DESIGN OF LEARNING OBJECTS TO SUPPORT
CONSTRUCTIVIST LEARNING ENVIRONMENTS

A Thesis
presented to
the Faculty of the Graduate School

University of Missouri-Columbia

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by
YUANLIANG LIU

Dr. Hongchi Shi, Thesis Supervisor

DECEMBER 2005

The undersigned, appointed by the Dean of the Graduate School, have examined the
thesis entitled

DESIGN OF LEARNING OBJECTS TO SUPPORT
CONSTRUCTIVIST LEARNING ENVIRONMENTS
presented by Yuanliang Liu

a candidate for the degree of master

and hereby certify that in their opinion it is worth acceptance.

£ Dr. ufbgchi Shi

N~

Dr. Yi Shang T

D L 5 Coma

Dr. Dominic K(j Ho

DEDICATION

This thesis is dedicated to my parents
Mr. Fuquan Liu
and
Mrs. Jufang Yang
Who have given me invaluable opportunities of education

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisor, Hongchi Shi, Ph.D.,
for his pioneering work in this research area, and his continuous understanding, kindness
and support to me in this very meaningful and worthwhile research project. I realize that
the study under his guidance is a very important step in my life. I would like to thank Yi
Shang, Ph.D. for his guidance and discussion. His enthusiasm and attitude are something |
always need to learn from. I would also like to thank Dominic K.C. Ho, Ph.D., for serving
on my committee and for his valuable comments on my thesis. My thanks should also go
to Steven Cummings, for all the busy hectic days we worked together and all the ideas we
discussed. I learned a lot from both his skill and attitude towards computer programming.
I would also like to thank Hairong Liu, M.S. for her help in this study. Thanks also go to
the following people for their early work and exploration in this project.

Othoniel Rodriguez, Ph.D.

Su-shing Chen, Ph.D.

Special thanks to my parents who have strived very hard in their lives to ensure that I

can receive my best education.

ii

DESIGN OF LEARNING OBJECTS TO SUPPORT
CONSTRUCTIVIST LEARNING ENVIRONMENTS

Yuanliang Liu

Dr. Hongchi Shi, Thesis Supervisor

ABSTRACT

Using Constructivism to guide the design of learning objects, we develop a generic
structure that classifies knowledge into different types on different levels. With a simple
generic structure of learning object, learners can easily share knowledge on the Inter-
net, and knowledge can be rendered in various ways according to different patterns. In
addition to the patterns rendered, the ease and efficiency of viewing the whole picture of
knowledge and zooming into any degree of details at run time allow the learner to learn
the material iteratively in different ways according to her current sense-making, setting
up her learning strategies at each iteration of her learning. Thus, by putting learning
back into the hands of the learner, our system assists the learner to construct knowledge

efficiently in the real constructivist learning environment.

ii

List of Figures

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

5.1
5.2

53

Graphic representation of the schema of asection 19
A fragment of the XML schema of IDEAL learning objects: sectionType
complexType and section_root attributeGroup 21

A fragment of XML schema of IDEAL learning objects attribute content-

A fragment of XML schema of IDEAL learning objects: componentType
complexType, component_root attributeGroup, and component_vertex Attri
attributeGroup 23
Graphic representation of the schemaofacloud 24
A fragment of XML schema of IDEAL learning objects: cloudType com-
plexType and cloud_vertex Attri attributeGroup 25
Graphic representation of the schemaofacourse 26
A fragment of XML schema of IDEAL learning objects: courseType,

sesstionType complexType, and displaymode attributeGroup 27

IDEAL Learning Desktop displaying "My Courses” for the learner 29
IDEAL Learning Desktop displaying a cloud of JINI, which consists all
componentsrelated to JINI L oL 30

A fragment of course map configured by a course author/instructor 33

v

54
5.5

5.6
5.7
5.8
59

6.1

IDEAL Learning Desktop displaying a component preface 34

IDEAL Learning Desktop displaying a section in the same component

showninFigure 5.4 37
IDEAL Learning Desktop displaying asection 38
IDEAL Learning Desktop displaying a bird view” of the course 42
IDEAL Learning Desktop displaying a course by profile 43

IDEAL Learning Desktop displaying a “’shallow knowledge” session by

Contents

ACKNOWLEDGEMENTS .. .iiitiiiiiiiiiiiiiiittiiitiieetseecnaccnacennns
ABSTRACT . .ottiitiiiiiiiiiiiiiittiettettesseeseesessessssssssscsscnscnans
LISTOF FIGURES ... tiiiiiiiiiiiiiiiiiiiiiiitiiieieintineencnncnnenns
Chapter

1 Introduction

2 Related Work

3 Constructivism and Our Design
3.1 Using Constructivism to Guide Learning Object Design

32 OurDesign e

4 Learning Object Schema Design

4.1 SectionDesign
42 ComponentDesign 0.
43 CloudDesign e
44 CourseDesign. L

vi

10
10
11

S Authoring and Rendering of Learning Objects

5.1 ViewDefault
5.2 ViewbyPatterns
53 ViewbyProfile

6 Implementation

7 Conclusion

REFERENCES

vii

28
31
42
43

46

53

Chapter One--Introduction

There have been many efforts for authoring of learning objects. However, very little
research on learning theory based design of learning objects has been conducted (Wiley,
2002). Yet there are many research questions regarding learning objects that need to be
answered. Using Instructional Design to guide learning object design is problematic.
Instructional Design assumes that based on learner's model we can apply pedagogic rules
of Instructional Design to select learning objects for the learner in a certain way to
achieve effective knowledge transferring (Jonassen, 1993). However, a learner at any
moment may want to view the material in many different ways. Restricting the learner to
only one way of viewing the learning material is very prohibitive to active learning.

Another assumption of Instructional Design is that knowledge is well-structured.
Constructivism, on the contrary, realizes the fact that knowledge is often ill-structured
(Jonassen, et al., 2004). In reality, those rigidly-structured learning objects are very
difficult for the course authors to work on and cooperate with each other. It is also very
difficult to apply rigidly-structured learning objects to various learning domains/subjects.

Contrary to Instructional Design, which assumes that knowledge can be transferred
to the learner by rearranging the learning material according to pedagogic rules, the
assumption of constructivism is that learning is associated with context, that learning
occurs in activities, and that to achieve effective learning the learner has to be put in a
context and involved in an activity (Jonassen, et al., 2004; Brown, et al., 1989; Henning,

2004).

Although a departure from objectivism learning theory that is represented by
Instructional Design and addressing the problems of objectivism, constructivists learning
environments still rely on traditional knowledge carriers. A few researchers (Bannan-
Ritland, et al., 2002; Orrill, 2002) making efforts to combine learning object and
constructivism together focus largely on how learning object can be used in specific
constructivist learning environments instead of seeking a generic structure which will
help learners learn in many possible creative constructivism ways.

We combined constructivism and objectivism in our design of learning objects.
Since learning is associated with context and activities, the learning material has to be
viewed many times corresponding to different learning contexts. By choosing appropriate
activities and viewing the material differently each time, the learner goes through the
learning material for several times to construct her knowledge. In real constructivism
learning environments, e.g. the real world, for the learner to set up her best strategy in
going through these iterations, it is highly desired that a system can help the learner to
collect related learning materials, viewing the whole picture of knowledge, focusing on
important information at a time without being distracted by unnecessary information, and
zooming into various degrees of details at run time. Furthermore, the ability of easily
sharing knowledge is also very important since we regard teaching as sharing learning
experience.

How technology, especially learning object technology, can help implement such a
system?

Using the minimalist approach, we come up with a generic structure of learning

object, which classifies knowledge into different types on different levels and makes it

possible and easy for authors at different levels to cooperate with each other to generate
the learning objects.

Our design of learning objects for our IDEAL e-learning environment (Shang, et al.,
2001; Shi, et al., 2002) makes it easy for the learner to collect related learning material,
have the learning material rendered in “pattern” (to render the learning material in
different ways to allow learners to focus on the important information that they need and
can make sense of without being distracted by information they do not need or cannot
make sense of) according to different learning needs, and navigate and adapt the material
flexibly at run time. More specifically:

Our system can automatically generate course maps from related knowledge
components according to some patterns. For example, the learner can have a bird-view
of the course, or have a novice view of the course. In addition to automatically
generating course map according to some patterns, the system is capable of generating
the learning material in several other ways.

The learner is given the flexibility to further refine the course map by changing the
sequence of the knowledge components, adding or deleting some components, or
changing the display mode of the components. By changing the display mode of the
component, the learner can have the component display more or less difficult content or
detailed content. This way, the learner can focus on the important things for her learning
at a certain time.

In addition, the learner can have the section (a component may have several sections)
display more or less content at run time. So the learner can always view more stuff if she

feels interested or needed.

The system emphasizes on awareness of the whole picture of knowledge. So the
whole picture of knowledge is always rendered first and very convenient to access at any
time.

With these features, our system can greatly assist the learner to construct their

knowledge in the real constructivism learning environment.

