fig. 5.4 (b)) as 

compared to the wall-like structure. 
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 A higher transmission coefficient value translates to more energy being transmitted to 

the substrate region from the grating region. Thus, there is higher energy transmission for 

the wall-like grating structure as compared to a detector without the gratings, as was 

reported in experiments [24].  

 

Now, i

t

E
E

0

0=τ  increase in the transmission coefficient means an increase in the 

transmitted wave amplitude. This can be explained as follows: Consider two regions  
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Fig. 5.6 Incident wave amplitude changes as it travels from the square grating to the substrate 
regions 

 

(grating wall as region 1 and active area as region 2) of the detectors as shown in Fig 5.7. 

Assuming normal incidence from region 1 into region 2, the energy carried by the wave 

is distributed between the reflected and transmitted wave and can be characterized in 
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terms of the incident E field amplitude, reflection and transmission coefficients, and the 

impedances of the two media. The amplitude of the transmitted E-field can be explained 

in terms of conservation of the time averaged power (watts) due to E and H that are 

crossing a given surface A in the direction of the propagation. 

 

                                                

Contact
(Al) 

Wall 
(area = A1) 

Surface (Si) 
without wall
(area = A2)

St

x 

z

2

1
Si Sr

Fig 5.7 Single wall grating on the active region used for analysis 

 

 

 

 

 

 

 

Starting from Eq. (2.54), 

 

                                                                                               (5.2) ∫ ⋅〉〈=⋅〉〈=〉〈
A

ASdASP

 

 Where, S  is the average Poynting vector (watts/m2) derived from the instantaneous 

vector  given by S

                                                          HES ×=                                                            (5.3) 

 
When the wave is traveling from a region of cross sectional area A1 into a region of area 

A2 one can write relationships for incident, reflected and transmitted waves, 
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                                                  111 ASASP ri 〉〈−〉〈=〉〈                                                 (5.4) 

                                                                  and 

                                                          22 ASP t〉〈=〉〈                                                       (5.5) 

 

Hence at the interface, one can write, 
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If the materials in region 1 are the same as in region 2 (η1 = η2), and if we assume that  

A2 > A1, it follows from (5.6) that τ > 1.  Thus, the amplitude of the transmitted wave is 

greater than the amplitude of the incident wave, and an increase in τ (where i

t

E
E

0

0=τ ) also 

translated to more energy deposition in the transmitted or the active region of the 

detector.  

 

Thus, the wall-like structure produces a larger number of electron-hole pairs as compared 

to an MSM detector without the wall-like grating structure. It is expected that a square 

grating, which produces higher values for the transmission coefficient, will further 

improve the collection efficiency of the detectors.  Therefore, the collection efficiency of 

the MSM detectors with square gratings should improve over the wall lattice gratings. 

 56



5.3 Analysis of Square Gratings with Change in Area 

Until now, analysis shows improved efficiency for walls on the active area as compared 

to a bare active region. It is also shown that a square shaped grating has better efficiency 

than a wall lattice. The next step is to determine the number of square lattice that should 

occupy the active region for 

higher efficiency. This is done by 

changing the area (A1), of the 

square Si extensions, while 

keeping the detector area (A2) 

constant. This means that the 

percentage of the area covered by 

the Si extensions over the detector 

is changed. However, the number 

of Si extensions over the detector was kept constant (64). Simulations were carried out 

using multitude number of areas (A1). The front view of the simulated structure is as 

shown in Figure 5.8.   

 

A2 

A1 

Square 
(area = and 1A 1

'A ) 

1
'A  

A2 

x 

z 

Fig. 5.8 Front View of the Simulated Structure with 
different Si extension areas 

 

The dimension of the Si substrate was 10 × 10 × 2 µm3. The square grating dimensions 

were varied from 1 × 1 × 1.2 µm3 ( ) to 0.25 × 0.25 × 1.2 µm1A 3 ( ). As before, the 

device was studied using a plane wave port (PWP) in the z direction with a continuous 

sinusoidal wave (λ = 1.1 µm) as an excitation signal. The comparison plot for the results 

is shown in Figure 5.9. 

