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CHAPTER 1 

INTRODUCTION 
 

High voltage closing switches have widespread application in directed energy technologies 

where large quantities of energy are transferred to nonlinear loads over short durations of time. 

The typical directed energy (DE) load has stringent voltage and current requirements, and often 

must be synchronized in time with other parallel systems that make up the complete DE package. 

The high voltage closing switch must exhibit reliable breakdown (e.g., closure) with a minimum 

statistical variation in time or amplitude. Proven present-day technologies for achieving voltage 

hold-off at a significant portion of a megavolt, while producing reliable breakdown at a 

particular voltage are almost entirely limited to high-pressure gas switches.  

The Center for Physical and Power Electronics at the University of Missouri – Columbia is 

developing an alternative switch technology based on an earlier success in industry of a 

pressurized, flowing oil switch [1]. The University of Missouri – Columbia (UMC) high pressure 

oil switch was designed to provide high voltage hold-off capability to 300 kV, a service life to 

greater than 107 breakdowns between electrode replacements and repetition rates up to 

100 Hz [2-3]. The high pressure is used as a means of controlling the post-pulse gaseous 

byproducts by driving hydrodynamic events at a greater rate (e.g., increased rate of cavity 

decay). Forced convection, or flow, is used to control the post-pulse solid byproducts. Utilizing 

an optimized geometry, UMC was able to achieve rep-rate breakdown electric fields on the order 

of 1 – 2 MV/cm with a 1-σ statistical error as low as 9 % of the average breakdown electric field 

at low pressure, and as low as 11 % of the average breakdown electric field at high pressure. The 

breakdown electric field strength is significantly improved with the use of high pressure, whereas 

the statistical error of a collection of breakdowns, known as jitter, is significantly degraded with 

high pressure. 

This dissertation discusses investigations into oil switching systems to address and reduce the 

jitter observed in the breakdown electric field strength of a pressurized, oil dielectric. The work 
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is conducted in two phases, the first of which examines the effects of oil chemistry on 

breakdown statistics, and the second of which considers the effects of particle additions to the 

best-performing fluids identified during the first phase of the experiment. A single-shot high 

voltage advanced dielectric test stand (HVADTS) was designed and built to test these oils. The 

HVADTS is capable of applying a 250 kV pulse with a ‘1-cos’ rise-time of 1.6 µs to a 

pressurized oil dielectric. Numerous oil chemistries were evaluated, including straight-chain 

hydrocarbons and branched olefins, silicone and ester fluids, alkylbenzene and two types of 

transformer oil. Following the oil chemistry evaluation, a high-K particle dielectric was added in 

concentrations up to 5 % (by weight) to the best-performing fluids. 

Controlled breakdown tests yielded statistically significantly results corresponding to the 

importance of the fluid chemistry. The breakdown testing on the single-shot HVADTS system 

indicates that the straight-chain hydrocarbons and branched olefins tend to produce reduced jitter 

on-par with, or better than the UMC rep-rate test stand. The transformer oils both tend to produce 

greater jitter than the UMC rep-rate test stand. The jitter of alkylbenzene is observed to perform 

as well as the branched olefins. The ester-based fluids and silicon-based fluids demonstrated 

increased jitter, by comparison.  

The selected fluids were then evaluated with high-K particle concentrations of up to 5% of 

barium-strontium-titanate (BST). The BST particle dispersion further reduces jitter in some of 

the test fluids. In no case does the BST particle dispersion significantly increase jitter [4]. Based 

on the research conducted to date, UMC has determined that oil chemistry is a significant factor 

in establishing low breakdown statistical error, or jitter, and a high-permittivity particle additive 

can, in some cases, produce a significant decrease in breakdown jitter. 

The introduction of high-K BST particles into an oil dielectric has reduced the 

self-breakdown voltage jitter of our HVADTS system. The particles are thought to interact with 

the field enhancement defects on the surface of the electrode, potentially cancelling the effects of 

the surface field non-uniformity. A non-uniform surface electric field distribution increases the 

probability that a local field enhancement on an electrode surface maxima or minima will initiate 

a low or high voltage breakdown event, respectively. High and low voltage breakdown events 

occurring over the lifetime of the switch significantly increase the switch jitter. Most modern 
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pulsed circuits require switch jitter of 5% or less. The results show that switch jitter can be 

reduced  by manipulating the oil chemistry.  

An electrostatic simulation model of a dielectric system composed of a uniformly-distributed 

suspension of high-K particles is extensively evaluated. The simulations examine the effects of 

various concentrations of submicron-sized particles of BST in an oil dielectric subject to uniform 

electric fields. The model suggests the formation of localized, nonlinear electric field 

enhancements near the electrode surface, as well as in the bulk dielectric. It is believed that these 

localized enhancements are the result of the BST particles becoming highly polarized under the 

influence of the applied voltage gradient. 

 In an attempt to further optimize switch breakdown jitter, both rough and smooth electrode 

surface conditions are employed at variable gap spacing. It is found that a rough electrode 

surface produces lower jitter and more consistent breakdown values than the smooth electrode 

surface.  This discovery prompted the use of preconditioned electrode surfaces in all subsequent 

testing. It is also apparent that electrode gap spacing has a significant effect on jitter 

performance. The data and simulations suggest that at smaller gap spacing the particle’s effect on 

jitter is more significant than at larger gap spacings; with jitter performance improving with 

increasing gap spacing.  

An extensive procedure was developed to suspend the High-K BST particles in the oil 

dielectric. The procedure is used with great success to produce an effective dielectric oil 

shelf-life of several months. It was found that the particle-infused oil dielectrics are prone to 

excessive water concentrations many times greater than those in the base oil. Water 

concentration is found to heavily influence switch jitter. Reducing the water concentration of the 

particle -infused oils has tended to improve jitter performance in nearly every case.  

This dissertation is divided into this introduction and seven additional chapters. The theory 

behind electrical breakdown phenomenon in liquids as well as the significant experimental 

variables are investigated in chapter two. The physical and electrical characteristics of the BST 

dielectric particle are described with the aid of a scanning electron microscope (SEM) and 

energy dispersive x-ray spectrometry in chapter three. Also in chapter 3, the characteristics of the 

dielectric oils are analyzed with Photon Correlative Spectroscopy (PCS) and a drying method to 
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determine the mean particle size and concentration; as well as the procedure to produce the 

particle/oil colloid. The simulated electrostatic field interactions between the electrode and 

polarized high-K particles generated by CST EM Studio 3D electromagnetic PIC simulation 

software are analyzed in chapter four. The characteristics of rough and smooth electrode surfaces 

are analyzed with an optical profilometer in chapter five. The experimental single-shot test stand 

(HVADTS) and supporting components are outlined in chapter six. The experimental results and 

corresponding discussion are included in chapters seven and eight.  Altogether, these chapters 

attempt to build an understanding of the effect that high-K particles and other variables have on 

the breakdown performance of an oil switch. Proposed future adjustments to the physical 

parameters of the switch to achieve the optimum jitter performance are also discussed.   



 

 

 

CHAPTER 2 

OIL BREAKDOWN THEORY 
 

Oil is being considered as a dielectric switching medium for current and future pulsed power 

applications due to its high electrical breakdown strength and rapid recovery. The electrical 

breakdown of dielectric oil is the final stage of switch closure, which is preceded by several pre-

breakdown stages. Breakdown is characterized by the formation of an arc; an electrical short 

circuit through the oil, which allows luminous currents to flow between two electrodes. This 

flow of electrons would otherwise be insulated by the liquid. This breakdown event is the 

fundamental purpose of the oil closing switch as it allows energy transfer between circuits; 

typically between a storage element and a load. The high voltage breakdown strength of the oil 

allows the electrodes to be spaced close together in millimeter gap spacing. Shorter gap spacing 

lowers the inductance of the arc, which is approximately 5𝑛𝐻
𝑐𝑚

, producing a faster current rise time 

[1]. A fast and reliable current rise is vital to directed energy loads. 

 

2.1   Formation of a Breakdown Arc  

The dielectric breakdown strength of oil is defined as its ability to withstand an applied 

electric field without breaking down and allowing current to flow. A breakdown event in oil 

begins when electrons obtain sufficient energy from the applied field to overcome the work 

function of the electrode/oil boundary. Once free from the electrode, the electrons interact with 

the neutral oil molecule chains and any foreign particulates [5]. At first, the electrons interact 

with the oil molecules through non-ionizing collisions causing the local oil temperature to 

increase (joule heating).  The increased oil temperature results in local evaporation of the oil and 

subsequent formation of vapor cavities near the electrode surface. As the vapor 'bubble" forms 

and expands, the mean free path of the emitted electrons become long enough for ionizing 

collisions to begin to occur [6].  
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The current theory of breakdown in oil suggests that a vapor cavity, or bubble, grows off the 

electrode as the electrons impart energy to the system through vaporization and ionization. The 

growth of this bubble, or low density region, is suppressed by the pressure of the surrounding 

liquid. The bubble expands against this external pressure due to its increasing electron density. 

The expansion is a result of the repulsive force between electrons and subsequent space charge 

density in the area [5].  

The plasma in the bubble is charged such that the bubble and electrode have a matching 

potential [5]. As the bubble expands due to localized current injection, charge density decreases 

within the bubble. This charge reduction leads to a redistribution of ions on the bubble/oil 

interface leading to breakdowns within the bubble fueled by electrons or holes seeded from the 

electrode, thus imparting more charge density to the system [6]. These breakdowns drive the 

bubble expansion. As the bubble’s volume and surface area increase it becomes more difficult to 

resist the external fluid pressure and the surface of the bubble begins to oscillate. These surface 

oscillations increase in amplitude as the bubble continues to expand [7]. 

As the bubble expands, the surface of the bubble oscillates due to external pressure and 

develops finger-shaped protrusions commonly referred to as streamers. These streamers act as 

field enhancements emitting charge carriers and elongating across the gap. Once contact is made 

with the opposite electrode the resistance of the spark gap drops several orders of magnitude and 

an arc channel forms. The stored energy is transferred through the liquid in a luminous current 

pulse. 

 

2.2   Electrode Field Enhancement  

An electric field applied across the electrode gap results in emission of electrons from the 

electrode surface. These electrons are then free to collide and impart energy to the neutrally-

charged oil molecules. As more electrons are emitted they begin to vaporize the oil through joule 

heating and microscopic vapor bubbles are formed. Once the bubble size is large enough that the 

mean free path of the electrons is long, they gain sufficient energy to begin ionizing the gas 

molecules through collision dynamics [8].  
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Ionization of the oil generates electron-ion pairs that are swept by the applied electric field. 

Charged ions are drawn to and strike the electrode surface, forming ion impurity layers on the 

surface of the electrodes as they attach. These layers lower the work function of the electrode 

allowing lower-energy electrons to emit. Charged ions continue to bombard these layers over the 

switch lifetime and form field enhancements on the electrode surface [5]. These layers are 

thought to limit the electron secondary emission by preventing ions from striking the electrode 

directly [8].   

Field enhancements on the electrode surface increase electron emission potential.  

Breakdown discharges and bubble cavitations cause arc pits and erosion on the surface of the 

electrodes [3, 7]. These microscopic irregularities, or deformations, create points of higher 

electric fields which enhance the electron emission potential of that point; increasing the 

probability that a breakdown will initiate at the site [5]. Electron emission from the electrode 

consists of trains of nanosecond pulses corresponding to breakdown events within the expanding 

bubble [5]. This energy drives the vaporization of the oil and provides the electrostatic force for 

bubble expansion.  Microbubbles are formed by the rapid, localized emission of electrons from 

the electrode into the oil dielectric from these high field enhancements resulting in a breakdown 

event.  

 

2.3   Controllable and Uncontrollable Testing Variables 

There are many variables to consider when assessing the self-break jitter observed in oil 

dielectric switches. These variables can be described as controllable and uncontrollable 

variables. Controllable aspects of the switch include: gap spacing, rate of voltage rise, external 

fluid pressure, ambient temperature, electrode material, electrode geometry, and oil chemistry.  

Other variables are uncontrollable in rep-rate operation, such as: electrode erosion patterns, 

the shape, thickness, and rate of deposition of ion impurity layers on the electrode surface, and 

the randomness inherent in bubble formation and streamer propagation. These uncontrollable 

aspects are particularly bothersome as they change over the lifetime of the switch. The effects of 

the type of oil and any additives are appealing as they can be controlled and reproduced. 
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2.4   Effect of Particle Suspension  

Experimental results indicate that suspending high-K particles in the oil dielectric reduces 

switch jitter.  Electromagnetic theory and simulation suggest that the high dielectric constant of 

the particles is a result of their ability to polarize into dipoles in an applied field.  A particle near 

the electrode surface increases the local electric field and draws electrons from the electrode and 

into collision with the neutrally charged oil molecules, stimulating the breakdown process at the 

site.   

The simulations also suggest that the polarized particles affect the electric field profile within 

the bulk of the oil and act as a propagation path for the ionizing streamer. The local non-uniform 

electric fields generated by the polarized particles may guide the streamer between electrodes 

resulting in more predictable breakdown events, or provide an enhancement for the initial 

formation and subsequent propagation of the streamer.  

By whichever mechanism, it is apparent from the experimental data that a suspension of 

high-K, BST, particles reduces the self-break jitter in our HVADTS switch. The jitter-reducing 

effect is more pronounced with specific oils and switch parameters. By optimizing switch 

parameters and particle concentration self-break jitter values of less that 5% PSD (percent 

standard deviation) are attainable.     
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CHAPTER 3 

PHYSICAL AND ELECTRICAL 
CHARACTERISTICS OF THE HIGH-K 
PARTICLE-INFUSED OIL DIELECTRICS 

 

3.1   High-K BST Particle Characteristics 

The BST particles were purchased from TRS Technologies Incorporated in a powder form 

[9]. The quoted particle diameter is 70 nm. The dielectric constant of the particles varies 

significantly with temperature and electrical frequency. Figure 1 plots the dielectric constant and 

dielectric loss of BST as a function of temperature and frequency. At 25° C and 250 KHz the 

graph indicates that the BST particles have an approximate dielectric constant of 2000. Thus, a 

dielectric constant of 2000 is assumed in the electrostatic simulations. The rest of this section 

defines the electrical and physical characteristics of a BST particle as well as outlines the 

procedure to suspend the particles in the dielectric oil.   

 

3.1.1 Electrical Characteristics of the BST Particle  

An electric field affects a dielectric by disrupting the equilibrium charge distribution within 

its spatial matrix. Charges are bound within dielectrics and an electric field exerts a force on 

them. Positive charges are displaced toward the field and negative charges shift in the opposite 

direction. Oil molecules are dielectrics composed of long carbon chains that are neutral in charge 

and resistant to ionization. An electric field polarizes the charge and any free charge drifts in the 

electric field. The equilibrium charge structure of an oil molecule is only slightly disrupted by an 

electric field. This results in a low polarization charge magnitude and a relatively low dielectric 

constant of 2.3.  
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Figure 3.1: This graph from TRS Technologies Inc. plots the dependency of dielectric constant 
and loss on the temperature of the BST particle. At 25°C and 250 KHz the dielectric constant is 
approximately 2000. The dark circles/lines represent the dielectric constant while the light 
circles/lines represent the dielectric loss.  
 

Under the influence of an electric field the net charges on the dielectric remains zero, 

preventing them from drifting, however equal and opposite charges develop on the dielectric 

extremes aligned with the field. This creates an internal electric field that partly compensates the 

external field around the dielectric. The magnitude of this polarization charge scales with the 

dielectric constant as shown in equation 1. A barium strontium titanate (BST) particle has a large 

polarization charge potential resulting in a dielectric constant of ~2000. The polarization charge 

generated is a result of the electric field forcing the dielectric’s internal charges out of their 

equilibrium configuration [8]. Figure 3.2 shows how dielectric particles align and polarize in an 

electric field. 

     𝑷��⃑ = 𝜺𝑬��⃑                (1) 

 

Figure 3.2: The application of an electric field to a dielectric forces the molecules in the material 
to polarize and align. The electric field points away from the center positive line.  
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The electrical breakdown of oil in a switch is initiated and highly influenced by electric fields 

in the gap near the electrode surface [10]. When an electron is emitted from the electrode it 

travels along an electric field vector, a mean free path, until it encounters a collision. The 

polarized edge of the particle bends the electric field lines towards it, increasing the probability 

that an electron will collide with it. Electrons will attach to and neutralize the polarized particle 

until the polarization charge is completely neutralized as in figure 3.3. As the mean-free-path of 

the electron increases and the energy of the electron approaches 3-eV, a probability exists that a 

collision will result in the emission of an electron through ionization and secondary emission 

processes [10].   

