
DESIGN OF LEARNING OBJECTS TO SUPPORT

CONSTRUCTIVIST LEARNING ENVIRONMENTS

A Thesis

presented to

the Faculty of the Graduate School

University of Missouri-Columbia

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

YUANLIANG LIU

Dr. Hongchi Shi, Thesis Supervisor

DECEMBER 2005

DEDICATION

This thesis is dedicated to my parents
Mr. Fuquan Liu

and
Mrs. Jufang Yang

Who have given me invaluable opportunities of education

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisor, Hongchi Shi, Ph.D.,

for his pioneering work in this research area, and his continuous understanding, kindness

and support to me in this very meaningful and worthwhile research project. I realize that

the study under his guidance is a very important step in my life. I would like to thank Yi

Shang, Ph.D. for his guidance and discussion. His enthusiasm and attitude are something I

always need to learn from. I would also like to thank Dominic K.C. Ho, Ph.D., for serving

on my committee and for his valuable comments on my thesis. My thanks should also go

to Steven Cummings, for all the busy hectic days we worked together and all the ideas we

discussed. I learned a lot from both his skill and attitude towards computer programming.

I would also like to thank Hairong Liu, M.S. for her help in this study. Thanks also go to

the following people for their early work and exploration in this project.

Othoniel Rodriguez, Ph.D.

Su-shing Chen, Ph.D.

Special thanks to my parents who have strived very hard in their lives to ensure that I

can receive my best education.

ii

DESIGN OF LEARNING OBJECTS TO SUPPORT

CONSTRUCTIVIST LEARNING ENVIRONMENTS

Yuanliang Liu

Dr. Hongchi Shi, Thesis Supervisor

ABSTRACT

Using Constructivism to guide the design of learning objects, we develop a generic

structure that classifies knowledge into different types on different levels. With a simple

generic structure of learning object, learners can easily share knowledge on the Inter-

net, and knowledge can be rendered in various ways according to different patterns. In

addition to the patterns rendered, the ease and efficiency of viewing the whole picture of

knowledge and zooming into any degree of details at run time allow the learner to learn

the material iteratively in different ways according to her current sense-making, setting

up her learning strategies at each iteration of her learning. Thus, by putting learning

back into the hands of the learner, our system assists the learner to construct knowledge

efficiently in the real constructivist learning environment.

iii

List of Figures

4.1 Graphic representation of the schema of a section 19

4.2 A fragment of the XML schema of IDEAL learning objects: sectionType

complexType and section root attributeGroup 21

4.3 A fragment of XML schema of IDEAL learning objects attribute content-

Type . 22

4.4 Graphic representation of the schema of a component 23

4.5 A fragment of XML schema of IDEAL learning objects: componentType

complexType, component root attributeGroup, and component vertexAttri

attributeGroup . 23

4.6 Graphic representation of the schema of a cloud 24

4.7 A fragment of XML schema of IDEAL learning objects: cloudType com-

plexType and cloud vertexAttri attributeGroup 25

4.8 Graphic representation of the schema of a course 26

4.9 A fragment of XML schema of IDEAL learning objects: courseType,

sesstionType complexType, and displaymode attributeGroup 27

5.1 IDEAL Learning Desktop displaying ”My Courses” for the learner 29

5.2 IDEAL Learning Desktop displaying a cloud of JINI, which consists all

components related to JINI . 30

5.3 A fragment of course map configured by a course author/instructor 33

iv

5.4 IDEAL Learning Desktop displaying a component preface 34

5.5 IDEAL Learning Desktop displaying a section in the same component

shown in Figure 5.4 . 37

5.6 IDEAL Learning Desktop displaying a section 38

5.7 IDEAL Learning Desktop displaying a ” bird view” of the course 42

5.8 IDEAL Learning Desktop displaying a course by profile 43

5.9 IDEAL Learning Desktop displaying a ” shallow knowledge” session by

profile . 44

6.1 Architecture of IDEAL Learning Object System 51

v

Contents

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

LIST OF FIGURES . iv

Chapter 1

1 Introduction 1

2 Related Work 5

3 Constructivism and Our Design 10

3.1 Using Constructivism to Guide Learning Object Design 10

3.2 Our Design . 11

4 Learning Object Schema Design 17

4.1 Section Design . 19

4.2 Component Design . 19

4.3 Cloud Design . 21

4.4 Course Design . 22

vi

5 Authoring and Rendering of Learning Objects 28

5.1 View Default . 31

5.2 View by Patterns . 42

5.3 View by Profile . 43

6 Implementation 46

7 Conclusion 53

REFERENCES . 55

vii

 1

Chapter One--Introduction

There have been many efforts for authoring of learning objects. However, very little

research on learning theory based design of learning objects has been conducted (Wiley,

2002). Yet there are many research questions regarding learning objects that need to be

answered. Using Instructional Design to guide learning object design is problematic.

Instructional Design assumes that based on learner's model we can apply pedagogic rules

of Instructional Design to select learning objects for the learner in a certain way to

achieve effective knowledge transferring (Jonassen, 1993). However, a learner at any

moment may want to view the material in many different ways. Restricting the learner to

only one way of viewing the learning material is very prohibitive to active learning.

Another assumption of Instructional Design is that knowledge is well-structured.

Constructivism, on the contrary, realizes the fact that knowledge is often ill-structured

(Jonassen, et al., 2004). In reality, those rigidly-structured learning objects are very

difficult for the course authors to work on and cooperate with each other. It is also very

difficult to apply rigidly-structured learning objects to various learning domains/subjects.

Contrary to Instructional Design, which assumes that knowledge can be transferred

to the learner by rearranging the learning material according to pedagogic rules, the

assumption of constructivism is that learning is associated with context, that learning

occurs in activities, and that to achieve effective learning the learner has to be put in a

context and involved in an activity (Jonassen, et al., 2004; Brown, et al., 1989; Henning,

2004).

 2

Although a departure from objectivism learning theory that is represented by

Instructional Design and addressing the problems of objectivism, constructivists learning

environments still rely on traditional knowledge carriers. A few researchers (Bannan-

Ritland, et al., 2002; Orrill, 2002) making efforts to combine learning object and

constructivism together focus largely on how learning object can be used in specific

constructivist learning environments instead of seeking a generic structure which will

help learners learn in many possible creative constructivism ways.

We combined constructivism and objectivism in our design of learning objects.

Since learning is associated with context and activities, the learning material has to be

viewed many times corresponding to different learning contexts. By choosing appropriate

activities and viewing the material differently each time, the learner goes through the

learning material for several times to construct her knowledge. In real constructivism

learning environments, e.g. the real world, for the learner to set up her best strategy in

going through these iterations, it is highly desired that a system can help the learner to

collect related learning materials, viewing the whole picture of knowledge, focusing on

important information at a time without being distracted by unnecessary information, and

zooming into various degrees of details at run time. Furthermore, the ability of easily

sharing knowledge is also very important since we regard teaching as sharing learning

experience.

How technology, especially learning object technology, can help implement such a

system?

Using the minimalist approach, we come up with a generic structure of learning

object, which classifies knowledge into different types on different levels and makes it

 3

possible and easy for authors at different levels to cooperate with each other to generate

the learning objects.