Chapter Two--Related Work

There have been many efforts for development of learning objects in industry, and
there are a few committees making standards for specification of learning objects. But
most of these efforts have been “learning theory neutral” (Wiley, 2002). They ignore an
important question: how learning objects support learner learning and thus “fail to
provide solutions for many current learning environments” (Orrill, 2002). The discussion
on learning objects largely focuses on technical development (LTSC, 2002). Their use of
metadata is intended to provide a library card catalog function that will help to retrieve
learning objects from digital libraries (Wiley, 2002). But problems arise when they want
to compose new learning objects by reusing existing learning objects (Wiley, 2002).
How can learning objects be combined to be instructional meaningful? The reusability,
scalability, and interoperability are not addressed in their development. Thus, the
combination of learning objects in their development is very likely to be instructional
useless. Bannan-Ritland argues that it is very crucial at this point to consider the
implication of learning object use and implementation in the instructional context prior to
a full-scale implementation of learning object technology (Bannan-Ritland, et al., 2002).

The few researchers trying to combine learning object development and learning
theory focus primarily on Instructional Design theory (Wiley, 2002). However, using
Instructional Design to guide learning object research is very problematic (Bannan-
Ritland, et al., 2002).

Instructional Design assumes that based on a learner's model we can apply pedagogic

rules of Instructional Design to select learning objects for the learner in a certain way to

achieve effective knowledge transferring. But a learner, even at one moment, may want
to view the material in many different ways. Learning style, as in Instructional Design, is
meaningless for active learners since active learners use all kinds of learning styles
according to her current learning needs (Bereiter, et al., 1989). Rendering the learning
material in a certain way while disallowing the learner other ways of viewing the material
is very prohibitive to active learning.

Another assumption of Instructional Design is that knowledge is well-structured.
However, constructivism realizes that knowledge is often ill-structured, complex, and
dynamic. People’s mental model, the structure of knowledge by which they perceive the
world, is always changing. Constructivism holds that the change of knowledge structure
is a learning process. Knowledge is always reconstructed in the context of the
individual’s understanding and purposes. Thus, every individual holds a unique
perspective of the structure of knowledge. To have a rigidly-defined structure of
knowledge and impose it on everyone makes it very difficult for the authors to cooperate
with each other to author learning objects by reusing each other’s work. It is also very
difficult to apply those rigidly-structured learning objects to various learning
domains/subjects.

Constructivism is a name given collectively to a wide variety of views, theories, and
instructional models. Constructivism assumes that learning is an active process of
constructing rather than acquiring knowledge, and that instruction is a process of
supporting that construction rather than communicating knowledge content (Jonassen,
1993). Constructivism generally believes that “most learning domains are ill-defined

(complex), that learning outcomes are largely metacognitive in nature, and that learners

are required to actively participate in the learning process to construct meaningful
knowledge rather than acquire a predetermined set of skills in a pre-specified manner”
(Bannan-Ritland, et al., 2002). Constructivism learning theory emphasizes that learning
is learners’ sense making of the world, that learning needs arise from activities, and that
learning is strongly associated with activities (Brown, et al., 1989; Henning, 2004). Since
learning is learners’ sense making, learners’ feel in learning is very important. Learners
need to derive learning needs from activities, feel learning gaps, and actively locate
resources to meet learning needs.

Further examination of the foundation of Instructional Design and Constructivism
will help us select appropriate learning theory to guide learning object design. The

prominent related theories are as follows:

. According to Bannan-Ritland, Instructional Design is based on so called
traditional Cognitive Information Processing (CIP), which holds that “information
undergoes a series of transformations in the mind in a serial manner until it can be
permanently stored in long-term memory in packets of knowledge that have a fixed
structure” (Bannan-Ritland, et al., 2002).

. Parallel Distributed Processing (PDP) “perceives long-term memory as a dynamic
structure (or network) that represents knowledge in patterns or connections with
multiple pathways instead of concept nodes and propositions.” “A fundamental
distinction between the traditional view of CIP and PDP models of memory is that

information processing occurs in parallel instead of a serial manner, activating

knowledge patterns simultaneously and continuously adjusting them as a function of
new information to resolve cognitive dissonance” (Bannan-Ritland, et al., 2002).

. Cognitive Flexibility Theory holds that “learners ought to be able to assemble
situation specific knowledge in a domain, and this demands the attuning of special
cognitive processing skills,” thus “in sharp contrast with the traditional view of CIP
in which knowledge is thought of as discrete and static entities to be retrieved intact
from memory to demonstrate a learned capability” (Bannan-Ritland, et al., 2002).

. Situated Cognition holds that “the context or the activity which frames knowledge
in a particular domain is as important as the content that is learned because it is
referenced by that activity” (Bannan-Ritland, et al., 2002).

. Distributed Cognition states that “the social processes themselves should be
considered as cognitions” (Bannan-Ritland, et al., 2002).

. Generative Learning Theory holds that “the learner is not a passive recipient of
information but an active participant in the instructional experience.” Thus, “the
generative learning process requires the learner to manipulate, interpret, organize or
in some active manner make sense of his or her environment” (Bannan-Ritland, et

al., 2002).

Through analysis of the grounding assumptions of various learning theories we can
see that Instructional Design misses the whole picture of learning, and that using it to
guide learning object design is problematic or at least very insufficient.

To summarize, Instructional Design is itself problematic. Using it to guide learning

object research is misleading and has not had satisfactory result (Orrill, 2002). Compared

to Instructional Design, Constructivism is closer to the truth of learning. However, there
has not been an effective media to support learners to construct knowledge efficiently.
We propose, constructivism, as it presents a more complete picture of learning, can be
used to guide learning object design. Furthermore, we hold that learning object designed
under the guideline of constructivism provides a new kind of knowledge carrier that can

support learners constructing knowledge in a very efficient way.

Chapter Three--Constructivism and Our Design

3.1 Using Constructivism to Guide Learning Object Design

Under the guideline of Instructional Design, the goal of learning object design is to
design ““architecture of instructor-defined content that is configured and automatically
generated for the learner based on a specific selected instructional strategy” (Bannan-
Ritland, et al., 2002). If we deviate from such a design goal and instead use
constructivism to guide learning object design, what would be our goals of design and
features of such systems?

Bannan-Ritland has attempted to propose new principles or guidelines for learning
object systems that are guided by constructivism learning theories. Briefly, she proposes
that learning object designed with constructivism learning theories should generally be

able to:

® support learner-generated artifacts by incorporating learner contributions;

e consist of multiple levels of granularity to afford reusability, flexibility, accessibility
and adaptability of learning objects; and

e contain frameworks as learning objects that provide structure for instructional

experiences and incorporate a linking system to facilitate their content population.

A flexible navigation is very important in constructivist learning environments.
Orrill holds that constructivist learning environments require revisiting existing

knowledge as learners construct new understandings (Orrill, 2002). Orrill points out such

10

systems are to provide learning environments that are rich with learning experiences and
resources and these environments should be learner-centered in that learners are
responsible for determining how to learn and what to learn. Orrill further points out that
“if we cannot support student movement between and within the objects based on their
evolving needs and understandings, the objects will not be serving the scaffolding

functions they are intended to serve.”

3.2 Our Design

Our design of learning object is mostly inline with Bannan-Ritland’s proposed
guidelines, and our design shares some similarity with Orrill’s design. The major
difference is that in our system, we are less concerned with a specific type of
constructivism learning theory and guiding the learner through a specific constructivism

learning process. The reason is based on the following assumptions:

e Learners can make the best judgment what to learn and how to learn if they are
presented the whole picture and allowed to try various components; and
® QOur learners are learning in the real constructivist learning environment, e.g., the real

world, instead of in some artificial learning environments.

With the first assumption, instead of teaching the learner how to learn constructively,
it is more important to let the learner see the whole picture of the topic and be able to
view the material quickly in a flexible and adaptive way. By this, we are holding to the

most fundamental assumption of constructivism that the learner explores learning in

11

many creative ways according to her learning needs and rich resources provided.
Confining learners to a certain constructivism environment discourages learners to
explore learning and solve learning problems creatively. As Brown and Duguid point out,
once people see the need for learning and the resources are easily accessible, people will
devise ways to learn in whatever way suits the situation (Brown, et al., 1989).
Furthermore, in constructivist learning environments, scaffolding plays a key role for the
learner to construct her knowledge (Jonassen,, 1993). Being able to view the whole
picture and try things quickly help the learner locate the scaffolding efficiently. For the
learner to be able to do that effectively and efficiently, e.g., quickly obtain the whole
picture of the knowledge, the learner needs to collect all the related learning components
and know what these components are about without reading through all the content.
However, with the conventional knowledge carriers, a very significant amount of time is
wasted in locating the needed information and reading unnecessary information.

