ESTIMATING RELIABILITY UNDER A GENERALIZABILITY THEORY MODEL FOR WRITING SCORES IN C-BASE

A Thesis presented to the Faculty of the Graduate School

University of Missouri-Columbia
In Partial Fulfillment
Of the Requirements for the Degree
Master of Arts
by
ZE WANG
Dr. Steve Osterlind, Thesis Supervisor

DECEMBER 2005
© Copyright by Ze Wang 2005 All Rights Reserved

The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled

ESTIMATING RELIABILITY UNDER A GENERALIZABILITY THEORY MODEL FOR WRITING SCORES IN C-BASE

Presented by Ze Wang

A candidate for the degree of Master of Arts

And hereby certify that in their opinion it is worthy of acceptance.

ACKNOWLEDGEMENTS

I would like to thank Dr. Steven Osterlind for his guidance in this project and his mentoring throughout my program. A special note of appreciation goes to Dr. Ye Tong for her help in this project's design. I would like to thank my parents Jingfu Wang and Shifang Liu for their support throughout my education.
ACKNOWLEDGEMENTS ii
LIST OF FIGURES iv
LIST OF TABLES v
Chapter

1. INTRODUCTION 1
2. LITERATURE REVIEW 5
Reliability Appraisal 5
Generalizability Theory Overview 9
3. RESEARCH DESIGN AND METHODOLOGY 16
Research Design and Statistical Methods 17
Data Sources 18
4. RESULTS 21
Correlational Analysis 21
Generalized Analysis of Variance 23
Classical Reliability Analysis 26
5. DISCUSSION 29
Overview of Results 29
Importance of Current Study 30
Limitations of Current Study 31
Suggestions for Future Studies 32
REFERENCES 34
APPENDICES 52
VITA 103

LIST OF FIGURES

Figure Page

1. Graphical depiction of classical test theory and Generalizability theory 50
2. Relative and Absolute Error for a Random $p \times i$ Design 51
Table Page
3. Means and Standard Deviations of Writing Skills for Different Gender Groups 37
4. Correlations among Writing Skills for Male Group 38
5. Correlations among Writing Skills for Female Group 39
6. Correlations among Writing Skills for the Combined Group 40
7. Means and Standard Deviations of Writing Skills for Different Ethnic Groups 41
8. Correlations among Writing Skills for Asian/Pacific Islander Group 42
9. Correlations among Writing Skills for Black Group 43
10. Correlations among Writing Skills for White Group 44
11. Correlations among Writing Skills for Hispanic Group 45
12. Distribution of Essay Writing Scores. 46
13. Three Facet $p \times(i: t) \quad$ Design Treating All Facets as Random 47
14. Analysis of the $p \times(i: t)$ Design with t Fixed 48

Chapter 1

Introduction

Reliability is a statistical measure of accuracy in mental assessment. The more a measure is reliable, the greater its precision. Obviously, then, the reliability of a test is an essential concern of test developers and users. According to the Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, \& National Council on Measurement in Education, 1985), obtaining and reporting evidence concerning reliability and errors of measurement are fundamental responsibilities of test developers and publishers.

Readers may be already familiar with the reliability conceptions in classical test theory (CTT). Under CTT, an observed score consists of a true score and an error score; and, then, reliability is a measure of the agreement between the observed and the true scores. The concept of reliability approached in CTT can be depicted as the consistency among trials. The statistical representation of reliability in CTT is the proportion of observed score differences that are due to true differences in the attribute being measured. There are different methods of estimating reliability such as test-retest reliability, alternate forms, inter-rater reliability, internal consistency, etc. Each method of reliability estimation addresses one source of error (that is, the discrepancy between the observed score and the true score).

These CTT concepts, however, are extended in modern approaches to reliability appraisal, specifically Generalizability theory (G theory). G theory is a much more psychological approach to measurement than is assessment under CTT. In this
approach, an individual's "latent traits" are what interest test developers and users. A latent trait is an underlying ability and represented a cognitive process, such as reading or reasoning. Given a sample of test items to appraise the latency, the question G theory tries to answer is how well those items represent the universe of all possible items which are appropriate indicators of the particular latent trait being measured. Under G theory, test developers and test users are concerned with the accuracy of generalizing from a person's observed score to the average score that person would have received under all the possible conditions that the test user would be equally willing to accept. Unlike CTT, G theory can extract variances from different sources. In other words, G theory takes into consideration different sources of error simultaneously. Those different sources are multidimentional facets. With the statistical assistance of factorial ANOVA, G theory decomposes the observed score difference and analyzes the variances of those facets.

G theory does not supercede or negate CTT. More accurately, it can be viewed as an extension of CTT. The universe score in G theory is analogous to the true score in CTT. Both theories tap the systematic variation in the population of test-takers. Errors are assumed to be independent of true scores and uncorrelated. G theory also assumes that the samples selected (of persons, raters, items, etc.) and used to estimate the error variances comprise random samples from their respective populations (http://www.measurementexperts.org/learn/theories/theories_gt.asp). Reliability (in CTT) and generalizability coefficients (in G theory), as indicators of how dependable a test is, are joint characteristics of the test and examinee groups. Population-specific as they are, those coefficients are not just a characteristic of a test. Just as the norming group should be representative of the targeted population in the CTT world, the
universes of admissible observations should be defined in advance in the G theory domain.

A brief comparison between CTT and G theory is depicted in Figure 1.

<Insert Figure 1 About Here>

Two kinds of study are distinguished in G theory: Generalizability (G) studies and Decision (D) studies. The purpose of a G study is to provide information about sources of variation in measurement; it is usually associated with the development of a measurement procedure. A D study is to use the information from G studies to design the best application of the measurement for a particular purpose.

Applying G theory in the assessment of students' writing ability is important in that different aspects (facets) of individual score differences can be quantified and used in future decision making.

College Basic Academic Subjects Examination, (College BASE) is a nationally standardized achievement examination of general education skills. According to the test manual, College BASE is a diagnostic, criterion-referenced, achievement test (Osterlind \& Merz, 1990). It evaluates knowledge and skills in English, mathematics, science, and social studies, usually after a student completes a college-level core curriculum. College BASE, with emphases on concepts and principles derived from course materials, is developed to accurately assess students' academic progress. It bridges generalized aptitude tests for college entrance and specialized department exams. Not only does it assess basic and enduring knowledge in each of the four subject areas, but also it provides performance rankings in higher order thinking skills, namely, interpretive, strategic and adaptive reasoning abilities. In addition to testing general academic knowledge and skills in campus-wide assessment programs, College

BASE also serves as an exam to qualify individuals for entry into teacher education programs (Assessment Resource Center, 2005).

The four subjects are the four broadest domains in College BASE. And then, from broadest to most specific, there are four tiers: subjects, clusters, skills and enabling subskills. There are altogether four subjects, nine clusters and twenty-three skills. A long form of College BASE consists of 180 multiple-choice questions and one essay prompt, which is supposed to test one of the English writing skills.

Three writing skills are identified and tested in College BASE: Skill 104 (Understand the various elements of the writing process, including collecting information and formulating ideas, determining relationships, arranging sentences and paragraphs, establishing transitions, and revising what has been written), Skill 105 (Use the conventions of standard written English), and Skill 106 (Write an organized, coherent, and effective essay). Skills 104 and 105 are tested in the form of multiple-choice questions.

The introduction of G theory to the analysis of those multiple-choice writing items will help detect the sources of score variances, and adds to the reliability and validity evidence of the writing cluster in College BASE.

This study appraises the reliability of writing scores in College BASE by both traditional methods and G theory. They are appropriately contrasted. Another purpose of this study is to examine the consistency between multiple-choice questions and essay writing in College BASE.

Chapter 2

Literature Review

Reliability Appraisal

The reliability of a test is the extent to which the test yields consistent scores. In addition to the classical test theory, there are other modern methodological approaches to reliability estimation, among which are G theory and IRT.

In CTT, each observed score is comprised of a true score and an error score which is a random variable, independent of true scores and uncorrelated with each other. The true score model in CTT looks like this: $X=T+E$, where X is the observed score, T the true score and E the error.

The true score in CTT is determined by the amount of attribute being measured that the test taker has. It is a person's true ability that underlies responses to a test. The error score is the difference between a person's observed and true scores. It represents measurement error. Measurement error comes from many different sources. On the part of the examinee, there are errors from physical condition on the day of the test, fluctuation in memory, test anxiety, etc. On the part of test administration, there are errors from deviation from standard directions, environmental conditions, poor relationship between tester and examinee, and so on. Besides, there is also an error related to test construction, such as content sampling error or ambiguity of wording of items. If the test includes subjective scoring, there is another error from test scoring. All those sources of error affect the observed scores and result in loss of reliability of a test.

In MacMillan's (2000) brief comment on CTT, he describes:

One is operating within classical test theory if one (a) speaks of the reliability of a test with a common standard error of measurement for all test takers, (b) accepts that the measure of a person is simply the total score of mean score of that person on a particular test, or (c) believes that the only way individuals can be compared across different test forms is to have equivalent test forms.

MacMillan (2000) further mentions that reliability in CTT is defined as a ratio of true score variance to observed score variance and techniques related to CTT include linear scaling or equating and regression.

Despite numerous potential sources of error, classical reliability theory doesn't differentiate the error term and acts as if there is only one single error source. The true score model represented in the "variance" world looks like this: $\sigma_{X}^{2}=\sigma_{T}^{2}+\sigma_{E}^{2}$. That is, the variance of the observed scores is decomposed into the true score variance and the error variance. The reliability coefficient of a test is the ratio of σ_{T}^{2} to σ_{X}^{2}. Conceptually, reliability implies how closely an observed score approximates an individual's true score. The methods used in classical reliability analysis include test-retest reliability, interrater reliability, internal consistency, etc. Among them, internal consistency measured by Cronbach’s coefficient alpha or Kuder-Richardson formula 20 is the most seen in literature of classical reliability.

From the definition of reliability in CTT, we can see that a reliability coefficient tends to be higher if the test is associated with larger true score variance. Therefore, factors affecting a reliability coefficient include group homogeneity, range of item difficulty levels, test length, etc. If the examinee group is more heterogeneous, the items are at various difficulty levels, and the test is longer, the reliability of the test tends to be higher. The term indicating the magnitude of measurement error is
standard error of measurement (SEM) of a test. The SEM of a test in classical reliability theory is the same for all people.

G theory was first introduced by Cronbach and colleagues in response to the limitations of CTT (1963, 1972). The attractive characteristic of G theory is that it investigates and analyzes multiple sources of error with one design.

In G theory, the observed score has more components. For example, in an achievement test, an individual score on a particular item is affected by a persons effect (systematic differences among people's achievement, or object of the measurement), an items effect (variability due to item difficulty), and a residual including the person-by-item interaction (the difference in ordering of students on different items due to the educational and experiential histories that students bring to the test (Shavelson \& Webb, 1991, pp.5-6)). An observed score for one individual on one item can be stated as:

$$
\begin{equation*}
X_{p i}=\mu+\left(\mu_{p}-\mu\right)+\left(\mu_{i}-\mu\right)+\left(X_{p i}-\mu_{p}-\mu_{i}+\mu\right) \tag{1}
\end{equation*}
$$

The first term on the right-hand side of the equal sign is the grand mean in the population and universe. The grand mean is constant for all people (and has no variance). The second term designates a persons effect, the third an items effect, and the last the residual effect involving the interaction and all other sources of error not identified in this design. The last three terms are random effects and have a distribution. Statistically, we can prove that the expected value of μ_{p} is equal to μ.

The variance of those $X_{p i}$ scores can be decomposed corresponding to the above equation.

$$
\begin{equation*}
\sigma^{2}\left(X_{p i}\right)=\sigma^{2}(p)+\sigma^{2}(i)+\sigma^{2}(p i, e) \tag{2}
\end{equation*}
$$

That is to say, the variance of observed scores can be partitioned into independent sources of variation due to differences among persons, items, and the residual term which includes the person-by-item interaction.