Our design of learning objects for our IDEAL e-learning environment (Shang, et al.,

2001; Shi, et al., 2002) makes it easy for the learner to collect related learning material,

have the learning material rendered in “pattern” (to render the learning material in

different ways to allow learners to focus on the important information that they need and

can make sense of without being distracted by information they do not need or cannot

make sense of) according to different learning needs, and navigate and adapt the material

flexibly at run time. More specifically:

Our system can automatically generate course maps from related knowledge

components according to some patterns. For example, the learner can have a bird-view

of the course, or have a novice view of the course. In addition to automatically

generating course map according to some patterns, the system is capable of generating

the learning material in several other ways.

The learner is given the flexibility to further refine the course map by changing the

sequence of the knowledge components, adding or deleting some components, or

changing the display mode of the components. By changing the display mode of the

component, the learner can have the component display more or less difficult content or

detailed content. This way, the learner can focus on the important things for her learning

at a certain time.

In addition, the learner can have the section (a component may have several sections)

display more or less content at run time. So the learner can always view more stuff if she

feels interested or needed.

 4

The system emphasizes on awareness of the whole picture of knowledge. So the

whole picture of knowledge is always rendered first and very convenient to access at any

time.

With these features, our system can greatly assist the learner to construct their

knowledge in the real constructivism learning environment.

 5

Chapter Two--Related Work

There have been many efforts for development of learning objects in industry, and

there are a few committees making standards for specification of learning objects. But

most of these efforts have been “learning theory neutral” (Wiley, 2002). They ignore an

important question: how learning objects support learner learning and thus “fail to

provide solutions for many current learning environments” (Orrill, 2002). The discussion

on learning objects largely focuses on technical development (LTSC, 2002). Their use of

metadata is intended to provide a library card catalog function that will help to retrieve

learning objects from digital libraries (Wiley, 2002). But problems arise when they want

to compose new learning objects by reusing existing learning objects (Wiley, 2002).

How can learning objects be combined to be instructional meaningful? The reusability,

scalability, and interoperability are not addressed in their development. Thus, the

combination of learning objects in their development is very likely to be instructional

useless. Bannan-Ritland argues that it is very crucial at this point to consider the

implication of learning object use and implementation in the instructional context prior to

a full-scale implementation of learning object technology (Bannan-Ritland, et al., 2002).

The few researchers trying to combine learning object development and learning

theory focus primarily on Instructional Design theory (Wiley, 2002). However, using

Instructional Design to guide learning object research is very problematic (Bannan-

Ritland, et al., 2002).

Instructional Design assumes that based on a learner's model we can apply pedagogic

rules of Instructional Design to select learning objects for the learner in a certain way to

 6

achieve effective knowledge transferring. But a learner, even at one moment, may want

to view the material in many different ways. Learning style, as in Instructional Design, is

meaningless for active learners since active learners use all kinds of learning styles

according to her current learning needs (Bereiter, et al., 1989). Rendering the learning

material in a certain way while disallowing the learner other ways of viewing the material

is very prohibitive to active learning.

Another assumption of Instructional Design is that knowledge is well-structured.

However, constructivism realizes that knowledge is often ill-structured, complex, and

dynamic. People’s mental model, the structure of knowledge by which they perceive the

world, is always changing. Constructivism holds that the change of knowledge structure

is a learning process. Knowledge is always reconstructed in the context of the

individual’s understanding and purposes. Thus, every individual holds a unique

perspective of the structure of knowledge. To have a rigidly-defined structure of

knowledge and impose it on everyone makes it very difficult for the authors to cooperate

with each other to author learning objects by reusing each other’s work. It is also very

difficult to apply those rigidly-structured learning objects to various learning

domains/subjects.

Constructivism is a name given collectively to a wide variety of views, theories, and

instructional models. Constructivism assumes that learning is an active process of

constructing rather than acquiring knowledge, and that instruction is a process of

supporting that construction rather than communicating knowledge content (Jonassen,

1993). Constructivism generally believes that “most learning domains are ill-defined

(complex), that learning outcomes are largely metacognitive in nature, and that learners

 7

are required to actively participate in the learning process to construct meaningful

knowledge rather than acquire a predetermined set of skills in a pre-specified manner”

(Bannan-Ritland, et al., 2002). Constructivism learning theory emphasizes that learning

is learners’ sense making of the world, that learning needs arise from activities, and that

learning is strongly associated with activities (Brown, et al., 1989; Henning, 2004). Since

learning is learners’ sense making, learners’ feel in learning is very important. Learners

need to derive learning needs from activities, feel learning gaps, and actively locate

resources to meet learning needs.

Further examination of the foundation of Instructional Design and Constructivism

will help us select appropriate learning theory to guide learning object design. The

prominent related theories are as follows:

• According to Bannan-Ritland, Instructional Design is based on so called

traditional Cognitive Information Processing (CIP), which holds that “information

undergoes a series of transformations in the mind in a serial manner until it can be

permanently stored in long-term memory in packets of knowledge that have a fixed

structure” (Bannan-Ritland, et al., 2002).

• Parallel Distributed Processing (PDP) “perceives long-term memory as a dynamic

structure (or network) that represents knowledge in patterns or connections with

multiple pathways instead of concept nodes and propositions.” “A fundamental

distinction between the traditional view of CIP and PDP models of memory is that

information processing occurs in parallel instead of a serial manner, activating

 8

knowledge patterns simultaneously and continuously adjusting them as a function of

new information to resolve cognitive dissonance” (Bannan-Ritland, et al., 2002).

• Cognitive Flexibility Theory holds that “learners ought to be able to assemble

situation specific knowledge in a domain, and this demands the attuning of special

cognitive processing skills,” thus “in sharp contrast with the traditional view of CIP

in which knowledge is thought of as discrete and static entities to be retrieved intact

from memory to demonstrate a learned capability” (Bannan-Ritland, et al., 2002).

• Situated Cognition holds that “the context or the activity which frames knowledge

in a particular domain is as important as the content that is learned because it is

referenced by that activity” (Bannan-Ritland, et al., 2002).

• Distributed Cognition states that “the social processes themselves should be

considered as cognitions” (Bannan-Ritland, et al., 2002).

• Generative Learning Theory holds that “the learner is not a passive recipient of

information but an active participant in the instructional experience.” Thus, “the

generative learning process requires the learner to manipulate, interpret, organize or

in some active manner make sense of his or her environment” (Bannan-Ritland, et

al., 2002).

Through analysis of the grounding assumptions of various learning theories we can

see that Instructional Design misses the whole picture of learning, and that using it to

guide learning object design is problematic or at least very insufficient.

To summarize, Instructional Design is itself problematic. Using it to guide learning

object research is misleading and has not had satisfactory result (Orrill, 2002). Compared

 9

to Instructional Design, Constructivism is closer to the truth of learning. However, there

has not been an effective media to support learners to construct knowledge efficiently.

We propose, constructivism, as it presents a more complete picture of learning, can be

used to guide learning object design. Furthermore, we hold that learning object designed

under the guideline of constructivism provides a new kind of knowledge carrier that can

support learners constructing knowledge in a very efficient way.

