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 xi



v   velocity along y direction 
 

  squeeze film velocity V
 
w  width of the groove 
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ANALYSIS OF LUBRICATION GROOVE GEOMETRY 

 

Noel John Noronha 

Dr. Noah D. Manring, Thesis Supervisor 

 

ABSTRACT 

 

 Lubrication is process of using lubricants in moving machine components to 

reduce friction and wear between them and consequently to improve their running life. In 

this thesis, an analysis into the introduction of a groove in these components has been 

done and the various groove parameters that could influence better lubrication has been 

analyzed. The lubricating system considered in this thesis is a moving flat plate with a 

rectangular groove in it while its external housing is stationary. Equations that govern the 

flow rate, force and torque for this groove have been derived and the lubrication analysis 

has been done on these governing equations. Sensitivity analysis of flow, force and 

torque has been done taking into consideration two cases of the groove i.e. a short groove 

with deep depth and a long groove with shallow depth. Results are drawn from the values 

and plots obtained for the above cases. Based on the results obtained it is possible to 

determine the importance of each groove parameter in effective lubrication and to 

eliminate those which do not have any influence. 

 xiii



CHAPTER 1. INTRODUCTION 

 

1.1 Introduction 

Modern machinery has many moving parts that are in relative motion to each 

other. In these parts when one surface moves over the other, there is bound to be some 

resistance offered to its movement and the force that opposes this movement is called 

friction. Lubrication is simply the use of a material, which improves the smoothness of 

this surface-to-surface movement and the material that aids in this functioning is called a 

lubricant. Thus a lubricant is any substance that reduces friction and wear and provides 

smooth running and a satisfactory life for machine elements. Fluid film lubrication occurs 

when opposing bearing surfaces are completely separated by a lubricant film. The 

pressure generated within the fluid carries the applied load and the frictional resistance to 

motion arises entirely from the shearing of the viscous fluid. Friction F is proportional to 

the load W exerted by one surface on the other and its relation is given by  

 constant x F W=  (1.1) 

The constant here is called the coefficient of friction (μ ) and is dependent on the 

materials that are in sliding contact. Its value varies from 0.003 to 3.0 (Lansdown 2004). 

The coefficient of friction between two bodies is in fact not quite constant and varies with 

change in load and with sliding speed. 

 The way in which liquids lubricate can simply be explained by considering the 

example of a plain journal bearing as shown in Figure 1-1.  As the shaft rotates in the 

bearing, lubricating oil is dragged into the loaded zone and the pressure and volume of 

the oil in the loaded zone both increase. The pressure rise and thickness of the oil film  

 1



 

Figure 1-1. Plain journal bearing lubrication 

 

will depend on the shaft speed and the lubricant viscosity. Lubrication that is achieved by 

the movement of a liquid is called hydrodynamic lubrication. In the case of the plain 

journal bearing, the rotation of the shaft causes lubricant to move into the loaded zone. 

Since the shaft and bearing surfaces come closer together in the loaded zone, the entry 

into this zone is tapered, like a curved wedge. A wedge is usually essential to produce 

hydrodynamic lubrication. In some cases a wedge may be generated on a perfectly flat 

slider because the center of the sliding face warms up in use and expands. When one 

bearing surface is moving towards the other, the lubricant between the two surfaces is 

squeezed and forced to move out of the space between them. The viscosity of the 

lubricant then tends to prevent the lubricant from being squeezed out. The oil film 

thickness depends on the speed of the bearing surfaces and on the oil viscosity 

(Lansdown 2004). 

 Hydrodynamic lubricated bearings depend upon the development of a thick film 

of lubricant between the journal and the sleeve so that the surface asperities do not make 

a contact through the fluid film. Since there is no contact in ideal hydrodynamic 

lubrication, the material properties of the journal and the sleeve become relatively 
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unimportant. The lubricant property of greatest importance in designing 

hydrodynamically lubricated bearings is the viscosity η , which is the measure of the 

internal shear resistance of the fluid. Figure 1-2 shows a layer of fluid interposed between 

a solid flat plate moving with steady velocity U and a fixed flat plate, where h is the 

lubricant film thickness (Collins 2003). 

 

 

Figure 1-2. Illustration of linear velocity gradient across film thickness between 
parallel plates. 
 

In this thesis an analysis will be conducted on the lubrication effects on a flat 

plate having a groove and moving with velocity U with respect to a stationary plate. The 

pressure variation along the length of the plate and also the influence of the flow rate, 

total force and torque effects on the flat plate system will be determined. The goal of the 

project is to analyze the parameters of dependence of the flat plate and its individual 

effects on the lubrication phenomenon. Important conclusions will be drawn at the end 

from the results obtained. The potential applications of this research is mainly in pumps 

like axial piston pumps where the grooves are placed on the piston thus aiding in 

lubrication by preventing the piston from coming in contact with the housing during 

longitudinal motion. They are also used in valves like spool valves where the grooves are 

etched in the housing and thus preventing the spool from causing friction due to contact. 
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1.2 Literature Review 

Blatter et al., (1998) have made an attempt to improve localized liquid lubrication 

of flat surface with laser written fine grooves on the sliding part with the idea that this 

groove would serve as a reservoir to increase the quantity of the lubricant and also 

keeping the lubricant in the desired place. The work was done for sliding contacts in 

performance of micromechanical assemblies like watches. A special laser technique was 

employed to produce microscopic patterns on a highly polished single crystal sapphire 

flat that was completely covered in the lubricant Moebius 941. A polished steel ball was 

pressed onto the rotating sapphire disks.  The results showed much longer sliding life of 

the flat that indicated the grooves storing the lubricant and replenishing the track with 

fresh oil. It was concluded that wear can be reduced and sliding life significantly 

extended by appropriate size and form of the micropattern with the possibility of having 

virtually no wear and unlimited sliding with fine grooves. 

The use of micro pattern/pores on parallel mating sliding surfaces to show that 

surface texturing can efficiently improve hydrodynamic lubrication on reciprocating 

automotive components has been shown by Ronen et al., (2001). Microstructure plays an 

important role in friction control because of its effect on the build up of hydrodynamic 

fluid film between the mating surfaces. Increasing the number of pores along the axial 

length of the system reduces friction sharply. Experiments showed that there was friction 

reduction in surface texturing as compared to non-textured surfaces, which was seen to be 

higher than 28%.  

Similar work on micro-patterned surfaces on the load carrying capacity using 

Computational Fluid Dynamics (CFD) was carried out by Sahlin et al., (2005). The 
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hydrodynamic performance in terms of friction force and load carrying capacity and its 

dependence on groove geometry and flow conditions was analyzed using CFD. For the 

CFD model the Navier-Stokes equations were solved considering constant viscosity and 

density, assuming steady state conditions in x and y directions. The results showed an 

increase in the pressure build-up in the groove with the value of Reynolds number and 

the normal force increases with increasing groove width. A certain maximum groove 

depth exists where an increase does not lead to further increase in load carrying capacity. 

The authors concluded that an introduction of a micro-groove on one of the parallel 

surfaces affects the flow and pressure pattern, giving a net pressure build up and load 

carrying capacity on the film. It was also seen that friction forces decreases with 

increasing values of groove depth and width. 

Ivantysynova and Huang (2002) have worked on the design of the lubricating 

gaps of displacement machines where the gap height changes with operating parameters 

(pressure, speed, viscosity etc) and the gap flow condition is mainly influenced by this 

height. The axial and reaction force causes the piston in the system to be inclined which 

creates a wedge and thus develops a pressure field inside the gap due to the 

hydrodynamic effect. The gap geometry strongly influences the volumetric and friction 

losses (influence of surface roughness is neglected here relative to gap height), thus 

affecting the system efficiency. A new piston contour has been analyzed comparative to a 

conventional cylindrical form. Simulations were carried on macro (gap shape variations) 

and micro (quality/roughness of sliding surfaces) geometry to calculate the flow velocity 

field, load bearing and hydrodynamic pressure field in the lubricating gaps. The results 

show that this contour improves the pressure field as well as leads to gaps heights above a 
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critical value of 1 mμ allowing viscous friction. However further investigations analyzing 

all aspects of this new contour is to be examined.  

Research on the lubricant spreading characteristics based on its molecular weight 

in groove shaped textures has been done by Zhang et al., (2003). The experiment 

included investigating the effect of nano textures (perfectly rectangular) on lubricant 

spreading in a commercially available CD-RW and results showed that lubricant 

spreading regions become smaller as molecular weight increases which indicates that the 

larger the molecular weight, slower the lubricant spread. Findings show that increasing 

the groove depth, aids in lubricant spreading and weakens the molecular weight 

dependence. The paper also mentions of the surface energy characteristics of a material, 

where at high surface energy, intermolecular interaction becomes less significant and the 

dependence of lubricant spreading on molecular weight weakens. Similar work on the 

lubricant spreading characteristics in minute grooves using experiments and Monte Carlo 

simulations has been done by Zhang et al., (2002), the results prove that lubricant 

spreading becomes slower as molecular weight increases. 

Determining the pressure distribution over a square edged rectangular groove was 

worked on by Hargreaves and Elgezawy (1998), where pressures were calculated at every 

mesh point using the Reynolds equation i.e. a finite difference mesh set up over the 

complete bearing surface, including the groove. Experimental pressure profiles along and 

across a transverse groove machined on an inclined flat slider pad and also a theoretical 

model to predict these pressures were developed.  The loss factor that accounts for 

lubricant inertia as the lubricant enters the sudden expansion (bearing land to groove) and 

the sudden contraction (groove to bearing land) was calculated for each mesh point 
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across the groove. This loss factor modified the pressure calculation from the Reynolds 

equation. Results show good correlation between predicted and measured pressure 

profiles for a variety of operating conditions like relative sliding velocity, angle of 

inclination of the pad, groove width, groove depth etc. 

