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Abstract 

Geographic Information Systems (GIS) are used in the fields of urban planning, 

environmental management, agriculture, transportation, utilities etc. because of their 

ability to provide geospatial information organized in multiple layers such as digital 

image basemap, land use zoning, political boundaries, parcel maps, land cover, road 

network, building footprints, utility networks (e.g. water, sewage and electricity), 

topography, and green space. Some urban features like roads and buildings change with 

the time and it is therefore necessary to update this information. The goal of this research 

is to provide a robust automated method to extract commercial buildings from the high 

resolution DEM data with high quality, accuracy, and detection rates. This processing 

strategy uses three different detectors which are fused to obtain a final output. Though 

multi-detector fusion has been used previously for satellite imagery, it is completely new 

for the DEM data. All three algorithms are developed using a fuzzy logic approach. The 

results of our algorithm show that we have obtained 82% correctness, 73% completeness 

and 65% quality pixel wise and 82% correctness, 97% completeness and 65% quality 

object wise for the tuning images and  similar results for the test images. This approach 

can be expanded for the extraction of residential buildings which is left for future work.  
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Chapter 1 
 

Introduction 
 
 

1.1 Geographical Information Products and Applications 

 
             Since more than 50% of the world’s population lives in urban and suburban 

areas, detailed and up-to-date building and road information is of great importance to 

residents, government agencies, and private companies (utilities, real estate, etc.).  

              For the past 20 years, Geographic Information Systems (GIS) have been broadly 

applied in fields such as urban planning, environmental management, agriculture, 

transportation, utilities, etc. GIS (for more details see Sheckelford, 2004) is basically an 

integrated database where each piece of information has a geographic location associated 

with it. Information is displayed in a variety of spatial formats and is organized in 

information layers such as image basemap, land use zoning, political boundaries, parcel 

maps, land cover, road network, building footprints, utility networks (e.g. water, sewage 

and electricity), topographic networks and green space.  

             Therefore it is not surprising that public government agencies and private 

companies spend millions of dollars each year to convert paper maps into digital format 

suitable for use in GIS. However, many of these maps and much of the resulting GIS data 

are obsolete because though some features do not change much with the time (e.g. 

elevation), some features change frequently due to construction of new roads and 

buildings. Due to its temporal capability and ability to create accurate maps, remotely 



sensed imagery is one of the most efficient and widely used ways to acquire, extract new 

features, and update the old data. 

1.2 High Resolution Satellite Imagery 

             Remote sensing from space began in April 1960 with the launch of the Television 

and Infrared Observational Satellite (TIROS-1) by the USA as an experimental weather 

satellite. In 1972 the first civilian satellite (Earth Resources Technology Satellite ERTS-

1) designed specifically to collect information about the earth’s surface and resources was 

launched. Since then, a number of satellite systems have been developed, such as 

LANDSAT TM (Thematic Mapper), French SPOT HRV (High Resolution Visible), 

Russian SPIN, Indian IRS, Japanese Earth Resources Satellite (JERS), etc. 

             Spatial and temporal characteristics of several other high resolution satellite 

systems are listed in Table 1. Alternatives to passive remote sensing systems that record 

naturally reflected electromagnetic radiation are active sensors such as radar, LIDAR, etc. 

They are used to collect earth information from a radar or light pulse of energy emitted 

from the sensing device.  
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Table 1.1: Characteristics of Various Optical Remote Sensing Systems (for more 

details see Song, 2001) 

 

 Spatial Resolution 

(meters) 

Temporal Revisit 

(days) 
Spectral Band (µ m) 