 10

Chapter Three--Constructivism and Our Design

3.1 Using Constructivism to Guide Learning Object Design

Under the guideline of Instructional Design, the goal of learning object design is to

design “architecture of instructor-defined content that is configured and automatically

generated for the learner based on a specific selected instructional strategy” (Bannan-

Ritland, et al., 2002). If we deviate from such a design goal and instead use

constructivism to guide learning object design, what would be our goals of design and

features of such systems?

Bannan-Ritland has attempted to propose new principles or guidelines for learning

object systems that are guided by constructivism learning theories. Briefly, she proposes

that learning object designed with constructivism learning theories should generally be

able to:

• support learner-generated artifacts by incorporating learner contributions;

• consist of multiple levels of granularity to afford reusability, flexibility, accessibility

and adaptability of learning objects; and

• contain frameworks as learning objects that provide structure for instructional

experiences and incorporate a linking system to facilitate their content population.

A flexible navigation is very important in constructivist learning environments.

Orrill holds that constructivist learning environments require revisiting existing

knowledge as learners construct new understandings (Orrill, 2002). Orrill points out such

 11

systems are to provide learning environments that are rich with learning experiences and

resources and these environments should be learner-centered in that learners are

responsible for determining how to learn and what to learn. Orrill further points out that

“if we cannot support student movement between and within the objects based on their

evolving needs and understandings, the objects will not be serving the scaffolding

functions they are intended to serve.”

3.2 Our Design

Our design of learning object is mostly inline with Bannan-Ritland’s proposed

guidelines, and our design shares some similarity with Orrill’s design. The major

difference is that in our system, we are less concerned with a specific type of

constructivism learning theory and guiding the learner through a specific constructivism

learning process. The reason is based on the following assumptions:

• Learners can make the best judgment what to learn and how to learn if they are

presented the whole picture and allowed to try various components; and

• Our learners are learning in the real constructivist learning environment, e.g., the real

world, instead of in some artificial learning environments.

With the first assumption, instead of teaching the learner how to learn constructively,

it is more important to let the learner see the whole picture of the topic and be able to

view the material quickly in a flexible and adaptive way. By this, we are holding to the

most fundamental assumption of constructivism that the learner explores learning in

 12

many creative ways according to her learning needs and rich resources provided.

Confining learners to a certain constructivism environment discourages learners to

explore learning and solve learning problems creatively. As Brown and Duguid point out,

once people see the need for learning and the resources are easily accessible, people will

devise ways to learn in whatever way suits the situation (Brown, et al., 1989).

Furthermore, in constructivist learning environments, scaffolding plays a key role for the

learner to construct her knowledge (Jonassen,, 1993). Being able to view the whole

picture and try things quickly help the learner locate the scaffolding efficiently. For the

learner to be able to do that effectively and efficiently, e.g., quickly obtain the whole

picture of the knowledge, the learner needs to collect all the related learning components

and know what these components are about without reading through all the content.

However, with the conventional knowledge carriers, a very significant amount of time is

wasted in locating the needed information and reading unnecessary information.

With the second assumption, the learner is constructing her knowledge in the real

world, instead of in some artificial learning environments. The real world is the best

constructivist learning environment. People learn in the community of practice (Barab,

2000), and they learn through enculturation in society (Brown, et al., 1993). So it is not

our task to build an artificial learning environment to help engaging learners in

constructivism learning as mentioned by Savery (Savery, et al., 1995) and followed by

Bannan-Ritland and Orrill in their thinking and experimentation of constructivism-guided

learning object design. Our system is to help the strong active learner to learn

constructively in the real constructivist learning environment. The real constructivist

learning environment provides the real challenging constructivism tasks mentioned by

 13

Savery (Savery, et al., 1995) compared with those artificial constructivist learning

environments. However, our system, of course, can be used in various artificial

constructivist learning environments although it is not our primary intention for it to be

used that way.

Another difference of our approach from Bannan-Ritland and Orrill’s is that we

emphasize learners building up the mental model of knowledge although such a mental

model is under constant change and refining. Our system provides the facility to help

learners building up the mental model of a domain by constructing the course map. As

Duff and Jonassen argue that the best learning environment is to combine constructivism

with objectivism (Jonassen, 1993), our support for learner building up mental model

reflects a better combination of constructivism and objectivism.

So different from Bannan-Ritland and Orrill’s approach, our goal of learning object

design is a system that allows learners to easily share knowledge on the Internet, collect

learning material, view the learning material quickly through several iterations, and be

able to focus on current learning within each iteration.

In constructivist learning environments, the learning material has to be viewed

several times. Orrill points out that constructivist learning environments require

revisiting existing knowledge as learners construct new understandings (Orrill, 2002).

Since Parallel Distributed Processing, as mentioned above, “activates knowledge patterns

simultaneously and continuously adjusts them as a function of new information to resolve

cognitive dissonance” (Bannan-Ritland, et al., 2002), existing knowledge and learning

material has to be reviewed frequently to “resolve cognitive dissonance” and construct

new understanding. So we think that constructivism demands the learner to: first, use all

 14

kinds of learning material that she can make sense of at the present time to achieve her

current learning goal; secondly, after she achieves a new level of understanding, thus has

new learning needs and goals, and can make sense of more things, she needs to find again

all the learning material that she can make sense of or she can feel her interests in now.

So in constructivism, the learner has to do this iteratively for many times. Thus, the

learning material has to be read for many times and be read differently every time

according to what the learner can make sense of. This demands that learning material be

read very fast and navigated very easily and flexibly. The easier the learner can find

information she needs without being distracted by unnecessary information, the faster the

learner can accomplish her current layer of learning and thus improve the efficiency of

her learning. What the learner can make sense of during each layer of learning is very

difficult to predict, and it changes from moment to moment as she reads the learning

material. We do not think any Instructional Design theory is sufficient to meet such a

demand. In this work, we study how learning object system can be designed to help the

learner to meet such a demand.

Additionally, as mentioned above, we assume that learners can make the best

judgment on what to learn and how to learn if they are presented the whole picture and

allowed to try various components. In constructivism, learners are at the center of

learning. To guide their learning and construct knowledge more effectively, the learners

have to have a complete picture of the domain, and such a complete picture is usually

built up by extensive reading. The learner needs to collect all the related material and

read iteratively according to her current sense-making, diving into any material quite

randomly to deepen her understanding in one area and consequently in the whole subject

 15

domain. Thus being able to read fast, locating information needed quickly and thinking

on the level of the whole subject domain are the important skills to learn efficiently in

constructivist learning environments. On the contrary, not able to read fast, distracted by

unnecessary information and unable to see and think through the complete picture are

hindering efficient learning in constructivist learning environments.

