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EXTENSIONS OF A MAXIMUM ENTROPY ESTIMATED MARKOV DECISION 

PROCESS IN THE UNITED STATES AGRICULTURAL ECONOMY  

Dustin J. Donahue 

Dr. Wyatt Thompson, Dissertation Supervisor 

ABSTRACT 
 

With an increase in the US focus on biorenewable energy, more forces are 

competing for agricultural land. This structural change in the agricultural economy 

warrants re-examination of the relationships between agricultural production decisions 

and the factors which influence those decisions. However, relevant data may be limited. 

To address this issue, a maximum entropy estimated Markov decision process model 

(MDP), a model ostensibly robust with limited data, is employed to examine agricultural 

decisions in three studies. 

First, the question of the MDP’s application to endogenous price changes is 

addressed by incorporating the MDP into a structural partial equilibrium model 

examining corn and soybean production in Iowa and Missouri from 1995-2005. This 

model is compared to a calibrated constant coefficient model and shocked to examine 

performance differences. The MDP was found to be more responsive to changes in price 

than a traditional model, although constraints on the model estimates were required to 

cause the model to follow economic response expectations. 

Second, the MDP was applied to a newly acquired satellite imaging dataset 

showing warm season grass (WSG) area, a possible cellulosic ethanol feedstock, in the 

Midwestern US from 2001-2009, comparing the relationships between WSG, corn, soy, 

and wheat. The model proved problematic with large datasets, but showed the possibility 



ix 
 

of WSG competing with traditional crops for area, responding to shocks in both its own 

price, and that of corn.  

Third, the MDP was applied to US feed and residual usage. Because of the 

increase in ethanol production, dried distiller’s grains (DDG) production has increased, 

creating a more available alternative livestock feed. DDGs, corn, and soy meal were 

examined from 2003-2012, and future use was projected. DDGs were found to compete 

with corn, but their soy meal relationship was unclear. DDG use is expected to level off 

and decrease slightly over the next ten years. 
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I. Incorporating Dynamic Land Use into a Partial Equilibrium Model: 

 

Test Cases in Missouri and Iowa 

 

 

I.1 Introduction 

 

In recent years, the United States has increased the focus it places on biofuel 

policy as a part of its overall energy policy. Specifically, the Energy Independence and 

Security Act (EISA) of 2007 includes mandates for the use of several categories of 

biofuel, some of which can be met using traditional (starch based) and cellulosic and 

agricultural waste based biofuels over the next decade. This mandate (which may or may 

not be waived at the discretion of the Environmental Protection Agency) could 

significantly change the manner in which U.S. land is allocated for crop production for 

the next decade. Even as a dedicated energy crop is developed to reduce price volatility 

transmitted from the oil market to traditional crop prices, the new crop will compete with 

traditional crops for land. Even setting aside the potential for new crops, the impact of 

biofuel on the mix of crops grown in the U.S. has been a matter of debate, with increased 

pressure in corn markets apparent in area shifts in recent years. Because of this impact, 

there is benefit in knowing how different factors will affect land allocation: 

understanding these interactions will allow policy makers to make better decisions.  

Many prior studies exist on land use allocations (LUA). Often, LUA models 

incorporate a set of constant parameters which, with other data, allow for the estimation 

of land use. For instance, the Food and Agricultural Policy Research Institute (FAPRI) 

utilizes a structural partial equilibrium (PE) model to project U.S. commodity and crop 

production. A PE model is built with a series of linear or non-linear equations modeling 

both supply and demand for various commodities at an aggregated level. However, 
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constant coefficient (CC) models necessarily assume that relationships between data and 

land use remain at a single level throughout time. The question arises whether or not 

constant parameters are appropriate for LUA models, as opposed to a dynamic coefficient 

model, in which the relationship between factors determining land allocation and the 

allocation decision change over time. One method to introduce dynamic coefficients is to 

assume that land use follows a first order Markov decision process (MDP). It is a 

dynamic process in which the current land allocation is a function of the last period’s 

allocation and a set of non-stationary transition probabilities. These probabilities are 

estimated based on data which affect the decision process. This allows a greater freedom 

of movement in a model, which may allow it to reflect reality more accurately.  

However, traditional PE models have the ability to determine price endogenously 

and solve recursively for changing market conditions. Prior Markov models have not 

incorporated such price endogeneity. Combining these two capabilities may provide a 

more robust model, thereby serving as a better tool for analysis. The questions this 

research intends to answer are 1) Can a land use model incorporating an MDP 

endogenously determine price, and 2) If so, how does it compare with a traditional purely 

constant coefficient model? To answer these questions, this research incorporates a MDP 

into a PE model.   

I.2 Prior Literature 

 One of the possible extensions of this research is examining the impacts of biofuel 

policy on land use. With the increasing importance of biofuels in the American 

agricultural economy, literature concerning such impacts on land use and other areas has 

increased in frequency.  Devadoss and Bayham (2010) examine the effects of reducing 
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crop subsidies on biofuel production. Dicks et al. (2009) examine the amounts of various 

feedstocks necessary to satisfy the EISA mandate. Miller and Coble (2011) study 

different possible policy options available to lawmakers and the impact of those 

proposals on the Southeastern U.S. Kim, Schaible, and Daberkow (2010) focus on the 

impacts of U.S. biofuel policy on international energy markets. While this list of biofuels 

related economic literature is far from exhaustive, it makes clear that there are a great 

many questions to answer about the changing bioenergy economy. This research focuses 

on developing a new model to better address some of them.  

Structural models have been used to solve for land use and agricultural production 

for several decades. An early use of the structural model comes from Womack (1976). He 

models U.S. agricultural production at a national level, incorporating both crop and cattle 

production and consumption. Shumway (1983) studies Texas field crop production, but 

his analysis focuses mainly on the supply side of the equation and the cost of inputs. 

Adams (1994) follows Womack, and includes a regional breakdown of the national 

model. A prominent current use of this type of model can be found in the FAPRI 

Baseline, as mentioned earlier (Westhoff and Brown 2009). 

The earliest use of a MDP to estimate changes in land use is found in Burnham 

(1973). The author assumes that land use changes in the Southern Mississippi Alluvial 

Valley can be estimated by a stationary first order Markov chain. However, he states in 

the footnotes that assuming stationary transition probabilities may be too restrictive for a 

land use change model. Burnham’s conclusion is supported by Hallberg (1969), who 

studies frozen dairy products in Pennsylvania using a non-stationary MDP. Hallberg uses 

multiple regression techniques to test the hypothesis that non-stationary Markov 
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transition probabilities have better predictive capability than stationary probabilities. 

MDPs are used in far more than land use, however. Again, Hallberg’s study is on firm 

size in the dairy industry, not land use. Other studies using MDPs for econometric 

analysis include Adelman’s analysis of the distribution of firm sizes in the iron and steel 

industry (1958); Paap and Van Dijk’s analysis of income and consumption in the U.S. 

(2003); Kelley and Weiss’ study of population migration based on wage differentiation 

(1969); Miller and Plantinga’s paper analyzing land use changes in Iowa (1999); and 

Lubowski, Plantinga, and Stavins’ use of a nested logit model to analyze national non-

federal land use (2008).  

 As stated earlier, other models are utilized in economics to determine land use 

allocation. One such method is an iterative linear program (LP). In an LP, a linear 

production function is optimized subject to constraints such as labor costs, crop net 

returns, and total acreage constraints. Heady (1954) provides a discussion of the logic and 

advantages of using linear programs in agricultural econometrics. Tompkin (1958) uses 

linear programming to determine the optimal combination of production activities on a 

livestock farm. A different type of LP model is used by De La Torre Ugarte et al. (2003) 

and Ray et al. (1998) in the implementation of the POLYSYS agricultural policy model. 

However, LP models may result in corner solutions, so transition constraints may be 

necessary.  

Another model used to estimate land use shares and transition probabilities is the 

multinomial logit model (MNL) (Theil 1969). The MNL is used by McRae (1977), 

among others. The probabilities associated with a change in state are estimated using a 

logistical form. This functions similarly to a Markov chain, but disregards the prior state, 
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estimating changes in land use solely as a function of exogenous data. Such use can be 

seen in Wu and Segerson (1995); Hardie and Parks (1997); and Ahn, Plantinga, and Alig 

(2000), for instance. In addition, Lubowski, Plantinga, and Stavins (2003, 2008) note that 

the Independence from Irrelevant Alternatives (IIA) property of MNLs may preclude 

otherwise optimal choice behaviors. They, in addition to Lubowski (2002), use a model 

known as a nested logit model (NLM) to address this shortcoming of the MNL. The 

NLM separates decision states into subgroups or “nests” of similar qualities, 

differentiating them based on degree of substitutability. The nests Lubowski, Plantinga, 

and Stavins use include urban, non-farm (comprised of forest and range land), and farm 

(comprised of cropland, Conservation Reserve Program land, and pasture land). The 

advantage of the NLM is that it imposes IIA within nests, but not across nests, relaxing 

the choice restrictions. However, because the nests of a NLM are based on 

substitutability, it may be less efficient at explaining land use change between crops. The 

mixed logit model (MLM) is another method of relaxing the IIA restriction. The MLM is 

given by McFadden and Train (2000), and takes the choice specific variables of 

conditional logit and the choice-independent variables from the MNL to create a mixed 

model in which additional choices change the relative probabilities of the existing states.  

However, the MLM still requires a problem that is well posed: i.e. the 

observations available exceed the number of unknowns. In the case of the introduction of 

a new crop for cellulosic biofuel feedstocks, the known data are very limited, and the 

problem may be ill-posed. Golan, Judge, and Miller (1996) discuss the use of general 

maximum entropy to address the issue of an ill-posed problem. From this discussion and 

other existing land use literature, a model that estimates a set of coefficients directly 
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linking explanatory state variables (both state dependent and independent to avoid IIA) 

with decision variables, as well as incorporating data from the state of the land in the 

prior period may be derived to provide a better fit. It is also desirable to utilize an 

econometric model that minimizes choice restrictions on the part of the decision maker. 

One such model that fits those criteria is the MDP model. 

I.3 Markovian Land Use Decision Process 

This research examines the dynamics of land use changes by explaining the 

planting decisions of farmers in the area of study. Following Ahn, Plantinga, and Alig 

(2000), each farmer in region i (i = 1, …, I) is assumed to plant a sequence of crops on 

land that he manages that maximizes the present discounted value of expected net returns 

(1.1)   





0

,,,,,, )](),([max
,, t

tkjttihtkj

t NRE
tkj




X

 

where t is a constant discount factor, tkj ,,  represents a decision to allocate land currently 

used for crop (discrete state variable)  j in time t-1 to crop k in time t, tih ,,X  represents a T 

x H matrix of observable data, including expected crop net returns and a trend variable, 

and εt represents unobserved variables. Beyond the limit of a farmer making decisions 

only for the land he owns or controls, this maximization is unconstrained. Because of the 

relative difficulty involved with obtaining individual farmer planting decisions, a model 

which utilizes aggregated data is desirable. Therefore, in this paper, acres planted 

aggregated at the state level are used to represent the sum of all planting decisions 

(Golan, Judge, and Miller 1996). However, this research recognizes that there exist 

idiosyncratic or agent-specific components of a farmer’s planting decision, which are 

unobservable to the econometrician. These components are represented by the 
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unobservable state variable . Over time, a farmer’s planting decisions are assumed to 

follow a first order MDP. The acreage planted to a given crop is a function of the crop 

planted in the prior period and a non-stationary transition probability, noted tkji ,,, . That 

is, there is a non-observable J x K (where J=K) matrix of probabilities for each state and 

time period, transitioning from crop j to crop k from period t-1 to period t.  

To illustrate, Table 1.1 shows the probabilities for land use transition in Iowa 

from 1996-1997 estimated from the model explained below. If an acre of land was 

planted with corn in 1996, it has approximately a 57% chance of staying in corn in 1997, 

a 37% chance of being planted with soybeans, and a less than 6% chance of being used in 

another category. Here, these numbers provide a visual example of the nature of 

Markovian transition probabilities; as results, they will be discussed later. Markovian 

transition probabilities row-sum to one and are hypothesized to be affected by 

explanatory variables including crop prices. Through this interaction, the variables are 

explanatory of changes in crop land planting patterns.  

The model is derived using maximum entropy (ME), following Golan and Vogel 

(2000); Golan, Judge, and Miller (1996); and Miller and Plantinga (1999). The ME 

method for estimating the model of Markov transition probabilities is set forth by Jaynes 

(1957). The objective of the ME method is to select the probabilities that use the least 

information (fewest assumptions) to estimate the probabilities while still satisfying the 

constraints. This, in turn, assumes the farmer has the greatest amount of choice possible. 

Shannon’s (1948) entropy measure is used to measure the amount of information needed 

to estimate the coefficients (Miller and Plantinga 1999, Golan and Vogel 2000). The 

primal objective function determining the optimal transition probabilities is 
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where 0  is an H size vector of zeroes and tkiy ,,  is the share of acreage planted to crop k in 

area i during time t. When applied to the estimating equations (the set of constraints), the 

solution to the problem takes the form   

(1.3) 
 
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


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where kih ,,̂ is the optimal Lagrangian multiplier associated with explanatory variable h 

and crop k, and tkjiq ,,,  is a conditional probability, which may be adjusted by the analyst 

to represent information from before the planting decision that may bias the farmer’s 

decision. By focusing on the dual of the primal problem, an unconstrained equation to 

determine the optimal multipliers takes the form of  

(1.4) 
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One k category is kept as a residual, with its multipliers assumed to be zero. This implies 

that the residual land is unaffected by the explanatory data. Because of the additive nature 

of the land categories, the residual solution is implicit when all other categories are 

estimated. After the multipliers are estimated, they are used with the other variables to 

determine the transition probabilities in (1.3). The transition probabilities are then applied 

to the prior year’s crop plantings to determine current plantings: 
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(1.5) 


 
J

j

tkjitjitki yy
1

,,,1,,,,ˆ  . 

With the acreage shares estimated, elasticities can be calculated to show the effect of a 

one percent change in the explanatory variables on the transition probabilities. (Miller 

and Plantinga 1999) 

(1.6) ]ˆˆ[
1

,,,,,,,1,,,,,,,, 


 
K

k

tkjikihkihtjitihtkjih yx   . 

Using this elasticity, one can derive the acreage transition elasticities, measuring the 

change in the acreage allocation from a one percent change in the explanatory variables, 

as 

(1.7) 




 
J

j

tkjihtkjitjitkitkih yy
1

,,,,,,,1,,
1

,,,,, ˆ   . 

Using the appendix in Miller and Plantinga (1999) as a guide, the covariance matrix of 

the coefficients ( kih ,,̂ ) conditional on the explanatory variables can be estimated by  

(1.8)    1
)1()1( )()'( 22






KiK
IXΣIX  

such that I is the identity matrix, and i is a T(K-1)2 x T(K-1)2 matrix where the diagonal 

elements are )1( ,,,,,, tkjitkji   and the off diagonal elements are )( ,,,,,, tkjitkji   . 

With the MDP defined, the focus shifts to defining the PE model which will 

endogenously determine price. 

I.4 Partial Equilibrium Model 

 The PE model used here is a set of linear demand and price equations designed to 

take the land allocation decision from the MDP and allow it to interact with the market, 

endogenously determining price, and allowing that price to feed back recursively into the 
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variables affecting the farmer’s planting decision. The following equations specify the 

relationships between simulated variables and the MDP. 

(1.9) titkitki TotalLandyesPlantedAcr ,,,,,   

To reach actual acres planted to each crop, the shares are multiplied by the exogenous 

total amount of land available. Shares are used in estimation because of the MDP’s 

probabilistic nature, preventing projections from being tied to the last year of estimation.  

  (1.10) tkitkitki HHResPlantedAcresHarvestAcr ,,,,,,   

Acres harvested for each crop in a given year are calculated by multiplying the acres 

planted by the average historical harvest rate for that crop. This accounts for area 

harvested for silage as opposed to grain, which is studied here, and may include factors 

like crop failure or area not harvested for other uses.  

(1.11) tkitkitk,i, esHarvestAcrdActualYielProduction ,,,,   

Actual yield is exogenous, so production is the product of the area harvested and the 

realized yield. 

(1.12) 



I

i

tkitk ionProductSupply
1

,,,  

Total supply for the region is the aggregated production amounts of each state. 

(1.13) tl,tk,ttk PricericePIncomeDemand 31211101,    

Demand is a function of national income and prices. Here, l indicates all discrete states 

(crops) in t such that k≠l. Thus, both own and cross prices are included.  

(1.14) tktk DemandSupply ,,   

This equation clears the market and varies price to satisfy the constraint. 

(1.15) )( ,, tkitk, icePrfPrice   
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The market-clearing regional prices are linked back to the state-specific prices. By 

inserting the MDP supply response into the above equations, the model becomes a MDP-

PE. The model for this paper is further defined by the scope and data.  

