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ABSTRACT 

Working memory (WM) is a latent cognitive structure that involves active maintenance and 

manipulation of information for a short time.  How items are stored in WM is an important issue 

that remains controversial.  Whereas some researchers hold that different domains recruit 

different WM storage systems (domain-specific account), some other researchers argue that 

items of different domains share the same WM storage system (domain-general account). 

The domain-specific and domain-general theories give rise to distinct predictions of brain 

activation patterns associated with WM storage.  The domain-specific view predicts that 

different brain regions are involved in WM storage of stimuli from different domains.  In 

contrast, the domain-general view predicts that a common brain region (or regions) is 

consistently involved in WM storage regardless of stimulus domains.  Both predictions are 

supported by a few empirical findings in the previous literature, and therefore, the domain-

specific versus domain-general argument remains unsettled. 

This dissertation is aimed to provide further neuroscience evidence for the domain-

general and domain-specific storage systems through the use of functional magnetic resonance 

imaging (fMRI).  Specifically, this objective is pursued in three related parts. 

Parts I and II are focused on two new analyses on a previous fMRI data set of visual and 

auditory WM.  In the previous study, our group manipulated WM load to be either pure visual or 

auditory, or the combination of visual and auditory items in a single experiment.  We found that 

a region in the left anterior intraparietal sulcus (IPS) was sensitive to both visual and auditory 

memory loads during WM maintenance (Cowan et al., 2011).  Visual and auditory WM with the 

same level of memory load elicited the same level of activation in this brain region.  The same 

activation level in the left anterior IPS, however, does not necessarily imply that the activation 
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pattern in this brain region is the same across domains (e.g., Tamber-Rosenau et al., 2013).  In 

Part I, using the same data set as Experiment 2 in Cowan et al. (2011), the activation pattern in 

the left anterior IPS was decoded with multivoxel pattern analysis (MVPA).  The results showed 

that the activation pattern in the left anterior IPS was indistinguishable for visual and auditory 

domains when WM loads were the same across domains, which further supports the argument 

that a common region in the left anterior IPS supports both visual and auditory WM. 

 In Part II, an exploratory method, constrained principal component analysis (CPCA) was 

used to explore the domain-specific and domain-general neural networks involved in the same 

data set (Experiment 2 in Cowan et al., 2011).  Analysis revealed evidence of both (1) specific 

neural networks responsive to either visual or auditory WM, and (2) general neural networks 

responsive to both visual and auditory WM.  Importantly, only a general neural network, which 

includes a region of the left anterior IPS, was sensitive to WM load during the WM maintenance 

period, which supports the theory that items from different sensory domains are stored in a 

unitary WM storage system. 

 Parts I and II were focused on categorical visual and auditory stimuli.  However, previous 

studies found that the estimates of WM capacity for nonverbal sounds were very different from 

those for categorical visual and auditory stimuli (Li, Cowan, & Saults, 2013).  To gain a 

comprehensive understanding of the brain mechanisms underlying WM maintenance, in Part III 

we studied the brain activities during a nonverbal auditory WM task.  The participants were 

required to remember 2, 3, 4, 5, or 6 nonverbal sounds and to make a change-detection task after 

a short delay.  The results revealed some evidence that different strategies were used for low and 

high memory loads and for different stimulus presentation methods.  Importantly, the left 

anterior IPS did not show load-dependent activation across memory loads, indicating that the 
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domain-general system might store abstract, categorical information which was difficult to 

extract from the nonverbal sounds used in this study. 

 Combining results from all three approaches, the left anterior IPS appears to be part of a 

neural network for maintenance of abstract, categorical information across stimulus domains.  

This characteristic of the left anterior IPS supports the existence of a domain-general system for 

WM storage which stores categorical information. 
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INTRODUCTION 

Working memory (WM) is a latent cognitive structure that involves active maintenance 

and manipulation of information for a short time (Baddeley, 1986; Cowan, 1995).  WM is 

critical to the higher order cognitive functions such as language, planning, and decision 

making.  How items are stored in WM, however, remains a debated issue.  Some 

researchers hold that items from different sensory domains, such as vision and audition, 

are stored in relatively separate WM stores (Baddeley & Hitch, 1974; Cocchini et al., 

2002).  This account is referred to as a domain-specific view of WM storage.  In contrast, 

some researchers argue that stimuli from different sensory domains are stored in a unitary 

WM storage system (Cowan, 1995; Kane et al., 2004; Saults & Cowan, 2007).  This 

account is referred to as a domain-general view of WM storage.   

The domain-specific and domain-general views give rise to distinct predictions of 

brain activity patterns underlying WM storage.  For example, the domain-specific view 

predicts that different brain regions are involved in WM storage of stimuli from different 

domains, whereas the domain-general view predicts that a common brain region (or 

regions) would be consistently involved in WM storage regardless of sensory domains.  

In this study, the mechanism of WM storage is examined using fMRI by investigating the 

domain-general and domain-specific brain activations in visual, verbal, and nonverbal 

auditory WM tasks. 

In the following introduction sections, I will present the existing contributions 

from behavioral and neuroscience studies on the issue of WM storage. 

	
  



2	
  

	
  

Behavioral Studies 

Some researchers proposed that WM storage is domain-specific: items in different 

modalities, such as visual and auditory stimuli, are maintained in relatively separate WM 

stores.  Baddeley and Hitch (1974) introduced a multi-component model of WM, 

proposing that WM can be divided into a “central executive system”, and two “slave 

systems”, phonological loop and visuospatial sketchpad.  The central executive system is 

responsible for integration, coordination, and manipulation of the information held in the 

slave systems, and the slave systems are responsible for the temporary retention of 

phonological and visuospatial information, respectively.  The phonological loop and 

visuospatial sketchpad have separate storage mechanisms and are independent from each 

other.  This is a domain-specific account of WM storage. 

The domain-specific account is supported by some behavioral studies.  In a dual-

task study, Cocchini and colleagues instructed the participants to concurrently perform 

pairwise combinations of a verbal WM task, a visual WM task, and perceptuomotor 

tracking (Cocchini et al., 2002).  The result showed no impact of the verbal WM task on 

the visual WM task, indicating that the items in different modalities are maintained 

separately.  

Some other studies, however, indicates that different sensory domains might share 

a common storage system in WM.  Morey and Cowan conducted a WM experiment 

similar to the one by Cocchini and colleagues (Morey & Cowan, 2004).  The participants 

were instructed to memorize the colors of several visual squares (pure visual task).  

During some trials, they also needed to overtly repeat seven random digits presented at 
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the beginning of the trial (combined task).  The performance significantly decreased in 

the combined task compared with the pure visual task, indicating that visual and verbal 

WM might share the same storage resource.  The authors suggest that the divergent 

results of Morey and Cowan (2004) and Cocchini et al. (2002) might be due to the slight 

difference between the experimental designs.  Whereas the participants were required to 

overtly rehearse the verbal stimuli in Morey and Cowan (2004), the participants in 

Cocchini et al. (2002) only needed to rehearse the verbal stimuli covertly, which might 

have made the verbal task much easier and imposed less effect on the visual WM task.  

Moreover, Cocchini et al. (2002) did obtain a smaller, although not significant effect on 

visual WM imposed by the verbal task, indicating that verbal task with silent rehearsal 

might still to some extent affect visual WM performance. 

To further study the interaction between visual and verbal WM, Morey and 

Cowan (2005) directly compared the effect of covert and overt rehearsal of verbal 

materials on visual WM task.  In some trials, the participants were required to articulate 

aloud seven random digits during the maintenance period of a visual WM task; in some 

other trials, the subjects did not articulate, but silently rehearsed seven random digits 

when performing the same visual WM task.  Performance in the silent rehearsal trials was 

not significantly different from the pure visual WM trials, but performance in the aloud 

articulation trials significantly decreased, indicating that overt rehearsal of a verbal WM 

load affects visual WM performance.  Moreover, the previous study by Morey and 

Cowan (2004) revealed that overt articulation of the participant's own seven-digit 

telephone number during visual WM maintenance did not influence visual WM 

performance.  These results suggest that only explicit retrieval of novel verbal items that 
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is attention demanding affects visual WM, and that neither silent retrieval of novel verbal 

items nor overt retrieval of familiar verbal items impairs visual WM.  The authors argue 

that visual maintenance and verbal retrieval share the same cognitive resource, which is 

most likely to be the focus of attention.  This argument is also supported by the finding 

that when the visual load was as high as eight colored squares, visual WM performance 

was also impaired in the silent rehearsal trials, probably because visual WM took so 

much attention resource that even a small amount of attention taken by silent rehearsal 

could affect visual WM performance (Morey & Cowan, 2005). 

In a more recent study, Morey and Bieler (2013) showed that even at a low visual 

WM load, interference from a concurrent nonvisual WM task could still be observed.  

The participants were instructed to remember 2, 3, or 4 visual objects composed of either 

pure features (colors/shapes), or bounds of features (colors and shapes).  In some of the 

trials, they also needed to remember a tone presented right after the presentation of the 

visual objects, and to judge whether a second tone presented 1,200-ms after the first tone 

was the same or different as the first one.  The analysis showed that the concurrent tone 

task impaired visual WM performance even at a low visual WM load of two, regardless 

of whether the visual objects were pure features or bounds of features.  This result further 

supports the view that visual WM share the same storage resource with nonvisual WM. 

Saults and Cowan (2007) investigated the property of WM storage with a similar 

dual-task paradigm as the one used by Cocchini et al. (2002) and Morey & Cowan 

(2004).  The participants were shown a combination of a visual square array and an 

auditory digit array and were required to remember only the visual array, only the 

auditory array, or both arrays.  Five studies were conducted, three of which included both 
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visual and auditory masks right after the stimuli presentation, and the other two did not.  

The visual mask was composed of an array identical to the initial visual array, except that 

each square was cut into seven horizontal stripes of the seven colors used in the 

experiments arranged in random order; the auditory mask consisted of simultaneous 

combination of the nine digits used in the experiments.  The purpose of applying the 

masks was to eliminate the domain-specific sensory memory.  The studies with masks 

yielded significant interference between modalities: when remembering both modalities, 

performance on visual and auditory arrays both decreased compared with when 

remembering only visual or only auditory items.  Furthermore, the total number of visual 

and auditory items remembered was close to and no more than any of the capacities 

calculated from the pure visual or pure verbal conditions.  The interference between 

visual and auditory WM supports a central multimodal storage system with a fixed 

capacity limit. 

 In a different approach, Kane and colleagues (2004) tested verbal and visuospatial 

stimuli in both short-term memory and WM tasks.  The short-term memory tasks 

involved pure storage, and the WM tasks involved not only storage but also maintenance 

of verbal or visuospatial stimuli.  Confirmatory factor analyses showed that the WM tasks 

were dominated by a domain-general factor, and that the short-term memory tasks were 

more domain-specific.  Nevertheless, even the short-term memory tasks showed 

substantial correlation between verbal and visuospatial stimuli, suggesting that verbal and 

visuospatial WM not only have domain-specific storage systems but also share a domain-

general storage system. 
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Based on these findings, some researchers proposed a domain-general account 

that items in different sensory domains share a unitary WM storage system (Cowan, 

1995; Kane et al., 2004).  Notably, the domain-general account does not deny the 

existence of domain-specific storage systems.  It only conflicts with the strong domain-

specific account that stimuli of different domains can be completely dissociated from 

each other in WM storage.  The debate on the characteristics of WM storage remains 

active in the field of cognitive psychology. 

	
  

Neuroscience Studies 

The neural mechanism of WM storage has been extensive studied in both human and 

nonhuman primate samples.  Many studies found that the fronto-parietal network is 

consistently activated during WM (Owen et al., 2005; Rottschy et al., 2012).  Several 

studies further showed that the posterior parietal cortex is involved in WM storage and 

that the prefrontal region is responsible for the top-down control of posterior brain 

regions (D’Esposito et al., 2006; Postle et al., 2006). 

It is unclear, however, how items from different sensory domains are coded in the 

brain during WM tasks.  The domain-specific view of WM storage predicts that visual 

and auditory stimuli are stored in spatially distinct brain regions.  Consistent with this 

view, Smith and Jonides (1997) found lateralized activation of the left and right 

prefrontal cortex during maintenance of verbal versus spatial information, respectively.  

Additional support comes from studies suggesting that the dorsolateral prefrontal cortex 

is involved in spatial WM maintenance whereas the ventrolateral prefrontal cortex is 
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involved in nonspatial object WM maintenance (Courtney et al., 1996; Haxby et al., 

1994; Ungerleider et al., 1998). 

In contrast to the domain-specific view, the domain-general view predicts that 

visual and auditory stimuli are stored in a common neural network, though secondary 

domain-specific mechanisms also may exist according to most versions of the theory.  