To support learners viewing learning material at a certain time for a certain need, we

use the concept of “pattern” instead of learning style. As we mentioned above, the

concept of Learning Styles is problematic. The assumption behind it is not appropriate for

active learners since active learners normally apply all kinds of learning styles just

according to her current needs. It is better to use the concept of pattern. By pattern, we

recognize that learning material should be adapted to suit different purposes of viewing

and such patterns are what the learner can “choose” from. For example, we have a bird

view pattern, by which learners can have a bird view of the material. According to this

pattern, we select appropriate components with appropriate display mode and the sections

will be displayed accordingly with the content exposed more or less. By choosing

different patterns, the learner can have the learning material rendered differently to

achieve her learning goal at the present time more efficiently without being distracted by

unnecessary information. By making patterns available to the learner, we encourage the

learner to view material differently and learn more actively. The learner can change the

display mode of the component and display level of the section to let them display more

or less at run time.

Thus, our primary goal of learning object design is to facilitate the learner to easily

collect related learning material, view the material through several iterations, in each

 16

iteration have the material rendered in some “pattern,” have the whole picture of

knowledge easily accessible, navigate flexibly, and adapt the material at run time.

Overall, to incorporate constructivism into learning object design, our system has the

following features:

• a simple and generic structure that would allow learners to easily participate in the

construction of learning objects and allow the learning object easily changeable

throughout its usage;

• rendering of learning objects according to some “patterns” and at the same time allow

learners to further configure and refine the “pattern”, and have the content adapted to

learners’ needs at run time;

• always have the complete picture rendered first and have it easily accessible at any

time;

• to achieve the above, learning objects will consist of multiple levels of granularity to

afford reusability, flexibility, accessibility and adaptability of learning objects; and

• a mechanism to group (linking) things together.

More theoretical ground of our design of learning object can be found in Interactive

Computation (Wegner, 1997) and Christopher Alexander’s theory regarding living

centers, which is best summarized in his book Nature of Order (Alexander, 2003). It is

beyond the scope of this paper to discuss them here.

 17

Chapter Four--Learning Object Schema Design

We propose a simple generic structure that can be applied to various domains and

that authors can easily work on and cooperate with each other. Our design of learning

object divides knowledge into a few layers that can easily fit into various situations and

we defines a simple set of attributes at each level. At this stage, we pick the attributes of

content type, difficulty level and detail level as the basic attributes we want to apply to

knowledge at each level. These attributes are commonly important attributes and can be

very useful. We explore how knowledge can be reused with such a simple structure and

to demonstrate that learning objects designed with constructivism principle can be

supportive of learning. More attributes, if proved important and useful, can be added

later. Furthermore, it is more important to keep the design simple and useful so more

people can participate in the cooperation online than to complicate it at an early stage of

design with unnecessary artifacts.

More importantly, we noticed that some attributes are strongly associated with the

context it is within. For example, difficulty level and detail level are much more

meaningful and accurate when they are used to compare a set of knowledge units within

the same parent knowledge unit. Some other attributes, such as content type, are

relatively less associated with the context. So for those attributes strongly associated with

the context, it is better to only assign attributes to them when they are put together to

construct a bigger knowledge unit instead of requiring authors to describe their

independent standalone knowledge units with such attributes. This way, we lift the

burden off the authors of independent standalone knowledge units so they don’t have to

 18

make those difficult tricky decisions. But for independent standalone knowledge units,

we require authors to give them attributes such as content type and this will greatly help

authors at the higher level to easily locate knowledge units they need. So we regard the

issue of reusability of learning object as an issue of cooperation, e.g. how authors at

different levels can cooperate with each other so that every author can focus on her job

and help out each other. As we are aware of, this issue is not sufficiently addressed by the

learning object development community.

A learning object in our system is regarded as a component of knowledge. So for

one learning topic, there might be several components related to it. These components

related to one topic can be grouped together as a cloud. Each component consists of

several sections, which are the smallest units of knowledge.

4.1 Section Design

The smallest unit of knowledge is defined as section as shown in Figure 4.1. A

section has one core and several extensions. The core is the most essential part of a

section. The core uses the least words to convey the meaning of the section, while

extensions can be added to provide more detailed explanation of the section. Metadata of

a section is used to provide some other information about the section such as keywords.

 19

Figure 4.1: Graphic representation of the schema of a section

Since a section might be used by different learning objects, we use a group of attributes

named section_root to depict this section as shown in Figure 4.2. Noticeably, the author

needs to specify the content type of this section. The value of content type is as shown in

Figure 4.3.

4.2 Component Design

A component consists of several sections as its vertices as shown in Figure 4.4.

When each section is put as a vertex into a component, the author needs to use a group of

attributes named component_vertexAttri to depict this section within the context of this

 20

component. The attribute group component_vertexAttri is shown in Figure 4, which

depicts the difficulty level (lower bound and upper bound) and the detail level of the

section within the context of this component. The lower bound difficulty level and upper

bound difficulty level together give the range of difficulty levels of this section within the

context of this component. The values of difficulty level are novice, beginner,

intermediate, advanced, and expert as shown in Figure 4.5. The detail level means how

detailed this section is within the context of this component. A component can have

some sections serve as the abstract information of this component and some as more

detailed information. So the values of detail level are abstract, description, normal, and

detail as shown in Figure 4.5. Each component has metadata to annotate other

information about this component. A group of attributes named component_root is used

to depict the component. The attribute contentType classifies components into different

types.

4.3 Cloud Design

Several components related to one topic can be grouped together as a cloud.

Components are put as vertices of the cloud, with each of them depicted with a group of

attributes named cloud_vertexAttri.

Sections, components, and clouds are created by the authors. One author can group

several sections (possibly created by other authors) together as a component, or group

several components (possibly created by other authors) together as a cloud. Thus,

sections and components can be reused.

 21

Figure 4.2: A fragment of the XML schema of IDEAL learning objects: sectionType complexType
and section_root attributeGroup
<xsd:complexType name="sectionType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element name="content">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="core" type="simpleContentType"/>
 <xsd:element name="extensionSet">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="extension" type="simpleContentType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element ref="metadata"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="section_root"/>
</xsd:complexType>

<xsd:attributeGroup name="section_root">
 <xsd:attribute ref="id" use="optional"/>
 <xsd:attribute ref="media" use="optional"/>
 <xsd:attribute ref="contentType" use="optional"/>
</xsd:attributeGroup>

4.4 Course Design

A course can be manually built up by an author. It can also be automatically

generated by the system. A course is generated from a cloud, which contains components

related to one topic.

A course consists of several sessions as shown in Figure 4.8. Each session consists

of several components as the vertices and achieves some learning goals. Each vertex has

a group of attributes depicting the display mode of the component as shown in Figure 4.9.

The displaymode attribute group includes difficultylevellowerdisplay,

 22

difficultylevelupperdisplay, and detailupperdisplay. They describe how this component

is going to be displayed. The values of each are the same as the component_vertexAttri

described above. If a vertex has a difficultylevellowerdisplay of “beginner” and

difficultylevelupperdisplay of “advanced,” only the content of difficulty level ranging

from “beginner” to “advanced” of this component will be displayed while the content of

“novice” and “expert” of this component will not be displayed. If a vertex has a

detailupperdisplay of “normal,” only the “abstract,” “description,” and “normal” parts of

the component will be displayed while the “detail” part will not be displayed.