NOAA  AVHRR 1100 1 0.58-12.5 

LANDSAT MSS 79 18 0.50-1.1 

LANDSAT TM 30 16 0.45-1.75 

LANDSAT ETM+ 15(pan) & 30(MSS) 16 0.45-12.5 

SPOT HRV 
10(pan) & 

20 (MSS) 
Variable 0.50-0.89 

IRS-1A 72 22 0.45-0.86 

IRS-1B 36.25 22 0.45-0.86 

JERS-1 18*24 44 0.55-0.86 

SPIN KVR-1000 2 9 0.49-0.59 

SPIN TK-350 10 9 0.49-0.59 

QuickBird 0.82 & 3.28 1-5 0.45-0.90 

IKONOS(MSS) 1 (pan) & 4(MSS) 1-3 0.45-0.90 

Orbview 3&4 1 (pan) & 4(MSS) < 3 0.45-0.90 

MODIS 250-1000 2 0.40-14.54 

ERS-1 30 35 5.3 GHZ C-band 

RADARSAT  25*28 4-6 5.3 GHz C-band 
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  In the following section we present a brief overview of different imagery sources. 

1.2.1. Aerial Photography 

             Digital Orthophoto Quarter Quadrangles (DOQQ) produced by the USGS are the 

most widely available high-resolution digital orthoimage dataset available to local 

governments in the U.S. These are digital images generated from an aerial photograph 

where the distortions due to terrain and sensor displacements have been removed giving 

it the positional accuracy and geometric qualities of map. DOQQs are available in either 

panchromatic (black/white), natural color, or color infrared with 1 m ground resolution 

and 8-bit per pixel dynamic range.  

 

Figure 1.1: Panchromatic USGS DOQQ of St. Charles, Missouri (1-m resolution) 
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1.2.2. Landsat 

             Landsat 5 and Landsat 7 were the first widely available sources of satellite-based 

imagery, which collect data with 5 (Multi Spectral Scanner MSS and Thematic Mapper 

TM) and 7 sensors (Enhanced Thematic Mapper ETM+) respectively . Bands 1-5 and 7 

have a spatial resolution of 30 m while band 6 (ETM+, TM thermal infrared band) has a 

spatial resolution of 60 m. The panchromatic band (PAN) present on the ETM+ sensor 

has a spatial resolution of 15 m. 

             Thus Landsat imagery has many applications in agriculture, geology, geography, 

water quality, etc but has very limited use in urban applications because of its inability to 

map man-made features like roads and buildings.  

 

Figure 1.2: False color 7, 5, 3 band combination Landsat TM image of St. Charles (30 m 
resolution)
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1.2.3. Commercial High Resolution Satellites 

             On September 24, 1999 the world’s first privately owned commercial, high 

resolution satellite - IKONOS - was successfully launched by Space Imaging Inc. 

IKONOS has a 1 m resolution panchromatic band and 4 m resolution multi-spectral 

bands. Data is stored with 11-bits per pixel giving it more dynamic range and therefore 

allowing increased discrimination of subtle spectral differences between objects. 

IKONOS imagery is a cost effective alternative for the generation of basemaps for use by 

local governments. 

 

Figure 1.3 False color infrared IKONOS MS image of Columbia, Missouri (4 m 

resolution) 
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1.2.4. Image Pan Sharpening 

             Pan Sharpening or data fusion is the process of increasing the spatial resolution 

of lower resolution MS bands using higher resolution PAN band. This produces imagery 

with the resolution of the PAN band and the spectral characteristics of the MS bands. 

There are variety of PAN sharpening algorithms using wavelet-based techniques, 

principle component analysis, and arithmetic means. 

 

                              (a)                                                             (b)               

 
Figure1.4: (a) PAN IKONOS image of 
Columbia (1 m resolution), (b) false color 
infrared IKONOS MS image of Columbia 
(4m resolution) (c) false colored infrared 
PS-MS IKONOS image of Columbia, 
Missouri 
 
 
 
 
 
(c)  
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1.3 Digital Elevation Models 

             A digital elevation model (DEM) is a digital file consisting of terrain elevations 

for ground positions at regularly spaced horizontal intervals. The resolution or the 

distance between adjacent grid points is a critical parameter. The best horizontal 

resolution that is widely available is 30 m, with a vertical resolution of 1 m.  The 

coverage of the entire globe, including the ocean floor can be obtained at lower 

resolutions. 