With the second assumption, the learner is constructing her knowledge in the real
world, instead of in some artificial learning environments. The real world is the best
constructivist learning environment. People learn in the community of practice (Barab,
2000), and they learn through enculturation in society (Brown, et al., 1993). So it is not
our task to build an artificial learning environment to help engaging learners in
constructivism learning as mentioned by Savery (Savery, et al., 1995) and followed by
Bannan-Ritland and Orrill in their thinking and experimentation of constructivism-guided
learning object design. Our system is to help the strong active learner to learn
constructively in the real constructivist learning environment. The real constructivist

learning environment provides the real challenging constructivism tasks mentioned by

12

Savery (Savery, et al., 1995) compared with those artificial constructivist learning
environments. However, our system, of course, can be used in various artificial
constructivist learning environments although it is not our primary intention for it to be
used that way.

Another difference of our approach from Bannan-Ritland and Orrill’s is that we
emphasize learners building up the mental model of knowledge although such a mental
model is under constant change and refining. Our system provides the facility to help
learners building up the mental model of a domain by constructing the course map. As
Duff and Jonassen argue that the best learning environment is to combine constructivism
with objectivism (Jonassen, 1993), our support for learner building up mental model
reflects a better combination of constructivism and objectivism.

So different from Bannan-Ritland and Orrill’s approach, our goal of learning object
design is a system that allows learners to easily share knowledge on the Internet, collect
learning material, view the learning material quickly through several iterations, and be
able to focus on current learning within each iteration.

In constructivist learning environments, the learning material has to be viewed
several times. Orrill points out that constructivist learning environments require
revisiting existing knowledge as learners construct new understandings (Orrill, 2002).
Since Parallel Distributed Processing, as mentioned above, “activates knowledge patterns
simultaneously and continuously adjusts them as a function of new information to resolve
cognitive dissonance” (Bannan-Ritland, et al., 2002), existing knowledge and learning
material has to be reviewed frequently to “resolve cognitive dissonance” and construct

new understanding. So we think that constructivism demands the learner to: first, use all

13

kinds of learning material that she can make sense of at the present time to achieve her
current learning goal; secondly, after she achieves a new level of understanding, thus has
new learning needs and goals, and can make sense of more things, she needs to find again
all the learning material that she can make sense of or she can feel her interests in now.
So in constructivism, the learner has to do this iteratively for many times. Thus, the
learning material has to be read for many times and be read differently every time
according to what the learner can make sense of. This demands that learning material be
read very fast and navigated very easily and flexibly. The easier the learner can find
information she needs without being distracted by unnecessary information, the faster the
learner can accomplish her current layer of learning and thus improve the efficiency of
her learning. What the learner can make sense of during each layer of learning is very
difficult to predict, and it changes from moment to moment as she reads the learning
material. We do not think any Instructional Design theory is sufficient to meet such a
demand. In this work, we study how learning object system can be designed to help the
learner to meet such a demand.

Additionally, as mentioned above, we assume that learners can make the best
judgment on what to learn and how to learn if they are presented the whole picture and
allowed to try various components. In constructivism, learners are at the center of
learning. To guide their learning and construct knowledge more effectively, the learners
have to have a complete picture of the domain, and such a complete picture is usually
built up by extensive reading. The learner needs to collect all the related material and
read iteratively according to her current sense-making, diving into any material quite

randomly to deepen her understanding in one area and consequently in the whole subject

14

domain. Thus being able to read fast, locating information needed quickly and thinking
on the level of the whole subject domain are the important skills to learn efficiently in
constructivist learning environments. On the contrary, not able to read fast, distracted by
unnecessary information and unable to see and think through the complete picture are
hindering efficient learning in constructivist learning environments.

To support learners viewing learning material at a certain time for a certain need, we
use the concept of “pattern” instead of learning style. As we mentioned above, the
concept of Learning Styles is problematic. The assumption behind it is not appropriate for
active learners since active learners normally apply all kinds of learning styles just
according to her current needs. It is better to use the concept of pattern. By pattern, we
recognize that learning material should be adapted to suit different purposes of viewing
and such patterns are what the learner can “choose” from. For example, we have a bird
view pattern, by which learners can have a bird view of the material. According to this
pattern, we select appropriate components with appropriate display mode and the sections
will be displayed accordingly with the content exposed more or less. By choosing
different patterns, the learner can have the learning material rendered differently to
achieve her learning goal at the present time more efficiently without being distracted by
unnecessary information. By making patterns available to the learner, we encourage the
learner to view material differently and learn more actively. The learner can change the
display mode of the component and display level of the section to let them display more
or less at run time.

Thus, our primary goal of learning object design is to facilitate the learner to easily

collect related learning material, view the material through several iterations, in each

15

iteration have the material rendered in some ‘“pattern,” have the whole picture of
knowledge easily accessible, navigate flexibly, and adapt the material at run time.
Overall, to incorporate constructivism into learning object design, our system has the

following features:

® a simple and generic structure that would allow learners to easily participate in the
construction of learning objects and allow the learning object easily changeable
throughout its usage;

¢ rendering of learning objects according to some “patterns” and at the same time allow
learners to further configure and refine the “pattern”, and have the content adapted to
learners’ needs at run time;

e always have the complete picture rendered first and have it easily accessible at any
time;

e to achieve the above, learning objects will consist of multiple levels of granularity to
afford reusability, flexibility, accessibility and adaptability of learning objects; and

® amechanism to group (linking) things together.

More theoretical ground of our design of learning object can be found in Interactive
Computation (Wegner, 1997) and Christopher Alexander’s theory regarding living
centers, which is best summarized in his book Nature of Order (Alexander, 2003). It is

beyond the scope of this paper to discuss them here.

16

Chapter Four--Learning Object Schema Design

We propose a simple generic structure that can be applied to various domains and
that authors can easily work on and cooperate with each other. Our design of learning
object divides knowledge into a few layers that can easily fit into various situations and
we defines a simple set of attributes at each level. At this stage, we pick the attributes of
content type, difficulty level and detail level as the basic attributes we want to apply to
knowledge at each level. These attributes are commonly important attributes and can be
very useful. We explore how knowledge can be reused with such a simple structure and
to demonstrate that learning objects designed with constructivism principle can be
supportive of learning. More attributes, if proved important and useful, can be added
later. Furthermore, it is more important to keep the design simple and useful so more
people can participate in the cooperation online than to complicate it at an early stage of
design with unnecessary artifacts.

More importantly, we noticed that some attributes are strongly associated with the
context it is within. For example, difficulty level and detail level are much more
meaningful and accurate when they are used to compare a set of knowledge units within
the same parent knowledge unit. Some other attributes, such as content type, are
relatively less associated with the context. So for those attributes strongly associated with
the context, it is better to only assign attributes to them when they are put together to
construct a bigger knowledge unit instead of requiring authors to describe their
independent standalone knowledge units with such attributes. This way, we lift the

burden off the authors of independent standalone knowledge units so they don’t have to

17

make those difficult tricky decisions. But for independent standalone knowledge units,
we require authors to give them attributes such as content type and this will greatly help
authors at the higher level to easily locate knowledge units they need. So we regard the
issue of reusability of learning object as an issue of cooperation, e.g. how authors at
different levels can cooperate with each other so that every author can focus on her job
and help out each other. As we are aware of, this issue is not sufficiently addressed by the
learning object development community.

A learning object in our system is regarded as a component of knowledge. So for
one learning topic, there might be several components related to it. These components
related to one topic can be grouped together as a cloud. Each component consists of

several sections, which are the smallest units of knowledge.

4.1 Section Design

The smallest unit of knowledge is defined as section as shown in Figure 4.1. A
section has one core and several extensions. The core is the most essential part of a
section. The core uses the least words to convey the meaning of the section, while
extensions can be added to provide more detailed explanation of the section. Metadata of

a section is used to provide some other information about the section such as keywords.

18

Figure 4.1: Graphic representation of the schema of a section

section : ==

extensionSet [

» subsection

L - simple-content-tem |5
Nl T

areference

Generated with XMLSpy Schema Editor MR C Al

Since a section might be used by different learning objects, we use a group of attributes

named section_root to depict this section as shown in Figure 4.2. Noticeably, the author

needs to specify the content type of this section. The value of content type is as shown in

Figure 4.3.

4.2 Component Design

A component consists of several sections as its vertices as shown in Figure 4.4.

When each section is put as a vertex into a component, the author needs to use a group of

attributes named component_vertexAttri to depict this section within the context of this

19

component. The attribute group component_vertexAttri is shown in Figure 4, which
depicts the difficulty level (lower bound and upper bound) and the detail level of the
section within the context of this component. The lower bound difficulty level and upper
bound difficulty level together give the range of difficulty levels of this section within the
context of this component. The values of difficulty level are novice, beginner,
intermediate, advanced, and expert as shown in Figure 4.5. The detail level means how
detailed this section is within the context of this component. A component can have
some sections serve as the abstract information of this component and some as more
detailed information. So the values of detail level are abstract, description, normal, and
detail as shown in Figure 4.5. [Each component has metadata to annotate other
information about this component. A group of attributes named component_root is used

to depict the component. The attribute contentType classifies components into different

types.