Figure 4.3: A fragment of XML schema of IDEAL learning objects: attribute contentType

<xsd:attribute name="contentType" type="loType"/>
<xsd:simpleType name="loType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="example"/>
 <xsd:enumeration value="examplereallife"/>
 <xsd:enumeration value="examplesamplecode"/>
 <xsd:enumeration value="reference"/>
 <xsd:enumeration value="practice"/>
 <xsd:enumeration value="core"/>
 <xsd:enumeration value="relaxing"/>
 <xsd:enumeration value="relaxinghistory"/>
 <xsd:enumeration value="relaxingcomments"/>
 <xsd:enumeration value="resource"/>
 <xsd:enumeration value="resourcespecification"/>
 <xsd:enumeration value="resourcedownload"/>
 <xsd:enumeration value="resourcecommunity"/>
 <xsd:enumeration value="resourcecolumn"/>
 <xsd:enumeration value="resourcetutorial"/>
 <xsd:enumeration value="question"/>
 </xsd:restriction>
</xsd:simpleType>

 23

Figure 4.4: Graphic representation of the schema of a component

Figure 4.5: A fragment of XML schema of IDEAL learning objects: componentType
complexType, component_root attributeGroup, and component_vertexAttri attributeGroup

<xsd:complexType name="componentType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element name="content">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="vertex" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="loID"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="component_vertexAttri"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element ref="metadata"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="component_root"/>
</xsd:complexType>

<xsd:attributeGroup name="component_root">
 <xsd:attribute ref="id" use="optional"/>
 <xsd:attribute ref="media" use="optional"/>
 <xsd:attribute ref="contentType" use="optional"/>
</xsd:attributeGroup>

 24

<xsd:attributeGroup name="component_vertexAttri">
 <xsd:attribute name="difficultylevellowerbound" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="difficultylevelupperbound" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="detail" type="detailLayer" use="optional"/>
</xsd:attributeGroup>

<xsd:simpleType name="detailLayer">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="abstract"/>
 <xsd:enumeration value="description"/>
 <xsd:enumeration value="normal"/>
 <xsd:enumeration value="detail"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="loDifficultyLevel">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="novice"/>
 <xsd:enumeration value="beginner"/>
 <xsd:enumeration value="intermediate"/>
 <xsd:enumeration value="advanced"/>
 <xsd:enumeration value="expert"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 4.6: Graphic representation of the schema of a cloud

 25

Figure 4.7: A fragment of XML schema of IDEAL learning objects: cloudType complexType and
cloud_vertexAttri attributeGroup

<xsd:complexType name="cloudType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element ref="project" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="content">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="vertex" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="loID"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="cloud_vertexAttri"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element ref="metadata"/>
 </xsd:sequence>
 <xsd:attribute ref="id"/>
</xsd:complexType>

<xsd:attributeGroup name="cloud_vertexAttri">
 <xsd:attribute name="difficultylevellowerbound" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="difficultylevelupperbound" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="detail" type="detailLayer" use="optional"/>
</xsd:attributeGroup>

In summary, we use the minimalist approach in our design of learning objects. We

design a leaning object with a generic structure, classifying knowledge into different

types at different levels and making it possible and easy for authors at different levels to

cooperate with each other by reusing each other’s work.

 26

Figure 4.8: Graphic representation of the schema of a course

 27

Figure 4.9: A fragment of XML schema of IDEAL learning objects: courseType, sesstionType
complexType, and displaymode attributeGroup

<xsd:complexType name="courseType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element name="content">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="session" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element ref="metadata"/>
 </xsd:sequence>
 <xsd:attribute ref="id"/>
</xsd:complexType>

<xsd:complexType name="sessionType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element name="overall" type="loIDType" minOccurs="0"/>
 <xsd:element ref="project" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="content">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="vertex" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="loID"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="displaymode"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element ref="metadata"/>
 </xsd:sequence>
 <xsd:attribute name="seqnum" type="xsd:long" use="required"/>
</xsd:complexType>

<xsd:attributeGroup name="displaymode">
 <xsd:attribute name="difficultylevellowerdisplay" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="difficultylevelupperdisplay" type="loDifficultyLevel" use="optional"/>
 <xsd:attribute name="detailupperdisplay" type="detailLayer" use="optional"/>
</xsd:attributeGroup>

 28

Chapter Five--Authoring and Rendering of Learning Objects

In our design of learning objects, sections represent the smallest significant units of

knowledge with basic attributes such as content type used to categorize sections. The

attributes help component authors to choose which sections to be included into

appropriate components.

Inside a component, some attributes, such as content type, difficulty level, and detail

level, are used to depict sections with the context of the component. Components related

to a topic can be grouped into a cloud.

Inside a cloud, some attributes such as difficulty level and detail level are used to

depict components within the context of the cloud. Since a cloud contains all the

components related to a topic, a course is generated from the cloud, either manually by an

instructor/author or automatically by the system.

When a course is generated from the cloud by an instructor/author, the expert

experience can be embedded into the configuration of the course, such as what

components are chosen, what sessions are made, what sequence of components are

chosen, what display mode for each component, etc. When it is generated by the system,

certain patterns can be applied to the cloud to generate a course corresponding to the

learner’s profile and the goal of learning.

Authoring of a learning object with our design of learning objects becomes easy and

can be done collaboratively by several authors across the Internet. Authors at each level

(section, component, and cloud) have to accomplish tasks that are easy to carry out at that

level and will significantly help the authors of the next level. For example, for section

 29

authors, it is rather easy for them to depict what content type their sections are. Knowing

the sections’ content type will significantly help the component authors when they choose

sections to include into components. On the contrary, attributes such as difficulty level

and detail level are associated with a certain context. Should we require a section author

to describe what difficulty level this section is, it would give the section author

tremendous difficulty when making sections. Once the section is put into a component,

however, difficulty level and detail level need to be given to describe this section within

the context of the component, which can be easily done since it is within a certain

context.

Figure 5.1: IDEAL Learning Desktop displaying “My Courses” for the learner

 30

Figure 5.2: IDEAL Learning Desktop displaying a cloud of JINI, which consists all components
related to JINI

By categorizing learning material into different content type on different levels and

using difficulty level and detail level to describe them within a context, we not only make

it easy for authors to cooperate with each other by reusing each other’s work, but also

make the rendering of learning objects easily adaptive to different learning conditions.

The student can have several ways of viewing the material as shown in Figure 5.1.

She can click “view default” to choose to view the course created by the author/instructor

if such a version is available. Instead, she can also choose to have the course generated

automatically by the system according to some patterns. She also has the choice to view

 31

the learning material by her profile, by which the learning material will be generated

session by session. Finally, she can also choose to just view all the raw components

related to the topic as shown in Figure 5.2. When viewing raw components, the content

will not be adaptive.

5.1 View Default

After clicking “view default” as shown in Figure 5.1, the course map configured by

the author/instructor is rendered to the student as shown in Figure 5.3. In the course map,

the components are grouped by the author into several sessions, with each session

corresponding to a certain goal of learning. The author/instructor defines the title, goal,

keywords of each session. For each component in the session, the author/instructor pre-

defines its display mode according to the author/instructor’s teaching experience and

expertise.

The learner can accept this course map and view the component one by one. She can

also add more components to the session from the raw components, delete some

components, change the sequence of the components, and change the display mode of the

component.