             DEMs can be created using several methods. Some of those are listed below: 

Conversion of printed contour lines 

o existing plates used for printing maps are scanned  

o the resulting raster is vectorized and edited  

o contours are "tagged" with elevations  

o additional elevation data are created from the hydrography layer  

 i.e. shorelines provide additional contours  

o a final algorithm is used to interpolate elevations at every grid point from 

the contour data  

Photogrammetry  

This can be done manually or automatically:  

i. manually, an operator looks at a pair of stereo photos through a 

stereo plotter and moves two dots together until they appear to be 

as one lying just at the surface of the ground  
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ii. automatically, an instrument calculates the parallax displacement 

of a large number of points  

iii. e.g. for USGS 7.5 minute quadrangles, the Gestalt Photo Mapper II 

correlates 500,000 points  

Extraction of elevation from photographs is confused by flat areas, especially lakes, and 

wherever the ground surface is obscured (buildings, trees).  There are two techniques for 

choosing sample points when using manual photogrammetry: 

 Profiling  

iv. the photo is scanned in rows, alternately left to right and right to 

left, to create profiles  

v. a regular grid is formed by resampling the points created in this 

process  

vi. Because the process tends to underestimate elevations on uphill 

parts of each profile and overestimate on downhill parts, the 

resulting DEMs show a characteristic "herringbone" effect when 

contoured. 

 Contour following  

i. contour lines are extracted directly from stereo pairs during 

compilation of standard USGS maps  

ii. contour data are processed into profile lines and a regular grid is 

interpolated using the same algorithms used for manual profiling 

data  
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1.3.1 Low Resolution DEMs 

             Low resolution DEMs can be obtained from variety of sensors listed below: 

Table 1.2: Various Satellite Sensors and their corresponding DEM Resolutions 

Satellite Sensor DEM Resolution 

ASTER 15-25 meters 

SPOT 5-10 meters 

IKONOS 2-5 meters 

 

1.3.2 High Resolution DEMs 

             High resolution DEMs with a 1 m horizontal resolution and a vertical accuracy of 

+/- 0.2 m can be generated using Light Detection and Ranging (LIDAR) technology.  

             An airborne sensor emits laser pulses that strike the ground and reflect to the 

sensor. When the precise altitude and position of the sensor is known, the elevation of the 

surface points can be determined from the time required for the pulse to return to the 

sensor. The following figure illustrates the airborne LIDAR concept. 
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Figure 1.5: Airborne LIDAR system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: LIDAR DEM image of Springfield, Missouri with 1 m horizontal resolution.  
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1.4 Feature Extraction 

             Feature extraction is the detection, identification, classification, annotation, 

measurement, and delineation in two or three dimensions. The tasks of feature 

identification and delineation are often still done manually. These tasks are very time 

consuming, very labor intensive, and costly. Although man-made objects can be easily 

identified by human operator, it is very difficult for a computer to identify them. Semi-

automatic and automatic extraction of man-made objects, which has been studied for 

more than 20 years in the photogrammetry and digital image processing fields, is still in 

its developmental stage. 

             One of the most promising applications of automated techniques is to assist 

image analysts in the feature extraction process. Here, the goal is to produce a highly 

accurate, but not necessarily complete extraction of the feature of interest. For example, if 

an automated building extraction technique is able to accurately identify 75% of the 

buildings present in the image being analyzed, then the image analyst only has to 

manually digitize 25% of the buildings, greatly reducing the time required for data 

production. Another application where automated extraction techniques are useful even if 

they are not completely accurate is information mining of remote sensing image database 

archives.  

                          Because of the rapid pace of urban/suburban development, up-to-date 

cartographic information is required by public agencies and private companies. Among 

the most important features needed are buildings; hence the requirement for automated 
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procedures to rapidly identify and extract topologically correct building footprints from 

remote sensing data and/or imagery.  

 
 
1.5 Summary  

 In this chapter, we presented a variety of background material on 

geospatial information products, high-resolution satellite imagery, and image processing 

techniques and methods. The utility of these for urban area applications was discussed. 