IRT, sometimes called latent trait theory, is another modern test theory (opposed to CTT). IRT is to evaluate the degree of precision and breadth of scales that are used to measure latent constructs, or underlying traits of concepts that are not directly observable and must therefore be measured indirectly. It is a psychologically based theory of mental measurement that specifies information about latent traits and characteristics of stimuli (e.g., test items and other appraisal exercises) used to present them (Osterlind, 2005).

Both G theory and IRT are more psychological approaches to measurement than CTT. However, they are fundamentally different. The G theory approach is still observed score analysis like CTT, while IRT separates the people and item characteristics and is therefore sample-free. On the other hand, IRT requires strong assumptions such as unidimensionality and local independence. Those are not required in G theory.

Lee and Frisbie (1999) compared four reliability estimation methods for test scores composed of testlets using empirical data. Those four approaches were: stratified coefficient alpha, Cronbach's alpha, IRT information function, and a G coefficient. Their main purpose was to investigate the appropriateness and implication of using a G theory approach to estimating the reliability of scores from tests composed of testlets. The magnitude of overestimation using Cronbach's alpha based on item scores in estimating the reliability of test scores composed of testlets was about 0.04 relative to the testlet approach with G theory. "Local dependence" arising
from items having a common stimulus results in overestimation of reliability of scores in a similar way when using IRT approaches. Lee and Frisbie (1999) also contrasted the Cronbach's alpha approach and the G theory approach in terms of confidence intervals. Although the confidence interval for the true score using the generalization coefficient was slightly wider than that using Cronbach's alpha based on item scores, the difference was small that it is not likely to lead to serious misinterpretation of the scores in a practical sense.

MacMillan (2000) in his study dealing with large sparse data sets used the CTT, G theory and multifaceted Rasch model (an IRT model) approaches to detecting and correcting for rater variability. Those approaches were compared. Both the CTT and multifaceted Rasch indicated substantial variation among raters. However, the rater variance component with the G theory approach suggested little rater variation.

Generalizability Theory Overview

G theory is a conceptual approach to measurement that focuses on understanding how well the components of a particular assessment occasion represent their domain (Osterlind, 2005). Shavelson \& Webb (1991) define generalizability theory as a psychometric theory of dependability of behavioral measurements. In their book, Generalizability theory: A primer, Shavelson \& Webb (1991) introduced basic concepts and statistical model underlying G theory. Examples of G studies with crossed, nested, and fixed facets were presented. D studies and generalizability coefficients were explained and compared. This book provides a good introduction to G theory and is easy to understand. Complicated mathematical and statistical formulas were avoided so that readers could have a general picture of G theory without digging
too much into calculations behind it.
Generalizability theory by Brennan (2001a) is by far the most complete description of G theory. In this book, Brennan describes the relationships among G theory, factorial ANOVA and CTT by saying that CTT and ANOVA are parents of G theory. Examples of different designs are throughout the book. On the part of calculation are how different variance components constitute mean square errors, how the degrees of freedom for each facet are calculated, how different error terms come into play, etc. This book is divided into three sets of chapters in terms of complexity of the topics. The first set contains fundamentals of univariate generalizability theory. They are sufficient to perform many G analyses as well as to understand most literature on G theory. The second set is about statistical complexities and more advanced topics in univariate theory such as the variability of estimated variance components and unbalanced designs. The third set is devoted to multivariate G theory, where each object of measurement has multiple universe scores. Covariance components in addition to variance components should be considered in a multivariate G analysis. G theory is also contrasted to other advanced measurement theories such as IRT in Brennan's book.

Swartz et al. (1999) listed three reasons that G theory is important for writing assessment. First, G theory enables researchers to simultaneously estimate the magnitude of multiple independent sources of error variance. Second, the partitioned estimated variance components can be used to carry out Decision studies. Third, G theory allows the estimation of test score reliability based on whether the scores will be used to make relative or absolute decisions. That is, G theory allows for different ways of calculating reliability for different decision-making purposes. While CTT
assumes relative use of test scores, G theory expands CTT in the sense that how reliable the scores are depends on the use of those scores. G theory is not only a theory that looks into reliability, but also it has an element of the validity of test scores.

In summary, G theory enables the analyst to isolate different sources of variation in the measurement and to estimate their magnitude using the analysis of variance (Shavelson \& Webb, 1991, pp.14-15). The variance components estimated in G study can be used in future applications of the measurement.

Universe of Admissible Observations and Facets

From the perspective of G theory, a measurement is considered as a sample from a universe of admissible observations. An admissible observation is one that the decision maker is willing to accept as interchangeable with other admissible observations for the purpose of making a decision (Shavelson \& Webb, 1991, p.3). The universe of admissible observations is defined in terms of sources of variation, or facets. The universe can have one single or more than one facet. Each facet has conditions. "Facets" and "conditions" in G theory are similar to the concepts of "factors" and "levels" in an experimental design. For example, in a G study design of an achievement science test, items is a possible facet. Each item in the test can be considered as a condition of this facet. An individual's score on an item is an observation. If the decision maker (test developers and users) decides that each item is a sample from a universe of items that are acceptable to test the latent construct, the variation associated with the facet items can be estimated.

Suppose we have the entire universe of items and all those items are tested on an individual. The mean score of those scores is the universe score of that person $\left(\mu_{p}\right)$.

The variance of the universe scores over all persons in the population is the universe score variance (Brennan, 2001a, p.10). When we develop a measurement of a latent trait, we want as much (proportion) as possible variance is due to the universe score variance, and little variance due to facets or residual.

G studies and D studies
A distinction is necessary to make between Generalizability studies (G studies) and Decision studies (D studies) in G theory. The purpose of a G study is to identify and decompose the observed score variance into different sources. Whatever the sources are depend on the definition of the universe of admissible observations. As many as possible potential sources of variation should be included in a G study. The purpose of a D study is to use the variance decomposition from G study to design applications of the measurement for particular purposes. In other words, G studies are usually associated with the development of a measurement procedure, while D studies use information from G studies and apply the procedure. Gao and Brennan (2001) compared the two kinds of studies in their study of variability of estimated variance components and related statistics in a performance assessment. A G study focuses on the magnitude of sampling variability arising from distinct sources in a universe of admissible observations. A D study collects new data by selecting new samples of the measurement procedure from a prespecified universe of generalization and new samples of objects of measurement from the population. The accuracy of variance component estimates impacts estimation and interpretations of measurement error variances and generalizability coefficients. Also, the estimated variance components are subject to sampling variability. Researchers should be aware of sampling variability that affects the precision of estimating variance components in G and D
studies.
When applying the results from a G study to a D study, one important question is what kind of decision is to be made. Is it going to be a relative decision or an absolute one? For a relative decision, people are to be rank ordered or assigned percentiles. In contrast, for an absolute decision, an estimate of individuals' universe score is to be obtained for the purpose of screening or selection. With an absolute decision, a person's universe score is irrelevant to other people's universe scores.

Generalizability Coefficient and Index of Dependability
Generalizability coefficient in G theory is analogous to the reliability coefficient in CTT. It is the ratio of universe score variance to the expected observed-score variance. The expected score variance includes both the universe score variance and the relative error variance. The formula for Generalizability coefficient is appropriate when making a relative decision.

In the former scenario of achievement test with items as the only facet, the relative error is

$$
\begin{equation*}
\sigma_{r e l}^{2}=\frac{\sigma_{p i, e}^{2}}{n_{i}} \tag{3}
\end{equation*}
$$

where n_{i} is the number of items in the measurement. This is true because $\sigma_{p i, e}^{2}$ in Equation 2 is the error variance for a single item. The amount of error for an instrument is inversely proportionate to its number of items.

The formula for calculating Generalizability coefficient is:

$$
\begin{equation*}
\rho^{2}=\frac{\sigma_{p}^{2}}{\sigma_{p}^{2}+\sigma_{r e l}^{2}} \tag{4}
\end{equation*}
$$

The G coefficient shows how accurate the generalization is from a person's
observed score, based on a sample of the person's behavior, to his or her universe score (Shavelson \& Webb, 1991, p.14). It reflects the proportion of variability in individuals’ scores that is systematic and attributable to universe-score.

If an absolute decision is to be made, index of dependability is the proper coefficient to be used. Index of dependability is the ratio of universe score variance to the sum of universe score variance and absolute error variance.

$$
\begin{equation*}
\phi=\frac{\sigma_{p}^{2}}{\sigma_{p}^{2}+\sigma_{a b s}^{2}} \tag{5}
\end{equation*}
$$

In calculating ϕ, not only the residual variance (interaction and unidentified error) but also the items variance contributes to the absolute error.

In the former scenario of achievement test,

$$
\begin{equation*}
\sigma_{a b s}^{2}=\frac{\sigma_{i}^{2}+\sigma_{p i, e}^{2}}{n_{i}} \tag{6}
\end{equation*}
$$

The difference between relative and absolute decisions is reflected in how the relative and absolute errors are calculated. Relative error only involves interactions that include the persons effect (object of measurement). In contrast, absolute error involves all variances except for the universe score variance. This difference is easy to depict with the Venn diagram in Figure 2.
<Insert Figure 2 About Here>
Both generalizability coefficient and index of dependability involve n_{i}, therefore, we can determine how many items are needed in a measurement in order to reach a particular ρ^{2} or ϕ. Here is when D studies come into play.

Random and Fixed Facets

A facet can have an infinite number of conditions in the universe or a finite
number of conditions in the universe but not all conditions are included in a measurement design. In this case, the facet is a random one. The conditions in a particular measurement design are a sample of all possible conditions. On the other hand, a measurement can exhaust all possible conditions of a facet in a G study and therefore the facet is a fixed one. There is no variance component for a fixed facet in a G study. Statistically, G theory treats a fixed facet by averaging over the conditions of the facet. Shavelson \& Webb (1991) points out that "if it does not make conceptual sense to average over the condition of a fixed facet, or if conclusions about such average are of little interest, separate G studies should be conducted within each condition of the fixed facet." (p. 67).

Crossed and Nested Facets

When all conditions of one facet are observed with all conditions of another source of variation, the design is a crossed design. In our simple scenario where each individual responds to all the items in the achievement test, the design is a crossed one and can be denoted by $p \times i$. In a G study design, it is also possible that one facet is nested within another. Nesting happens when two or more conditions of the nested facet appear with one and only one condition of another facet (Shavelson \& Webb, 1991, p.11). For example, items in a test may be nested within the subtests facet when each subtest has two or more distinct items. The notational form of this design is $p \times(i: t)$, where t represents the facet subtests.

MacMillan (2000) in his study with large, sparse data sets gave a good example of how to come up with an efficient and practical design.

Chapter 3

Research Design and Methodology

This study seeks to understand proper reliability interpretation in two aspects of writing appraisal in collegians. The aspects are writing skills assessed by multiple choice items and writing skills by a judged writing sample. Collectively, these two appraisals compose a thorough evaluation of a student's proficiency in commonly-used written communication. This study appraises the reliability of writing scores in College BASE by both traditional methods and G theory.

The two multiple-choice skills in the Writing cluster of College BASE test related but distinct English writing abilities. Skill 104 is to understand the various elements of the writing process, including collecting information and formulating ideas, determining relationships, arranging sentences and paragraphs, establishing transitions, and revising what has been written. Skill 105 is to use the conventions of standard written English. One purpose of the study is to examine the relationship between the two skills. It is hypothesized that the two skills correlate but not highly with each other.

The second purpose of this study is to decompose the variance of the observed scores into three sources: the persons effect, the items effect, and the interaction between them (confounded with error). Comparing those variance components, we would be able to see how much variance in the observed scores is due to differences among people's characteristics and how much due to items and interaction. If people differences contribute a lot to the variation in the observed scores (a large persons effect), this test discriminates examinees well.