Evidence consistent with this view comes from our recent study (Cowan et al., 2011), 

which found that a region in the left IPS was consistently activated during the storage of 

stimuli in WM regardless of whether it was visual or verbal in nature.  Overlapping brain 

regions have also been found to activate for verbal and spatial WM (Chein et al., 2011), 

visual and verbal WM (Majerus et al, 2010) as well as verbal and tonal WM (Koelsch et 

al., 2009). 

As detailed above, previous neuroimaging studies did not fully resolve the domain-

specific versus domain-general debate regarding the nature of WM storage.  This is partly 

due to several limitations of these studies.  First, until recent, most studies have focused 

on the activation levels in brain regions.  The same activation level in a brain region 

across domains, however, does not necessarily imply the same activation pattern across 

domains.  It is instead possible that two sensory domains recruit two distinct neuron 

assemblies intermingled in a single brain region.  In this case, this region could show the 

same activation level for these two sensory domains, although it has different activation 

patterns and is not a domain-general region.  Therefore, to conclude a domain-general 

region, activation pattern in this region must also be assessed.   
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Second, the majority of the previous studies have relied on univariate statistical 

approaches.  Univariate approaches, such as the general linear model, are focused on the 

time series of each voxel independently and disregard the correlation between voxels.  It 

has been argued, however, that the correlation between spatially distant brain voxels is a 

critical feature of fMRI data sets and reflects important information about the neural 

networks underlying cognitive tasks, which would not otherwise be evident using a 

univariate approach alone.  The multivariate approaches take into account such inter-

voxel correlations and thus could provide a more comprehensive view of the neural 

networks underlying WM. 

Third, most of the previous studies used categorical stimuli, such as letters, digits, 

and colors with easily distinguishable hues.  Categorical stimulus could be represented in 

an abstract form regardless of its sensory domain.  For example, both the auditory word 

“red” and the visual color “red” could be represented by the concept of “redness” which 

does not imply any sensory feature.  It is therefore likely that the abstract, categorical 

form of item representation is stored in the domain-general storage system in WM, and 

that the stimulus details are stored in the domain-specific storage systems.  This 

hypothesis, however, is difficult to prove using solely categorical stimuli.  

The current study aims to address these limitations and resolve the domain-specific 

versus domain-general issue via three parts.  Parts I and II are focused on two new 

analyses of a previous data set on visual and auditory WM (Experiment 2 in Cowan et al., 

2011) and address the first and the second limitations, respectively.  Part III is focused on 

a new study on nonverbal auditory WM and addresses the third limitation.  These three 

parts will be presented in separate sections in the following text. 
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PART I. PATTERN CLASSIFICATION 

 IN THE LEFT INTRAPARIETAL SULCUS 

The intraparietal sulcus (IPS) in the parietal lobe has proved to be a critical brain region 

for WM storage in many studies.  Todd and Marois (2004) manipulated visual WM load 

to be 1, 2, 3, 4, 6, or 8 in a change-detection fMRI experiment.  They found that the 

activity in bilateral IPS was associated with the number of visual items kept in WM, 

indicating that the IPS is responsible for visual WM storage.  Our previous study (Cowan 

et al., 2011) used pure visual, pure auditory, and combinations of visual and auditory 

items in a single change-detection fMRI experiment.  The results showed that a region in 

the left anterior IPS showed the same activation level for a certain memory load 

regardless of stimulus domains, and that it was the only region sensitive to both visual 

and auditory WM loads, suggesting that the left IPS is responsible for not visual-only but 

domain-general storage. 

 Our previous study (Cowan et al., 2011), however, was focused on solely the 

activation levels.  It is still possible that even if the activation levels in the left anterior 

IPS are the same for visual and auditory WM, the activation patterns are different 

(Tamber-Rosenau et al., 2013).  For example, if visual and auditory WM activate two 

distinct neuron assemblies intermingled in the left anterior IPS, they will invoke the same 

activation level but still have different activation patterns in this region.  This scenario is 

quite possible given the large number of neurons in even a small region like the left 

anterior IPS.  The human cerebral cortex has approximately 16 billion neurons, and it has 

about 25, 300 3×3×3 mm3 voxels (Lent et al., 2012).  Therefore, a single 3×3×3 mm3 
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voxel includes 16 billion / 25, 300 ≈ 630, 000 neurons, and the left anterior IPS region in 

Cowan et al. (2011) includes about 37 3×3×3 mm3 voxels.  It is possible that the large 

amounts of neurons in this region form distinct neuron assemblies, which, due to the 

spatial resolution and inherent physiological limitations of BOLD fMRI, cannot be 

distinguished through the examination of activation levels. 

 One method to investigate the activation patterns, multivoxel pattern analysis 

(MVPA), has been developed in recent years (Norman et al., 2006; Polyn et al., 2005).  

MVPA is a machine learning approach and can be used to train pattern classifiers to 

associate activation patterns in a brain region to cognitive states such as visual and 

auditory WM storage, and to make predictions of cognitive states based on performance 

of the classifiers.  If the predictions behave significantly above chance, then this brain 

region carries distinct information for different cognitive states.  

 In this study, MVPA is applied to the Experiment 2 data set in Cowan et al. 

(2011) to decode the activation patterns in the left anterior IPS.  In this experiment, the 

participants were instructed to remember either pure visual or pure auditory items, or 

combinations of visual and auditory items, for several seconds in a change-detection task.  

If the activation patterns are the same for visual and auditory WM with the same load, we 

will be more confident to conclude that this region is responsible for domain-general 

storage; if the activation patterns are different for visual and auditory WM, then this 

region carries domain-specific information and thus is not an area for domain-general 

storage.  
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Method 

For this study, data from Experiment 2 in Cowan et al. (2011) was analyzed with MVPA.  

Detailed descriptions of the experimental procedure can be found in Cowan et al. (2011).  

A brief summary of the experimental tasks is presented below. 

	
  

 Participants.  Fifteen participants (7 male), ranging from 18 to 20 years old, were 

included in the analysis.  All participants were college students at the University of 

Missouri. 

	
  

Figure 1. Experimental procedure of Experiment 2 in Cowan et al. (2011). 



12	
  

	
  

 Behavioral Procedure.  Figure 1 shows the procedure of the experiment.  The 

participants were instructed to perform a change-detection task, in which they 

remembered a few visual and/or auditory items for several seconds.  Each trial started 

with a 1000ms fixation, after which the participants were presented two auditory letters 

(2A), two visual colored squares (2V), two visual colored squares plus two auditory 

letters (2V2A), or four colored squares (4V), for 1500ms.  The two auditory letters were 

presented sequentially. Each auditory letter lasted 500ms, and there was a 250ms interval 

between the two letters.  The colored squares were presented simultaneously on the 

screen for 1500ms.  Five hundred milliseconds visual and acoustic masks were 

simultaneously presented 1000ms after the end of the stimulus presentation to eliminate 

traces of sensory memory.  After a 8000ms delay, a single test item was presented, and 

the participants were instructed to press a button to indicate whether this test item was the 

same as the remembered item at the same spatial location or verbal serial position as the 

test item, or was different from any item that they remembered.  The test stimulus was 

presented for 1000ms, after which a “?” appeared on the screen.  The participants had 

3000ms to respond to the test, after which feedback was provided.  Additionally, to 

discourage verbal rehearsal, the participants were required to keep whispering the word 

“the” twice a second from the trial onset until the test stimulus appeared.  Each trial 

lasted 18 seconds.  Each participant performed 10 functional runs, and each run consisted 

of 16 trials (4 trials for each condition). 

	
  

 Neuroimaging Data Acquisition.  The neuroimaging data was acquired with a 3T 

Siemens Trio scanner at the Brain Imaging Center in the University of Missouri.  For 
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each participant, a T1-weighted and a T2-weighted high-resolution structural image were 

collected at the beginning of the scan session.  Ten functional runs were then collected 

with a T2*-weighted echo planar pulse sequence (TR = 2000ms, TE = 30ms, in-plane 

resolution = 4 × 4 mm2, 32 axial slices with 4mm thickness).  Each functional run lasted 

195 TRs. 

	
  

 Neuroimaging Data Preprocessing.  The acquired neuroimaging data was 

preprocessed using AFNI (Cox, 1996).  The preprocessing steps were: (1) removal of the 

first 2 volumes in each run, (2) time shifting the data to correct the deviations of slice 

acquisition time in each volume, (3) aligning all volumes to the first volume in the 

experiment, (4) removal of the signal spikes, (5) removal of mean, linear and quadratic 

trends in each run, and (6) normalizing all images into standard Talairach space.  No 

spatial smoothing was performed. 

	
  

 Regions of Interest (ROIs) Definition.The left and right anterior IPS was selected 

as ROIs.  The left anterior IPS ROI was selected as the left anterior IPS region (Talairach 

coordinates -27, -46, 31) reported in Figure 3 of Cowan et al. (2011), and the right 

anterior IPS ROI was selected as a counterpart of the left anterior IPS ROI in the right 

hemisphere.    
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 MVPA.  MVPA was performed using the Princeton MVPA toolbox 

(code.google.com/p/ princeton-mvpa-toolbox), the Netlab open source toolbox (Bishop & 

Nabney, 1996), and custom codes in MATLAB (MathWorks).  Pairwise classification 

was performed, and the 2V versus 2A pair were used for the main analysis.  The data 

were shifted by two time points (4 seconds) to accommodate for the hemodynamic delay.  

FMRI data corresponding to the WM maintenance period (time point 5 in a trial after 

shifting the data) were used to train a pattern classifier for each participant.   

A three-layer (one hidden layer) feedforward backpropagation algorithm provided 

by the Netlab toolbox was used to train the classifiers.  To compensate for the 

nondeterministic characteristics of the backpropagation algorithm, 50 iterations were 

performed and the average results were reported.  The classifiers were trained to associate 

the activation patterns in the ROIs with either visual or auditory WM storage. 

A leave-one-out cross-validation method was used to test the classification 

accuracy.  Each participant performed ten runs in this experiment.  For each cross-

validation iteration, nine runs were fed into the training algorithm, and the remaining run 

was used for testing the performance of the classifier.  Each run in turn was selected as 

the testing run, and ten cross-validation iterations were conducted for each participant.   

In the test, data of each time point in the 2V and 2A trials (nine time points in 

each trial) was assessed by the classifier.  A classification accuracy value, ranging from 0 

to 1, was then calculated for each time point.  A value of 0.5 denotes chance level.  Thus, 

the outcome of the MVPA was a time course of classification accuracy for each time 

point in the trials.  The classification accuracy value reflects the extent to which the 
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classifier accurately predicted the cognitive state of each time point.  The significance of 

classification accuracy at each time point was tested using one-tailed, one-sample t-test 

against the chance performance of 0.5. 

Similar to the 2V versus 2A conditions, the 2V2A and the 4V conditions both had 

a memory load of four and invoked the same level of BOLD signal in the left anterior IPS 

(Cowan et al., 2011).  To further test the activation patterns in the IPS, the 2V2A and the 

4V conditions were test against each other in a pairwise classification to complement the 

2V versus 2A classification.   

 

Results 

The time courses of group-averaged classification performance are shown in Figure 2.  

For the 2V versus 2A classification, both left (blue curve) and right anterior IPS (red 

curve) failed to distinguish between these two conditions at any time point in a trial.  The 

2V2A versus 4V classification showed the same results and is thus not shown in the 

figure.  These results indicate that the activation patterns in left and right anterior IPS do 

not carry domain-specific information. 



16	
  

	
  

	
  

Figure 2. MVPA results.  The x axis denotes the time points in a trial, and the y axis denotes the 
classification accuracy.  Each curve denotes the dynamic classification accuracy in a certain ROI for a 
certain pairwise classification.  Red: 2 visual versus 2 auditory, left anterior IPS ROI.  Green: 2 visual 
versus 2 auditory, right anterior IPS ROI. 

	
  

Discussion 

Our previous research has shown that the overall activation level in a region in the left 

anterior IPS was sensitive to WM load and insensitive to stimulus domains, suggesting 

that this region is responsible for domain-general WM storage (Cowan et al., 2011).  This 

result, however, does not exclude the possibility that the activation patterns in the left 

anterior IPS are different for visual and auditory WM.  In this new analysis, MVPA was 

used to decode the activation patterns in the left and right anterior IPS, using the same 
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data set as Experiment 2 in Cowan et al. (2011).  The activation patterns in both left and 

right anterior IPS did not show any difference between the 2V and 2A conditions as well 

as between the 2V2A and the 4V condition.  These results further support our previous 

finding that the left anterior IPS is responsible for domain-general WM storage (Cowan 

et al., 2011). 