I.5 Data and Scope of Model 

 The objective of this research is to compare a MDP-PE model with a CC-PE 

model. Figure 1.1 provides an illustration of the overall framework of the model and the 

relationships between the variables. Area for two crops that are already produced 

commercially is estimated over a historical period and combined with a structural partial 

equilibrium model; then, an out of sample simulation is run with and without an external 

shock to compare the two models. Here, corn and soybeans are estimated in Iowa and 

Missouri for the years 1996-2005, with an out of sample simulation in 2006-2009. The 

residual category consists of all other land available in both states after corn and soybean 

acres are removed. While the residual category is included for estimation purposes, it is 

not a focus of this research: the residual category has no returns calculated for it. As such, 

one limitation of this study is that the focus on corn and soybeans is narrowly defined, 

with land associated with all other activities left as an “other”. However, as noted below, 

the treatment is consistent among the land use equations that are compared in the models 

presented here.  

With this framework in mind, the area variable for the MDP-PE i = [Iowa, 

Missouri], the crop category variables j,k = [corn, soybeans, residual], time variable t = 

[1996, 1997,…, 2005] and the explanatory variable h = [corn net returns, soybean net 

returns,  intercept]. State level data for corn and soybeans on acres planted, acres 

harvested, yields, fertilizer application rates, and farmgate prices for each marketing year 
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are taken from the National Agricultural Statistics Service (NASS). Total state land area 

is taken from the 2010 U.S. Census, held constant over time, and used to determine 

shares. Fertilizer price data for anhydrous ammonia (N), di-ammonium phosphate (P), 

and muriate of potash (K) are obtained at the regional level. The NASS regions used are 

Heartland and North Central. National corn and soybean farmgate prices, as well as 

soybean meal prices, are obtained from NASS as well. National personal income is 

obtained from the Economic Research Service (ERS). All prices and income are in real 

terms. Consumer prices and income are adjusted using the consumer price index from the 

Bureau of Labor Statistics, with farmgate and policy prices adjusted using the producer 

price index from the same.  

I.6 Additional Specifications 

 To simulate the model, a number of additional equations are necessary apart from 

the land allocation problem that was explained before.   

(1.16) tkIowatkMissouri icerPicePr ,,1202,,    

Prices for both corn and soybeans in Missouri were found to follow Iowa (the larger 

producer) almost perfectly. Therefore, the model solves for Iowa prices, and Missouri 

prices are taken as a function of them. 

(1.17) 
][][

),max(][

,,,,

,,,,,,,

tkitki

tkikitkitki

stVariableCoEYieldE

rPricePolicyFlooBasisPriceFuturesNRE




 

Expected net returns are equal to the maximum of state-level futures price and a policy-

set floor price times expected yield minus expected variable costs. The national futures 

price is gathered from the Chicago Mercantile Exchange, and, following crop insurance 

(Hofstrand and Edwards 2003) the average of daily settlement prices in February were 
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used to calculate the futures price used. Corn and wheat prices were based on December 

contracts, while soybean futures prices were based on November contracts. The futures 

price is adjusted by subtracting the average difference between the futures price of the 

chosen month and the state-level average farm price. Although this gap varies from year 

to year in ways that are assumed to be predictable, farmers are expected to incorporate 

the average difference between the price on the CME and the price they receive that is 

sustained over this period. The floor price is derived from the United States marketing 

loan program, but is assumed to run higher than the loan rate set by policy based on the 

observation that the marketing loan benefits plus market price typically exceeds the loan 

rate in those years where payments were made during the sample period.. The policy 

floor price was estimated as the loan rate plus the average percentage by which loan 

deficiency benefits plus state level market prices exceeded loan rates over the years 

where there were benefits during the estimation period of this study. Expected yield is a 

trend yield. 

(1.18) tkitktk,i, esDiffStateFuturceFuturesPriceFuturesPri ,,,   

The national futures price is translated to the state level by subtracting the average 

difference between the current state marketing year price and the national futures price. 

Dickey-Fuller tests were conducted on the differences to determine stationarity. No unit 

root was found at the 1% level of significance for corn or soybeans in Iowa. Because 

Iowa prices drive the model, Missouri was not tested. 

(1.19) )( 1,,,  tkIowatk PricefceFuturesPri  
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Out of sample, the futures price is estimated as a function of the lagged marketing year 

price in Iowa. Iowa prices drive the model, and this equation closes the price expectation 

system. 

  (1.20) 



],,[

),,,(),,,(),,,(),,,( *][
KPNsFertilizer

tKPNKPNtSoyCornitSoyCorni icePrFerteFertAppRatstVariableCoE  

Aggregate per-acre fertilizer costs are included as the variable costs for each crop. Other 

variable costs, including fuels, chemicals, and seeds, are not included for two reasons. 

First, fertilizer is assumed to explain an important part of the differences between corn 

and soybean costs. Second, fertilizer relates the key research question of this study 

because of how fertilizer requirements and crop rotation interact. For soybeans, the 

fertilizer costs are the per-acre application rates times the price.  

(1.21) 
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For corn, the issue of soybean rotation arises. Farmers, to fix nitrogen in the soil, will 

plant soybeans after corn, thereby reducing fertilizer costs. This functional form assumes 

a 50% rotation of all available acres in state-level data, unless there is a portion of corn 

acreage that cannot be rotated. Given the recommended corn-over-corn and corn-over-

soy application rates come from the Iowa State University Extension Service (Blackmer, 

Voss, and Mallarino 1997), correspondingly higher fertilizer costs are built in if state-

level data suggest that some corn must be planted on area that was allocated to corn in the 

previous year. Current fertilizer prices and application rates are used because the farmer 

has knowledge of the prices he faces when he purchases fertilizer, as opposed to facing 

an expectation of price. It should be noted here that the issue of soil quality or 
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productivity is recognized as affecting the farmer’s decision process (Orazem and 

Miranowski 1994, Thomas 2002, Miller and Plantinga 1999). However, because this 

model is aggregated at the state level, land quality differences are difficult to capture, and 

are assumed to reside in the idiosyncratic portion of the optimization problem.  

(1.22) 
tcorntcorn

tcorncorntCorn

TrendaicePrUSSoya

icePrUSCornaaDemand

*3)ln(*2
)ln(*10)ln( ,




 

(1.23) 
tsoytsoy

tsoysoytSoy

TrendaicePrUSSoya

icePrUSCornaaDemand

*3)ln(*2
)ln(*10)ln( ,




 

Demand for corn is a function of its own farmgate price and the farmgate soy price, as 

well as intercepts and trends. Likewise, demand for soy is a function of its own farmgate 

price, the corn farmgate price and other terms. For demand, regional production is used 

as the dependent variable, but demand for crops grown in these two states implicitly 

includes all uses and all competing producers, domestic and foreign. Regional demand 

elasticities are based on the method applied for a model that included corn and soybean 

production in Illinois (Khanna et al. 2009), using with the same estimates of demand and 

supply, namely demand elasticities of -0.16 for corn and -0.59 for soybeans and supply 

elasticities of  0.2 for corn and 0.45 for soybeans, but taking into account the share of 

crop production in this two states (USDA/NASS 2012). Since (1.22) and (1.23) use a 

double log form, the demand in shown in (1.13) would be the exponential of (1.22) or 

(1.23).  

Estimation comparison is restricted to validating the non-constant representation 

of supply, whereas the standard representations of demand and price-clearing equations 

are added to simulate the impact of an external shock in order to show the potential for 

differences in results if non-constant supply parameters are used in policy analysis. For 
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out-of-sample simulations, the model is calibrated to the final year of historical 

estimation. The elasticities are listed in Table 1.2. Own-price elasticities are negative and 

very elastic, as is judged appropriate given that the demands are for crops produced in 

only two states, and cross-price elasticities are positive and inelastic.  

I.7 Model Constraints 

 As written, the model should run unconstrained to choose the coefficients which 

best fit the data. Indeed, an unconstrained model is desirable because it may be 

considered more statistically valid, as it more closely reflects the relationships present in 

the data. However, in applied econometric work, constraints are often imposed if the 

results do not fit economic theory or if the data may not perfectly reflect the situation 

faced by the decision maker, as in the case of proxies. To see if such constraints were 

necessary, the model is run over the in-sample period with actual lagged acreage and 

explanatory data. The acreage elasticities (1.7) of the net returns variables were 

examined, as well as the structure of the Markov probability matrices (1.3). The initial 

run of the model produced elasticities which do not follow expected economic theory: 

own net return elasticities should be positive, and cross net return elasticities should be 

negative. Of the eight elasticities calculated, only the effect of corn net returns on soy 

acres had the expected sign.  

To address this issue, two sets of constraints were imposed: the first was imposed 

on the value of the coefficients calculated in (1.4), the second on the prior probabilities q 

in (1.3). The elasticities were indirectly constrained by way of the coefficients themselves 

because elasticities are not explicitly represented in this estimation method, but are 

calculated ex post instead. These constraints were designed to direct the model as little as 
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possible while still ensuring the correct signs and relative magnitudes on own net returns 

elasticities. In Iowa, restricting soy net returns to corn acres as negative produced results 

which fit theory. In Missouri, corn net returns to corn area was constrained to be positive. 

These constraints are imposed to cause the model to follow the known competitive nature 

of corn and soybeans. The elasticities from both models, averaged over time, are shown 

in Table 1.3.  

The second set of constraints were imposed on the probability matrix (1.3) by 

introducing a non-uniform set of prior probabilities (q). While specific crop rotation data 

are difficult to obtain, Wallender (2013) shows that while some area stays in corn 

continuously, most is rotated to soybeans at least once in three years. Following this, the 

prior probabilities assumed a corn-corn-soy rotation of aggregate shares, with a very 

small possibility of land going into residual.  Corn over corn probabilities were increased 

slightly to account for the small percent of land that does not rotate. These priors are 

presented in Table 1.4. Missouri prior probabilities were more difficult to determine 

because of the much broader array of crops grown there. Also, Missouri estimated 

probabilities of residual land going into corn and soy were very low without imposing 

priors, therefore Missouri was left with uniform priors.  

I.8 Model Validation 

It should be noted that forcing the model to reflect theory did not come without 

cost. While the economics are more closely followed, the constraints impact the statistical 

validity of the errors of the coefficients derived from the covariance matrix in (1.8). For 

this reason, confidence intervals and t-tests are not provided for the coefficients.  The 

question also arises as to how the constraints affect the ability of the model to estimate 
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land use changes, essentially a question of goodness of fit. Due to the dynamic nature of 

the MDP, traditional measures of fit (i.e. R2) are not statistically valid. But, a different 

measure of fit for the MDP may be presented: 

(1.24) 





T

t kti

ktikti
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MAE is the percent mean absolute error: the difference of the estimated acreage and the 

actual acreage for each crop, normalized by the actual acreage planted to that crop, 

averaged over time. As it measures deviation from historical data, a lower number 

indicates a better fit. Because y represents a share, as opposed to actual acreage, this 

estimate is a unitless percentage.  Again, this does not have the same statistical 

application as a normal R2, but it does provide an idea of how the model performs. The 

MDP in-sample MAEs are listed in Table 1.3.  The constraints on the model decrease its 

ability to estimate land use changes with regards to corn acres, as shown by the higher 

MAEs in the constrained model. However, soy acres perform the same or better in both 

Missouri and Iowa.   

The constraints have some impact on the model, but it may be easier to 

graphically validate the model and to see how it compares against historical acres planted 

to corn and soy, shown in Figures 1.2 and 1.3. The vertical double-dash line indicates the 

change from in-sample to out-of-sample estimation. Both follow fairly closely over time, 

but the model misses the changes in 2007 when corn and soy prices spiked. The graphs 

seem to suggest that the model catches the turns, but misses the magnitudes of the 

changes. Because it catches the turns in production, it may be useful to see how the 

model responds to a shock in prices. Therefore, the focus shifts to comparing the 

performance of a CC version of the model to the combined, price endogenous MDP-PE. 
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I.9 Simulation Results: Constant Coefficient vs. MDP Comparison 

To compare the MDP model to a CC model, a CC-PE model is created and 

calibrated in part to the constrained MDP-PE estimation results to ensure similar orders 

of magnitude. The CC-PE acreage response equals the elasticities calculated from the 

MDP-PE, averaged over the in-sample period. Intuitively, this approach suggests that an 

estimated CC-PE model over the same period might end up with the constant supply 

elasticities equal to the average values of the non-constant elasticities reported above. 

This calibration is chosen to keep the magnitude of response from the CC-PE model in 

line with that of the MDP-PE model. To provide a baseline for the differences in the two 

models, Table 1.4 shows the out-of-sample relevant data for each model and the actual 

observations. In comparing the averages of the base scenarios, the initial differences seem 

to follow theory: both the CC-PE and MDP-PE models allocate fewer acres to these crops 

when their own prices are lower, with the lower prices in both cases possibly a result of 

simulated demand weaker than historical demand during this period. However, the CC-

PE allocates fewer acres to crops than the MDP-PE and has slightly higher prices. The 

acreage differences are relatively small, but this does provide an indication that, despite 

calibration, the models will respond differently. Table 1.6 shows these differences more 

explicitly. The difference between the two begins small in acres planted, but spreads 

apart as the simulation progresses in most categories.  Another measure of performance 

of a structural model can be generated by simulating the results of an external shock.  

To test the model further, a shock was applied in the first year of the simulation 

period. In keeping with a stylized applicability to biofuels, an exogenous increase in 

regional ethanol demand of 3.0 billion gallons in 2006, with an additional 500 million 
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gallons each year, was applied. A conversion rate of 2.7 gal/bu is assumed, based on the 

lower end of the range tested by Donner and Kucharik (2008). Distiller’s grains  are 

included as a percent reduction in total corn demand from the shock based on per-gallon 

distiller’s grain production numbers from USDA (Hartman 2013), under the assumption 

that increased distiller’s grains will compete with corn for feed demand, attenuating the 

increased demand for corn.  Table 1.5 shows the differences between the two models 

across the two scenarios (the difference of differences).The shock is assumed to be 

unanticipated, so expectations of future crop prices are not affected by any probability 

that farmers might otherwise place on the price impacts of steadily increasing ethanol 

production from corn. Before the models are contrasted, one should examine the signs 

and magnitudes of the individual scenario differences to evaluate performance and ensure 

that the simulations follow economic theory. 

Tables 1.7 and 1.8 show the shock scenario differences, subtracting the base 

scenario from the shock scenario. In 2006, the supply side parameters (acres planted and 

production) do not respond due to lagged response variables. However, the increase in 

ethanol demand causes an increase in the price of corn as the new demand is filled at the 

expense of other demands. The price of soybeans also increases as livestock owners and 

consumers shift consumption to soybean products as the price of corn rises. The CC-PE 

model has a higher increase in prices than the MDP-PE from the identical shock in 

quantity demanded, suggesting that the MDP-PE has a greater price elasticity of supply, 

which is to say an identical change in price across both models would evoke a stronger 

supply response in the MDP-PE. In 2007, the entire model picks up the shocks as the 

lagged increases in price cause increases in corn acreage planted to help fill the 
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exogenous demand shock.  There are fewer acres planted to soy in Iowa in 2007, despite 

a higher soy price. This suggests a “bleedover” effect from the demand shock of the 

previous year. Acreage is taken out of soybeans, despite the fact that soybean prices have 

increased. This can be explained by the fact that the corn price has risen higher than the 

increase in the price of beans in percent terms; so acreage is taken away from soybeans.  

The interesting part of the story occurs in comparing the differences in the two 

models over time. Table 1.7 shows the differences between the two models across the 

two scenarios (the difference of differences), which are fairly small for all years. This is 

likely due to the fact that the demands are very elastic in this model, so even large shocks 

will cause a small impact on crop prices in these two states. Small price differences 

correspond to small differences in land allocation and crop supply. Moreover, the 

calibrated nature of the CC-PE model ensures that the two are reasonably close together. 

While this ensures that the results are comparable, it may understate the real differences 

between the two approaches. A modest price increase is sufficient to reallocate corn from 

other uses to ethanol use, based on this representation. While Table 1.9 shows the gross 

changes between the two, a closer look at the prices shows a significant difference in the 

models. In the both models, corn prices increase in accordance with the additional 

demands of the model. However, the MDP-PE consistently estimates lower prices than 

the CC-PE model. And, with the exception of 2007 spikes, there is a distinct positive 

trend in the differences between the two models with regard to price. That is, the prices in 

the CC-PE model rise at a relatively fast rate, while the MDP-PE prices are slower to 

respond to the increased demands from the shock. This suggests that the MDP-PE is a 

more responsive model, reacting more strongly to the issues arising from increased 
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competition for corn ethanol. That is, a modest change in price will have a greater effect 

on supply in the MDP-PE model. Looking at acreage in 2008 and 2009 supports this 

conclusion: the MDP-PE estimated a lower change in prices than the CC-PE, but has 

more acres planted to each crop in those years.  