In this study, skills is treated as a fixed facet, within which items are nested. The GENOVA application program (Crick \& Brennan, 1983) will be used to conduct data analysis. We could either conduct one univariate G study with items nested within skills, or conduct one univariate G study for each skill. Shavelson and Webb (1991) made some recommendations about how to choose between the two alternatives (p.67).

The examinees are required to write an essay at each administration of College BASE (Skill 106). Another purpose of this study is to examine the consistency between multiple-choice questions and the essay question in the Writing cluster of College BASE. If there is a lack of consistency, reasons for this inconsistency would be explored.

Skills 104 and 105 in the Writing Cluster of College BASE consist of 8 multiple-choice items each. Classical reliability analysis can be carried out on those items to evaluate the consistency of responses by examinees to each item. A fourth purpose of this study is to compare statistics from the G study to those from a classical reliability analysis.

Research Design and Statistical Methods

This study design is a quantitative one. Three different analytic methods are used in this design. Correlational analyses are used to examine the relationships among the three writing skills. Means and correlation coefficients for different gender and ethnic groups are compared.

A generalized analysis of variance study (G study) is conducted to decompose the variance of the observed multiple choice scores. Using GENOVA developed by Dr.

Brennan (1983), the researcher attributes the variance of the observed scores to four sources: the persons effect (p), the items effect (i), the interaction between persons and items (pi), and the error effect (e). Since the last two sources are confounded with each other and indistinguishable, the total observed variance is decomposed into three parts. As a follow-up step of this variance decomposing, the percentage of total variance from each effect is calculated to examine the influence of the persons effect, items effect and their interaction.

Finally, a classical item analysis is conducted to examine the item characteristics and detect potential poor items. Item characteristics include item difficulty levels, item discrimination indices and alphas if item deleted. The scale alpha from the classical item analysis is compared to the generalizability coefficient from the G study.

Data Source

Data used in this study were from a standard test administration of College BASE on April $4^{\text {th }}$, 1999. This administration of the test was for teacher education certification. A total of 1923 booklets were distributed. After deleting those with missing values on those 16 multiple-choice writing questions, there were altogether 1522 cases left. Of them, 1155 (75.9\%) took College BASE for the first time. Out of consideration of a more homogeneous group, only those 1155 observations were analyzed in this study. The final sample consisted of 1045 (90.5\%) Whites, 62 (5.4\%) Blacks, 17 (1.5\%) Hispanics, 13 (1.1\%) Asian/Pacific islanders, 3 (0.3\%) American Indians/Alaskans, and 15 (1.3\%) examinees unclassified by ethnicity. There were 880 (76.2\%) females and 273 (23.6\%) males in this sample, with 2 (0.2\%) with missing
values on gender. According to the year in school, 91 (7.9\%) were freshmen, 586
(50.7\%) sophomores, 339 (29.4) juniors, 96 (8.3\%) seniors, 12 (1.0\%) graduate students, and 31 (2.7\%) unclassified.

The first two writing skills were tested with 8 multiple-choice questions for each skill. In this study, a correct response to a multiple-choice question was coded as " 1 " and an incorrect response coded as " 0 ". All the multiple-choice questions were computer scored. The third writing skill assessed by a writing sample was rated on a 0-6 point scale by at least two professional evaluators familiar with college-level writing. Those essay readers are trained to evaluate the essay as a whole (Assessment Resource Center, 2005). Only one score for the writing sample was given on the score report for the examinee. Examinees' responses and scores were stored in an SPSS dataset.

The scoring of the writing sample is guided by the following rubric (excerpted from College BASE Brochure, 2005, p. 7):

Score of 6: Essays assigned a " 6 " will be excellent in nearly all respects, although the circumstances under which the essays were written allow for some imperfections. The " 6 " essay should employ a sound organizational strategy with clearly developed paragraphs proceeding from a sharply focused and clearly identifiable main idea or thesis. Assertions should be sufficiently developed and directed to engage the specified audience and should be supported through appropriate examples, details, and/or other fully integrated rhetorical techniques (e.g., analogy, narration). Again, considering the writing situation, there should be few, if any, distracting grammatical and mechanical errors.

Score of 5: Essays assigned a " 5 " will be good, but not excellent, in almost all respects. Specifically, look for a thesis or main idea that is clearly discernible and for sophisticated reasoning and/or support, going well beyond the information provided by the prompt. The writer will engage the opposition, beyond a passing reference, and may even redefine the problem while not evading it. A " 5 " may be marred by some stylistic and/ or organizational problems, or it may be well-organized and fairly sophisticated at the sentence level but fail to use or fully integrate a variety of rhetorical devices. There
should be few distracting grammatical and mechanical errors.
Score of 4: Essays assigned a " 4 " will present a competent thesis and adequate organization and will acknowledge the opposition, even if that acknowledgment takes the form of an indictment. A " 4 " may rely heavily on the prompt for ideas but supply sophisticated examples, or it may present ideas beyond the prompt but offer scant or predictable support. An essay which shows some insights but fails to unite them may also receive a "4." Generally, a " 4 " may contain a few distracting grammatical and mechanical errors, although essays appreciably damaged by major errors should not receive a "4."

Score of 3: Essays assigned a " 3 " will contain some virtues, although they may contain an unengaging or poorly focused main idea or thesis or be marred by inadequate development. A " 3 " might, for example, express some ideas that reflect a thoughtful consideration of the problem, but at the same time be obscured by unclear or "incorrect" writing. On the other hand, it might represent clear and competent writing but convey superficial ideas, or ideas which fail to account for information provided in the prompt. A " 3 " may be primarily a list of responses to the prompt, but with some development of the listed ideas, or it may show an organizational strategy which goes beyond listing, but offers support only in list form. As an argumentative essay, it may exhibit specious or circular reasoning or lack the coherence necessary to foster a complete understanding of the writer's meaning. A number of major and distracting grammatical and mechanical errors may place an otherwise thoughtful and well-written essay in this category.

Score of 2: Essays assigned a "2" are weak because they are poorly written throughout (with consistent errors in grammar or mechanics), or because they fail to support major points, or because they are exceedingly superficial. A "2" may be flawed by a lack of unity or discernible organizational pattern, or it may rely upon a clearly organized list with little or no development or simple development which presents personal examples as proof.

Score of 1: Essays assigned a "1" will be clearly unacceptable as college-level writing or will demonstrate an only momentary engagement with the topic, concentrating instead upon some tangential concern(s). A " 1 " will be riddled with major grammatical and mechanical errors and/or will consist of a collection of random thoughts or undeveloped ideas. In short, essays that appear to have been written in careless haste or without effort should receive a "1."

Score of 0: Essays that for any reason cannot be read should be assigned this score.

Chapter 4

Results

Correlational Analysis

One-Way ANOVAs were carried out to examine the differences in the three writing skills between the two gender groups. The means and standard deviations of the skills for each group and for the combined group are shown in Table 1.

<Insert Table 1 About Here>

The means and standard deviations for both gender groups were similar on all of the three skills. The biggest difference between the male and female groups was . 20 and appeared in Writing Conventions. Results from One-Way ANOVAs showed that none of these differences in means was significant ($p \mathrm{~s}>.05$).

The correlations among the three writing skills for the two gender groups and the combined group are displayed in Tables 2, 3 and 4.
<Insert Table 2 About Here>
<Insert Table 3 About Here>
<Insert Table 4 About Here>
The correlations among the three writing skills were not high, ranging from . 234 (between Writing as a Process and Essay for males) to .396 (between Writing as a Process and Writing Conventions for males). This may be due to the fact that the three skills, though under the same umbrella of "English writing", test related but distinct (sub)abilities. The same latent construct of writing ability underlying an individual's responses to the questions manifests itself differently when the indicators (test items
hereof) test different contents. On the other hand, it is necessary to differentiate different writing skills since they do reflect different aspects of the same latent trait.

When scores for different ethnic groups were looked at, the results were somewhat interesting. The means and standard deviations for ethnic groups of the three writing skills are shown in Table 5.

<Insert Table 5 About Here>

Means for different ethnic groups differed more dramatically than for different gender groups. In fact, Post Hoc tests indicated several significant differences. All the significant differences involved the Black group. However, if we keep in mind the demographics of the dataset, the results may be due to the severely unequal sizes of different ethnic groups. The vast majority of the test takers were Whites (90.5\%). With severely unequal sample sizes, it may not be valid to conclude significant differences in the populations.

The correlation coefficients among the three skills for different ethnic groups are represented in Tables 6, 7, 8 and 9. The correlation coefficients for the American Indians/Alaskans group are not listed since the cell size was too small ($\mathrm{N}=3$).

<Insert Table 6 About Here>
<Insert Table 7 About Here>
<Insert Table 8 About Here>
<Insert Table 9 About Here>

The correlations seem to vary drastically for different ethnic groups. There are both positive and negative correlations. Again, we should keep in the mind the sample sizes of those ethnic groups. For example, the correlation is perfect between Writing Conventions and Essay Writing for the American Indians/Alaskans group (not listed here). Nonetheless, there were only 3 people from this group. One can be almost sure that this correlation is bogus due to the extremely small sample size. The negative correlation between Writing Conventions and Essay Writing for the Asian/Pacific Islander group (-.594) may be questionable too since there was only 13 individuals from this group. The correlation coefficients for the two biggest groups (Black and White) are all positive, significant and not high (ranging from 0.216 to 0.496). The results are similar to when looking at different gender groups.

The empirical distribution of the essay writing scores is displayed in Table 10.
<Insert Table 10 About Here>

The majority of the people (884 out of 1155) got an essay writing score of 3 on a 0-6 scale. The distribution of essay scores is bell-shaped. Nobody got the highest (6) or the lowest possible (0) score. The fact that no one out of 1155 got a score of 6 may indicate that the scoring is too stringent or this group of test-takers is rather homogeneous in their essay writing ability.

Generalized Analysis of Variance

There were three facets in the Generalizability analysis of this study: persons, items and skills. Since all the items were presented to all the examinees, this is a
crossed design. In addition, items were nested within skills, according to how those multiple-choice items were constructed. Therefore, the complete design in this G study is denoted as: $p \times(i: t)$, where p refers to the persons effect, i the items, and t the skills.

Shavelson and Webb (1991) suggested a procedure for G studies dealing with fixed facets. Based on their suggestions, the researcher could choose to conduct either one $p \times(i: t)$ study including the two skills or one separate $p \times i$ study for each skill. The first step of their procedure is to treat all facets as random and then examine the variance components associated with the fixed facet. The GENOVA control cards for this analysis are in Appendix A. The results are shown in Table 11.

<Insert Table 11 About Here>

From Table 11, the main effect for skills was negative and set to zero, indicating no difference between the two skills. Examinees performed similarly in both skills. Large negative variance estimates are indication of misspecification of the measurement error. However, small negative variance estimates can be set to zero, as recommended by Shavelson \& Webb (1991).

The interaction between persons and skills was also very small ($\sigma_{p t}^{2}=0.0024022$, only 1.1% of the total variance). These indicated that the two skills did not differ in substantial ways, which was supported by the significant positive correlation between the two skills ($r(1153)=.392, p<.05$, see Table 4). According to recommendations by Shavelson and Webb (1991), the following G study was based on a single
$p \times(i: t)$ design, with t (skills) as the fixed facet. Appendix B includes the GENOVA control cards for this design. Results of the analysis are shown in Table 12.

<Insert Table 12 About Here>

The differences between items were small ($\hat{\sigma}_{i^{*}}^{2}=.0097177,4.5 \%$ of the total variance). A moderate amount of total variance ($8.2 \%, \hat{\sigma}_{p^{*}}^{2}=0.0176265$) was due to people difference. The large residual component (87.3\% of the total variance) indicated large differences in the relative standing of examinees on different items, large unmeasured variation, or both. This also included random error.