Geospatial information products developed from commercial high-resolution satellite 

imagery have numerous government applications at both the local and national level. For 

example, the USGS’s National Map integrates a variety of geospatial information 

products (topography, roads, land cover, etc.). In addition to civilian government 

applications, there are many defense and intelligence applications for urban area 

geospatial information products. NIMA/NGA has integrated the previously disparate 

areas of mapping and imagery to produce a new intelligence tradecraft called geospatial 

intelligence or GeoINT.  

              Several earth image collection methods were also discussed; including both 

aerial photography and satellite based digital sensors. Then there was a brief overview of 

DEMs and their various generation methods. Also both high and low resolution DEMs 

were discussed followed by an overview of feature extraction. 

1.6 Objective 

             In this research we propose an approach to automatic building extraction from 

high resolution DEM data using digital image processing techniques. A set of algorithms 

for automatically extracting buildings from the remotely sensed data is developed within 
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the MATLAB environment. This research focuses on extraction of commercial buildings, 

i.e. buildings with larger size compared to residential buildings with comparatively 

smaller size. Pixel-based evaluations for completeness, correctness, detection, quality, 

missing factor, branching ratio and building or object based evaluations for detection and 

quality percentages are conducted by comparing the automatically extracted buildings 

with manually acquired buildings. 

             The rest of this thesis is organized as follows. In Chapter 2, previous building 

extraction research using high resolution imagery and DEM data is reviewed. Image 

preprocessing and the differential morphological profile are discussed in Chapter 3. In 

Chapter 4, actual feature extraction using different shape parameters and their fusion is 

presented along with the accuracy measurement concepts. Chapter 5 gives the results and 

accuracy statistics of the feature extraction on different test images with a discussion. 

Finally, concluding remarks and future work for this research are discussed in Chapter 6.  
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Chapter 2 

 

Background 

 

2.1 Introduction 

              Research involving building extraction from satellite imagery using digital 

image processing techniques is a relatively new development. In the following sections 

we present a brief review of the most significant advances.  

              The review is divided into four sections. Initially, previous work done using high 

resolution satellite imagery like IKONOS is reviewed. Literature on building extraction 

using high resolution DEM data is presented. This is followed by the discussion of the 

DRAW and Rubber band algorithms implemented on DEM data used for this research. 

Chapter is concluded with the research goals set at the start of this project and provides a 

summary of the techniques involved. 

2.2 Literature Review 

2.2.1 Building Extraction using High Resolution Imagery 

              A technique for building extraction from supervised (i.e. semi-automated) 

classification of IKONOS imagery is presented by Lee et al. [2003]. First, a supervised 

classification of the MS data is performed, focusing on identification of different types of 

building roof materials. The classification is then used to define a window within the 

PAN imagery to search for buildings. Buildings are then extracted using unsupervised 
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clustering followed by a polygon squaring technique based on the Hough transform. 

Building detection rates of 64%-72% and quality values of 30%-51% are reported. 

Croitoru and Doytsher [2003] presented a model-based building extraction technique that 

relies on the detection of right-angle building corners. Buildings are detected using pose 

clustering, a voting technique, where right-angle corners are used as voting elements. The 

voting process is constrained by detection of shadowed regions. This approach is limited 

by the necessity of a model for every building shape that is to be detected. Building 

detection rates of 79%-81% and quality values of 32%-34% are reported. A technique for 

detecting small objects, such as house plots and vegetation patterns, in 4.5-m PAN 

satellite imagery based on combining supervised shape classification with unsupervised 

image segmentation was presented by Segal and Kaufmann (2001). This approach 

utilizes a thresholding segmentation technique that has been modified to identify specific 

shapes on which it has been trained. Extraction completeness values of 61%-97% and 

correctness values of 58%-94% are reported. Jaynes et al. (1994) present a task driven 

perceptual organization approach for extraction of building polygons. This approach has 

three steps: low-level feature extraction of line segments and orthogonal corners, 