 Some previous studies have used MVPA to decode the brain activation patterns in 

the IPS (Lewis-Peacock et al., 2012; Lewis-Peacock & Postle, 2012; Riggall & Postle, 

2012).  Riggall and Postle (2012) found that the IPS does not carry item-specific 

information in a visual WM task, which does not contradict our results.  Our results, 

however, support a stronger claim that the left anterior IPS not only does not carry item-

specific information, but also does not carry domain-specific information. 

 Some previous MVPA studies found that the IPS codes domain information and is 

not a domain-general region.  Tamber-Rosenau et al. (2013) analyzed several response-

selection fMRI experiments in which the participants were instructed to perform a certain 

response when they were presented with a stimulus of a certain domain.  Each domain 

(visual/auditory) was arbitrarily coupled with a vocal, manual, or oculomotor response.  

MVPA compared the activation patterns in several brain regions based on the stimulus-

response couplings in each experiment.  The results showed that activation patterns in the 

IPS were able to distinguish between the stimulus-response domains, suggesting that this 

region may not code domain-general information.  The discrepancy between Tamber-

Rosenau et al. (2013) and our study has two possible causes.  (1) The response-selection 

task used in Tamber-Rosenau et al. (2013) involves not only WM but also arbitrary 

stimulus-response matching.  The arbitrary coupling between a stimulus and a response 
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could induce an abstract representation to the stimulus.  The abstract representations, 

instead of the stimulus domains, might have caused the different activation patterns in the 

IPS.  (2) Another possibility is that the IPS region in Tamber-Rosenau et al. (2013) is 

spatially lateral and posterior to the left anterior IPS used in our study.  Given that 

different regions in the IPS are known to serve different processes (Culham & 

Kanwisher, 2001), caution is advised when concluding the functions of the IPS based on 

the activation patterns in different sub-regions within the IPS during visual and auditory 

WM. 

 In sum, MVPA showed that the activation patterns in the left anterior IPS do not 

code domain-specific information, which lends further credence to our proposal that this 

region codes domain-general information in WM.  This finding supports the domain-

general account that stimuli of different domains share a common storage system in WM. 

	
  

PART II. DOMAIN-GENERAL AND DOMAIN-SPECIFIC NEURAL 

NETWORKS IN VISUAL AND AUDITORY WORKING MEMORY 

In Part I, we showed that a region in the left anterior IPS does not contain domain-

specific information, suggesting that it is part of a domain-general storage system for 

both visual and auditory WM.  It is unclear, however, how the other brain regions behave 

and interact with the IPS in the context of domain-specific and domain-general WM 

storage.  An examination of neural networks is necessary to address this issue.  Such 

examination, however, is overlooked in the previous literature. 
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 The majority of the previous WM studies have relied on univariate statistical 

approaches.  Univariate approaches, such as the general linear model, are focused on the 

time series of each voxel independently and disregard the correlation between voxels.  It 

can be argued, however, that the correlation between spatially distant brain voxels is a 

critical feature of fMRI datasets and reflects important information about the neural 

networks underlying cognitive tasks, which would not otherwise be evident using a 

univariate approach alone.  Multivariate approaches take into account such inter-voxel 

correlations and thus may provide a more comprehensive view of the neural networks 

underlying WM. 

 An exploratory multivariate approach, constrained principal component analysis 

(CPCA), is used in this study to investigate the domain-general and domain-specific 

neural networks in WM.  CPCA combines principal component analysis (PCA) with 

multivariate regression and has been used in neuroimaging studies on WM (Metzak et al., 

2011, 2012; Woodward et al., 2006, 2013; for a complete introduction of the theory and 

applications of CPCA, see Hunter & Takane, 2002; Takane & Hunter, 2001).  CPCA has 

several advantages over the other multivariate approaches.  First, it is an exploratory 

whole-brain analysis approach and unlike some other approaches such as dynamic causal 

modeling and structural equation modeling, does not require a priori extraction of a 

certain groups of regions of interest.  Second, unlike some other exploratory approaches 

such as PCA and independent component analysis, CPCA excludes the task-irrelevant 

variance and operates on the task-related variance in a data set.  Finally, a finite impulse 

response (FIR)-based CPCA (Metzak et al., 2012), which is used in this analysis, is 

capable of tracking the dynamics of functional network over the entire trial.  This is 
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especially important in WM studies, in which the successive encoding and maintenance 

periods appear to recruit distinct functional networks (Woodward et al., 2006). 

 Application of multivariate techniques such as CPCA to fMRI data has already 

yielded valuable insights into other WM-related questions.  For example, Woodward and 

colleagues conducted an fMRI study in which the participants remembered 2, 4, 6, or 8 

letters for a delay of 3, 4, or 5 seconds (Woodward et al., 2006).  Using CPCA, they 

found separate load-dependent functional networks for WM encoding and maintenance as 

well as strong negative correlation between the encoding and maintenance networks, 

which indicates complementary processes underlying WM encoding and maintenance.  

Importantly, past multivariate fMRI studies of WM (e.g., Abe et al., 2007; Chang et al., 

2007; Cohen et al., 2012; Edin et al., 2007; Edin & Klingberg, 2009; Fiebach et al., 2006; 

Gazzaley et al., 2007; Gazzaley et al., 2004; Habeck et al., 2012; Hampson et al., 2006, 

2010; Honey et al., 2002; Kim et al., 2012; Kondo et al., 2004a, 2004b; Kuo et al., 2011; 

Lenartowicz & McIntosh, 2005; Ma et al., 2012; Mayer et al., 2009; Palva et al., 2010; 

Payne & Kounios, 2009; Rissman et al., 2008; Schlösser et al., 2006; Sundermann & 

Pfleiderer, 2012) have used stimuli from only one sensory domain.  Consequently, their 

potential value for answering the question of a domain-general versus domain-specific 

WM storage system is extremely limited. 

 In the present study, we bring multivariate techniques to bear on the question of 

whether the WM storage system is better conceptualized as a domain-specific or domain-

general mechanism.  Specifically, we applied CPCA to an existing fMRI dataset 

(Experiment 2 in Cowan et al., 2011) in which participants performed a task requiring 

them to remember stimuli from a single domain (i.e., only visual or only auditory) or 
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multiple domains (both visual and auditory).  The domain-specific theory would predict 

that, when both visual and auditory stimuli are used in the task, the WM storage system 

would recruit multiple neural networks, each of which includes specific brain areas for 

visual or auditory processing and shows distinct activity patterns for visual and auditory 

WM.  In contrast, the domain-general theory would predict that a single neural network 

would be recruited for visual and verbal WM, with or without additional visual or verbal 

areas. 

	
  

Method 

For this study, we re-analyzed the data from Experiment 2 of Cowan et al. (2011), and a 

detailed description of the experiment can be found in that article.  A brief summary of 

participants, experimental procedure (Figure 1) and neuroimaging methods can be found 

in the Method section of Part I in this dissertation. 

 

 Neuroimaging Data Preprocessing.  The fMRI data were preprocessed using 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).  The preprocessing included 

slice-timing correction, head motion correction, co-registration of functional and 

anatomical images, spatial normalization into the Montreal Neurological Institute (MNI) 

space, resampling to isotropic 2-mm voxels, and spatial smoothing using a 6mm FWHM 

Gaussian filter.   
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 Neural Network Analysis.  The univariate analysis method and results have been 

reported in Cowan et al. (2011).  Below we describe the neural network analysis method.   

 The preprocessed data were analyzed using CPCA, which combines principal 

component analysis (PCA) with multivariate regression analysis.  As a first (and critical) 

step, CPCA performs a multivariate regression on the entire fMRI dataset in order to 

extract a relatively pure estimate of task-related variance.  The goal of this process is to 

remove nuisance variance related to task-irrelevant factors such as head movement and 

MR signal drift over time. In the multivariate regression, two matrices are generated: a 

data matrix Z and a design matrix G.  The data matrix Z contains the standardized BOLD 

signal, with each row representing one participant-specific volume and each column 

representing a voxel.  The design matrix G contains timing of the experimental task 

conditions, with each row representing one participant-specific volume and each column 

representing one participant- and condition-specific predictor. With respect to the current 

analysis, the resulting matrix Z had 30880 rows and 189368 columns, and the matrix G 

had 30880 rows and 1024 columns.  A finite impulse response (FIR) model was used to 

estimate the BOLD signal change over time.  BOLD response for each condition and 

each participant was modeled by 16 predictors that cover a time duration of 32 seconds, 

with the first predictor corresponding to the trial onset.  For each column of the G matrix, 

a value of 1 was assigned to the rows that are to be estimated by this predictor, and a 

value of 0 was assigned to the remaining rows. 

 Multivariate least-square linear regression is performed in which the data matrix 

Z is regressed on the design matrix G: 
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Z = GC + E,  

in which C contains each voxel's predictor weights for each experimental task condition, 

and E is the error matrix.  The product of GC reflects the “true” variance relevant to the 

experimental design. 

 The second step of CPCA is to perform PCA on the GC matrix.  This procedure 

identifies a set of orthogonal variables called principal components that explain a 

relatively large amount of variance in the data set.  The number of selected principal 

components is usually less than the number of the original variables, and thus the 

dimensionality of the data set is reduced.  The procedure involves generalized singular 

value decomposition of GC: 

UDV' = GC, 

in which D is a diagonal matrix with nonnegative real numbers, known as singular 

values, on the diagonal, U is a matrix containing the left-singular vectors, and V is a 

matrix containing the right-singular vectors.  Each column of the V matrix represents a 

functional network and could be mapped on a brain template to show the involved brain 

regions.   

 Condition-specific predictor weights are calculated in matrix P (U = GP).  The 

predictor weights in the matrix P represent the contribution of each predictor to each 

principal components for each participant, and thus allow for statistical tests of the effects 

of WM load condition and time points on the functional networks represented by the 

principal components. 
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 A more detailed illustration of the CPCA as applied in the current data set is 

provided in the Appendix. 

	
  

Results 

Four primary principal components were selected based on visual examination of the 

scree plot.  The four components each accounted for 41.69%, 11.17%, 4.90%, and 4.19%, 

respectively, of the task-related variance.  We believe that these components reflect, 

respectively, (1) domain-general encoding; (2) articulatory suppression, which was used 

in all conditions; (3) domain-general maintenance of information in WM; and (4) 

domain-specific visual encoding.  Another important component, reflecting domain-

specific auditory encoding, showed up sixth in the analysis and will also be described. 

 The functional networks represented by the two domain-general components, 

Components 1 and 3, are shown in Figure 3A and C, respectively.  The predictor weights 

of Components 1 and 3, which depict the contribution of each component to the task 

conditions over time, are plotted in Figure 3B and D, respectively.  The functional 

network represented by Component 2 is shown in Figure 4A, and its predictor weights 

are plotted in Figure 4B.  The functional networks represented by the two domain-

specific components, Components 4 and 6, are shown in Figure 5A and C, respectively.  

The predictor weights of Components 4 and 6 are plotted in Figure 5B and D, 

respectively.  Figure 6A, B, C, and D shows results of the post hoc Newman-Keuls tests 

comparing the predictor weights of each two memory conditions for components 1, 3, 4, 

and 6, respectively. 
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 Tables 1, 2, 3, and 4 contain the coordinates, Brodmann area, and size (mm3) of 

each brain region for Components 1, 3, 4, and 6, respectively.  (As detailed below, 

Component 2 appears to have limited theoretical significance and therefore was excluded 

from the aforementioned tables.)  

	
  

 Component 1:  Domain-General Encoding.  The Figure 3A shows the functional 

network represented by Component 1.  The functional network associated with 

component 1 consisted of several brain regions including bilateral lateral occipital cortex, 

left lingual gyrus, bilateral superior IPS, bilateral precuneus, bilateral superior temporal 

gyrus, right fusiform gyrus, left precentral gyrus, right premotor cortex, left dorsolateral 

prefrontal cortex, bilateral inferior frontal gyrus, bilateral medial frontal gyrus, bilateral 

anterior cingulate cortex, bilateral insula cortex, bilateral thalamus, and bilateral dorsal 

striatum.  All brain regions showed positive loading values. 
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Table 1. Brain regions included in Component 1 in the CPCA analysis (Part II). 