Costa et al., (2000) have studied the influence of groove location and supply 

pressure on the performance of a steadily loaded journal bearing with a single-axial 

groove. A test apparatus was set up which consisted of the test bearing, the shaft driving 

system and the loading device and various measurement devices for torque, oil, 

temperature, pressure etc were connected to this test device. The angular location of the 

groove was changed from 30φ = −  degrees to 30φ = +  degrees in relation to the load 

line. The test results showed that for 30φ = −  degrees, the hydrodynamic pressure was at 

its maximum with also an increase in friction torque while there was a reduction observed 

for both oil flow rate and shaft temperature. For 30φ = + , a reduction in maximum 

temperature and friction torque and a moderate increase in oil flow rate and maximum 

hydrodynamic pressure was seen. For all values of applied load and all groove locations, 

oil flow rate increased significantly with increasing supply pressure. 

A numerical model to study the effects of groove geometry on the hydrodynamic 

lubrication mechanism of thrust washers was developed by Yu et al., (2001). The model 

investigated the effects of radial groove width, depth, shape, number of grooves and 

operating conditions on pressure distribution, lubricant film thickness, flow rate and 

frictional torque. The model consisted of a smooth lower disk with grooves while the 

upper disk rotates with a constant angular velocity and is ungrooved. The results 

indicated that shallow and wide grooves could support significant loads and develop 
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sufficient film thickness to prevent the mating surfaces from coming in contact and that 

an optimum groove number exists which supports a maximum load. However as the 

groove number increases beyond a certain limit the load capacity decreases. A groove 

depth of the order of minimum film thickness is necessary to establish hydrodynamic 

pressure. The results also show that trapezoidal groove shape supports more load than 

either round or triangular shaped grooves when the groove depth ratio is small and when 

the ratio is large, the triangular groove supports more load. Torque decreases as groove 

number increases, which is mainly due to the increase in the average film thickness 

provided by the increased groove portion in the pad.  

 

1.3 Research Objective 

The papers in the literature review have covered the influence of microgrooves on 

system surfaces, lubricating gaps on displacement machines and effect of molecular 

weights in lubricating spreading in grooves. Also the papers included the pressure 

distribution on grooves and influence of groove location and geometry. The objective of 

this thesis is to determine the effects of a groove on lubrication in a simple flat plate 

system. The various factors affecting the system will be individually analyzed and the 

importance of each parameter in assisting the lubrication will be presented. The effect of 

the groove size, depth and location for different cases of sliding velocity of the flat plate 

will also be analyzed. The analysis is carried out in the non-dimensional form, which 

helps in scaling factors, and also that engineers prefer equations in non-dimensional form. 

However the final results are converted back and shown in its dimensional form. 

Sensitivity analysis of flow rate, force and torque are done during this project, which was 
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not seen in other research papers during literature review. Suitable and important 

conclusions based on the results obtained and prospects for future work will be made at 

the end.  

 

1.4 Thesis Outline 

The thesis report is complied of four chapters. The first chapter gives a basic 

introduction of lubrication and some of its properties and also the influence of lubrication 

in bearings. A brief literature survey of the similar work already done in this area is 

shown and finally the research objective of this thesis is outlined. 

The bulk and the most important part of this thesis is Chapter 2 that analyzes the 

flat plate system considered in this project. Here the two dimensional Navier Stokes 

Equation is used to derive the governing equation of motion for the fluid and 

subsequently the volumetric flow rate through a flat plate. This equation also gives the 

pressure differential along the length of the system, which is then non-dimensionalized to 

analyze its individual terms. Analysis of pressure along the length of the flat plate with a 

groove in it and also flow, force and torque analysis of the system is made. To pick out 

the influence of individual parameters on the lubrication effects of a flat plate system, 

sensitivity analysis is done to get the equations of the volumetric flow rate, force and 

torque. At the end of the chapter, these equations are converted back into its dimensional 

form. 

In Chapter 3, the equations derived in the previous chapter are studied in detail. 

To broaden the results scenario, two cases of groove size are considered. Grooves with 

deep depth and short width and grooves with shallow depth and long width were 
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considered. Sensitivity results of volumetric flow rate, force and torque for these two 

groove cases are obtained for different sliding velocities U. The results are tabulated and 

also plotted for better understanding. Each plot of the sensitivity and tables are then 

individually analyzed for understanding the importance of each parameter affecting the 

systems flow rate, force and torque.  

Chapter 4 reports the conclusion of this thesis. Based on the results obtained in 

Chapter 3, each groove case is analyzed and suitable and important assumptions are 

made. Scope for future work in this area is also presented in this chapter. 
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CHAPTER 2. ANALYSIS 

 

2.1 Introduction 

This chapter is devoted to the development of the governing equations for the 

lubrication problem that will be studied in this thesis. To analyze the lubrication 

conditions, the equation for conservation of mass and conservation of momentum for a 

low-Reynolds-number flow is used. The Reynolds equation will then be non-

dimensionalized so that the individual terms in the equation can be analyzed. This form 

will then be applied to analyze the model considered and various conclusions will be 

derived based on the results obtained. Also, several designs and operating conditions are 

taken into consideration during the analysis process and the conclusions are based on the 

best performance characteristics of either one or of all the cases combined. 

 

2.2 Lubrication Geometry 

The model for the lubrication analysis is shown in Figure 2-1. The system has 

been divided into three segments 1, 2 and 3 with lengths .  It has a groove of 

depth δ and width w. The flat plate moves with sliding velocity U in the positive x-

direction and has squeeze film velocity V in the positive y-direction. The system is two 

dimensional along coordinates x and y for the analysis, with a gap h

1 2,   and L L L3

0 between the flat 

plate and its housing. This gap describes the lubricating film thickness between the two 

flat surfaces and is of the order of 25μm (about half the thickness of a human hair). The 

pressure varies along the positive x direction and this will be analyzed to describe the 

flow rate Q, force F and torque T acting on the system. 
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Figure 2-1.  Straight flat plate with groove depth δ . 

 

2.3 Governing Equation 

Navier-Stokes equations are the fundamental partial differential equations that 

describe the flow of incompressible fluids. For incompressible fluids, density remains 

constant. In this section, the Navier-Stokes equations that are the classical governing 

equations that govern the dynamics of fluid motion, are derived, (Fox and McDonald 

1985). The differential equations of motion along x and y components are given by 

 yxxx
x

u u ug u v
x y t x y

τσρ ρ
∂ ⎛ ⎞∂ ∂ ∂ ∂

+ + = + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
   (2.1) 

 yy xy
y

v v vg u v
y x t x y
σ τ

ρ ρ
∂ ∂ ⎛ ⎞∂ ∂ ∂

+ + = + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2.2) 

 
where ρ is the fluid density, u and v are velocity components in x and y directions 

respectively, ,  ,  ,  xx yy yx xyσ σ τ τ  are the stresses along these coordinates. Equations (2.1) 
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and (2.2) are the differential equations of motion for any fluid satisfying the continuum 

assumption, i.e. the fluid is treated as an infinitely divisible substance and we are not 

concerned with the behavior of its individual molecules. For Newtonian fluid, the viscous 

stress is proportional to the rate of shearing strain. The stresses may be expressed in terms 

of velocity gradients and fluid properties in rectangular coordinates as follows: 

 xy yx
u v
y x

τ τ μ
⎛ ⎞∂ ∂

= = +⎜ ⎟∂ ∂⎝ ⎠
 (2.3)                         

 22
3xx

u up v
x x y

σ μ μ
⎛ ⎞∂ ∂ ∂

= − + − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.4) 

 22
3yy

v up v
y x y

σ μ μ
⎛ ⎞∂ ∂ ∂

= − + − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.5)   

whereμ  is the coefficient of viscosity of the fluid,  p is the local thermodynamic 

pressure. If these expressions are introduced into the differential equations of motion i.e. 

Equations. (2.1) and (2.2), the resulting expressions are 

 

22
3

                               

x
u u v u vg p

x x x y y y x

u u uu v
t x y

ρ μ μ μ

ρ

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎤
=⎥

⎦  (2.6) 
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3

                                

y
v u v u vg p

y y x y y y x

v v vu v
t x y

ρ μ μ μ

ρ

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎤
=⎥

⎦  (2.7) 

 
These equations of motion are called the Navier-Stokes equations and are greatly 

simplified when applied to incompressible flows in which variations in fluid viscosity can 

be neglected. Under these conditions the Equations (2.6) and (2.7) reduce to  
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2 2

2 2x
u u u p u uu v g
t x y x x y

ρ ρ μ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎟  (2.8) 

 
2 2

2 2y
v v v p v vu v g
t x y y x y

ρ ρ μ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎟  (2.9)  

Let forces xgρ  and ygρ  be written as xf and yf  respectively. Since there are potentially 

different scales of phenomenon occurring within the flow field, it is useful to write the 

Navier-Stokes equations in non-dimensional form. To do this we introduce the following 

definitions: 

 
3 3

ˆˆˆ ˆ    ,    ,    ,    , 
ˆ ˆ ˆ ˆ     ,     ,  y   

x x x

y y y b

u uU v vV t t f f F

f f F p pp x x L y L

τ= = = =

= = = =
 (2.10)  

where the carets denote the dimensionless quantities. Here τ  is a quantity of time that is 

typical of some transient behavior within the flow, and x yF F  is a characteristic force 

acting on the fluid,  p is a characteristic pressure of the fluid. Substituting Equation (2.10) 

into Equations (2.8) and (2.9) yields the following dimensionless results for the Navier-

Stokes equations: 

 

2
3 3 3

2 2 2
3 3

2 2

ˆ ˆˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆˆ   
ˆ ˆ ˆ

x b
x

L UL VLu uu v
t x

F L p L p u uf
U U x x y

ρ ρ ρ
μτ μ μ

μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ û
y
∂

+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ∂ ∂ ∂

− + +⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂
 (2.11) 

 