 

Figure 3.3:  Particle with a radius R surrounded by transformer oil with a permittivity of 𝜖1 and 
conductivity σ1 stressed by a uniform z-directed electric field is pictured. (a) At time t= 0+ the 
particle is polarized and all the electric field lines which pass through the cross sectional area of 
radius √3R will terminate on the particle such that the electron charging window is at a 
maximum, Rw(t = 0+) = RwMAX =√3R. The particle is polarized with positive surface charge for 
0<θ< 𝜋

2
  and negative surface charge for 𝜋

2
<θ<π. (b) At later times t > 0+, the electron charge 

deposited on the particle modifies the surrounding electric field distribution and the charging 
window is 0<Rw(t)<RwMAX. (c) As t∞, the electric field distribution is modified until a point 
where no field lines terminate on the particle and Rw(t∞) = 0. In this situation, a particle is 
fully charged with a total charge of Qs=−12𝜋𝜖1𝑅2𝐸0 [10,11]. 
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The presence of particles in the breakdown regime has a significant effect on breakdown 

streamer velocity. The polarized particles attract electrons. Using the generalized analysis of the 

charging dynamics for finitely conducting particles, a complete electrodynamic model is 

developed. The simulation study shows that the significant dynamics in the electric field and 

thermal enhancement in highly electrically stressed particle-infused fluids are due to molecular 

ionization just as in transformer oil. However, streamer propagation is hindered because the 

charging of slow particles by electrons in the ionization zone changes fast electrons into slow 

negatively charged particles that modifies the electrodynamics in the oil and slows the 

propagation of negative streamers [12]. The field enhancement factor regulated by the particle 

size and shape may also alter the surface charge and electric fields at the particle surface.  

 

3.1.2 Physical Characteristics of the BST Particle  

Utilizing a SEM (scanning electron microscope) to determine the particle size has previously 

proven ineffective when dealing with the particles suspended in oil. However, after the oil is 

evaporated, a SEM image, such as the images of figures 3.4, 3.5, 3.6 and 3.7, allows the particle 

size to be measured directly. The images were generated by the FEI Quanta 600F with EDS [13] 

located on the the UMC campus. Figure 3.4 shows the BST particles with a 10 µm reference 

point. The particle sizes look very uniform across the sample. Figure 3.5 shows the BST particles 

with a 3 µm reference point. The image clearly shows that the particle size ranges from 200 to 

400 nm in diameter. This size range conforms to what is expected with the sonication techniques 

utilized [14]. Figure 3.6 shows the BST particles with a 1 µm reference point demonstrating with 

even more clarity the 200 to 400 nm particles. Figure 3.7 utilizes a 400 nm reference point and is 

at such a high magnification that clear resolution is difficult to establish, however the 50 to 

70 nm particles within the 200 to 400 nm agglomeration can be identified in the image. The 

agglomerations are undesirable as they gradually fall out of suspension; however, simulations 

suggest that larger particles generate greater local electric fields on the electrode surface.  

The SEM-EDS (energy dispersive spectroscopy) is employed to confirm that the sample is 

BST and not a separate byproduct of the high voltage testing. Figure 3.8 shows the results of that 

analysis. It clearly shows evidence of barium, titanium, strontium and aluminum.  
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Figure 3.4: This SEM image has a resolution of 10 µm. The BST particles are clearly visible 
across the sample. The absence of larger sized particles is evidence that they settled out of the oil 
or are removed by the filtration.   
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Figure 3.5: This SEM image has a resolution of 3 µm. The BST particles are clearly visible 
across the sample. The absence of larger sized particles is evidence that they are removed by 
filtration or settling.   
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Figure 3.6: This SEM image has a resolution of 1 µm. While the image focus is poor at this 
resolution, the particles can be distinguished from each other and measured. The results of the 
PCS analysis indicate that the mean particle/agglomeration size for this sample is between 200 
and 400 nm.   
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Figure 3.7: This SEM image has a resolution of 400 nm. While the image focus is poor at this 
resolution, the particles can be distinguished from each other and measured. The individual 
particle diameter varies between 50 and 70 nm, however, the results of a PCS analysis indicates 
that the particles agglomerate into 200 to 400 nm diameter masses.  
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Figure 3.8: The results of the SEM-EDS indicate a strong barium, titanium, strontium and 
aluminum presence. The sample is contained in an aluminum weigh boat indicated by an 
aluminum line.  

 

3.2  Physical Characteristics of Selected Dielectric Oils 

The dielectric oils selected for high voltage switch self-break jitter characterization are also 

required to meet various other specifications. The use of an oil switch system in practical 

environments requires that the oil have both a long stable-state lifetime and viable viscosity over 

a large temperature range. Not only must the oil exhibit stable characteristics, it must also be 

non-reactive with any metals, insulators, seals and pump systems it may contact during 

operation. Several oils were selected for the initial testing, however only three oils were selected 

for extensive testing: a PAO (poly-alpha-olefin), alkylbenzene, and 1-Hexadecene.   

 

Nycodiel PAO is a new generation coolant for electronic systems, mainly military radar, 

embarked on aircraft, ships or ground equipment. Nycodiel is not sensitive to water, does exhibit 

a stable flash point during use, and does not produce gels which clog cooling systems and filters. 
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The exact chemical formula for Nycodiel is proprietary to the Nyco Corporation so it cannot be 

shown; however it is similar to the formula of figure 3.9. Nycodiel is a PAO conforming to 

specification MIL-PRF-87252C which indicates that it is stable over a large temperature range. 

Because of these features, PAO is a good candidate for future testing. 

 

 

Figure 3.9. The exact Nycodiel chemical formula is proprietary, however as a PAO 
(poly-alpha-olefin) its formula is likely similar to the 1-Hexene above [15]. 

 

Nycodiel is a synthetic hydrocarbon-based fluid, with a viscosity of 5 cSt at 40°C [15]. 

Nycodiel exhibits remarkable jitter performance with the addition of the particle suspension. In 

some cases the switch jitter is reduced by a factor of two, which fixes Nycodiel as the best 

performing oil tested on HVADTS. We hope to have continued success with the Nycodiel as its 

stable temperature range is suited for a set of diverse applications. Nycodiel has a positive 

gassing tendency of +34.5 µL/min. 

 

 

Figure 3.10: The chemical formula for linear alkylbenzene (LAB) is pictured in this figure. The 
benzene ring is located on the fourth series carbon.   



Chapter 3: Characteristics of the High-K Particle-Infused Oil Dielectrics 

20 

 

  Linear Alkyl Benzene (LAB) is a basic petrochemical intermediate derived by alkylation of 

benzene starting from n-paraffin feedstock and is used to produce LAS (Linear Alkylbenzene 

Sulphonate) [16]. LAB has a negative gassing tendency of -50 µL/min. It is thought that the 

negative gassing tendency might inhibit the formation of the gas bubbles that are the precursor to 

breakdown. LAB has a viscosity of 4.0-4.5 cSt at 40°C. The negative gassing tendency of LAB 

makes it an interesting testing candidate and could possibly serve as an additive to PAO.  

 

Figure 3.11: 1-Hexadecene is a large straight chain carbon with 15 carbon atoms. 

 

The 1-Hexadecene is a straight chain hydrocarbon with 15 carbon atoms in series. 

Hexadecene is selected as a candidate oil due to its availability and purity. Hexadecene has a 

viscosity of 3.83 cSt at 25°C. The 1-Hexadecene is considered a control fluid and serves as a 

baseline oil for comparison [17]. The jitter performance of 1-Hexadecene is improved with a 

high-K particle additive.  

 

Figure 3.12: A photograph comparing the particle-infused Nycodiel PAO oil before testing (left) 
and after testing (right) demonstrates a strong carbon presence indicated by the darker color of 
the oil after testing. 
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 3.3  Particle Suspension and Oil Test Procedure 

The procedure developed and utilized by the Center for Physical and Power Electronics at the 

University of Missouri – Columbia for suspending high-K particles in dielectric oil is denoted in 

table 1. The procedure utilizes a chemical surfactant to coat the particles during sonication. 

Coating the particles prevents particle agglomeration and allows the particles to stay in 

suspension. After suspension, the particle-infused oil must be allowed to sit for at least 72 hours 

to allow the larger particles to fall to the bottom. Otherwise, the inline filter can become clogged 

with the larger particles rendering the filtration system ineffective at removing excess carbon.  

 

Table 1. This table denotes the procedure for suspending particles in oil.  

Step  Instruction 
    
1 Procure 1-L of oil to be tested 
2 Pre-filter oil through 0.45-um filter to remove any macroscopic impurities 

3 
Place oil in 1500-ml beaker, insert magnetic stirrer, place beaker on stir plate and commence 
stirring at stable speed 

4 
If test matrix calls for no additives skip to step 12, if surfactant only skip to step 7, otherwise 
continue to step 5 

5 Place sonicator tip in oil solution and prepare it for operation 
6 Start sonication, add 5% BST by weight and wait 30 minutes 

7 
Add surfactant 1% by weight and sonicate an additional 10 minutes, no sonication necessary if 
proceeding from step 4 

8 If there are BST particles in solution take a sample for analysis, otherwise skip to step 12 
9 Allow particles to settle for 2 days 
10 Filter oil down to 3-um pore size  
11 Take a sample for particle concentration analysis 
12 Take a water concentration measurement  
13 Sparge with dry nitrogen with magnetic stirrer engaged for at least 10 minutes (if desired) 
14 Take a water concentration measurement no more than 5 minutes after sparging 
15 Insert oil into test switch no more than 5 minutes after water tests 
16 Take the necessary number of shots at the necessary pressures 
17 Remove oil from switch  
18 Take a water concentration measurement  no more than 5 minutes after removal 
19 Take a sample for particle concentration analysis 
20 Run statistics and produce result 
21 Repeat with any additional oils 
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Pre-filtration of the particle-infused oil is necessary so that the inline filter in the HVADTS 

system can perform its function of removing carbon by-products from the oil. Without the 

pre-filtering step, the filters immediately clog with larger particles, rendering the filter 

ineffective. Pre-filtration and inline filtration in all cases where particles are present is performed 

with a 3 µm cellulose filter. A new filter is installed and the switch is cleaned after the oil is 

tested.  A 3 µm filter pore size has experimentally shown the best oil flow rates and jitter 

performance.  

 

3.4   Particle Concentration Analysis 

While the SEM images in section three are useful in determining an approximate particle size 

distribution, Photon Correlative Spectroscopy (PCS) is a more precise way of determining the 

particle size distribution. The particle size distribution is important when considering pre-filter 

and inline filter pore sizes, optimum particle concentrations, sedimentation times, and 

reproducible particle-infused oils to achieve the lowest jitter. 

To determine the concentration of remaining particles by weight in the oils before and after 

testing, a proprietary drying method is employed. The method involves placing a small sample of 

the particle-infused oil on an aluminum weigh boat and drying it in a muffle furnace. The weight 

is recorded before and after the drying procedure and the concentration by weight is then simply 

known. The PCS and drying procedures are outlined in this section as well as a calculation to 

determine particle count.  

   

3.4.1 Photon Correlation Spectroscopy 

Photon Correlation Spectroscopy (PCS) is based on current dynamic light scattering 

techniques. The time decay of the near-order of the particles as a result of Brownian motion is 

used to evaluate the size of particles using the Stokes-Einstein relation. At constant temperature 

the method only requires the knowledge of the viscosity of the suspending fluid for an estimation 

of the average particle size and its distribution function. 
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The PCS analysis is performed by Particle Technology Labs in Chicago, IL [18]. Four 

samples were sent to the lab and analyzed: three PAO samples and an alkylbenzene sample. 

Figure 13 is a graph depicting the particle size distribution of a particle-infused PAO. The graph 

suggests that the mean particle diameter is approximately 238 nm. The full report on the four 

samples is contained in the appendix.   

 

Figure 3.13: Results of the PCS analysis indicate that the mean particle size of the particles in 
this Nycodiel oil is 238.8 nm. 

 

3.4.2  Oil Drying Method 

The drying method of determining particle concentration by weight was developed by our 

chemist, Dan Crosby. Small 0.5 mL samples of the particle-infused oils are placed in aluminum 

weigh boats and evaporated in a muffle furnace at 555°C. Once the oil is vaporized and removed, 

only the particles remain. The sample is weighed before and after the drying process and the 

weight differential is indicative of the particle concentration by weight. Figure 14 is a 

photograph of particles in an aluminum weigh boat. The particle concentration is a necessary 

quantity to know, along with the particle size and density, in determining the particle count. The 

initial concentration before settling, pre-filtration, in-line filtering, and breakdown testing is 5% 

by weight.   
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Figure 3.14: After the drying method all the oil is evaporated and only the BST particles remain. 

 

3.4.3  Particle Size, Concentration, and Count 

Depending on the sample, it is apparent from the PCS analysis that the mean particle size 

varies between 200 and 400 nm. The drying method suggests that the particle concentration by 

weight is between 1 and 2%. Running a calculation with a particle size of 350 nm, a particle 

concentration of 1.5%, and a particle density of 5.2 g/cm3 produces a particle count of 

approximately 9x1010 particles/mL [19].  

Electrostatic simulations suggest that a particle size between 200 and 400 nm, a count greater 

than 1010 particles/mL and concentration greater than 1% by weight is sufficient to produce 

significant field enhancement in the bulk of the oil dielectric and on the electrode surface. The 

concentration is weight dependent and not volume dependent, since quantities are mixed by 

weight. The next section describes these PIC dielectric electrostatic simulations. 
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CHAPTER 4 

PARTICLE-IN-CELL DIELECTRIC 
ELECTROSTATIC SIMULATIONS  

 

The dielectric system was modeled and extensively simulated to develop a first-order 

understanding of the breakdown mechanisms affected when a dielectric is subjected to an 

electric field. The dielectric is modeled as a three-dimensional homogeneous background of 

material with a fixed dielectric constant into which a random distribution of particles is 

introduced; the particles having a dielectric constant much larger than the background dielectric. 

Conditions such as particle size, particle concentration, distance of a single particle from the 

electrodes, and effect of electrode field enhancements are investigated numerically. The 

simulations suggest that particle density is a critical parameter, with increased concentrations 

corresponding to increased average electric fields within the simulated dielectric sample. It is 

important to note, however, that the increase in average electric field is due to the effect of many 

localized field enhancements generated by the random distribution of polarized high-K particles 

near the electrode surface.  

The results of the simulations indicate that the BST particles have a significant impact on the 

electric field distribution within the oil switch [20]. All simulations are performed in three 

dimensions with CST EM Studio [21]. Figure 4.1 is a three dimensional (3D) model of the 

electrode system that is used to simulate the effects of particles on the electric field, including a 

random dispersion of particles. Figures 4.2 and 4.3 illustrate a two-dimensional (2D) cutaway of 

a 3D simulation, and highlight the effect of the particles in the gap under steady state conditions. 

Figure 4.4 illustrates molecular reorientation of a uniformly fixed distribution of polarized 

particles. 

The results of the field model indicate that the particles introduce a field enhancement effect 

on the electrode surface and within the bulk of the oil. The high dielectric constant associated 
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with a particle of BST (εr ≈ 2000) excludes electric fields and concentrates them within the oil 

(εr ≈ 2), thus producing an electric field enhancement at the BST-oil interface of 1000.  It follows 

that a BST particle near the electrode surface will increase the local electric field in the oil and 

increase the probability of electron emission. The particle-generated electric field enhancement 

in the bulk of the oil may also help guide the breakdown streamer across the gap. 

 

4.1  Average and Maximum Fields on a Smooth Electrode Surface 

In the 3D gap model of figure 4.1, the particles are modeled as perfect spheres with 

adjustable radius and volume concentration percentage. Each simulation is performed with a 

random distribution of particles of fixed radius. The dimensions of the test gap for simulation 

purposes are held constant for all simulations. The gap length is fixed at 8 µm and the electrode 

diameter is set at 16 µm. The electrode potentials are set to 0 and 1000 volt which translates to 

an electric field of approximately 1.2 MV/cm across the gap. This electric field magnitude 

mimics experimental breakdown fields.   

 

Figure 4.1: The PIC simulation test cell demonstrating a random particle insertion pictured is 
modeled in CST EM Studio Software Suite. 
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Figure 4.2: A 2D cutaway of a 3D simulation is pictured. The arrows represent the electric field 
intensity. The redder, larger arrows correspond to electric fields of greater magnitude. 

 

 

 

 

Figure 4.3: A 2D cutaway of a 3D simulation is pictured. The colors represent equipotential lines 
across the gap. This simulation is identical to the simulation of figure 4.2; however, the data is 
displayed differently.  
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Figure 4.4: In the presence of an external electric field a polar molecule will reorient to 
compensate for the internal charge redistribution [23]. 

 

Figure 4.5: Cumulative results from simulations illustrate that an increasing particle 
concentration enhances the average electric field at the electrode surface. Particle radius is held 
constant at 350 nm. The standard deviation from the three simulations at each concentration is 
negligible.  



Chapter 4:  PIC Dielectric Electrostatic Simulations 

31 

 

 

Figure 4.6: Cumulative results from a series of simulations demonstrate that there is no 
significant increase in the average electric field at the electrode with increasing particle size. The 
particle concentration is held constant at 0.5%. The standard deviation from the three simulations 
at each concentration is negligible. 

 

Figure 4.7: Cumulative results from a series of simulations illustrate how the distance of a single 
particle from the electrode influences the average electric field at the electrode for particle radii 
of 100, 200, and 350 nm. Each point is the result of a single simulation.   
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Figures 4.5 and 4.6 illustrate the effect of particle concentration and radius on the average 

electric field at the electrode surface. While particle concentration has a significant effect on the 

average electrode electric field, the particle radius is shown to not have a significant effect. 