By clicking “View this,” the learner can view the component according to the

display mode configured as shown in Figure 5.4. For example, for the learning object

“JavaSpace,” if the display mode is “normal,” “novice,” and “advanced,” respectively,

the component will have these sections to be displayed as shown in Figure 5.4(a). If the

MaxDetail is changed to “abstract,” only one section, which is of “abstract” in this

component, will be displayed as shown in Figure 5.4(b). Changing both min and max

difficulty level to “novice” will only have one section displayed, whose difficulty level

 32

includes “novice” as shown in Figure 5.4(b). The XML document of this component is

shown in Figure 5.4(c).

Clicking on the “View Content” button of the component preface page, the learner

can view the component’s sections sequentially.

Here the section is displayed according to the component_vertexAttri of this section

within the component as shown in Figure 5.5. In our design, we only use the “detail”

attribute for adaptation when rendering this section. If the “detail” attribute’s value is

“abstract,” which means this section’s detail level is “abstract” within the context of this

component, we will show more content of this section than if its value is “detail.” For

example, the first section of the component “JavaSpace” is displayed as shown in Figure

14(a), while the second section is displayed as shown in Figure 5.5(b), since the first’s

“detail” value is “abstract” while the second’s is “normal.”

The learner can always increase or decrease the display level of the section at run

time by clicking the corresponding button on the “View Section” page as shown in Figure

5.6.

The learner is given the flexibility to further refine the course map by changing the

sequence of the knowledge components, adding or deleting some components, or

changing the display mode of the components. By changing the display mode of the

component, the learner can have the component display more or less difficult content or

detailed content. This way, the learner can focus on the important things for her learning

at a certain time. The learner can save her configuration of a course map into the

database, and the course map configured by the student will be retrieved from the

database next time. Furthermore, the learner can have the section display more or less

 33

content at run time. So the learner can always view more stuff if she feels interested or

needed.

Figure 5.3: A fragment of course map configured by a course author/instructor

 34

Figure 5.4: IDEAL Learning Desktop displaying a component preface
(a) When the display mode of the component has the value for attribute “detail” as “normal,” the
component has 6 included sections.
(b) When the display mode of the component has the value for attribute “detail” as “abstract,”
the component has only 1 included section. When the display mode of the component has the
value for both “difficultylevellowerdisplay” and “difficultylevlupperdisplay” as “novice,” the
component has only 1 included section.
(c) The XML document of the component being displayed in (a) and (b).

(a)

 35

(b)

(c)
<?xml version="1.0" encoding="UTF-8"?>
<component id="ctjini010101" media="text" contentType="core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ideal-xml-resources\doc\olo\schema\olo.xsd">
 <title>JavaSpace</title>
 <content>
 <vertex difficultylevellowerbound="novice" difficultylevelupperbound="expert" detail="abstract">
 <loID>snjini010101</loID>
 </vertex>
 <vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
 <loID>snjini04FF02</loID>
 </vertex>
 <vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
 <loID>snjini010201</loID>
 </vertex>
 <vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
 <loID>snjini010102</loID>
 </vertex>

 36

 <vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
 <loID>snjini010103</loID>
 </vertex>
 <vertex difficultylevellowerbound="intermediate" difficultylevelupperbound="expert"
detail="normal">
 <loID>snjini010104</loID>
 </vertex>
 </content>
 <metadata>
 <keywords>
 <link uri="">JavaSpace</link>
 <link uri="">Lookup Service</link>
 <link uri="">Discover</link>
 <link uri="">Join</link>
 <link uri="">Lookup</link>
 <link uri="">Service Object</link>
 <link uri="">Template</link>
 </keywords>
 <openquestions>
 <openquestion>
 <question>
 <loID>snjini060101</loID>
 </question>
 <tentativeanswers>
 <tentativeanswer>
 <loID>snjini060102</loID>
 </tentativeanswer>
 </tentativeanswers>
 <helpfulresources>
 <helpfulresource>
 <link uri="http://www.artima.com/jini/jiniology/serviceui.html">How to Add a UI to a Jini
Service.</link>
 </helpfulresource>
 <helpfulresource>
 <link uri="">Look at the API</link>
 </helpfulresource>
 </helpfulresources>
 </openquestion>
 </openquestions>
 </metadata>
</component>

 37

Figure 5.5: IDEAL Learning Desktop displaying a section in the same component shown in
Figure 5.4
(a) The first section of a component has the full content displayed.
(b) The second section of the same component is displayed less than the first section.

(a)

(b)

 38

Figure 5.6: IDEAL Learning Desktop displaying a section
(a) When the display level of the section is 1
(b) When the display level of the section is 2
(c) When the display level of the section is 3
(d) When the display level of the section is 4

(a)

(b)

 39

(c)

(d)

 40

5.2 View by Patterns

In addition to rendering the course map according to author/instructor’s

configuration, the system can also generate a course map according to some patterns.

According to a certain pattern, components in the cloud can be selected, and certain

content types of components can be grouped into several standard sessions. The

session’s title and goal are predefined for this pattern by the system. The component’s

display mode will also be configured automatically according to the pattern.

In our system, we have the following standard sessions that correspond to certain

goals of learning:

 41

“shallow knowledge,” “core knowledge,” “practical knowledge,” and “distributed

knowledge.”

Components of content types “resource” and “example” are grouped into “shallow

knowledge” session, which gets the learner to “know something about this topic before

serious study.” Components of content type “core” are grouped into session “core

knowledge,” which lets the learner “study the theory and learn the logics in this topic.”

Components of content type “practice” are grouped into session “practical knowledge,”

which lets the learner “have hands-on practice and get the certainty of this topic.”

Components of content type “remote” are grouped into session “distributed knowledge,”

which lets the learner “do some distributed learning to learn about the underlying

knowledge from other related topics.”

For example, we have a bird view pattern in our system. Bird view pattern is used

when the learner wants to have a bird view of the whole course. Regardless of the

learner’s skill level, the leaner often wants to have a bird view of the course. So the

components related to a topic are grouped into four sessions as shown in Figure 5.7.

Only the abstract content of the components will be displayed, regardless of the difficulty

level (ranging from “novice” to “expert”).

 42

Figure 5.7: IDEAL Learning Desktop displaying a “bird view” of the course

In addition to the bird view pattern, we have novice pattern and expert pattern in our

system. The novice pattern only selects components of low difficulty level and only

displays the low difficulty level content of the component. The expert pattern only

selects components of high difficulty level and only displays the high difficulty level

content of the component.

 43

5.3 View by Profile

The system can also generate course material session by session according to the

learner’s skill level. Each learner has a learner profile stored in the database, and a skill

level of a corresponding component is stored in the profile. The student can jump into

any session as shown in Figure 5.8 according to her current learning needs, and her

current skill level will be used in generating this session at runtime.

Figure 5.8: IDEAL Learning Desktop displaying a course by profile

For example, Figure 5.9 shows the “shallow knowledge” sessions for two different

learners. Figure 5.9(a) shows how the “shallow knowledge” session is displayed for a

 44

learner with high skill level in the related components, while Figure 5.9(b) shows the

“shallow knowledge” session displayed for a learner with low skill level in the related

components. Only difficulty level attributes are used in adapting content.