4.3 Cloud Design

Several components related to one topic can be grouped together as a cloud.
Components are put as vertices of the cloud, with each of them depicted with a group of
attributes named cloud_vertex Attri.

Sections, components, and clouds are created by the authors. One author can group
several sections (possibly created by other authors) together as a component, or group
several components (possibly created by other authors) together as a cloud. Thus,

sections and components can be reused.

20

Figure 4.2: A fragment of the XML schema of IDEAL learning objects: sectionType complexType
and section_root attributeGroup

<xsd:complexType name="sectionType">
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element name="content">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="core" type="simpleContentType"/>
<xsd:element name="extensionSet">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="extension" type="simpleContentType" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element ref="metadata"/>
</xsd:sequence>
<xsd:attributeGroup ref="section_root"/>
</xsd:complexType>

<xsd:attributeGroup name="section_root">
<xsd:attribute ref="id" use="optional"/>
<xsd:attribute ref="media" use="optional"/>
<xsd:attribute ref="contentType" use="optional"/>
</xsd:attributeGroup>

4.4 Course Design

A course can be manually built up by an author. It can also be automatically
generated by the system. A course is generated from a cloud, which contains components
related to one topic.

A course consists of several sessions as shown in Figure 4.8. Each session consists
of several components as the vertices and achieves some learning goals. Each vertex has
a group of attributes depicting the display mode of the component as shown in Figure 4.9.

The displaymode attribute group includes difficultylevellowerdisplay,

21

difficultylevelupperdisplay, and detailupperdisplay. They describe how this component
is going to be displayed. The values of each are the same as the component_vertex Attri
described above. If a vertex has a difficultylevellowerdisplay of “beginner” and
difficultylevelupperdisplay of “advanced,” only the content of difficulty level ranging
from “beginner” to “advanced” of this component will be displayed while the content of
“novice” and “expert” of this component will not be displayed. If a vertex has a
detailupperdisplay of “normal,” only the “abstract,” “description,” and “normal” parts of

the component will be displayed while the “detail” part will not be displayed.

Figure 4.3: A fragment of XML schema of IDEAL learning objects: attribute contentType

<xsd:attribute name="contentType" type="loType"/>
<xsd:simpleType name="loType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="example"/>
<xsd:enumeration value="examplereallife"/>
<xsd:enumeration value="examplesamplecode"/>
<xsd:enumeration value="reference"/>
<xsd:enumeration value="practice"/>
<xsd:enumeration value="core"/>
<xsd:enumeration value="relaxing"/>
<xsd:enumeration value="relaxinghistory"/>
<xsd:enumeration value="relaxingcomments"/>
<xsd:enumeration value="resource"/>
<xsd:enumeration value="resourcespecification"/>
<xsd:enumeration value="resourcedownload"/>
<xsd:enumeration value="resourcecommunity"/>
<xsd:enumeration value="resourcecolumn"/>
<xsd:enumeration value="resourcetutorial"/>
<xsd:enumeration value="question"/>
</xsd:restriction>
</xsd:simpleType>

22

Figure 4.4: Graphic representation of the schema of a component

| componentT ppe

: —| content [%]—(—--—:EI—' vertex [ﬁ]—(—“'—:E—EIUID |
1.0

component E]J{_..._:E_ —_—_—

|
|
|
| —L, metadata E]—I—[—H-—:E- A T .
|
|

Generated with XMLSpy Schema Editor T B Al

Figure 4.5: A fragment of XML schema of IDEAL learning objects: componentType
complexType, component_root attributeGroup, and component_vertexAttri attribute Group

<xsd:complexType name="componentType">
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element name="content">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="vertex" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="loID"/>
</xsd:sequence>
<xsd:attributeGroup ref="component_vertex Attri"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element ref="metadata"/>
</xsd:sequence>
<xsd:attributeGroup ref="component_root"/>
</xsd:complexType>

<xsd:attributeGroup name="component_root">
<xsd:attribute ref="id" use="optional"/>
<xsd:attribute ref="media" use="optional"/>
<xsd:attribute ref="contentType" use="optional"/>
</xsd:attributeGroup>

23

<xsd:attributeGroup name="component_vertex Attri">
<xsd:attribute name="difficultylevellowerbound" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="difficultylevelupperbound" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="detail" type="detailLayer" use="optional"/>

</xsd:attributeGroup>

<xsd:simpleType name="detailLayer">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="abstract"/>
<xsd:enumeration value="description"/>
<xsd:enumeration value="normal"/>
<xsd:enumeration value="detail"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="loDifficultyLevel">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="novice"/>
<xsd:enumeration value="beginner"/>
<xsd:enumeration value="intermediate"/>
<xsd:enumeration value="advanced"/>
<xsd:enumeration value="expert"/>
</xsd:restriction>
</xsd:simpleType>

Figure 4.6: Graphic representation of the schema of a cloud

- <nProject
_______ '\? .}

—| content [%]—(—--—jEI—' vertex [ﬁ]—(—--—:EI—EIuID |
1.0

Generated with XMLSpy Schema Editor T Lo ae 0

24

Figure 4.7: A fragment of XML schema of IDEAL learning objects: cloudType complexType and
cloud_vertexAttri attributeGroup

<xsd:complexType name="cloudType">
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element ref="project" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="content">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="vertex" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="loID"/>
</xsd:sequence>
<xsd:attributeGroup ref="cloud_vertex Attri"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element ref="metadata"/>
</xsd:sequence>
<xsd:attribute ref="id"/>
</xsd:complexType>

<xsd:attributeGroup name="cloud_vertex Attri">
<xsd:attribute name="difficultylevellowerbound" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="difficultylevelupperbound" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="detail" type="detailLayer" use="optional"/>

</xsd:attributeGroup>

In summary, we use the minimalist approach in our design of learning objects. We
design a leaning object with a generic structure, classifying knowledge into different
types at different levels and making it possible and easy for authors at different levels to

cooperate with each other by reusing each other’s work.

25

Figure 4.8: Graphic representation of the schema of a course

[couse B1{(——H

| --1 goal

.............
,metadata [== -1
| pemeesemeeeeaes

= {Ehackgmun

|
|
| - Fieywords B |
|
|

Generated with XMLSpy Schema Editor M B o As

26

Figure 4.9: A fragment of XML schema of IDEAL learning objects: courseType, sesstionType
complexType, and displaymode attributeGroup

<xsd:complexType name="courseType">
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element name="content">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="session" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element ref="metadata"/>
</xsd:sequence>
<xsd:attribute ref="id"/>
</xsd:complexType>

<xsd:complexType name="sessionType">
<xsd:sequence>
<xsd:element ref="title"/>
<xsd:element name="overall" type="loIDType" minOccurs="0"/>
<xsd:element ref="project" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="content">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="vertex" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="loID"/>
</xsd:sequence>
<xsd:attributeGroup ref="displaymode"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element ref="metadata"/>
</xsd:sequence>
<xsd:attribute name="seqnum" type="xsd:long" use="required"/>
</xsd:complexType>

<xsd:attributeGroup name="displaymode">
<xsd:attribute name="difficultylevellowerdisplay" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="difficultylevelupperdisplay" type="loDifficultyLevel" use="optional"/>
<xsd:attribute name="detailupperdisplay" type="detailLayer" use="optional"/>
</xsd:attributeGroup>

27

Chapter Five--Authoring and Rendering of Learning Objects

In our design of learning objects, sections represent the smallest significant units of
knowledge with basic attributes such as content type used to categorize sections. The
attributes help component authors to choose which sections to be included into
appropriate components.

Inside a component, some attributes, such as content type, difficulty level, and detail
level, are used to depict sections with the context of the component. Components related
to a topic can be grouped into a cloud.

Inside a cloud, some attributes such as difficulty level and detail level are used to
depict components within the context of the cloud. Since a cloud contains all the
components related to a topic, a course is generated from the cloud, either manually by an
instructor/author or automatically by the system.

When a course is generated from the cloud by an instructor/author, the expert
experience can be embedded into the configuration of the course, such as what
components are chosen, what sessions are made, what sequence of components are
chosen, what display mode for each component, etc. When it is generated by the system,
certain patterns can be applied to the cloud to generate a course corresponding to the
learner’s profile and the goal of learning.

Authoring of a learning object with our design of learning objects becomes easy and
can be done collaboratively by several authors across the Internet. Authors at each level
(section, component, and cloud) have to accomplish tasks that are easy to carry out at that

level and will significantly help the authors of the next level. For example, for section

28

authors, it is rather easy for them to depict what content type their sections are. Knowing
the sections’ content type will significantly help the component authors when they choose
sections to include into components. On the contrary, attributes such as difficulty level
and detail level are associated with a certain context. Should we require a section author
to describe what difficulty level this section is, it would give the section author
tremendous difficulty when making sections. Once the section is put into a component,
however, difficulty level and detail level need to be given to describe this section within
the context of the component, which can be easily done since it is within a certain

context.