Increasing the radius of the particles and maintaining a constant concentration reduces the 

number of particles in the PIC. While a larger particle generates enhancement over a larger 

electrode area, there are fewer particles resulting in minimal average field variation. The effect of 

size on experimental jitter is not known at this time; however, smaller particles are more 

practical as they stay in suspension longer.  

 Figure 4.7 shows the effect of a single particle on the average electrode field with varying 

particle distance and radius. The results indicate that an increasing particle concentration has a 

significant effect on the average electrode field. The results show an almost linear field increase 

of approximately 65 𝑘𝑉/𝑐𝑚
%

, indicating generous field enhancement at the surface of the electrode 

with an increasing concentration of perfectly spherical particles. 

The distance of the particle’s outer surface from the surface of the electrode has a significant 

effect on the average electric field at the electrode.  At a distance greater than 0.8-µm from the 

electrode the electric field at the electrode surface is less than the field with no particles present. 

As the particle nears the electrode, the electric field on the electrode increases by approximately 

40 𝑘𝑉/𝑐𝑚
µm

. The particle distance simulations are repeated with particle radii of 200 nm and 

350 nm. In each case the minimum average electrode field occurs when the particle is 

approximately 1.3 µm from the electrode surface. The minimum field distance shifts farther from 

the electrode for the larger particles. The trend of the simulation presented in Figure 4.7 may be 

the result of competing effects at the electrode surface. At certain distances the particles must 

decrease the electric field at various points on the electrode leading to a decrease in the average 

electrode field. The effect is more pronounced at smaller particle diameters. This could also be 

the result of artifacts present in the simulation.  

Figure 4.8 shows that the local maximum electric field on the electrode decreases with an 

increasing particle distance. This result is not surprising as it is well known that the force 

between two charged objects exponentially decreases with increasing distance. This plot shows 

that a single 100-nm radius particle can increase the local electric field on the electrode nearly 
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40% from 1150 to 1575 kV. This suggests that an electron on the electrode surface near a 

suspended particle will have a much higher probability of emission from the electrode, 

increasing the chance that the area will be a site for microbubble formation and breakdown 

initiation. 

 

 

 

Figure 4.8: The maximum electric field strength at the electrode due to the presence of a single 
particle decreases with increasing particle distance. The larger particles generate a higher 
maximum electric field. Each point is the result of a single simulation. 
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Figure 4.9: Results from a series of ten single 3D simulations show that the electric field at the 
electrode does not alter significantly due to a changing, random distribution of particles of fixed 
radii and concentration. Each point is the result of a single simulation.  

 

Repeating electrostatic simulations with varying random particle distributions at a constant 

concentration and radius produces consistent average electrode electric field values. It appears 

that the particles initial distribution does not change the average electric field on the electrode 

significantly. Figure 4.9 shows the average electric field on the electrode with a 1% 

concentration of 350 nm radius particles with 10 separate initial random distributions.  

Consideration must also be given to the effect of the dielectric constant of the particle. All 

the above simulations utilize a particle dielectric constant of 2000, which is the approximate 

dielectric constant of a BST particle. Figure 4.10 shows the effect on the average electric field 

with several particle concentrations and three dielectric constants. Figure 4.11 shows the effect 

of the dielectric constant of a single particle on the electrodes maximum electric field.  
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Figure 4.10: Cumulative results from the simulations show that the average electrode electric 
field increases with different particle dielectric constants and volumetric densities. A constant 
particle radius of 500 nm is utilized. Each point is the result of a single simulation. 

 

Figure 4.11: Results from several simulations examine the peak electric field at the electrode as a 
function of the dielectric constant of a single particle. The peak electric field asymptotically 
approaches a maximum value of approximately 2.1 MV/cm as the relative dielectric constant 
increases beyond 2500. Each point is the result of a single simulation.  
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The simulations indicate that the electric field at the electrode is influenced by the particle 

concentration, dielectric constant and distance from the electrode. The distribution of the 

particles prior to application of high voltage is evidently less significant. In practice the particle 

radius may also significantly impact breakdown.  The smaller and more numerous the particles 

are, the more chances that a particle may be localized near the electrode to generate a field 

sufficient to initiate a breakdown event. Also, more electric field gradients may be present to aid 

in streamer propagation across the gap. It is important to remember the increase in the average 

electric field on the electrode is not due to a uniform effect. It is the effect of many localized 

field enhancements that contribute to this overall average field increase.   

 

4.2   Average and Maximum Fields on a Rough Electrode Surface 

To ensure that the inherent computational error involved in the simulation process does not 

affect the results, each value presented is the average value from a series of three separate 

simulations, unless otherwise noted. In the case of all random field enhancement insertions, each 

of the three recorded field values in the series is simulated using different random insertions. 

This is done to show that the results are valid with any field enhancement spatial distribution, as 

would be the case on an actual deformed electrode surface. Figure 4.9 indicates that there is a 

small difference between simulations with different particle spatial distribution with the other 

variables held constant. Error bars were included in simulations with non-negligible standard 

deviations between runs.  

The average electric field interactions on the electrode surface are measured directly from the 

electrode surface. The average field is found by integrating the field vectors, in V/m, over the 

surface of the face, m2, which gives a result in units of V-m. Dividing this value by the total 

surface area gives the average field in terms of V/m. Simulations incorporate tetrahedral meshing 

and tangential boundary conditions with an accuracy of 10-6. 

The cathode and the anode are assigned voltage potentials of 0 V and 100 V, respectively. 

The potentials generate an average field of 126 KV/cm with an 8 µm gap between smooth 

electrode surfaces. All values presented are in electric field units of KV/cm. The simulation 

results of the previous section (figures 4.1 through 4.11) are produced with cathode and anode 
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voltages of 0 V and 1000 V, resulting in an average electric field an order of magnitude greater 

than the following simulations.  

The limiting factor of the simulations is the simulation computation time. For a majority of 

the simulations the particle count is less than 500 and the simulations take 5 to 10 minutes to 

process. However, once the particle count reaches or exceeds 1000, the simulations can take 

several hours or days to process. This time constraint limits both the particle concentration and 

size. A high particle concentration matched with a low particle size results in a large particle 

count. The simulations are structured to limit the particle count to less than 1000.  

 

Figure 4.12: This picture shows the x-z plane of a simulation cell with five fixed spheres on the 
anode and eight random cones on the cathode. The simulation cell is a 3D cell; particles and 
electrode enhancements along the y plane are not actually in contact with one another. 
Approximately 245 particles are produced with a particle concentration of 1% and a particle 
diameter and dielectric constant of 0.5 µm and 2000, respectively.  

 

 

Figure 4.13: This 3D picture of section of a simulation cell shows a 2D slice of the fields 
generated by a particle and conical electrode field enhancement. The black lines indicate the 2D 
field-slice of the 3D simulation. Objects without a back outline do not contribute to the fields in 
the slice as they exist elsewhere on the x axis.  
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The letter A in figure 4.13 indicates a conical structure and B indicates a particle. The letter 

C indicates field enhancement on the smooth surface due to the particle B. The letter D indicates 

the electric field with no enhancement. The letter E indicates enhancement due to the conical 

field enhancement and F indicates the enhancement due to the particle in the bulk of the oil. The 

fields between A and B are the result of the interaction between the particle B and conical field 

enhancement A and have the greatest magnitude in the image-space. 

All of the results in this section are obtained from 3D simulations. Figure 4.13 is included as 

a visual aid. It is apparent from that figure that the strongest field lines are located between the A 

and B enhancements and the weakest fields are at D where there are no field enhancements. 

These enhanced fields are thought to be responsible for the apparent breakdown strength 

reduction of the dielectric oil in our experimental oil switch. 

The simulation variables that are changed to produce the curves of the following results are 

the number of field enhancements, size of field enhancements, type of field enhancements 

(hemisphere or cone), size of particles, and particle concentration. Figure 4.14 is an image of the 

simulation cell depicting the electrode surface from which the average field values are derived.  

 

 

Figure 4.14: This image highlights the green surface of the electrode from which the average 
field values are derived. Ten hemispheres with 0.5 µm radii are randomly inserted in this 
simulation instance.  

 

The results of figure 4.15 are obtained from varying the number of randomly placed conical 

field enhancements with and without particles. The conical field enhancements have the 
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following dimensions: top radius: 0.1 µm, bottom radius: 0.5 µm, and length: 0.5 µm. The 

particles are inserted at a size and concentration of 0.25 µm radius and 1% for a total of 245 

particles in the simulation cell. 

 

Figure 4.15: The results show that the average field on the electrodes decreases with increasing 
number of randomly placed conical field enhancements with and without particle insertions.  

 

Figure 4.16: The results show that the average field on the electrodes decreases with increasing 
number of randomly placed hemispherical field enhancements with and without particle 
insertions.  
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The results of figure 4.16 are obtained from varying the number of hemispherical field 

enhancements with and without particles as is done in figure 4.15. The hemispherical field 

enhancements are created using spheres with a radius of 0.5 µm. The hemispheres are inserted in 

random locations.  

The results of figures 4.15 and 4.16 indicate that increasing the number of field 

enhancements on the surface of an electrode slightly decreases the average field. While the fields 

at the tip of the electrode enhancements are enhanced, the fields near the base of the 

enhancement are reduced as seen in figure 4.17. The presence of the particles increases the 

average field in every instance, but does not prevent the gradual decrease in average field values 

with increasing number of field enhancements.   

The simulations suggest that the effect of the field reductions near the base of the 

enhancement has a significantly greater cumulative effect that the field increases on the top of 

the enhancements with increasing number of enhancements resulting in a linear decay of the 

average field. It is important to note that the average electric field on the electrode surface is 

affected by many localized field effects and not a general effect. The local effects are generated 

by the inserted particle and electrode field enhancements. 

 

 

Figure 4.17: The image shows that while the maximum field on the top of the hemispherical 
enhancement is 330 KV/cm, the fields at the base are reduced to 20.8 KV/cm. The results of the 
simulation indicate that these reduced fields are responsible for the decrease in the average field 
with increasing number of field enhancements.   
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Ten conical and hemispherical field enhancements are simulated at five and four different 

sizes with and without particles present. The four lengths of the cones are 0.5, 0.75, 1.0, 1.25, 

and 1.5 µm. The top and bottom of the cones are held constant at radii of 0.1 and 0.5 µm, 

respectively. The four radii of spheres are 0.5, 0.75, 1.0, and 1.25 µm. There is not enough space 

on the electrode surface to simulate ten hemispheres at a 1.5 µm radius. All of the electrode field 

enhancements are randomly inserted. 

 

Figure 4.18: The results show increasing the size of the conical field enhancements decreases the 
average electrode surface field.  

 

Figure 4.19: The results show increasing the size of the hemispherical field enhancements 
decreases the average electrode surface field. 
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The simulations of figures 4.18 and 4.19 demonstrate that the particles increase the average 

fields on the electrode surface possibly contributing to the reduction in breakdown strength of the 

oil dielectric. The results also show that as the size of the conical and hemispherical 

enhancements increase there is a decrease in the average electric field on the electrode. As the 

conical and hemispherical electrode field enhancements increase in size, there is a greater ratio 

of base area to top area. The fields at the base of a field enhancement are considerable reduced 

and act to decrease the average electrode fields, as is illustrated in figure 4.17.   

The results of figure 4.20 are obtained from varying the particle concentration in the 

simulation cell. The randomly distributed particle concentrations are 0.0, 0.5, 1.0, 2.0, 3.0, and 

4.0% by volume. These concentrations translate to particle counts of 0, 123, 245, 491, 736, and 

982, respectively. The cones have a length of 0.5 µm and a bottom and top radius of 1 and 0.1 

µm while the hemispheres have a 0.5 µm radius.  

 

Figure 4.20: The results show that increasing the particle concentration increases the average 
electric field on the electrode surfaces.  
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The simulations of figure 4.20 demonstrate that the particles concentration increases the 

average fields on the electrode surface. It is thought that the particle concentration during 

experimental testing is approximately 1.75%. According to figure 4.20, a concentration of 1.0% 

is sufficient to generate increases of 10𝐾𝑉
𝑐𝑚

 in the average electrode field. 

The results of figure 4.21 are obtained from varying the particle radius in the simulation cell. 

The randomly distributed particles are inserted at a 1% concentration by volume with radii of 

0.15, 0.25, 0.35, 0.45, 0.55, and 0.65 µm. These radii translate to particle counts of 1136, 245, 

89, 42, 31, and 14, respectively. Ten hemispheres are randomly inserted with at a 0.5 µm radius.  

 

Figure 4.21: The results show that increasing the radius of the particle enhancements has no 
significant effect on the average electrode field. Each point is the result of a single simulation. 

 

The results of figure 4.21 indicate that increasing the radius of the inserted particles in the 

simulation cell has little impact on the average electric field at the electrode surface. A small 

decrease in average electric field is found with increasing radius in previous simulations with 

smooth electrode surfaces is seen in figure 4.6. It is clear that the concentration of particles plays 

a much larger role than their radius on the average electrode field. It is important to note that as 
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the particle radius increases with a constant volume concentration, the number of particles in 

suspension is reduced.  

In practice, however, the particle radius may significantly impact breakdown.  The smaller 

and more numerous the particles are, the more chances that a particle may be localized near the 

electrode to generate a field sufficient enough to initiate a breakdown.  Also, the smaller and 

more numerous the particles are, the more electric field paths may be present to aid in streamer 

propagation across the gap. It is important to remember the increase in the average electric field 

on the electrode is not due to a uniform effect. It is the effect of many localized field 

enhancements that contribute to the overall average field increase.  

 

 

Figure 4.22: A previously smooth one inch diameter electrode is subjected to 230 breakdowns on 
the single-shot test stand. The deformations increase the probability that a subsequent breakdown 
will initiate on or near the site.    
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Figure 4.23: This image is a photograph of electrode deformation on the UMC rep-rate oil 
switch. The grating lines at the top of the image are 100 µm thick for reference. Shown above the 
line are erosion patterns near the top of the erosion band and below the line shows erosion 
patterns near the center of the erosion band.  The entire band is 1 cm thick and extends the 
complete circumference of the hemispherical electrode [22]. The pattern is a product of 
approximately 106  breakdowns. Surface profilometry suggests that the average depth is 
approximately 25 µm.     
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4.3  Average Fields on a Field-Transparent Surface 

The existing particle code is modified so that electric field interactions between the particles 

and the electrode field enhancements can be analyzed. Figure 4.24 illustrates a sample simulation 

cell matrix with five fixed spheres on the anode and eight random cones on the cathode. Particles 

with a 0.25 µm radius are inserted at a 1% concentration. The perfect electrical conductor (PEC) 

electrodes are 16 µm wide, 0.8 µm thick and set 8 µm apart. This distance is sufficient to prevent 

the field enhancements on one electrode from interacting with the fields on the opposite 

electrode. The dielectric constant of the oil background matrix is set at 2 for all simulations. 

The magnitude of the average electric field on the electrode is determined by creating a 

field-transparent surface parallel to the electrode 0.1 µm from the top of the electrode field 

enhancement. The cathode and the anode are assigned voltage potentials of 0 V and 100 V, 

respectively. The potentials generate an average field of 125 KV/cm with an 8 µm gap between 

electrode surfaces.  

The field enhancement on the electrode surface can either be a hemisphere or a cone. These 

hemispheres and cones represent deformation on surface of an electrode due to repeated 

discharges. The hemisphere is formed by imbedding a sphere in the PEC plate. The sphere can 

be set at any radius.  

The cone has three adjustment parameters: top radius, bottom radius, and length. The top 

radius of the cone can be set to zero if a pin structure is desired. Twelve field enhancements of 

either type can be placed on each electrode. While the shape of the enhancements can be 

modified, all the enhancements on either electrode must be the same size and shape.  Figure 4.25 

is an image depicting the equipotential field lines of the simulation cell with a hemisphere and 

cone enhancement. It is clear from the image that the field enhancements only affect local 

electric fields near the electrode surface. Each point is the result of one simulation.   
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Figure 4.24: This picture shows the simulation cell as a perspective image with the plates hidden 
so the field enhancements and particles can be clearly seen. The axis is included on the bottom-
right corner for analysis.  

  

 

Figure 4.25: This image depicts contour equipotential field lines of the simulation cell with 
hemispherical and conical field enhancements. This graph shows that the effect of the electrode 
field enhancement is localized on the electrode surface 

 

The magnitude of the average electric field interaction on the electrodes is determined by 

creating a field-transparent surface parallel to the electrode 0.1 µm from the top of the field 

enhancements. These surfaces are pictured in figure 4.26. The average value of the field lines 

acting on the surface is a good indication of the interaction fields between the electrode and 

particle enhancements. The simulation variables that are changed to produce the curves of 

figures 4.27 through 4.36 are the number of field enhancements, size of field enhancements, 

shape of field enhancements, type of field enhancements (hemisphere or cone), size of particles, 

and particle concentration.  
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It must be noted that all the fields recorded in this section are acting on the field-transparent 

surface, or FT-surface, located 0.1 µm above the electrode surface, and not the actual electrode 

surface. This section seeks to analyze field interactions between the particles and the electrode 

field enhancements, not the entire electrode surface. It has been shown previously that the 

average field on a face contouring the electrode surface is reduced by electrode enhancements 

and increased by particle enhancements in the previous sections. 