I.10 Conclusion 

 The purpose of this research is twofold: can a non-constant land use decision 

process be incorporated into a structural model with price endogeneity, and, if so, how 

will it perform against a constant coefficient model? The first question is answered in the 

affirmative in this case, although there is a need for more refinements in the specification 

of the structural model. The demand given here is a placeholder, that could be improved, 

even to the point of introducing a dynamic element to demand. There is also room for 

improvement as regards the land representation, not least by relaxing the narrow focus on 

corn and soybean land to incorporate other agricultural land use and other land use 

categories. More importantly, it was shown that the model may require constraints on the 

coefficient estimation to ensure that economic theory is followed. Policy has a limited 

impact through the inclusion of a price floor estimated from marketing loan program 

impacts. But, it is an advantage of this approach that it permits estimation over small 

sample sizes that might be more germane to forward-looking decision making as 

compared to estimates over data extending back to policy and market environments that 

are no longer relevant. Nevertheless, a possibly quite useful extension would be to extend 

the model to include more policy effects explicitly, also setting the stage for applied 

policy analysis.    
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The second question is answered by comparing a combined MDP-PE with a CC-

PE model utilizing a time-averaged set of acreage transition elasticities from the MDP, 

estimated from 1995-2005. The two models are then shocked with an exogenous demand, 

increasing net demand to corn by requiring the production of 3.0 billion gallons of 

ethanol in 2006, and an additional 500 million gallons each year thereafter. The responses 

of several metrics, including crop prices and area allocated to each crop, were analyzed 

over 2006-2009. As the two models are calibrated to have similar elasticities at the initial 

values, a key result is that the MDP-PE shows more price response in the case with the 

shock. The MDP-PE is shown to allow for increasing responsiveness to changes in prices 

through estimating consistently lower prices than the CC-PE, while the CC-PE 

responsiveness tends to be lower path despite changing conditions in this case. This result 

suggests that the MDP approach might be a means of taking into account dynamic 

effects, such as rotation or crop-specific human or physical capital, that could affect crop 

supply elasticities. 
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I.12 Appendix: Figures and Tables 

Table 1.1: Markovian Land Transition Probabilities in Iowa, 1996-1997 
Source: Author’s Estimation 
  1997       

1996 Corn Soy Residual Sum 
Corn 0.572 0.374 0.054 1 
Soy 0.491 0.459 0.051 1 

Residual 0.035 0.074 0.891 1 
 
Table 1.2: Demand Equation Price Elasticities 
Source: Adaptation of Khanna, et al. 2009 

Soybean Demand Corn Demand 
Variable Elasticity Variable Elasticity 

U.S. Corn Price 2.22105 U.S. Soy Price 0.74289 
U.S. Soy Price -4.44211 U.S. Corn Price -1.48579 

 
Table 1.3: Comparison of Net Returns to Acres Planted Elasticities with Measures of Fit 
(Mean Absolute Errors), Unconstrained MDP Models versus MDP Model Constrained 
with Coefficient Constraints and/or Non-Uniform Prior Probabilities 
Source: Author’s Estimation 

    Unconstrained Constrained 
    Corn Ac Soy Ac Corn Ac Soy Ac 

Iowa 
Corn NR 0.115 -0.188 0.389 -0.140 
Soy NR -0.071 -0.016 -0.248 0.140 
MAE 0.020 0.032 0.031 0.023 

Missouri 
Corn NR -0.003 -0.119 0.657 -0.120 
Soy NR -0.062 0.210 -0.466 0.211 
MAE 0.045 0.033 0.058 0.033 

 
Table 1.4: Iowa Imposed Non-Uniform Prior Probabilities for Constrained Markovian 
Model 
Source: Adaptation Based on Wallender 2013 
  t       
t-1 Corn Soy Residual Sum 
Corn 0.7 0.25 0.05 1 
Soy 0.6 0.35 0.05 1 
Residual 0.05 0.05 0.9 1 
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Table 1.5: Comparison of Historical Out of Sample Data with MDP-PE and CC-PE 
Model Base Scenario Estimates, 2006-2009 
Source: Author’s Estimation and NASS 

Out of Sample Data and Estimate Comparisons by Crop and State, 2006 - 2009 

Area Variable Units 
Historical 

2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 12.600 14.200 13.300 13.600 13.425 
Iowa Corn Farmgate Price $/bu 2.343 3.178 2.716 2.575 2.703 
Iowa Soy Acres Planted Mil ac 10.150 8.650 9.750 9.600 9.538 
Iowa Soy Farmgate Price $/bu 5.014 7.944 6.747 6.886 6.648 
Missouri Corn Acres Planted  Mil ac 2.700 3.450 2.800 3.000 2.988 
Missouri Corn Farmgate Price $/bu 2.465 3.263 2.672 2.578 2.745 
Missouri Soy Acres Planted Mil ac 5.150 4.700 5.200 5.350 5.100 
Missouri Soy Farmgate Price $/bu 5.088 8.171 6.693 6.972 6.731 
National Corn Farmgate Price $/bu 1.724 2.492 3.383 2.664 2.566 
National Soy Farmgate Price $/bu 4.271 5.689 7.999 7.175 6.283 

Area Variable Units 
Markov Decision Process 

2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 12.411 12.817 12.743 12.758 12.682 
Iowa Corn Farmgate Price $/bu 2.137 2.140 2.261 2.238 2.194 
Iowa Soy Acres Planted Mil ac 10.359 10.244 10.411 10.469 10.371 
Iowa Soy Farmgate Price $/bu 5.416 5.390 5.750 5.493 5.512 
Missouri Corn Acres Planted  Mil ac 2.863 2.963 2.888 2.823 2.884 
Missouri Corn Farmgate Price $/bu 2.218 2.221 2.337 2.315 2.273 
Missouri Soy Acres Planted Mil ac 5.013 5.003 5.057 5.070 5.036 
Missouri Soy Farmgate Price $/bu 5.465 5.439 5.792 5.541 5.559 
National Corn Farmgate Price $/bu 2.458 2.463 2.643 2.609 2.543 
National Soy Farmgate Price $/bu 5.468 5.449 5.712 5.524 5.538 

Area Variable Units 
Constant Coefficient 

2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 12.295 12.768 12.569 12.561 12.548 
Iowa Corn Farmgate Price $/bu 2.164 2.154 2.295 2.275 2.222 
Iowa Soy Acres Planted Mil ac 10.327 10.265 10.314 10.325 10.308 
Iowa Soy Farmgate Price $/bu 5.499 5.431 5.854 5.604 5.597 
Missouri Corn Acres Planted  Mil ac 2.714 2.859 2.760 2.701 2.759 
Missouri Corn Farmgate Price $/bu 2.244 2.235 2.369 2.349 2.299 
Missouri Soy Acres Planted Mil ac 4.812 4.867 4.880 4.909 4.867 
Missouri Soy Farmgate Price $/bu 5.546 5.479 5.895 5.650 5.643 
National Corn Farmgate Price $/bu 2.498 2.484 2.694 2.663 2.585 
National Soy Farmgate Price $/bu 5.528 5.479 5.789 5.606 5.601 
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Table 1.6: Differences between Estimated Markovian and Constant Coefficient Model 
Base Scenarios, 2006-2009, Constant Coefficient Model Shock Estimates Subtracted 
from Markov Model Shock Estimates 
Source: Author's Estimation 

Base Scenario Difference, MDP-PE - CC-PE 

Area Variable Units 2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 0.116 0.049 0.174 0.197 0.134 
Iowa Corn Farmgate Price $/bu -0.027 -0.014 -0.034 -0.037 -0.028 
Iowa Soy Acres Planted Mil ac 0.032 -0.021 0.097 0.144 0.063 
Iowa Soy Farmgate Price $/bu -0.083 -0.041 -0.104 -0.111 -0.085 
Missouri Corn Acres Planted  Mil ac 0.149 0.104 0.128 0.122 0.126 
Missouri Corn Farmgate Price $/bu -0.026 -0.014 -0.032 -0.034 -0.027 
Missouri Soy Acres Planted Mil ac 0.201 0.136 0.177 0.161 0.169 
Missouri Soy Farmgate Price $/bu -0.081 -0.040 -0.103 -0.109 -0.083 
National Corn Farmgate Price $/bu -0.040 -0.021 -0.051 -0.054 -0.042 
National Soy Farmgate Price $/bu -0.060 -0.030 -0.077 -0.082 -0.062 

 
Table 1.7: Markov Model Scenario Differences, 3.0 Billion Gallon Shock Minus Baseline 
Scenario, 2006-2009 
Source: Author’s Estimation 

MDP-PE Shock Scenario Difference 

Area Variable Units 2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 0.000 0.443 0.626 0.898 0.492 
Iowa Corn Farmgate Price $/bu 0.690 0.680 0.854 0.849 0.768 
Iowa Soy Acres Planted Mil ac 0.000 -0.034 0.103 0.191 0.065 
Iowa Soy Farmgate Price $/bu 1.428 1.397 1.662 1.599 1.522 
Missouri Corn Acres Planted  Mil ac 0.000 0.122 0.172 0.242 0.134 
Missouri Corn Farmgate Price $/bu 0.658 0.648 0.813 0.808 0.732 
Missouri Soy Acres Planted Mil ac 0.000 0.088 0.166 0.219 0.118 
Missouri Soy Farmgate Price $/bu 1.400 1.370 1.630 1.567 1.492 
National Corn Farmgate Price $/bu 1.030 1.014 1.274 1.266 1.146 
National Soy Farmgate Price $/bu 1.045 1.022 1.217 1.170 1.114 

National 
Ethanol Corn Net 
Demand Mil bu -758.9 885.4 1011.9 1138.3 948.6 

Regional  
Non-Ethanol Corn 
Demand Mil bu -758. 9 -796.7 -886.0 -947.1 -847.2 

Regional  Corn Production Mil bu 0.000 88.7 125.9 191.3 101.5 
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Table 1.8: Constant Coefficient Model Scenario Differences, 3.0 Billion Gallon Shock 
Minus Baseline Scenario, 2006-2009 
Source: Author’s Estimation 

CC-PE Shock Scenario Difference 

Area Variable Units 2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 0.000 0.454 0.449 0.645 0.387 
Iowa Corn Farmgate Price $/bu 0.718 0.692 0.960 0.985 0.839 
Iowa Soy Acres Planted Mil ac 0.000 -0.031 -0.035 -0.067 -0.033 
Iowa Soy Farmgate Price $/bu 1.475 1.416 1.874 1.880 1.661 
Missouri Corn Acres Planted  Mil ac 0.000 0.116 0.113 0.168 0.099 
Missouri Corn Farmgate Price $/bu 0.684 0.659 0.915 0.939 0.799 
Missouri Soy Acres Planted Mil ac 0.000 0.093 0.088 0.104 0.071 
Missouri Soy Farmgate Price $/bu 1.446 1.389 1.836 1.842 1.628 
National Corn Farmgate Price $/bu 1.071 1.033 1.432 1.471 1.252 
National Soy Farmgate Price $/bu 1.080 1.036 1.371 1.375 1.216 

National 
Ethanol Corn Net 
Demand Mil bu 758.9 885.4 1011.9 1138.3 948.6 

Regional  
Non-Ethanol Corn 
Demand Mil bu -758.9 -795.5 -922.8 -1001.6 -869.7 

Regional  Corn Production Mil bu 0.000 89.839 89.093 136.7 78.9 
 
Table 1.9: Difference of Differences Across the Markov and Constant Coefficient 
Models, Constant Coefficient Model Shock Difference Estimates Subtracted from 
Markov Model Shock Difference Estimates 
Source: Author’s Estimation 

Difference of Markov and Constant Coefficient Scenario Differences 

Area Variable Units 2006 2007 2008 2009 Average 
Iowa Corn Acres Planted  Mil ac 0.000 -0.011 0.177 0.253 0.105 
Iowa Corn Farmgate Price $/bu -0.028 -0.012 -0.106 -0.136 -0.071 
Iowa Soy Acres Planted Mil ac 0.000 -0.003 0.138 0.258 0.098 
Iowa Soy Farmgate Price $/bu -0.047 -0.019 -0.212 -0.281 -0.140 
Missouri Corn Acres Planted  Mil ac 0.000 0.006 0.059 0.074 0.035 
Missouri Corn Farmgate Price $/bu -0.026 -0.011 -0.102 -0.131 -0.068 
Missouri Soy Acres Planted Mil ac 0.000 -0.005 0.078 0.115 0.047 
Missouri Soy Farmgate Price $/bu -0.046 -0.019 -0.206 -0.275 -0.137 
National Corn Farmgate Price $/bu -0.041 -0.019 -0.158 -0.205 -0.106 
National Soy Farmgate Price $/bu -0.035 -0.014 -0.154 -0.205 -0.102 
Regional  Corn Production mil bu 0.000 -1.173 36.803 54.575 22.551 
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 Figure 1.1: Illustration of the MDP-SPE Model Framework 
Source: Author’s Representation 

 
 
Figure 1.2: Markov Decision Process Model and Constant Coefficient Model Corn and 
Soybean Acres Planted Comparison to Historical Data, Iowa, 1996 – 2009 
Source: Author’s Estimates and NASS 
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Figure 1.3: Markov Decision Process Model and Constant Coefficient Model Corn and 
Soybean Acres Planted Comparison to Historical Data, Missouri, 1996 – 2009 
Source: Author’s Estimates and NASS 
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II. An Economic Examination of Midwestern Warm Season Grass Area  

 

Using Satellite Imaging Data 

 

 

II.1 Introduction 

 In recent years, the United States has increased the focus it places on biofuel 

policy as a part of its overall energy policy. Specifically, the Energy Independence and 

Security Act (EISA) of 2007 includes mandates for the use of several categories of 

biofuel, part of which can be met using conventional (corn starch based) and cellulosic 

ethanols over the next decade. These mandates (which may or may not be waived at the 

discretion of the Environmental Protection Agency) could significantly change the 

manner in which U.S. land is allocated for crop production for the next decade.  

One source of cellulosic biofuels is from warm-season grasses (WSG). WSG are 

perennial grasses, normally planted in the spring, and harvested multiple times over the 

course of the year. Notable WSG include switchgrass (Panicum virgatum  L.), 

miscanthus (Miscanthus giganteus), Indian grass (Sorghastrum nutans), and big bluestem 

(Andropogon gerardii). These grasses grow naturally in the Midwestern United States, 

and have been considered as a means of supplementing, and to some degree possibly 

replacing, corn as an fuel ethanol feedstock. As a commodity, WSG may compete with 

traditional crops for land and capital. Understanding this competition would be useful to 

policymakers in crafting legislation. However, the nature of this competition is not 

initially clear. 

WSG data are somewhat limited. While studies have been done to ascertain yields 

and budgets, these studies are relatively few and focused on small areas, chiefly owing to 

a lack of data. The National Agricultural Statistics Service (NASS) does not track WSG 
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production as it does other crops. Normally, land use studies have the amount of land 

dedicated to a particular crop explained by variables such as own and cross prices, yields, 

fertilizer costs, government policies, and other variables that influence a farmer’s 

planting decision. Without the data to be explained, however, such studies cannot be 

conducted on a large scale.  

However, some such data have recently become available. Using the National 

Aeronautics and Space Administration’s (NASA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellites, land cover images were obtained detailing acres 

where WSG were present in the Midwestern U.S. These data, collected at the county 

level from 2000-2009 (see Wang et. al 2011), can serve as the left-hand-side variable in 

an econometric analysis to estimate the relationship between WSG and other crops, based 

on the aforementioned explanatory variables. 

 This research performs such an analysis, examining the historical growth of WSG 

in response to own and cross price, yield, and cost effects. However, the data are still 

limited, and the structure of the market might not reflect what would happen if cellulosic 

biofuel takes off, given the relatively new nature of WSG being used as a feedstock. So, a 

more frequently used method of econometric analysis, such as Ordinary Least Squares 

(OLS), may not be appropriate. A method which is robust with limited data, or is able to 

handle ill-posed problems, may provide a better understanding of the relationship 

between WSG and traditional crops. To wit, this research will assume land use patterns 

follow a first-order Markov Decision Process (MDP). It is a dynamic process in which 

the current land allocation is a function of the last period’s allocation and a set of non-
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stationary transition probabilities. These probabilities are estimated based on data which 

affect the decision process.  

Thus, the question this research intends to answer is “What relationships, if any, 

exist between warm season grasses and major traditional crops in the Midwestern US?”  

To answer this question, this research estimates WSG, corn, soy, and wheat area using an 

MDP.  

II.2 Prior Literature 

With the increasing importance of biofuels in the American agricultural economy, 

literature concerning such impacts on land use and other areas has increased in frequency.  