Figure 5.1: IDEAL Learning Desktop displaying “My Courses” for the learner

Courses

You are logaed in as mike [Lagout]

iHome * jini: view default | view raw components | view by pattern: Birdview, Novice, Expert | view by profile
My Courses
My Profile
JIDEAL Docum
a1l the courses
Notebooks
iUser Manual

29

Figure 5.2: IDEAL Learning Desktop displaying a cloud of JINI, which consists all components

related to JINI
@--28 0 @ S0 ||_j hittp: f localhost : 8080 fideal floraw-jini j © Gn I@v - x
Course: jini =
Raw components related to this course
loID loTitle content type |detail minimum difficulty maximum difficulty
level level
ctjinid50101 [One simple JINI example: a printer service exarmple normal [novice beginner
ctjini050201 e cor_-nplex I S e R ER T il example normal intermediate intermediate
Revolution
ctjinid10101 JavaSpace core normal [intermediate expert
ctjini040101 JINI resource resource normal [novice expert
ctjinid70101 [API of JINI practice normal |novice expert
ctjini070201 [Sample Code of JINI practice normal [intermediate advanced
ctjini070301 |Organization of JIMI code packages practice normal intermediate adwvanced
ctjini010301 JIMI architecture remote normal intermediate adwvanced
ctjini010401 JINI communication remote normal intermediate adwvanced
ctjini010501 |Processes: no special processes remote normal [intermediate advanced
ctjinid10601 [Maming--jini lookup service remote normal [intermediate advanced
ctjinid10701 [Synchronization remote normal intermediate advanced
ctjini0d10801 [Fault Tolerance remote normal [intermediate advanced
ctjini010901 |Security remote normal [intermediate advanced
ctjini010401 [Event in details remote detail |intermediate advanced
ctjini010B01 |Lookup service in details remote detail |intermediate adwvanced
ctjini010C01 |JINI Transaction in details remote detail |intermediate adwvanced
keywords :
JINI
JavaSpace
background :
Java
foreground :
background and foreground :
Distributed Swvetem (=

By categorizing learning material into different content type on different levels and

using difficulty level and detail level to describe them within a context, we not only make

it easy for authors to cooperate with each other by reusing each other’s work, but also

make the rendering of learning objects easily adaptive to different learning conditions.

The student can have several ways of viewing the material as shown in Figure 5.1.

She can click “view default” to choose to view the course created by the author/instructor

if such a version is available. Instead, she can also choose to have the course generated

automatically by the system according to some patterns. She also has the choice to view

30

the learning material by her profile, by which the learning material will be generated
session by session. Finally, she can also choose to just view all the raw components
related to the topic as shown in Figure 5.2. When viewing raw components, the content

will not be adaptive.

5.1 View Default

After clicking “view default” as shown in Figure 5.1, the course map configured by
the author/instructor is rendered to the student as shown in Figure 5.3. In the course map,
the components are grouped by the author into several sessions, with each session
corresponding to a certain goal of learning. The author/instructor defines the title, goal,
keywords of each session. For each component in the session, the author/instructor pre-
defines its display mode according to the author/instructor’s teaching experience and
expertise.

The learner can accept this course map and view the component one by one. She can
also add more components to the session from the raw components, delete some
components, change the sequence of the components, and change the display mode of the
component.

By clicking “View this,” the learner can view the component according to the
display mode configured as shown in Figure 5.4. For example, for the learning object

99 <<

“JavaSpace,” if the display mode is “normal,” “novice,” and “advanced,” respectively,
the component will have these sections to be displayed as shown in Figure 5.4(a). If the
MaxDetail is changed to “abstract,” only one section, which is of “abstract” in this

component, will be displayed as shown in Figure 5.4(b). Changing both min and max

difficulty level to “novice” will only have one section displayed, whose difficulty level

31

includes “novice” as shown in Figure 5.4(b). The XML document of this component is
shown in Figure 5.4(c).

Clicking on the “View Content” button of the component preface page, the learner
can view the component’s sections sequentially.

Here the section is displayed according to the component_vertexAttri of this section
within the component as shown in Figure 5.5. In our design, we only use the “detail”
attribute for adaptation when rendering this section. If the “detail” attribute’s value is
“abstract,” which means this section’s detail level is “abstract” within the context of this
component, we will show more content of this section than if its value is “detail.” For
example, the first section of the component “JavaSpace” is displayed as shown in Figure
14(a), while the second section is displayed as shown in Figure 5.5(b), since the first’s
“detail” value is “abstract” while the second’s is “normal.”

The learner can always increase or decrease the display level of the section at run
time by clicking the corresponding button on the “View Section” page as shown in Figure
5.6.

The learner is given the flexibility to further refine the course map by changing the
sequence of the knowledge components, adding or deleting some components, or
changing the display mode of the components. By changing the display mode of the
component, the learner can have the component display more or less difficult content or
detailed content. This way, the learner can focus on the important things for her learning
at a certain time. The learner can save her configuration of a course map into the
database, and the course map configured by the student will be retrieved from the

database next time. Furthermore, the learner can have the section display more or less

32

content at run time. So the learner can always view more stuff if she feels interested or

needed.

Figure 5.3: A fragment of course map configured by a course author/instructor

E@-- -2 0 Q3 ||_j http:flocalhost:2080fideal loconfig-AelosureMame =jinselect =default ~| © ao I@,

course: jini

Course Map

Motice: you can further configure the course the way you want to view

Title: JINI

Session 1:¥elcome to the JINI world!

Goal: By some JINI application examples, get a gerenal idea of what JINI is, what is the warld of JINI

Keywords:
JIMI
loID loTitle MaxDetail MinDifficulty | MaxDifficulty |Select
|:1jiniDSD1D1 |One simple JINI exarnpl Inormal j heginner j |advanced j I Append | Movellp | Movellown | i

I:tjiniDED2D1 IOne complex but super Inormal j nowice j Iintermediate j | Append | Mowvellp | b Dawn | Wie]

|:1jiniD4D1D1 |JINIresource |n0rmal 7| | novice Jd| |advanced =l

Add vertex | Remove selected verex |

Append | taovelp | taveDown |ﬂ

Submit configuration |

Session 2:Know some theory
Goal: a peek into what the key components are.
Keywords:

JavaSpace
discowver
joind fwrite)
read

take

loID loTitle MaxDet ail MinDifficulty | MaxDifficulty |Select

IctjiniD1D1D1 IJavaSpace normal j nowvice j Iadvanced j O | Append || tovellp || toveDaown | Wien

Add vertex | Fiemove selected vartex |

Submit configuration I

4

—

33

Figure 5.4: IDEAL Learning Desktop displaying a component preface

(a) When the display mode of the component has the value for attribute “detail” as “normal,” the
component has 6 included sections.

(b) When the display mode of the component has the value for attribute “detail” as “abstract,”
the component has only 1 included section. When the display mode of the component has the
value for both “difficultylevellowerdisplay” and “difficultylevlupperdisplay” as “novice,” the
component has only 1 included section.

(c) The XML document of the component being displayed in (a) and (b).

(a)

@-2 -8 0 % S 0 Ii_j http:,’,’Iocalhost:ElDElD,‘ideal,’viewcomponent?camponentID=ctjiniDlDlD1&maxabstract=n0|j @ Go I@, | -8 x

|] Courses | | Course: jini |_| Component Preface | || Course: jini | (]
=

User Manual
Component Preface

YWiewContent |

JavaSpace

Included sections:

@ & brief abstract of JavaSpace
@ Recommended reading for JIMI
@ The origin of JINI: Linda system
The discovery process of JINI
'.:" The join process of JINI

@ The lookup process in JINI

Keywords:

JavaSpace
Lookup Service
Discover

Join

Lookup
Service Object
Template

* R

Open Questions:

+ (: open question on JavaSpace
Tentative Answers:
¢ What is stored in JavaSpace

Helpful Resources:
<@ How to add a UI to a Jdini Service.
¢ Look at the &PI

Ll

34

(b)

@~ @ (%] @ I3 [EU I‘—‘ http:Ijlocalhost:EIDEID,fideaIIviewmmponent?mmponentID=ctjiniD1DlDl&maxabstract=ahsj @ Go I@' | oo mied

|| Courses | || Course: jini | | Component Preface | || Course: jini | [

User Manual

Component Preface

YiewContent |

JavaSpace
Included sections:

'.." & brief abstract of JavaSpace

Keywords:

* JavaSpace

¢ Lookup Service
* Discover

+ Join

* Lookup

* Service Object
¢ Template

Open Questions:

+ (: open question on JavaSpace
Tentative Answers:
@ What is stored in JavaSpace

Helpful Resources:
¢ How to add a UI to a Jdini Service.
¢ Look at the API

(©)
<?xml version="1.0" encoding="UTF-8"7>
<component id="ctjini010101" media="text" contentType="core"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="ideal-xml-resources\doc\olo\schema\olo.xsd">
<title>JavaSpace</title>
<content>
<vertex difficultylevellowerbound="novice" difficultylevelupperbound="expert" detail="abstract">
<loID>snjini010101</loID>
</vertex>
<vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
<loID>snjini04FF02</loID>
</vertex>
<vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
<loID>snjini010201</loID>
</vertex>
<vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
<loID>snjini010102</loID>
</vertex>

35

<vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
<loID>snjini010103</loID>
</vertex>
<vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal ">
<loID>snjini010104</loID>
</vertex>
</content>
<metadata>
<keywords>
<link uri="">JavaSpace</link>
<link uri="">Lookup Service</link>
<link uri="">Discover</link>
<link uri="">Join</link>
<link uri="">Lookup</link>
<link uri="">Service Object</link>
<link uri="">Template</link>
</keywords>
<openquestions>
<openquestion>
<question>
<loID>snjini060101</loID>
</question>
<tentativeanswers>
<tentativeanswer>
<loID>snjini060102</loID>
</tentativeanswer>
</tentativeanswers>
<helpfulresources>
<helpfulresource>
<link uri="http://www.artima.com/jini/jiniology/serviceui.html">How to Add a UI to a Jini
Service.</link>
</helpfulresource>
<helpfulresource>
<link uri="">Look at the API</link>
</helpfulresource>
</helpfulresources>
</openquestion>
</openquestions>
</metadata>
</component>

"nn

"nn

36

Figure 5.5: IDEAL Learning Desktop displaying a section in the same component shown in
Figure 5.4

(a) The first section of a component has the full content displayed.
(b) The second section of the same component is displayed less than the first section.