2
3 3 3

2 2 2
3 3

2 2

ˆ ˆˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆˆ   
ˆ ˆ ˆ

y b
y

L UL VLv vu v
t x

F L p L p v vf
V V y x y

ρ ρ ρ
μτ μ μ

μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ v̂
y

∂ ∂ ∂
+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ∂ ∂ ∂
− + +⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (2.12)   

For steady flow, in the absence of body forces, the Navier-Stokes Equations (2.11) and 

(2.12) reduce to the following form: 
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2 2

3 3 3
2 2

ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ

bUL VL p Lu u p uu v
ˆ

ˆ
u

x y U x x y
ρ ρ
μ μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = − + +⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂
⎟∂

 (2.13) 

 
2 2

3 3 3
2 2

ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ

bUL VL p Lv v p vu v
ˆ

ˆ
v

x y V y x y
ρ ρ
μ μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = − + +⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂
⎟∂

 (2.14) 

Equations (2.13) and (2.14) can be written as  

 
2 2

3
2 2

ˆ ˆ ˆ ˆˆ ˆRe Re
ˆ ˆ ˆ ˆ

b
x y

p Lu u p uu v
ˆ

ˆ
u

x y U x x yμ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎟  (2.15) 

 
2 2

3
2 2

ˆ ˆ ˆ ˆˆ ˆRe Re
ˆ ˆ ˆ ˆ

b
x y

p Lv v p vu v
ˆ

ˆ
v

x y V y x yμ
⎛⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎞
⎟  (2.16) 

where Re  and Rex y  is the Reynolds number in the x and y directions and is given by 

 3Rex
ULρ
μ

=  (2.17) 

 3Re y
VLρ
μ

=  (2.18) 

For low Reynolds number flow, the Reynolds number must be much less than unity. 

Under such conditions, it can be seen from Equations (2.15) and (2.16), that 

3Re and Re  and b
x y

3bp L p
U V

L
μ μ

� . Then the governing equation of motion for the fluid is 

given by 

 
2 2

3
2 2

ˆ ˆ
ˆ ˆ ˆ

bp L ˆp u u
U x x yμ

⎛ ⎞⎛ ⎞ ∂ ∂ ∂
= +⎜⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎟  (2.19) 

 
2 2

3
2 2

ˆ ˆ
ˆ ˆ ˆ

bp L ˆp v v
V y x yμ

⎛ ⎞⎛ ⎞ ∂ ∂ ∂
= +⎜⎜ ⎟ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎟  (2.20)   

In dimensional form, this result is written as 
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2 2

2 2 u u p
x y x

μ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.21)     

 
2 2

2 2 v v p
x y y

μ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.22)                        

Since v is small compared to u i.e. u v� , it can be assumed that v is insignificant and 

p p
x y
∂ ∂
∂ ∂

� . Thus Equation (2.22) can be dropped from the analysis. If a one-dimensional 

flow field is considered where the pressure varies only in the x direction (the direction of 

flow) and the velocity varies only in the y direction (normal to the direction of flow), 

Equation (2.21) may be written more explicitly as (Manring 2005). 

 
2

2

d u dp
dy dx

μ =  (2.23)                         

Integrating and solving for u in Equation (2.23) 

 2
1 2

1
2

pu y D y
xμ

D∂
= + +

∂
 (2.24)        

Where  and  are the constants of integration. Applying the boundary conditions 

 and  into Equation 

1D 2D

(0) 0u = ( )u h U= (2.24), then 

 2 0D =  (2.25) 

 2
1

1 1
2

pD U h
h xμ
⎛ ∂

= −⎜ ∂⎝ ⎠

⎞
⎟

2D

 (2.26) 

Substituting  back in Equation 1 and D (2.24) and rearranging  
 

 1 ( )
2

p yu h y y U
x hμ
∂

= − − +
∂

 (2.27) 

Using this result, the volumetric flow rate in the x direction is written as 
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{

3

0
Couette flowPoiseuille flow

1
12 2

h p hQ u y h U
xμ
∂

= ∂ = − +
∂∫

14243

 (2.28) 

Steady, incompressible, viscous flow through a channel with flat parallel walls is called 

the Poiseuille flow and its velocity distribution is usually parabolic. The term Couette 

flow traditionally denotes a uni-directional, non-rotating flow confined between two 

plates, of which one is moving with constant velocity. Its velocity profile is usually 

linear. Equation (2.28) can be rearranged as  

 2 312
2

p U Q
x h h

μ∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠
 (2.29)   

which describes the pressure gradient along the length of the system shown in Figure 2-1.  

 

2.4 Pressure Analysis 

It is useful to non-dimensionalize Equation (2.29) because the individual terms of 

the equation can be analyzed. Let 

 
3 0 0 3 1 1

3 2
20 0

2 2 3 3 3
3 3

ˆ ˆ ˆˆ ˆ ˆ          ,       ,       ,  =   ,    ,   ,  

ˆˆ ˆ ˆ     ,     ,     ,    ,  
12  6  

b

b b
b b

p p p x x L h h h h w wL L L L

p h p h
3

ˆL L L Q Q U U F Fp L T Tp L
L L

δ δ

μ μ

= = = = =

= = = = =
(2.30) 

where bp  indicates the pressure at 3x L= ,  is the fluid film thickness,  is the total 

force per unit width and T  is the total torque per unit width acting on the system. Here 

the terms with the carets are dimensionless. Substituting the above values in Equation 

0h F

(2.29), the non-dimensional form is given by 

 
2 3

ˆˆˆ
ˆ ˆˆ

p U Q
x h h

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

 (2.31) 
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Equation (2.31) is solved to determine the pressures in segments 1, 2 and 3. Note: This 

equation can be re-dimensionalized by substituting Equation (2.30) back into (2.31). 

Considering the film thickness h at each section of the system,  

 
1 0 1

2 0 1

3 0 2

,         0
,   

,        

h h x L
h h h L x L

h h L x L
δ

= <⎧
⎪

2

3

<
= = + < <⎨
⎪ = < <⎩

 (2.32) 

substituting Equations from 0
ˆ ˆ  , =  h h h hδ δ= 0

2
ˆ

(2.30), Equation (2.32) reduces to  
 

 
1 1

2 1

23

ˆ ˆˆ1,         0
ˆ ˆ ˆ ˆ ˆ1 ,   

ˆ ˆ ˆ 11,        

h x L

h h L x L

L xh

δ

⎧ = < <
⎪⎪= = + < <⎨
⎪ < <=⎪⎩

 (2.33) 

Thus Equation (2.31) for the pressure differential along segments 1, 2 and 3 are given by   

 ( )1ˆ ˆˆ
ˆ

p U Q
x

∂
= −

∂
 (2.34)   

 2
2

ˆˆˆ
ˆ ˆˆ (1 ) (1 )

p U Q
x δ δ

⎛ ⎞∂
= −⎜⎜∂ + +⎝ ⎠

3 ⎟⎟  (2.35)  

 ( )3ˆ ˆˆ
ˆ

p U Q
x

∂
= −

∂
 (2.36)      

Integrating Equations (2.34) through (2.36) to determine the pressures at segment 1, 2 

and 3 

 1
1 1

ˆ ˆˆˆ ˆ( )
ˆ

pp C U Q x 1C
x

∂
= + = − +

∂∫  (2.37)   

 2
2 2 3

ˆ ˆˆ ˆˆ ( )ˆ ˆˆ (1 )
p U Q U xp C
x

δ
δ

∂ − +
2C= + = +

∂ +∫  (2.38)      

 3
3 3

ˆ ˆˆˆ ˆ( )
ˆ

pp C U Q x 3C
x

∂
= + = − +

∂∫  (2.39)                         
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Integration constants  and volumetric flow rate  can be determined by 

considering the following boundary conditions. 

1 2,  ,  C C C3

0

Q̂

 1ˆ ( 0)  p x = =  (2.40) 

 1 1 2 1
ˆˆ ˆ( )  (  ˆ )p x L p x L= = =  (2.41) 

 2 1 3 1
ˆˆ ˆ ˆ( )  (   ˆ ˆ )p x L w p x L w= + = = +  (2.42) 

 3ˆ ( 1)  1  p x = =  (2.43)  

Solving Equations (2.37) through (2.39) for yields 1 2 3
ˆ,  ,   and C C C Q

 1  0C =  (2.44) 

 1
2 3

ˆˆ ˆ( )  ˆ ˆ ˆˆ(1 )
L R UC

w R
δ
δ δ

−
=

+ −
 (2.45) 

 3 3

ˆ ˆˆ ( )  ˆ ˆˆ(1 )
w R UC

w R
δ
δ δ

−
=

− + +
 (2.46) 

 
2

3

ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 ) (2 )ˆ
ˆ ˆˆ(1 )

U w
Q

w R

δ δ δ

δ δ

δ⎡ ⎤+ + − − +⎣ ⎦= −
+ −

 (2.47)  

where 

 2ˆ ˆ(3 3 )R δ δ= + +  (2.48) 

Substituting Equations (2.44) through (2.47) back into Equations (2.37) through (2.39), 

the resulting expression for pressures in segments 1, 2 and 3 is given by 

 
2

1 3

ˆ ˆ ˆˆ ˆ(1 )[(1 )(1 ) (2 )]ˆˆ ˆ ˆ ˆˆ(1 )
U wp x U

Rw

ˆδ δ δ δ
δ δ

⎡ ⎤+ − + − +
= −⎢ ⎥

+ −⎣ ⎦
 (2.49) 

 

2

3
1

2 3 3

ˆ ˆ ˆˆ ˆ(1 )[(1 )(1 ) (2 )]ˆˆ (1 ) ˆ ˆˆˆ ˆ ˆ(1 )( )ˆ ˆˆ ˆ ˆˆ(1 ) (1 )

U wU
RwL R Up x

Rw

δ δ δδ
δ δδ

δ δ δ

δ̂⎡ ⎤+ − + − +
+ −⎢ ⎥

+ −− ⎣ ⎦= +
+ − +

(2.50) 
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2

3 3 3

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) (1 )[(1 )(1 ) (2 )]ˆˆ ˆˆ ˆ ˆ ˆˆ ˆ(1 ) (1 )
R U w U wp x U

Rw Rw

ˆδ δ δ δ
δ δ δ δ

δ⎡ ⎤− + − + −
= + −

+
⎢ ⎥

− + + −⎣ ⎦
 (2.51) 

 
Variation of pressure along the length of the flat plate is now plotted for segments 1, 2 

and 3. Considering nominal values of ˆ 40δ = , Û 10= , , and 1̂ 0.25L = 2
ˆ 0.75L = ˆ 0.5w = , 

the plot is as shown below. 
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Figure 2-2.  Pressure variation of the straight flat plate at segments 1, 2 and 3. 
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Figure 2-3.  Pressure variation between section A-A. 
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The variation of pressure along the width of the groove (Section A-A) is shown enlarged 

in Figure 2-3 for clarity and shows that pressure is not constant but varies linearly along 

the groove.   