Devadoss and Bayham (2010) examine the effects of reducing crop subsidies on biofuel 

production. Dicks et al. (2009) examine the amounts of various feedstocks necessary to 

satisfy the EISA mandate. Miller and Coble (2011) study different possible policy 

options available to lawmakers and the impact of those proposals on the Southeastern 

U.S. Kim, Schaible, and Daberkow (2010) focus on the impacts of U.S. biofuel policy on 

international energy markets. While this list of biofuels related economic literature is far 

from exhaustive, it makes clear that there are a great many questions to answer about the 

changing bioenergy economy. This research attempts to answer a couple of those 

questions. 

Earlier, the availability of local or regional studies for WSGs is mentioned. These 

budgets, while unable to encompass the entire area of study, are important because they 

show different techniques and costs at a local level. These budgets often compare hay 

with switchgrass, because the production processes are so similar. Such budgets have 

been prepared by Smith (2009), University of Tennessee Extension (2009), Carpenter and 
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Brees (2010), Holman et al. (2013), Duffy and Nanhou (2001), Helsel and Alvarez 

(2012), and Brechbill, Tyner, and Ileleji (2011). However, two papers in particular have 

very wide study areas, and therefore become of particular interest: Perrin et al. (2008) 

covers fields in North Dakota, South Dakota, and Nebraska. Also, Khanna, Jain, and 

Oliver (2011) cover Minnesota, Wisconsin, Michigan, Iowa, Missouri, Illinois, Indiana, 

and Ohio. These two studies cover the bulk of available area, and are used as the primary 

sources of cost data for this study.  

The earliest use of a MDP to estimate changes in land use is found in Burnham 

(1973). The author assumes that land use changes in the Southern Mississippi Alluvial 

Valley can be estimated by a stationary first order Markov chain. However, he states in 

the footnotes that assuming stationary transition probabilities may be too restrictive for a 

land use change model. Burnham’s conclusion is supported by Hallberg (1969), who 

studies frozen dairy products in Pennsylvania using a non-stationary MDP. Hallberg uses 

multiple regression techniques to test the hypothesis that non-stationary Markov 

transition probabilities have better predictive capability than stationary probabilities. 

MDPs are used in far more than land use, however. Again, Hallberg’s study is on firm 

size in the dairy industry, not land use. Other studies using MDPs for econometric 

analysis include Adelman’s analysis of the distribution of firm sizes in the iron and steel 

industry (1958); Paap and Van Dijk’s analysis of income and consumption in the U.S. 

(2003); Kelley and Weiss’ study of population migration based on wage differentiation 

(1969); Miller and Plantinga’s paper analyzing land use changes in Iowa (1999); and 

Lubowski, Plantinga, and Stavins’ use of a nested logit model to analyze national non-

federal land use (2008).  
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As stated earlier, other models are utilized in economics to determine land use 

allocation. One such method is an iterative linear program (LP). In an LP, a linear 

production function is optimized subject to constraints such as total acreage availability. 

Heady (1954) provides a discussion of the logic and advantages of using linear programs 

in agricultural econometrics. Tompkin (1958) uses linear programming to determine the 

optimal combination of production activities on a livestock farm. A different type of LP 

model is used by De La Torre Ugarte et al. (2003) and Ray et al. (1998) in the 

implementation of the POLYSYS agricultural policy model. However, LP models may 

result in corner solutions, so transition constraints may be imposed by the modeler to 

prevent such scenarios.  

Another model used to estimate land use shares and transition probabilities is the 

multinomial logit model (MNL) (Theil 1969). The MNL is used by McRae (1977), 

among others. The probabilities associated with a change in state are estimated using a 

logistical form. This functions similarly to a Markov chain, but disregards the prior state, 

estimating changes in land use solely as a function of exogenous data. Such use can be 

seen in Wu and Segerson (1995); Hardie and Parks (1997); and Ahn, Plantinga, and Alig 

(2000), for instance. In addition, Lubowski, Plantinga, and Stavins (2003, 2008) note that 

the Independence from Irrelevant Alternatives (IIA) property of MNLs may preclude 

otherwise optimal choice behaviors. They, in addition to Lubowski (2002), use a model 

known as a nested logit model (NLM) to address this shortcoming of the MNL. The 

NLM separates decision states into subgroups or “nests” of similar qualities, 

differentiating them based on degree of substitutability. The nests Lubowski, Plantinga, 

and Stavins use include urban, non-farm (comprised of forest and range land), and farm 
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(comprised of cropland, Conservation Reserve Program land, and pasture land). The 

advantage of the NLM is that it imposes IIA within nests, but not across nests, relaxing 

the choice restrictions. However, because the nests of a NLM are based on 

substitutability, it may be less efficient at explaining land use change between crops. The 

mixed logit model (MLM) is another method of relaxing the IIA restriction. The MLM is 

given by McFadden and Train (2000), and takes the choice specific variables of 

conditional logit and the choice-independent variables from the MNL to create a mixed 

model in which additional choices change the relative probabilities of the existing states.  

However, the MLM still requires a problem that is well posed: i.e. the 

observations available exceed the number of unknowns. In the case of the introduction of 

a new crop for cellulosic biofuel feedstocks, the known data are very limited, and the 

problem may be ill-posed. Golan, Judge, and Miller (1996) discuss the use of general 

maximum entropy to address the issue of an ill-posed problem. From this discussion and 

other existing land use literature, a model that estimates a set of coefficients directly 

linking explanatory state variables (both state dependent and independent to avoid IIA) 

with decision variables, as well as incorporating data from the state of the land in the 

prior period may be derived to provide a more robust analysis. One such model that fits 

those criteria is the MDP model. 

II.3 Markovian Land Use Decision Process 

This research examines the dynamics of land use changes by explaining the 

planting decisions of farmers in the area of study. Following Ahn, Plantinga, and Alig 

(2000), each farmer in region i (i = 1, …, I) is assumed to plant a sequence of crops on 

land that he manages that maximizes the present discounted value of expected net returns 
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where t is a constant discount factor, tkj ,,  represents a decision to allocate land currently 

used for crop (discrete state variable)  j in time t-1 to crop k in time t, tih ,,X  represents a T 

x H matrix of observable data, including expected crop net returns and a trend variable, 

and εt represents unobserved variables. Beyond the limit of a farmer making decisions 

only for the land he owns or controls, this maximization is unconstrained. Because of the 

relative difficulty involved with obtaining individual farmer planting decisions, a model 

which utilizes aggregated data is desirable. Therefore, aggregated acres planted are used 

to represent the sum of all planting decisions (Golan, Judge, and Miller 1996). However, 

there exist idiosyncratic or agent-specific components of a farmer’s planting decision, 

which are unobservable to the econometrician. These components are represented by the 

unobservable state variable . Over time, a farmer’s planting decisions are assumed to 

follow a first order MDP. The acreage planted to a given crop is a function of the crop 

planted in the prior period and a non-stationary transition probability, noted tkji ,,, . That 

is, there is a non-observable J x K (where J=K) matrix of probabilities for each state and 

time period, transitioning from crop j to crop k from period t-1 to period t.  

To illustrate, Table 2.1 shows a set of probabilities for land use transition from 

2001-2002 as might be estimated from the model explained below. If an acre of land was 

planted with corn in 2001, it has approximately a 26% chance of staying in corn in 2002, 

a 25% chance of being planted with soybeans, a 3% chance of being planted with wheat, 

a 6% chance of being planted with WSG, and a 40% chance of being used in another 

category. These numbers are fictional and only present to provide a visual example of the 
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nature of Markovian transition probabilities; they are not results. Markovian transition 

probabilities row-sum to one and are hypothesized to be affected by explanatory variables 

including crop prices. Through this interaction, the variables are explanatory of changes 

in crop land planting patterns.  

The model is derived using maximum entropy (ME), following Golan and Vogel 

(2000); Golan, Judge, and Miller (1996); and Miller and Plantinga (1999). The ME 

method for estimating the model of Markov transition probabilities is set forth by Jaynes 

(1957). The objective of the ME method is to select the probabilities that use the least 

information (fewest assumptions) while still satisfying the constraints. This, in turn, 

assumes the farmer has the greatest amount of choice possible. Shannon’s (1948) entropy 

measure is used to measure the amount of information needed to estimate the coefficients 

(Miller and Plantinga 1999, Golan and Vogel 2000). The primal objective function 

determining the optimal transition probabilities is  
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where 0  is an H size vector of zeroes and tkiy ,,  is the share of acreage planted to crop k in 

area i during time t. When applied to the estimating equations (the set of constraints), the 

solution to the problem takes the form   

(2.3) 
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where kih ,,̂ is the optimal Lagrangian multiplier associated with explanatory variable h 

and crop k, and tkjiq ,,,  is a conditional probability, which may be adjusted by the analyst 

to represent information from before the planting decision that may bias the farmer’s 

decision. Here, priors are not uniform, but the exact structure of the priors will be 

discussed later. By focusing on the dual of the primal problem, an unconstrained equation 

to determine the optimal multipliers takes the form of  

(2.4) 
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One k category is kept as a residual, with its multipliers assumed to be zero. Because of 

the additive nature of the land categories, the residual solution is implicit when all other 

categories are estimated. It should be noted here that the residual category was shock 

tested after the coefficients were estimated, and was found to move as expected with 

regard to changes in explanatory data: increases in all net returns categories caused a 

marked decrease in residual category land, while increasing all other land categories. 

After the multipliers are estimated, they are used with the other variables to determine the 

transition probabilities in (2.3). The transition probabilities are then applied to the prior 

year’s crop plantings to determine current plantings: 

(2.5) 
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With the acreage shares estimated, elasticities can be calculated to show the effect of a 

one percent change in the explanatory variables on the transition probabilities. (Miller 

and Plantinga 1999) 
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(2.6) 
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Using this equation, one can derive the acreage elasticities, measuring the change in the 

acreage allocation from a one percent change in the explanatory variables. 

(2.7) 
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Using the appendix in Miller and Plantinga (1999) as a guide, the covariance matrix of 

the coefficients ( kih ,,̂ ) conditional on the explanatory variables can be estimated by  

(2.8)  
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such that I is the identity matrix, and i is a T(K-1)2 x T(K-1)2 matrix where the diagonal 

elements are )1( ,,,,,, tkjitkji   and the off diagonal elements are )( ,,,,,, tkjitkji   . 

With the MDP model defined, the focus shifts to defining the data that will be used in the 

model.  

Table 2.21 shows historical averages of the shares and expected net returns by 

crop. Shares of and net returns to WSG are relatively small, historically. Corn and 

soybeans are the most prevalent crops in the area of study, and those with the highest net 

returns,  presumably in part because they tend to be grown on the land with better than 

average growing conditions. Changes to net returns per acre in WSG may need to be 

large (such as a 50% or 100% increase) to cause a shift in acreage away from corn and 

soybeans in such areas. Wheat also has a relatively small area, but the net returns are 

higher than those of WSG. This suggests that WSG may compete more easily with wheat, 

                                                           
1 Table 2 does not include Indiana, Michigan, Northeastern Minnesota, or Ohio, as explained in the next 
section. 
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which is to say that a more modest change in WSG returns might cause wheat acreage to 

decrease. Wheat area may seem too low to the informed reader. However, the acreage 

share estimates for corn, soy, and wheat were taken directly from NASS; only WSG land 

cover area is taken from MODIS. Because this research is dealing with shares of total 

land, it may skew perception. To double check, random shares were taken from the data 

and multiplied by total CRD area to obtain gross acreage estimates. The resulting 

estimates matched NASS data to within one acre, which can be assumed as rounding 

error.2 

II.4 Data: WSG Returns 

 This research is chiefly concerned with the inclusion of a new data source in the 

estimation of land allocated to the production of WSG: NASA satellite images. The 

satellite image source has been previously discussed, but it is important to discuss the 

geographic nature of the data. As shown in Figure 2.1, WSG land cover has been 

prevalent in areas with large areas of pastureland, particularly areas like Eastern 

Nebraska and North Dakota. This is important because it informs the discussion of a 

proxy price for WSG. There is no historical price for WSG, so a proxy must be chosen. 

Among options considered was assuming a biomass price and conversion rate based on 

prior literature, such as those found in Brechbill, Tyner, and Ileleji (2011); De La Torre 

Ugarte et al. (2003); or Khanna, Shungana, and Clifton-Brown (2008), but this was seen 

as problematic because of the lack of variation and the inability to provide a substantive 

motivation for variation. Another idea was to use the price of hay, but this datum was 

difficult to obtain at a county level. Because of the strong link between WSG production 

and pastureland, the county-level pastureland rental rate (PRR) collected by NASS was 
                                                           
2 Table 6 shows the model estimates for gross acreage, which may be more in line with expected amounts. 
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chosen as the proxy for WSG production net returns3. The PRR, while considered a good 

proxy for historical WSG returns, is not collected by NASS for the eastern states in the 

area of study, namely Indiana, Ohio, and Michigan, along with one Crop Reporting 

District4 (CRD) in Minnesota. Given that area allocated to WSG in these regions is 

relatively low, they were excluded from the area of study. Further, NASS only reports 

PRR at the county level from 2008-2012, but at state level for all years in the study. To 

spread the PRR across the missing years, the average absolute difference between county 

and state PRR were taken as a measure of basis, which is assumed to be constant over 

time. This difference was applied to the historical state rates to get historical county rates. 

This provided both the spatial and temporal variation desired for this research, and is 

used to estimate the coefficients mentioned above for WSG returns.  

II.5 Data: Other Returns 

 Other explanatory data in the model include expected net returns for corn, soy, 

and wheat, as well as a trend variable and an intercept. Expected net returns for 

established crops are estimated using county-level trend yields, variable costs of 

production, and a proxy for the forward contract price at the county elevator. Expected 

yields are trend yields estimated from county level data taken from NASS. Costs of 

production are taken from ERS, and assigned to counties based on which Farm Resource 

Region they fall in. To obtain county-level futures prices, prices reported at grain 

elevators are interpolated at the county level.5 These prices are compared to national 

prices reported from NASS, and the average difference over time is calculated to act as 

                                                           
3 The pastureland rental rate, as well as all prices, are in real terms.  
4 Also known as Agricultural Statistical Districts (ASDs).  
5 The author wishes to thank Tim Matisziw of the MU Department of Geography for his work in 
interpolating the grain elevator prices.  
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an estimate of basis. This connects easily obtainable national level data to county level 

data. To link futures prices to the county level prices, the  Chicago Mercantile Exchange 

(CME) futures price was estimated as a function of the lagged national marketing year 

crop price. This created an “intertemporal basis” estimate, allowing national futures 

prices to be disaggregated down to the county level. Daily futures prices were obtained 

from CME. Following the procedure used by crop insurance (Hofstrand and Edwards 

2003), the average of daily settlement prices in February were used to calculate the 

futures price used. Corn and wheat prices were based on December contracts, while 

soybean futures prices were based on November contracts. 

II.6 Data: Acreage Shares 

 Estimates of acreage allocated to each use is one of the goals of this study. As 

such, acreage data are necessary. County level acreage estimates are taken from NASS 

for corn, soy, and wheat. WSG acreage is taken from the NASA MODIS images 

mentioned before and aggregated to county level. All other land in a county is aggregated 

into a single residual category. All other land, as opposed to all agricultural land or all 

cropland, is chosen for two reasons. 1) The author’s prior experience with the MDP has 

shown that small residual categories can be problematic in estimation, so the largest 

residual category possible is desirable. 2) WSG can be produced on lands other than 

those traditionally allocated to production agriculture, including CRP land. The 

possibility of production in these other areas needs to be taken into account. This 

provides an additional benefit in that it keeps total area constant over time, removing the 

need to estimate and possibly introducing further error. Due to the probabilistic nature of 

the MDP, shares of total area are used instead of gross acreage. 
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Using mixed datasets can cause issues in estimation. However, this research seeks 

to use as much publicly available data as possible, and NASS estimates are generally 

accepted. However, as Wang et al. (2011) note, there may be an issue with the estimation 

of WSG area with regards to spring wheat. The system used to classify the data could 

cause spring wheat to be classified as WSG. While the author was not able to 

independently confirm the existence of misclassification errors, it is important to discuss 

the errors’ possible implications. First, wheat would be double counted in such an 

instance, which would bias the share estimates which serve as the left-hand-side variable 

for this research. WSG shares would be too high, since non-WSG area is included in the 

estimate, which would bias all other share estimates downward. Second, with area 

misclassified, responses to changes in explanatory data may not follow expectations. That 

is, if area classified as WSG were actually wheat, it would respond positively to changes 

in wheat net returns, as opposed to negatively, as would be expected for competitive 

WSG. While these issues are recognized, the area classified as WSG is assumed to be 

WSG in the absence of a method to independently confirm or correct for such errors. 