 

 

Figure 4.26: This picture shows the field-transparent surfaces above the field enhancements that 
are used to measure the average electric field interactions between the electrode and particle 
enhancements. The surfaces have no effect on the local electric fields and merely act to measure 
the interaction between simulated fields. 

 

The average electric field interactions on the electrode surface are measured utilizing the 

field-transparent surfaces of figure 4.26. The average field is found by integrating the field lines, 

in V/m, over the surface of the face, m2, which gives a result in units of V-m. Dividing this value 

by the total FT-surface area gives the average field in terms of V/m. Simulations incorporated 

tetrahedral meshing and tangential boundary conditions with an accuracy of 1E-6. 

The cathode and the anode are assigned voltage potentials of 0 V and 100 V, respectively. 

The potentials generate an average field of 126 KV/cm with an 8 µm gap between smooth 

electrode surfaces. All values presented are in electric field units of KV/cm.  

It is important to note that the average electric field on the FT-surface is affected by many 

localized field effects and not a general effect. The local effects are generated by the inserted 

particle and electrode field enhancements shown in figure 4.24.   
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The results of figure 4.27 are obtained from varying the number of conical field 

enhancements with and without particles. The conical field enhancements have the following 

dimensions: top radius: 0.1 µm, bottom radius: 0.5 µm, and length: 0.5 µm. The particles are 

inserted at a size and concentration of 0.25 µm radius and 1% for a total of 245 particles in the 

simulation cell.  

 

Figure 4.27: This graph shows the effect of the number of conical field enhancements on the 
average anode and cathode FT-surfaces with and without a random particle insertion. Each point 
is the result of one simulation.   

 

Figure 4.27 demonstrates that increasing the number of fixed field enhancements increases 

the total field on the FT-surfaces with and without particles present. The introduction of the 

particles causes field perturbations on both the anode and cathode surfaces. This is an indication 

that the particles have a disruptive effect on the fields generated by the electrode enhancements.  

The results of figure 4.28 are obtained from varying the number of hemispherical field 

enhancements with and without particles as is done in figure 4.27. The hemispherical field 

enhancements are created using spheres with a radius of 0.5 µm. The hemispheres are inserted in 

fixed locations.  



Chapter 4:  PIC Dielectric Electrostatic Simulations 

50 

 

 

Figure 4.28: This graph shows the effect of the number of hemispherical field enhancements on 
the average anode and cathode FT-surface with and without a random particle insertion. Each 
point is the result of one simulation. 

 

Figure 4.28 once again demonstrates that increasing the number of fixed field electrode 

enhancements increases the total field on the FT-surface with and without random particles 

present. The particles, as in figure 4.27, act to disrupt the fields on the enhancement surface.  

The electrode surface conditions in an oil spark gap switch change with every breakdown 

event. In some cases, the switch operates at frequencies of 100 Hz or more. Simulations 

consisting of fixed electrode and particle field enhancements do not sufficiently match these 

conditions. By simulating each instance with a random distribution of field enhancements, actual 

surface conditions can be modeled.  

The results of figures 4.29 and 4.30 are obtained by inserting 10 random conical and 10 

random hemispherical field enhancements, respectively, with random particle insertions. Each 

data point from the figures is the result of one simulation, not an average of 3. The purpose of 

these simulations is to determine if a random field enhancement insertion paired with a random 

particle insertion produces significantly different results. 
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Figure 4.29: This graph shows the effect of the number of conical and hemispherical electrode 
field enhancements on the average anode and cathode FT-surfaces without a random particle 
insertion. Each of the points is the result of a single simulation. 

 

 

Figure 4.30: This graph shows the effect of the random insertion of conical and hemispherical 
electrode field enhancements on the average anode and cathode FT-surfaces with a random 
particle insertion. The particles produce field fluctuations between simulations on the FT-surface 
that are not seen in figure 4.29 when no particles are inserted. Each of the points is the result of a 
single simulation. 
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The results of figure 4.29 indicate that random distributions of electrode field enhancements 

do not produce large variations in the average electrode field on the FT-surface. The random 

insertion of particles paired with the random insertion of electrode field enhancements of figure 

4.30, however, results in variations of the average electrode field between simulations.  

Ten conical and hemispherical field enhancements are simulated at four different sizes with 

and without particles present. The four lengths of the cones are 0.5, 0.75, 1.0, and 1.25 µm. The 

top and bottom of the cones are held constant at radii of 0.1 and 0.5 µm, respectively. The four 

radii of spheres are 0.5, 0.75, 1.0, and 1.25 µm. All of the electrode field enhancements are 

randomly inserted. 

Figure 4.31 shows a simulation with particles and 1.25 µm cones. The particles are inserted 

randomly with a 0.25 µm radius and 1% concentration. The FT-surfaces are adjusted so that they 

remain 0.1 µm from the top of the electrode field enhancements. The purpose of these 

simulations is to determine if field enhancement size has any effect on interactions between 

electrode field enhancement and the particles.  

 

 

 

Figure 4.31: This is an image of the simulation results with a 1.25 µm cone sizes and 1% particle 
distribution with 0.25 µm particle radii.   
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Figure 4.32: This graph shows that changing the length of the 10 cones has negligible effect on 
the average electrode field on the FT-surface with and without particles.  

 

Figure 4.32 demonstrates that increasing the length of the cones does not significantly 

increase the average electrode field. The surface area of the cone tip is small and the locally 

generated enhancement has negligible impact on the average enhancement. Figure 4.33 shows 

that increasing the radii of the hemispheres enhances the average electric field. The larger the 

hemisphere, the more surface area of the FT-surface is affected by a spherical enhancement, 

increasing the average electric field. The effect of the local fields of the particles on FT-surface 

is negligible in both cases. Each simulation is the average of 3 simulations. The effect of 

changing radius of the spheres is much greater than the effect of the particles, so the standard 

deviation of the runs is negligible on the range of the axis. Averaging the simulations together 

diminishes the field-scattering effect the particles have on the FT-surface.  
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Figure 4.33: This image shows that changing the radius of the 10 hemispheres significantly 
increases the average electric field on the FT-surface with and without a particle concentration.    

 

Another factor to consider is the top radius of the conical field enhancements. As the radius 

of the cone’s tip decreases, the surface area of the cone tip decreases and the local field is 

enhanced. The results are shown in figure 4.34. The bottom radius and length are held at 1.0 and 

0.5 µm while the top radius is simulated at 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 µm.  The effect is 

simulated with 10 cones, with and without a 1% particle concentration. The effect of changing 

radius of the cones is much greater than the effect of the particles, so the standard deviation of 

the runs is negligible compared to the field range. 
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Figure 4.34: This image shows that changing the top radius of the 10 cone insertions 
significantly increases the average electric field on the FT-surface with and without particles. 
Similar to the results of figure 4.33, the larger the cones top radii, the more field enhancement 
surface area can contribute to the average field effect. At a top radius of 1 µm, the cone is a 
cylinder.  

 

The previous sections demonstrate that increasing the concentration of high-k particles 

increases the fields on the electrode surface. Figure 4.35 indicates that the particle concentration 

has a negligible effect on the field-transparent surface. Ten randomly inserted cones and 

hemispheres are simulated with particle concentrations of 0.0, 0.5, 1, 2, 3, and 4% by volume. 

These concentrations translate to particle counts of 0, 123, 245, 491, 736, and 982, respectively. 

The cones have a length of 0.5 µm and a bottom and top radius of 1 and 0.1 µm while the 

hemispheres have a 0.5 µm radius.  
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Figure 4.35: This image shows that changing the concentration of the particles has a slight 
impact on the average field acting on the FT-surface at particle concentrations above 0.0% with 
major fluctuations at and above 1%.  

 

The disrupting effect of the particle concentration on the average FT-surface fields is a strong 

indicator of the field “smoothing” effect being investigated. Unlike our previous studies that 

demonstrated an increased average electric field on the electrode surface, the particles can exist 

on the FT-surface. It is well known that the electric fields within a high-K particle are negligible 

compared to the fields existing outside of the particle [23].  

As the number of particles increases, there is a greater probability that a cross section of the 

particle will exist on the FT-surface. When the fields are averaged across the FT-surface, any 

particle that crosses the FT-surface will contribute negligible field values to the averaging 

calculation.  

The previous sections indicate that a particle concentration increases the average field on the 

actual surface of the electrode in the presence of electrode field enhancements. In the simulations 

of figure 4.35, however, the increased enhancement is counteracted by particles existing on the 

FT-surface. This balance is a further example of how the particles and electrode field 

enhancements interact to “smooth” the fields on the electrode enhancements. 
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Previous sections indicate that increasing the size of high-K particles does not significantly 

affect the average electric field on the electrode surface [20, 24]. As the size of the particles 

increases with a constant volume concentration, there is a reduced number of inserted particles. 

For particle radii of 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 µm, the number of particles inserted are 

245, 142, 89, 60, 45, and 31. The cones have a length of 0.5 µm and a bottom and top radius of 1 

and 0.1 µm while the hemispheres have a 0.5 µm radius.  

 

Figure 4.36: This image shows that changing the size of the particles has an impact on the 

average field acting on the FT-surface at larger particle radii. The field fluctuations are most 

apparent at particle radii at and above 0.30 µm. 

 

The results of figure 4.36 once again indicate that the average field on the FT-surfaces is 

influenced by the presence of the particles. Both figures 4.35 and 4.36 show significant field 

disruptions due to the particles. The disruptions in the average FT-surface fields are caused by 

changes in local field maxima due to the presence of the high–K particles which, even when 

averaged over three simulations and random distributions, cause disruption of the average FT-

surface fields indicating that the “smoothing” effect may be a plausible theory to explain the 

apparent jitter reduction in our oil spark gaps. 
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4.4   Maximum Fields on Electrode Surface Maxima 

The simulations studying the interaction between the particles and the conical and 

hemispherical electrode enhancements on the average field on a FT-surface indicates that the 

particles “smooth” the electric field profile across the electrode surface, which would otherwise 

be localized solely on the tips of the electrode enhancements. The following section analyzes the 

maximum fields generated by different particle and electrode enhancement geometrical 

configurations.  

Figures 4.37 through 4.41 show several of the simulation models used to demonstrate a 

particle’s effect on the maximum electrode enhancement field. It is obvious from the results that 

the particle and electrode enhancements boost the maximum electric field on the electrode 

surface. The results of figure 4.40 indicate that this increase may be as high as 566.56% of the 

non-enhanced value.  

The higher field significantly increases the chance that an electron will emit from that 

location and initiate a breakdown even. This effect is maximized when the particle is positioned 

directly above the electrode field enhancement. However, this is not always the case, as will be 

shown later in this section. The field enhancement effect can be scaled to any gap voltage and 

length by multiplying the field enhancements described below by a scale factor determined by 

the equation: 𝑋𝑠𝑐𝑎𝑙𝑎𝑟 = 𝑉𝑜𝑙𝑡 (𝑉)
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑚)

∙ ( 1
126000

). The gap voltage and distance for the simulations 

is 100V and 8µm, respectively. One of the experimental setups utilized a voltage and gap 

spacing of 250 KV and 1.6 mm, respectively, generating a scalar of 12.4.  

 

Figure 4.37: This image shows that without any particle or electrode field enhancements the 
maximum field on the smooth electrode surface is 126 KV/cm. 
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Figure 4.38: This image shows that the conical field enhancement on the electrode surface 
generates a maximum field of 361.11 KV/cm. This is an increase of 289% from the non-
enhanced 125 KV/cm of figure 4.37. 

 

Figure 4.39: This image shows that a high-K particle near the electrode surface generates a 
maximum field on the surface of 451 KV/cm. This is a 25% increase from the 361.11 KV/cm 
results of figure 4.38. 

 

Figure 4.40: This image shows that the presence of a particle near the tip of an electrode field 
enhancement generates a maximum field of 708.2 KV/cm. This is an increase of 57% from the 
results of figure 4.39. 
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It is apparent from the results of figures 4.38 through 4.41 that a polarized particle with a 

radius of 0.25 µm generates a greater field maximum on the electrode surface than the cone with 

a bottom and top radius of 1 and 0 µm. However, the interaction between both of the 

enhancements generates the greatest field enhancement of 566.56% compared to no 

enhancement at all. Figure 4.41 depicts a simulation where the particle is located in the space 

between two hemispherical electrode enhancements.  

 

Figure 4.41: This image shows that the presence of a particle in the trough between two electrode 
enhancements is capable of generating fields on the surface of the electrode comparable to the 
fields generated by the electrode enhancements.  

 

 Figure 4.41 is a key example of the “smoothing” effect the particles have on a rough 

electrode surface. The field at the tip of the hemispherical enhancements is 347 KV/cm, which is 

275% of the 126 KV/cm field found in the trough between the enhancements with no particles 

present. The particle generates a field of 284.13 KV/cm on the electrode surface, which is 

81.88% of the field at the tip of the electrode. The probability that a breakdown event is initiated 

on the tip of the electrode enhancement is reduced by the presence of the particle. 

The remainder of this section covers variations regarding the electrode and particle 

geometrical arrangements seen in figures 4.42 and 4.43. The type and size of the field 

enhancements are changed and the maximum field values on the electrode surface are reported.  

In these simulations the maximum fields are reported while varying the size of conical and 

hemispherical field enhancements. The simulations are performed with and without the presence 

of a particle with a 0.25 µm radius. The edge of the particle is located 0.10 µm from the 
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enhancement. Figure 4.42 shows the conical and hemispherical simulation results. The 

enhancement positions are fixed and there are no random insertions, each value is the average of 

three separate simulations. All simulations are performed on the anode electrode. The maximum 

field with no field enhancements is 126 KV/cm. 

 

Figure 4.42: This graph demonstrates that increasing the length of the conical enhancement 
increases the maximum electric field while increasing the hemisphere size does not significantly 
change the maximum field. The presence of the particle increases the maximum field in both 
cases. The standard deviation is negligible due to the range of the field axis.  

 

It is well known that the radius of curvature of an electrode enhancement influences the 

electron emission characteristics [25]. The radius of curvature of an electron emitter is 

proportional to the fields on the surface of the emitter. An electrode enhancement, such as a 

cone, has a small radius of curvature, while a sphere has a larger radius of curvature. The results 

from figure 4.42 indicate, as expected, that increasing the length of the conical enhancement 

decreases the radius of curvature thus increasing the maximum field at the tip. The hemispherical 

enhancement, as it increases in size, has a marked decrease in its radius of curvature.  

The radius of curvature of a cone is proportional with the angle between its base and side if 

the ratio between the top and bottom cone radii remains constant. However, as the length of the 

cone increases, the angle between the bottom and side of the cone increases at a decaying rate. 
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As such, the rate of increase of the maximum field of conical enhancement results of figure 4.42 

should decay with increasing length. However, there is no apparent reduction in the rate of 

increase of the maximum field. This is because as the cone length increases, the distance 

between the anode cone tip and the flat cathode electrode is reduced. The decrease of the 

gap spacing serves to increase the field between the electrodes and counteract the standard rate 

decay generated by the decreasing rate of radius of curvature with increasing cone length.  

The same gap-narrowing effect can be seen with the hemispherical data of figure 4.42.  As 

the radius of the hemisphere increases, there is decay in the radius of curvature. This effect 

should produce lower field values with increasing hemisphere size, but the gap narrowing 

prevents this effect from being observed in the simulations.  

Figure 4.43 shows the results of the same simulation conditions with the simulated gap 

widened from 8 µm to 80 µm, the potential on the anode is changed from 100 to 1000V to 

maintain the same field values. The figure shows that there is a decrease of the rate of increase of 

the maximum field at larger cone lengths and a decrease in the electric field with increasing 

sphere radius as the effect of the gap-narrowing is less pronounced at the widened gap. This 

indicates that the gap is increased, the effect of the field enhancements is less apparent.  

 

Figure 4.43: The graph shows the maximum fields on the cones and hemispheres with a larger 
gap. The effect of the gap-narrowing is significantly less pronounced compared to figure 4.42. 
No particles are inserted.  
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4.5   Maximum Fields on Electrode Surface Minima 

Simulations have been conducted to investigate the theory that the particles have a 

“smoothing” effect on the electrode surface. It is thought that particles generate field 

enhancements on electrode surfaces in the depressions between electrode maxima as in figure 

4.41. The results from figure 4.44 indicate that the average electric field on the electrode surface 

minima, or any surface not covered by a field enhancement, increases with increasing particle 

concentration. The FT-surface is located directly on the surface of the electrode. The FT-surface 

does not cover the electrode enhancements as this simulation serves to measure the average field 

increase on the electrode minima.    