Brain Region Brodmann's 
Area 

Peak MNI 
coordinates Volume 

(mm3) 
x y z 

Positive component loadings 
Cluster 1: bilateral         29512 
    Anterior Cingulate Cortex & Medial 
Frontal Gyrus 

6,32 2 18 60   
  0 8 52   

	
  	
     2 -4 68   
Cluster 2: left hemisphere         11608 
    Anterior Insula 13 -26 14 -6   
    Thalamus N/A -10 -18 8   
    Dorsal Striatum N/A  -18 10 2   
    Inferior Frontal Gyrus 47 -50 20 -12   
Cluster 3: right hemisphere         8184 
    Dorsal Striatum N/A 16 6 6   
    Thalamus N/A  10 -14 8   
    Anterior Insula 13  24 18 -6   
Cluster 4: bilateral         5952 
    Precuneus 7 2 -36 60   
Cluster 5: right hemisphere         3904 
    Premotor Cortex 6 36 -2 60   
Cluster 6: left hemisphere         3536 
    Lingual Gyrus 18 -2 -72 6   
Cluster 7: left hemisphere         3200 
    Dorsolateral Prefrontal Cortex 9 -36 36 28   
Cluster 8: right hemisphere         3104 
    Fusiform Gyrus 37 44 -48 -24   
    Occipital Cortex 19 42 -74 -12   
Cluster 9: left hemisphere         1720 
    Precentral Gyrus 4 -40 -6 56   
    -44 -14 56   
Cluster 10: right hemisphere         1520 
    INTRAPARIETAL SULCUS 7 32 -54 62   
Cluster 11: right hemisphere         960 
    Superior Temporal Gyrus 22 48 -32 -4   
Cluster 12: right hemisphere         944 
    Inferior Frontal Gyrus 47 50 22 -12   
    Superior Temporal Gyrus 22 60 10 -8   

 



27	
  

	
  

Table 1 (continued) 

Brain Region Brodmann's 
Area 

Peak MNI 
coordinates 

Volume 
(mm3) 

Cluster 13: left hemisphere         512 
    Occipital Cortex 19 -36 -80 -12   
Cluster 14: right hemisphere         360 
    Superior Temporal Gyrus 22 64 -10 -4   
Cluster 15: left hemisphere         336 
    INTRAPARIETAL SULCUS 7 -30 -56 60   
Cluster 16: left hemisphere         184 
    Superior Temporal Gyrus 22 -56 -50 12   
Cluster 17: left hemisphere         80 
    Superior Temporal Gyrus 22 -56 2 -8   
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Table 2. Brain regions included in Component 3 in the CPCA analysis (Part II). 

Brain Region Brodmann's 
Area 

Peak MNI 
coordinates 

Volume 
(mm3) 

x y z  
Positive component loadings      
Cluster 1: right hemisphere     200 
    Precentral Gyrus 4 55 2 26  
Cluster 2: left hemisphere     200 
    INTRAPARIETAL SULCUS 7 -42 -40 42  
Cluster 3: left hemisphere     192 
    Precentral Gyrus 4 -52 -4 44  
Negative component loadings           
Cluster 1: bilateral         44000 
    Cuneus 18 8 -98 20   
    Posterior Cingulate Cortex 31 -6 -56 12   
    Posterior Cingulate Cortex 31 4 -56 8   
    Cuneus 18 -2 -94 28   
    Cuneus 18 -10 -96 20   
    Lingual Gyrus 18 -10 -88 -10   
    Posterior Cingulate Cortex 31 -4 -46 36   
    Cuneus 18 22 -92 24   
    Lingual Gyrus 18 10 -82 -8   
    Lingual Gyrus 18 4 -72 -4   
    Posterior Cingulate Cortex 31 -2 -38 46   
Cluster 2: bilateral         25032 
    Ventral Medial Prefrontal Cortex 32 2 60 20   
    Anterior Prefrontal Cortex 10 -24 36 44   
    Ventral Medial Prefrontal Cortex 32 -8 62 18   
    Superior Frontal Gyrus 6 -16 54 34   
    Ventral Medial Prefrontal Cortex   -2 46 -6   
Cluster 3: bilateral         3648 
    Postcentral Gyrus 1,2,3 -4 -48 70   
    Postcentral Gyrus 1,2,3 2 -28 74   
Cluster 4: left hemisphere         1400 
    Angular Gyrus 39 -44 -74 32   
Cluster 5: right hemisphere         864 
    Superior Frontal Gyrus 6 16 48 42   
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Table 3. Brain regions included in Component 4 in the CPCA analysis (Part II). 

Brain Region Brodmann's 
Area 

Peak MNI 
coordinates Volume 

(mm3) 
x y z 

Positive component loadings 
Cluster 1: bilateral         36344 
    Cerebellum  N/A 40 -70 -26   
    Cerebellum  N/A 6 -82 -22   
    Cerebellum  N/A -40 -70 -28   
Cluster 2: bilateral         4456 
    Medial Frontal Lobe  N/A 18 30 0   
Cluster 3: left hemisphere         3392 
    Lateral Occipital Complex 18 -30 -86 4   
Cluster 4: left hemisphere         2848 
    INTRAPARIETAL SULCUS 7 -28 -62 64   
Cluster 5: left hemisphere         448 
    Precentral Gyrus 4 -48 -8 56   
Cluster 6: right hemisphere         288 
    Precuneus 7 12 -74 58   
Cluster 7: left hemisphere         200 
    Precuneus 7 -8 -72 60   
Cluster 8: right hemisphere         160 
    INTRAPARIETAL SULCUS 7 28 -62 56   
Cluster 9: left hemisphere         104 
    Dorsolateral Prefrontal Cortex 6 -28 -2 70   
Negative component loadings 
Cluster 1: right hemisphere         9328 
    Insula  N/A 38 -16 16   
    Supramarginal Gyrus 40 66 -24 36   
Cluster 2: bilateral         8096 
    Ventral Anterior Cingulate Cortex 32 -6 44 20   
Cluster 3: left hemisphere         5192 
    Insula  N/A -34 -18 16   
Cluster 4: right hemisphere         1464 
    Inferior Frontal Gyrus 44,45,47 52 22 16   
Cluster 5: left hemisphere         624 
    Parahippocampal Gyrus 28 -24 -12 -30   
Cluster 6: left hemisphere         304 
    Supramarginal Gyrus 40 -64 -30 36   
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Table 4. Brain regions included in Component 6 in the CPCA analysis (Part II). 

Brain Region Brodmann's 
Area 

Peak MNI 
coordinates 

Volume 
(mm3) 

x y z  
Positive component loadings           
Cluster 1: right hemisphere         30264 
    Superior Temporal Gyrus 22 60 -16 -2   
    Superior Temporal Gyrus 22 62 -24 4   
    Superior Temporal Gyrus 22 64 -28 6   
Cluster 2: left hemisphere         25752 
    Superior Temporal Gyrus 22 -54 -26 2   
    Superior Temporal Gyrus 22 -48 -30 6   
Cluster 3: left hemisphere         520 
    Inferior Frontal Gyrus 45 -50 34 2   
Cluster 4: right hemisphere         400 
    Inferior Frontal Gyrus 45 52 28 2   
Negative component loadings           
Cluster 1: left hemisphere         13048 
    Central Sulcus 4 -38 -22 42   
Cluster 2: right hemisphere         4520 
    Middle Frontal Lobe 6 20 -20 66   
Cluster 3: left hemisphere         560 
    Fusiform Gyrus 20 -44 -14 -34   
Cluster 4: left hemisphere         208 
    Thalamus  N/A -24 -16 12   
Cluster 5: left hemisphere         120 
    Parahippocampal Gyrus 35 -32 -6 -26   
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Figure 3. Brain networks and predictor weights of two domain-general components (Components 1 and 3).  
A and C: brain regions of Components 1 and 3, respectively.  The region in the red square in C shows the 
left anterior IPS.  Only voxels with the most extreme 5% component loadings (whether positive or negative 
loadings) are displayed.  Voxels with positive loadings are shown as yellow, and voxels with negative 
loadings are shown as blue.  Results are visualized on an inflated PALS-B12 fiducial atlas (Van Essen, 
2005; Van Essen & Dierker, 2007) provided by the Caret software (http://www.nitrc.org/projects/caret/; 
Van Essen et al., 2001).  B and D: mean predictor weights over time (TR = 2 seconds) of Components 1 
and 3, respectively.  Red curve: 2 visual items (2V).  Blue curve: 4 visual items (4V).  Yellow curve: 2 
visual and 2 auditory items (2V2A).  The yellow, red, and blue rectangles denote encoding, maintenance, 
and response periods, respectively.  The error bars represent standard errors. 

 Figure 3B shows the peri-stimulus predictor weights for each WM load condition.  

Visual inspection of the plots showed that this network had the highest predictor weights 

during WM encoding, which seem to depend on the number of items to be encoded into 

WM regardless of sensory domain.  A two-way repeated measure ANOVA with WM 

load conditions (2A, 2V, 2V2A, and 4V) and time points (1 to 16) as within-participant 

factors showed a significant main effect of time points, F(15, 225) = 5.77, p < .001, ηp = 

.28, as well as a significant interaction of WM load condition by time points, F(45, 675) 

= 1.87, p < .001, ηp = .11.  The main effect of time points was mainly due to the increased 
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predictor weights during encoding compared with those during maintenance and probe 

(Figure 3B). 

 Post hoc Newman-Keuls test of the interaction effect revealed that the 2A and the 

2V conditions showed almost identical predictor weights across the trial, and that the 

2V2A and the 4V conditions also showed almost identical predictor weights across the 

trial (Figure 6A).  Importantly, the interaction was caused by higher predictor weights for 

the 2V2A condition versus the 2V and the 2A conditions, as well as higher predictor 

weights for the 4V condition versus the 2V condition during the encoding phase, 

suggesting that this brain network is sensitive to domain-general WM load during 

encoding.  The 4V versus 2A contrast was not significant, though the means were in the 

anticipated order. 

	
  

 Component 2: Articulatory Suppression.  Figure 4A shows the functional 

network represented by Component 2.  Both positive and negative brain regions were 

included in this network.  The positive brain regions included bilateral inferior frontal 

gyrus, bilateral middle frontal gyrus, right superior and middle temporal gyrus, bilateral 

caudate nucleus, and right inferior temporal gyrus.  The negative brain regions included 

left postcentral gyrus, as well as areas around the brain and near the medial line.  

Importantly, there were no differences between conditions in this component (Figure 4B).  

This limits its theoretical significance; it is presented here only because it accounts for the 

second-highest amount of variance overall.  It is likely to represent the brain activity 

related to articulatory suppression (whispering “the” repeatedly), which was carried out 
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from the beginning of each trial through the manual response to prevent covert verbal 

rehearsal, but was not carried out between trials.  There also were some indications of 

movement artifact from this suppression task (Birn et al., 2005; Yetkin et al., 1996) that 

had been subtracted out for univariate analyses reported by Cowan et al. (2011).  

	
  

Figure 4. Brain networks and predictor weights of Component 2.  A: brain regions of Component 2.  Only 
voxels with the most extreme 5% component loadings (whether positive or negative loadings) are 
displayed.  Voxels with positive loadings are shown as yellow, and voxels with negative loadings are 
shown as blue.  Results are visualized on an inflated PALS-B12 fiducial atlas (Van Essen, 2005; Van Essen 
& Dierker, 2007) provided by the Caret software (http://www.nitrc.org/projects/caret/; Van Essen et al., 
2001).  B: mean predictor weights over time (TR = 2 seconds) of Component 2.  Red curve: 2 visual items 
(2V).  Blue curve: 4 visual items (4V).  The yellow, red, and blue rectangles denote encoding, maintenance, 
and response periods, respectively.  Yellow curve: 2 visual and 2 auditory items (2V2A).  The error bars 
represent standard errors. 

	
  

 Component 3:  Domain-General Maintenance.  Figure 5C shows the functional 

network represented by Component 3.  Both positive and negative brain regions were 

included in this network.  The positive brain regions included left IPS and bilateral 

precentral gyrus.  The negative brain regions included bilateral posterior cingulate cortex, 

left inferior parietal lobule, bilateral occipital cortex, bilateral postcentral gyrus, bilateral 

superior frontal gyrus, bilateral ventral cingulate cortex, and bilateral ventral medial 

prefrontal cortex. 
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 Visual inspection of the predictor weight plots in Figure 5D suggests that this 

network is sensitive to multimodal WM load during encoding, maintenance, and retrieval 

periods.  A two-way repeated measure ANOVA with WM load conditions (2A, 2V, 

2V2A, and 4V) and time points (1 to 16) as within-participant factors showed a 

significant main effects of WM load conditions, F(3, 45) = 10.03, p < .001, ηp = .40, and 

time points, F(15, 225) = 16.91, p < .001, ηp = .53.  As illustrated in Figure 6B, the main 

effect of WM load conditions was due to higher overall predictor weights for the 2V2A 

and the 4V conditions compared with those for the 2A and the 2V conditions, as well as 

higher overall predictor weights for the 4V condition compared with those for the 2V2A 

condition.  The main effect of time points was due to an “M”-shaped time course in 

which the predictor weights were higher during encoding and probe and lower during 

maintenance (Figure 3D). 