II.7 Data: Prior Probabilities 

 As mentioned earlier, qj,k,t is a set of prior probabilities which represents a bias in 

the decision process (2.1) imposed by the econometrician to cause the probabilities 

estimated in the model to reflect the farmer’s decision process more accurately. Table 2.3 

shows the prior probabilities implemented in the model. These numbers were arrived at 

by taking a minimum set of  priors (all set at .05) and modifying them based on certain 

assumptions about production agriculture. 1) Corn/soy rotation is strongly followed in the 

Midwest, increasing corn/soy and soy/corn probabilities. 2) Soy/Wheat double cropping 
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and soy/wheat rotations occur in some areas of study, increasing soy/wheat and 

wheat/soy probabilities. Double cropping does not appear in the data explicitly, but 

instead as concurrent acres of soybean and wheat in a single year. The approach here 

increases the potential for soybean area leading to more wheat area and wheat area 

leading to more soybean area. These greater probabilities would makes sense if in 

continuous rotation, but overlooks the potential that soybean and wheat that are double 

cropped in one year will be rotated to another crop in the next year. The increase in 

probabilities to take soybean and wheat rotation into account is smaller than the increase 

for corn and soybean rotation, corresponding to the expectation about which of these 

planting parameters comprises a greater share of the relevant crop areas. 3) Residual area, 

because it includes urban and non-agricultural (marginal) land, is likely to remain in that 

use once area is allocated to it, increasing residual/residual probabilities. 4) Because 

WSG requires an establishment period of three to five years and is a perennial, area 

allocated to WSG is more likely to remain in WSG, increasing WSG/WSG probabilities.  

II.8 Spatial Correlation Issues 

 At county level, working with a dataset of this size can present some challenges. 

For the model to solve in a reasonable amount of time, each county was coded to solve in 

autarky. However, this presents issues with likely correlation of errors across counties 

due to factors such as weather. A higher level of aggregation, such as national data, can 

address such issues, but heterogeneity across land types is lost at such a level. One 

possible medium is solving with acreage aggregated and explanatory data averaged at 

CRD level. It should be noted that, in this manner, each CRD solves in autarky, but, this 

is considered an acceptable assumption, because the correlations across CRDs are likely 
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much weaker than the correlations across counties.  There are external factors that can 

affect wide areas, such as weather patterns in general and particularly large-scale 

droughts, that suggest correlation among CRDs, but these interactions in error terms are 

omitted here.  

To compare the two aggregation levels, corn own net return elasticities, wheat 

acreage-PRR elasticities, and average error were calculated after the estimation of the 

coefficients and compared. A histogram of county level and CRD level corn net returns 

to corn area planted elasticities can be found in Figures 2.2 and 2.3. The shapes of the 

distributions are very similar, though the county level has a slightly higher mean, 

indicating a greater level of response. Figures 2.4 and 2.5 show the returns of wheat 

acreage to PRR, the WSG net return proxy. The shapes of the two histograms are 

likewise similar, but the county level has a greater percentage of counties and years with 

a positive elasticity, which does not follow expectations: given the tendency of WSG to 

grow in poorer quality soil, it is expected to compete with other crops that grow in similar 

conditions, namely wheat. It should be noted here that the magnitude of the means 

reported in the histograms cannot be considered a true measure of the effects, because, to 

allow for proper scaling and visual representation of the data, any elasticities greater than 

three or less than negative three were forced to equal to those values, respectively6. But, 

even taking that into account, one can see that wheat area has a very strong reaction to 

changes in PRR. These two sets of figures show that the CRD level of aggregation should 

perform in much the same manner as the county level in autarky. But, the question 

remains as to the relative level of performance between the two options. To address this 

                                                           
6 This change in elasticities is purely for cosmetic purposes, and does not change the values of the 
coefficients. 
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concern, the average errors were estimated for the acreage shares to act as an indicator of 

fit: 
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MAE is the percent mean absolute error: the absolute difference of the estimated acreage 

and the actual acreage over time for each crop, normalized by the actual acreage planted 

to that crop, averaged over time. As it measures absolute deviation from historical data, a 

lower number indicates a better fit. Because y represents a share, as opposed to actual 

acreage, this estimate is a unitless percentage.  This does not have the same statistical 

application as a normal R2, but it does provide an idea of how the model performs, 

specifically of comparing the relative performance of the two levels of aggregation. The 

measure of fit estimates can be found in Table 2.4. The county level provides better 

estimates for soy and wheat, but the CRD level provides better estimates for WSG, which 

provides a motivation for utilizing the CRD level of aggregation.  

II.9 Constrained vs. Unconstrained Models 

 With the model aggregated and running at CRD levels, analysis turned to the 

validity of the results. As written, the model should run unconstrained to choose the 

coefficients which best fit the data. Indeed, an unconstrained model is desirable because 

it may be considered more statistically valid, as it more closely reflects the relationships 

present in the data. However, in applied econometric work, constraints are often imposed 

if the results do not fit economic theory or if the data may not perfectly reflect the 

situation faced by the decision maker, as in the case of proxies. To see if such constraints 

were necessary, the model was run unconstrained, and the elasticities (as calculated from 

(2.7) above) of the net returns variables were examined after imposing a .05% acreage 
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share threshold, because areas with small allocations to crops could skew results by 

showing very large elasticities for relatively small gross effects. Figure 2.3 is a histogram 

of the elasticities for corn net returns to corn acres planted. While the majority of CRDs 

and years follow theory, with a low, positive impact, there is a not-insignificant portion 

of areas and years which have a negative impact, which does not follow theory. This is 

seen further in examining soy net returns to corn acres (Figure 2.6): there is a much wider 

spread, and the majority of elasticities are positive. While this may suggest strong 

soy/corn cropping patterns, it is difficult to justify the assertion that soy acres will 

increase when the net returns to corn increase.  

WSG elasticities are likewise problematic. While the relationship between WSG 

and crops such as corn and soybeans may be argued, there should be little doubt that it 

should have a positive own net return elasticity. Figure 2.7 shows the elasticities of 

pastureland rental rates to WSG area. The spread is extremely broad, and over 20% of the 

elasticities are strongly negative. This may indicate a proxy problem, but, given the 

location of WSG, pastureland rental rates were determined to be the best available proxy, 

as suggested earlier. Pasture rental rates represent a poor proxy for WSG returns in an 

area if it is the case that pasture and warm season grasses act as substitutes there, with 

uncultivated WSG replaced by seeded pasture in the event that pasture returns rise. These 

elasticities might also indicate other issues, such as autocorrelated error terms, for 

example from a multi-year drought. The exact cause is unknown.  

In light of the results from Figures 2.3, 2.6, and 2.7, a series of constraints were 

imposed on the values of the coefficients estimated in (2.4). The elasticities were 

indirectly constrained by way of the coefficients themselves because elasticities are not 
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explicitly represented in this estimation method, but are calculated ex post instead. These 

constraints were designed to direct the model as little as possible while still ensuring the 

correct signs and relative magnitudes on own net returns elasticities. Given the known 

competitive nature of corn and soybeans, negative cross effects constraints were imposed 

on corn and soy net returns to soy and corn acres, respectively. Likewise, because of 

known soy-wheat double cropping patterns in a small part of the study area, cross effect 

restrictions are not applied between those crops. The constraints are not listed here: their 

indirect nature makes analysis uninformative.  

For the rest of this paper, results presented will reflect the constrained model. The 

constrained net return elasticities can be seen in Figure 2.8. The elasticities fit theory 

much more closely, with positive own net return effects and mostly negative cross 

effects. The notable exception is soy/wheat, with mixed cross effects alluding to double-

cropping. The elasticities indicate a much higher amount of double cropping than is 

known to exist in the area of study. However, the amount by which one should constrain 

the cross effects is difficult to ascertain. These elasticities are admittedly not completely 

ideal. For instance, the corn net return response to WSG is too strongly negative, greater 

than the own return response. The greater magnitudes of cross-effect elasticities can 

present problems with multiple simultaneous shocks. That is, if both returns to corn and 

WSG increase by the same amount, it will cause a net decrease in both corn and WSG 

area due to the stronger cross effects. However, shocking one price or return at a time 

should perform following theory, with decreases in cross purposes and increases in own 

purposes to positive shocks. With the correct directional impacts following a shock to one 

expected net return variable, area allocation will also move in the correct direction given 
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exogenous total area.   There remain several potential directions for improving the 

constraints imposed here, such as by targeting specific elasticities suggested by previous 

literature on corn, soybean, and wheat area response or else by ensuring more theoretical 

constraints, such as symmetry. However, the directional impacts are mostly correct and 

the focus of this work on WSGs undermines somewhat the value of basing parameters 

narrowly on previous studies of the main crops. 

It should be noted that forcing the model to reflect expectations did not come 

without cost. While the economics are more closely followed, the constraints impact the 

statistical validity of the errors of the coefficients derived from the covariance matrix in 

(2.8). For this reason, confidence intervals and t-tests are not provided for the 

coefficients. Further, the ability of the model accurately to estimate acreage is negatively 

impacted. Table 2.5 shows the difference in gross errors (2.9) between the constrained 

and unconstrained models. While the constrained model generally does poorer, it is worse 

with the estimation of WSG: the difference in WSG errors is more than three times 

greater than the next highest difference in errors. While this is unfortunate, the constraints 

are nonetheless imposed to achieve results which, when shocked with price or policy 

changes, will more closely follow economic theory in response, if not in actual acreage. 

Because of the loss of goodness of fit, the rest of the paper will focus on relative changes 

in acreages based on shocks to the model.  

 

II.10 WSG Returns Shock and Area Response 

 With the model area and constraints defined, the focus of this paper changes to 

WSG responses. To provide a frame of reference, Figure 2.9 shows the historical share of 
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land allocated to each CRD, averaged over time. To show how WSG responds to 

changes, the model was simulated dynamically over the sample period, calculated 

iteratively using (2.5). To see how WSG responds to a significant shock in prices, PRR 

was doubled for all CRDs and years in the sample period, and the model was run again. 

Figures 2.10-2.13 show the differences in area between the baseline scenario and the 

increased PRR scenario, averaged over time. Darker WSG areas indicate greater 

increases, while corn, soy, and wheat area are darker as more land is lost to those uses. 

Each figure has a second figure with it (e.g. 2.10a) that shows the difference in area as a 

percent of the crop’s base acres. This shows relative changes as opposed to gross 

changes.   

The results are surprising in a couple ways, but before discussing results, it should 

be noted that specific acreage transitions cannot be assumed from these maps. Because of 

the probabilistic nature of the model, shifts in acreage come from most or all of the other 

sources at once, and these maps are representative purely of the net effects. While 

discussion of such individual transitions is possible, it would vary based on CRD and 

over time, and such in-depth analysis falls beyond the scope of this research. Here, 

specific transitions will only be discussed in the broadest of terms.  

Doubling WSG returns while holding all other crop returns constant causes WSG 

to increase proportionally most in areas traditionally allocated to strict corn/soybean 

rotations: namely Iowa, southern Minnesota, and parts of Illinois, as shown in Figure 

2.10. This result is important: it shows that WSG may indeed compete with traditional 

crops for land area if the prices for WSG are high enough, at least in this representation 

of land allocation. There were small relative increases in the western part of the sample 
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area, with little to no increases in WSG in the upper northern area covering upper 

Minnesota and Wisconsin. One odd result is the sharp border between northern Missouri 

and southern Iowa. Southern Iowa shows strong increases in WSG growth,  increasing 

area allocated to WSG by 20-25% of total land, but immediately across the border, the 

increases call to between 4-7%. The pastureland rental rates are about $8 higher on 

average in that area of Iowa than those in north Missouri, resulting in a $16/acre higher 

rate under the shock scenario, which may explain the differences in the two allocations.  

 Wheat response is shown in Figure 2.11. Changes in wheat area are strongest in 

areas where wheat is traditionally grown: North Dakota, South Dakota, and western 

Kansas. Nebraska’s response is not as strong, and the middle and eastern parts of the 

sample area show little to no land going leaving wheat production, with the notable 

exception being the area around the bootheel of Missouri and southern Illinois. But, even 

there, the response is modest. The relative response in Illinois is somewhat stronger, but 

that owes to the lower amount of acreage dedicated to wheat production.  

 Soybean area is shown in Figure 2.12. As mentioned prior, some areas historically 

allocated to corn and soybean rotation were planted with WSG, and those areas are also 

shown here, with Illinois, Iowa, and southern Minnesota losing soybean acres. However, 

the loss of soybean land is not restricted to corn/soy areas. The eastern Dakotas and 

western Minnesota also lose soy area. This may be indicative of changes in wheat/soy 

crop rotation patterns, given the modest wheat losses there as well.  

 Corn area is shown in Figure 2.13. The corn loss area is fairly concentrated in the 

middle and eastern parts of the sample area, in gross terms. In relative terms, most areas 

lose a significant portion of area allocated to corn.  
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 For a broader look, changes in acreage devoted to each crop from the base 

scenario and shocks can be seen in Table 2.6. Comparing the first and second columns of 

data show the total regional impact of doubling pasture net returns on the allocation of 

land. Substantial land is taken away from corn and soybeans, but a smaller percentage 

from wheat. This suggests, contrary to prior expectations, that corn and soy compete 

more easily than wheat for a doubling of pasture returns. This could also be attributable 

to the relatively lower pastureland rental rates in the Great Plains states. The rates 

average between $8 and $20 over time in ND, SD, NE, and KS, while averaging $20 to 

$35 in IA, WI, IL, and most of MO. Doubling pastureland rental rates would therefore 

have a greater impact in those states, where corn and soy are historically grown. With this 

in mind, the impact on those areas are likely much overstated from the doubling of 

pastureland rental rates. However, this shock was not intended to provide historical 

context, merely to show that this model estimated with these data can generate acreage 

shifts, which it does. Indeed, given the magnitude of changes that did occur, even when 

areas with higher PRR are considered, the model shows that a much more modest change 

in PRR may cause land to be allocated from traditional crops. Further testing is needed to 

examine these effects more closely, and specifically the impact of shocks to other areas 

of the system. Thus, this research tests the model further by applying a more historically 

tenable shock. 

 

II.11 Corn Net Returns Shocks and Area Response 

 The initial shock scenario is intended to show how the model responds in regards 

to changes in WSG returns. The magnitude of the shock is admittedly strong, following 
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the earlier hypothesis that a strong change in returns to WSG would be necessary to shift 

land away from traditional crops such as corn/soy rotations, and is there to provide results 

which are clearly separable from other coterminous effects. It is useful, however, to see 

how the model responds to smaller, more likely changes in prices. Chen and Khanna 

(2012) estimate that by 2022, EISA mandates will cause a 23.5% increase in the price of 

corn, given a conservative estimate on the availability of sugarcane for ethanol 

production. To draw a connection between the price change of that study to the net 

returns used by the model of this study, the shock was multiplied by the average percent 

difference between prices and net returns in the historical period (93%). This method of 

assuming a proportional link between prices and net returns assumes implicitly that the 

prices of inputs represented in the corn cost data are also affected. This representation 

might be consistent with medium- or long-run relationships between corn output and 

input markets, not an immediate impact of a price change on net returns. To simulate 

changes in corn price, the model is run with a +/- 21.9% difference in corn net returns.  

 Figures 2.14-2.17 show the changes in area with respect to the lower corn net 

returns shock. It is clear that there are strong similarities between Figures 2.13 and 2.14. 

There is a difference in the scale of the two maps, likely a result of the change in the 

shock magnitude. But, the interesting similarity is that the areas of relatively strong 

change are the same across separate shocks. This remains the case for soy and wheat: 

with changes in scale, the strong areas of change for wheat are the Dakotas and Kansas, 

and the strong areas of change for soy are the eastern Dakotas, southern Minnesota, Iowa, 

Illinois, and northern Missouri. The higher corn net returns shock follows the same 

pattern. Therefore, it would be unhelpful to show the same maps again. WSG are 
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somewhat of an exception. The strong areas still show change, but there is expansion of 

lands in which WSG is grown, shown in Figure 2.15. More acres are allocated relative to 

other areas in Nebraska and Missouri than in the WSG returns shock, with less in central 

and northwestern Iowa. Figure 2.18 shows the changes in corn area from the higher corn 

net return shock. The higher corn net returns maps look the same as the lower (Figure 

2.14), with a change from gains in area to losses. This pattern follows for all other higher 

corn net return maps. Therefore, they will not be presented.  

The important difference between the maps are the legends, showing the 

difference in scales. Since it has been established that, for the most part, the relative 

strength of changes by crop shown in Figures 2.14-2.17 are constant across scenarios, it 

may be easier to examine the impact of the shocks by examining the data by other means. 

A histogram of the shock share differences by crop and scenario, averaged over time, are 

given in Figure 2.19. The shocks, for the most part, follow economic theory in that 

increases to corn net returns increase corn area while decreasing other areas. Wheat does 

look odd, with what appears to be a not-insignificant portion of the area on the wrong 

side of each shock scenario. However, each of these are small enough (<.001 in absolute 

value) that they may be considered effectively zero. The means of the differences bear 

this out. The histogram shows also that WSG area does react to changes elsewhere in the 

economy. This further supports the possibility that WSG could compete with traditional 

crops, based solely on changes in the other crops’ own net returns.  