perceptual grouping of those features into chains, and polygon hypothesis generation 

from the chains. The building extraction algorithm was tested on high-resolution aerial 

photography and resulted in the detection of 87% of the buildings; however the accuracy 

of the extracted buildings was not reported. A technique based on extracting buildings 

from high-resolution PAN aerial photography by first identifying their cast shadows was 

developed by Irvin and McKeown (1989). Building hypotheses are initially generated by 

grouping detected edges and corners into polygons. Shaded regions are then identified 
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using a variety of image processing techniques, followed by identification and 

simplification of the shadow edge. The shadow edges are then combined with the 

building hypotheses to identify buildings. Building extraction accuracy measures for this 

approach were not reported.  

2.2.2 Building Extraction using High Resolution DEM data 

              LIDAR elevation data, which is acquired by airborne laser scanners, has been 

used as an attractive alternative to aerial photography due to high vertical accuracy and 

high point density. As a single source, LIDAR data has been used to reconstruct various 

types of building shapes; parametric models (Mass & Vosselman, 1999; Wang & Schenk, 

2000), prismatic models with flat roofs (Weidner & Förstner, 1995), and polyhedral 

buildings with the restriction on the building orientation (Vosselman, 1999). Haithcoat, 

Song, and Hipple (2001) proposed an approach to extract buildings by generating a 

digital surface model (DSM) from LIDAR data and then using watershed segmentation 

analysis. Due to limitations of DEM data for extracting comparatively small structures 

like houses, DEM data can be combined with other source imagery like IKONOS to 

produce more efficient building extraction (Brunn and Weidner, 1997; Haala and 

Brenner, 1999).  
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2.2.3 Overview of Initial Work Done  

              Two basic automatic building extraction algorithms named “DRAW” and 

“RubberBand” were developed for Dr. Davis by an undergraduate research assistant. 

However, because of time limitations, these algorithms were not fully explored and 

tested. These algorithms are briefly described here. 

                           

2.2.3.1  DRAW Algorithm 

              First the gradient is computed for each point in the DEM grid and then all points 

above a certain threshold are marked. The gradient values, i.e. slopes, indicate the height 

of any vertical structure relative to the ground level. Since the DEM data contains 

artifacts and noise, this slope threshold is useful to eliminate some noise in the image.  

However, selection of the appropriate threshold is dependent on the typical slope 

produced by the building type one wishes to extract. 

              Once the points with a slope above the threshold are determined, the DRAW 

algorithm is applied to each point. This algorithm vectorizes linear features present in the 

DEM by starting at a DEM grid point whose slope is above the threshold. The algorithm 

then searches radially around the current DEM point for linear, contiguous strings of grid 

points above the threshold. If multiple strings are found, the algorithm selects the longest 

one and records the starting and ending points of the selected string. The algorithm then 

recursively calls itself with the end point of the selected segment as the new current DEM 

grid point. To avoid infinite recursion the algorithm keeps track of all points in a string 

selected as longest. 
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              This algorithm has some major disadvantages. Since it’s a searching algorithm it 

is very time consuming especially for large datasets. Also the selection of an appropriate 

threshold is a problem because some buildings can be inadvertently filtered out with the 

noise. If the threshold is slightly higher than some parts of a building it will be 

represented by broken line segments. Adaptive thresholding is one potential solution but 

this increases the complexity of the algorithm. To overcome some of these difficulties the 

“Rubber-Band” algorithm was proposed. 