The variance component for persons (0.01766265) accounted for 8.2% of the total variance in scores. This was the variance component for universe scores and indicated that persons systematically differed in their writing ability. The variance component for items was small, both relative to the other components and in an absolute sense. The square root of $\hat{\sigma}_{i^{*}}^{2}=.0097177$ was about 0.10 . Assuming normality, the expected range of item means was about 0.40 (4 times the square root of variance). This range was moderate compared to the range of item scores (0 to 1). Again, the variance component for the residual $\hat{\sigma}_{\text {pit, }, e^{*}}^{2}=.1875921$ (87.3% of the total variance) showed that a substantial proportion of the variance was due to the interaction between persons and items and/or other unsystematic or systematic source of variation that were not measured in this study.

The Generalizability coefficient in this G study can be calculated using Equations 3 \& 4. Since the true variances are always unknown, those estimated variance
components from the GENOVA analysis are plugged in. The calculations are shown below.
$\hat{\rho}^{2}=\frac{\hat{\sigma}_{p}^{2}}{\hat{\sigma}_{p}^{2}+\hat{\sigma}_{\text {rel }}^{2}}=\frac{\hat{\sigma}_{p}^{2}}{\hat{\sigma}_{p}^{2}+\hat{\sigma}_{p i t, e}^{2} / n_{i}}=\frac{0.0176265}{0.0176265+0.1875921 / 16}=.6005$

This indicates that about 60% of the variability in individuals' scores was systematic and attributable to the universe score. This interpretation is similar to that for the reliability coefficient in CTT since CTT concerns the relative standing of individuals.

The index of dependability is

$$
\hat{\phi}=\frac{\hat{\sigma}_{p}^{2}}{\hat{\sigma}_{p}^{2}+\hat{\sigma}_{a b s}^{2}}=\frac{\hat{\sigma}_{p}^{2}}{\hat{\sigma}_{p}^{2}+\left(\hat{\sigma}_{i}^{2}+\hat{\sigma}_{p i t, e}^{2} / n_{i}\right)}=\frac{0.0176265}{0.0176265+(0.0097177+0.1875921) / 16}=.5884
$$

This coefficient should be used when absolute decisions are to be made using this measurement.

Classical Reliability Analysis

Skill 104 in the Writing Cluster of College BASE is comprised of 8 multiple-choice items that are constructed to test people's understanding of the various elements of the writing process. Skill 105 in the Writing Cluster of College BASE, consisting of 8 multiple-choice items, is to test people's use of the conventions of standard written English. Classical reliability analysis can be carried out on those items to evaluate the consistency of responses by examinees to each item. First, classical reliability analysis was conducted on each skill and then on the 16 items altogether. Several item-total statistics were checked during each analysis. Those
statistics include corrected item-total correlation (also called item discrimination index, it is a point bi-serial correlation between the item and the total score), squared multiple correlation, and alpha if item deleted, along with an overall alpha level for the whole analysis. The overall alpha is actually Cronbach's alpha. It is an index of internal consistency of a test.

The results from the reliability analysis for Skill 104 (Writing as a Process) indicated an overall alpha of .3484. Item 3 seemed not to be functioning consistently among the population since it had a very low item-total correlation (.0882) and the overall alpha would increase from . 3484 to .3486 if it were to be deleted from the scale. However, this should not be overinterpreted, since single item typically correlates with total test very low. Researchers have long noted the classical unreliability of single test items (Thurstone, 1937)

The results from the reliability analysis for Skill 105 (Writing Conventions) indicated an overall scale alpha of .5191 . No item in this skill seemed to be really bad. The item-total correlations ranged from .1508 to .2825 . The overall alpha would decrease if any item were to be deleted.

The results from the reliability analysis for both skills combined suggested an overall alpha of .5978. Again, Item 3 seemed to be poorly fitting. Its item-total correlation was .0975 in this case. The overall alpha would increase to .6038 if it should be deleted.

The overall alphas from all the three reliability analyses are rather low. This may be due to the fact that too few items were included in the analyses (only 8
multiple-choice items in each skill). In classical test theory, longer tests tend to be more reliable. It is evident that the overall alpha for the combined analysis was greater than each separate reliability analysis for each skill.

The overall alphas from the above reliability analyses were Cronbach's alphas, testing internal consistency. Now, comparison can be made between Cronbach's alpha for the combined reliability analysis and the generalizability coefficient from the G study. We can see that they are very close. The Cronbach's alpha is .5978 while the generalizability coefficient is 6005 . Actually, our G study design $p \times(i: t)$ with items as the only random facet and skills as a fixed facet is very similar to the classical item analysis. The G study extracted the variation due to the items facet, whereas the traditional method regarded this variation as part of the error term.

The advantages of G theory over the classical reliability theory would be more obvious when more than one random facet is involved. Besides, results from G studies can applied to D studies to make relative or absolute decisions.

Chapter 5

Discussion

Overview of Results

The purpose of this study is to understand proper reliability interpretation with both the traditional method and generalizability theory, using data from College BASE. The coefficients are comparable for the 16 multiple-choice writing items, using classical reliability analysis or generalized analysis of variance. About 60% of the observed-score variance in those multiple-choice items is due to the object of measurement in this study, the persons effect. The universe score variance (in the sense of G theory), or the true score variance (in the sense of classical reliability theory) accounts for about $3 / 5$ of the total variance of the observed scores. Although a reliability of 0.6 seems not high for an entire instrument, the fact that more than half of the observed-score variance is from the object of measurement is adequate reliability evidence with only 16 multiple-choice items.

Results from the G study indicated that the variation due to persons was small $\left(8.2 \%, \hat{\sigma}_{p^{*}}^{2}=0.0176265\right)$. However, there are two ways to explain this. First, the variation due to persons effect was almost twice the variation due to the items effect $\left(\hat{\sigma}_{i^{*}}^{2}=.0097177,4.5 \%\right.$ of the total variance). Compared to the differences among items, the differences among people are more prominent in this study. The test is to find people differences in the latent trait of writing ability. Therefore, the larger the variation is from people differences, the better and more effective the test is. Second,
the residual component from the G study was very large $\left(\hat{\sigma}_{\text {pit:*}}^{2}=0.1875921,87.3 \%\right.$ of the total variance). This residual term is the error variance (including interaction between persons and items, unmeasured variation, and random error) for a single item. Since single items typically correlates with the total test very low, it is not surprising to see large variation associated with them. If relative error of an effect is to be calculated, the error variance for a single item should be divided by the number of items.

The skills effect was considered as a fixed facet since the variation due to skills was zero. Although the correlation between the two multiple-choice-item skills is not high, G study shows that they were still testing the same thing. Comparing with variation due to persons and items effects, the contribution of skills to the observed-score variance is negligible.

Importance of Current Study

This study is important for two reasons. First, it examines reliability by two means-traditional and modern-and contrasts them, in the context of appraisal by multiple-choice items combined with assessment via a direct sample of composition. As mentioned, however, there is decided emphasis upon reliability estimation by modern means (i.e., G-theory).

Another uncommon aspect to the study is the sample used for the appraisal: collegians. While there is manifold study of appraisal of elementary and secondary students, it is uncommon to study a college-level group. Since, more than half of all high school graduates attend some form of post-secondary education, it is important to study this population as a group with unique and important characteristics.

Studying the variance of scores for them will help educators and other decision makers realize significant features about them.

In addition, this study adds to the reliability evidence of College BASE. As an established achievement examination of general education skills, College BASE was developed using the advanced measurement technique of Item Response Theory (IRT). Applying G theory to College BASE provides more information about this test itself and more accurate understanding of how people’s writing ability differ.

Limitations of Current Study

The biggest limitation is that this study is not an experimental one. With this secondary dataset for this study, the researcher was unable to define during the design stage her universe of admissible observations and carry out a more complete G study. Besides the object of measurement (persons effect), there was only one other random facet (items). This limits the current study in that G studies should usually involve as many as possible potential sources of variation.

For the skill of essay writing, if more than one rater had graded all of the essays individually (in other words, a raters facet is crossed with the persons facet), part of the variation in the essay scores could have been attributed to the raters facet. Raters is often used as a random facet when a G study deals with subjective scoring (Marzano, 2002; Swartz et al., 1999; Gao \& Brennan, 2001; Clauser, Swanson \& Clyman, 1999).

Since College BASE was developed using IRT, the item difficulty levels tend to vary a lot because IRT favors items of different difficulty. However, in G theory, more diversity in difficulty levels means larger variance due to items and smaller
generalizability coefficient. While a generalizability coefficient of nearly 0.6 is satisfactory to the researcher of this study, the heterogeneity of items analyzed is partly responsible for this not-high value.

On the other hand, unidimensionality of items and test is an important assumption in IRT, while G theory isn't picky in this aspect. G theory can deal with more dimensions. This is one of the advantages of G theory over IRT. Brennan (2001a) briefly compared G theory with IRT and concluded that G theory is primarily a sampling model whereas IRT is principally a scaling model. The fundamental difference between the two theories is the fixed/random feature ($\mathrm{pp} .175-176$).

This G study is a balanced univariate one having equal number of items for each skill. An unbalanced or multivariate design can provide more information since multivariate G studies consider covariance as well as variance (Brennan, 2001a).

Another limitation of this study is reflected by the demographic descriptives. The number of females (880) was more than three times the number of males (273). The vast majority of the sample were White (1045 out of 1155). This reduces the generalizability of this study.

Suggestions for Future Studies

More Facets

In future G studies on people's writing ability, more facets should be included in the design, so that a more complete and detailed picture of the observed-score variance can be obtained. It is important to know what the sources of variation are in order to establish more dependable measurements of writing ability.

The reliability appraisal of writing ability can be extended to a more heterogeneous population in future studies. While the target population of College BASE is collegians, the groups under-represented in this study (such as non-White groups) should be over-sampled in future in order to have more balanced sample sizes.

D Studies
This study didn't include any Decision Studies. Future D studies can be done on evaluating people's writing ability. In fact, D studies may be crucial for College BASE since it is a criterion-referenced test. Absolute decisions are usually made for criterion-referenced (domain-referenced) tests, where index of dependability instead of generalizability coefficient is calculated (Clauser, Swanson \& Glyman, 1999).

One of the reasons the researcher of this study conducted a G study instead of a D study is that the researcher is more interested in decomposing variance than in the measurement precision of College BASE. Another reason is related to the limits of this study. Since too few facets were included in this study, decisions made from this study may not be well-grounded. Gao and Brennan (2001) pointed out that "predictions made about measurement precision based on G study may not match results from actual and distinct D studies". If the variance components from the current study were to be used to form D studies, the decisions would be too reckless.

G Studies on Other Clusters of College BASE

Future G studies can be done on the other eight clusters or on the subject-level of College BASE. The additional psychometric information will add to understanding of the test's reliability as well as validity.

References

American Educational Research Association, American Psychological Association, \& National Council on Measurement in Education. (1985). Standards for educational and psychological testing. Washington, DC: Author.

Anastasi, A. \& Urbina, S. (1997). Psychological testing (7th ed.). Upper Saddle River, NJ: Prentice Hall.

Brennan, R. L. (1998). Raw-score conditional standard errors of measurement in generalizability theory. Applied Psychological Measurement, 22(4), 307-331.

Brennan, R. L. (2001a). Generalizability theory. New York: Springer.

Brennan, R. L. (2001b). (Mis)Conceptions about Generalizability Theory. Educational Measurement: Issues and Practice, 19(1), 5-10.

Clauser, B. E., Swanson, D. B \& Clyman, S. G (1999). A comparison of the generalizability of scores produced by expert raters and automated scoring systems. Applied Measurement in Education, 12(3), 237-255.

Crick, J. E. \& Brennan (1983). Manual for GENOVA: A generalized analysis of variance system. Iowa City, IA: American College Testing, Inc.,.

Cronbach, L. J., Gleser, G. C., Nanda, H., \& Rajaratnam, N. (1972). The dependability of behavioral measurements: Theory of generalizability for scores and profiles. New York: John Wiley.