(a)
G e s e SO S Ce B[bt ocahost B ndealivewnontent FocmponantiD e cn 010 scomporent Condga* = | 3 Go [[CL | - 85X
| Coursss | L morse: i | Wiew Section | L courss: g | &
Uzer Manual
View Section
TheFirst | Prinsous I Blesd] Thelast I IncreaselisplayLesel] Decreaselisplayl avel]
A brief abstract of JavaSpace
a distributed persistence and cbizct exchange medhansm
Aloyrez:
Goal:
Keywords:
Open Guestions:
(b)
G- - B2 e W[bt focahosta0a0jdesliewnontentroomponsntiDe ctindL010 scompanent Condg=* x| @ 5o [[GL | -8 %
| Coursss | | course: i | View Section | L courss: g | @
Uzer Manual

View Section

ThaFirst | Frenaousg | et] TheLast | IncresseDisplayd ensel] Decreasaleplayd evel]

Recammended reading for JINI

Ohjacts, thae Natwork, and Jni

& detailed tubacal

37

Figure 5.6: IDEAL Learning Desktop displaying a section
(a) When the display level of the section is 1
(b) When the display level of the section is 2
(c) When the display level of the section is 3
(d) When the display level of the section is 4

(a)
Gae v - D E Ce B[htocahost e ndeslivewortent e cmponzntiDa chns0101scomparent Candge: = | G Go [[GL | - 8%
| | Coursss ||_;D:usec]1 .| View Section l,_|':|:l.ls:a:j1 |E3

Uzer Manual

View Section

TheFirst | Pranaous I Mest] TheLast I IncresseDisplayleasel] Decreaseleplaylavel]

Discovering the Lookup Service

(b)
G-l - S e W[s ocshosta0acideslwewnontsntroomponsntiDe cns0101scmpanent Condg=+ x| @ oo [[GL | -5 X
| Conarses | VEew Section 5]

User Manual

View Section

TheFirst | Prensous | Mest] TheLast | Incresea Display asel] Decreasalizplayl evel]

Discovering the Lookup Service

i local instance of the class LookupDiscovery malicasts a recuest on the local network for any lookun services to dendify themselves. Get proxy of loolup service.

38

(© |

el - SO S Se B[nipgpocahestamndesliviewontentFromoonsntiDe cnOE01015component Condge® =] @3 Go [JCL |- & x
[] Courses | I coursz: i

| View Section]d{m:ﬂ]Eﬂ

User Manual

View Section

TheFirst | Prewsous | Mes || Thelast | increaseDisplaylevel || Decremsebisplaylevel |

Discovering the Lockup Service

4 local instance of the class LookupDiscovery maulticasts a reguest on the local network for any lockup services to sderdify thermselves. Get proxy of loplup service.
Morrez:

The basic operations of discovering the lookup service are implemerted by a Jini technology infrastruciure scftwers olass (LopkupDriscoveryld. &n instance of this class s 2z
a mediator between devices and services on one hand 2nd the lookup ssrvice on the other. [n this sxample the printer first reqisters itself with & local mstance of this class,

Thiz instance then mulicasts a request on the local netwark for any lockup services to identify themselves. The instance listens for replies 2nd, if there are any, passes to the
printer an @y of objects that are proxies for the dscovered lookup services.

(d)

39

@-2 -8 0 % S 0 I._, http:,’,’Iocalhost:ElDElD,‘ideal,’viewcontent?companentID=ctjiniDSD101&:0mp0nentC0nﬁg=‘j © Go I\Q, -8 X

|] Courses || View Section 5%}

User Manual

View Section

TheFirstl Previousl Nextl TheLastl IncreaselDisplaylewvel DecreaseDisplaylevel

Discovering the Lookup Service

A local instance of the class LookupDiscovery multicasts a request on the local network for any lookup services to identify themselves, Get proxy of lookup service.
More:

The basic operations of discovering the lookup service are implemented by a Jini technology infrastructure software class (LookupDiscovery), An instance of this class acts as
a mediator between devices and services on one hand and the lookup service on the other. In this example the printer first registers itself with a local instance of this class,
This instance then multicasts a request on the local network for any lookup services to identify thermselves, The instance listens for replies and, if there are any, passes to the
printer an array of objects that are proxies for the discovered lookup services,

Goal:
Keywords:

Open Questions:

5.2 View by Patterns

In addition to rendering the course map according to author/instructor’s
configuration, the system can also generate a course map according to some patterns.
According to a certain pattern, components in the cloud can be selected, and certain
content types of components can be grouped into several standard sessions. The
session’s title and goal are predefined for this pattern by the system. The component’s
display mode will also be configured automatically according to the pattern.

In our system, we have the following standard sessions that correspond to certain

goals of learning:

40

“shallow knowledge,” “core knowledge,” “practical knowledge,” and “distributed
knowledge.”

Components of content types “resource” and “example” are grouped into ‘“shallow
knowledge” session, which gets the learner to “know something about this topic before
serious study.” Components of content type “core” are grouped into session “‘core
knowledge,” which lets the learner “study the theory and learn the logics in this topic.”
Components of content type “practice” are grouped into session “practical knowledge,”
which lets the learner “have hands-on practice and get the certainty of this topic.”
Components of content type “remote” are grouped into session “distributed knowledge,”
which lets the learner “do some distributed learning to learn about the underlying
knowledge from other related topics.”

For example, we have a bird view pattern in our system. Bird view pattern is used
when the learner wants to have a bird view of the whole course. Regardless of the
learner’s skill level, the leaner often wants to have a bird view of the course. So the
components related to a topic are grouped into four sessions as shown in Figure 5.7.
Only the abstract content of the components will be displayed, regardless of the difficulty

level (ranging from “novice” to “expert”).

41

Figure 5.7: IDEAL Learning Desktop displaying a “bird view” of the course

@--8 0 % S 0 ||_j hittp:f flocalhost:8080fidealloautocanfio-Pclosurelarme=jinigselect =BirdviewPattern

=l @ |C | -8 x
Session 1:Shallow Knowledge -l
Goal: Get to know something about this topic before serious study,
loID loTitle MaxDetail MinDifficulty | MaxDifficulty Select
ctjinis0101 IOne simple JINI exampl Iabstrad j Ianice j Iexpert j i Append | towvellp | hoveDown | ViewThis
ctjini0s0z01 |One complex but super |abstract j |anice j |expen j [Append | tovellp | towveDown | ViewThis
ctjinil40101 IJINIresource |abstrad j Ianice j |expert j [l Append | tovellp | toweDiown | iewThis
Add vertex | Femove selected vertex |
Session 2:Core Knowledge
Goal: Study the theory. Learn the logics in this topic,
loID loTitle MaxDetail MinDifficulty | MaxDifficulty |Select
ctjinid10101 |Java8pace abstract j |anice j |expen j [l | Append || Movelp || hMoveDown || WiewThis
Add vertex | Remove selected vertex |
Session 3:Practical Knowledge
Goal: Hands-on practice. Get the certainty of this topic.
loID loTitle MaxDetail MinDifficulty | MaxDifficulty |Select
ctjinid70101 IAPI of JINI Iabstract j Ianice j Iexpert j [Append | tMowvellp | toveDown | ViewThis
ctiinil7 0201 |Samp|e Code of JINI |abstrad =l |anice =l |expert = Append | tovellp | toeDiown | ‘iewThis
ctjinid 70301 IOrganization af JINI cod Iabstrad j Ianice j Iexpert j = Append | Mowvellp | hoveDown | View This
Add vertex | Femove selected vertex |
Submit configuration |

Session 4:Distributed Knowledge

Goal: Do some distributed computing to learn about the underlying knowledge from other related topics.

loTitle | MaxDetail

MinDifficulty
..... e i L ——

MaxDifficulty |Select

1 il T — [

In addition to the bird view pattern, we have novice pattern and expert pattern in our

system. The novice pattern only selects components of low difficulty level and only

displays the low difficulty level content of the component. The expert pattern only

selects components of high difficulty level and only displays the high difficulty level

content of the component.