 

2.5 Force  Analysis 

Now that the pressure analysis is done, the force that is accompanied by the 

pressure differential along the length of the flat plate system is analyzed. This force acts 

between the flat plates keeping them parallel to each other. The total force F acting on the 

system is the sum of the individual forces in sections 1, 2 and 3 and is as shown below. 

  (2.52)                         
1 1

1 1

ˆ ˆ ˆ 1

1 2
ˆ ˆ0 ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ  
L L w

L L w

F p dx p dx p
+

+

= + +∫ ∫ ∫ 3dx

Substituting Equations (2.49) through (2.51) in Equation (2.52) yields 

 

1 1

1

1

ˆ ˆ ˆ

1 23
ˆ0

1

3
ˆ ˆ

ˆ ˆˆ ˆ ˆ( - )ˆˆ ˆ ˆ ˆ  ( - ) ˆ(1 )

ˆˆ ˆ ˆ     ( - )

L L w

L

L w

U Q U x ˆF U Q x C dx C dx

U Q x C dx

δ
δ

+

+

⎡ ⎤+⎡ ⎤= + + +⎢ ⎥⎣ ⎦ +⎣

⎡ ⎤+⎣ ⎦

∫ ∫

∫

+
⎦  (2.53) 

and solving them, the total force acting on the system is given by    

 
3

1 1

3

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ(1 ) (2 ) (2 ) 2ˆ   
ˆ ˆˆ2 (1 )

Uw w L w R w U L w R
F

w R

δ δ δ δ

δ δ

⎡ ⎤+ + + + − + +⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

 (2.54)    

Equation (2.54) shows that the total force  depends on Length , width , groove 

depth 

F̂ 1̂L ŵ

δ̂  and sliding velocity of the flat plate system. Û

 21



2.6 Torque Analysis 

The force that tends to cause rotation is called torque and is determined by 

multiplying the applied force by the distance from the pivot point to the point where the 

force is applied. Torque acting in this flat plate system tends to keep the flat plates 

unparallel to each other. The total torque  acting on the system is   T̂

  (2.55) 
1 1

1 1

ˆ ˆ ˆ 1

1 2 2
ˆ ˆ0 ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    
L L w

L L w

T p xdx p xdx p x
+

+

= + +∫ ∫ ∫ dx

Substituting the values of pressures 1 2 3ˆ ˆ ˆ,   and  p p p from Equations (2.49) through (2.51) 

in Equation (2.55), 

 

1 1

1

1

ˆ ˆ ˆ

1 23
ˆ0

1

3
ˆ ˆ

ˆ ˆˆ ˆ ˆ( - )ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ  ( - ) ˆ(1 )

ˆˆ ˆ ˆ ˆ     ( - )

L L w

L

L w

U Q U xT U Q x C xdx C xdx

U Q x C xdx

δ
δ

+

+

⎡ ⎤+⎡ ⎤= + + +⎢ ⎥⎣ ⎦ +⎣

⎡ ⎤+⎣ ⎦

∫ ∫

∫

+
⎦  (2.56)                         

Solving the above equation, the expression for the total torque is given by 

 
2 2 3 2 2

1 1 1 1

3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 (3 3 ) 2(1 ) (3 3 ) 3
ˆ

ˆ ˆˆ6 (1 )

Uw L L w w w R L L w w
T

w R

δ δ δ

δ δ

⎡ ⎤ ⎡− + + + + + + + −⎣ ⎦ ⎣=
⎡ ⎤+ −⎣ ⎦

ˆ ⎤⎦ (2.57)        

Equations (2.54) and (2.57) shows that the parameters on which the total force & torque 

depend are length , width of the groove , depth of the groove 1̂L ŵ δ̂  and sliding velocity 

. By varying these parameters it is possible to determine the importance of each 

parameter on the lubrication effects and this will help single out the most significant 

entity. This process of singling out parameters is discussed in the next section. 

Û
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2.7      Sensitivity 

Sensitivity is the process of analyzing the design parameters having the largest 

impact on a system and singling them out. Sensitivity coefficients of flow rate, force and 

torque for the flat plate system are now analyzed in this section.  

Consider Equation (2.47), which is the flow rate in the flat plate system and is 

shown here again. 

 
( )2

3

ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 ) (2 )
ˆ

ˆ ˆˆ(1 )

U w
Q

w R

δ δ δ

δ δ

+ + − − +
= −

+ −

δ
 (2.58) 

The parameters on which the flow rate depends are groove width  and groove depth ŵ δ̂ . 

Notice that Equation (2.58) does not contain length , which indicates that the flow rate 

is independent of the effects of length . The Taylor series of expansion for the flow 

rate is given by: 

1̂L

1̂L

 0 0

0 0

ˆ ˆˆ ˆ ˆ ˆˆ ˆ  ( ) (ˆˆ
Q QQ Q w w
w 0 )δ δ

δ

⎛ ⎞ ⎛ ⎞∂ ∂
= + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2.59) 

where 0 denotes the nominal condition. The sensitivity coefficients of the flow rate with 

respect to parameters ˆˆ  and  w δ are calculated and are given by: 

 
3

2

ˆ ˆ ˆ ˆ(1 ) ( )
ˆ ˆˆ( 1) 1

Q
w w R

δ δ

δ

∂ + −
= −

∂
R U

⎡ ⎤− −⎣ ⎦

 (2.60) 

 
( )2 2

2

ˆ ˆˆˆ ˆ3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆˆ( 1) 1

w U wQ

w R

δ δ

δ δ

δ̂⎡ ⎤− + + + − +∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

 (2.61) 

 
Similarly the sensitivity coefficients of force and torque are analyzed. Equations (2.54) 

and (2.57) showed that the important parameters on which the sensitivity coefficients 
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depend are length , depth of groove 1̂L δ̂  and width of groove . The Taylor series of 

expansion for the total force for these parameters is given by 

ŵ

 
00 1 1 0

1 0 00

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ  ( ) ( ) (ˆ ˆˆ
F F FF F L L w w

wL 0 )δ δ
δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.62)                       

The sensitivity coefficients of the force with respect to the parameters  are 

calculated and are as shown below. 

1
ˆˆ ˆ,   and L wδ

 
3

1

ˆˆ ˆˆ ( )
ˆ ˆ ˆ(1 )
F w R U
L w R

δ
ˆδ δ

∂ −
=

∂ + −
 (2.63)   

 
3 2

1

2

ˆ ˆˆ ˆ ˆ ˆ( ) (1 ) (2 2 1)ˆ
ˆ ˆ ˆ2 ( 1) 1

ˆR U L w wF
w R w

δ δ

δ

Rδ⎡ ⎤− + + − −∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

 (2.64)    

 
( )2 2

1

2

ˆ ˆˆ ˆˆ ˆ ˆ( 1 2 ) 3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆ ˆ2 ( 1) 1

w w L U wF

R w

δ δ

δ δ

δ̂⎡ ⎤− + − + + + − +∂ ⎣ ⎦= −
∂ ⎡ ⎤− −⎣ ⎦

 (2.65)                         

Similarly the Taylor series of expansion for the torque is given by 

 
00 1 1 0

1 0 00

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ  ( ) ( ) (ˆ ˆ
T T TT T L L w w

wL 0 )ˆ δ δ
δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.66)                        

where, 

 1

1

ˆ ˆ ˆˆ ˆ ˆ( )(2
ˆ ˆˆ2 2( 1)

w R U L wT
L w R

δ
δ

− +∂
= −

∂ − + −
)  (2.67)    

 
( )3 2 2 3

1 1

2

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ( ) (1 ) (3 3 1) 2 3 ( 2) 2ˆ
ˆ ˆ ˆ6 ( 1) 1

R U L w w R L w w RT
w R w

δ δ δ δ

δ

⎡ ⎤− + + − − − − −∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

(2.68)   

 
( ) ( )2 2 2

1 1

2

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ3 ( ) 1 3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆ ˆ6 ( 1) 1

w L L w w U wT

R w

δ δ

δ δ

δ̂⎡ ⎤+ + − − + + + − +∂ ⎣ ⎦= −
∂ ⎡ ⎤− −⎣ ⎦

 (2.69)           
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The results of the sensitivity coefficients of flow rate , force  and torque  will be 

discussed in the next chapter. These equations indicate the importance of each parameter 

in the analysis of the lubrication groove and also help determine the design aspects that 

need to be implemented to improve the lubrication in the flat plate system.  