 

Figure 4.44: This graph shows an increase of the average electric on the electrode surface 
minima with increasing particle concentration. The electrode surface minima are any part of the 
surface that is not covered by a field enhancement.  

 

Figure 4.44 is a simulation depicting the effect of the particles enhancement on the 

electrode surface minima. The result supports the theory that the particles can increase the fields 

on the surface minima increasing the probability that a breakdown will originate from the site; 

increasing the number of sites of probable breakdowns across the electrode surface.   
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CHAPTER 5 

OPTICAL PROFILOMETRY OF 
ELECTRODE SURFACE 

 

As demonstrated by the simulations in the previous section, deformations on the surface of 

an electrode generate localized electric field enhancements that allow electrons to emit at lower 

applied voltages. The emission of electrons at lower voltages is suspected to be a contributor to 

poor jitter performance. The size of the deformations is proportional to the amount of energy 

discharged during the breakdown event. The deformations are generated during normal operation 

of the switch system. This section reports images generated by an optical profilometer utilized to 

scan the surface of both smooth and deformed electrode surfaces. The electrode material is 

17-4PH stainless steel that has been precipitation hardened to C38 Rockwell hardness. 

 

Figure 5.1: The two electrode surfaces utilized in the experimental analysis are the rough and 
smooth surfaces pictured. The rough surface (left) is generated with the use of sand-blasting and 
the smooth surface (right) is generated with 1200-grit sandpaper.  
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Figure 5.2: After 230 breakdowns, the rough and smooth electrode surfaces are pitted by 
breakdown arcs. The carbon on the surface is also a byproduct of the breakdown discharge. 

 

Figure 5.2 is a photograph of the rough and smooth electrode surface after being subjected to 

230 breakdowns in the HVADTS system. Figure 5.3 is the rough electrode after an acetone 

cleaning procedure removes all traces of carbon and other ion impurity layers. These cleaned 

surfaces are scanned with the optical profilometer to produce the images and graphs of figures 

5.4 through 5.13. The optical profilometer hardware and software was developed by the Veeco 

Corporation [26]. The optical profilometer is useful in determining the width and depth of the 

breakdown deformations and the roughness factor, Ra, of the smooth and rough electrode 

surfaces.  
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Figure 5.3: The rough electrode shows no trace of carbon after the acetone cleaning procedure. 
The electrode is ready to be reinstalled in the HVADTS system.   

 

5.1   Smooth Electrode Surface Profilometry 

The optical profilometer utilized in obtaining the results of figures 5.4 through 5.13 is a 

white-light interferometer developed by Veeco Inc.  This device splits an optical beam and 

reflects it off of the surface of the electrode back into a lens. A computer then processes the 

scanned data and displays a digitized representation of the surface.  The splitting of the beam is 

an efficient way for the optical profilometer to minimalize obstruction and errors in the data.  

During this process, fringes are created as a result of the overlapping of the two beams which is 

also an indicator that the optic lens is in focus with the sample surface. Once in focus, the image 

is ready to be scanned and then analyzed.  To read the variations in the surface, the 

interferometer adjusts the focus automatically. As the focus changes throughout the sample it 

reads the heights of the peaks and the depths of the pits in the area of the sample and generates a 

surface profile. 
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Figure 5.4: The result of an optical profilometer from the smooth surface of figure 5.1 indicates 
the pits generated by the breakdown arcs and also a rounding effect generated by the polishing 
procedure.   

 

Figure 5.4 indicates that the figure-8 method of polishing the electrode surface generates a 

Rogowski profile on the electrode surface. It appears that the near-planar profile does not affect 

the breakdown locations significantly, as the breakdown deformation scatter is random across the 

electrode surface. The height differential between the edge and the center of the electrode is 

nearly 60 µm. As the electrode matches a Rogowski profile, the fields between the two 

electrodes can still be considered uniform. The results indicate an average deformation depth of 

19 µm on the smooth electrode surface.  
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Figure 5.5: A subregion of the results from figure 5.4 indicates a surface roughness factor, Ra, of 
1.49 µm. The arc pits are easily discernable.  

 

Figure 5.5 clearly shows a 3D profile of several breakdown deformations at 5X 

magnification. The breakdowns appear to be clustered, indicating that there is a high probability 

that subsequent breakdowns occur near a previous breakdown site. The experimental data 

suggests that a smooth electrode surface produces higher rates of jitter than a rough electrode 

surface. On a smooth electrode surface, a breakdown event can occur on either a smooth or 

deformed section of the electrode. If the breakdown occurs on a smooth section, the electrons 

require a higher voltage to emit due to limited enhancement in that area. If the breakdown occurs 

on a rough section (previous breakdown cluster) of the smooth electrode, the electrons would not 

require as much voltage to emit due to field enhancement; and the breakdown can occur at a 

lower voltage. This combination of high and low breakdowns over a 100-shot test cycle on a 

smooth electrode surface, results in higher rates of jitter.  
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Figure 5.6: Analysis of two pits from the surface of figure 5.5 indicates an average pit width and 
depth of 100 and 18 µm, respectively. The field enhancements on the edges of the pit are 
apparent.  

On a rough electrode surface no smooth surfaces exist, so there is negligible probability 

that a breakdown will initiate on a smooth surface. As such, the breakdown must initiate on an 

enhancement. This theory is supported by the experimental data which indicates a lower mean 

breakdown and jitter for rough electrodes compared to smooth electrodes. This is possibly the 

reason we are seeing lower jitter with the rough electrodes.  

It is apparent from profilometer results that the deformations of the smooth electrode 

surface have a smaller diameter and more depth than the deformations on the rough electrode 

surface. Figures 5.6 and 5.8 indicate that the average depth of the deformations on the smooth 

electrode surface is approximately 19 µm. Figures 5.11 and 5.13 indicate that the average depth 

of the deformations on the rough electrode surface is approximately 14 µm. The magnitude of 

the protrusion depth is directly proportional to the height of the protrusions on the edges of the 
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deformation as demonstrated by figures 5.6, 5.8, 5.11 and 5.13. The enhanced radius of curvature 

of the protrusions on the smooth electrode surface is possibly contributing to higher jitter rates.  

 

 

Figure 5.7: A second subregion of the results from figure 5.4 indicates a surface roughness 
factor, Ra, of 2.43 µm. The arc pits are easily discernable. The scratch through the center of the 
sample is a result of the polishing procedure.  

 

Figures 5.6 and 5.8 indicate that the average diameter of the deformations on the smooth 

electrode surface is approximately 100 µm. Figures 5.8 and 5.11 indicate that the average 

diameter of the deformations on the rough electrode surface is approximately 150 µm. Like the 

depth of the deformations, the figures indicate that the larger the diameter the lower the radius of 

curvature of the field enhancement on the edge.  
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Figure 5.8: Analysis of two pits from the surface of figure 5.7 indicates an average pit width and 
depth of 100 and 20 µm, respectively. 

 

5.2   Rough Electrode Surface Profilometry 

Figures 5.5, 5.7, 5.10 and 5.12 are good indications of the surface roughness factor, Ra, for 

the smooth and rough electrode surfaces. Surface roughness, Ra, is the arithmetic average of 

absolute values of the height and depth of the surface: A higher relative value indicates a greater 

average distance from zero, and a rougher surface. Figures 5.5 and 5.7 indicate that the smooth 

electrode surface has an approximate surface roughness of 1.96. Figures 5.10 and 5.12 indicate 

that the rough electrode surface has twice the approximate surface roughness at 4.13. The results 

indicate an average deformation depth of 13 µm on the rough electrode surface.  
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Figure 5.9: The result of an optical profilometer from the rough surface of figure 5.3 indicates 
that the sand-blasting procedure generates circular surface roughness stratification.    

 

Figure 5.10: A subregion of the results from figure 5.9 indicates a surface roughness factor, Ra, 
of 3.28 µm. The arc pits are less easily discernable than those of the smooth electrode surface.  
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Figure 5.11: Analysis of two pits from the surface of figure 5.10 indicates an average pit width 
and depth of 150 and 13 µm, respectively. The field enhancements on the edges of the pit are 
difficult to discern from the roughness generated by the sand-blasting procedure. 

 

Figure 5.12: A second subregion of the results from figure 5.9 indicates a surface roughness 
factor, Ra, of 4.97 µm The arc pits are less easily discernable than those of the smooth electrode 
surface. The strange field enhancement located in the lower-left center is an artifact of the optical 
profilometer scanning method and does not exist. 
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Figure 5.13: Analysis of two pits from the surface of figure 5.12 indicates an average pit width 
and depth of 150 and 15 µm, respectively. The field enhancements on the edges of the pit are 
difficult to discern from the roughness generated by the sand-blasting procedure. 

The results of the optical profilometer scan demonstrate that the deformations on the 

electrode surface produced by breakdown events generate greater field enhancement on the 

smooth surface than the rough surface. The edges of the deformation on the smooth electrode 

surface have greater radius of curvature than similar deformations on the rough electrode surface. 

This suggests that the higher rates of jitter demonstrated by the smooth electrode surface are the 

result of these sharper features.  

On the smooth electrode surface, breakdowns can initiate on the tip of a deformation 

protrusion or on a smooth section. On a rough electrode surface, breakdowns can initiate only on 

a deformation protrusion. This suggests that the lower jitter demonstrated by the rough electrode 

is possibly a result of a more uniform field distribution. A suspension of high-K particles further 

levels the electric field profile, limiting the extreme breakdown values that contribute to switch 

jitter.  
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CHAPTER 6 

HVADTS SYSTEM CHARACTERISTICS  
 

All the experimental breakdown test data in this report is obtained from the MU High 

Voltage Advanced Dielectric Test Stand (HVADTS).  The HVADTS is a single shot system 

capable of generating a 250-kV voltage pulse across a liquid with a rise-time of 1.6-µs. A 

photograph of the test stand is shown in Figure 6.1. Figure 6.2 provides a schematic diagram of 

the core elements of the pulse generator. 

 

Figure 6.1: The HVADTS system is composed of a Marx Generator which drives a CLC circuit. 
The load consists of an oil switch in series with a 200 Ω water resistor. 
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Figure 6.2: The schematic of the HVADTS circuit is pictured here. The 5 nF erected Marx 
capacitance discharges through a 900 µH inductor into a 500 pF capacitor stack. The high 
pressure oil switch shorts the capacitor stack to ground through a 200 Ω resistor. 

 

  The HVADTS consists of a Marx-generator that pulse charges a peaking capacitor 

through an inductor. The voltage developed on the peaking capacitor is simultaneously applied to 

the high pressure test switch, which contains the test fluid between two, planar, 2.54 cm 

diameter, 17-4PH stainless steel electrodes, that have been precipitation hardened to C38 

Rockwell hardness. The inter-electrode gap is externally adjustable, and for the majority of 

experiments conducted is restricted to 0.16 cm. The voltage applied across the electrodes rises 

20-80% at the rate of 300 kV/µs. The switch is designed for self-breakdown operation. The high 

pressure switch, shown in Figure 6.3, has a maximum voltage and pressure rating of 300 KV and 

2000 psig (13.789 MPa), respectively. 

 

Figure 6.3: Photograph of the disassembled high pressure oil switch.  
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Figures 6.4 through 6.11 are photographs of the HVADTS hardware. Figure 6.4 shows the 

Marx generator, which has been reconditioned and modified with an additional stage to produce 

a greater output voltage. Figure 6.5 shows the 900 µH inductor. The air-core inductor is wound 

in two parts on G-10 forms. Figure 6.6 shows the high voltage capacitor stack, high pressure 

switch, load, and fluid reconditioning system. The switch is mounted to a steel plate which may 

be raised out of the oil bath to facilitate switch filling and maintenance. The high voltage portion 

of HVADTS is submerged in transformer oil during operation for safety and to prevent 

accidental breakdown due to the voltages achieved during a pulsed discharge. 

 

 

Figure 6.4: Photograph of the modified Marx generator. The Marx produces a 21-J pulse with a 
peak output voltage of 150 kV. 
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Figure 6.5: Photograph of the 900 µH inductor wound on two G-10 forms. The inductor isolates 
the Marx generator from the peaking capacitor and switch. 

 

 

Figure 6.6: Photograph of the peaking capacitor, switch, voltage divider, current transformer, 
load resistor and oil reconditioning circuit.  
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The oil is reconditioned immediately prior to breakdown testing, and again following each 

breakdown. The reconditioning process involves flushing the oil from the switch and filtering 

macroparticle contaminants. Two solenoid isolation valves, shown in figure 6.7, allow the oil to 

be pumped through a 1 – 5 µm inline filter element. The oil is generally allowed to circulate for 

at least one minute following a breakdown. After reconditioning, the isolation valves are closed 

and a hand pump is used to pressurize the high pressure switch through a hydraulic translator. 

The total volume of fluid required to fill the system, including the switch, is approximately 

800 mL. 

 

 

 

Figure 6.7: This photograph shows the switch installed in the circuit with the high pressure 
solenoid valves visible on each side. 
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Figure 6.8: The Sartorius filter housing allows for large 142 mm filters to be installed in the oil 
reconditioning system minimizing the pressure drop of the filter.  

 

Figure 6.9: A Schematic diagram of the high-pressure and oil-reconditioning circuit is pictured. 

 

The sample oils are evaluated for water content prior to high voltage testing utilizing a JM 

Science Aqua Counter model AQ-300 coulometric titrator, shown in Figure 6.10. The AQ-300 

uses the Karl-Fischer titration method to determine total dissolved water [27]. It is an established 

fact that the presence of dissolved water in an oil dielectric has an impact on the self-breakdown 

jitter of non-aqueous liquid switches [28, 29]. 
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Figure 6.10: The JM Science Aqua Counter AQ-300 coulometric titrator used to perform water 
concentration analysis. 

 

The breakdown voltage is monitored utilizing a Northstar Research high voltage probe, 

model PVM-6 [30]. The PVM-6 has a peak voltage rating of 100 kV, an 80-MHz bandwidth, and 

provides a 1000:1 voltage division ratio at the output. The switch voltage is designed for up to 

250 KV; therefore an additional voltage divider having a 4.26:1 voltage division ratio is used 

across the switch terminals to bring the measured voltage within the dynamic range of the 

PVM-6. Figure 6.11 shows the PVM-6 installed in HVADTS. 

 

Figure 6.11: The Northstar Research PVM-6 100 kV, 80 MHz high voltage probe used to 
monitor the transient switch voltage. 
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The high pressure switch is operated utilizing a gap separation that would permit self-

breakdown at approximately 80 % of peak voltage. Figure 83 illustrates a typical waveform in 

which breakdown occurs at 150.11 kV, or approximately 63.2 % of 250 kV. The noise evident 

on the leading edge of the waveform (t = 1.4 µs) has been attributed to noise generated by the 

Marx Bank trigger generator. 

Figures 6.13 and 6.14 illustrate the open circuit voltage pulse. The voltage is seen to peak at 

255 KV and ring at a frequency of 250 KHz. Figures 6.15 and 6.16 show the current through the 

oil switch after breakdown has occurred. The waveform can be seen to peak at 2 KA at a 

frequency of 50 MHz. The HVADTS has proven to be a reliable system performing over 104 

shots since last maintenance.  

 

 

Figure 6.12: A switch voltage waveform illustrating breakdown is pictured here. The voltage rise 
‘1-cos’ initiates at 1.41 µs. The switch breaks down 1 µs after initiation at 158.1 kV (63.2 % of 
peak) with a gap spacing of 1.2 mm. 
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Figure 6.13: The switch voltage waveform without breakdown is shown here. The voltage 
increases from 0 to 255 KV in 1.6 µs.  

 

Figure 6.14: The voltage ring without breakdown is shown here. The voltage damps to zero in 
approximately 60 µs. The voltage rings at approximately 250 KHz.  
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Figure 6.15: The current pulse through the switch after switch closure is shown here. The current 
peaks at nearly 2 KA.  
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CHAPTER 7 

EXPERIMENTAL RESULTS 
 

The results contained in this section are the result of nearly three years of experimental 

testing at UMC on the HVADTS system. The goal of the experimental testing is to reduce 

self-break oil switch jitter. The first section displays the results of the preliminary test cycles. 

The preliminary tests were completed to establish a baseline on the HVADTS system as well as 

identify several dielectric oils as candidates for further testing. The second section describes the 

initial testing on the particle-infused dielectric oils. In the third section the particle-infused oils 

are further investigated with varying pre-test and inline filter pore sizes and suspension 

procedures. The fourth section describes a test cycle comparing two oils, Nycodiel PAO and 

alkylbenzene, at four different pressures and a 1.2 mm gap spacing. The oils are tested with no 

additives, surfactant only, and surfactant with particles. In section five the gap spacing is 

widened to 2 mm and Nycodiel PAO and alkylbenzene are tested. Section 6.6 describes testing 

comparing both pure and particle-infused oil dielectrics. Section seven includes analysis of the 

conditioning and post-test shots. Each data point is the result of 50 breakdowns. The results 

suggest three ways to reduce jitter: eliminating water concentration, widening gap spacing, and 

infusing the oil with high-K particles.    