Cronbach, L. J., Nageswari, R., \& Gleser, G. C. (1963). Theory of generalizability: A liberation of reliability theory. The British Journal of Statistical Psychology, 16, 137-163.

DeShields, S. M., Hsieh, H. K., \& Frost, D. (1984). The measurement of writing skills: Some problems and a probable solution. Educational and Psychological Measurement, 44, 101-112.

Fitzpatrick, A. R, Lee, G. \& Gao, F. (2001). Assessing the comparability of school scores across test forms that are not parallel. Applied Measurement in Education, 14(3), 285-306.

Gao, X. \& Brennan, R. L. (2001). Variability of estimated variance components and related statistics in a performance assessment. Applied Measurement in Education, 14(2), 191-203.

Lee, G. \& Frisbie, D. A. (1999). Estimating reliability under a generalizability theory model for test scores composed of testlets. Applied Measurement in Education, 12(3), 237-255.

MacMillan, P. D. (2000). Classical, generalizability, and multifaceted Rasch detection of interrater variability in large, sparse data sets. Journal of Experimental Education, 68(2), 167-190.

Marzano, R. J. (2002). A comparison of selected methods of scoring classroom assessments. Applied Measurement in Education, 15(3), 249-267.

Norcini, J. \& Grosso, L. (1998). The generalizability of ratings of item relevance. Applied Measurement in Education, 11(4), 301-309.

Osterlind, S. J. (2005). Modern measurement : Theory, principles, and applications of mental appraisal. Upper Saddle River, NJ: Pearson Prentice Hall.

Osterlind, S. J. \& Merz, W. (1990). College BASE Technical Manual. Chicago: Riverside.

Osterlind, S. J., et al. (1998-2005). College Basic Academic Subjects Exam, Forms L-O. Columbia, MO: Assessment Resource Center, University of Missouri-Columbia.

Shavelson, R. J. \& Webb, N. M. (1991). Generalizability theory: A primer. Newbury Park, CA: Sage.

Swartz, C. W., Hooper, S. R., Montgomery, J. W., Wakely, M. B., DeKruif, R. E. L., Reed, M., et al. (1999). Using Generalizability theory to estimate the reliability of writing scores derived from holistic and analytical scoring methods. Educational and Psychological Measurement, 59(3), 492-506.

Thurstone, L. L. (1937). The reliability and validity of tests: Derivation and interpretation of fundamental formulae concerned with reliability and validity of tests and illustrative problem. Ann Arbor, MI: Edwards Brothers.

Table 1

Means and Standard Deviations of Writing Skills for Different Gender Groups

	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Male	5.66	5.28	3.02
$(\mathrm{n}=273)$	(1.517)	(1.881)	(0.578)
Female	5.53	5.48	2.99
$(\mathrm{n}=880)$	(1.533)	(1.710)	(0.519)
Combined	5.56	5.44	2.99
$(\mathrm{~N}=1155)$	(1.529)	(1.753)	(0.536)

Note. Two people did not report gender. The numbers in the line of each row are means. The numbers in parentheses are standard deviations.

Table 2
Correlations among Writing Skills for Male Group

Males	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	$.396^{*}$	--	
Skill 106	$.234^{*}$	$.299^{*}$	-

Note. * p<. 05 .

Table 3
Correlations among Writing Skills for Female Group

Females	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	$.394^{*}$	--	
Skill 106	$.246^{*}$	$.259^{*}$	-

Note. * p<. 05 .

Table 4
Correlations among Writing Skills for the Combined Group

Combined	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	$.392^{*}$	--	
Skill 106	$.245^{*}$	$.271^{*}$	--

Note. * p<. 05 .

Table 5

Means and Standard Deviations of Writing Skills for Different Ethnic Groups

	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay)
Asian/Pacific Islander $(\mathrm{n}=13)$	5.23	6.46^{a}	2.92
Black	(1.641)	(1.898)	(0.494)
$(\mathrm{n}=62)$	4.73^{a}	4.19^{abc}	2.63^{a}
White	(1.611)	(1.687)	(0.607)
$(\mathrm{n}=1045)$	5.62^{a}	5.49^{b}	3.02^{a}
Hispanic	(1.508)	(1.727)	(0.520)
$(\mathrm{n}=17)$	5.35	5.76^{c}	2.71
American	(1.498)	(1.921)	(0.588)
Indians/Alaskans	5.33	3.33	2.67
$(\mathrm{n}=3)$	(2.887)	(1.155)	(0.577)

Note. Fifteen people did not report gender or the data were missing. The numbers in the first line of each row are means. The numbers in parentheses are standard deviations.
${ }^{a}$ Means in the same column sharing the same letter superscript differ at $p<.05$ in the Post Hoc tests.

Table 6
Correlations among Writing Skills for Asian/Pacific Islander Group

Asian/Pacific Islander $(\mathrm{n}=13)$	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	.471	--	--
Skill 106	$-.594^{*}$.041	

Note. * $p<.05$.

Table 7
Correlations among Writing Skills for Black Group

Black	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	$.496^{*}$	--	
Skill 106	$.431^{*}$	$.407^{*}$	--

Note. * p<. 05 .

Table 8
Correlations among Writing Skills for White Group

White	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 1045)	--		
Skill 105	$.378^{*}$	--	
Skill 106	$.216^{*}$	$.243^{*}$	--

Note. * $p<.05$.

Table 9
Correlations among Writing Skills for Hispanic Group

Hispanic	Skill 104 (Writing as a Process)	Skill 105 (Writing Conventions)	Skill 106 (Essay Writing)
Skill 104	--		
Skill 105	.313	--	
Skill 106	.338	.156	--

Table 10
Distribution of Essay Writing Scores

Score	Frequency	Percentage
0	0	0
1	1	0.1
2	160	13.9
3	844	73.1
4	144	12.5
5	6	0.5
6	0	0

Table 11
Three Facet $p \times(i: t) \quad$ Design Treating All Facets as Random

Source of Variation	df	Mean Squares	Estimated Variance Component	Percentage of Total Variance
Persons (p)	1154	0.46962	0.0164253	7.6
Skills (t)	1	1.09113	0.0^{a}	0
Items: Skills (i:t)	14	11.41155	0.0097177	4.5
pt	1154	0.20681	0.0024022	1.1
pi:t, e	16156	0.18759	0.1875921	86.8

Note. ${ }^{\text {a }}$ Negative estimate of variance was set to zero. Actual estimated value was -0.0011190.

Table 12
Analysis of the $p \times(i: t)$ Design with t Fixed

Source of Variation	Estimated Variance Component	Percentage of Total Variance
Persons (p)	0.0176265	8.2
Items: Skills (i:t)	0.0097177	4.5
pi:t, e	0.1875921	87.3

Figure Captions
Figure 1. Graphical depiction of classical test theory and Generalizability theory.
Figure 2. Relative and Absolute Error for a Random $p \times i$ Design.

Relative Error
Absolute Error

APPENDIX A

GENOVA Control Cards for $p \times(i: t)$ Design Treating All Facets as Random

```
STUDY
COMMENT
COMMENT # RECORDS = 1155
COMMENT # VALUES PER RECORD = 16
COMMENT
OPTIONS
EFFECT * P 1155 0
EFFECT + T20
EFFECT + I:T }8
FORMAT (16F2.0)
PROCESS
    01011111100101100
    00111111111010100
    1001111011100110
    1111111001111101
    1111101110111111
    1111111011011111
    01111101111111111
    0100001101010010
    1101011011001001
    0111111101010111
    1111011111111111
    0111111101111111
    1111111101111111
    1101111111111111
    1111010000010111
    1010110010110100
    1001110100111111
    1011111111010110
    1111111111111111
    1101111100101110
    1111011111011101
    0101110000111010
    0101110110111110
    1111010011010011
    0110010000101100
    1111111100111111
    0111111011111111
```

```
1011000100011000
1011011111111110
1111110101011111
1111111111111111
1111111111111111
1111000001011111
10111111101111111
1111111001011011
0111000101110111
0111111000000000
0101111011111111
0011111100111110
1011111011011110
1111011001111110
1101011100111101
1000110000110100
1011110110011110
1111111101110111
1110111101010111
0111110010100100
00010111111111110
0101011101111110
0111111110100011
1011111111011111
0100110011111111
1101111011101111
1111100000110011
0010001000101111
1011101000111010
1101111111111110
1111111111111111
1111110011111111
1010100010110001
0111110100001000
1101000111111101
0001011111100111
1011010011110111
111111111111111111
1000111101011001
1101110011110111
0111010011001011
1101111110111111
0111011100011100
0111111011110111
1111111111111111
1111011000011111
1101011111111100
```

```
1011111011111111
1111111001110111
1011111100111110
1101111111111111
1101011110111111
0011111011110111
1111110011111111
1001000101111111
1001111011111011
1100101101110110
1011001101011111
0111101111111011
1011111111111011
1001110110111111
0001011110111111
11111111000111111
0011010100111011
1011110010110110
1111110111111111
1011110111111111
0111010100110000
0011111010110000
1111110010101010
0011110111100110
1110111011111111
1111111101011111
1111100111111111
1001011111011011
10111111111111100
1011011001111111
1101110001111110
1111111001111111
1011010110101110
0001010101011011
1101111110110111
1101011111110010
00111101111111011
0111100111100001
1001101100101011
1010100101011111
1001110101110110
0011110100011011
1011110100111101
1011110111111111
1111111111011111
1101110111111110
0111100000110011
```