Q̂ F̂ T̂

 
2.8       Dimensional Results 

The equations in the previous sections were written in the non-dimensional form and now 

those equations will be converted back to its dimensional form. Substituting Equations 

(2.10) and (2.30) into Equations (2.47), (2.54) and (2.57), the dimensional form of the 

flow rate Q, total force F and total torque T are        

 
( )2 23

0 0 0 00
3 2 2

0 0 0

( ) ( 6 )( ) ( 2 )
12 ( ) ( 3 3 )

h h U h w hhQ
h w h h

δ μ δ δ δ

μ δ δ δ δ

⎡ ⎤+ − + − +
⎢ ⎥= −

+ − + +⎢ ⎥⎣ ⎦
 (2.70) 

 

3 2 2
0 0 0

3 2 2
0 0 0

2
1 0 0

3 2 2
0 0 0

6 ( ) ( 3 3 )( 2
2 ( ) ( 3 3 )

2 3 ( 2 ) 3 ( )
               

2 ( ) ( 3 3 )

Uw h w h h w LF
h w h h

w U w L h h

h w h h

δμ δ δ δ δ
δ δ δ δ

δ δ μ δ

δ δ δ δ

+ + + + + +
= −

⎡ ⎤+ − + +⎣ ⎦
⎡ ⎤+ + + +⎣ ⎦

⎡ ⎤+ − + +⎣ ⎦

1)

 (2.71) 

 
( )

2 2 2
0 1 1

3 2 2
0 0

3 2
0 1

3 2 2
0 0

(3 3 ) 3 ( ) 3

6 ( ) ( 3 3

2 ( ) 3 1 3 ( )
    

6 ( ) ( 3 3

w h L w L w
T

h w h h

h Uw w L w L

h w h h

δ δ δ

δ δ δ δ

δ μδ

δ δ δ δ

0

1

0

⎡ ⎤+ + + + −⎣ ⎦= +
⎡ ⎤+ − + +⎣ ⎦

⎡ ⎤+ + − − +⎣ ⎦
⎡ ⎤+ − + +⎣ ⎦

 (2.72) 

The dimensional form of the flow coefficients and Q
w

Q
δ

∂ ∂
∂ ∂

are obtained by substituting 

Equations (2.10) and (2.30) into Equations (2.60) and (2.61). 

 
( )

3 2
0 0

2 2
0 0 0

( ) 6 3 ( )

12 ( 1) 3 3

h U h hQ
w w h h

δ δ δ μ δ

μ δ δ δ
0

3h

⎡ ⎤+ − + +∂ ⎣ ⎦=
∂ ⎡ ⎤− + + −⎣ ⎦

 (2.73) 
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( )3 2 2

0 0 0

2 2 3
0 0 0

6 ( 1) (2 3 ) 3( )

12 ( 1) ( 3 3 )

w U h w h h hQ
w h h h

μ δ δ δ

δ μ δ δ δ

⎡ ⎤+ − + − +∂ ⎣ ⎦=
∂ ⎡ ⎤− + + −⎣ ⎦

3
0

 (2.74) 

Sensitivity of the force coefficients are obtained by substituting Equations (2.10) and 

(2.30) into Equations (2.63) through (2.65) and are as shown below. 

 

 
2

0 0
2 2

1 0

6 3 ( )
( 1)( 3 3 )
w U h hF

L w h h h
δ δ μ δ

δ δ δ 3
0 0

⎡ ⎤− + +∂ ⎣ ⎦=
∂ − + + −

 (2.75) 

 

( )
( )

( )

2 2
0 0

3 2 2
0 1 0 0

22 3
0 0 0

3 ( 6 ) 3  x

( ) (2 2 1) [ 3 ( )]

2 3 ( )

h U h

h w L w h hF
w h h h

δ μ δ

δ δ δ

δ δ δ

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥+ + − − + +∂ ⎣ ⎦=

∂ ⎡ ⎤+ + + −⎣ ⎦

δ
 (2.76) 

 
( )2 3 2 3

1 0 0 0

22 3
0 0

(2 1) 3( ) 6 [( 1) (3 2 ) ]

2 ( 1) (3 2 )

w L w h h U w h hF

w h h

δ μ δ δ

δ δ δ

⎡ ⎤+ − − + + − + +∂ ⎣ ⎦= −
∂ ⎡ ⎤− + +⎣ ⎦

0
(2.77) 

Similarly the torque coefficients are obtained by putting in Equations (2.10) and (2.30) 

into torque Equations (2.67) through (2.69). 

 
( )

2
1 0

2 2
1 0 0 0

( 2 ) 6 3 ( )

2 (1 ) 3 3

w w L U h hT
L w h h h

δ δ μ δ

δ δ δ
0

3

⎡ ⎤+ − + +∂ ⎣ ⎦=
∂ ⎡ ⎤− + + +⎣ ⎦

 (2.78) 

 

( ) ( )
( ) ( )

2 2 3 2
0 0 0 0

2 2 2 2 3
0 1 1 0 0

22 2 3
0 0 0

3 ( 6 ) 3 { 2 3 ( )

( ) 3( ) 1 3 ( 2) ( 3 3 ) 2

6 ( 1) ( 3 3 )

h U h w h h

h w L L w w h h hT
w w h h h

δ δ μ δ δ δ δ

δ δ δ δ

δ δ δ

⎡ ⎤+ − + − + + +
⎢ ⎥
⎢ ⎥+ + − − − + + −∂ ⎣ ⎦=

∂ ⎡ ⎤− + + −⎣ ⎦

0 }
(2.79) 

 

( )
( )

2
1 1

2 3 3 2
0 0 0 0

22 2 3
0 0 0

1 3 ( )  x

3( ) 6 ( 1) (3 2 )

6 ( 1) ( 3 3 )

w w L w L

h h U h w hT

w h h h

δ μ δ δ

δ δ δ δ

⎡ ⎤− − + +
⎢ ⎥
⎢ ⎥⎡ ⎤− + + + − +∂ ⎣ ⎦⎣ ⎦=

∂ ⎡ ⎤− + + −⎣ ⎦
 (2.80) 
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Equations (2.70) through (2.80) are the complete lubrication analysis results of flow rate, 

force and torque in its dimensional form. The reason for conversion from non-

dimensional to dimensional form is that results are best explained to an Engineer for 

calculations in dimensional form and also that they help in quantifying the magnitude of 

the results. 

 

2.9       Conclusion  

 In the previous subsections, Reynolds equation for low Reynolds number flow 

was derived from the Navier Stokes equation. This equation was solved for the pressure 

differential and then non-dimensionalized by applying the expressions in Equation (2.30). 

The reasoning behind this technique was to produce a dimensionless equation that will 

contain constants to determine the significance of the individual transient terms. Pressure, 

force and torque acting on a straight flat plate system were analyzed and expressions for 

each of them were derived. Finally sensitivity analysis of flow rate, force and torque to 

determine the importance of the system parameters was carried out. 
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CHAPTER 3. RESULTS AND DISCUSSION 
 

 
3.1 Introduction 

 The previous chapter discussed the equations of the flat plate system for flow rate, 

total force and torque and also their respective sensitivities. In this chapter, two cases of 

groove length, for analysis of the flat plate system is considered. The results of the flow 

rate, flow force and torque sensitivity acting on them will be tabulated and also plotted. 

These results will indicate the importance of the parameters that affect the lubrication and 

the significance of each of them in the lubrication improvement of the system. 

 

3.2  Geometry Considerations 

The two cases of the groove for the flat plate system analyzed in this chapter are 

shown in the following figures:  

 

Figure 3-1. Groove width is small & deep depth. 

 

Figure 3-2. Groove width is long & shallow depth. 
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Where  is the groove width,ŵ δ̂  is the groove depth and  is the length till the start of 

the groove as shown in Figures 3-1 and 3-2. 

1̂L

As the groove case in Figure 3-1 is the type most commonly used, to consider the 

lubrication effects of other possible cases, a groove with long width and shallow depth is 

considered as shown in Figure 3-2. These two cases are analyzed at sliding velocities of 

. Sliding velocities given by  indicate that the flat 

plate is moving in the positive x direction, standing still and in the negative x direction 

respectively. The reference source of equations to plot the values of the sensitivities are 

given by Equations (2.60), (2.61), (2.63) through (2.65) and (2.67) through (2.69) from 

Chapter 2. 

ˆ 10,0 and 10U = − ˆ 10,0 and 10U = −

 In this chapter, the results are tabulated for the sensitivities of flow rate, force and 

torque considering the nominal conditions. The nominal conditions for the flat plate 

system considered are given by: 

For groove with small width as shown in Figure 3-1, 

  (3.1) 1
ˆ ˆˆ40;  0.03;  0.485w Lδ = = =

For groove with long width as shown in Figure 3-2,   

  (3.2) 1
ˆ ˆˆ1;  0.25;  0.375w Lδ = = =

The discussion of flow rate, force and torque sensitivity results are done in the 

subsequent sections. Note: The difference between δ̂  for small groove width and long 

groove width is large as seen in Equations (3.1) and (3.2). 
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3.3 Volumetric Flow Rate Sensitivity 

 The small gap between the moving flat plate and housing holds a certain amount 

of lubricating medium and this section analyzes the flow rate of this lubricant and the 

various factors of the flat plate system that influences this flow rate. 

 

3.3.1 Flow Results  

Consider the flow rate Equation (2.58) from Chapter 2 given by: 

 
( )2

3

ˆ ˆ ˆ ˆˆ ˆ(1 ) (1 ) (1 ) (2 )
ˆ

ˆ ˆˆ(1 )

U w
Q

w R

δ δ δ

δ δ

+ + − − +
= −

+ −

δ
 (3.3) 

where 

 2ˆ ˆ(3 3 )R δ δ= + +  (3.4) 

 
Equation (3.3) clearly indicates that the factors of influence for the flow rate are the depth 

of the groove δ̂  and the width of the groove . Considering the sensitivity coefficients 

of the flow rate with respect to these two parameters, the resulting Equations (2.60) and 

(2.61) from Chapter 2 are given by: 

ŵ

 
3

2

ˆ ˆ ˆ ˆ(1 ) ( )
ˆ ˆˆ( 1) 1

Q
w w R

δ δ

δ

∂ + −
= −

∂
R U

⎡ ⎤− −⎣ ⎦

 (3.5) 

 
( )2 2

2

ˆ ˆˆˆ ˆ3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆˆ( 1) 1

w U wQ

w R

δ δ

δ δ

δ̂⎡ ⎤− + + + − +∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

 (3.6) 

 
Equations (3.5) and (3.6) show that of the flow rate sensitivity is independent of the 

length . This is a very important inference from the flow sensitivity point of view, 1̂L

 30



which indicates that one would not need to bother about the placement of the groove 

along x direction if one is trying to alter the flow rate. The above equations also show that 

sliding velocity  holds some influence in the flow sensitivity analysis, the effects of 

which will be further discussed in the subsequent sections. 

