EGCG AND VOLUNTARY EXERCISE: AN EXAMINATION OF TREATMENT EFFECTS USING THE TGCRND8 MOUSE MODEL OF ALZHEIMER’S DISEASE

Jennifer M. Walker
Dr. Todd Schachtman, Dissertation Supervisor

ABSTRACT

Previous work with the TgCRND8 mouse model of Alzheimer’s disease has shown that voluntary exercise implemented for long time periods (5-months) and starting at very young ages (1-month), prior to the development of disease pathology, reduces cognitive impairments; however, approximately 1-month of exercise started at 80-days failed to provide cognitive improvements for male mice. Additionally, research has shown that EGCG, a botanical polyphenol, can reduce amyloid-beta levels, mitigate oxidative stress and reduce some of the cognitive impairments associated with Alzheimer’s disease in the Tg2576 murine model; however, oral administration of EGCG had not been yet evaluated in the TgCRND8 strain. The present study investigated the effects of 4-months of exercise treatment, implemented at the beginning of pathology development (2-months of age), in conjunction with the effects of EGCG treatment on: 1) behavioral measures: learning and memory performance in the Barnes maze, nest building, the open-field, anxiety in the light-dark box, and 2) soluble, amyloid-beta levels in the cortex and hippocampus. Untreated Tg mice showed deficits in nest building behaviors, as well as poor spatial learning in the Barnes maze. Four-months of EGCG and exercise treatment reversed nest building and spatial learning deficits, and lowered soluble, Aβ1-42 levels in the cortex and hippocampus of Tg animals. This research was supported by NIH grant funding (2P01 AG18357).