For a more numerical analysis, Table 2.6 also shows the regional results of the 

two corn net return shocks. Area moves in the expected direction at the regional level, 

with higher corn net returns causing increases in corn area, and decreases to other crops. 
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The opposite occurs when corn net returns decrease. The model estimates have WSG as 

very elastic overall: a 20% change in corn net returns results in 40% changes in WSG 

area. This indicates that further refinement of the constraints may be needed, or it could 

point to problems with the use of pasture rental rates as a proxy for WSG net returns at 

the margin. Also, it may prove interesting to run this model at the national level, as 

opposed to the CRD level, to apply more relevant national policy shocks. 

II.12 Conclusion 

 This research sought to examine the relationships between WSG and traditional 

crops, namely corn, soybeans, and wheat. To accomplish this, WSG data were obtained 

from NASA satellite images and combined with NASS, ERS, and grain elevator data for 

corn, soybeans, and wheat. These data were placed in a dynamic MDP to estimate 

changes in land use, given a change in returns to WSG. However, issues arose with the 

estimation of coefficients and elasticities. The data did not fully cover the originally 

intended area, the computer could not a solve a model combining CRD level coefficients 

and county level dummies, and initial results did not follow economic theory. To address 

these concerns, area of study was respecified, the level of share and explanatory data 

aggregation was changed to CRD, and constraints were imposed on the coefficients. The 

respecified model had a decreased goodness of fit, but it allowed examination of relative 

changes in acreage in response to a price shock.  

Model performance was tested by changing key exogenous data. WSG and corn 

returns were changed over the historical period. WSG net returns were doubled to test 

model performance to a very large shock, in particular to see if this specification could 

permit exploration of the possibility that WSG competes with the main crops in the 
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region. In this shock, acres allocated to the different uses moved in the expected 

direction, with area being appropriately lost or gained from each of the major crops. This 

result shows that, if WSG is grown as a dedicated source for cellulosic biofuel, the model 

approach explored here could represent the degree to which it competes for land with 

other uses.  However, the MDP, while initially thought to be useful in the estimation of 

limited-data scenarios, proved to be problematic in this case. In particular, the size of the 

impacts for the very large shock to the proxy for WSG net returns implied land use 

changes that seemed implausibly large, reducing regional corn, soybean, and wheat area 

dramatically. The corn net return shocks also provided directional effects that are correct, 

but no comparison is made with other studies to confirm that the magnitudes conform to 

findings found in other studies, and the impacts of the corn shocks on WSG area suggest 

that the model might over-state the substitution of WSG and other land uses, or at least 

corn use. Further research could take this data sample and apply it with more traditional 

models to compare results. Alternatively, refinements in the estimation method to take 

into account spatial interdependence or impose parameter restrictions that require 

elasticities to fall with ranges indicated by other research, where relevant, could be 

undertaken.  
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II. 14 Appendix: Figures and Tables 

 
Figure 2.1: Midwestern Land Covers Observed by MODIS, Indication of Presence for 
Six Out of Ten Years, 2000-2009  
Source: Susan Wang, University of Missouri Geography Dept. 
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Figure 2.2: Corn Net Returns to Corn Area Planted Elasticities, County Level 
Aggregation, Unconstrained 
Source: Author’s Estimates 

 
 
Figure 2.3: Corn Net Returns to Corn Area Planted Elasticities, CRD Level Aggregation, 
Unconstrained 
Source: Author’s Estimates 
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Figure 2.4: Pastureland Rental Rate to Wheat Area Planted Elasticities, County Level 
Aggregation, Unconstrained 
Source: Author’s Estimates 

  
 
Figure 2.5: Pastureland Rental Rate to Wheat Area Planted Elasticities, CRD Level 
Aggregation, Unconstrained 
Source: Author’s Estimates 
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Figure 2.6: Soy Net Returns to Corn Acres Planted Elasticities, CRD Level, 
Unconstrained 
Source: Author’s Estimates 

 
 
Figure 2.7: Pastureland Rental Rate to Warm Season Grass Acres Elasticities, CRD 
Level, Unconstrained 
Source: Author’s Estimates 

  



69 
 

Figure 2.8: Net Returns Elasticities, CRD Level, Constrained Model 
Source: Author’s Estimates 
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Figure 2.9: Historical Warm Season Grass Area by CRD as a Percent of Total Land, 
2000-2009 Average 
Source: NASA MODIS Satellite Imaging Data 
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Figure 2.10: Change in WSG Area in Response to Doubled WSG Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.10a: Change in WSG Area in Response to Doubled WSG Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates  
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Figure 2.11: Change in Wheat Area in Response to  Doubled WSG Returns , 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.11a: Change in Wheat Area in Response to Doubled WSG Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.12: Change in Soybean Area in Response to Doubled WSG Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.12a: Change in Soybean Area in Response to Doubled WSG Returns, 2001-2009 
Average, 
Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.13: Change in Corn Area in Response to Doubled WSG Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.13a: Change in Corn Area in Response to Doubled WSG Returns, 2001-2009 
Average, 
Measured as a Percent of Base Scenario Acres 
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Figure 2.14: Change in Corn Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.14a: Change in Corn Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.15: Change in Warm Season Grass Area in Response to Lower Corn Net 
Returns, 2001-2009 Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.15a: Change in Warm Season Grass Area in Response to Lower Corn Net 
Returns, 2001-2009 Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.16: Change in Soy Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.16a: Change in Soy Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.17: Change in Wheat Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

 
 
Figure 2.17a: Change in Wheat Area in Response to Lower Corn Net Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.18: Change in Corn Area in Response to Higher Corn Net Returns, 2001-2009 
Average, Measured in 1000 Acres 
Source: Author’s Estimates 

  
 
Figure 2.18a: Change in Corn Area in Response to Higher Corn Net Returns, 2001-2009 
Average, Measured as a Percent of Base Scenario Acres 
Source: Author’s Estimates 
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Figure 2.19: Histograms of Changes in Area Allocated to Each Crop as a Percent of Total 
Area by Scenario, +/- 21.9% in Corn Net Returns, 2001-2009 Average 
Source: Author’s Estimates 
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Table 2.1: Example Markovian Land Transition Probabilities, 2001 – 2002 
Source: Author’s Estimates 

  2002           
2001 Corn Soy Wheat WSG Residual Sum 
Corn 0.26 0.25 0.03 0.06 0.4 1 
Soy 0.26 0.25 0.03 0.06 0.4 1 

Wheat 0.22 0.22 0.16 0.17 0.23 1 
WSG 0.22 0.22 0.16 0.17 0.24 1 

Residual 0.23 0.2 0 0.01 0.56 1 
 
Table 2.2: Shares and Expected Net Returns by Crop, Averaged Across Selected CRDs 
and All Sample Years 
Source: Author's Calculations and Estimates Based on Observations Used for Estimation 

Crop 

Average 
Share (% of 
Total Area) 

Average 
Expected Net 

Returns 
(USD/acre) 

Corn 0.166 183.207 
Soy 0.143 156.272 

Wheat 0.052 91.405 
WSG 0.075 21.849 

Residual 0.565 
  

Table 2.3: Prior Markov Probabilities Implemented in Model 
Source: Author’s Estimates 

  T+1           
T Corn Soy Wheat WSG Residual Sum 

Corn 0.3 0.55 0.05 0.05 0.05 1 
Soy 0.5 0.25 0.15 0.05 0.05 1 

Wheat 0.05 0.2 0.5 0.2 0.05 1 
WSG 0.05 0.05 0.15 0.7 0.05 1 

Residual 0.05 0.05 0.05 0.05 0.8 1 
 
Table 2.4: Percent Mean Absolute Error by Crop, Model Aggregation Comparison 
Source: Author’s Estimates 

Crop CRD County CRD-Cty 
Corn 0.062 0.076 -0.014 
Soy 0.071 0.068 0.003 

Wheat 0.222 0.151 0.071 
WSG 0.37 0.651 -0.281 

Residual 0.047 0.052 -0.005 
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Table 2.5: Model Percent Mean Absolute Errors by Crop, Model Constraint Comparison 
Source: Author’s Estimates 

Crop Constrained Unconstrained U-C 
Corn 0.235 0.062 -0.173 
Soy 0.111 0.071 -0.04 

Wheat 0.26 0.222 -0.038 
WSG 0.994 0.37 -0.624 

Residual 0.188 0.047 -0.141 
 
Table 2.6: Regional Acreage in Million Acres by Crop Across Base and Shock Scenarios, 
2001-2009 Average 
Source: Author’s Estimates 

 
Base 

WSG 
Double 

Corn 
Upper 

Corn 
Lower 

Corn 58.26 9.43 68.43 47.34 
Soy 44.84 9.14 35.22 56.09 
Wheat 20.93 8.01 17.21 27.96 
WSG 30.38 69.74 23.21 42.32 
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III. A Dynamic Estimation of an Ill-Posed U.S. Feed Demand System  

 

with Distiller’s Dried Grains 

 

 

III.1 Introduction 

 In recent years, the United States feed market has experienced compositional 

changes. The Energy Independence and Security Act (EISA) of 2007 includes mandates 

for the use of several categories of biofuel, of which some part can be met using 

conventional (corn starch based) and cellulosic biofuels over the next decade. After EISA 

passed, the amount of ethanol produced from corn has increased. This increase in corn 

ethanol production has also increased the availability of a co-product, distiller’s dried 

grains (DDG). DDG are used as a feed input for various livestock types, and they have 

become more widely used in recent years. This increase has changed the nature of feed 

demands, increasing choices available to farmers for feedstocks. Because of this change, 

re-examining the relationships between feedstocks and explanatory data such as prices is 

useful, particularly to policymakers. The inclusion of DDG data would make this re-

examination more pertinent to answering policy questions. This research performs such 

an analysis, examining the historical growth of DDG in response to changes in its own 

price and the prices of other feedstocks. These feedstocks may be complements or 

substitutes; the relationships are not initially clear.  

While DDG data are available as far back as 1992, there has been a change in the 

market structure, with substantially larger production starting around 2002. Figure 3.1 

shows U.S. DDG production from 1992-2011 as taken from U.S. Department of 

Agriculture, Economic Research Service (USDA/ERS). Because of this increase in 

production, data prior to 2002 may not be appropriate to explain the current relationships 



84 
 

between DDG and other feedstocks. Ergo, the data are relatively limited, and a more 

frequently used method of econometric analysis, such as Ordinary Least Squares (OLS), 

may not be appropriate. A method which is robust with limited data, or is able to handle 

ill-posed problems, may provide a better understanding of the relationship between DDG 

and traditional feedstocks. To wit, this research will assume feed use patterns follow a 

first-order Markov Decision Process (MDP). It is a dynamic process in which the current 

feed allocation is a function of the last period’s allocation and a set of non-stationary 

transition probabilities. These probabilities are estimated based on data which affect the 

decision process. 

Thus, the questions this research intends to answer are 1) “What relationships 

exist between DDG and other major animal feedstocks in the U.S.?” and 2) “Given 

current policy, price, and production expectations, what sort of allocation can one expect 

to occur with respect to DDG and other feedstock use?” To answer these questions, this 

research estimates feed and residual use of DDG, corn, soy meal, and an aggregation of 

other feedstocks using a maximum entropy estimated MDP, then projects that use 

forward using expected price, production, and policy data.  

III.2 Prior Literature 

 There is some literature with the estimation of feed models. Several academic and 

government entities produce models which include feed components. The FAPRI 

Baseline at the University of Missouri (Westhoff and Brown 2013) and the ERS Baseline 

at USDA/ERS (2013) both utilize a partial equilibrium (PE) model. A PE comprises a 

series of equations estimating various supply and demand functions in various sectors of 

the economy, varying price or trade quantities to equilibrate the model. Earlier PE models 
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include Womack (1976) and Adams (1994). The modeler may adjust coefficients to 

match known economic theory or include estimates from elsewhere in the literature. One 

can also implement policy shocks fairly easily by manipulating demand  or supply 

amounts. However, while specifics may vary across specific models, PE models require 

parameters from some source, such as least-squares or maximum likelihood estimation, 

or expert advice.  Estimation is difficult in the case of DDGs given the limited number of 

observations in the pertinent dataset, and this research offers an alternative method to 

estimate parameters.  

Another means of constructing demand systems is an iterative linear program 

(LP), as is found in the implementation of POLYSYS at the University of Tennessee 

(Ray et al. 1998) uses iterative linear programming. In an LP, a linear production 

function is optimized subject to constraints such as total feedstock availability. Heady 

(1954) provides a discussion of the logic and advantages of using linear programs in 

agricultural econometrics. Tompkin (1958) uses linear programming to determine the 

optimal combination of production activities on a livestock farm. However, an LP may 

not be appropriate for this research because of the possibility of corner solutions.  

GTAP at Purdue includes an implicit feed component in the oilseed/coarse grain 

to livestock sector interaction (Naranyanan, Dimaranan, and McDougall 2012). GTAP, as 

a general equilibrium model, begins with a series of social accounting matrices (SAM). A 

SAM is a model in which different economic transactions are represented as flows 

between various sectors of an economy. SAMs originate with the Cambridge Growth 

Project (Stone and Brown 1962). While SAMs have been used for feed indirectly, they 

may not be appropriate for this research, given that it focuses on a single demand market. 
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The general equilibrium approach goes farther than social accounting, but the 

representation of feed demands in these models presumably rests on parameters 

governing price response. General equilibrium model construction likely faces the same 

challenge to identify key DDG-related feed elasticities using few observations that are 

confronted when building partial equilibrium models. 

One early use of a MDP is found in Burnham (1973). The author assumes that 

land use changes in the Southern Mississippi Alluvial Valley can be estimated by a 

stationary first order Markov chain. However, he states in the footnotes that assuming 

stationary transition probabilities may be too restrictive for a land use change model. 

Burnham’s conclusion is supported by Hallberg (1969), who studies frozen dairy 

products in Pennsylvania using a non-stationary MDP. Hallberg uses multiple regression 

techniques to test the hypothesis that non-stationary Markov transition probabilities have 

better predictive capability than stationary probabilities. MDPs are used in far more than 

land use, however. Again, Hallberg’s study is on firm size in the dairy industry, not land 

use. Other studies using MDPs for econometric analysis include Adelman’s analysis of 

the distribution of firm sizes in the iron and steel industry (1958); Paap and Van Dijk’s 

analysis of income and consumption in the U.S. (2003); Kelley and Weiss’ study of 

population migration based on wage differentiation (1969); Miller and Plantinga’s paper 

analyzing land use changes in Iowa (1999); and Lubowski, Plantinga, and Stavins’ use of 

a nested logit model to analyze national non-federal land use (2008). 

One way that an estimated model can be compared to previous estimates is by 

looking at the differences between the price elasticities of demand. However, literature 

containing own- or cross-price feed demand elasticities is limited. Surry (1990) provides 



87 
 

an estimation of European feed demand, and those elasticities are used by GTAP (See 

Keeney and Hertel 2005). However, the parameters provided are the trade-off between 

different feedstuffs, not price elasticities, and are therefore difficult to compare to 

elasticities estimated by this research. Gallagher et al. (2003) provide demand elasticities 

for gluten feed and gluten meal in their estimation of renewable fuel standards’ effect on 

the U.S. ethanol industry. The FAPRI Baseline (Westhoff and Brown 2013) does have 

elasticities, which are published in an earlier model documentation (Gerlt and Westhoff 

2011). However, the representation is complicated by estimating DDG inclusion rates by 

type of livestock, as well as being included as part of a larger interrelated system. 

Westcott and Norton (2012) provide an implicit own price corn feed demand elasticity of 

-.20. Finally, Matthews and McConnell (2012) provide own and cross price elasticities 

for each feedstock studied here as part of their discussion of the US market for feed 

proteins, but some data of their sample period predate the rising role of DDG in feed 

markets. A more in-depth discussion of these elasticities accompanies the model’s 

estimated elasticities later in the paper.  

The MDP is probabilistic in nature and uses shares of total feed and residual use.  

Therefore, it is prudent to look at other methods of share estimation. Most of the prior 

literature focuses on land shares, not feedstock shares, but the estimation methods are the 

same. One model used to estimate land use shares and transition probabilities is the 

multinomial logit model (MNL) (Theil 1969). The MNL is used by McRae (1977), 

among others. The probabilities associated with a change in state are estimated using a 

logistical form, with coefficients estimated using ML. This functions similarly to a 

Markov chain, but disregards the prior state, estimating changes in land use solely as a 
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function of exogenous data. Such use can be seen in Wu and Segerson (1995); Hardie and 

Parks (1997); and Ahn, Plantinga, and Alig (2000), for instance. In addition, Lubowski, 

Plantinga, and Stavins (2003, 2008) note that the Independence from Irrelevant 

Alternatives (IIA) property of MNLs may preclude otherwise optimal choice behaviors. 