Û

Now the results for the sensitivity coefficients for the flow rate with respect to 

groove width and groove depth are tabulated and shown in Tables 3-1 through 3-3. The 

nominal conditions considered for each groove width case to get these results are given 

by Equations (3.1) and (3.2).  

 

 
 

Table 3-1. Sensitivity coefficients of flow rate for nominal conditions ˆˆ  and w δ  at 
sliding velocity . Nominal conditions given by Equations ˆ 10U = (3.1) and (3.2). 
   

 

Table 3-2. Sensitivity coefficients of flow rate for nominal conditions ˆˆ  and w δ  at 
sliding velocity . Nominal conditions given by Equations ˆ 0U = (3.1) and (3.2). 
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Table 3-3. Sensitivity coefficients of flow rate for nominal conditions ˆˆ  and w δ  at 
sliding velocity . Nominal conditions given by Equations ˆ 10U = − (3.1) and (3.2). 
 
 

Tables 3-1 through 3-3 show that the values of flow rate sensitivity with respect to 

groove width  are higher in all the three sliding velocity cases and can be seen that its 

magnitude is greater compared to flow sensitivity for groove depth. This clearly shows 

that for effective control for flow rate sensitivity, changes in groove width have a more 

significant effect and that groove depth could be least considered in flow rate analysis for 

the flat plate system considered. Also an interesting aspect to notice in Table 3-1 is that 

flow sensitivity 

ŵ

ˆ
ˆ
Q
w
∂
∂

 changes its sign when the groove width is changed from short to 

long for the same sliding velocity. The explanation is given in Equation (3.5), where the 

quantity that influences the change of flow sensitivity sign is ˆR U− , as the rest of the 

terms in the equation are positive. Thus for a positive sliding velocity , when the 

groove width changes from short to long, groove depth 

Û

δ̂  changes from a higher value to 

a lower value i.e. from 40 to 1, thus resulting in a change of flow sensitivity sign.  

The three values for each sensitivity as shown in Tables 3-1 through 3-6 for both 

short and long width cases is because the sensitivity parameter has been varied along the 

nominal values i.e. one value each at 10%± of the nominal value and one value at the 
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nominal condition. For nominal conditions of the flat plate, length  is varied by a tenth 

of the grove width , whereas groove depth 

1̂L

ŵ δ̂  and groove width  is varied by ŵ 10%±  

of its nominal value respectively. 

 Now that the tables have been tabulated, the plots for the flow rate sensitivity for 

clearer understanding of the above tables are shown below from Figures 3-3 through 3-8. 

The plots from Figure 3-3 through 3-5 show that sensitivity lines for both 
ˆ ˆ

and ˆ ˆ
Q Q

wδ
∂ ∂

∂∂
 

are almost flat which indicate that sensitivities don’t change much with parameter 

variation for short groove width cases. 

 Sensitivity plots of flow rates for short groove width geometry conditions for 

different sliding velocities are plotted below from Figure 3-3 through 3-5. 

 

Case 1: Short width,  ˆ 10U =

 

 

 

 

Figure 3-3. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ40;  0.03;  0.485w Lδ = = =
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Case 2: Short width,  ˆ 0U =

 

 

 

 

0.027 0.028 0.029 0.031 0.032 0.033
ŵ
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Figure 3-4. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ40;  0.03;  0.485w Lδ = = =

 

Case 3: Short width,  ˆ 10U = −

Case 3: Short width,  ˆ 10U = −

 

 

Figure 3-5. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ40;  0.03;  0.485w Lδ = = =
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Sensitivity plots of flow rates for long groove width geometry conditions for 

different sliding velocities are plotted below from Figure 3-6 through 3-8. 

 

Case 4: Long width,   ˆ 10U =
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Figure 3-6. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ1;  0.25;  0.375w Lδ = = =

 

Case 5: Long width,  ˆ 0U =

 

 

 

Figure 3-7. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ1;  0.25;  0.375w Lδ = = =
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Case 6: Long width,  ˆ 10U = −

Case 4: Long width,  ˆ 10U = −

 

 

 

Figure 3-8. Flow rate sensitivity for parameters  along width  and depth ˆ ˆand wδ ŵ δ̂ . 
Nominal conditions are . 1

ˆ ˆˆ1;  0.25;  0.375w Lδ = = =

 

Figures 3-6 through 3-8 show that the plotted lines for both flow rate sensitivities 

with respect to ˆˆ  and w δ  are varying with the nominal conditions which indicate that flow 

sensitivities change much with parameter variation for long groove width cases. 

 

3.3.2 Discussion for Flow Sensitivity with Respect to Groove Width  

Consider the flow rate sensitivity 
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 given by Equation (3.5). It can be clearly 

seen from Tables 3-1 through 3-3 that for all groove geometry cases and also for varying 

sliding velocities, flow sensitivity with respect to  has the highest magnitude compared 

to the flow sensitivity with respect to 

ŵ

δ̂ . Plots in Figures 3-3 through 3-8 also validate 

this. This indicates that for effective flow control, the most influential parameter is 

groove width . Any change in this quantity has a significant effect on the flow rate in a 

flat plate system. 
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3.3.3 Discussion for Flow Sensitivity with Respect to Groove Depth  

The effects of the flow sensitivity 
ˆ
ˆ

Q
δ
∂
∂

 given by Equation (3.6) are discussed now. 

The values from Tables 3-1 through 3-3 show that flow sensitivity with respect to groove 

depth is very small which helps conclude that the effects of groove depth in flow rate 

sensitivity analysis is very minimal comparative to groove width. Almost all the plots 

from Figures 3-3 through 3-8 show that the flow sensitivity line follows the zero 

coordinate axis, which indicates that its magnitude is very low and can thus be neglected 

in this analysis.  

Another aspect to notice is that plots in Figures 3-3 through 3-5 look similar and 

thus it can be concluded that the sliding velocity  is not very influential in flow rate 

sensitivity for short width deep groove cases. The same could not be said about long 

width short groove cases as they vary as seen in Figures 3-6 through 3-8. 

Û

Thus from Tables 3-1 through 3-3 and Figures 3-3 through 3-8, flow rate 

sensitivity results showed that for all groove width geometries, groove width  is the 

most influencing parameter to be taken into consideration comparative to groove depth 

ŵ

δ̂  

and length . 1̂L

 

3.4 Force Sensitivity 

Lifting force of the flat plate against its housing aids in better lubrication because 

of the lubrication gap created. The sensitivity analysis of this force has been done in 

Chapter 2 and the sensitivity coefficients of force and its dependence on the individual 

parameters is as shown in the next section. 
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3.4.1 Force Results  

Consider the force Equation (2.54) from Chapter 2 and are shown here again for 

convenience. 

 
3

1 1

3

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ(1 ) (2 ) (2 ) 2
ˆ   ˆ ˆˆ2 (1 )

Uw w L w R w U L w R
F

w R

δ δ δ δ

δ δ

⎡ ⎤+ + + + − + +⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

 (3.7) 

 
Equation (3.7) show that the lifting force in the flat plate system depends on the 

parameters 1
ˆˆ ˆ,   and L w δ . The sensitivity coefficients with respect to these are given by: 

 
3

1

ˆˆ ˆˆ ( )
ˆ ˆ ˆ(1 )
F w R U
L w R

δ
ˆδ δ

∂ −
=

∂ + −
 (3.8) 

 
3 2

1

2

ˆ ˆˆ ˆ ˆ ˆ( ) (1 ) (2 2 1)ˆ
ˆ ˆ ˆ2 ( 1) 1

ˆR U L w wF
w R w

δ δ

δ

Rδ⎡ ⎤− + + − −∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

 (3.9) 

 
( )2 2

1

2

ˆ ˆˆ ˆˆ ˆ ˆ( 1 2 ) 3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆ ˆ2 ( 1) 1

w w L U wF

R w

δ δ

δ δ

δ̂⎡ ⎤− + − + + + − +∂ ⎣ ⎦= −
∂ ⎡ ⎤− −⎣ ⎦

 (3.10) 

where the value of R is given by Equation (3.4). 

 

Equations (3.8) through (3.10) shows that force sensitivity depends on 

parameters, length  along with groove depth 1̂L δ̂  and grove width . These equations 

will help determine the influence of each parameter when the force sensitivity 

coefficients are varied with the nominal conditions given by Equations 

ŵ

(3.1) and (3.2). 

The results are calculated for the different cases of sliding velocity  and groove width 

geometry and the respective values are tabulated and shown in Tables 3-4 through 3-6 

below. Also seen in these tables is that for all cases of sliding velocity, the value for force 

Û
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sensitivity 
ˆ
ˆ

F
δ
∂
∂

 are not tabulated. The reason for this being that this force sensitivity was 

so small that the tool Mathematica could not solve for its value. 

 

 

Table 3-4. Sensitivity coefficients of force for  at sliding velocity 

. Nominal conditions given by Equations 
1

ˆ ˆ ˆ,   and Lδ w
ˆ 10U = (3.1) and (3.2). 

 
 
 

 

Table 3-5. Sensitivity coefficients of force for  at sliding velocity  1
ˆ ˆ ˆ,   and Lδ w

ˆ 0U = . Nominal conditions given by Equations (3.1) and (3.2). 