$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array} 101111010$

```
1111100000010111 1111011100011111 0101011110111111 1111010011111001 0111111101111111 1101110111111110 1011111111101111 1111111111111111 1001110111101101 0010010000011110 0001010110011010 1101111111111111 0101010000111111 0111110100110111 0111011101111011 1011111111111110 0001000100110010 0111001110111111 1111000011111111 1111111011111100 1110110001011101 1101011100111011 1111011110100110 1101111111100111 1111111010111110 1011110111111111 0111011111011110 0111001011011111 1101111001110110 1000111111110101 1111111011111111 1101111001110110 1110110101110110 0001110100101100 0111111111111100 1101011011111011 1101111101100000 1011011011111111 1111000101011111 1101100101010110 0101011100111110 0001000100100110 0001011001011001 0011110111011110 1111110101111100 0111111001001111 1001011110111100
```

```
1011111100010111
1111111001011100
1101001000110111
1100100101011001
1101100010111110
0011011100111100
1111111101110000
0011011001110010
01110111011111011
0011011101000011
1111110111111111
1011001111111000
1111110111101111
0001100000100000
11111111111111110
1101011001111111
1111111011110011
1111111110011111
0100010010111001
01010111011111100
0101010111111000
1111111000111110
1111111010110111
1111100111111111
1111111110010111
1111111011111111
0100101001111100
11111111111111111
1111111111111111
0111101001100100
1111111111111110
1101001111011110
1011110001111111
1111111110110111
1111110011111111
1100011101010011
1011111111111010
1111011000111110
0111000111010111
1011011101111110
1101010100111101
1001110101111111
1001101111111110
1010001011111110
1011110010100110
1111110110111101
1111110000111111
```

```
0111111010101110
0111110111011001
1111111111111110
1111111101101111 0011111010011110 0011111111111111 1001010001111111 1101010001111110 1111001101110010
1011111001100010
0111011000111000
1011111101010001
0111111111010111
1101111011111111 0011111111101111 1111011100110101 0111111110011111 1101011111101111 1101111100111111
1111111101011111 1111011001110010 1101110110110110 1111010101011111 1111111111111111 0001101100110110 1111110000100010 0001111010010001 1111110011111111 0111111111111111 1101010011111111 0111001011101110 0011111100111000 1111111111111111 1111110111111111 0011000000110011 1000001100111010 1111011011111111 1111111111110110 1011011000010100 1111110011111111 1000011010110000 0111111001110111 1011111000010111 1101110011111110 0111111111011011 1101111101011110 1101011111011111
```

```
0101000100011010
1011111011110001
0111110111111111
00111101111111110
1111110011111110
1111010100101010
01000100011111111
0011001000110010
1111111011111110
1101110011111111
1101011011111111
0011100000000100
0101010110111111
0111100000000010
1101110101111110
1111111101111011
0001001010011010
1110111000111111
1101111100111100
1111111111111111
1101110100010110
1111111111011101
0111100111111110
1111011011110001
1101100101110010
1001011111010011
11111111111111110
1101001100110111
1111000000010100
0100000000110000
1111111110111111
1101111111111111
0011110110010010
1011011110001110
1101010111111111
1111111111101101
1011111101000011
1101001111110101
1111110001111100
1111110100001110
1101111001100111
1111011100111001
1101111110111111
1011010011111111
1111111011111111
1111111111110111
0111101101011101
```

```
0100000011011110
1101100100000001
1101111101110111
1110101111110000
0101111011011111
1101111000011111
01111111001011111
01111111111110011
1101011101111111
0011010100110000
1111011111111111
1111101000110110
0101101110110110
1111111111111110
0110010000001000
1101111001111110
1111011111101110
01111111010111101
011111111111111111
1001111110111011
1011111111111111
1011010010001111
1101101011111111
0000111100010000
0101011101011101
1101011100011110
0111011000101011
10111010011011111
00111110000010110
0011010100011110
1111011001010001
1011000101010111
1101111011011111
01011111111111110
0111111011111111
1101110000111111
1101010010001011
1011111101111110
1101111111111111
1011011101011110
0010001111010001
0111111010110010
1011110010111111
01011100111111111
1011110010110111
1001110001010100
0001100000000010
```

```
0101111001111001
1011101011100111
0111000100011111
1111111011111111
1001101011010100
1001111000011111
1111111111111011
11111111111111111
0011101110110110
0111111101100011
0101111100101111
1101010101111010
1111101010000010
0010000101100101
0111100110011011
1111110001111001
1111111111100111
1011110001111000
011111111111111010
1011101100011001
1111111111011111
1111101011111111
0111110110101111
1111100000010001
00111111101111111
1101111000100111
1101111100011111
11111111101110010
101111110111111111
1011111110110111
1111111110010111
0000001000000100
1000110000111001
1010111001111111
1101110101111111
1101010010111001
1001010101100110
1101101000100100
1101111010010011
1001111101110111
0111111110110110
1111011111011110
1010101011010111
1111111111111111
1111110101111111
0101111101001000
1111111101010011
```

```
1101100111011111
1101101000111110
1101110101010111
1111101100111101
1111111100110111
1001010000000010
10110101111111111
1110111101111111
1001010111110010
1001001010011100
1001110100111010
1101001000111111
1111110111110111
1110010111111000
1111111101111011
0101011001111111
1100111101111011
01111111011111111
0010101011011001
1111011001110111
1111101101010110
0101111111111111
1110000100111001
1011111111111111
1101111111111110
1111111011110011
1101111111011111
1101110101110111
1101111111111111
1011111111111111
1101111001110110
1101111100111011
1101111100011111
1000011101111011
0011011011111100
1101010111111110
0101000001011000
0101011100001110
1111111110111111
1101001010010110
1111111110101011
1111111001001000
0101111111111111
1111111111111100
1001010001111101
1100010110010001
1100000000100000
```

```
1011111111111110
1111111111111111
1011110101110100
1111011101111111
1010011111110111
0111110001110110
1011110111111001
1101110110111110
11010111111111111
01001111111101110
1101011101100110
0111010011110111
1111111111010110
1101101001110110
0010100000101100
0101111000111111
1111110001011010
1111111111111111111
0101101000011111
1011111011111110
0011110111011000
1101110111111111
1101000010010000
1111101101010111
0111011000010100
0111011111101010
1111111111111110
1111011111111110
1111111010110001
0111110010111001
1111000100110000
1101011100111110
0011101001110110
0011110011011010
1111111001011110
0001000000110000
01111111111111111
1101111110111010
0111110111011100
1011100111111111
1000100011011110
0101011100011010
0101110000110010
1111111011110011
1111111111101111
1111111111111110
1111110100111110
```

```
1011101111111111
0111111001110010
1101101100101111
0111110011011111
1111111110111111
1101111111101011
0011000000000100
0101000010011110
1101010111111101
1111100101001110
1101101011010010
1111111000010111
1001110111100110
1101011010111111
1001111001110110
1111111011011111
1011111011111111
1001011011111111
1100011011110011
0101111001111101
1111110101010111
1111111100100010
1000100000111000
1101111110110111
0110110011011001
0101111100011010
0101110011111111
0101000000111000
0111000011011101
0010011010111010
1101011110011011
01111111100011011
0000001100110000
1011111101111111
1001110001111011
1111000101111111
1011111100101110
1101011011110110
1111111111101110
1111111010110111
1011010001110100
1111110011011111
0111111011110111
0111110000111000
1011110010111110
1011010111011010
1011011111111011
```

```
1011110111111111
1101111010011111
1111111011111011
0001001100011110
1001110111111110
1010100111010100
1110011010111110
10111000111111101
00010100011111000
1101011010110111
0000100110110011
0111011011010101
1111010110111111
1100111001110110
1111111000011101
1000111110110111
1110111111010011
11111111111111111
0011101101101111
0110111100110100
0111011100100110
1111111111111110
0111101101111011
0011100101101100
01111111110000110
1001011111111111
1001011011111111
1101110110111011
1111111111111111
0101111110111111
1111111011010110
1001011111110101
1001011011110111
0011101110110110
01111111100110111
1101011111101111
1111111111111110
1111111011111111
1111000111111011
0111111011000000
1111100011111111
1111010001111111
0111011011110100
1111110101110110
0011110111111000
0111010110111111
1011111111110110
```

```
00011111101110010
0011001000001100
1111011111111111
1111110011010110
1111001110011101
0101110000010111
1101111111110111
1111011101011000
1111111101111111
1111111011111010
1101001011111111
0110100011010000
0001011111100110
1101100000110010
1101011101110001
1111100000110011
0111110110110101
1111111110111110
0111011011100111
0101011101110110
1101100100011010
0111000000111100
1101111010101111
1011111001111011
1001001101010000
1001001101011010
1000000000010001
0001001100010010
0101011011111111
0111111111111111
1111111111111110
0111010010111101
1111010000110010
0010000110001000
1000110001110010
0111111100011111
0111000101000101
0111110010111110
1111100000111110
0011100010101100
1111110101110010
0011001101010101
1010110101010000
0101101110011101
1011010111100111
1111111111111111
0111011011110010
```

```
1111011111111111
1001110011011000
1110110111111111
1111100010111110
0101110011010110
0111011111011111
1011001010110111
1111110111101111
0111110111111001
1111110000110101
1101111101110110
1111100100110010
1111111101101111
1111110011111111
0101110101010110
1111110101111111
1011000011111111
1011110111111111
1111011111110111
1001010001111101
1100111011111011
1111111100110111
1111111011111110
0111111000001111
0100001011010001
1001011111111010
1101011011011001
1001010000110001
01011111101110000
10010111111110011
1101111111110110
0011010101111111
1111011101110101
1111010111101110
1101110111110010
0101011000101110
1110111110110000
00111111100111110
1001111000101000
0011101101000100
0101011110110001
1001010000001110
1001011101001000
1111110110111101
1101010011111110
1011101001111101
1111111110110111
```

```
1111111011111111 1111110001011111 0111000010011000 1000011111110110 0000100000110000 0010100001101010 1000111110101100 0011111001111110 1101111011111111
1101101100110011 1101010111111111 1000111101110111 1111001111111111 1111110110011010 0111111010010011 1111110011111111 0111100001010100 0011110010111110 1000110111110101 1101011100111011 1111011010111111 0111011011111110 1101111011110111 1111111111111111 0001000000101011 1101011000111110 1101110111111100 1011011101111011 1011011011100100 1111110111011001 0011010110011110 1111111111111111 1011111011111111 0111110101110011 0011101011110011 1001011010010110 0011111011100110 1111110010011011 1111011110101011 1100000100010101 1001010101111110 1111111110010101 0011000100000100 1101011101110110 1111110111111111 1111011110110010 1111110111110111
```

```
0101100011010000
1111000111110110
1111011110000111
1111111111111111
01111111111010110
0011010000011011
1111110011111111
1101111111101100
01011111111011111
0110011011111100
1111101011110111
1111010010011111
1011111000110100
1011100000010111
0101010111111001
0101111111101011
1011110111110111
1101111001111000
0111110100011001
1101011011010011
0111011000110111
1101110001110110
01001111111111111
1111011111111111
1101111111111111
1111111001111100
1111100110110110
1011101100110011
1111010101010110
1111011110100110
1111111000111110
0101110101010111
0110011100011000
1111111101110111
0101011001011111
1111010000000011
0011010111000011
01010100011111110
1111111101011111
0111010001110001
1111110111111111
0011110111111110
1111001101010001
0111011001011101
1101111111111111
1011111011111111
0111011101101111
```

```
0111010011110011
1111111101111001
1111111101111110
1111111110110111
0111110100110100
1111011100111011
0111000001110010
1101011001110111
1111111011111111
1011100010000110
1111111101110111
0111110001110110
1011011011111010
1101110110111111
1101001110010101
0100010000010010
1011011110110011
1101111011011111
1101000010010010
1100011111111111
1101111011011111
1101111001111110
1101110000110111
1111111010011101
0011110101111110
1111010101111011
1011011011111111
1011101101111010
0101111111111011
0011101111111011
0101100000111110
1101011110111101
1111110111111111
1111011111110111
0101010001111100
1001100001110110
1001101100110000
1101010100100111
1011100001110000
1011110011011110
1101111110111011
0101111101100111
1111011000011100
1111111101101110
1111111011110111
1001111111011111
01111111111111111
```

```
1001111010110111
1111101110111111
1111111110111110
1111111011101100
1101110101111111
01111111011100111
1111111101011111
0111111101010110
0101111000011110
1111111001110011
1111111100110011
1101010001110101
1001010011110010
0101000100111011
1101110111111111
1101111011111101
1011101100101111
1101010011111010
1011110010101010
0111110011011111
1111111011111111
1111100111010010
1101111101111100
0101101100111110
1111101000111010
1111111011111111
0101001000110010
11100111011111011
1001110101110111
0111011011010001
0100011000111001
0101110111110110
0110010011111110
0010001011011010
1100001101111100
1101110111111111
1101011111101111
1001001101110110
1101110111110010
0011101111001011
1101111101110011
0011110100100011
1101011000011101
1011011101110111
0011010110111100
1111110100110000
1011110011111111
```

```
1111111110111111 1111010000010010 1101111001111110 1111111111010111 1111101101101111 1111110001111110 1011101011011010 1111111001011111 0111011100101100 0111011000010010 1111111110111111 1101111110111110 0011110001110111 1111011110111001 1000010001111000 1100101001011110 0111100101101011 1110111011011010 0111111111111110
1111010000111010 1011111111111110 1001010000010111 1111001110110111 0111000001101010 1100010011111110 1101111010100111 0111110101111011 1011111101110000 1101111011110110 1011000000111000 1101000110010010 1111111011111111 0011001101001000 0111011000111110 1111111011111110 1011001100011111 1101000111110111 1101111111111111 0011110100111110 0100100110011010 1101111111111111 1111001011110001 0101010111110101 0101010001011101 1101111101111110 1100011101110111 0011100001101001
```

```
1011111111110111
0101110111011111
1001010001111110
1111110111111111
0100101100010000
0101100000100100
1111101111110101
1111111111111111
1001101000111111
1111111011111110
1001111011101111
1001011101100011
1111110111111111
1111001111110000
1011111111111111
1101110111101010
1111110011111111
000111011111111110
1101101011111111
1101111011111111
1001001101100110
1111111100110111
1111111111111110
1111101101111111
01111111011111111
1111011100111010
1111110101100110
1001101001111111
0111011000010110
0001000001100101
1011111100111101
1100011111111100
1111011001111110
1101111111110010
1001110010111111
0011011101110011
10011100111111111
1101111111111011
1100101001110011
0101010101111111
1011101111111111
1001010100000100
1110111101111111
1111111001110110
1111010101110111
1011111100010110
1101110001011100
```

```
01010000011111111
0111101001100010
1111100001011110
1010111000001100
1111001100111111
0101010111101101
1111111011010001
1111101100111111
0111111001010011
1001100100110111
1111110001010111
1111011101110111
1101111001110101
1111010011110100
0101111101100111
0111111111110111
11111111111111111
1011001010110110
1111110110110110
1101101111001101
1011111101010111
1011111001111110
1011101100011101
0010000100111010
1001000100001100
1011101110011110
01111111001100110
1111111000011111
1101011101110010
1111111110111111
1101000000011101
0111110010100110
0010100011110000
1111110110110111
1111010100010011
1101011010111010
1111111100110111
10011111111110011
0011111101001111
0111011001110010
0111110111111111
1111111001101010
1111111011111111
0011101000011011
1111111011111111
1111111111111111
1110101101011000
```

```
1011111111010110
0111011011110011
1001111101111111
1111111011110111
1111010111100001
1010110101111110
11011011111111111
1101110011000010
01010101011111111
1001010011100101
0110110000010010
0010100101110111
1111100101101100
0101111011111111
1011011110010001
1111110010111111
1111111011100011
1101101111111101
1111111011111101
1011110000111011
1101111111011111
1111111110110110
1000101100110010
0101111000111011
1111010100001000
1110111000111000
1001011101101110
1011001010010110
1000011010100101
1011111001110111
1001100000010100
1011111111110011
1011111010110001
1110010100011010
1111111111111111
0101111101110111
1011111111111111
1101111001111011
1111011001001011
00110111011111001
0111000001011101
0111011010101100
1111001110011110
0111110001111010
1111111111111111
1001001101100101
0101111010111110
```

```
1101110011101011
1111110110000111
1111110111111111
1101110110111111
1111011100101011
1111111011110111
1001111100111011
1111011111111111
1111111111111111
0100110101101111
1111111111111111
0001110111111111
1101111000010001
1011111011111111
1111110111111111
0011111000011000
0111000100001000
1101111100010001
1111111000010111
01011111110111111
1110101000011001
1101111111111111
1100111100010111
1001101001111111
1001011011010000
1111111100111111
0111010100101100
1011110101010111
1101110101111110
0111111111111110
1111111110010011
1101111100011011
1011011010111111
1001010001010110
1101111111011111
1111110111111111
0111111011010111
11111111011111111
0011100111000010
1011111011111111
0101100111100100
0000111011110011
1111110011011111
0100001010001000
1101011111111001
1001011101111111
1111101101111111
```