They, in addition to Lubowski (2002), use a model known as a nested logit model (NLM) 

to address this shortcoming of the MNL. The NLM separates decision states into 

subgroups or “nests” of similar qualities, differentiating them based on degree of 

substitutability. The nests Lubowski, Plantinga, and Stavins use include urban, non-farm 

(comprised of forest and range land), and farm (comprised of cropland, Conservation 

Reserve Program land, and pasture land). The advantage of the NLM is that it imposes 

IIA within nests, but not across nests, relaxing the choice restrictions. However, because 

the nests of a NLM are based on substitutability, it may be less efficient at explaining 

feed use change between feedstocks. The mixed logit model (MLM) is another method of 

relaxing the IIA restriction. The MLM is given by McFadden and Train (2000), and takes 

the choice specific variables of conditional logit and the choice-independent variables 

from the MNL to create a mixed model in which additional choices change the relative 

probabilities of the existing states. 

However, OLS estimated models, MLM, and their variations still require a 

problem that is well posed: i.e. the observations available exceed the number of 

unknowns. In the case of the increasing use of DDG, the pertinent known data are very 

limited, and the problem may be ill-posed. Golan, Judge, and Miller (1996) discuss the 

use of general maximum entropy to address the issue of an ill-posed problem. From this 

discussion, a model that estimates a set of coefficients directly linking explanatory state 
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variables (both state dependent and independent to avoid IIA) with decision variables, as 

well as incorporating data from consumption in the prior period may be derived to 

provide a more robust analysis. One such model that fits those criteria is the maximum 

entropy estimated MDP model. 

The question arises of whether or not an MDP model is appropriate for a feed 

model. While no literature was found using Markov chains with regard to feed, several 

were found using Markov models with respect to the livestock industry. Chan (1981) 

applies a Markov model to the Canadian cattle industry. Disney, Duffy, and Hardy (1988) 

use Markov chains to analyze pork farm sizes. Kristensen and Jørgensen (2000) use a 

Markov chain to address livestock herd management issues. Azzam and Azzam (1991) 

use an MDP to examine livestock with both spring and fall calving.  

The MDP described below is an application to feed demand, and is motivated 

thusly: corn, soy meal, and DDG feed demand, each as a share of total feed demand, will 

be estimated as a function of own and  cross prices, an index of animal numbers, and 

other variables included to address limitations in available data. In this representation, the 

feed use in the current period is affected by the allocation in the prior period. The use of 

shares is related to the idea that animals have a certain total feed requirement, and 

feedstocks can only comprise a certain percent of their diets, based on nutritional needs. 

Applying this to a model with short-term path dependency might include information 

about animal nutritional needs that is not explicitly stated. DDGs have differing rates of 

substitutability for existing feedstocks among various livestock types: beef cattle on feed 

and breeding swine may use them most readily, followed by dairy cattle and market 

swine, and then poultry. Without explicit variables detailing the dietary needs of each 
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livestock type, lagged shares may indirectly include information about feedstock 

inclusion rates for the animals represented by the animal units index. The successes and 

failures of this functional form in explaining changes in feed use demand are detailed in 

the following sections. 

III.3 Markovian Feed Use Decision Process 

This research examines the dynamics of feed use changes by explaining the 

decisions of feed mixing companies in the area of study. Following Ahn, Plantinga, and 

Alig (2000), who focus on land allocation rather than livestock feed, each company in 

region i (i = 1, …, I) is assumed to purchase a sequence of feedstocks that maximizes the 

present discounted value of expected net returns 
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where t is a constant discount factor, tkj ,,  represents a decision to allocate funds 

dedicated to the purchase of feedstock (discrete state variable)  j in time t-1 to feedstock k 

in time t, tih ,,X  represents a T x H matrix of observable data, and εt represents unobserved 

variables. To state it another way, a mixing company manager purchases a series of 

inputs to produce feed mixes using funds in the budget. This allocation of funds for the 

purchase of inputs changes over time, and the decision is impacted by the observable 

data, such as input prices. Beyond budget limits faced by the mixing company, this 

maximization is unconstrained. Because of the relative difficulty involved with obtaining 

individual company decisions, a model which utilizes aggregated data is desirable. 

Therefore, aggregated feed and residual disappearance is used to represent the sum of all 

purchase decisions, in a manner that is intended to be analogous to previous applications 
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to the land use problem (Golan, Judge, and Miller 1996). However, there exist 

idiosyncratic or agent-specific components of a purchase decision, which are 

unobservable to the econometrician. These components are represented by the 

unobservable state variable . Over time, a feed mixing company’s purchase decisions are 

assumed to follow a first order MDP. The amount of feed inputs purchased from a 

particular stock is a function of the amount purchased in the prior period and a non-

stationary transition probability, noted tkji ,,, . That is, there is a non-observable J x K 

(where J=K) matrix of probabilities for each state and time period, transitioning from 

feedstock j to feedstock k from period t-1 to period t. Because of the cyclical nature of the 

livestock industry (Stockton and Tassell 2007), one can surmise that there is a similar 

path-dependent element to the feed industry supporting it. Furthermore, DDGs may 

substitute for corn and soy meal at differing rates for each livestock type. Hoffman and 

Baker (2011) provide a meta-study discussion of these differences, noting beef cattle on 

feed have the highest potential inclusion rates, with a range of 20-40% of dry matter 

intake, compared to poultry’s relatively lower 10-15% potential inclusion rates for 

DDGs. However, it is difficult to incorporate this data explicitly in the model. However, 

because feed purchasers already have this information, the differentiation in inclusion 

rates may be represented in prior purchase decisions. This provides the motivation for 

using a model in which the current state is a function of the prior state. 

To illustrate, Table 3.1 shows a set of probabilities for feed use transition from 

2003-2004 as estimated from the model explained below. If a portion of a feed mixing 

company’s total quantity of feed purchases was dedicated to purchasing corn in 2003, it 

has approximately a 45% chance of staying in corn in 2004, a 7.5% chance of being used 
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to buy soy meal, a less than 1% chance of being used for DDG, and a 46% chance of 

being used for some other feedstock. These numbers are only present to provide a visual 

example of the nature of Markovian transition probabilities; as results, they will be 

discussed later. Markovian transition probabilities row-sum to one and are hypothesized 

to be affected by explanatory variables including feedstock prices. Through this 

interaction, the variables are explanatory of changes in feedstock purchase patterns.  

The model is derived using maximum entropy (ME), following applications to the 

land share allocation problem as seen in Golan and Vogel (2000); Golan, Judge, and 

Miller (1996); and Miller and Plantinga (1999). The ME method for estimating the model 

of Markov transition probabilities is set forth by Jaynes (1957). The objective of the ME 

method is to select the probabilities that use the least information (fewest assumptions) to 

estimate the probabilities while still satisfying the constraints. This, in turn, assumes the 

mixing company has the greatest amount of choice possible. Shannon’s (1948) entropy 

measure is used to measure the amount of information needed to estimate the coefficients 

here for feed demand allocation, as it has been in the context of the land allocation 

problem (Miller and Plantinga 1999, Golan and Vogel 2000). The primal objective 

function determining the optimal transition probabilities of the feed demand allocation 

problem is assumed to be  
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where 0  is an H size vector of zeroes and tkiy ,,  is the share of feed purchased from stock k 

in area i during time t. When applied to the estimating equations (the set of constraints), 

the solution to the problem is assumed to take the form   

(3.3) 
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where         is the optimal Lagrangian multiplier associated with explanatory variable h 

and stock k, and          is a conditional probability, which may be adjusted by the analyst 

to represent information from before the purchase decision that may bias the mixing 

company’s decision. Here, priors are uniform, and the mixing company is assumed to 

have no prior bias to its purchase decision. By focusing on the dual of the primal 

problem, an unconstrained equation to determine the optimal multipliers takes the form 

of  
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One k category is kept as a residual, with its multipliers assumed to be zero. Because of 

the additive nature of the feedstock categories, the residual solution is implicit when all 

other categories are estimated. After the multipliers are estimated, they are used with the 

other variables to determine the transition probabilities in (3.3). The transition 

probabilities are then applied to the prior year’s feedstock purchases to determine current 

purchases: 
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With the feed shares estimated, elasticities can be calculated to show the effect of a one 

percent change in the explanatory variables on the transition probabilities. The impacts 

are calculated in the same method used in land allocation problems (Miller and Plantinga 

1999), namely 

(3.6) . 

Using this equation, one can derive the feedstock elasticities, measuring the change in the 

feed allocation from a one percent change in the explanatory variables. 

(3.7)  

Using the appendix relating to the land allocation problem in Miller and Plantinga (1999) 

as a guide, the covariance matrix of the coefficients ( kih ,,̂ ) conditional on the 

explanatory variables can be estimated by  
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such that I is the identity matrix, and i is a T(K-1)2 x T(K-1)2 matrix where the diagonal 

elements are )1( ,,,,,, tkjitkji   and the off diagonal elements are . 

With the MDP model defined, the focus shifts to defining the data that will be used in the 

model.  

III.4 Data: Feed and Residual Use 

 This research is concerned with the effects of the increase in DDG use for feed. 

However, precise feed use data are difficult to obtain. USDA/ERS (Capehart, Allen, and 

Bond 2013; Ash 2013) is one of the primary sources for feed disappearance data, but 

their estimation of grain and oilseed meals allocated to feed also include a residual 
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component. Which is to say that they have data on supply, including domestic 

production, imports, and beginning stocks. They also have data on most demands, 

including exports, domestic food/industrial use, and ending stocks. To make supply and 

demand balance, the remaining demand is assumed to be taken by feed and residual use. 

Feed use, therefore, is not directly estimated, but rather calculated as an accounting 

balance. This calculation and the problems it presents are discussed in detail in Westcott 

and Norton (2012). To address the residual component of feed data, they estimate using 

feed and residual as the left-hand-side variable, but include variables which, while one 

might not include in a demand system, are correlated with the causes of residual 

variation, and will ostensibly capture residual effects. The two variables they use are corn 

production, with the assumption that larger corn crops increase the likelihood of 

shrinkage and estimation errors, and the percent of the corn crop rated mature by August 

31 in the next year, with the assumption that a larger early harvest increases the 

likelihood of new crop usage, resulting in estimation errors of ending stocks. As such, 

both of these variables are included in the X matrix for this research. While this may not 

provide precise feed use estimates, it should mitigate the residual effects in the data. 

Because one category of shares is known as “residual”, “feed and residual use” will 

hereafter be referred to simply as “feed use”, with the residual component of the data 

taken as a given for clarity.  

 The next step is to discuss the actual feed data gathered. Corn and soy meal, and 

hay are the major feedstocks in the U.S., with DDG and various other grains and meals 

following. National level feed use was gathered for each of these from 2002-2012, 

converted into million tons, and summed to calculate total feed and residual use. The 
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MDP requires a lag year, and so the sample period runs ten marketing years from 2003-

2012. The feedstocks, means, and standard deviations are given in Table 3.2. The data for 

hay, wheat, sorghum, canola meal, oats, barley, cottonseed meal, sunflower meal, linseed 

meal, and fish meal are aggregated into the residual category. Hay disappearance is added 

to the residual category for two reasons. One, the author’s previous experience with this 

method has shown that a large residual category is desirable: when returns to all other 

uses increase, the residual category is from where the increases in those uses come. As 

such, a residual category that is large enough to handle large shifts in other categories 

allows the model to work better. The annual use of the other stocks only summed to 

seventeen million tons on average, considered very small against annual corn feed use of 

almost 150 million tons on average. The addition of hay to the residual category 

increased it by almost 145 million tons on average, allowing for a much greater transition 

“buffer”. Two, this research is less concerned with DDG effects on hay usage as with 

effects on corn and soy meal usage.  

III.5 Data: Explanatory Variables 

 There are several factors which affect the choices for feed use. A traditional 

demand system includes own and cross price effects, as well as other demand drivers. For 

this research, the prices of each non-residual category are included as explanatory 

variables. Grain consuming animal units (GCAU) are included as a demand driver. 

Following the discussion above from Westcott and Norton (2012), corn production and 

percent of corn maturity by September 1 are included. Table 3.2 lists the variables 

included along with their means and standard deviations. An intercept term is also 

included. All prices listed are in real terms. All data come from ERS and NASS.  
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 Current prices, as opposed to lagged prices, are used in the model. This makes 

sense because purchase decisions are made using current price information instead of 

expected prices, as a farmer might use for the end of the growing season. However, at 

this level of aggregation, it presents a problem of endogeneity. That is, changes in 

aggregate consumption patterns will likely have an effect on prices. While this problem is 

known, it is difficult to find suitable instruments for feedstock prices at this level of 

aggregation: it is suspected, but unconfirmed, that the United States’ status as a net 

agricultural exporter in corn, soy meal, and DDGs may cause a similar correlation in the 

prices of other countries. In such a scenario, the endogeneity bias of the estimated 

coefficients would not be removed, merely modified. Therefore, current prices are 

included as independent variables, recognizing the possible bias present in the estimators.  

III.6 In Sample Dynamic Validation 

 The model is run with the listed variables over the sample period, starting with 

known data in the initial lag year, and estimating iteratively over the course of the sample 

period. Figures 3.2, 3.3, and 3.4 show the historical shares compared against the model 

estimates. The lines represent historical shares, and the points represent the model 

estimates. The model estimates track very closely with historical estimates, showing a 

very high goodness-of-fit. As far as a numerical measure of goodness-of-fit, typical R2’s 

cannot be calculated for this method. However, a goodness of fit measure can be 

calculated by taking the errors in the estimates, normalized by the share amount, and 

averaging them over time:  
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MAE is the percent mean absolute error: the difference of the estimated share allocated to 

a particular feedstock and the actual share over time for each feedstock, normalized by 

the actual share allocated to that feedstock, averaged over time. As it measures deviation 

from historical data, a lower number indicates a better fit. Because y represents a share, as 

opposed to actual acreage, this estimate is a unitless percentage.  This does not have the 

same statistical application as a normal R2, but it does provide an idea of how the model 

performs. Table 3.4 shows the measures of fit, and they support the graphical validation 

of the model: the average errors are very low. The model performs worse in estimating 

DDG, but it still performs well overall. 

 The last statistical measure is the errors associated with the feedstocks and 

explanatory variables. The results of (3.8) are presented in Table 3.5. Two variables 

proved statistically significant: corn price and DDG price, both with regards to DDG feed 

use, with corn price more significant than DDG price. While the other explanatory 

variables did not prove to be statistically significant at the 10% level of significance, they 

are economically significant, as their inclusion has been explained prior.   

III.7 Model Elasticities 

 The model estimates feedstock elasticities from (3.7) above. These results are 

presented in Table 3.6. The first thing to note is that the own price elasticities are all 

negative, so the model seems to follow economic theory at first glance. The negative 

elasticity on soybean meal price to corn feed suggests that corn and soy meal are 

complimentary, and this is echoed in the soy meal to corn price elasticity. The 

magnitudes are different, but the lack of statistical significance in each of the coefficients 

may indicate a large error in the estimates. Symmetry is not imposed in these estimates.  
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The positive cross price elasticity on DDG feed use to corn indicates that DDG 

will compete with  corn for market share, and this is echoed in the positive elasticity on 

DDG prices to corn use. DDG’s relationship with soy meal is less clear. There is a 

positive effect in soy meal use to DDG price, suggesting competition, but the opposing 

effect, DDG use to soy meal price, is negative, and very small in absolute value. There is 

literature (Hoffman and Baker 2011, e.g.) suggesting that DDGs substitute for soy meal 

as well as corn, in differing ratios based on the need of the animals in question. It is the 

author’s belief, based on this questionable result, that the nature or amounts of DDGs 

substituting for soy meal changed over the course of the sample period. This is a possible 

explanation, but not certain. The corn and soy meal uses are price inelastic, both own  

and cross, but DDG are much more elastic.  

It is important to note here that the average elasticities shown here for DDGs do 

not tell the whole story. The DDG own price elasticities are dynamic over time. Figure 

3.5 shows the DDG price elasticities to each feedstock over the in-sample period. This 

figure is important for three reasons: one, it shows that corn and soy meal responses are 

fairly flat over time. This suggests that feedlot owners have a fairly well established idea 

of how they will respond to changes in price. The slow increase in the elasticities of these 

two feed inputs might be caused by the growing volumes of DDG that could have given 

feed mills more options, and led to greater price responsiveness.  Two, it shows that DDG 

price responses are very dynamic, changing in relatively large amounts from year to year. 

This suggests that DDGs are still being “felt out” in the sample period. This supports the 

prior claim of a changing market structure. It further shows that a model which relies on 

limited data, such as this one, may be robust with regard to DDG estimation. Three, the 
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trend in DDG own-price responsiveness is increasing in absolute terms throughout the 

sample period. Because the share of total feed use is increasing during that time, this is 

somewhat counterintuitive. One would expect responsiveness to decrease as quantity 

demanded increases. The exact cause of this is difficult to pinpoint. However, the 

increasing share might have a mitigating effect on the rising elasticity of demand, and 

that the actual price responsiveness could be higher than the elasticity alone states.   