1
'A
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Fig 5.9 Incident wave amplitude changes for a wave traveling through different Si 
extension areas

 

 

From Fig. 5.9, it can be seen that as the area of the Si extension is decreased, the E-Field 

intensity is increased after it reaches the steady state. Here, 
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Since A2 is constant and , it follows from Eq. (5.6),  1
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Where, i

t

E
E

0

0=τ , 
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         Fig. 5.10 Plot of the E-Field Vs Number of Spikes 

 

It follows from Eq. 5.8 that a decrease in the area of the Si extension from to  

increases the transmission coefficient,

1A '
1A

τ . It means, in this case also, more energy is 

deposited in the transmitted or the active region of the detector. Hence, the electric field 

intensity is increased because there is a decrease in the area of each Si extension. Further 

simulations were done by changing the number of Si extensions on the detector. 

However, the area of the each Si extension is kept constant (0.25 × 0.25 × 1.2 µm3) 

because the highest E-Field has been obtained with this configuration. Simulations were 

carried out with 36, 64, 100, 144, 196 and 256 number of square Si extensions. It can be 

seen from Fig. 5.10 that as the number of Si extension increases, the Electric Field 

intensity increases. The solid line shows the E-Field without any Si extensions.  
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Hence, the maximum E-Field is obtained when the number of spikes is in between 90 and 

110. With the increase in number of spikes, the percentage of area covered by the spikes 

on the detector increases. The ratio of the area covered by the Si spikes on the detector to 

the area uncovered starts to increase. Hence, the number of reflections due to the adjacent 

Si extensions increases, which account for the increase in the E-field. But after a certain 

critical percentage of the area covered by the Si extensions on the detector, the electric 

field starts to decrease as the number of reflections decrease. Hence, there exists a certain 

critical ratio of the area covered by the Si spikes on the detector to the area uncovered 

after which the E-field starts to decrease.  

 

5.4 Analysis of Cone like Grating Structures 

The next step is to show an increase in the E-field intensity if the structure is changed to a 

cone lattice from a 

square lattice. 

Simulations were done 

with a fixed number of 

Si extensions (64), but 

this time, changing the 

square gratings to cones. 

The structure simulated is shown in Fig. 5.11. The dimensions of the cone gratings were 

chosen such that the area covered by them on the detector is same as the area covered by 

the square gratings on the detector.  

R = 0.57 µm

1.2 µm 

2 µm 

10 µm
10 µm 

Fig. 5.11 Simulated structure with cone gratings 
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Figure 5.12 shows the variations in the amplitude of E-Fields for cone and square type 

gratings. It can be seen from the figure that the amplitude of the electric field intensity for 

cone grating is less than the electric field intensity for a square grating.  
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Fig. 5.12 Incident wave amplitude changes as it travels through cone and square 
gratings

 

To explain the difference between the cone and the square lattice, consider two cases for 

each structure. First consider the propagation of an EM wave at the surface of the grating 

and again consider the propagation of EM waves at the interface of the detector and the 

gratings. 

 

 In case of surface interactions, if a light ray is incident on a surface, part of the light is 

reflected and part may enter the second medium as the refracted ray, and may or may not 

undergo absorption there. Consider the case for the cone and square lattices shown in  
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Fig. 5.13. The amount of light reflected depends on the ratio of the refractive indices of 

the two media.  

 

2A  

θ2 

θ1 

1A  
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1A  
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(b) (a)  
Fig 5.13 Analysis of (a) Cone and, (b) Square grating structures 

 

Recall from Chapter 2, that if the wave travels from one medium to another (in this case 

from air to Si), we can apply an important law, called Snell’s law, which states that the 

product of the refractive index and the sine of the angle of incidence of a ray in one 

medium is equal to the product of the refractive index and the sine of the angle of 

refraction in a successive medium. Algebraically, this can be written as 

 

                                                    1η  sin 1θ  = 2η sin 2θ ,                                                   (5.9)   

where, 1η , 2η  are the two values of refractive index and 1θ , 2θ  are the angles of incidence 

and refraction. The incident ray, the refracted ray, and the normal to the boundary at the 

point of incidence all lie in the same plane.  
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Generally, the refractive index of a denser transparent substance is higher than that of a 

less dense material; that is, the speed of light is lower in the denser substance. So, if a ray 

is incident on the surface, then a ray entering a medium with a higher refractive index, it 

will be bent towards the normal, and a ray entering a medium of lower refractive index 

will be bent away from the normal. Rays incident along the normal are reflected and 

refracted along the normal.  