 

7.1  Initial HVADTS Baseline and Candidate Results 

The goal of the first stage of testing is designed to identify candidate fluids that exhibited 

good performance characteristics and to eliminate those that do not perform as well. In this stage, 

UMC evaluated a wide range of oil chemistries. The performance of a particular fluid is 

evaluated by considering both the average electric field strength at breakdown for a sample of 

breakdowns, and the percent standard deviation (PSD) of the electric field, which we define here 
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as the ratio of the standard deviation to the mean value of the breakdown electric field for a 

sample of breakdowns.  The PSD is a measure of the system jitter.   

The first series of tests were conducted with candidate fluid-dependent gap separations in 

order to obtain self-breakdown at approximately 80% of the attainable charge voltage. The 

results of this first cycle of tests are reported in Figures 7.1 and 7.2, showing the mean 

breakdown electric field and the percent standard deviation (PSD) of the breakdown electric 

field, respectively. In the tests, “Diala AX” represents a standard transformer oil, and “MIL-

PRF-87252” is a poly-α olefin (PAO) based on the dimer of decene. The MIL-PRF-87252C oil 

is a PAO has been used extensively at UMC as a high pressure switching medium under a 

previous program in which a pressurized, flowing oil switch was designed and tested [31].  

The results of Figures 7.1 and 7.2 indicate several fluids that are candidates for further 

testing. The standard transformer oil Diala AX, the decene/dodecene PAO blend, and the 

silahydrocarbon all exhibit PSD < 12%, whereas the ester, the decene PAO and the alkylbenzene 

has PSD > 12%. The ester has the highest PSD and exhibited the worst performance of any of 

the oils. Transformer oil (Diala AX) exhibited the lowest standard deviation. 
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Figure 7.1: The mean electric field at breakdown for the candidate oils in test cycle 1. Error bars 
represent 1-σ standard deviation. The oil pressure is 1000 psig (6.895 MPa) and variable gap 
spacing is employed. 

 

 

Figure 7.2: The percent standard deviation of the electric field at breakdown for the candidate 
oils in test cycle 1. The oil pressure is 1000 psig (6.895 MPa) and variable gap spacing is 
employed. 
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A second series of tests were conducted to examine the effects of different pressures on the 

candidate oil samples. In this cycle, the gap separations are maintained a fixed value of 1.6 mm 

and the oil pressure is stepped through five evenly spaced values ranging from 500 psi 

(3.45 MPa) to 1500 psig (10.34 MPa). It is important to note that this range of pressures excludes 

the critical pressure of the candidate fluids, all of which are less than 3.45 MPa. The critical 

pressure is an important parameter because it specifies, in part, a point in the thermodynamic 

state of the fluid where spontaneous partitioning from the liquid to the gas states (or vice versa) 

can occur, and it is believed that this is a necessary precursor to breakdown. In this cycle an 

additional silicone-based fluid called “DC-200” is included having a much lower viscosity than 

the silahydrocarbon; DC-200 is a Dow Corning silicone oil (Polydimethly-siloxane) with a 

viscosity of 20 cSt, compared to > 60 cSt for the silahydrocarbon. In addition to DC-200, an 

additional blended PAO is used to illustrate the effects of viscosity while maintaining the base 

chemistry. 

The results of test cycle are illustrated in Figures 7.3 and 7.4, showing the mean electric field 

at breakdown and the PSD of the breakdown voltage. The mean breakdown electric field 

increases with increasing oil pressure. The PSD, however, appears to be somewhat worse in test 

cycle 2 when compared to test cycle 1. It is unclear at this point whether the observed differences 

between test cycle for individual oil types are a result of the gap separation or not. In all cases 

but one, the PSD in Figure 7.4 increases slightly from 500 to 750 psi, and then begins a gradual 

decrease as pressure is increased to 1500 psi. The one case in which the PSD does not decrease 

continuously with increasing pressure is alkylbenzene; the PSD data point at 1500 psi may be an 

anomalous result, for the trend appears to be in agreement with the other oil types up to 1500 psi. 

The transformer oil, the Royco 602, the alkylbenzene, and the 4 cSt PAO blend appear to 

have very similar breakdown properties. In Figure 7.3, for instance, the transformer oil and the 4 

cSt PAO blend are statistically indistinguishable at most pressures, both having nearly the same 

mean and standard deviation  values. The Royco 602 exhibits slightly higher average and 

standard deviation breakdown electric fields, whereas the alkylbenzene has lower average and 

standard deviation breakdown electric fields. From a PSD standpoint, these four oils are virtually 

identical. 
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Figure 7.3A: The mean electric field at breakdown for four of the candidate oils in test cycle 2 
for several oil pressures. The error bars represent 1-σ standard deviation and a fixed gap spacing 
of 1.6 mm is employed. 

 

Figure 7.3B: The mean electric field at breakdown for four of the candidate oils in test cycle 2 
for several oil pressures. The error bars represent 1-σ standard deviation and a fixed gap spacing 
of 1.6 mm is employed. 
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Figure 7.4A: The percent standard deviation of the electric field at breakdown for four of the 
candidate oils in test cycle 2 for several oil pressures. A fixed gap spacing of 1.6 mm is 
employed. 

 

Figure 7.4B: The percent standard deviation of the electric field at breakdown for four of the 
candidate oils in test cycle 2 for several oil pressures. A fixed gap spacing of 1.6 mm is 
employed. 
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7.2  Initial High-K Particle Results 

A third test cycle was initiated in which particle BST was added to several of the candidate 

oils. Figure 7.5 illustrates the PSD values obtained during this test cycle. The addition of BST 

particles produces a 30% reduction in PSD at 500 psi. In all cases, the PSD rises as the pressure 

increases from 500 to 750 psi, as is seen in figures 7.3 and 7.4. One of the tests indicates that as 

pressure increases the PSD of the particle loaded oil actually increases, while another test 

indicates that the addition of BST actually decreases PSD. Additional testing was required to 

accommodate the apparent contradiction in results. The Diala AX transformer oil data of figure 

7.5 is included in figure 7.6 along with new Diala AX data with and without particle loading. 

The second test with the particle loaded Diala AX shows a marked decrease in PSD at high 

pressure. After testing, Batch 6481 of figure 7.5 was found to be contaminated possibly 

contributing to its poor performance.  Filter clogging issues were not resolved at this point in 

testing, contributing the higher PSD of the particle-infused oils.  

 

Figure 7.5: The percent standard deviation of the electric field at breakdown for several of the 
candidate oils in test cycle 3 for several oil pressures. A dispersion of particle BST is added to 
the transformer oil. Fixed gap spacing of 1.6 mm is employed. “Tested Royco” refers to Royco 
PAO that is removed from the reservoir of the UMC rep-rate test stand. This “Tested Royco” is 
subjected to more than one million breakdowns in its lifetime.  



Chapter 7: Experimental Results 

95 

 

 

Figure 7.6: Pictured is the percent standard deviation of the electric field at breakdown before 
and after the addition of particles to two samples of transformer oil in test cycle 3. A fixed 
gap spacing of 1.6 mm is employed. DialaA and DialaB are the same oils tested in two different 
runs. The data is more repeatable at lower pressures.  

 

A fourth test cycle was initiated to provide additional insight into the effects of BST particles 

on the breakdown properties of oil, the results of which are illustrated in Figures 7.7 and 7.8. The 

candidate oil selected for testing is the Nycodiel, a MIL-PRF-87252 decene-based PAO. A BST 

particle and a PZT nanopowder are selected as candidate loading materials. The PZT particles 

are loaded into the PAO to only 1% by weight, whereas BST is loaded into the PAO at 

concentrations of 0.1, 1.0, and 5.0 % (by weight). The use of lead based PZT is minimized due to 

health concerns. Lead is found to produce a significant reduction in both the mean breakdown 

electric field strength and the PSD of the breakdown electric field. In general, increasing the 

concentration of particles causes reduced average electric field intensity at breakdown. The use 

of particles of either constituency produces significant reductions in PSD of the electric field 

intensity at breakdown.  At this point in the research, filters were becoming clogged almost 

immediately rendering the inline filter system ineffective at removing carbon byproducts [32]. 



Chapter 7: Experimental Results 

96 

 

 

 

Figure 7.7: The mean electric field at breakdown for the candidate oils in test cycle 4 for several 
particle types and dispersion concentrations. A fixed gap spacing of 1.6 mm is employed at two 
oil pressures. 

 

Figure 7.8: The percent standard deviation of the electric field at breakdown for the candidate 
oils in test cycle 4 for several oil pressures. A fixed gap spacing of 1.6 mm is employed. 
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7.3  Particle Suspension and Filtration Procedure Refinement 

The second stage of the experimental approach taken by UMC is a more extensive evaluation 

of the effects that particle dispersions have upon the breakdown characteristics of selected oils. 

During this stage of the research a rigorous experimental design is employed that produces 

increased confidence in the results. In addition, this stage of the experiment is utilized to 

augment and refine the particle processing methods to develop a consistent means of loading the 

candidate oils with specific concentrations of particles through the use of enhanced 

filtering/dispersion techniques and surfactant chemistry.  

The selected oils are preprocessed prior to high voltage testing to introduce various 

surfactants and particle concentrations, as well as to evaluate some of the qualities of the 

dielectric such as water concentration. Approximately one liter of oil is pre-filtered through a 

0.45 µm nitrocellulose filter to remove macroparticle contaminants. Next, BST and a chemical 

surfactant are added at various concentrations to different samples of oil. At this point, the BST 

cannot be considered a nanoparticle due to the naturally occurring agglomeration that develops 

during the drying process after the BST has been ball-milled. Therefore the oil-surfactant-BST 

mixture is exposed to high-power ultrasound energy (e.g., sonicated) for a period of time to 

break the agglomerates into nanometer-sized particles. Though the sonication is effective at 

breaking down many of the agglomerates, the results are imperfect and a significant 

concentration of agglomerated microparticles remains.  

It is important to remove these larger components from the oil, for they almost immediately 

saturate the recirculation filter, thus limiting the effectiveness of the filter to remove carbon 

byproducts. The oil is therefore filtered to remove the larger BST particles. Several different 

filter pore sizes are employed for the experiments conducted in this cycle, ranging from as large 

as 5 µm to as little as 200 nm. A vacuum-filtration method was employed to force the particle oil 

through the filter pores. 

The final step taken during pre-processing is to sparge dried nitrogen through the oil at 

20 scfh for ten minutes. This process, known as sparging, utilizes mass transfer to remove 

unbound, dissolved water from the oil. The rate of sparging is set such that the oil appears to be 
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vigorously boiling. Measurements of dissolved water indicate that the sparging process could 

rapidly reduce the water content of most oils with 5 or 10 minutes of vigorous sparging [33]. 

High voltage testing of the selected fluids involves circulating the oil to remove discharge 

byproducts, primarily carbon, and then pressurizing the oil and applying a continuously 

increasing voltage to the sample until breakdown occurs.  A series of 50 breakdowns at each oil 

pressure are collected for each of the oil samples tested.  Following each test run the switch is 

removed from the HVADTS system and completely cleaned. The electrode surfaces are 

repolished using silicon carbide sandpaper (320 grit) until the electrode surface deformations are 

no longer visible. Immediately prior to high voltage testing, the switch is pressurized and 30 

breakdowns are accumulated to condition the electrodes and prevent conditioning drift in the 

data. 

The tests are conducted with pre-filter pore sizes of 5, 1, 0.45, and 0.2 µm, and the inline 

filter sizes are 5, 1, and 0.45 µm. Again, prior to testing, the oil is sparged to reduce water 

concentration to less than 100 parts per million (ppm). A set of 100 tests are performed per oil, 

with 50 tests for each of two oil pressures.  

Table 2 provides a summary of the data taken during this test cycle; including external 

variables (filter sizes & water concentration).  The effort is concentrated on the Nycodiel PAO 

(MIL-PRF-87252) and 1-Hexadecene. The data is organized into three main sections, the first 

section summarizing breakdown characteristics at relatively low pressure, the second section 

summarizing breakdown characteristics at higher pressure, and the third section bracketing the 

high and low pressure characteristics. Several basic trends emerge from the data in Table 2 as the 

level of BST particles is increased: the mean breakdown voltage decreases and the percent 

standard deviation decreases. In a few cases, for example “Low Pressure A Hexadecene”, the 

introduction of particles actually produced an increase in PSD, however this finding runs 

contrary to the majority of the other results, therefore we believe it may be an anomalous finding. 

The PSD results are illustrated graphically in figures 7.12 and 7.13 for each of the results 

summarized in the table.  

Figures 7.10 and 7.11 are photographs of the 142 mm diameter 3 µm pore size inline filters 

used during the test cycles of sections D, E, and F. The filter housing of figure 6.8 is not 
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purchased until after this test cycle. This test cycle utilizes much lower-capacity pancake filters. 

However, the filter pores of figures 7.10 and 7.11 appear the same as the pancake filters after 

testing. Higher jitter values result from tests when the filter became clogged.  The results of the 

test cycle suggest that the pre-filter size of 3 µm and inline filter size of 3 µm produces the 

lowest jitter values. The results also suggest that lower jitter values can be attributed to the 

particle-infused oils with the lowest water concentrations. Future test cycles suggest there is a 

strong correlation between water concentration and jitter in the particle-infused oils. 

In later test cycles, a drying procedure is implemented to determine the actual particle 

concentrations remaining in the particle-infused oil after filtration. This drying method is then 

utilized in all subsequent tests.  

 

Figure 7.9: Three 142 mm filters are pictured: the filter at the upper left is fresh, the filter at the 
bottom is used with oil without a particle concentration and the filter at the upper right is used 
with particle-infused oil. 
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Figure 7.10: A macro photograph of the filters indicates a strong carbon presence on both the 
used filters with and without a particle suspension. Test cycle 5 utilized 50 mm filters, the 
142 mm filters are only used in the final test cycles.  



Table 2. Experimental results for test cycle 5 of Nycodiel PAO and Hexadecene with concentrations of BST particles and surfactant. 

 
Oil Name  

Mean Breakdown 
Voltage (kV) 

Percent Standard 
Deviation (PSD) 

Pre-Filter 
Size  

Inline 
Filter Size Clogged? 

Water 
(ppm) 

LOWER 
300-psi 600-psi 300-psi 600-psi         PRESSURE 

                  
Pure Hexadecene 177 188.4 14.88% 11.03% None 1-um no X 
Hexadecene 5% BST 1% Surfactant * 176.4 186 17.28% 14.53% none 5-um yes X 
Hexadecene 5% BST 1% Surfactant  163.2 173.8 9.57% 9.93% 1-um 1-um yes X 
Pure Hexadecene  207.84 201.35 12.31% 12.74% 3-um  3-um no 30 
Hexadecene 5% BST 1% Surfactant  173.22 190.46 17.71% 9.56% 3-um 3-um no 52 
AlkylBenzene 5% BST 1% Surfactant 162.54 201.57 23.25% 11.33% 3-um 3-um no 54 
Pure Nyco ** 176.7 185.5 13.36% 13.55% none 1-um no 22 
Nyco 5% BST 1% Surfactant 162.2 180.4 13.30% 7.61% 3-um 3-um no 58 
Nyco 5% BST 1% Surfactant 155.2 173.4 13.05% 9.80% 1-um 1-um yes 43 
                  
 HIGHER 600-psi 1000-psi 600-psi 1000-psi         
PRESSURE  

  
 
  

 
  

 
  

 
  

 
  

 
  

 
    

Pure Nyco  146 164.8 16.97% 14.05% 0.2-um .45-um yes 133*** 
Pure Nyco **** 183.7 196.7 14.68% 10.25% 0.2-um 3-um no 23 
Nyco 5% BST 1% Surfactant   162.5  172.2  13.40%  10.24%  .45- um 3-um  no 56 
Nyco 5% BST 1% Surfactant  176.8 187.6 14.21% 11.10% 1-um 3-um no 64 
Nyco 5% BST 1% Surfactant  185.3 195.5 8.61% 7.01% 3-um 3-um no 45 
 Pure Hexadecene  199.06 203.36 15.39% 13.76% 3-um 3-um no 69 
Hexadecene 5% BST 1% Surfactant  192.42 206.39 14.52% 9.58% 3-um 3-um no 35 
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         LOW AND HIGH 300-psi 1000-psi 300-psi 1000-psi         

PRESSURE 
 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

   
166.55 

 
190.32 

 
21.61% 

 
16.78% 

 
3-um 

 
5-um 

 
no 

 
32 Pure Nyco ***** 

Pure Nyco  171.82 192.59 22.24% 18.77% 3-um 5-um no 19 
Pure Nyco 5% BST 1% Surfactant  173.99 206.35 19.37% 8.81% 3-um 5-um no 89 
                  
*  All percentages are by weight 

        ** Nyco conforms to MIL-PRF-87252 
    

   
  *** This sample is contaminated by water 

saturated DialaAX transformer oil 
before testing 

    
  

 

  **** This is the contaminated sample resparged and retested 
    

  
***** Insulator Punch Through           
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Figure 7.11: The percent standard deviation of the breakdown voltage is shown at different 
pressures for Nycodiel with (x) and without (o) BST particles and surfactant. The colors indicate 
the pressure runs summarized in Table 2. 