GCAU elasticities follow expectations with corn and soy meal, showing a positive 

elasticity. DDG response to GCAU does not follow theory as expected: one would expect 

a positive sign, since DDGs are often fed to animals which are heavily weighted in the 

calculation of GCAU, such as beef cattle (Berger 2008). However, beef cattle production 

decreased over the sample period, decreasing the main source of DDG feed use 

represented in GCAU, potentially causing this seemingly odd result.  

 As mentioned prior, there is some literature with which one can compare these 

elasticities. However, care must be taken when so doing. The majority of prior literature 

does not provide directly comparable elasticities: either different measures of demand are 

used, or different elasticities (quantity comparisons vs. response to price, e.g.) are given. 

Moreover, this research estimates based on shares of total feed demand, instead of gross 

feed in terms of bushels or metric tons. However, even barring direct comparison, one 

can gain some sense of how this model functions relative to previous works. The most 

direct comparison one can make is with Westcott and Norton (2012), who provide an 

implicit corn price to corn feed demand elasticity of -.20. This is relatively similar to the 

model’s estimate of -.61: both show corn feed demand to be relatively price inelastic, 

although this model is more responsive than Westcott and Norton’s. GTAP uses 
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substitution elasticities – the trade-off between feed inputs in quantity terms – from Surry 

(1990). These are presented in Table 3.7 for easy comparison. It should be noted that 

Surry models European feed demand, not US. This has particular implications with the 

substitution for corn, wheat, and barley. As is seen in Table 3.2, corn is used substantially 

more than wheat or barley for feed in the US. In addition, Surry does not include soy 

meal, but he does include a “high-protein” category, which may be used to compare. That 

said, the own substitution elasticities may correlate to an own price elasticity, because it 

considers at what rate a firm owner would substitute a feedstuff for itself, which would 

rely chiefly on own price. One can see that corn is much more elastic with Surry than this 

model. Soy meal is likewise more elastic with Surry than this model. DDGs are not 

included in Surry and cannot be compared. Gallagher et al. (2003) provide elasticities for 

gluten meal (high protein) and gluten feed, both by products of wet corn milling. Gluten 

feed can be compared to DDG, although DDG are produced in dry mill plants as opposed 

to wet mill plants (Hoffman and Baker 2010). The own price elasticity from Gallagher is 

very strong relative to the one estimated by this model: -31.5 vs. -2.37. This may be 

explained, however, by the substantially smaller amount of DDGs consumed in 2000, 

which is Gallagher’s baseline year, versus current amounts, reflected in the average 

presented here.  

The FAPRI Baseline (Westhoff and Brown 2013) published elasticities may not 

be directly compared, because they are included as part of a larger endogenous system, 

with multiple related equations. That is, a single equation elasticity will not give the 

actual impact of effects in price changes on feedstock use. The author obtained DDG 

model impact multipliers, estimated by exogenizing prices and livestock numbers and 
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shocking the system with a 10% change to the prices in question. The elasticity-

analogous system impact multipliers from the 2013 FAPRI-MU DDG feed model are 

shown in Table 3.8. FAPRI corn price impacts on DDG feed demand are similar to this 

model’s in that they are both relatively strongly positive, however the FAPRI estimate is 

smaller in magnitude. The reverse occurs with DDG own price response: DDG feed use 

is less sensitive to own price changes in this model than in the FAPRI model. The 

elasticity for DDG use to soy meal price is substantially different with differing signs as 

well as magnitude. However, issues arising from soy-DDG interaction have already been 

discussed.  

Elasticities are also found in Matthews and McConnell (2012), and are presented 

in Table 3.9.7 This is the most comprehensive comparable set of elasticities found, 

although it should be noted that the variables are defined slightly differently in that paper, 

and cover a much broader period (1992-2010). Grain represents feed grains in general, 

corn, barley, sorghum. and oats inclusive. Oilseed meal represents all protein meals fed, 

where as many of those are kept in the residual category here. Co-products represents 

DDGs as well as corn gluten feed. The elasticities are likewise negative for own price, 

but all their cross price elasticities are positive, implying strict substitution. There are a 

couple differences that stand out. First, their DDG response to corn price is much, much 

smaller than the one estimated by this model. This may be attributed to the inclusion of 

much older data, when DDG use was much lower than it is currently. The relatively flat 

and low DDG use in the early years may cause reactions to changes in corn price to be 

understated. Second, their own price elasticities are also relatively smaller for corn and 

                                                           
7 Matthews and McConnell also present elasticities for urea and meat/bone meal, which are not of concern 
here. They are left out of the table in question. 
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DDGs. Again, this decreased responsiveness may be explained by the inclusion of older 

data.  

One can see that the model elasticities fall fairly close to those in the established 

literature, DDG-soy interaction excepted, and, more importantly, the own price 

elasticities agree with regard to sign across all other studies. Moreover, one might point 

out that the elasticities estimated in the model are estimated without ad-hoc adjustment. 

While one may make the argument for constraints on this model, the estimation 

procedure is explored without constraints here, as befits the competition/substitution 

question is difficult to answer with regard to soy meal.  

III.8 Projection Data 

 With the model validated and following economic theory, the focus turns to 

projecting DDG use over the next ten years. The FAPRI Baseline provides estimates 

which may be used for projection purposes. There was a small issue with GCAU 

calculation. The FAPRI Baseline animal units measurements are scaled differently than 

those of ERS. To scale the FAPRI projections to match the model, the ERS GCAU and 

HPAU historical numbers were estimated as a function of the FAPRI historical estimates 

and projected forward based on FAPRI projected estimates.8 Corn production was taken 

directly from the baseline. The percent corn early harvest in t+1 appeared to be a 

stationary function, and was projected based on the mean of the sample period.   

 

 

                                                           
8 There are other ways of approaching this issue, such as using FAPRI estimates throughout, or basing the 
forecast of the ERS series on other projections. The decision to use USDA data in historic estimation 
reflects the desire to rely on publicly available data for the historical period to make results more readily 
reproduced. For the projections, however, the FAPRI-MU baseline projections were more readily available 
and up to date at the time of writing. 



104 
 

III.9 Projection Shocks and Results 

 Using the projection data described above, the model is run out of sample from 

2013-2022, using known initial lag shares from 2012, providing at ten year projection of 

feed share use. Along with this estimate, two additional scenarios are run, with projection 

DDG prices at 125% and 75% of base projection amounts. This is included to both 

provide a broader range of possible results and to include the possibility of policy shocks, 

such as a modification in the EISA mandates, which would change ethanol and DDG 

production, changing DDG prices. The results of the projections are shown in Figures 

3.6, 3.7, 3.8, and 3.9. The first thing to note is that the DDG estimates continue to follow 

economic theory, with higher prices resulting in lower feed demand. Corn shares follow 

similarly, with higher cross prices resulting in higher own use.   

DDG’s relationship with soy meal is less clear, however. The overall effects are 

very small, with soy meal use changing less than 2% of total feed demand over the 

projection period, but the scale has been reduced in Figure 3.8 to better show the impact. 

Soy meal begins as expected, assuming competition, with higher DDG prices resulting in 

more soy meal usage. In 2014, this relationship changes, with DDG and soy meal acting 

as complements for the rest of the projection. This is a questionable result, and, due to the 

relatively small magnitude of the effects and the lack of significant variables, it is 

difficult to pin down an exact cause of or explanation for this result. In an attempt to 

explain this, the model was backed up an additional three years, and dynamically 

simulated starting from 2010, to see if the change from in- to out-of-sample had an 

appreciable impact. This is shown in Figure 3.8a. This does not appear to shed much light 

on the situation, but there is one particular thing which stands out: the simultaneous cross 
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at 2014 does not occur, broken apart to 2013 and 2012. This suggests that there is a path 

dependency issue present. Because the MDP is a single year iterative model, this may 

have a large impact on results. Further study was necessary to clarify exactly what 

happened. Given the dynamic nature of DDG own price elasticities shown in Figure 3.5, 

DDG price to soy meal use elasticities were examined in the projection period, presented 

in Figure 3.9, along with DDG prices in real terms. The start year of 2013 has a visible 

impact on the out-of-sample estimation because of the spike in DDG prices in 2012. This 

causes a strong increase in the elasticities, which, combined with the small shares of soy 

meal in the feed market, causes the first year results to be questionable. To put it another 

way, it might be the case that the early out-of-sample results are a lagged outcome of the 

price spike in the final in-sample year. However, since the price decreases over time, the 

initial strong response simply corrects itself over the course of the projection period, and 

the model reaches a stable state. 

 The more interesting story comes from the direction and changes in DDG use. 

DDG use decreases over the whole of the projection period, with about 5% of total feed 

use being taken out of DDGs, decreasing in the baseline and high price scenarios. This 

decrease goes chiefly to corn, which gains about 6% across each scenario.   

III.10 Conclusion 

 This research intended to examine the relationships between DDG and traditional 

feedstocks. DDG were found to respond as expected to economic theory using an 

unconstrained, historically validated statistical model, with negative own- and mixed 

cross-price elasticities. This suggests that DDG is a substitute to corn used for feed, but 

the interaction with soy meal is unclear.. This research also sought to examine what the 
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DDG market might look like in the next ten years. To answer this, the existing 

relationships in the model were projected forward using price and production estimates 

from the FAPRI Baseline. Under these conditions, DDG feed use is expected to decrease 

slightly over the next ten years, with an increase in corn feed. Soy meal projections were 

flat in the base case.  

DDG and corn feed demand responses in the event of a higher or lower DDG 

price followed expectations. For example, a higher DDG price would lead to lower DDG 

feed demand in the projections and more corn feed use. The impacts of DDG price on 

soymeal were very small, but directs were initially difficult to interpret. It was 

hypothesized that the relatively small share of soy meal and dynamic DDG price to soy 

meal use elasticities contributed to this issue. However, soy meal was estimated to act as 

a complement to DDGs over the projected long term. The method used here shows some 

promise for unconstrained estimation of feed demands over a short sample period in 

order to take account of the recent increase in DDG volumes. The key challenges 

identified here include a theoretical one of aligning land allocation applications to the 

present feed demand problem more reliably. Endogeneity of right hand side variables 

introduces risks in estimation that are not easily addressed without reliable instruments. 

Of course, data are always imperfect, and the “feed and residual” category controls 

implemented here might not correct this particular problem. Nevertheless, estimated 

elasticities are often similar to those identified by other researchers and the method 

explored here merits further investigation. 
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III.12 Appendix: Figures and Tables 

Figure 3.1: DDG Production 1992 – 2011 
Source: ERS Feedgrains Yearbook 

 
 
Figure 3.2: Corn Feed and Residual Use as a Percent of Total Feed and Residual Use, 
Historical Amounts versus Dynamic Model Estimates, 2003-2012   
Source: ERS and Author’s Estimates 
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Figure 3.3: Soy Meal Feed and Residual Use as a Percent of Total Feed and Residual 
Use, Historical Amounts versus Dynamic Model Estimates, 2003-2012  
Source: ERS and Author’s Estimates 

  
 
Figure 3.4: DDG Feed and Residual Use as a Percent of Total Feed and Residual Use, 
Historical Amounts versus Dynamic Model Estimates, 2003-2012 
Source: ERS and Author’s Estimates 
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Figure 3.5: DDG Price to Feed and Residual Use (as a Percent of Total Feed and 
Residual Use) Elasticities by Feedstock, 2003-2012 
Source: Author’s Estimates 

 
 
 
Figure 3.6: DDG Feed and Residual Use as a Percent of Total Feed and Residual Use 
Projections, 2013-2022, Baseline, High DDG Price (125%), and Low DDG Price (75%) 
Shocks 
Source: Author’s Estimates based on FAPRI Baseline price projections. 

 
 
 
 
 
 
 

-4 

-3.5 

-3 

-2.5 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2002 2004 2006 2008 2010 2012 

Corn 

DDG 

Soy 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

2012 2014 2016 2018 2020 2022 2024 

BASE 

125% 

75% 



114 
 

 
Figure 3.7: Corn Feed and Residual Use as a Percent of Total Feed and Residual Use 
Projections, 2013-2022, Baseline, High DDG Price (125%), and Low DDG Price (75%) 
Shocks 
Source: Author’s Estimates based on FAPRI Baseline price projections. 

 
 
Figure 3.8: Soy Meal Feed and Residual Use as a Percent of Total Feed and Residual Use 
Projections, 2013-2022, Baseline, High DDG Price (125%), and Low DDG Price (75%) 
Shocks 
Source: Author’s Estimates based on FAPRI Baseline price projections. 
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Figure 3.8a: Soy Meal Feed and Residual Use as a Percent of Total Feed and Residual 
Use Projections, 2010-2022, Baseline, High DDG Price (125%), and Low DDG Price 
(75%) Shocks 
Source: Author’s Estimates based on FAPRI Baseline price projections. 

 
 
Figure 3.9: Soy Meal Feed and Residual Use (as a Percent of Total Feed and Residual 
Use) to DDG Price Elasticities, 2010-2022, Baseline, High DDG Price (125%), and Low 
DDG Price (75%) Shocks 
Source: Author’s Estimates  
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Table 3.1: 2003/04 – 2004/05 MDP Transition Probabilities 
Source: Author’s Estimates 
2003\2004 Corn DDG Soy Meal Residual Sum 
Corn 0.452 0.009 0.075 0.464 1.000 
DDG 0.264 0.225 0.246 0.265 1.000 
Soy Meal 0.315 0.146 0.222 0.317 1.000 
Residual 0.458 0.006 0.064 0.471 1.000 

 
Table 3.2: Feedstock Sample Mean and Standard Deviation in Million Tons 
Source: ERS 
Feedstock Mean Std. Dev 
Corn   149.73 17.75 
Hay 145.22 9.83 
Soy Meal   31.89 1.56 
DDG 19.96 10.10 
Wheat   5.28 2.92 
Sorghum   4.08 1.34 
Canola Meal   2.63 0.72 
Oats   1.87 0.31 
Barley   1.37 0.50 
Cottonseed Meal   1.06 0.16 
Sunflower Meal   0.30 0.08 
Linseed Meal   0.21 0.04 
Fish Meal 0.21 0.03 

 
Table 3.3: Explanatory Variables, Units, Means, and Standard Deviations 
Source: ERS 
Variable Units Mean Std. Dev 
Grain Consuming Animal Units Mil Units 91.77 1.90 
Corn Crop Maturity, Week of Sept 1, t+1 Percent 20.00 10.67 
Corn Production Mil Bu 11482.83 1303.64 
Corn Grain Price $/Bu 2.57 0.51 
Soy Meal Price $/Ton 198.57 29.37 
DDG Price $/Ton 94.25 19.00 

 
Table 3.4: Percent Mean Absolute Errors by Crop, 2003-2012 
Source: Author’s Estimates 
Crop MAE 
Corn 0.011 
DDG 0.092 
Soy Meal 0.026 
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Table 3.5: T-Statistics of Model Coefficient Estimates by Feedstock 
Source: Author’s Estimates 
  Corn DDGs Soy Meal 
Corn Price -0.520 3.780* -0.443 
DDG Price 0.341 -2.364** 0.240 
Soy Meal Price -0.045 -0.095 -0.115 
GCAU 0.304 -0.018 0.519 
Corn Maturity -0.001 0.253 0.256 
Corn Production 0.107 0.621 -0.065 

*   Statistically Significant at =0.05 
** Statistically Significant at =0.10 
 
Table 3.6: Model Estimate Elasticities, 2003-2012 Average 
Source: Author’s Estimates 
  Corn Soy Meal DDG 
Corn Price -0.613 -0.517 3.491 
Soy Price -0.027 -0.094 -0.065 
DDG Price 0.451 0.370 -2.367 
GCAU 1.708 2.922 -1.258 

 
Table 3.7: Feedstuff Substitution Elasticities 
Source: Surry (1990) 
Feedstuff Wheat Corn Barley High-Protein Brans Share 
Wheat -11.93 2.94 9.22 -0.46 2.47 0.17 
Corn 2.94 -1.76 -0.15 0.15 0.92 0.35 
Barley 9.24 -0.15 -22.21 0.81 3.36 0.09 
High-Protein -0.46 0.15 0.81 -0.33 0.40 0.28 
Brans 2.47 0.93 3.36 0.41 -11.55 0.10 

 
Table 3.8: FAPRI Baseline Elasticity-Analogous System Impact Multipliers for DDG 
Feed Use 
Source: Westhoff and Brown (2013) and Wyatt Thompson, FAPRI-MU 
  DDG Feed Use 
Corn Price 2.17 
Soy Meal Price 1.34 
DDG Price -3.57 
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Table 3.9: Feed Use Elasticities by Feedstock, 1992-2010 
Source: Matthews and McConnell (2012) 
  Prices 

Feed Quantities 
Corn 
Price 

Soy 
Meal 
Price 

DDG 
Price 

Grains -0.139 0.125 0.002 
Oilseed Meals 0.296 -0.354 0.030 
Co-products 0.024 0.168 -0.210 
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