APPENDIX B

GENOVA Control Cards for $p \times(i: t)$ Design with t Fixed

STUDY
COMMENT
COMMENT COMMENT COMMENT OPTIONS
EFFECT
EFFECT
EFFECT
FORMAT
attempt $=1$ reason=1 promcode= 6 fixed T q1-q16
\# RECORDS = 1155
\# VALUES PER RECORD = 16
RECORDS NONE CORRELATION

* P 11550
+ T 22
+ I:T 80
(16F2.0)

```
PROCESS
0101111100101100
0011111111010100
1001111011100110
1111111001111101
1111101110111111
1111111011011111
0111110111111111
0100001101010010
1101011011001001
0111111101010111
1111011111111111
0111111101111111
1111111101111111
1101111111111111
1111010000010111
1010110010110100
1001110100111111
1011111111010110
1111111111111111
1101111100101110
1111011111011101
0101110000111010
0101110110111110
1111010011010011
0110010000101100
1111111100111111
0111111011111111
1011000100011000
1011011111111110
1111110101011111
```

```
1111111111111111
1111111111111111
1111000001011111
1011111101111111
1111111001011011
0111000101110111
0111111000000000
0101111011111111
001111111001111110
1011111011011110
1111011001111110
1101011100111101
1000110000110100
1011110110011110
1111111101110111
1110111101010111
0111110010100100
000101111111111110
01010111011111110
0111111110100011
1011111111011111
0100110011111111
1101111011101111
1111100000110011
0010001000101111
1011101000111010
1101111111111110
111111111111111111
1111110011111111
1010100010110001
0111110100001000
1101000111111101
0001011111100111
1011010011110111
1111111111111111
1000111101011001
1101110011110111
0111010011001011
1101111110111111
0111011100011100
0111111011110111
1111111111111111
1111011000011111
1101011111111100
1011111011111111
1111111001110111
1011111100111110
```

```
1101111111111111
1101011110111111
0011111011110111
1111110011111111
1001000101111111
1001111011111011
1100101101110110
1011001101011111
01111011111111011
1011111111111011
1001110110111111
0001011110111111
1111111000111111
0011010100111011
1011110010110110
1111110111111111
1011110111111111
0111010100110000
0011111010110000
1111110010101010
0011110111100110
1110111011111111
1111111101011111
1111100111111111
1001011111011011
1011111111111100
1011011001111111
1101110001111110
1111111001111111
1011010110101110
0001010101011011
1101111110110111
1101011111110010
00111101111111011
0111100111100001
1001101100101011
1010100101011111
1001110101110110
0011110100011011
1011110100111101
1011110111111111
1111111111011111
1101110111111110
0111100000110011
1111101111010110
1111011010110110
0001001000011001
```

```
11010000011111000
01111101111111111
0100001111101110
1111011111101110
0111110100111000
1111000101110111
1101010010001100
0000011101010101
1011111111110111
1101010011110110
1111111101111111
1101101011110111
1100100110001111
1101011101010110
0111011010010010
1111011001111111
1111010000111110
1111010111111110
1111010000010000
00111111101111011
1101100010101111
0010111011101010
1001011100110110
1111111111110111
1111110101111111
1111111101111110
1101101001010110
011111111111110011
10111111011111111
1101100100010000
1101111101111111
0101111001101010
1101100001110001
0111111100100010
1110110011111100
1001010001101010
1111101110011110
0111001100010110
1111110111111111
0011101000011010
1001111010000100
1111010111111010
0111111111110111
1101110001000001
1111100000010111
1111011100011111
0101011110111111
```

```
1111010011111001
0111111101111111
1101110111111110
1011111111101111
1111111111111111
1001110111101101
0010010000011110
0001010110011010
11011111111111111
0101010000111111
0111110100110111
0111011101111011
1011111111111110
0001000100110010
0111001110111111
1111000011111111
1111111011111100
1110110001011101
1101011100111011
1111011110100110
1101111111100111
1111111010111110
1011110111111111
0111011111011110
0111001011011111
1101111001110110
1000111111110101
111111110111111111
1101111001110110
1110110101110110
0001110100101100
0111111111111100
1101011011111011
1101111101100000
1011011011111111
1111000101011111
1101100101010110
0101011100111110
0001000100100110
0001011001011001
0011110111011110
1111110101111100
0111111001001111
1001011110111100
1011111100010111
1111111001011100
1101001000110111
```

```
1100100101011001 1101100010111110 0011011100111100 1111111101110000 0011011001110010 0111011101111011 0011011101000011 1111110111111111 1011001111111000 1111110111101111 0001100000100000 1111111111111110 1101011001111111 1111111011110011 1111111110011111 0100010010111001 0101011101111100 0101010111111000 1111111000111110
1111111010110111 1111100111111111 1111111110010111 1111111011111111 0100101001111100 1111111111111111 1111111111111111 0111101001100100 1111111111111110 1101001111011110 1011110001111111 1111111110110111 1111110011111111 1100011101010011 1011111111111010 1111011000111110 0111000111010111 1011011101111110 1101010100111101 1001110101111111 1001101111111110 1010001011111110 1011110010100110 1111110110111101 1111110000111111 0111111010101110 0111110111011001 1111111111111110
```

```
1111111101101111 0011111010011110 0011111111111111 1001010001111111 1101010001111110 1111001101110010 1011111001100010 0111011000111000 1011111101010001 0111111111010111 1101111011111111 0011111111101111 1111011100110101 0111111110011111 1101011111101111 1101111100111111 1111111101011111 1111011001110010 1101110110110110
1111010101011111 1111111111111111 0001101100110110 1111110000100010 0001111010010001 1111110011111111 0111111111111111 1101010011111111 0111001011101110 0011111100111000
1111111111111111 1111110111111111 0011000000110011 1000001100111010 1111011011111111 1111111111110110 1011011000010100 1111110011111111 1000011010110000 0111111001110111 1011111000010111 1101110011111110 0111111111011011 1101111101011110 1101011111011111 0101000100011010 1011111011110001 0111110111111111
```

```
00111101111111110
1111110011111110
1111010100101010
01000100011111111
0011001000110010
1111111011111110
1101110011111111
1101011011111111
0011100000000100
0101010110111111
0111100000000010
1101110101111110
1111111101111011
0001001010011010
1110111000111111
1101111100111100
11111111111111111
1101110100010110
11111111111011101
0111100111111110
1111011011110001
1101100101110010
1001011111010011
1111111111111110
1101001100110111
1111000000010100
0100000000110000
11111111110111111
1101111111111111
0011110110010010
1011011110001110
1101010111111111
1111111111101101
1011111101000011
1101001111110101
1111110001111100
1111110100001110
1101111001100111
1111011100111001
1101111110111111
1011010011111111
1111111011111111
1111111111110111
0111101101011101
0100000011011110
1101100100000001
1101111101110111
```

```
1110101111110000
0101111011011111
1101111000011111
01111111001011111
01111111111110011
1101011101111111
0011010100110000
11110111111111111
1111101000110110
0101101110110110
1111111111111110
0110010000001000
1101111001111110
1111011111101110
0111111010111101
01111111111111111
1001111110111011
10111111111111111
1011010010001111
1101101011111111
0000111100010000
0101011101011101
1101011100011110
0111011000101011
1011101001101111
0011110000010110
0011010100011110
1111011001010001
1011000101010111
1101111011011111
0101111111111110
0111111011111111
1101110000111111
1101010010001011
1011111101111110
1101111111111111
1011011101011110
00100011111010001
0111111010110010
1011110010111111
0101110011111111
1011110010110111
1001110001010100
0001100000000010
0101111001111001
1011101011100111
0111000100011111
```

```
1111111011111111
1001101011010100
1001111000011111
1111111111111011
1111111111111111
0011101110110110
01111111101100011
0101111100101111
1101010101111010
1111101010000010
0010000101100101
0111100110011011
1111110001111001
1111111111100111
1011110001111000
01111111111111010
1011101100011001
1111111111011111
1111101011111111
0111110110101111
1111100000010001
0011111101111111
1101111000100111
1101111100011111
1111111101110010
1011111011111111
1011111110110111
11111111110010111
0000001000000100
1000110000111001
1010111001111111
1101110101111111
1101010010111001
1001010101100110
1101101000100100
1101111010010011
1001111101110111
01111111110110110
1111011111011110
1010101011010111
1111111111111111
1111110101111111
0101111101001000
1111111101010011
1101100111011111
1101101000111110
1101110101010111
```