42

5.3 View by Profile

The system can also generate course material session by session according to the
learner’s skill level. Each learner has a learner profile stored in the database, and a skill
level of a corresponding component is stored in the profile. The student can jump into
any session as shown in Figure 5.8 according to her current learning needs, and her

current skill level will be used in generating this session at runtime.

Figure 5.8: IDEAL Learning Desktop displaying a course by profile

@B @ (X} q} 3 [EU I‘—‘ http: flocahost :2080fideal floconfigbyprofile-jini j ©® Go IE‘_, | -5 X
|| Courses | || Course: jini | | | Companent Preface || Course: jini |_| View Course By Profile | %]
View Course By Profile - -

rou are logged in as mike [Logout]

\Home \ You are going to view the material layer(session) by layer.
My Courses
:M: Profile Shallow Knowledge

*
IDEAL Docum " ¢ Core Knowledge

iall the courses 1 ¢ Practical Knowledge
Wotebooks + Distributed Knowledge
izer Manual

a :
< | »

For example, Figure 5.9 shows the “shallow knowledge” sessions for two different

learners. Figure 5.9(a) shows how the “shallow knowledge” session is displayed for a

43

learner with high skill level in the related components, while Figure 5.9(b) shows the
“shallow knowledge” session displayed for a learner with low skill level in the related
components. Only difficulty level attributes are used in adapting content.

Figure 5.9: IDEAL Learning Desktop displaying a “shallow knowledge” session by profile

(a) for a high skill level learner
(b) for a low skill level learner

(a)
Ga = o - A S Ce T [bt RocahostSmendealiiewressonPszssiona shalawR closurshamesn zl @ Gl |- g ®
Jssr Manual

Course: jini
Course Map
Motice: wou oan further configure the course the way you want to wiew
% Session:Shallow Knowledge

Goal; Get to know something about this topic before sarous study,

Il [InTitls I Maxetail -.Minu]Fﬁr.ultl,l .Mu:u:l;,'lif'fimlty ;ﬁgluct.
|r.1;m§l-1lil1u1 |J|N||es-n-.nce |n:um-al ;I |ad~.ranced ;”e:-x,:ﬂ ﬂ il_ Append | Mweup] b cra Chaws] e

;dduartax | Flammsaiac'adwma';l

(b)

44

- 8 o | | hittp: e dhast-aoanideslbawsessonrsession=shalowicsunstiamesn _:_l 3 s |[GL - 8 X

Liser Manual
e
Course: jini
Course Map
Hotice: vou can further configure the course the way vou want ko view
% Session:Shallow Knowledge
Goal: Get to know somathing about this topic before serious study,
Inih InTitle Mlaxietail [Minbifficulty [Maxifficulty :is;lm:r
[exinisiim [z simte Jedl zmampl || e = Jeegmer =] [imerredizme =] T Append || Movelp || MoveDown || View
||jiini|§l-1|]|[|l |Jlr-:l rERONTTE |n|:|rrn7.' j |nmrii:=_~ ﬂ Ihaqir-'rer ﬂ r Append | Mowvellp | Bedowell owm | e

Audd varles | Femove salachad varex]

Since we give learners the options to further configure the course map or change the
display level of sections, we allow learners to be actively involved in shaping the learning
environments, which is highly demanded in a constructivist learning environment (B.
Bannan-Ritland, et al., 2002).

As we make the authoring of learning object quite easy, learners can also be involved
in authoring of learning objects. Since knowledge is ill-structured and everyone holds her
unique view of knowledge, it is important that the learner is able to construct her own
knowledge. And since cooperation among authors becomes possible and relatively easy
in our system, the work becomes easier for the author by reusing others” work.

Bannan-Ritland points out that learning objects designed with guidelines of
constructivism still can provide electronic performance support (Bannan-Ritland, et al.,
2002). In our system, the system helps rendering learning material with various patterns
and help the learner adapt the material at run time. Such function is highly desired in

active learning, but very difficult to achieve with traditional knowledge carriers.

45

Chapter Six--Implementation

Using the N-tier architecture, the IDEAL e-learning system is separated into data
layer, logic layer and presentation layer as shown in Figure 6.1.

The data layer of the system is implemented using XML database Apache Xindice.
Learning objects together with learner information and other information are stored in the
XML database. We use Apache Axis to implement Web services, which wrap the
database up to provide access to the XML documents. These Web services are named

XMLData Web services. These services support the following interactions with the

database:

. authenticate

. executeQuery

. getDocument

. getDocumentCount
. insertDocument

. updateDocument
. removeDocument
. listCollections

. dropCollection

. createCollection

. listResources

. executeUpdate

46

The logic layer of the system is represented by other Web services, which are built
upon XMLData Web services to provide semantic interaction with the system. The
LearnerInformation Web service provides services to interact with the learner profile.
Open learning object (OLO) Web service provides services to interact with the learning
material or learning objects.

In addition to inserting, retrieving, and updating learning objects, the OLO web
service provides services to adapt learning objects to the learner.

XSL stylesheet is applied to the cloud XML document to generate course maps
according to various patterns or to generate a session according to the learner’s skill
level. XSL stylesheet is also applied to adapt a raw component according to the display
mode. Section is also adapted by applying XSL stylesheet against the raw section
according to the display level, which is computed according to the
component_vertexAttri of this section within a component.

IDEAL Learning Desktop, a multi-role portal, is the presentation layer of the system.
It is implemented with Apache Cocoon, a Web development framework. Cocoon Forms
is used to render learning objects. WSIF is used to conveniently invoke remote Web
services.

Each of the three layers can be physically located in different servlet containers.

Below we will go through a more detailed description of the implementation.

Apache Xindice, a native xml database, is used to store, retrieve and update our xml
documents. A servlet named IDEALXindiceServlet is written to replace XindiceServlet

coming with Apache Xindice. IDEALXindiceServlet is loaded on the start up of servlet

47

container and it starts the xml database server. But unlike in XindiceServlet, no xmlrpc
server is started in IDEALXindiceServlet, so no http request will be responded.
Furthermore there is no servlet-mapping for IDEALXindiceServlet in the applications
deployment descriptor, and IDEALXindiceServlet was written to ignore all http requests.
The embedded Xindice can be only invoked by XMLData in the same container using
XMLDB API. XMLData is exposed as soap web service by Apache Axis servlet. AXIS
also provides WSDL description for the web service. Axis web service has handlers in
both request and response flows. A custom authentication handler authenticates user from
the request flow. A custom authorization handler deployed on both request and response
flows authorizes operations against xml database. The authentication handler looks for
username/password at the header and method parameters of soap request message to
authenticate user. Once authenticated, a session will be established with the client. WSIF
is used to conveniently invoke web service. WSIF allows invoking web service through
their WSDL description, regardless of how the web service is implemented and accessed.
A stub is generated at the client side that can be used to invoke web service conveniently.

Built upon XMLData web service, higher-level web services are implemented to
manage learner information and learning objects. They invoke XMLData web service
through WSIF and their services are exposed by Apache Axis as web services.

The web service to manage learning objects provides semantics for application
developers to interact with learning objects. Below is a brief description of the key
services implemented:

® to store, retrieve, update, delete raw section, component, cloud, course and

parts of them;

48

e directory to list all courses in the system, and all courses of a learner. It is
rendered in the format of xml string;

e to get the default configured course map, or get the learner configured course
map if there is one. It is rendered in the format of xml string;

e to store learner configured course map into the xml database;

e to provide a cloud of a topic. Instead of simply getting a cloud xml document
of the topic, it also gets the title and content type of the included components
and plugged them into the cloud xml document in the output;

e to provide adapted component according to the context. The context is given
in the format of xml string. The context can be provided as the session ID,
Course ID the component is in, and the learner ID. In this case, the display
mode will be obtained based on the context. The context can also be directly
the display mode of the component. In either case, XSL stylesheet is applied
to adapt a raw component according to the display mode. The Java methods
providing these services are as below:

o public String getComponentPrefaceFromContext(String username,
String componentID, String sessionID, String closurelD)throws
Exception

o public String getComponentPrefaceFromConfig(String componentID,
String componentConfig)throws Exception

e to provide adapted sections given the context. The context can be the index of
the section within a component, the component ID, the session ID, the course

ID and the learner ID. The context can also be already adapted component

49

and the index of the section within the component. Or the context can be
component ID, its display mode and the index of the section within the
component. In whichever case, the section ID and the display level will be
computed. The context can also be display level itself. In all cases, XSL
stylesheet is applied to adapt a raw section according to the display level;

® to generate course map by pattern or to generate session by session according
to learner’s skill level; and

e other services.

The web service to manage learning objects can be deployed either at the same
container of XMLData web service, or at a different container.