 

Fig 5.13 shows the front view of the propagation of the EM wave at the surface of the 

cone and square gratings. The area of the detector, and the area covered by the grating 

on the detector, are same for both the cone and the square. One can see from Fig. 5.13 

(a) that as the electromagnetic wave is incident on the surface of the cone at an angle 

2A

1A

1θ , 

the refracted ray tends to move towards the normal. In our case 1η =1, 2η =3.59. Hence, 

the ratio 1/ 12 >ηη . If it is assumed that the angle of incidence, 1θ  is constant, it follows 

from Eq. (5.9) that 21 θθ > . Therefore, the angle of refraction 2θ tends toward the normal 

and also away from the interface, after which, the wave may leak outside the cone 

grating. Hence, not all the energy of the EM wave crosses the interface. This accounts for 

the lesser efficiency of a cone shaped grating. 

 

On the other hand, for the case of a square grating, it is a completely different situation. 

As the EM wave is incident on the surface of the square grating, the angle of refraction 

2θ  bends toward the normal after which it travels toward the interface as shown in Fig. 

5.13 (b). This accounts for the increase in the number of charge carriers at the interface. 

Hence, the overall charge collection efficiency of the detector with square gratings 
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increases.  Thus, one can conclude that even though the interface area of the cone and the 

square lattice may be the same, but the amount of energy crossing the interface is much 

less for the cone. 

 

5.5 Analysis of Square Gratings with Cladding 

However, there is a possibility that the EM wave leaks away for the case of square 

gratings, but is less than that for a cone grating. Further simulations were done with 

doping around the gratings to prevent the leakage of the charges and for the higher power 

transmission into the active region thereby enhancing the collection efficiency due to the 

reflections from the surface.  
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2 µm 

 

 

 

 

 
Fig 5.14 Simulated Structure with doping around the square gratings 

 

Fig. 5.14 shows the structure simulated with all the dimensions of the detector surface 

and the gratings being the same as that of the earlier case, except that the square gratings 

are doped with a material of lower refractive index than Si. A thin layer of doping 

material is doped around the square gratings to increase the charge collection efficiency. 
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 Fig. 5.15 Incident wave amplitude changes as it travels through square gratings with 
and without doping (coating) 

 

Fig. 5.15 shows the simulated results for the case of square gratings with and without 

doping. It can be seen from the figure that there is an increase in the amplitude of the 

electric field intensity for the case of the square gratings with doping than the case 

without doping. Before going into the details, it is of importance to know the basics of 

fiber optics. First, a few equations related to optical fibers are derived and then applied to 

this study.  

 

Fig 5.16 shows how the waves are guided along optical fibers. Light can be guided 

through thin dielectric rods made of glass or transparent plastic, known as optical fibers. 

Because the light is confined to traveling within  the rod, the only loss in power is due to 

reflections at the sending and receiving ends of the fiber and absorption of the fiber 
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material (as it is not a perfect dielectric). The core here is Si with a refractive index Siη . It 

is surrounded by a cladding with refractive index, cη . where, Sic ηη < . Also, 0η  is the 

ve the merefracti  index of dium surrounding 

the fiber (in our case it is =1). When the wave 

is incident at an angle iθ , part of the wave is 

reflected and part of th  wave is transmitted 

into the core with an angle, 2

e

θ . This wave is 

then incident to the claddin  at an angle, 

3

g

θ and again part of it is transmitted with an 

gle tan θ  into the cladding. The case of 

interest here is when tθ = 2/π , where all the 

waves are reflected back into the core and no 

energy is transmitted into the cladding. To 

satisfy this condition of total internal 

reflection, the incident angle 3θ in the core 

must be equal to or greater tha  the critical 

angle, c

n

θ  for the wave in the core medium incident upon the cladding medium.  
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Fig. 5.16 Guiding of waves in a square grating 

Recall Eq. (5.9) and substituting tθ = 2/π we have,  

                                                      sin 

     

cθ  = 
Si

c

η
η                                                            (5.10) 
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To meet the total internal reflection requirement that 3θ ≥ cθ , it is then necessary that    

sin 3θ  ≥
Si

c

η
η . The angle 2θ  is the complement of angle 3θ , and cos 2θ = sin 3θ . Hence, the 

necessary condition may be written as, 

                                                           cos 

 