 The interaction between WM load conditions and time points was also significant, 

F(45, 675) = 5.79, p < .001, ηp = .28.  Post-hoc Newman-Keuls test revealed that the 2A 

and the 2V conditions showed almost identical predictor weights across the trial, whereas 

the 2V2A and the 4V conditions showed similar predictor weights across the trial except 

that the 2V2A condition exhibited slightly but significantly smaller predictor weights 

than the 4V condition during the maintenance period.  Importantly, both the 2V2A and 

the 4V conditions showed significantly higher predictor weights than the 2A and the 2V 

conditions at most time points representing WM encoding, maintenance, and retrieval 

(Figure 6B).  Thus, brain regions in this neural network are sensitive to domain-general 

WM load during all stages of WM processing.   
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 Component 4:  Domain-Specific Visual Encoding.  Figure 5A illustrates the 

functional network represented by Component 4.  Both positive and negative brain 

regions were included in this network.  The positive brain regions included bilateral 

posterior IPS, bilateral precuneus, left occipital cortex, left precentral gyrus, left 

dorsolateral prefrontal cortex, bilateral medial frontal gyrus, and bilateral cerebellum.  

The negative brain regions included bilateral supramarginal gyrus, right inferior frontal 

gyrus, bilateral ventral anterior cingulate cortex, bilateral insula, and left 

parahippocampal gyrus. 

 Visual inspection of the predictor weights plots showed that this brain network is 

sensitive to visual load during WM encoding but not maintenance and retrieval (Figure 

5B).   A two-way repeated measure ANOVA with WM load conditions (2A, 2V, 2V2A, 

and 4V) and time points (1 to 16) as within-participant factors showed a significant main 

effects of WM load conditions, F(3, 45) = 8.07, p < .001, ηp = .35, and time points, F(15, 

225) = 9.63, p < .001, ηp = .39.  The main effect of WM load conditions was primarily 

due to higher overall predictor weight for the 4V condition compared with those for the 

other three conditions (Figure 6C).  The main effect of time points appears to be due to 

elevated predictor weights during WM encoding and maintenance, but not during 

retrieval (Figure 5B). 

The interaction between WM load conditions and time points was also significant, 

F(45, 675) = 14.73, p < .001, ηp = .50.  Post hoc Newman-Keuls test showed that the 

interaction was mainly due to differences of predictor weights caused by visual load 

during the encoding period.  During the encoding period represented by approximately 

time points 4 and 5, the predictor weights for the 4V condition were higher than those for 
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the 2V2A and the 2V condition, which in turn were higher than those for the 2A 

condition (Figure 6C).  After encoding, the predictor weights for different WM load 

conditions converged and showed smaller differences. Although the 4V condition 

continued to show higher predictor weights than the 2V condition throughout the 

maintenance window, this load effect did not generalize to the other contrasts, such as 4V 

– 2V2A, 2V2A – 2A, and 2V – 2A, during the maintenance period.  It thus seems likely 

that this neural network is responsible for processing visual information during WM 

encoding. 

	
  

Figure 5. Brain networks and predictor weights of two domain-specific components (Components 4 and 6).  
A and C: brain regions of Components 4 and 6, respectively.  Only voxels with the most extreme 5% 
component loadings (whether positive or negative loadings) are displayed.  Voxels with positive loadings 
are shown as yellow, and voxels with negative loadings are shown as blue.  Results are visualized on an 
inflated PALS-B12 fiducial atlas (Van Essen, 2005; Van Essen & Dierker, 2007) provided by the Caret 
software (http://www.nitrc.org/projects/caret/; Van Essen et al., 2001).  B and D: mean predictor weights 
over time (TR = 2 seconds) of Components 4 and 6, respectively.  Red curve: 2 visual items (2V).  Blue 
curve: 4 visual items (4V).  The yellow, red, and blue rectangles denote encoding, maintenance, and 
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response periods, respectively.  Yellow curve: 2 visual and 2 auditory items (2V2A).  The error bars 
represent standard errors. 

	
  

 Component 6, An Additional Component-of-Interest: Domain-Specific Auditory 

Encoding.  In order to identify additional components that may have shown insightful 

patterns but did not explain a relatively large amount of variance, we extracted ten 

components in a separate analysis.  Besides Components 1 to 4, only Component 6 

showed WM load-dependent predictor weights.  Therefore, another analysis was 

conducted in which six components were extracted.  The result showed that Component 6 

accounted for 2.3% of the task-related variance.  Figure 5C shows the neural network 

represented by Component 6.  This neural network included both positive and negative 

brain regions.  The positive brain regions included bilateral superior temporal gyrus and 

bilateral inferior frontal gyrus.  The negative brain regions included bilateral precentral 

and postcentral gyrus, left fusiform gyrus, left thalamus, and left parahippocampal gyrus. 

 Figure 5D shows the predictor weights for each WM load condition in 

Component 6.  Visual inspection of the plots shows that this network was sensitive to 

auditory load during only the encoding period.  A two-way repeated measure ANOVA 

with WM load conditions (2A, 2V, 2V2A, and 4V) and time points (1 to 16) as within-

participant factors showed a significant main effects of WM load conditions, F(3, 45) = 

17.91, p < .001, ηp = .54, and time points, F(15, 225) = 7.66, p < .001, ηp = .34.   The 

main effect of WM load conditions was due to higher overall predictor weights for the 

2A and the 2V2A conditions compared with those for the 2V and the 4V conditions 

(Figure 6D).  The main effect of time points was due to elevated average predictor 

weights during the encoding period (Figure 5D). 
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 The interaction between WM load conditions and time points was also significant, 

F(45, 675) = 21.08, p < .001, ηp = .58.  Post hoc Newman-Keuls test showed that the 

interaction was primarily due to higher predictor weights for the 2A and the 2V2A 

conditions than those for the 2V and the 4V conditions during only the encoding period 

(Figure 6D).  This neural network is therefore likely to be responsible for encoding 

auditory stimuli into WM. 



39	
  

	
  

	
  

Contrast 

Time Point 

  
            

1 2 3 4a 5a 6 7b 8b 9c 10c 

A. 

Component 

1 

                  
2V - 2A                     
2V2A - 2A       +             
4V - 2A                     
2V2A - 2V       + + +         
4V - 2V         + +         
4V - 2V2A                     
B. 

Component 

3 

	
   	
   	
   	
   	
   	
   	
   	
   	
  
2V - 2A               +     
2V2A - 2A       + +     + +   
4V - 2A       + + + + + +   
2V2A - 2V       + + + 	
         
4V - 2V       + + + + + +   
4V - 2V2A         +   + +     
C. 

Component 

4 

	
   	
   	
   	
   	
   	
   	
   	
   	
  
2V - 2A       + +   -   +   
2V2A - 2A       + + +         
4V - 2A     + + + +     +   
2V2A - 2V             +       
4V - 2V       + + + + + +   
4V - 2V2A     + + + +     +   
D. 

Component 

6 

	
   	
   	
   	
   	
   	
   	
   	
   	
  
2V - 2A     - - - -     - - 
2V2A - 2A             -       
4V - 2A     - - - -     -   
2V2A - 2V       - - -         
4V - 2V                     
4V - 2V2A       - - -         

Figure 6.  Significant Results of the Post-hoc Newman-Keuls Tests.  A, B, C, and D correspond to 
components 1, 3, 4, and 6, respectively.  The rows are pairwise contrasts between WM load conditions.  
The columns are 10 time points, in which time point 1 refers to the onset of a trial.  The “+” sign denotes a 



40	
  

	
  

significant positive contrast, and the “-”sign denotes a significant negative contrast.  2V: 2 visual items.  
2A: 2 auditory items.  4V: 4 visual items.  2V2A: 2 visual plus 2 auditory items. Time points 11-16 are not 
included in this figure, because these time points correspond mainly to the undershoot period of the 
hemodynamic function which does not carry a significant amount of task-related information.  Very few 
contrasts were significant during this time period, the only ones being 2V-2A at time point 11 and 4V-2A at 
time points 11 and 12 in component 4.  Both contrasts were negative.  aencoding period, 4 and 5.  
bmaintenance periods, 7 and 8.  cresponse periods, 9 and 10. 

	
  

Discussion 

This study investigated the functional networks underlying a multimodal change-

detection experiment.  An exploratory multivariate data analysis method, CPCA, was 

used to extract neural networks underlying the WM task. 

 CPCA revealed distinct brain networks sensitive to domain-general versus 

domain-specific processes.  On one hand, two components demonstrated characteristics 

consistent with domain-general load dependency: Component 1 was sensitive to both 

visual and auditory loads during only the encoding period, and Component 3 was 

sensitive to both visual and auditory loads throughout the trial.  On the other hand, the 

results for two other components were consistent with domain-specific load dependency: 

Component 4 was sensitive to visual load (but not auditory load) during the encoding 

period, and Component 6 showed dependency on auditory load (but not visual load) 

during the encoding period.  These findings are consistent with the assertion that different 

neural networks are involved in domain-general and domain-specific processes in the 

WM task. 

 The two domain-general components, Components 1 and 3, showed different 

patterns of predictor weights and consisted of different brain regions.  Component 1 was 

sensitive to visual and auditory load during only the encoding period and included 
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primary sensory regions as well as several association areas including the IPS, the 

precuneus, the dorsolateral prefrontal cortex, the anterior insula, the premotor cortex, and 

the dorsal anterior cingulate cortex.  Most of these brain regions, such as the precuneus, 

the dorsolateral prefrontal cortex, the premotor cortex, and the dorsal anterior cingulate 

cortex, are frequently found to be active during WM encoding (Cairo et al., 2004; Habeck 

et al., 2005; Woodward et al., 2006).  Therefore, Component 1 seems to represent a 

neural network for domain-general encoding. 

 In contrast, Component 3 was sensitive to visual and auditory load throughout the 

trial and consisted of both negative and positive regions.  The negative brain regions 

overlapped with the default mode network which shows activation during rest and 

deactivation during attention-demanding tasks (Buckner et al., 2008).  Given that the 

behavioral results have shown that the 4-item conditions were more demanding than the 

2-item conditions regardless of modalities (Cowan et al., 2011), it is not surprising that 

the default mode network showed negative bimodal load-dependency throughout the 

entire trial.  This network also consisted of several brain regions with positive loadings, 

among which was a subregion within the left anterior IPS (Figure 3C, expanded region).  

Critically, this left anterior IPS subregion (MNI coordinates: -42, -40, 42; Talairach 

coordinates: -40, -42, 37, converted using icbm2tal, Lancaster et al., 2007) is spatially 

close to the left anterior IPS subregion (Talairach coordinates: -27, -46, 31) identified in 

the univariate analysis, which was the only brain region sensitive to bimodal load during 

the maintenance period (see Figure 3 in Cowan et al., 2011).  This result from the CPCA 

analysis thus reinforces the results from the univariate analysis.  Only a small region 

within the precentral gyrus was found to be positively connected with the left anterior IPS 
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in this network, although there were several negative brain regions as noted.  When we 

relaxed the criterion to examine the brain regions with top 10% loading values, however, 

we found that the positive brain regions also included bilateral dorsal anterior cingulate 

cortex, which has been suggested to modulate activities in the lateral frontal and the 

parietal regions (Bush et al., 2000).  It thus seems that the left anterior IPS, the dorsal 

anterior cingulate cortex, and the precentral gyrus form a network responsible for 

domain-general WM maintenance. 

 Unlike the domain-general components, the two domain-specific components, 

Components 4 and 6, showed similar patterns of predictor weights: both components 

were sensitive to domain-specific load during the encoding period.  Component 4 was 

sensitive to visual load during encoding and included the lateral occipital cortex and the 

posterior IPS.  The lateral occipital cortex is widely accepted to be responsible for visual 

object recognition (Grill-Spector et al., 2001).   The posterior IPS is spatially distinct 

from the anterior IPS discovered in Component 3.  The posterior IPS has been reported to 

be sensitive to visual object complexity (Xu & Chun, 2006), to be dependent on visual 

load in a perceptual task with no memory requirements (Mitchell & Cusack, 2008), and 

to be structurally connected to the superior occipital lobe (Uddin et al., 2010).    

Interestingly, a similar posterior IPS region was previously proposed to be responsible for 

visual WM maintenance (Todd & Marois, 2004).  Combined with our findings, we could 

suggest that this region carries visual- specific encoding information that under some 

circumstances can also contribute to visual working memory.  An alternative possibility 

is that different subregions within the posterior IPS, which are indistinguishable with 
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current experimental paradigms and techniques, are involved in WM encoding versus 

maintenance. 

 Component 6 was sensitive to auditory load and consisted of bilateral superior 

temporal gyrus and inferior frontal gyrus.  The superior temporal gyrus is responsible for 

auditory processing (Demonet et al., 1992). The left inferior frontal gyrus is important for 

verbal comprehension and is frequently reported to be active during verbal WM encoding 

and maintenance (Cohen et al., 1997; Nixon et al., 2004).  The latter region, however, 

was not necessarily recruited during verbal WM maintenance in this study, given that 

Component 6 was not sensitive to auditory load during the maintenance period. 