 

2.2.3.2  Rubber-Band Algorithm 

              This algorithm was inspired by its namesake, which, once stretched out, will 

contract and conform to the shape of whatever it encircles. This algorithm begins with the 

calculation of the centroid or geometric center, of a group of above threshold grid cells 

(i.e. grid points on the boundary of a building). The algorithm then examines grid points 

located at a distance, r, and angle θ, from the centroid. (Initially, r is set to a relatively 

large value r0. The initial value of θ doesn’t matter). If this test point belongs to the 

building under current consideration, the location of the point is recorded. In this case θ is 

incremented by an angle ∆θ, r is again set to r0 and then the point at the distance r and 

new angle θ is recorded. On the other hand, if the point does not belong to the building 

outline under current consideration, r is decremented, and the new test point is examined 

as before. This is done until a building point is found or until r is decreased to zero. In 

either case θ is incremented by ∆θ, r is again set to r0, and the process repeats until θ 

reaches 2П radians. 
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              The main advantage of the rubber-band algorithm is it generates simple, closed 

polygons. Also, it is free of the broken lines problem of the Draw algorithm. 

Unfortunately two complications limit the effectiveness of this algorithm. First, if the 

centroid of the building lies outside the building (e.g. “L” shaped buildings) this 

algorithm produces a polygon with few or no vertices along the portion of the building 

outline. Sometimes the same building number is assigned to two different buildings 

closely lying near each other. Thus, due to real world noise and vegetation (tall trees) 

present in the DEM, the rubber-band algorithm often merges two or more buildings into 

one single polygon.  

              Unfortunately both of these algorithms were time consuming and there were no 

accuracy statistics available. Also neither of these two algorithms proved robust enough 

for further modifications. Hence, the research presented in the next few chapters is based 

on a completely new approach. 

 

2.3 Summary  

 Here we briefly reviewed recent literature regarding semi-automated and 

automated building extraction. Various studies using high resolution imagery like 

IKONOS were discussed along with their accuracy statistics. Since DEMs have their own 

advantages like high point density, good vertical accuracy, and a 3-dimensional building 

perspective, we reviewed some of the recent building extraction research using DEM 

data. Finally, we presented an overview of the DRAW and Rubber Band algorithms 

developed as initial attempts for building extraction from LIDAR DEMs. 
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2.4 Research Goals 

             The goal set at the start of this research was to design a robust algorithm to 

extract comparatively large man-made structures with a high accuracy, quality, and 

detection rates. As said before, the approach developed here is completely new and not 

used before for DEM data. The final building extraction algorithm has many steps but it 

is simple to implement and produces high detection and quality percentages. The 

following two chapters will discuss the algorithm in detail.  
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Chapter 3 

Image Processing Methodology 

 
 
3.1 Introduction 

              Chapters 3 and 4 explain the image processing methodologies developed in this 

research for automated building extraction from high-resolution lidar DEMs. Chapter 

starts with the description of the overall processing chain. Then the image preprocessing 

strategy that is needed to remove noise and/or replace erroneous data is presented. These 

problems are tackled with Image interpolation and median filtering techniques. The 

image interpolation is used to correct for image artifacts, while median filtering is used to 

remove or lessen noise present in the DEM data. 

              Then the most important step in the processing chain, i.e. the Differential 

Morphological Profile (DMP) is discussed. Results for this step are presented after 

detailed explanation of the theory. The basic morphological operations like opening and 

closing are presented initially and then are extended to describe opening profiles and 

differential opening profiles. The chapter concludes with the results subsection where 

actual DMP output is shown for structural elements with different radii.  
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3.2 Processing Overview 

Figure 3.1 presents a flowchart summarizing all major steps in the automated building 

extraction processing chain.  After the image is read into the input matrix, the first step is 

interpolation which is needed to recover missing data points or “No Data Value” pixels. 

Next, the interpolated image is median filtered to remove random noise present in the 

image. After image preprocessing, eleven levels comprising the “Differential 

Morphological Profile” (DMPs) are calculated using disk structuring elements with 

variable radii. After this, three different shape measures, fuzzy rectangularness, fuzzy 

minimum bounding rectangle, and fuzzy branchiness are applied to the DMP levels. 

Three different images are formed - one each for each shape measure - by calculating the 

maximum value at each pixel for all the DMP levels. Finally, the three images are fused 

together to form a final image with building polygons represented as different objects. 

The following sections describe each block in more detail. 