The introduction of particle BST into a commercially available PAO conforming to a 

military standard for insulating oils has unequivocally reduced the percent standard deviation of 

the voltage at which breakdown occurs by several percent. These findings suggest that the BST 

particles, the surfactant, or a combination of the particles and surfactant are acting to reduce the 

breakdown variability. The localized enhancement effect coupled with an increased bound-

charge storage capacity of the BST particles may be assisting the electro-thermal energy 

conversion process near the electrode. On the other hand, the surfactant chemistry may be 

introducing ionic compounds that can strongly influence the surface chemistry at the anode and 

cathode. The next section studies the effects of the surfactant upon the breakdown properties so 

that this effect, if it exists, may be optimized for a given system.  
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Figure 7.12: The percent standard deviation of the breakdown voltage is shown at different 
pressures of 1-Hexadecene with (x) and without (o) BST particles and surfactant. The colors 
indicate the pressure run summarized in Table 2. 

To determine if the apparent jitter reduction in PAO oil could be found in other oils, particles 

were added to generic 1-Hexadecene. The 1-Hexadecene is then tested for breakdown jitter on 

the HVADTS system with the same setup as the Nycodiel PAO. The results of figure 7.13 

indicate that at super-critical pressures the particle-infused 1-Hexadecene exhibits reduced jitter. 

However, the jitter reduction is not as pronounced as it is with the Nycodiel. At 600 psig and 

1000 psig the particle-infused 1-Hexadecene out-performed the control group by several percent. 

The high jitter value of the particle-infused oil at 300 psig can possibly be attributed to a clogged 

filter generating an unacceptably high concentration of carbon byproducts. 

One factor that is minimized, but not controlled, is the total dissolved water in the sample 

oils. Water concentration, as mentioned previously, is a significant factor in establishing a 

well-defined breakdown voltage. The particles/surfactant introduce a significant concentration of 

free water to the oils, possibly contributing to jitter performance. 
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7.4   Results of Varied Electrode Surfaces at 1.2 mm Gap Spacing 

This section investigates the contribution of the surfactant and the contribution of particles to 

the reduction of jitter seen in the previous test cycles.  The gap spacing is reduced to 1.2 mm to 

increase the ratio of field protrusion height to the total gap spacing. It is thought that a smaller 

gap spacing may increase the influence that field enhancements on the electrode surface have on 

breakdown jitter. This is suggested by gap-narrowing effect seen in the simulations. 

The effect of rough and smooth electrode surfaces is also tested in this cycle. Photographs of 

the two surfaces are shown in figure 5.1. The smooth electrode surface is generated by a figure-8 

polishing procedure with 1200 grit sandpaper and the rough electrode surface is generated by a 

sandblaster. After a testing sequence, the smooth electrode is sanded by hand to eliminate any 

macroscopic field enhancement before being inserted back into the switch. Any carbon residue 

generated by the discharges is removed with acetone prior to testing. The electrodes have a one 

inch diameter and are constructed of 17-4PH stainless steel that has been precipitation hardened 

to C38 Rockwell hardness.  

Rep-rate oil switches are typically paired with a high pressure and high flow rate oil 

circulation systems. The collapsing arc channel following a breakdown event produces hydrogen 

bubble byproducts [44]. These byproducts influence subsequent breakdown performance and 

must be removed from the electrode gap. Flowing oil at high pressure has been shown to reduce 

jitter by suppressing the magnitude of the bubble oscillation period and increasing the rate of 

bubble absorption [46]. During this test cycle the oil is tested at 0, 300, 600, and 1000 psig at a 

static flow to mimic and optimize the high-pressure conditions found in a rep-rate switch. 

Between shots, the oil is circulated through a 3 µm filter to remove the carbon byproducts.  

Nycodiel PAO and alkylbenzene are the two base oils employed. The three oil configurations 

utilized are pure oil, oil with 1% surfactant by weight, and oil with 5% BST and 1% surfactant 

by weight. It is not possible to test the BST without the surfactant, as the BST quickly drops out 

of the oil without the application of a surfactant. The oil is prepared with the sonication and 

filtering techniques described in chapter 3. The surfactant utilized with the Nycodiel PAO is PB-

184 developed by Chemax Inc. The PB-184 is a POE Olyel phosphate or Poly(oxy-1, 2-

ethanediyl), alpha-9-octadecenyl-omega-hydroxy-(2)-phosphate. The surfactant utilized with the 
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Alkylate 225 alkylbenzene is Biosoft S-101 developed by Stepan Co. Biosoft S-101 is a 

Alkylbenzenesulfonic acid or Alkyl(C10-16)benzenesulfonic acid with 2% alkylbenzene + 1.3% 

sulfuric acid [34, 35].  

It is demonstrated through electrostatic simulation that high-K particles increase the fields on 

the surface of the electrodes. It is thought that the interactions between the field enhancements on 

the surface of the electrode, particles near the surface of the electrode, and particles in the bulk of 

the oil contribute to the apparent jitter-reduction. This research investigates this possible theory.  

Additional data is recorded and listed in table 3 for all the remaining tests in this dissertation. 

The 30 conditioning shots taken at 300 psig before the base tests and the 100 post shots taken at 

50 psig after the completion of the base tests are recorded and listed in table 3. The particle 

concentrations (by weight) acquired from the drying method as well as water concentration 

measurements are included in table 3 as well.     

Also new to the remaining tests, a second breakdown is initiated following the first 

breakdown at a 1 Hz frequency. No oil recirculation or filtration is attempted between the two 

shots. The mean breakdown voltage and PSD of the second shot provides useful information 

regarding the effect the breakdown byproducts generated by the first shot has on any subsequent 

discharges. All of the even number figures in the rest of the dissertation refer to the data from the 

first shot and all odd numbered figures correspond to their second shot counterparts.  

These results will show that there is a significant interaction between pressure, water 

concentration, gap spacing and particle concentration on the self-break jitter of the oils tested.  
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Figure 7.13: The first shot mean voltage breakdown with smooth electrodes and Nycodiel oil 
results indicate an increasing breakdown voltage with increasing oil pressure. The oil with a 
surfactant and particle suspension has a slightly lower breakdown voltage.  

 

Figure 7.14: The second shot mean voltage breakdown with smooth electrodes and Nycodiel oil 
results indicate an increasing breakdown voltage with increasing oil pressure between 0 and 
300 psig. The increase of the mean breakdown voltage after 300 psig is not as apparent 
compared to the results of the first shot. The pure oil demonstrates the lowest mean breakdown 
voltage.  
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Figure 7.15: The first shot percent standard deviation (jitter) with smooth electrodes and 
Nycodiel oil results indicate a lower jitter associated with the oil with a surfactant and particle 
suspension at the lower pressures. At 1000 psig the oil with surfactant only has the lowest jitter.  

 

Figure 7.16: The second shot percent standard deviation (jitter) with smooth electrodes and 
Nycodiel oil results indicate a lower jitter associated with the oil with a surfactant and particle 
suspension at pressures higher than 300 psig. The surfactant only oil demonstrates high jitter at 
pressures greater than 0 psig. The pure oil demonstrates high jitter at 1000 psig. 
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Figure 7.17: The first shot mean voltage breakdown with rough electrodes and Nycodiel oil 
results indicate an increasing breakdown voltage with increasing oil pressure. The oil with a 
surfactant and particle suspension has a slightly lower breakdown voltage.  

 

Figure 7.18: The second shot mean voltage breakdown with rough electrodes and Nycodiel oil 
results indicate an increasing breakdown voltage with increasing oil pressure between 0 and 
300 psig. The increase of the mean breakdown voltage after 300 psig is not as apparent 
compared to the results of the first shot. The pure oil demonstrates the highest mean breakdown 
voltage. 
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Figure 7.19: The first shot percent standard deviation (jitter) with rough electrodes and Nycodiel 
oil results indicate a lower jitter associated with the oil with a surfactant and particle suspension 
at all pressures. The oil with a surfactant and particle suspension has the most significant jitter 
improvement at 600 psig.  

 

Figure 7.20: The second shot percent standard deviation (jitter) with rough electrodes and 
Nycodiel oil results indicate a lower jitter associated with the oil with a surfactant and particle 
suspension at all pressures. The surfactant only oil demonstrates high jitter at 1000 psig. The 
pure oil demonstrates high average jitter across at all pressures. 
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Figure 7.21: The first shot mean voltage breakdown with smooth electrodes and alkylbenzene oil 
results indicate an increasing breakdown voltage with increasing oil pressure. The oil with a 
surfactant and particle suspension has a slightly lower breakdown voltage. 

 

Figure 7.22: The second shot mean voltage breakdown with smooth electrodes and alkylbenzene 
oil results indicate a slightly increasing breakdown voltage with increasing oil pressure. The 
increase of the mean breakdown voltage after 600 psig is not as apparent compared to the results 
of the first shot. The pure oil demonstrates the highest mean breakdown voltage. 
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Figure 7.23: The first shot percent standard deviation (jitter) with smooth electrodes and 
alkylbenzene oil results indicate a lower jitter associated with the oil with a surfactant and 
particle suspension at 0 psig. At 600 and 1000 psig the pure oil demonstrates significantly lower 
jitter.  

 

Figure 7.24: The second shot percent standard deviation (jitter) with smooth electrodes and 
alkylbenzene oil results indicate a lower jitter associated with the oil with a surfactant and 
particle suspension at pressures of 0 and 1000 psig. The pure oil and surfactant only oil 
demonstrate similar jitter at all pressures. 
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Figure 7.25: The first shot mean voltage breakdown with rough electrodes and alkylbenzene oil 
results indicate an increasing breakdown voltage with increasing oil pressure. The pure oil and 
the oil with a surfactant and particle suspension has a similar breakdown trend. 

 

Figure 7.26: The second shot mean voltage breakdown with rough electrodes and alkylbenzene 
oil results indicate a slightly increasing breakdown voltage with increasing oil pressure. The 
surfactant only oil demonstrates the highest mean breakdown voltage. 
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Figure 7.27: The first shot percent standard deviation (jitter) with rough electrodes and 
alkylbenzene oil results indicate a lower jitter associated with the pure oil at the lower pressures. 
The surfactant only oil demonstrates the lowest jitter at 1000 psig. 

 

Figure 7.28: The second shot percent standard deviation (jitter) with rough electrodes and 
alkylbenzene oil results indicate a similar jitter trend for the three oils, except for the pure oil at 
1000 psig which demonstrates significantly higher jitter at 1000 psig. The surfactant and particle 
oil demonstrates the lowest jitter at 1000 psig. 
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The results from figures 7.14 through 7.29 indicate that utilizing rough electrodes reduces the 

switch jitter and mean breakdown voltage in nearly every case. The rough electrode surface also 

generates better trends in the breakdown behavior. Comparing the results of figures 7.16 and 

7.20 and figures 7.24 to 7.28, it is apparent that the rough electrode surface produces more 

consistent jitter values. The experimental, simulation and optical profilometer data all suggest 

that a smooth electrode surface produces higher rates of jitter than a rough electrode surface. On 

a smooth electrode surface, a breakdown event can occur on either a smooth or deformed section 

of the electrode. If the breakdown occurs on a smooth section, the electrons require a higher 

voltage to emit due to limited enhancement in that area. If the breakdown occurs on a rough 

section of the smooth electrode, the electrons would not require as much voltage to emit due to 

field enhancement; and the breakdown can occur at a lower voltage. This combination of high 

and low breakdowns over a 100-shot test cycle on a smooth surface produces higher jitter. 

 On a rough electrode surface no smooth surfaces exist, so there is negligible probability that 

a breakdown will initiate on a smooth surface. As such, the breakdown must initiate on an 

enhancement. This theory is supported by the experimental data which indicates a lower mean 

breakdown and jitter for rough electrodes compared to smooth electrodes. This is possibly the 

reason we are seeing lower jitter when utilizing the rough electrodes. 

 The differences between the first and second shot are quite apparent. The mean breakdown 

voltage at 0 psig is similar between the first and second shot, but at pressures greater than 0 psig 

the breakdown voltages of the first shot are much higher. The jitter is typically worse on the 

second shot, except in some cases with the particle-infused oils at all pressures and all the oils at 

higher pressures. It is possible that the particles could be acting to hide the carbon byproducts, in 

effect diminishing their effect on breakdown jitter [36].  

The jitter-reducing effect of the particles is apparent in the Nycodiel PAO and less evident in 

the alyklbenzene. Table 3 suggests that the surfactant increases the water concentration of the 

oils by nearly 10x compared to the pure oils. The pure Nycodiel and alkylbenzene has water 

concentrations of 18.5 and 46.7 µg/mL, respectively; while the particle-infused Nycodiel and 

alyklbenzene has water concentrations of 99.99 and 453.31 µg/mL, respectively. The extremely 

high water concentrations in the particle-infused alkylbenzene may have influenced the PSD of 

the tests.  
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7.5  Results of a Rough Electrode Surfaces and 2.0 mm Gap Spacing 

In this test cycle the gap spacing is expanded to 2 mm to test the effect of a widened 

gap-spacing on breakdown jitter. The lowest overall jitter attained is 5.01% with a pure 

alkylbenzene, a rough electrode surface, a gap spacing of 2 mm, a water concentration of 

65.88 µg/mL and a pressure of 200 psig. Interestingly, the second highest overall jitter of 5.39% 

is the second shot of this same configuration. The lowest jitter for the particle-infused 

alkylbenzene is 8.22% during the same cycle at 200 psig, however the water content is found to 

be 421.38 µg/mL.  

The lowest jitter attained with the Nycodiel PAO is 7.62% with a particle concentration of 

1.9%, a rough electrode surface, a gap spacing of 2 mm and a pressure of 100 psig. 

Unfortunately, the titrator was offline so the water concentration is unknown. However, previous 

results indicate that the water concentration would have been between 100 and 150 µg/mL. This 

is further evidence of the need to maintain low water concentrations throughout switch testing. 

The 2 mm test utilizes pressures of 0, 100, 200 and 300 psig. Higher pressures cannot be 

tested because of the voltage limitations of the HVADTS system. All of the 2 mm data is 

attained with rough electrode surfaces. The particle-infused Nycodiel demonstrates much lower 

jitter than the pure Nycodiel. The particle-infused Nycodiel with 1.5% surfactant did not perform 

as well as the particle-infused Nycodiel, possibly due to the higher water concentration 

associated with the higher percentage of surfactant.   

It is obvious from these results that widening the gap spacing to 2 mm significantly decreases 

the breakdown jitter. As the gap spacing is widened, the ratio of the height of the electrode 

surface deformation to the overall gap spacing decreases possibly decreasing the impact that the 

field enhancement has on breakdown jitter.  
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Figure 7.29: The first shot mean voltage breakdown with rough electrodes and two oils at the 
2 mm gap spacing results indicate an increasing breakdown voltage with increasing pressure. 
The Nycodiel pure oil and Nycodiel with particles and extra surfactant demonstrates a lower 
breakdown voltage.  

 

Figure 7.30: The second shot mean voltage breakdown with rough electrodes and two oils at the 
2 mm gap spacing results indicate an increasing breakdown voltage with increasing pressure. 
The Nycodiel oil with particles and extra surfactant demonstrates the lowest breakdown voltages, 
especially at 200 psig. 
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Figure 7.31: The first shot percent standard deviation (jitter) with rough electrodes and two oils 
at the 2 mm gap spacing results indicate lower jitter by the Nycodiel oil with particles and 
surfactant at all pressures. The alkylbenzene pure oil demonstrates slightly lower jitter at higher 
pressures. The Nycodiel oil with particles and extra surfactant demonstrates the highest jitter 
performance. 

 

Figure 7.32: The second shot percent standard deviation (jitter) with rough electrodes and two 
oils at the 2 mm gap spacing results indicate similar jitter performance with all the Nycodiel oils 
with the Nycodiel oil with particles and surfactant demonstrating slightly lower jitter. The pure 
alkylbenzene oil demonstrates lower jitter than the alkylbenzene oil with particles and surfactant.  
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7.6   Results of additional Testing with 1.6 mm Gap Spacing 

 

The University of Missouri – Columbia has been working over the past couple of years 

sponsored by a research grant. The goal of the venture is to develop, test and commercialize an 

oil-based dielectric switching medium. The METSS Corporation is well-known for their skill 

and expertise in developing oils, greases and lubricants for various hydraulic and lubricant 

applications and has provided many of the oils. 

The test cycles utilize a gap spacing of 1.6 mm and rough electrode surfaces. The oils 

provided by METTS, the DF oils, are not sparged with dry nitrogen prior to testing. A new 

surfactant called Atlox 4914 is provided by the METSS Corporation. The particle-infused 

Nycodiel incorporating the Atlox has fair jitter performance when sparged prior to testing, 

however the high viscosity of the surfactant makes it difficult to filter effectively. The particles 

quickly clog the filter. When the filter was taken apart the particles were found “caked” onto the 

filter. The Pb-184 has a much lower viscosity than the Atlox 4914 and does not clog the filter.  