 It is thus clear that different neural networks were responsible for domain-general 

and domain-specific processes in WM.  On one hand, the domain-specific networks 

showed load-dependent patterns during only the encoding period, suggesting their roles 

in domain-specific encoding.  On the other hand, the domain-general network represented 

by Component 1 showed load-dependent patterns during the encoding period, whereas 

the domain-general network represented by Component 3 showed load-dependent 

patterns throughout the entire trial.   

 WM encoding recruited both domain-specific (Components 4 and 6) and domain-

general networks (Component 1).  These networks are likely to be involved in both 

perceptual encoding and WM consolidation.  One possibility is that the domain-specific 

networks are involved in perceptual encoding, and that the domain-general network 

subsequently consolidates the perceptual representations into WM.  This possibility is 

partly supported by the fact that the onset of the load effect was earlier in the domain-
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specific networks than in the domain-general network (Figure 6A, C, D). Elucidation of 

the exact functions of these networks, however, requires more investigation.   

 In contrast to WM encoding, WM maintenance recruited only a domain-general 

network, which supports the view that WM storage is a unitary system that maintains 

visual and auditory items through the same processes (Cowan, 1995; Saults & Cowan, 

2007).  The fact that no domain-specific brain network was involved in WM 

maintenance, however, does not necessarily imply that WM storage does not recruit any 

stimulus-specific process.  In fact, a few recent studies used multi-voxel pattern analysis 

to decode the BOLD signal and found that the posterior sensory regions showed 

stimulus-specific activity patterns during WM maintenance (Harrison & Tong, 2009; 

Lewis-Peacock & Postle, 2012; Riggall & Postle, 2012).  These studies proposed that the 

posterior sensory regions function in a sub-threshold manner which cannot typically be 

detected by traditional analysis methods.  It is thus possible that the posterior sensory 

regions receive top-down regulations from the multimodal network, especially from the 

IPS, during WM maintenance.  In this way, both lower-level stimulus-specific and 

higher-level categorical information are kept in WM. 

 Contrary to the previous finding that similar brain regions underlie WM encoding 

and maintenance (Pessoa et al., 2002), this study revealed different load-dependent 

domain-general networks during WM encoding and WM maintenance.  This result 

supports the counter-viewpoint that WM consolidation during encoding is independent 

from WM maintenance (Woodman & Vogel, 2005). 
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 Interestingly, several subregions within the IPS were functionally connected to 

different brain regions and showed different properties in this study.  Component 3 

included a small region within the left anterior IPS that worked with several frontal 

regions and showed domain-general WM load dependency during multiple stages in the 

WM tasks.  Component 4 included another region within the bilateral posterior IPS that 

was functional connected to primarily the lateral occipital cortex and was sensitive to 

only visual load during the encoding periods.  Component 1 included a region within the 

bilateral posterior IPS that was functionally connected to both posterior sensory regions 

and multiple frontal and subcortical regions and was sensitive to domain-general load 

during only the encoding period.  Importantly, these three IPS subregions showed little 

overlap, consistent with the view that the IPS consists of multiple subregions each with 

distinct (Culham & Kanwisher, 2001; Xu & Chun, 2006).  This finding is also supported 

by a resting-state and structural connectivity study by Uddin and colleagues (Uddin et al., 

2010), which partitioned the IPS into three parts and found that the two anterior parts 

showed greater resting-state functional connectivity and structural connectivity with 

prefrontal regions, and that the posterior part showed greater resting-state functional 

connectivity and structural connectivity with extrastriate visual areas.   

 In summary, the present application of CPCA to data from a multi-modal working 

memory fMRI study revealed multiple functional networks.  By using simultaneous 

visual and auditory stimuli in a single trial, this study allowed for evaluation of separate 

domain-general and domain-specific networks underlying different processes in WM.  

The existence of the domain-general network during WM maintenance supports the 

argument that WM storage is a unitary system in which visual and auditory items are 
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maintained by the same mechanism (Cowan, 1995; Cowan et al., 2011; Majerus et al., 

2010).  

	
  

PART III. NONVERBAL AUDITORY WORKING MEMORY 

In Parts I and II, two analyses were performed on a visual and auditory WM experiment.  

The results showed that (1) the left anterior IPS does not code domain-specific 

information in visual and auditory WM, and (2) that a domain-general neural network, 

which includes the left anterior IPS, is responsible for both visual and auditory WM 

maintenance.  Thus, both studies support the domain-general account of WM storage. 

 These analyses and most previous neuroimaging studies, however, are focused on 

categorical stimuli, such as visual colors/simple shapes, verbal letters/digits, etc.  For 

these stimuli, categorical representations can be easily formed once the stimuli enter 

perception.  For example, both a red colored square and a spoken word “red” could 

invoke the categorical representation of “redness”.  Categorical representations are 

independent of stimuli domains and are therefore likely to be the representations stored in 

the domain-general system of WM. 

 If the domain-general system stores categorical representations, what if the input 

stimuli are difficult to categorize?  Such types of stimuli include, for example, complex 

shapes/sounds without associations with real world objects, tones that do not resemble 

the frequency of musical notes, etc.  If no categorical information could be extracted from 

the stimuli, the domain-general system will likely have no representations to keep.  In this 

case, the left anterior IPS probably will not be activated during WM maintenance. 
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 This issue is investigated using nonverbal sounds in this study.  Nonverbal sounds 

refer to the auditory stimuli that are not associated with any verbal label and are therefore 

difficult to be categorized.  The brain activations underlying nonverbal auditory WM 

have been investigated in very few studies (Grimault et al., 2009; Rinne et al., 2009; 

Strand et al., 2008).  Even these few studies yielded very different results.  Strand et al. 

(2008) used acoustic pseudo-words with varied numbers of syllables in a change-

detection task.  They found that the middle temporal gyrus and inferior frontal gyrus were 

activated during the maintenance period.  The IPS, however, was activated during the 

response but not the maintenance period.  Grimault et al. (2009) used varied numbers of 

tones in two change-detection tasks.  One task was done with magnetoencephalography 

(MEG), and the other was done with fMRI.  In both MEG and fMRI experiments, they 

found significant activation in the superior parietal cortex, the angular/supramarginal 

gyrus, and the superior temporal gyrus.  Rinne et al. (2009) used a pitch n-back task and 

found significant load-dependent activation in the inferior parietal lobe.  Thus, it is 

unclear whether the posterior parietal cortex, especially the IPS, is responsible for the 

maintenance of nonverbal sounds. 

 These previous studies provided insightful results on the brain regions involved in 

nonverbal auditory WM.  However, to investigate WM for non-categorical stimuli, 

several important factors should be controlled: (1) musical tones should be avoided 

because they are easier to categorize than tones whose frequencies do not resemble those 

of musical tones; and (2) to focus on WM, sensory memory should be controlled by using 

post-stimulus masks. 
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 In this study, we tried to control these factors and examined the brain activation 

for non-categorical stimuli.  The participants were instructed to remember 2, 3, 4, 5, or 6 

nonverbal sounds in a change-detection task.  We are interested in the load-dependent 

brain activations, especially in the IPS. 

	
  

Method 

 Participants.  Prior to the fMRI experiment, a behavioral pretest was conducted to 

screen participants for the fMRI scan.  The behavior pretest has the same procedure as the 

fMRI experiment as described in the next section.  Only the participants showing a high 

overall accuracy rate in the behavioral pretest were recruited in the fMRI experiment.  

The screening criteria was set as an overall accuracy rate of .70 and above, the average 

accurate rate in a previous behavioral experiment with the same procedure (Experiment 3 

in Li, Cowan, & Saults, 2013). 

 Seventeen participants (seven male) were recruited in the fMRI study.  One 

participant did not finish the scan due to discomfort in the scanner.  Another participant 

had excessive head movements and was excluded in the analysis.  The resulting number 

of participants was therefore fifteen (seven male, 18-22 years old).  The participants were 

native English speaker, right handed, with normal vision and hearing, and without special 

music trainings.  Prior to scanning, each participant went through a questionnaire to 

exclude the individuals with potential risks for MRI scan, such as metal in the body, 

claustrophobia, etc. 
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 Stimuli, Procedures and timing.  The stimuli used in both the behavioral pretest 

and the fMRI experiment were twelve nonverbal sounds, generated with GarageBand 

(Apple Inc., Cupertino, California), a program in the Macintosh Operating System, each 

played by a distinct instrument (Trumpet Section, Smooth Clav, Classic Rock Organ, 

Negril Bass, Tenor Sax, Space Harpsichord, Grand Piano, Live Pop Horns, Aurora Bell, 

Pop Flute, Hollywood Strings, and Clean Electric Guitar).  The fundamental frequencies 

of these sound files were then varied in the range of 200Hz to 3900Hz with a 31% 

difference between each two adjacent frequencies.  Thus, each sound had a distinct 

timbre and frequency combination. 

	
  

Figure 7. Experimental procedure of the nonverbal auditory WM study. 
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 The participants performed an auditory WM task as illustrated by Figure 7.  The 

stimuli were presented with the E-Prime 2.0 software.  At the beginning of each trial, a 

“+” appeared on the center of the screen for 1000ms, which indicated the onset of a trial 

and provided a fixation point for the participants.  The participants were instructed to 

start whispering “the” twice a second as soon as they see the “+”, and to keep whispering 

throughout the trial until it was time to respond with a button press.  After the “+”, six 

circles were presented on the center of the screen.  Six nonverbal sounds, randomly 

selected from the twelve sounds, were sequentially presented through a headphone, each 

lasting for 500ms with 250ms interval between adjacent sounds.  A printed character (*, 

&, @, %, $, and ->, randomly arranged) was presented concurrently with each sound, and 

sequentially in the circles, starting from the circle on the top.  The character disappeared 

as soon as its corresponding sound ended.  The participants were instructed to start 

remembering the sounds when they heard the sound accompanied by a forward arrow (-

>) character.  The location of the forward arrow was arranged such that the memory load 

was parametrically manipulated to include five levels: 2, 3, 4, 5, and 6 sounds.  

 A 500ms mask sound, produced by simultaneous combination of all the twelve 

sounds, was presented 500ms after the sixth sound ends.  After a 6000ms delay period 

during which the participants kept maintaining the sounds and whispering “the”, a probe 

sound was presented through the headphone, accompanied by a “?” in a circle on the 

screen.  The participants were instructed to stop whispering “the” upon hearing the probe 

sound and seeing the “?”, and to decide whether the probe sound was the same as the 

previous sound in the “?” circle or different from any sound that they were required to 

remember.  In half of the trials, the probe sound was the same as the sound at the “?” 
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location during the stimulus presentation, and in the other half of the trials, the probe 

sound was different from any of the six sounds in the stimulus list.  The participants were 

instructed to respond within 3 seconds.  Feedback lasting for 500 ms was provided after 

the participants made a response. If the participants failed to respond within 3 seconds, 

feedback saying “response not detected” was presented on the screen.  A blank screen 

lasting for 500 ms was presented in the end of a trial. 

 Two additional conditions with a different stimulus display method were included 

in the experiment.  In these two conditions, only 2 or 4 sounds were presented, each 

accompanied by a character ((*, &, @, %, $, and ->).  The first sound was always 

accompanied by a forward arrow “->”, indicating that the participants always started to 

remember the sounds from the first one.  The procedure of the two additional conditions 

was otherwise the same as that of the original conditions.  In the following text, we 

denotes the additional conditions as “Partial”, as opposed to the original conditions as 

“AllSix”.  The specific memory load in each stimulus presentation method condition is 

referred to as “AllSix-N” or “Partial-N”, respectively, with N representing the memory 

load.  For instance, memory load 4 in the AllSix condition is referred to as “AllSix-4”. 

 Each AllSix trial lasted for 16 seconds.  Each Partial-2 trial lasts for 14 seconds, 

and each Partial-4 trial lasted for 16 seconds.  Every two adjacent trials were separated 

by a random interval, ranging from 0 to 10 seconds.  Randomly varying (jittering) the 

time between successive trials is a standard technique in fast event-related fMRI 

experiments to increase the efficiency for separating statistically the brain’s activity to 

stimuli versus responses.  
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 Each run included 14 trials, and each participant performed 16 functional runs. 

The duration of each run was 5 minutes and 10 seconds.  The experiment lasted for 

approximately 1.5 hours, including the break time between runs. 

	
  

 Data Acquisition.  The fMRI data was collected with a 3-Tesla Siemens Trio 

MRI scanner located in the Brain Imaging Center at the University of Missouri.  For each 

participant, a T1-weighted (MPRAGE) image and a T2-weighted (SPACE) structural 

image were collected at the beginning of the experiment.  A T2*-weighted spin echo EPI 

sequence (TR=2000ms, TE=30ms, flip angle=90�, in-plane resolution = 4 × 4 mm2, 32 

axial slices with 4mm thickness) was used for the functional runs when the participants 

were performing the memory task.  Sixteen functional runs were collected for each 

participant. 