2θ  ≥
Si

c

η
η ,                                                    (5.11) 

 

Moreover, 2θ is related to the incidence angle on the face of the core, iθ , using Eq. (5.9), 

 

                                                      sin 2θ  = 
Siη

η0 sin iθ ,                                                (5.12) 

 

where 0η is the refractive index of air, or 

 

                                                 
2
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2
2

0
2 sin1cos

⎥
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⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= i

Si

θ
η
ηθ                                      (5.13) 

 

 Eq. (5.11) and then solving for sin Using Eq. (5.13) on the left hand side of iθ  will give  

 

                                                     ( ) 2
122

0

1sin cSii ηη
η

θ −≤                                              (5.14) 

 

The acceptance angle aθ  is defined as the maximum value of iθ  for which condition of 

total internal reflection remains satisfied.  

                                                      

 

( ) 2
122

0

1sin cSia ηη
η

θ −=                                             (5.15) 
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Any ray of light incident upon the face of the core fiber at an incidence angle within the 

acceptance cone can propagate down the core. This means that there can be a large 

number of ray paths, called modes, by which light energy can travel in the core. In this 

case, assume the optimum acceptance angle, aθ = 350. The refractive indices for silicon 

and air are Siη = 3.59 and 0η =1 respectively. After, substituting these values into Eq. 

(5.15), the required refractive index of the cladding, cη turns out to be 3.54.  

 

This refractive index for the cladding was used in the simulations so that all of the light 

that is incident on the square gratings gets reflected back into the detector without any 

leakage. Hence, large amounts of energy get deposited at the detector’s active region 

leading to an increase in the concentration efficiency of the photodetector. 
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CHAPTER 6 

CONCLUSIONS 

 

The main objective of this research was to study the enhanced charge collection 

mechanisms of a metal-semiconductor-metal (MSM) photodetector with gratings. The 

increase in the collection efficiency due to sub-micron scale wall-like silicon gratings on 

the active surface of the detector was studied. The transmission of electromagnetic 

energy due to structural changes at the interface accounts for higher transmitted energy 

and the subsequent generation and collection of carriers at the interface, thus contributing 

to enhanced collection efficiency. Simulations were done using a sinusoidal wave as the 

excitation signal on the MSM photodetector with walls as grating and without any 

gratings. It is shown that there is an increase in the amplitude of the electric field 

intensity for the case of wall-like Si gratings when compared to the detector without any 

gratings. 

 

It was also demonstrated that rearranging the wall structures to a square lattice could 

improve the collection efficiency further. Variations in the amplitude of the electric field 

intensity for the case of a photodetector with square gratings were determined. It was 

shown that there is an increase in the collection efficiency of the photodetector with 

square gratings as compared to the efficiency of the detector without any gratings or with 

wall-like gratings. 
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Results were obtained by changing the percentage of the area covered by the square Si 

gratings on the detector. It was shown that there is an increase in the amplitude of the 

electric field intensity as the percentage of the area covered by the Si gratings on the 

detector decreases. Simulations were done by varying the number of Si spikes covered on 

the detector. It is shown that as the number of spikes increases, the amplitude of the 

electric field intensity increases to a maximum then starts to decrease. Hence, it can be 

concluded that there exists a certain critical ratio of the percentage of the area covered by 

the gratings to the area uncovered over the detector after which the amplitude of the 

electric field intensity starts to decrease. 

 

Simulations were done on the photodetector with cone shaped Si gratings. It was shown 

how the incident wave leaks away from the surface of the grating. Hence, a very little 

amount of energy is accumulated at the interface which accounts for a lesser efficiency. 

However, for the case of square Si gratings, there is a less possibility that the wave leaks 

away from the grating. For higher power transmission into the active region, the square Si 

gratings were doped with a material of refractive index lesser than that of the Si, so that 

almost the entire incident wave is reflected towards the interface.     

 

The scope of further studies is to determine the grating structure that will yield a 

collection efficiency greater than that of the square gratings. Also, it is of interest to find 

the evanescent field modes as the structure dimension changes and their contribution to 

the total collection efficiency.  
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