The oils demonstrate nearly identical mean breakdown voltages across all pressure with the 

exception of the Nyco w/ BST & Atlox 4914 (2). The reason for this discrepancy is unknown as 

a water concentration measurement was not possible due to the titrator being offline. The second 

shot mean breakdown values are nearly identical for all the oils across all pressures.  

The particle-infused oils tend to produce lower jitter values during the test cycle than the 

other oils. The best performing oil is Nyco w/ BST & Pb-184 (2) (Resparged). Special care is 

taken to remove as much water as possible from the Nyco w/ BST & Pb-184 (2) (Resparged) oil 

as well as from the HVADTS oil reconditioning circuit The oil is sparged with dry nitrogen for 

120 minutes at 20 scfh and the HVADTS oil reconditioning circuit is sparged with dry nitrogen 

at 90 scfh for 10 minutes. The results indicate low jitter at all pressures as well as the lowest 

water concentration achieved in a particle-infused oil post-test of 61.72 µg/mL. Developing a 

system to maintain even lower water concentrations during operation will further reduce the 

self-break jitter.  
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Figure 7.33A: The first shot mean breakdown voltage with rough electrodes results indicate 
higher breakdown voltages with increasing pressure. The Nyco w/ BST & Atlox 4914 (2) 
demonstrates a slightly lower breakdown voltage than the other oils.    

 

Figure 7.33B: The first shot mean breakdown voltage with rough electrodes results indicate 
higher breakdown voltages with increasing pressure. The Nyco w/ BST & Atlox 4914 (2) 
demonstrates a slightly lower breakdown voltage than the other oils.    
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Figure 7.34A: The second shot mean breakdown voltage with rough electrodes results indicate 
an increasing breakdown voltage with increasing oil pressure between 0 and 300 psig. There is 
no apparent increase in breakdown voltage after 300 psig.  

 

Figure 7.34B: The second shot mean breakdown voltage with rough electrodes results indicate an 
increasing breakdown voltage with increasing oil pressure between 0 and 300 psig. There is no 
apparent increase in breakdown voltage after 300 psig.  
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Figure 7.35A: The first shot percent standard deviation (jitter) with rough electrodes and METSS 
oil results indicate that the oils with particles and surfactant demonstrate the lowest jitter. In 
particular, the Nyco w/ BST & Pb-184 (2) (Resparged) and Nyco w/ BST & Atlox 4914 
demonstrate low jitter values.  

 

Figure 7.35B: The first shot percent standard deviation (jitter) with rough electrodes and METSS 
oil results indicate that the oils with particles and surfactant demonstrate the lowest jitter. In 
particular, the Nyco w/ BST & Pb-184 (2) (Resparged) and Nyco w/ BST & Atlox 4914 
demonstrate low jitter values.  
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Figure 7.36A: The second shot percent standard deviation (jitter) with rough electrodes and 
METSS oil results indicate increasing jitter with increasing pressure. The Nyco Control and 
Nyco w/ BST & Pb-184 demonstrate the most stable jitter behavior across the pressures. 

 

Figure 7.36B: The second shot percent standard deviation (jitter) with rough electrodes and 
METSS oil results indicate increasing jitter with increasing pressure. The Nyco Control and 
Nyco w/ BST & Pb-184 demonstrate the most stable jitter behavior across the pressures. 
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7.7  Conditioning and Post-Shot Data 

Table 3 lists the mean breakdown voltage and PSD (jitter) of the conditioning and post-test 

breakdowns. The conditioning procedure consists of 30 breakdowns at 300 psig taken at 1 Hz 

prior to actual testing. There is no filtering between shots. The conditioning process allows 

development of ionic and deformation processes on the electrode surface prior to the actual tests 

to prevent conditioning drift in the data. Averaging across the mean breakdown and PSD values 

of the conditioning shots with regard to gap spacing gives the following values: 117.27 KV and 

15.27% at 1.2 mm gap spacing, 139.7 KV and 15.25% at 1.6 mm gap spacing and 207 KV and 

10.21% at 2.0 mm gap spacing. It is clear that the mean breakdown increases with increasing 

gap spacing with jitter decreasing between gap spacing of 1.6 and 2.0 mm. The particle-infused 

oils tend to produce the lower jitter values in most cases. The lowest jitter values of 5.8 and 8.6% 

are observed in the particle-infused oils at 2.0 mm gap spacing.    

The post-test procedure consists of 100 breakdowns at 50 psig taken at 1 Hz after actual 

testing. There is no filtering between shots. Averaging across the mean breakdown and PSD 

values of the post-test shots with regard to gap spacing gives the following values: 132.15 KV 

and 11.49% at 1.6 mm gap spacing and  187.73 KV and 12.62% at 2.0 mm gap spacing. There is 

no post-test data for the 1.2 mm gaps spacing. The results from table 1 suggest that there is 

negligible difference in PSD and breakdown between the pure oils and the particle-infused oils. 

The high carbon concentration could possibly be acting to mitigate the jitter-reducing effect of 

the particles. This is further evidence of the importance of carbon filtration between shots.  

 



Table 3. Additional Oil Data Conditioning 
Data Post Data       

 30 shots 300 psig 100 shots 50 psig Water Conc. (µg/mL) Particle Concentration % 

Oil Additives Gap 
(mm) Electrode Filter 

(µm) 
Mean 
(KV) 

PSD 
(%) 

Mean 
(KV) 

PSD 
(%) PreSparge PreTest PostTest Pretest PostTest 

Sparge 
Time 
(min) 

DF-3 X 1.6 Smooth 1 X X X X X X X X X X 

DF-9 X 1.6 Smooth 1 X X X X X 41.65 X X X X 

DF-14 X 1.6 Smooth 1 X X X X X 17.39 X X X X 

DF-16 X 1.6 Smooth 1 X X X X X 22.78 X X X X 

DF-1 X 1.6 Smooth 1 X X X X X X X X X X 

NycoDiel X 1.6 Rough 1 139.79 9.91 131.16 10.52 X X X X X X 

DF-2 X 1.6 Rough 1 137.89 14.63 125.47 12.43 X X X X X X 

DF-2A X 1.6 Rough 1 136.04 15.49 128.98 12.8 X X X X X X 

NycoDiel 5% BST 1% 
Atlox 4914 1.6 Rough 3 142.29 13.99 126.04 10.81 X X X 1.01 0.4 X 

NycoDiel 5% BST 1% 
Atlox 4914 1.6 Rough 3 150.78 15.87 131.48 11.61 X X X 3.6 2.6 X 

NycoDiel 5% BST 1% 
PB-184 1.6 Rough 3 141.66 19.82 128.55 10.66 X 208.88 218.23 2.2 1.9 X 

NycoDiel 5% BST 1% 
PB-184 1.6 Rough 3 131.37 12.6 157.96 12.35 167.17 39.67 136.89 2.3 2.1 50 

NycoDiel 5% BST 1% 
PB-184 1.6 Rough 3 137.77 19.69 127.57 10.77 125.05 45 61.72 0.93 0.84 120 

               
ABeAA Alkylbenzene 1.2 Smooth 3 114.74 15.18 X X 43.78 6.63 53.01 X X X 

ABeBA Alkylbenzene 1.2 Rough 3 114.86 15.78 X X 32.22 3.83 46.67 X X X 

ABeAB Alkylbenzene 
w/ 1% Biosoft 1.2 Smooth 3 104.86 14.29 X X 294.56 186.52 291.87 X X 30 

ABeBB Alkylbenzene 
w/ 1% Biosoft 1.2 Rough 3 117.93 18.13 X X 415.57 216.11 451.91 X X 30 

ABeCA 
Alkylbenzene 
w/ 1% Biosoft 
5% BST 

1.2 Smooth 3 121.51 17.35 X X 785.81 150.72 394.27 2.08 1.75 30 

ABeCB Alkylbenzene 1.2 Rough 3 120.54 11.57 X X 1096.17 157.68 453.31 1.34 1.04 30 
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w/ 1% Biosoft 
5% BST 

               
NycoAA 
(Fail) NycoDiel 1.2 Smooth 3 X X X X X X X X X X 

NycoAA NycoDiel 1.2 Smooth 3 110.85 10.92 X X 10.85 5.24 18.5 X X X 

NycoBA NycoDiel 1.2 Rough 3 97.17 21.5 X X 9.78 3.72 23.42 X X X 

NycoAB NycoDiel w/ 
1% Pb184 1.2 Smooth 3 143.84 19.43 X X 81.9 5.46 102 X X 40 

NycoBB NycoDiel w/ 
1% Pb184 1.2 Rough 3 108.91 16.56 X X 69.96 7.15 156.4 X X 30 

NycoCA 
NycoDiel w/ 
1% Pb184 5% 
BST 

1.2 Smooth 3 138.2 11.24 X X 89.18 13.51 95.31 0.75 X 20 

NycoCB 
NycoDiel w/ 
1% Pb184 5% 
BST 

1.2 Rough 3 113.08 14.28 X X 96.42 11.9 99.09 X 0.47 20 

               

 

2mm Data: 
pressures at 0 
100 200 300              

               
ABeDA Alkylbenzene 2 Rough 3 213.81 9.25 194.13 10.68 52.68 24.2 65.88 X X 30 

ABeDB 
Alkylbenzene 
w/ 1% Biosoft 
5% BST 

2 Rough 3 225.24 5.8 197.37 15.04 375.39 99.51 421.38 1.34 1.27 30 

               
NycoDA NycoDiel 2 Rough 3 205.53 13.2 187.21 12.74 39.07 24.2 65.88 X X 30 

Nyco2DB 
NycoDiel w/ 
1% PB-184 
5% BST 

2 Rough 3 221.82 8.6 200.29 11.46 X X X X 1.9 30 

NycoDB 
NycoDiel w/ 
2% PB-184 
5% BST 

2 Rough 3 172.04 14.21 159.68 13.18 137.77 43 X X 2.2 30 
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CHAPTER 8 

CONCLUDING REMARKS 
 

8.1  DISCUSSION 

After several years of working to reduce the self-break jitter of oil switches it is apparent that 

there is no simple solution. There are many factors and interactions that must be considered 

when investigating methods to reduce jitter. My research indicates that four variables may be 

more significant: particle concentration, water concentration, gap spacing, and electrode surface 

roughness. The data suggests that the lowest switch jitter could be attained in a rep-rate 

flowing-oil system if a particle-infused PAO oil dielectric with a particle concentration greater 

than 1% flows freely through a 3 µm filter at a large (>2 mm) gap spacing with rough electrodes 

and a water concentration less than 10 µg/mL.  

Widening the gap spacing beyond 2 mm would require an overhaul of the switch system to 

accommodate a higher voltage pulse. A gap space of 4 mm would require a pulse of nearly 

500 KV. Developing a particle-infused oil dielectric that generates no sedimentation would 

require a more sophisticated technique to fragment the particles into smaller agglomerations. 

Maintaining a water concentration of less than 10 µg/mL during switch operation would require 

a water removal system installed as part of the reconditioning system. A rough electrode surface 

would automatically be generated by the breakdown arcs; however, as the shot count increases 

the filter pore size must decrease to prevent accumulation of carbon byproducts. There is a 

necessary trade-off between the high-k particle size and carbon accumulation.  

Other aspects of the switch, such as electrode materials, rate of voltage rise and oil 

temperature were not investigated. A series of breakdowns on an electrode material other than 

stainless steel may generate a different electrode surface profile than the current profile resulting 
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in dissimilar breakdown behavior. However, if a series of breakdowns generate a similar surface 

profile as seen on our electrodes, the difference in breakdown behavior would be negligible. 

Other researchers have indicated breakdown jitter decreases with increasing rate of voltage rise. 

It is quite probable that their findings would translate to our system. As the rate of rise of the 

electric field increases, the average breakdown strength increases. Several additional references 

are available regarding breakdown in oil [38-44]. 

The viscosity of an oil dielectric is proportional to its temperature. The lower viscosity oil, or 

oil at a higher temperature, would phase partition to a vapor/gas at a higher rate producing lower 

breakdown jitter. Not much is known regarding the temperature effect on oils in pulsed 

conditions; however, there have been some publications in the 60 Hz breakdown regime [38, 39].  

The effect of pressure on breakdown jitter, though thoroughly investigated, is still highly 

unknown. From the results, the lowest jitter value is typically observed at 0 psig; however this is 

not always the case. Despite the rigorous treatment of pressure as a testing variable, it is 

necessary to continue testing at different pressures. The hydrostatic pressure on a liquid has long 

been known to affect its average breakdown electric field strength [40]. This is a result of the 

increase in electrical energy that must be supplied to the liquid to overcome the mechanical 

energy of the applied hydrostatic pressure. The phenomenon accounts for the shape of the 

relationship between average breakdown strength and hydrostatic pressure, however it is not 

clear if this particular phenomenon plays any role in the establishment of breakdown jitter. On 

the other hand, the increased pressure may result in a ‘pressure broadening’ effect, in which the 

increased number of collisions due to the increased pressure results in a spreading of the energy 

[41]. This broadening effect may be partially responsible for the breakdown jitter.  

The lowest jitter attained with the Nycodiel PAO is 7.62% with a particle concentration of 

1.9%, a rough electrode surface, a gap spacing of 2 mm and a pressure of 100 psig. 

Unfortunately, the titrator was offline so the water concentration is unknown. However, previous 

results indicate that the water concentration would have been between 100 and 150 µg/mL. 

Reducing this water concentration to less than 10 µg/mL would no doubt improve results.  

The lowest overall jitter attained is 5.01% with a pure alkylbenzene, a rough electrode 

surface, a gap spacing of 2 mm, a water concentration of 65.88 µg/mL and a pressure of 200 
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psig. Interestingly, the second highest overall jitter of 5.39% is the second shot of this same 

configuration. The lowest jitter for the particle-infused alkylbenzene is 8.22% during the same 

cycle at 200 psig, however the water content is found to be 421.38 µg/mL. A system to reduce 

water levels in the particle-infused oils to less than 10 µg/mL during switch operation is vital to 

mitigating switch jitter.  

 

8.2  Summary and Proposed Future Work 

The tests conducted demonstrate statistically significant data that clearly indicates the 

capacity of suspensions of particle BST to improve the relative variation in breakdown electric 

field of insulating oil. Specifically, concentrations of BST particles of up to 5% (by weight) have 

been shown to decrease the PSD of the breakdown electric field by several percent, producing a 

PSD of as low as 7% of the mean breakdown electric field strength. We are the first to 

demonstrate the efficacy of using BST particles to reduce switching jitter.  

Our team has developed a sound methodology for incorporating particles into insulating oils. 

Utilizing high-voltage laboratory tests, several surfactants have been identified by the chemistry 

laboratory. The ongoing research into surfactant chemistry as well as enhanced methods of 

sonication may be brought to bear on the planned future studies of particle suspensions for 

increased dielectric quality. 

Several research directions have been proposed to further reduce the self-break jitter of an oil 

switch. Widening the electrode gap spacing, enhancing the suspension characteristics of the 

particle-infused oil, maintaining low water concentration levels throughout switch operation and 

utilizing a rep-rate flowing oil test stand for experiments have been suggested as future thrusts 

for the current program. 
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Appendix 
 
1A) Sample A: Nycodiel w/ 2.0% BST Concentration: New Oil    

Size Distribution: Intensity 
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1B) Sample A: Nycodiel w/ 2.0% BST Concentration: New Oil 

Size Statistics: Intensity 
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1C) Sample A: Nycodiel w/ 2.0% BST Concentration: New Oil 

Size Distribution: Volume 
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1D) Sample A: Nycodiel w/ 2.0% BST Concentration: New Oil 

Size Statistics: Volume 
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2A) Sample B: Alkylbenzene  w/ 2.0% BST Concentration: New Oil 

Size Distribution: Intensity 
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2B) Sample B: Alkylbenzene  w/ 2.0% BST Concentration: New Oil 

Size Statistics: Intensity 
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2C) Sample B: Alkylbenzene  w/ 2.0% BST Concentration: New Oil 

Size Distribution: Volume 
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2D) Sample B: Alkylbenzene  w/ 2.0% BST Concentration: New Oil 

Size Statistics: Volume 
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3A) Sample C: NycoDiel w/ 1.0% BST Concentration: New Oil 

Size Distribution: Intensity 

 

 
 



Appendix 

142 

 

 
 
3B) Sample C: NycoDiel w/ 1.0% BST Concentration: New Oil 

Size Statistics: Intensity 
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3C) Sample C: NycoDiel w/ 1.0% BST Concentration: New Oil 

Size Distribution: Volume 
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3D) Sample C: NycoDiel w/ 1.0% BST Concentration: New Oil 

Size Statistics: Volume 
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4A) Sample D: NycoDiel w/ 2.0% BST Concentration: Used Oil 

Size Distribution: Intensity 
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4B) Sample D: NycoDiel w/ 2.0% BST Concentration: Used Oil 

Size Statistics: Intensity 
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4C) Sample D: NycoDiel w/ 2.0% BST Concentration: Used Oil 

Size Distribution: Volume 

 

 



Appendix 

148 

 

 
 
4D) Sample D: NycoDiel w/ 2.0% BST Concentration: Used Oil 

Size Statistics: Volume 
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