	
  

 Behavioral Data Analysis.  The behavioral data was recorded by the E-prime 2.0 

software.  A one-way ANOVA of the accuracy rate of the AllSix trials with memory load 

as the within-subject factor was performed to investigate the effect of memory load.  The 

participant’s capacity on each level of memory load was calculated with Cowan’s k 

formula (Cowan 2001).  Cowan’s k formula estimates WM capacity based on 

performance in a change detection task in which the test item clearly indicates which item 

in the original memory set is being tested.  It assumes that WM capacity is k, meaning 

that k items can fit into WM.  When memory load N > k, the hit rate, or the proportion of 

correct detections of a change, can be calculated as hits = k/N + (1-k/N)g, and the false 
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alarm rate, or the proportion of answering “change” when there is actually no change, can 

be calculated as false alarms = (1 – k/N)g, with g being the guessing rate of answering 

“change” when no WM information is available.  Combining these two equations, WM 

capacity can be estimated as k = (hits – false alarms)N. 

  To show whether different stimulus presentation methods induce different 

performance patterns, we also selected the Partial trials as well as memory loads 2 and 4 

of the AllSix trials for a two-way ANOVA analysis with presentation method and WM 

load as within-subject two factors. 

	
  

 Whole Brain Analysis.  The imaging data was processed with Brainvoyager QX 

2.3.1 (Brain Innovation, Maastricht, the Netherlands).  During preprocessing, the images 

were corrected for differences in acquisition time of different slices in each volume, 

corrected for head motion, realigned and normalized into a standard Talairach atlas, and 

spatially smoothed with a 6mm FWHM Gaussian filter. 

 The preprocessed data was analyzed using a random effects general linear model 

method.  For each AllSix condition, the stimulus presentation was modeled as a 6s boxcar 

function; for the Part conditions, the stimulus presentation was modeled as a 2s or 4s 

boxcar functions for load 2 and 4, respectively.  For both AllSix and Partial conditions, 

the maintenance and probe periods were modeled as 4s and 2s boxcar functions, 

respectively.  To minimize the carryover signal from stimulus presentation, the 4s boxcar 

functions modeling the maintenance period were selected to cover the last 4 seconds of 



54	
  

	
  

the maintenance period.  Each boxcar function was convolved with a canonical 

hemodynamic response function. 

 The boxcar functions were entered into a random effects general linear model.  To 

further reduce artifacts from head movements and scanner signal drifts, six head motion 

functions and five discrete cosine transform functions for each participant were included 

in the design matrix. 

 The behavioral results showed that WM capacity, indexed by k values, increased 

monotonically from memory load 2 to 6 (See Behavioral Results).  To identify brain 

regions whose activity tracked WM capacity, we first examined high versus low memory 

contrasts for any two adjacent memory loads in the AllSix trials.  This analysis, however, 

did not reveal any common brain region across all contrasts, suggesting that there may 

not be a single region responsible for WM storage across all memory loads in this 

experiment.  Therefore, an examination of specific contrasts was necessary to reveal the 

differences among activation patterns across memory loads. 

 For the current analysis, we focused on two contrasts: AllSix-6 versus AllSix-4, 

and AllSix-4 versus AllSix-2, both during the maintenance period.  The loads AllSix-2 and 

AllSix-6 were selected because they represented the most extreme load conditions in this 

study, and the load AllSix-4 was selected because it provided a balanced middle point for 

the AllSix-2 and AllSix-6 conditions. 

 Additionally, to assess the influence of different stimulus presentation methods, 

we contrasted the Partial-4 condition versus the Partial-2 condition during the 

maintenance period and compared the results from the results of the AllSix-4 versus 
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AllSix-2 contrast.  To investigate the common activations across these two stimulus 

presentation methods, a conjunction analysis of both the AllSix-4 versus AllSix-2 and the 

Partial-4 versus Partial-2 contrasts during the maintenance period was also performed. 

 In all analyses, multiple comparisons were corrected using cluster level 

thresholding implemented in BrainVoyager (Goebel et al., 2006; Forman et al., 1995).  

Unless otherwise specified, an initial threshold was set as p = .005, and the cluster size 

threshold against a 5% cluster-wise false discovery rate was determined by 1000 

iterations of a Monte Carlo simulation. 

	
  

 Regions of Interest Analysis.  The results from Parts I and II suggest that a region 

in the left anterior IPS is critical for the maintenance of both visual and auditory stimuli.  

For this analysis, we selected the left anterior IPS region as a region of interest (ROI) and 

examined its activations at each memory load levels.  The left anterior IPS ROI was 

selected as having the same spatial location and layout as the left IPS region found in the 

conjunction analysis in Cowan et al. (2011) (Talairach coordinates -27, -46, 31; see 

Figure 3 in Cowan et al., 2011).  Given that processing of tones is often right lateralized, 

we are also interested in the activation in the right IPS.  Therefore, a right anterior IPS 

ROI was defined as the mirror of the left anterior IPS ROI in the right hemisphere.	
  	
  For 

both ROIs, the beta values of the AllSix trials during the maintenance period derived from 

the whole-brain analysis were entered into a one-way ANOVA analysis, which had one 

factor (memory load) with five levels (memory loads 2, 3, 4, 5, and 6). 
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Results 

	
  

Figure 8. Behavioral results of the AllSix trials in the nonverbal auditory WM experiment.  A: average 
accuracy.  B: average K values.  X axis denotes memory loads 2 to 6.  The error bars denotes standard 
errors. 

 Behavioral Results.  A one-way ANOVA of the accuracy rate in the AllSix trials 

with memory load as the within-subject factor revealed a significant main effect of 

memory load, F(4, 56) = 10.39, p < .001, ηp
2 = .43.  The accuracy rate decreased 

monotonically with memory load (Figure 8A). 

 Estimates of WM capacity were calculated with Cowan's k formula (Cowan, 

2001).  The mean capacity estimates were 1.48, 1.83, 2.12, 2.54, and 2.88, for memory 

load 2, 3, 4, 5, and 6, respectively.  It is thus obvious that WM capacity increased 

monotonically with memory load (Figure 8B).  This pattern is different from many 
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previous WM studies showing a plateau of WM capacity at set size 3-4 for categorical 

stimuli (Cowan, 2001; Todd & Marois, 2004). 

 To examine the impact of different stimulus presentation methods, a two-way 

ANOVA with presentation method (AllSix and Partial) and memory load (2 and 4) was 

performed.  Only a main effect of memory load was found, F(1, 14) = 45.93, p < .001, ηp
2 

=.77.  Different stimulus presentation methods thus did not appear to have an impact on 

behavioral performance. 
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Figure 9.  FMRI results of the nonverbal auditory WM study.  A: AllSix-4 versus AllSix-2.  B: AllSix-6 
versus AllSix-4.  C: Partial-4 versus Partial-2.  All maps follow the radiological convention that the left 
side of the image denotes the right hemisphere. Maps A and C used an initial statistical threshold of p<.005, 
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and map B used an initial statistical threshold of p<.001.  All maps were corrected for multiple comparisons 
using cluster level thresholding implemented in BrainVoyager. Only positive clusters are presented. 

 

 Whole Brain Results.  The one-way ANOVA of the maintenance period of the 

AllSix conditions revealed several brain regions responding to memory loads: the left 

dorsolateral prefrontal cortex, the anterior cingulate cortex, the right rostromedial 

prefrontal cortex, the right cuneus, and the superior temporal cortex. 

 Interestingly, the result of the Partial-4 versus Partial-2 contrast was very 

different from that of the AllSix-4 versus AllSix-2 contrast.  The AllSix-4 versus AllSix-2 

contrast revealed three significant positive clusters: bilateral rostromedial prefrontal 

cortex and right inferior temporal gyrus (Figure 9A).  The Partial-4 versus Partial-2 

contrast showed several significant positive clusters including right precuneus and right 

inferior frontal gyrus (Figure 9C).  The conjunction analysis of the AllSix-4 versus AllSix-

2 and Partial-4 versus Partial-2 contrasts, however, did not reveal any brain activation, 

even under a low statistical threshold of p < .05, uncorrected. 

	
  

 Region of Interest Results.  The left anterior IPS was analyzed in the ROI 

analysis.  The one-way ANOVA showed a significant main effect of memory load, F(4, 

56) = 3.20, p < .05.  An inspection of the cell means suggested that the main effect was 

driven by significantly lower values of memory loads 4 and 5 compared those of memory 

load 3 (Figure 10).   
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 Results of the right anterior IPS showed a similar pattern.  The one-way ANOVA 

also showed a significant main effect of memory load, F(4, 56) = 2.71, p < .05.  The main 

effect was driven by significant lower values of memory load 4 than those of memory 

loads 3 and 6. 

 Taken together the results of left and right anterior IPS ROIs, it appears that these 

regions did not show any load-dependent activation across memory loads.  Instead, both 

regions showed a sharp drop at memory load 4.  Figure 10 shows the time course of 

percent signal change in the left anterior ROI. 

	
  

Figure 10.  Time course of the average BOLD signal change in the left anterior IPS ROI.  Each curve 
denotes the time course of a memory condition.  Red: AllSix-2. Yellow: AllSix-3. Green: AllSix-4. Purple: 
AllSix-5. Black: AllSix-6.  The transparent red rectangle covers the maintenance period. 

 

Discussion 
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In this study, we investigated the brain activations underlying a nonverbal auditory WM 

task.  The participants remembered 2, 3, 4, 5, or 6 nonverbal sounds in a change-detection 

WM task.  The behavioral results showed that WM capacity increased monotonically 

with memory load.  The analysis of neuroimaging data, however, did not reveal any brain 

region showing monotonically increasing activation with memory load, indicating a more 

complex activation pattern across memory loads.  Examination of specific high-versus-

low memory load contrasts showed that the AllSix-4 versus AllSix-2 contrast activated 

different brain regions from the AllSix-6 versus AllSix-4 contrast, suggesting that different 

strategies were used in the maintenance of low and high memory loads.  Finally, an ROI 

analysis showed that the left anterior IPS, previously found to be important for visual and 

auditory WM, did not exhibit load-dependent activity across memory loads but rather 

showed a sharp drop of activation at memory load 4. 

 The monotonically increasing estimates of WM capacity replicated our previous 

behavioral study (Experiment 3 in Li et al., 2013) and are different from the estimates of 

WM capacity for categorical visual and auditory stimuli in two aspects: (1) the latter 

usually increase with memory load and reach a plateau at set size 3 or 4, and (2) the 

plateau is usually 3-5 items, which is higher than the highest capacity (2.88 at memory 

load 6) in this study.  The capacity difference is even more surprising, given that the 

participants in this study were selected from the top 50 percentile in the behavioral pretest, 

and that they have already been familiarized with the stimuli in the behavioral pretest 

before the fMRI experiment.  The unusual pattern of WM capacity estimates in this study 

might be due to the specific characteristics of the stimuli: the nonverbal sounds used in 

this study were difficult to categorize and thus probably had to be memorized through 
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pure acoustic features (Li et al., 2013).  This hypothesis, however, needs more 

investigation from future empirical research. 

 The AllSix-4 versus AllSix-2 contrast revealed three significant positive clusters: 

bilateral rostromedial prefrontal cortex and right inferior temporal gyrus (Figure 9A).  

The medial prefrontal cortex was reported to have widespread reciprocal structural 

connections with auditory cortex in the macaque (Barbas et al., 1999).  The rostromedial 

prefrontal cortex has been suggested to code topographical information of the tonality 

surface (Janata et al., 2002).  Increased recruitment of the rostromedial prefrontal cortex 

from memory load 2 to 4 suggests that the participants relied on tonal information to 

maintain the sounds.  The inferior temporal gyrus belongs to the ventral stream of visual 

processing, which is associated with object recognition and representation (Ungerleider 

& Haxby, 1994).  It is possible that the participants tried to associate the sounds with 

their corresponding visual characters to improve their performance even if the visual 

characters were irrelevant to the WM task. 

 The AllSix-6 versus AllSix-4 contrast showed a large group of higher-order 

cortical areas, including right precuneus, right temporoparietal junction, bilateral middle 

frontal gyrus, right precentral gyrus, bilateral posterior cingulate cortex, bilateral inferior 

temporal gyrus and left insula (Figure 9B).  Most of these regions, such as the precuneus, 

middle frontal gyrus, precentral gyrus, posterior cingulate cortex, and insula, are 

frequently reported to be activated during WM tasks (Owen et al., 2005).  The elevated 

activation of these regions at memory load six and the absence of activation of the 

rostromedial prefrontal cortex indicate that at higher memory loads, the participants had 

to use more complex strategies than just relying on the tonal frequencies of the sounds.  
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The varied strategies used in low and high memory loads might be the reason why there 

was no brain region showing monotonically increasing activation with memory load. 