 39



 
 
Table 3-6. Sensitivity coefficients of force for  at sliding velocity 

. Nominal conditions given by Equations 
1

ˆ ˆ ˆ,   and Lδ w

w

ˆ 10U = − (3.1) and (3.2). 
 

 Now the sensitivity plots for force are shown for varying sliding velocities in 

Figures 3-9 through 3-26 where parameters  are plotted against  

individually for the nominal conditions. The discussion of these plots will be done in the 

further sections of the chapter. 

1
ˆˆ ˆ,   and L δ 1

ˆˆ ˆ,   and L wδ

 

Case 1: Short width, . Nominal conditions . ˆ 10U = 1
ˆ ˆˆ40; 0.03; 0.485w Lδ = = =

 

Figure 3-9. Force sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-10. Force sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

 

Figure 3-11. Force sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 
 
Case 2: Long width, . Nominal conditions . ˆ 10U = 1

ˆ ˆˆ1; 0.25; 0.375w Lδ = = =
 

 

Figure 3-12. Force sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-13. Force sensitivities for parameters  along depth 1

ˆˆ ˆ,   and L δ w δ̂ . 
 

 
 
Figure 3-14. Force sensitivities for parameters  along width . 1

ˆˆ ˆ,   and L δ w ŵ
 
 
Case 3: Short width, . Nominal conditions . ˆ 0U = 1

ˆ ˆˆ40; 0.03; 0.485w Lδ = = =
 

 
 
Figure 3-15. Force sensitivities for parameters  along length . 1

ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-16. Force sensitivities for parameters  along depth 1

ˆˆ ˆ,   and L δ w δ̂ . 
 

 
 
Figure 3-17. Force sensitivities for parameters  along width . 1

ˆˆ ˆ,   and L δ w ŵ
 
 
Case 4: Long width, . Nominal conditions . ˆ 0U = 1

ˆ ˆˆ1; 0.25; 0.375w Lδ = = =
 

 
 
Figure 3-18. Force sensitivities for parameters  along length . 1

ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-19. Force sensitivities for parameters  along depth 1

ˆˆ ˆ,   and L δ w δ̂ . 
 

 
Figure 3-20. Force sensitivities for parameters  along width . 1

ˆˆ ˆ,   and L δ w ŵ
 
 
Case 5: Short width, . Nominal conditions . ˆ 10U = − 1

ˆ ˆˆ40; 0.03; 0.485w Lδ = = =
 

 
Figure 3-21. Force sensitivities for parameters  along length . 1

ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-22. Force sensitivities for parameters  along depth 1

ˆˆ ˆ,   and L δ w δ̂ . 
 

 
 
Figure 3-23. Force sensitivities for parameters  along width . 1

ˆˆ ˆ,   and L δ w ŵ
 
 
Case 6: Long width, . Nominal conditions . ˆ 10U = − 1

ˆ ˆˆ1; 0.25; 0.375w Lδ = = =
 

 
Figure 3-24. Force sensitivities for parameters  along length . 1

ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-25. Force sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

 
 

Figure 3-26. Force sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

  

3.4.2 Discussion for Force Sensitivity with Respect to Length  

Consider the force sensitivity with respect to length  given by Equation 1̂L (3.8). 

Tables 3-4 through 3-6 show that the magnitude of this force sensitivity is higher in all 

the cases for all sliding velocities. Also a look into the plots shown in Figures 3-9 

thorough 3-26 validates this point and thus it can be concluded that for effective force 

sensitivity control, the most important quantity is length  compared to other 

parameters.  

1̂L
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An interesting feature in Table 3-4 is the change of force sensitivity value with 

respect to the length  from positive to negative, when the groove geometry changes 

from short to long width for sliding velocity  A look into Equation 

1̂L

ˆ 10.U = (3.8) shows 

that the quantity  changes its sign based on change in value of groove depth from 

short width to long width. Also a clearer understanding of this change in force sensitivity 

sign is shown in Figure 3-27, which shows this gradual transition from a positive force 

sensitivity value to a negative value. Looking at Equation 

ˆR U−

(3.8), it shows that force 

sensitivity is depending on two parameters ˆˆ and w δ .  Thus varying these two parameters 

with respect to their nominal conditions given in Equation (3.1) and (3.2), Figure 3-27 is 

obtained which clearly indicates the change of force sensitivity sign for variation from 

short groove width to long width geometry. 
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Figure 3-27. 3D plot of variation of force sensitivity 
1

ˆ
ˆ
F
L
∂
∂

 for changes of groove width 

 and depth ŵ δ̂  from short to long groove geometry, ˆ 10U = . 
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3.4.3 Discussion for Force Sensitivity with Respect to Groove Width  

This section analyzes the influence of groove width on force sensitivity. Consider 

the force sensitivity with respect to width  given by Equation ŵ (3.9). Its magnitude 

shown in Tables 3.4 through 3.6 indicates that this parameter has some influence on the 

force sensitivity but not as much compared to the parameter . The Figures 3-9 through 

3-26 show that the plot lines fall in between the sensitivity coefficients with respect to 

1̂L

1
ˆˆ  and L δ  which shows that groove width is also one of the parameters to be considered 

for force sensitivity control.  

Analyzing Equation (3.9), it is clear that the factor for change in sensitivity sign 

as seen in Table 3-4 is the quantity ˆR U− , and the reasoning as explained in the previous 

section. It could also be explained by looking at the figure below. 
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Figure 3-28. 3D plot of variation of force sensitivity 
ˆ
ˆ
F
w
∂
∂

 for changes of groove width 

 and depth ŵ δ̂  from short to long groove geometry, length  is constant, 

. 
1̂ 0.375L =

ˆ 10U =
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Force sensitivity in Equation (3.9) shows that it depends on three parameters 

1
ˆˆ ˆ,   and L w δ  and thus to plot a 3D figure to show the force sensitivity 

ˆ
ˆ
F
w
∂
∂

 variation, one 

of the parameters has to be kept constant. Here length  is kept constant and the other 

two parameters are varied along the same nominal conditions. The results are shown in 

Figure 3-28 with the same explanation as for force sensitivity 

1̂L

1

ˆ
ˆ
F
L
∂
∂

. The figures are shown 

only for the force sensitivity cases but can also be shown for torque sensitivity as well, if 

there is a change in its sensitivity sign from once case to the other. 

 

3.4.4 Discussion for Force Sensitivity with Respect to Groove Depth  

Consider the force sensitivity equation with respect to groove depth δ̂  given by 

the Equation (3.10). An analysis of this sensitivity from the Tables 3-4 through 3-6 shows 

that its value is very small compared to other parameters. Also it can be seen that since 

the value was so low for long groove width cases, its value could not be plotted for all the 

sliding velocities. The importance of groove depth in force sensitivity can also be clearly 

understood by looking at the plots in Figures 3-9 through 3-26, where it is seen that this 

sensitivity is on the zero coordinate axis for almost all groove geometries as well as 

sliding velocity cases. This indicates that having any groove depth has little or no 

influence on force sensitivity and that it can be safely neglected during this analysis.  
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3.5 Torque Sensitivity 

Considering the torque sensitivity coefficients now, the sensitivity equations with 

respect to its influencing parameters were analyzed in Chapter 2 and shown here again.  

 
2 2 3 2 2

1 1 1 1

3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 (3 3 ) 2(1 ) (3 3 ) 3
ˆ

ˆ ˆˆ6 (1 )

Uw L L w w w R L L w w
T

w R

δ δ δ

δ δ

⎡ ⎤ ⎡− + + + + + + + −⎣ ⎦ ⎣=
⎡ ⎤+ −⎣ ⎦

ˆ ⎤⎦ (3.11) 
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1
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∂ − + −

ˆ )
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1 1

2

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ( ) (1 ) (3 3 1) 2 3 ( 2) 2ˆ
ˆ ˆ ˆ6 ( 1) 1

R U L w w R L w w RT
w R w

δ δ δ δ

δ

⎡ ⎤− + + − − − − −∂ ⎣ ⎦=
∂ ⎡ ⎤− −⎣ ⎦

(3.13) 

 
( ) ( )2 2 2

1 1

2

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ3 ( ) 1 3(1 ) 1 ( 1) (3 2 )ˆ
ˆ ˆ ˆ6 ( 1) 1

w L L w w U wT

R w

δ δ

δ δ

δ̂⎡ ⎤+ + − − + + + − +∂ ⎣ ⎦= −
∂ ⎡ ⎤− −⎣ ⎦

 (3.14) 

where R is given by Equation (3.4). 

Equations (3.12) through (3.14) show that torque sensitivity depend on . 1
ˆ ˆˆ ,   and w Lδ

 
3.5.1 Torque Results  

            Substituting the nominal conditions given by Equations (3.1) and (3.2) and their 

variation into the above equations the results are tabulated and are shown in Table 3-7 

through 3-9. The higher the magnitude of the parameter, higher its influence in the 

operating lubricating condition of the system. The tables are plotted for torque 

sensitivities with respect to quantities  for short and long groove width 

geometries and for varying sliding velocity 

1
ˆ ˆˆ ,   and  w δ L

ˆ at 10,  0, 10U − . The results obtained from 

the table will be discussed in the coming sections.  
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It can be seen from the tables below that the torque sensitivity for  have almost 

the same values for all short width cases at different sliding velocities, which indicates 

that these torque sensitivities are independent of sliding velocity. 

1̂ ˆ and L w

 
 

 
 
Table 3-7. Sensitivity coefficients of torque for  at sliding velocity 

. Nominal conditions given by Equations 
1

ˆ ˆ ˆ,   and Lδ w
ˆ 10U = (3.1) and (3.2). 

 
 
 

 
 

Table 3-8. Sensitivity coefficients of torque for  at sliding velocity  1
ˆ ˆ ˆ,   and Lδ w

ˆ 0U = . Nominal conditions given by Equations (3.1) and (3.2). 
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Table 3-9. Sensitivity coefficients of torque for  at sliding velocity 

. Nominal conditions given by Equations 
1

ˆ ˆ ˆ,   and Lδ w

w w

ˆ 10U = − (3.1) and (3.2). 
 