Figure 5.9: IDEAL Learning Desktop displaying a “shallow knowledge” session by profile
(a) for a high skill level learner
(b) for a low skill level learner

(a)

(b)

 45

Since we give learners the options to further configure the course map or change the

display level of sections, we allow learners to be actively involved in shaping the learning

environments, which is highly demanded in a constructivist learning environment (B.

Bannan-Ritland, et al., 2002).

As we make the authoring of learning object quite easy, learners can also be involved

in authoring of learning objects. Since knowledge is ill-structured and everyone holds her

unique view of knowledge, it is important that the learner is able to construct her own

knowledge. And since cooperation among authors becomes possible and relatively easy

in our system, the work becomes easier for the author by reusing others’ work.

Bannan-Ritland points out that learning objects designed with guidelines of

constructivism still can provide electronic performance support (Bannan-Ritland, et al.,

2002). In our system, the system helps rendering learning material with various patterns

and help the learner adapt the material at run time. Such function is highly desired in

active learning, but very difficult to achieve with traditional knowledge carriers.

 46

Chapter Six--Implementation

Using the N-tier architecture, the IDEAL e-learning system is separated into data

layer, logic layer and presentation layer as shown in Figure 6.1.

The data layer of the system is implemented using XML database Apache Xindice.

Learning objects together with learner information and other information are stored in the

XML database. We use Apache Axis to implement Web services, which wrap the

database up to provide access to the XML documents. These Web services are named

XMLData Web services. These services support the following interactions with the

database:

• authenticate

• executeQuery

• getDocument

• getDocumentCount

• insertDocument

• updateDocument

• removeDocument

• listCollections

• dropCollection

• createCollection

• listResources

• executeUpdate

 47

The logic layer of the system is represented by other Web services, which are built

upon XMLData Web services to provide semantic interaction with the system. The

LearnerInformation Web service provides services to interact with the learner profile.

Open learning object (OLO) Web service provides services to interact with the learning

material or learning objects.

In addition to inserting, retrieving, and updating learning objects, the OLO web

service provides services to adapt learning objects to the learner.

XSL stylesheet is applied to the cloud XML document to generate course maps

according to various patterns or to generate a session according to the learner’s skill

level. XSL stylesheet is also applied to adapt a raw component according to the display

mode. Section is also adapted by applying XSL stylesheet against the raw section

according to the display level, which is computed according to the

component_vertexAttri of this section within a component.

IDEAL Learning Desktop, a multi-role portal, is the presentation layer of the system.

It is implemented with Apache Cocoon, a Web development framework. Cocoon Forms

is used to render learning objects. WSIF is used to conveniently invoke remote Web

services.

Each of the three layers can be physically located in different servlet containers.

Below we will go through a more detailed description of the implementation.

Apache Xindice, a native xml database, is used to store, retrieve and update our xml

documents. A servlet named IDEALXindiceServlet is written to replace XindiceServlet

coming with Apache Xindice. IDEALXindiceServlet is loaded on the start up of servlet

 48

container and it starts the xml database server. But unlike in XindiceServlet, no xmlrpc

server is started in IDEALXindiceServlet, so no http request will be responded.

Furthermore there is no servlet-mapping for IDEALXindiceServlet in the applications

deployment descriptor, and IDEALXindiceServlet was written to ignore all http requests.

The embedded Xindice can be only invoked by XMLData in the same container using

XMLDB API. XMLData is exposed as soap web service by Apache Axis servlet. AXIS

also provides WSDL description for the web service. Axis web service has handlers in

both request and response flows. A custom authentication handler authenticates user from

the request flow. A custom authorization handler deployed on both request and response

flows authorizes operations against xml database. The authentication handler looks for

username/password at the header and method parameters of soap request message to

authenticate user. Once authenticated, a session will be established with the client. WSIF

is used to conveniently invoke web service. WSIF allows invoking web service through

their WSDL description, regardless of how the web service is implemented and accessed.

A stub is generated at the client side that can be used to invoke web service conveniently.

Built upon XMLData web service, higher-level web services are implemented to

manage learner information and learning objects. They invoke XMLData web service

through WSIF and their services are exposed by Apache Axis as web services.

The web service to manage learning objects provides semantics for application

developers to interact with learning objects. Below is a brief description of the key

services implemented:

• to store, retrieve, update, delete raw section, component, cloud, course and

parts of them;

 49

• directory to list all courses in the system, and all courses of a learner. It is

rendered in the format of xml string;

• to get the default configured course map, or get the learner configured course

map if there is one. It is rendered in the format of xml string;

• to store learner configured course map into the xml database;

• to provide a cloud of a topic. Instead of simply getting a cloud xml document

of the topic, it also gets the title and content type of the included components

and plugged them into the cloud xml document in the output;

• to provide adapted component according to the context. The context is given

in the format of xml string. The context can be provided as the session ID,

Course ID the component is in, and the learner ID. In this case, the display

mode will be obtained based on the context. The context can also be directly

the display mode of the component. In either case, XSL stylesheet is applied

to adapt a raw component according to the display mode. The Java methods

providing these services are as below:

o public String getComponentPrefaceFromContext(String username,

String componentID, String sessionID, String closureID)throws

Exception

o public String getComponentPrefaceFromConfig(String componentID,

String componentConfig)throws Exception

• to provide adapted sections given the context. The context can be the index of

the section within a component, the component ID, the session ID, the course

ID and the learner ID. The context can also be already adapted component

 50

and the index of the section within the component. Or the context can be

component ID, its display mode and the index of the section within the

component. In whichever case, the section ID and the display level will be

computed. The context can also be display level itself. In all cases, XSL

stylesheet is applied to adapt a raw section according to the display level;

• to generate course map by pattern or to generate session by session according

to learner’s skill level; and

• other services.

The web service to manage learning objects can be deployed either at the same

container of XMLData web service, or at a different container.

IDEAL learning desktop is implemented using Apache Cocoon. Built upon Cocoon,

IDEAL learning desktop is an extensible web publication framework. Its metaphor is a

portal, in which various users with different roles will be presented different menus. It is

a comprehensive learning environment in which various roles of users (learner,

instructor, administrator and etc.) conduct their work or learning.

Apache Cocoon is a web development framework built upon the concept of

separation of concerns and component-based web development (using the idea of

Inversion of Control or IoC). It separates the concerns of management, logic, content and

style so they don’t conflict with each other. Cocoon implements these concepts around

the notion of “component pipelines”, which usually include a Generator, Transformers

and a Serializer. This makes it possible to use a Lego(tm)-like approach in building web

solutions, assembly components into pipelines without requiring programming.

Information can be inserted into the middle of the pipeline.

 51

Custom generators are used to obtain content from various resources including by

invoking web services. To implement a portal for various roles of user, we can define

users’ role and related actions in an xml file. We can use an action2menu stylesheet to

select the actions and transform into menu information. We can insert the menus and

header information (so-called navigation) into the content and transform the integrated

page into html of certain styles by applying XSL stylesheets. Cocoon session transformer

is used to insert session related element such as username.