 Surprisingly, the conjunction analysis of the AllSix-4 versus AllSix-2 and the 

Partial-4 versus Partial-2 contrasts did not show any common brain activation.  

Compared to the AllSix-4 versus AllSix-2 contrast, the Partial-4 versus Partial-2 contrast 

activated a different set of brain regions including right precuneus and right inferior 

frontal gyrus (Figure 9C).  This result indicates that despite the same level of behavioral 

performance, the two different stimulus presentation methods elicited different brain 

responses.  It is possible that different stimulus presentation methods encouraged the 

participants to apply different strategies to maintain the sounds. 

 An important difference between this study and Parts I and II is that the left 

anterior IPS did not show a load-dependent activation pattern in this study.  Instead, the 

activations in both left and right anterior IPS remained unchanged at memory loads 2 and 

3 and showed a sharp drop at memory load 4 (Figure 10).  Combining results from the 

whole-brain analysis, it is possible that the participants experienced a strategy change at 

memory load 4.  At lower memory loads (2 and 3), the participants could have relied on 

the acoustic features of the sounds as evidenced by the activation of the rostromedial 

prefrontal cortex, whereas at higher memory loads (5 and 6), they could have applied 

more complex strategies as evidenced by the activation of a large group of association 

areas.  This strategy change might have affected the activation level in the anterior IPS, 

which is proved to be a central hub connecting different modules in the brain (Crossley et 

al., 2013). 
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 Given that the left anterior IPS did not show load-dependent activation, it appears 

that this region may not be responsible for the storage of nonverbal sounds.  A possibility 

is that the left anterior IPS stores abstract, categorical information, which is difficult to be 

extracted from the nonverbal sounds in this study.  An alternative possibility is that due to 

various strategies used for different memory loads, the brain activation did not show a 

consistent pattern across different conditions.  This inconsistency of strategies might have 

blurred the difference of activation level in the IPS across memory loads which might 

have existed if a consistent strategy had been used.  Future work is needed to examine the 

IPS activation during WM for non-categorical stimuli, when strategy usage is controlled. 

 In conclusion, this study was focused on the brain activations during a nonverbal 

auditory WM task.  The results showed that at low memory loads, the participants relied 

more on the tonal properties of the sounds, and that at high memory loads, more higher-

order brain regions were recruited.  Different stimulus presentation methods also appear 

to influence the strategies used to maintain the sounds.  In contrast to the results from 

Parts I and II, the IPS activation did not show load-dependent activation across memory 

loads, which indicates that the domain-general system may not store representations of 

nonverbal sounds. 

	
  

GENERAL DISCUSSION 

This dissertation is aimed to investigate an important issue in WM: are stimuli from 

different sensory domains maintained in domain-specific stores or in a categorical, 

abstract domain-general store?  This issue was studied in three related parts.  Parts I and 
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II re-analyzed an fMRI data set on visual and auditory WM from a previous study 

(Experiment 2 in Cowan et al., 2011), and Part III was focused on a new fMRI 

experiment on nonverbal auditory WM. 

 In Part I, we applied MVPA to the visual and auditory WM data and found that a 

region in the left anterior IPS, previously found to be involved in both visual and auditory 

WM maintenance (Cowan et al., 2011), did not code specific information about stimulus 

domains.  In Part II, we analyzed the neural networks underlying the same data set and 

found that a region in the left anterior IPS, which was spatially proximal to the IPS 

regions in Part I, belonged to a neural network showing memory load effect during WM 

maintenance for both visual and auditory stimuli.  Thus, both Parts I and II suggest that 

the left anterior IPS is responsible for domain-general WM storage of categorical visual 

and auditory information. 

 In Part III, we analyzed a nonverbal auditory WM data set and found some 

evidence that different strategies were used for low and high memory loads and different 

stimulus presentation methods.  In contrast to Parts I and II, however, the left anterior IPS 

activation did not show load-dependent activation across memory load conditions in Part 

III.  We reasoned that the left anterior IPS might store abstract, categorical information 

which is difficult to be extracted from the nonverbal sounds used in this experiment.  This 

is compatible with the proposed role of the left anterior IPS as a domain-general region, 

given that a domain-general region should store abstract representations independent of 

stimulus domains. 
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 All three approaches suggest that the left anterior IPS is part of a neural network 

for the maintenance of domain-general, abstract representations in WM, which supports 

the domain-general account that stimuli of different domains share a common WM 

storage system.  Our finding appears to conflict some earlier studies, which found 

dissociable brain activations for WM of different domains (Courtney et al., 1996; Haxby 

et al., 1994; Smith & Jonides, 1999; Ungerleider et al., 1998).  Smith and Jonides (1999) 

reviewed neuroimaging studies and found different prefrontal regions for verbal, spatial, 

and visual WM storage.  Specifically, they found that verbal WM storage recruits the left 

prefrontal cortex, and that spatial and object WM recruit the right prefrontal cortex, 

which supports the domain-specific account of WM storage.  However, their review was 

focused on the prefrontal lobe, and the parietal lobe activations were presented but not 

discussed.  In fact, verbal, spatial, and non-face object WM reviewed in Smith and 

Jonides (1999) all recruited spatially close brain regions in the posterior parietal cortex 

(see Figure 3 and 4 in Smith & Jonides, 1999). 

 Several other early studies compared spatial and face object WM and found that 

spatial WM activates the posterior parietal lobe and the dorsolateral prefrontal cortex, and 

that face WM activates the inferior temporal lobe and the ventrolateral prefrontal cortex 

(Courtney et al., 1996; Haxby et al., 1994; Ungerleider et al., 1998 ).  Thus, these studies 

appear to support the domain-specific account that spatial locations and faces do not 

share a common storage system.  The discrepancy between these studies and our finding 

might be due to specific natures of face processing.  Some researchers found that 

recognition of face, compared to common objects, activates specific regions in the 

fusiform gyrus (Kanwisher et al., 1997), which are the same as the inferior temporal 
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regions reported in the face WM studies.  It is thus possible that people tend to rely on 

specific characteristics instead of abstract representations to remember a face in WM.  If 

little or no abstract information is used in face WM, then the abstract domain-general 

storage system is probably not recruited, as the case in our Part III study. 

 Our results in Part III did not show any load-dependent activation in the IPS.  This 

is consistent with Strand et al. (2008), which investigated brain activations in a WM task 

of pseudo-words with 5, 7, or 9 syllables and did not find load-dependent activation in 

the IPS.  Instead, they found significant load-dependent activations in the auditory cortex 

and the left inferior frontal gyrus, indicating that rehearsal was used to maintain the 

pseudo-words.  This is consistent with our finding that the rostromedial prefrontal cortex, 

a region coding topographical information of the tonality surface (Janata et al., 2002), 

was more active in the AllSix-4 condition than in the AllSix-2 condition.  These findings 

indicate that when rehearsal is the main strategy used in a WM task, the abstract domain-

general storage system might become unnecessary, and the IPS, therefore, might not be 

recruited. 

 Taken together the above discussions, it appears that the domain-general storage 

system might not be recruited in all types of WM tasks.    The term “domain-general” 

does not necessarily apply to every possible stimulus types.  Specifically, the domain-

general storage system does not seem to function when people remember specific 

characteristics of certain stimuli such as faces, or when people use rehearsal as a primary 

strategy to maintain phonological/auditory stimuli.  We propose that the domain-general 

system is recruited only when abstract categorical representations are used for WM 

maintenance, as the case in our Parts I and II studies. 
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 The existence of an abstract domain-general storage system does not conflict with 

the existence of domain-specific storage systems for specific domains.  In fact, the 

domain-specific storage systems are necessary to maintain stimulus details, so that people 

are able to maintain not only an abstract concept but also some fine details of a stimulus.  

Some neuroimaging studies on visual WM have shown that the posterior visual regions, 

although not showing elevated activation, coded visual stimulus details in a sub-threshold 

manner during WM maintenance (Harrison & Tong, 2009; Lewis-Peacock & Postle, 

2012; Riggall & Postle, 2012).  This result provides evidence that the domain-specific 

systems are recruited during not only encoding but also maintenance period in WM. 

 The relative contribution from the domain-general and domain-specific systems to 

WM storage is complex and may vary depending on stimulus types and the strategies 

used by the participants.  Part III in this dissertation showed that the domain-general 

system did not seem to be recruited in a nonverbal auditory WM task, but a domain-

specific system coding topographical information of the tonality surface was used when 

memory load was low.  In contrast, Parts I and II showed that during the maintenance 

period in a visual and verbal auditory WM study, the domain-general system was 

activated, but the domain-specific systems did not show above-threshold elevated 

activation, which indicates that the domain-general system might have played a more 

important role in the task used in Parts I and II.  It thus seems that the domain-general 

system is more critical when abstract categorical representations are used to maintain the 

items in WM. 

 In conclusion, in this dissertation three approaches were used to address the 

domain-specific versus domain-general argument regarding WM storage.  The results 
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show that the left anterior IPS belongs to a neural network for the maintenance of both 

categorical visual and auditory WM.  When non-categorical auditory stimuli were used, 

however, the brain activations showed complex patterns for different memory loads, and 

the left anterior IPS did not show a load-dependent activation pattern,  which confirms 

that the domain-general system stores abstract, categorical information.  Combining all 

three approaches, this dissertation supports the domain-general account of WM storage.  

To achieve a comprehensive picture of the brain mechanism for WM storage, future work 

is needed to investigate the interactions between the domain-general and domain-specific 

networks, as well as the interactions between the left anterior IPS and the other domain-

general brain regions. 
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APPENDIX 

Illustration of Constrained Principal Component Analysis 

The purpose of this appendix is to provide an illustration of constrained principal 

component analysis (CPCA) as applied to a simplified data set. 

Simplified Data Set 

For illustration purpose, we suppose that the data set consists of one participant with 7 

volumes and 4 voxels. We also suppose that there are only two conditions, two auditory 

letters (2A) and two visual squares (2V), and that each condition can be modeled by three 

time points, with time point 1 representing the encoding period, time point 2 representing 

the maintenance period, and time point 3 representing the response period.  Finally, we 

suppose that the first three and the last three volumes form a trial of the 2A and the 2V 

condition, respectively, and that the fourth volume is inter-trial-interval.  To simplify the 

illustration, hemodynamic delay is not considered. 

Multivariate Regression 

Two matrices, Z and G, are prepared for the linear regression.  The matrix Z consists of 

the signal from each voxel and each volume.  In the simplified data set, Z is represented 

as: 
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, 

in which sij denotes the signal from volume i and voxel j. 

 The matrix G consists of timing of the experimental conditions.  In the simplified 

data set, G is represented as: 

Condition            2A            2V 
Time Point      1    2   3     1   2   3 

              , 

in which each row represents a volume, and each column represents a condition-specific 

time point.  The number “1” means that the volume was collected at the specific time 

point and thus contains the brain activity during that time point.  The number “0” means 

that the volume was not collected at the specific time point.   

 A multivariate linear regression is performed: 

Z = GC + E. 



79	
  

	
  

 The matrix E consists of errors and represents the variance unrelated to the 

experimental task.  The matrix C includes regression weights for each experimental 

condition and each voxel. 

Principal Component Analysis (PCA) 

Following the linear regression, a PCA is applied to the matrix GC, which represents the 

task-related variance.  Generalized singular value decomposition is applied on GC: 

UDV’ = GC. 

 D is a diagonal matrix with nonnegative real numbers, known as singular values, 

on the diagonal.  Each singular value reflects the amount of variance explained by the 

corresponding principal component.  The number of the singular values is determined by 

visual inspection of the scree plot which shows the proportion of variance explained by 

each principal component.  In this study, the D matrix included four singular values: 

 , 

in which di denotes the ith singular value. 

 The V matrix contains the right-singular vectors.  Each column of the V matrix 

represents a functional network and could be mapped on a brain template to show the 

involved brain regions.  In the simplified data set, V is represented as: 
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, 

in which each row denotes a voxel, and each column denotes a principal component that 

represents a functional network.  The value vij denotes the loading value of voxel i on 

component j, which represents the relative importance of voxel i in component j. 

 The G matrix contains the left-singular vectors and is used to calculate the 

condition-specific predictor weights, which is stored in the P matrix: 

U = GP.   

 The condition-specific predictor weights in the matrix P represent the contribution 

of each condition to each principal components for each participant, and thus allow for 

statistical tests of the effects of WM load condition and time points on the functional 

networks represented by the principal components.  In the simplified data set, P is 

represented as: 

, 

in which each row denotes a condition-specific time point, and each column denotes a 

principal component.  The value  denotes the contribution of the ith time point 
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of the 2A (2V) condition to component j, and can be used to statistically test the effects of 

WM load condition and time points on the principal components. 
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