IDEAL learning desktop is implemented using Apache Cocoon. Built upon Cocoon,
IDEAL learning desktop is an extensible web publication framework. Its metaphor is a
portal, in which various users with different roles will be presented different menus. It is
a comprehensive learning environment in which various roles of users (learner,
instructor, administrator and etc.) conduct their work or learning.

Apache Cocoon is a web development framework built upon the concept of
separation of concerns and component-based web development (using the idea of
Inversion of Control or IoC). It separates the concerns of management, logic, content and
style so they don’t conflict with each other. Cocoon implements these concepts around
the notion of “component pipelines”, which usually include a Generator, Transformers
and a Serializer. This makes it possible to use a Lego(tm)-like approach in building web
solutions, assembly components into pipelines without requiring programming.

Information can be inserted into the middle of the pipeline.

50

Custom generators are used to obtain content from various resources including by
invoking web services. To implement a portal for various roles of user, we can define
users’ role and related actions in an xml file. We can use an action2menu stylesheet to
select the actions and transform into menu information. We can insert the menus and
header information (so-called navigation) into the content and transform the integrated
page into html of certain styles by applying XSL stylesheets. Cocoon session transformer

is used to insert session related element such as username.

Figure 6.1: Architecture of IDEAL Learning Object System

Prensentation Layer

Servlet Contamer

|
|
|
|
Another |
Jementali Cliznt Brows
0 D e IDEAL Learning Desktop lmplemented with = : R
desktop cocoon :
~

T e
1
A I I
Blany possible implemerdations of learmng deskicp I
_ CEEL s LN o SR W |
Logic Layer I
Semantie of Serviet Contamer :
Learvirg chjects i
represented by web |
e LeamerInformaion Web L0 Wieh Service |
Service |
I
|
|
|
request et =ham I
PR E s R (S L TR L O | R ____:
Data Layer |

EMIL Database Servlet Condainer o : IDEAL SYSTEM

|
EMLData Webserrice |
|
1
1

51

We use the cocoon authentication framework to authenticate the user. An
authentication generator is written to be used in the cocoon authentication framework.
Cocoon sitemap pipelines that need to be protected are put inside the authentication
action. Once the authentication generator authenticates the user, it will set up the user
session context (username, password, userrole, profile).

Thus we have a web publication framework, which separates different concerns and
allows parallel development. The learning desktop implemented has a clean logic, and it
is easy to make changes.

Learning object rendering in IDEAL learning desktop is implemented using Cocoon
Forms, together with Control Flow (continuation-based page flow that hides the
complexity of request/response processing and is cleanly separated from the view and
data).

We use the flow script to provide the programming functionality so we can call the
web service (the cocoon form control flow script requests the learning material on behalf
of the learner) very flexibly and control the rendering of course very freely (such as
calculate the next index or the previous index, get the component size and determine
whether the end of the component has been reached, or if no sections are included in a
component, clicking on the view content button only redirect to the same page).

We use the Cocoon Forms to provide an easy and clean implementation of the forms
used to render various kinds of learning material (course map, cloud, session, component,

section) to the learner.

52

Chapter Seven--Conclusion

Our design demonstrates a possibility of using constructivism learning theory to
guide the design of learning objects so that constructivism and objectivism can be
integrated together. Through our design, the cooperation among learning object authors
becomes possible and easy, and thus learners can also actively participate in the
construction of learning objects. Learning objects are rendered by some patterns and the
learner can further configure the course and have the material adapted to her needs at run
time. We provide a way to allow the learner to grasp the whole picture of the course in
the fastest way by taking control of the learning and by the support of our system. Such
ease to view the learning material iteratively in different ways will greatly assist learners
to learn efficiently in the real constructivist learning environment. Such a direction
should be the future of learning object research. The significance and essence of this
direction can best be described in the following quote from Bannan-Ritland’s paper:

“Placing the power of this technology in the learner’s hands may indeed reveal the true
potential of this technology for learning. As Scardamalia and her colleagues (1995) have so
eloquently stated, ‘... it is not the computer that should be doing the diagnosing, the goal-setting
and the planning, it is the student. The computer environment should not be providing the
knowledge and intelligence to guide learning, it should be providing the facilitating structure and
tools that enable students to make maximum use of their own intelligence and knowledge’ ”
(Bannan-Ritland, et al., 2002).

Designing learning objects has been a very struggling but enjoyable experience for
me. As there are a lot of development and specification of learning objects, I am not
aware of any design and implementation that demonstrates a significantly improved
learning experience and meets the expectation of learning objects. As the concept of

learning object is certainly very attractive and consistent with many people’s view of

53

knowledge and learning experience, to probe deeply into such a concept and to
experiment with it provide me more experience and insights into many facets of this
issue. Obviously, a lot of concerns regarding learning object, especially learning object as
a representation of knowledge, should be very good research topics, yet few people have
addressed these topics. Constructivism, as the latest learning theory, is rarely adopted in
the design of learning objects. Realizing the insufficient research on learning objects in
association with learning theory, IDEAL learning object design is more explorative in
nature, trying to demonstrate the possibility of applying constructivism to learning object
design. It is expected that with the increase of breadth and depth of learning material, our
system’s advantage will be more obvious in facilitating the learner to have a better

control of the learning material and their pace and strategy of learning.

54

REFERENCES

Alexander C. (2003). Nature of Order, Center for Environmental Structure.

Apache Xindice: http://xml.apache.org/xindice/.

Apache AXIS: http://ws.apache.org/axis/.

Apache Cocoon: http://cocoon.apache.org/.

Apache WSIF: http://ws.apache.org/wsif/.

Bannan-Ritland B., Dabbagh N., and Murphy K. (2002). Learning object systems as
constructivist learning environments: related assumptions, theories and applications.
Instructional Use of Learning Objects, Agency for Instructional Technology. Also
available at http://www.reusability.org/read/.

Barab S.A. and T. Duffy (2000). From practice fields to communities of practice. In D. Jonassen
and S.M. Land. (Eds.), Theoretical Foundations of Learning Environments, pp. 25-56,
Mahwah, NJ: Lawrence, Erlbaum Associates.

Bereiter C. and Scardamalia M. (1989). Intentional learning as a goal of instruction. In L. B.
Resnick’s (Ed.), Knowing, learning, and instruction, pp. 361-391, Hillsdale, NJ: Lawrence
Erlbaum Associates.

Brown J.S., Collins A., and Duguid P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18: 32-42.

Brown J.S. and Duguid P. (1993). Stolen knowledge. Educational Technology (Special Issue on
Situated Learning), 10-14, Embodied, Situated agents, pp. ix, 288, Hillsdale, NJ: Lawrence.

Henning P.H. (2004). Everyday cognition and situated learning. In Jonassen D.H. (Ed.),
Handbook of Research on Educational Communications and Technology, pp. 143-168,
Mahwah, New Jersey: Lawrence Erlbaum Associations.

Interactive Computation: http://en.wikipedia.org/wiki/Interactive computation.

Jonassen D.H. (1993). Designing constructivist learning environments. In Duffy T.M., Lowyck J.,
and Jonassen D.H. (Eds), The Design of Constructivistic Learning Environments:
Implications for Instructional Design and the Use of Technology, Heidelburg, FRG:
Springer-Verlag.

Jonassen, D.H., Marra R.M., and Palmer B. (2004). Epistemological development: an Implicit
entailment of constructivist learning environments. In N.M. Seel and S. Dijkstra (Eds.),
Curriculum, Plans, and Processes in Instructional Design, pp. 75-88, Mahwah, NJ: Lawrence
Erlbaum Associates.

LTSC (Learning Technology Standards Committee), Standards for Learning Object Metadata,
IEEE, 2000. Available at http://Itsc.ieee.org/doc/weg12/LOMv4.1.htm.

55

Orrill C. (2002). Learning objects to support inquiry-based, online learning. Instructional Use of
Learning Objects, Agency for Instructional Technology. Also available at
http://www.reusability.org/read/.

Savery J.R. and Duffy T.M. (1995). Problem based learning: an instructional model and its
constructivist framework. Educational Technology, 35(5): 31-37.

Shang Y., Shi H., and Chen S. (2001). An intelligent distributed environment for active learning.
ACM Journal of Educational Resources in Computing, 1(2):1-17.

Shi H., Rodriguez O., Shang Y., and Chen S. (2002). Integrating adaptive and intelligent
techniques into a web-based environment for active learning. In C. T. Leondes (Ed.),
Intelligent Systems: Technology and Applications, Volume 4, Chapter 10, pp. 229-260, CRC
Press, Boca Raton, FL.

Wegner P. (1997). Why interaction is more powerful than algorithms. Communications of the
ACM.

Wiley D. (2002). Connecting learning objects to instructional design theory: a definition, a
metaphor, and a taxonomy. Instructional Use of Learning Objects, Agency for Instructional
Technology. Also available at http://www.reusability.org/read/.

56

	yuanliang_thesis_preface
	yuanliang_thesis_content