Figure 6.1: Architecture of IDEAL Learning Object System

 52

We use the cocoon authentication framework to authenticate the user. An

authentication generator is written to be used in the cocoon authentication framework.

Cocoon sitemap pipelines that need to be protected are put inside the authentication

action. Once the authentication generator authenticates the user, it will set up the user

session context (username, password, userrole, profile).

Thus we have a web publication framework, which separates different concerns and

allows parallel development. The learning desktop implemented has a clean logic, and it

is easy to make changes.

Learning object rendering in IDEAL learning desktop is implemented using Cocoon

Forms, together with Control Flow (continuation-based page flow that hides the

complexity of request/response processing and is cleanly separated from the view and

data).

We use the flow script to provide the programming functionality so we can call the

web service (the cocoon form control flow script requests the learning material on behalf

of the learner) very flexibly and control the rendering of course very freely (such as

calculate the next index or the previous index, get the component size and determine

whether the end of the component has been reached, or if no sections are included in a

component, clicking on the view content button only redirect to the same page).

We use the Cocoon Forms to provide an easy and clean implementation of the forms

used to render various kinds of learning material (course map, cloud, session, component,

section) to the learner.

 53

Chapter Seven--Conclusion

Our design demonstrates a possibility of using constructivism learning theory to

guide the design of learning objects so that constructivism and objectivism can be

integrated together. Through our design, the cooperation among learning object authors

becomes possible and easy, and thus learners can also actively participate in the

construction of learning objects. Learning objects are rendered by some patterns and the

learner can further configure the course and have the material adapted to her needs at run

time. We provide a way to allow the learner to grasp the whole picture of the course in

the fastest way by taking control of the learning and by the support of our system. Such

ease to view the learning material iteratively in different ways will greatly assist learners

to learn efficiently in the real constructivist learning environment. Such a direction

should be the future of learning object research. The significance and essence of this

direction can best be described in the following quote from Bannan-Ritland’s paper:

“Placing the power of this technology in the learner’s hands may indeed reveal the true
potential of this technology for learning. As Scardamalia and her colleagues (1995) have so
eloquently stated, ‘… it is not the computer that should be doing the diagnosing, the goal-setting
and the planning, it is the student. The computer environment should not be providing the
knowledge and intelligence to guide learning, it should be providing the facilitating structure and
tools that enable students to make maximum use of their own intelligence and knowledge’ ”
(Bannan-Ritland, et al., 2002).

Designing learning objects has been a very struggling but enjoyable experience for

me. As there are a lot of development and specification of learning objects, I am not

aware of any design and implementation that demonstrates a significantly improved

learning experience and meets the expectation of learning objects. As the concept of

learning object is certainly very attractive and consistent with many people’s view of

 54

knowledge and learning experience, to probe deeply into such a concept and to

experiment with it provide me more experience and insights into many facets of this

issue. Obviously, a lot of concerns regarding learning object, especially learning object as

a representation of knowledge, should be very good research topics, yet few people have

addressed these topics. Constructivism, as the latest learning theory, is rarely adopted in

the design of learning objects. Realizing the insufficient research on learning objects in

association with learning theory, IDEAL learning object design is more explorative in

nature, trying to demonstrate the possibility of applying constructivism to learning object

design. It is expected that with the increase of breadth and depth of learning material, our

system’s advantage will be more obvious in facilitating the learner to have a better

control of the learning material and their pace and strategy of learning.

 55

REFERENCES

Alexander C. (2003). Nature of Order, Center for Environmental Structure.

Apache Xindice: http://xml.apache.org/xindice/.

Apache AXIS: http://ws.apache.org/axis/.

Apache Cocoon: http://cocoon.apache.org/.

Apache WSIF: http://ws.apache.org/wsif/.

Bannan-Ritland B., Dabbagh N., and Murphy K. (2002). Learning object systems as

constructivist learning environments: related assumptions, theories and applications.
Instructional Use of Learning Objects, Agency for Instructional Technology. Also
available at http://www.reusability.org/read/.

Barab S.A. and T. Duffy (2000). From practice fields to communities of practice. In D. Jonassen

and S.M. Land. (Eds.), Theoretical Foundations of Learning Environments, pp. 25–56,
Mahwah, NJ: Lawrence, Erlbaum Associates.

Bereiter C. and Scardamalia M. (1989). Intentional learning as a goal of instruction. In L. B.

Resnick’s (Ed.), Knowing, learning, and instruction, pp. 361-391, Hillsdale, NJ: Lawrence
Erlbaum Associates.

Brown J.S., Collins A., and Duguid P. (1989). Situated cognition and the culture of learning.

Educational Researcher, 18: 32–42.

Brown J.S. and Duguid P. (1993). Stolen knowledge. Educational Technology (Special Issue on

Situated Learning), 10–14, Embodied, Situated agents, pp. ix, 288, Hillsdale, NJ: Lawrence.

Henning P.H. (2004). Everyday cognition and situated learning. In Jonassen D.H. (Ed.),

Handbook of Research on Educational Communications and Technology, pp. 143-168,
Mahwah, New Jersey: Lawrence Erlbaum Associations.

Interactive Computation: http://en.wikipedia.org/wiki/Interactive_computation.

Jonassen D.H. (1993). Designing constructivist learning environments. In Duffy T.M., Lowyck J.,

and Jonassen D.H. (Eds), The Design of Constructivistic Learning Environments:
Implications for Instructional Design and the Use of Technology, Heidelburg, FRG:
Springer-Verlag.

Jonassen, D.H., Marra R.M., and Palmer B. (2004). Epistemological development: an Implicit

entailment of constructivist learning environments. In N.M. Seel and S. Dijkstra (Eds.),
Curriculum, Plans, and Processes in Instructional Design, pp. 75-88, Mahwah, NJ: Lawrence
Erlbaum Associates.

LTSC (Learning Technology Standards Committee), Standards for Learning Object Metadata,

IEEE, 2000. Available at http://ltsc.ieee.org/doc/wg12/LOMv4.1.htm.

 56

Orrill C. (2002). Learning objects to support inquiry-based, online learning. Instructional Use of

Learning Objects, Agency for Instructional Technology. Also available at
http://www.reusability.org/read/.

Savery J.R. and Duffy T.M. (1995). Problem based learning: an instructional model and its

constructivist framework. Educational Technology, 35(5): 31-37.

Shang Y., Shi H., and Chen S. (2001). An intelligent distributed environment for active learning.

ACM Journal of Educational Resources in Computing, 1(2):1-17.

Shi H., Rodriguez O., Shang Y., and Chen S. (2002). Integrating adaptive and intelligent

techniques into a web-based environment for active learning. In C. T. Leondes (Ed.),
Intelligent Systems: Technology and Applications, Volume 4, Chapter 10, pp. 229-260, CRC
Press, Boca Raton, FL.

Wegner P. (1997). Why interaction is more powerful than algorithms. Communications of the

ACM.

Wiley D. (2002). Connecting learning objects to instructional design theory: a definition, a

metaphor, and a taxonomy. Instructional Use of Learning Objects, Agency for Instructional
Technology. Also available at http://www.reusability.org/read/.

	yuanliang_thesis_preface
	yuanliang_thesis_content