     

Sensitivity plots for torque are shown below for varying sliding velocities where 

parameters  are plotted against  individually for the nominal 

conditions given.  

1
ˆˆ ˆ,   and L δ 1

ˆˆ ˆ,   and L δ

 

Case 1: Short width, . Nominal conditions  ˆ 10U = 1
ˆ ˆˆ40; 0.03; 0.485w Lδ = = =

 

Figure 3-29. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-30. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-31. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

Case 2: Long width, . Nominal conditions  ˆ 10U = 1
ˆ ˆˆ1; 0.25; 0.375w Lδ = = =

 

Figure 3-32. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-33. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-34. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

Case 3: Short width, . Nominal conditions  ˆ 0U = 1
ˆ ˆˆ40; 0.03; 0.485w Lδ = = =

 

Figure 3-35. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-36. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-37. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

Case 4: Long width, . Nominal conditions  ˆ 0U = 1
ˆ ˆˆ1; 0.25; 0.375w Lδ = = =

 

Figure 3-38. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-39. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-40. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

Case 5: Short width, . Nominal conditions  ˆ 10U = − 1
ˆ ˆˆ40; 0.03; 0.485w Lδ = = =

 

Figure 3-41. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L
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Figure 3-42. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-43. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

Case 6: Long width, . Nominal conditions  ˆ 10U = − 1
ˆ ˆˆ1; 0.25; 0.375w Lδ = = =
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Figure 3-44. Torque sensitivities for parameters  along length . 1
ˆˆ ˆ,   and L δ w 1̂L

 

Figure 3-45. Torque sensitivities for parameters  along depth 1
ˆˆ ˆ,   and L δ w δ̂ . 

 

Figure 3-46. Torque sensitivities for parameters  along width . 1
ˆˆ ˆ,   and L δ w ŵ

 

3.5.2 Discussion for Torque Sensitivity with Respect to Length  

Consider the torque sensitivity with respect to length  given by Equation 1̂L (3.12). 

Its sensitivity values have been plotted in Tables 3-7 through 3-9 and it can be seen that 

for short groove widths, it magnitude is less compared to torque sensitivity 
ˆ
ˆ
T
w
∂
∂

 whereas 

its magnitude is the highest for long groove width geometries. This indicates that 
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parameter  is more influential in torque sensitivity control for long groove widths. 

Figures 3-32 through 3-34, 3-38 through 3-40 and 3-44 through 3-46 clearly show the 

importance of length  as the most influencing parameter in torque sensitivity control. 

Also the plots for short groove widths are almost a straight line, which indicates that 

sensitivities don’t change much for nominal condition variation. 

1̂L

1̂L

 As was the similar case in force sensitivity, it can be seen in Table 3-7, that the 

sign for 
1

ˆ
ˆ
T
L
∂
∂

 changes from positive to negative for the change of groove geometry and 

the explanation for this can be given from the Equation (3.12). The denominator is 

always negative because of the quantity ˆ 1w−  being less than zero, thus rendering the 

whole sensitivity term positive. So the only influencing factor for the change of sign is 

the quantity . Thus when the groove width changes from short to long, the value of ˆR U−

δ̂  changes from 40 to 1 resulting in ˆR U−  being negative, where  is positive. Other 

sensitivity sign changes in the tables can be explained in the similar manner.  

Û

 

3.5.3 Discussion for Torque Sensitivity with Respect to Groove width  

This section analyzes the influence of groove width  on torque sensitivity and 

its values are shown in Tables 3-7 through 3-9. The higher magnitude numbers for short 

groove widths clearly indicate that groove width is more influential for these groove 

geometries compared to long groove widths where sensitivity 

ŵ

1

ˆ
ˆ
T
L
∂
∂

 has a better influence. 

Figures 3-29 through 3-31, 3-35 through 3-37 and 3-41 through 3-43 prove the above 
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conclusion. The other plots indicate that 
ˆ
ˆ
T
w
∂
∂

 varies linearly for changes in nominal 

condition and is more influential than torque sensitivity with respect to groove depth δ̂ . 

There is a change in torque sensitivity sign with respect to groove width as 

observed in Tables 3-8 and 3-9. As seen in the previous sections, the quantity that 

changed the sensitivity sign was ˆR U− . For long groove widths  returns a negative 

values for sliding velocity 10 and positive values for sliding velocity 0 and –10. Thus the 

force sensitivity values for long widths are negative in Table 3-7 and are positive in 

Tables 3-8 and 3-9.  

ˆR U−

 

3.5.4 Discussion for Torque Sensitivity with Respect to Groove Depth  

Lastly consider the equation of sensitivity coefficient 
ˆ
ˆ

T
δ
∂
∂

, which is given by the 

Equation (3.14). For almost all the groove geometries cases at different sliding velocities, 

the magnitude of this sensitivity is very low as seen in Tables 3-7 through 3-9. This 

clearly states that the effect of groove depth is minimal in torque sensitivity. Figures 3-29 

through 3-31, 3-35 through 3-37 and 3-41 through 3-43 show that the sensitivity values 

are along the zero coordinate axis for short groove widths and for long groove 

geometries, its magnitude is very small. Thus it can be concluded from these results that 

groove depth δ̂  can be safely neglected during torque sensitivity analysis. 

    

3.6 Conclusion 

This chapter analyzed the flow rate, force and torque sensitivities effecting the 

lubrication of the flat plate system and the results were tabulated and also plotted. Two 
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cases of the flat plate system for analysis were considered: A short groove width and a 

long groove width. The resulting tables as well as the plots gave an insight into the 

individual significance of the system parameters . The analysis of flow rate 

sensitivity has shown that it is independent of the effects of length . Force and torque 

sensitivity analysis has shown that for effective control of the flat plate system, the 

parameter of influence depends on the groove width geometry and that groove depth 

could be neglected. These results were analyzed and suitable assumptions that influence 

lubrication are made which is shown in the following conclusion chapter. 

1
ˆˆ ˆ,   and L δ w

1̂L
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CHAPTER 4. CONCLUSION AND FUTURE WORK 

 

 In this chapter, conclusions that are based and supported by the results and 

discussion of Chapter 3, considering the sensitivity of flow, force and torque for the two 

cases of short and long width grooves and their effects on the lubrication of the flat plate 

system because of parameters  are listed. Possible future work that could be 

carried out after this project is also listed. 

1
ˆˆ ˆ,   and L δ w

 

4.1 Conclusions 

 The governing equations for the results are given by Equations (3.5) and (3.6), 

(3.8) through (3.10) and (3.12) through (3.14) in Chapter 3. These equations are used to 

tabulate the sensitivity values and plots shown in Tables 3-1 through 3-9 and Figures 3-3 

through 3-46 respectively. Valuable conclusions can be made based on the information 

obtained from these tables and plots. 

 

4.1.1 Flow Sensitivity Conclusions 

1. Flow rate sensitivity is independent of length  as seen from Equations (3.5) and 

(3.6) in Chapter 3. This implies that the groove can be placed anywhere along the 

length of the x-axis of the flat plate system without having any effect on flow rate 

sensitivity. 

1̂L

2. Sensitivities do not change much with parameter variation for short groove width 

geometries as shown in Figures 3-3 through 3-5 and flow sensitivities change with 

parameter variation as indicated by Figures 3-6 through 3-8 in Chapter 3. 
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3. Groove width  is the most influencing parameter in flow rate sensitivity. The 

magnitude of flow sensitivity with respect to groove depth

ŵ

δ̂  was seen to be very 

low, which concludes that this quantity can be neglected during the sensitivity 

analysis. 

4. Sliding velocity  has no effect on flow rate sensitivity for short width deep 

groove geometry cases. 

Û

 

4.1.2 Force Sensitivity Conclusions 

1. Length  has the highest impact on force sensitivity followed by groove width 

. This is clearly seen in Figures 3-9 through 3-26. 

1̂L

ŵ

2. The force sensitivity with respect to groove depth δ̂  have a very low magnitude 

and follow the zero axis line when plotted, which indicates that groove depth has 

little or no effect and that it can be in neglected in force sensitivity analysis. 

 

4.1.3 Torque Sensitivity Conclusions 

1. Torque sensitivities with respect to parameters  for short width 

geometries are independent of sliding velocity . 

1̂ ˆand  L w

Û

2. Length  is more influential for long groove widths whereas groove width  is 

more important for short groove widths. 

1̂L ŵ

3. For short groove widths, torque sensitivity with respect to length  do not 

change much for nominal condition variation i.e. it’s almost a straight line. 

1̂L
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4. Torque sensitivity with respect to groove depth δ̂  has low magnitude for all cases 

and thus is of minimal importance and can be neglected during this analysis. 

 

4.2 Scope for future work 
 

The analysis done during this project gives some important results for the 

lubrication groove in hydraulic machinery and valuable conclusions have been drawn 

from it. However there is also scope for some future work that could be carried out to 

further validate our results conclusively. Some of the suggestions are:   

1. The basis of the analysis, results and conclusions obtained in this project is on 

theoretical calculations. These results could be further validated by real time 

practical experiments.  

2. CFD software has its limitations in the minimum dimension size a system could 

have. Considering the extreme small gap between the plate and housing, if this 

limitation is resolved, CFD analysis could also be done to validate the results. 

One method could be to subprogram the commands in other software like C, C++ 

and then import and execute these commands in Fluent. 

3. The analysis and results conducted in this thesis involved single groove geometry. 

Analysis could also be done to determine the effect of multiple grooves on 

lubrication effects in hydraulic machinery. 

4. The analysis in this thesis was conducted for a flat plate system and could be 

extended to a cylindrical geometry, as this is the most common form of geometry 

currently used in the hydraulic industry. 
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