1111101100111101
1111111100110111
1001010000000010
1011010111111111
1110111101111111
1001010111110010
1001001010011100
1001110100111010
1101001000111111
1111110111110111
1110010111111000
1111111101111011
0101011001111111
1100111101111011
0111111011111111 0010101011011001 1111011001110111 1111101101010110 0101111111111111 1110000100111001 1011111111111111 1101111111111110 1111111011110011 1101111111011111 1101110101110111 1101111111111111 1011111111111111 1101111001110110 1101111100111011 1101111100011111 1000011101111011 0011011011111100 1101010111111110 0101000001011000 0101011100001110 1111111110111111 1101001010010110 1111111110101011 1111111001001000 0101111111111111 1111111111111100 1001010001111101 1100010110010001 1100000000100000 1011111111111110 1111111111111111 1011110101110100

```
1111011101111111
1010011111110111
0111110001110110
1011110111111001
1101110110111110
1101011111111111
01001111111101110
1101011101100110
0111010011110111
1111111111010110
1101101001110110
0010100000101100
0101111000111111
1111110001011010
1111111111111111
0101101000011111
1011111011111110
00111110111011000
1101110111111111
1101000010010000
1111101101010111
0111011000010100
0111011111101010
1111111111111110
1111011111111110
1111111010110001
0111110010111001
1111000100110000
1101011100111110
0011101001110110
0011110011011010
1111111001011110
0001000000110000
011111111111111111
1101111110111010
0111110111011100
1011100111111111
1000100011011110
0101011100011010
0101110000110010
1111111011110011
1111111111101111
1111111111111110
1111110100111110
1011101111111111
0111111001110010
1101101100101111
```

```
0111110011011111 1111111110111111 1101111111101011 0011000000000100 0101000010011110 1101010111111101 1111100101001110 1101101011010010 1111111000010111 1001110111100110 1101011010111111 1001111001110110 1111111011011111 1011111011111111 1001011011111111 1100011011110011 0101111001111101 1111110101010111 1111111100100010 1000100000111000 1101111110110111 0110110011011001 0101111100011010 0101110011111111 0101000000111000 0111000011011101 0010011010111010 1101011110011011 0111111100011011 0000001100110000 1011111101111111 1001110001111011 1111000101111111 1011111100101110 1101011011110110 1111111111101110 1111111010110111 1011010001110100 1111110011011111 0111111011110111 0111110000111000 1011110010111110
1011010111011010
1011011111111011 1011110111111111 1101111010011111 1111111011111011
```

```
0001001100011110
10011101111111110
1010100111010100
1110011010111110
1011100011111101
0001010001111000
1101011010110111
0000100110110011
0111011011010101
1111010110111111
1100111001110110
1111111000011101
1000111110110111
1110111111010011
1111111111111111
0011101101101111
0110111100110100
0111011100100110
1111111111111110
0111101101111011
0011100101101100
01111111110000110
1001011111111111
1001011011111111
1101110110111011
1111111111111111
0101111110111111
1111111011010110
1001011111110101
1001011011110111
0011101110110110
0111111100110111
1101011111101111
1111111111111110
1111111011111111
1111000111111011
0111111011000000
11111000111111111
1111010001111111
0111011011110100
1111110101110110
0011110111111000
0111010110111111
1011111111110110
0001111101110010
0011001000001100
1111011111111111
```

```
1111110011010110
1111001110011101
0101110000010111
1101111111110111
1111011101011000
1111111101111111
1111111011111010
1101001011111111
0110100011010000
00010111111100110
1101100000110010
1101011101110001
1111100000110011
0111110110110101
1111111110111110
0111011011100111
0101011101110110
1101100100011010
0111000000111100
1101111010101111
1011111001111011
1001001101010000
1001001101011010
1000000000010001
0001001100010010
0101011011111111
011111111111111111
1111111111111110
0111010010111101
1111010000110010
0010000110001000
1000110001110010
0111111100011111
0111000101000101
0111110010111110
1111100000111110
0011100010101100
1111110101110010
0011001101010101
1010110101010000
0101101110011101
1011010111100111
1111111111111111
0111011011110010
1111011111111111
1001110011011000
1110110111111111
```

```
1111100010111110
0101110011010110
0111011111011111
1011001010110111
1111110111101111
0111110111111001
1111110000110101
1101111101110110
1111100100110010
1111111101101111
1111110011111111
0101110101010110
1111110101111111
1011000011111111
1011110111111111
1111011111110111
1001010001111101
1100111011111011
1111111100110111
1111111011111110
0111111000001111
0100001011010001
1001011111111010
1101011011011001
1001010000110001
01011111101110000
10010111111110011
11011111111110110
0011010101111111
1111011101110101
1111010111101110
1101110111110010
0101011000101110
1110111110110000
0011111100111110
1001111000101000
0011101101000100
0101011110110001
1001010000001110
1001011101001000
1111110110111101
1101010011111110
1011101001111101
1111111110110111
1111111011111111
1111110001011111
0111000010011000
```

```
1000011111110110
0000100000110000
0010100001101010
1000111110101100
00111111001111110
1101111011111111
1101101100110011
1101010111111111
1000111101110111
1111001111111111
1111110110011010
0111111010010011
1111110011111111
0111100001010100
0011110010111110
1000110111110101
1101011100111011
1111011010111111
0111011011111110
1101111011110111
1111111111111111
0001000000101011
1101011000111110
1101110111111100
1011011101111011
1011011011100100
1111110111011001
0011010110011110
1111111111111111
1011111011111111
0111110101110011
0011101011110011
1001011010010110
0011111011100110
1111110010011011
1111011110101011
1100000100010101
10010101011111110
1111111110010101
0011000100000100
1101011101110110
1111110111111111
1111011110110010
1111110111110111
0101100011010000
1111000111110110
1111011110000111
```

```
1111111111111111
0111111111010110
0011010000011011
1111110011111111
1101111111101100
0101111111011111
0110011011111100
1111101011110111
1111010010011111
1011111000110100
1011100000010111
0101010111111001
0101111111101011
1011110111110111
1101111001111000
0111110100011001
1101011011010011
0111011000110111
1101110001110110
0100111111111111
1111011111111111
1101111111111111
1111111001111100
1111100110110110
1011101100110011
1111010101010110
1111011110100110
1111111000111110
0101110101010111
0110011100011000
1111111101110111
0101011001011111
1111010000000011
0011010111000011
0101010001111110
1111111101011111
0111010001110001
1111110111111111
00111101111111110
1111001101010001
0111011001011101
1101111111111111
1011111011111111
0111011101101111
0111010011110011
1111111101111001
1111111101111110
```

```
1111111110110111
0111110100110100
1111011100111011
0111000001110010
1101011001110111
1111111011111111
1011100010000110
1111111101110111
0111110001110110
1011011011111010
1101110110111111
1101001110010101
0100010000010010
1011011110110011
1101111011011111
1101000010010010
11000111111111111
1101111011011111
1101111001111110
1101110000110111
1111111010011101
00111101011111110
1111010101111011
1011011011111111
1011101101111010
01011111111111011
00111011111111011
01011000001111110
1101011110111101
1111110111111111
1111011111110111
0101010001111100
1001100001110110
1001101100110000
1101010100100111
1011100001110000
1011110011011110
11011111110111011
01011111101100111
1111011000011100
1111111101101110
1111111011110111
1001111111011111
01111111111111111
1001111010110111
1111101110111111
1111111110111110
```

```
1111111011101100
11011101011111111
0111111011100111
1111111101011111
01111111101010110
0101111000011110
1111111001110011
1111111100110011
1101010001110101
1001010011110010
0101000100111011
1101110111111111
1101111011111101
1011101100101111
1101010011111010
1011110010101010
0111110011011111
1111111011111111
1111100111010010
1101111101111100
0101101100111110
1111101000111010
1111111011111111
0101001000110010
1110011101111011
1001110101110111
0111011011010001
0100011000111001
0101110111110110
0110010011111110
0010001011011010
1100001101111100
1101110111111111
1101011111101111
1001001101110110
1101110111110010
0011101111001011
11011111101110011
0011110100100011
1101011000011101
1011011101110111
0011010110111100
1111110100110000
1011110011111111
1111111110111111
1111010000010010
1101111001111110
```

```
1111111111010111
1111101101101111
1111110001111110
1011101011011010
1111111001011111
0111011100101100
0111011000010010
1111111110111111
1101111110111110
0011110001110111
1111011110111001
1000010001111000
1100101001011110
0111100101101011
1110111011011010
01111111111111110
1111010000111010
10111111111111110
1001010000010111
1111001110110111
0111000001101010
11000100111111110
1101111010100111
0111110101111011
1011111101110000
1101111011110110
1011000000111000
1101000110010010
11111111011111111
0011001101001000
0111011000111110
1111111011111110
1011001100011111
1101000111110111
1101111111111111
0011110100111110
0100100110011010
11011111111111111
1111001011110001
0101010111110101
0101010001011101
1101111101111110
1100011101110111
0011100001101001
1011111111110111
0101110111011111
1001010001111110
```

```
1111110111111111
0100101100010000
0101100000100100
1111101111110101
1111111111111111
1001101000111111
1111111011111110
1001111011101111
1001011101100011
1111110111111111
1111001111110000
1011111111111111
1101110111101010
1111110011111111
0001110111111110
1101101011111111
1101111011111111
1001001101100110
1111111100110111
1111111111111110
1111101101111111
0111111011111111
1111011100111010
1111110101100110
1001101001111111
0111011000010110
0001000001100101
10111111100111101
1100011111111100
11110110011111110
1101111111110010
1001110010111111
0011011101110011
1001110011111111
1101111111111011
1100101001110011
0101010101111111
101110111111111111
1001010100000100
1110111101111111
1111111001110110
1111010101110111
1011111100010110
1101110001011100
01010000011111111
0111101001100010
1111100001011110
```

```
1010111000001100
1111001100111111
0101010111101101
1111111011010001
1111101100111111
01111111001010011
1001100100110111
1111110001010111
1111011101110111
1101111001110101
1111010011110100
0101111101100111
01111111111110111
1111111111111111
1011001010110110
1111110110110110
1101101111001101
1011111101010111
1011111001111110
1011101100011101
0010000100111010
1001000100001100
1011101110011110
0111111001100110
1111111000011111
1101011101110010
1111111110111111
1101000000011101
01111110010100110
0010100011110000
1111110110110111
1111010100010011
1101011010111010
1111111100110111
1001111111110011
0011111101001111
0111011001110010
01111101111111111
1111111001101010
1111111011111111
0011101000011011
1111111011111111
1111111111111111
1110101101011000
1011111111010110
0111011011110011
1001111101111111
```

```
1111111011110111
1111010111100001
1010110101111110
1101101111111111
1101110011000010
0101010101111111
1001010011100101
0110110000010010
0010100101110111
1111100101101100
01011110111111111
1011011110010001
1111110010111111
1111111011100011
1101101111111101
1111111011111101
1011110000111011
1101111111011111
1111111110110110
1000101100110010
0101111000111011
1111010100001000
1110111000111000
1001011101101110
1011001010010110
1000011010100101
1011111001110111
1001100000010100
10111111111110011
1011111010110001
1110010100011010
1111111111111111
0101111101110111
1011111111111111
1101111001111011
1111011001001011
0011011101111001
0111000001011101
0111011010101100
1111001110011110
0111110001111010
1111111111111111
1001001101100101
0101111010111110
1101110011101011
1111110110000111
1111110111111111
```

```
1101110110111111
1111011100101011
1111111011110111
1001111100111011
1111011111111111
1111111111111111
0100110101101111
11111111111111111
0001110111111111
1101111000010001
1011111011111111
1111110111111111
0011111000011000
0111000100001000
1101111100010001
1111111000010111
01011111110111111
1110101000011001
1101111111111111
1100111100010111
1001101001111111
1001011011010000
1111111100111111
0111010100101100
1011110101010111
1101110101111110
011111111111111110
11111111110010011
1101111100011011
1011011010111111
1001010001010110
1101111111011111
1111110111111111
0111111011010111
1111111101111111
0011100111000010
10111111011111111
0101100111100100
0000111011110011
1111110011011111
0100001010001000
11010111111111001
1001011101111111
1111101101111111
FINISH
```


VITA

Ze Wang was born November 30, 1979, in Suizhou, China. She received a B. S. in English and Science and a B. E. in Electronic Information and Engineering with high honors from University of Science and Technology of China (2002). She is presently a doctoral student in the Department of Educational, School and Counseling Psychology at University of Missouri in Columbia, Missouri.