 

                           
Start 

 

 Read the input  
DEM file  

 

Image interpolation & 
Median filtering 

 

 

A 
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Find morphological opening 
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Find Max Value 
at each Pixel for 
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Find Max Value 
at each Pixel for 
all DMP Levels 

Find Max 
Value at each 
Pixel for all 
DMP Levels 

  Combine all the three final images into one 
final image by fuzzy integration method. 

 

Stop 

Display the final image matrix with 
each building as separate object. 

 

 

 

 

Figure 3.1: Flowchart illustrating processing chain for automated building 

extraction approach.  
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3.3 Image preprocessing 

              The raw input DEM file is a text file that was generated by exporting an 

ARCInfo binary format to an ASCII format. The ASCII file output by ARCInfo begins 

with a six line header containing information about the DEM, followed by space-

separated DEM data points.  An example header is as follows: 

 

ncols   340 

nrows   688 

xllcorner  421970.5 

yllcorner  149330.5 

cellsize  1 

NODATA_value -9999 

 

                                                    Table 3.1: Typical DEM data file Header 

 The number of rows and columns in the input DEM file can be obtained from the 

header lines. In the MATLAB programming environment, the ASCII file can be directly 

read into a matrix format if the header lines are removed. Thus, the header lines should be 

eliminated leaving only data values in the ASCII file. The DEM data values represent the 

height of each data location above sea level. Thus, when the input DEM is represented by 

a black and white raster (2D) image, the pixel brightness indicates the relative height at 

each DEM location, i.e. brighter pixels represent larger elevation values. 
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3.3.1 Interpolation 

              The DEMs used in this research were generated from LIDAR technology. While 

this method of data collection is cost effective and accurate, the raw data file contains 

many missing data points, i.e. “NODATA_values” (data points with value -9999).   

These missing points are caused by surfaces that reflect most of the incident energy from 

the laser pulse away from the sensor. Valid pixels have values greater than zero 

indicating that these points have elevations above sea level. Missing data points will limit 

the effectiveness of any building extraction algorithm. Thus, this problem is addressed by 

using an image interpolation strategy. 

              Initially all pixels with values -9999 are identified. For each “no data” pixel, a 

3*3 neighborhood is searched for valid data points. If no valid data point is found then 

the mask size is increased to 4*4 and again the neighborhood values are searched. This 

process is repeated until a data value is successfully found in the neighborhood. After 

this, the average of all valid data values is calculated and the original pixel and all the 

searched pixels with NODATA_values are replaced by that value. Here instead of the 

average value, the pixel can be replaced by a binary interpolated value. The process of 

interpolation is explained with the help of following figures. 
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Figure 3.2: DEM sub-section (a) before interpolation and (b) after interpolation. 
 
              The effect of interpolation on the image can be easily observed especially in the 

case of parking lots which tend to have “No Data Values”.  

3.3.2    Median Filtering 

              Another problem that can limit the effectiveness of the building extraction 

algorithm is random noise present in the image. This problem is mitigated using a 

traditional median filtering technique.  

              The median filter is one of the most widely used order statistic filters. Order 

statistic filters are based on ordering the pixels (i.e. either ascending or descending) 

contained in the filter’s window and then replacing the value of the center pixel by the 

ranking result. In the case of median filtering, the center pixel is replaced by the median 

of the pixels in its immediate neighborhood. For certain types of random noise like salt 

and pepper noise, median filtering provides excellent noise reduction capabilities with 

considerably less blurring. 
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              Here, the center pixel and its 3*3 neighborhood are sorted and then the center 

pixel is replaced by the median value, i.e. the 5th value in the rank order. The principle 

function of the median filter is to force the points with distinct grey levels to be more like 

their neighbors. Isolated pixel clusters that are light or dark with respect to their 

neighbors and whose area is less than n2/2 (one half of the filter area), are eliminated by 

an n*n median filter. Large clusters are affected considerably less. 

              The figure below illustrates the effect of median filtering on a sub-section of the 

lidar DEM. 

 
 
 
 
 

 

 
 
Figure 3.3: DEM subsection (a) before median filtering and (b) after median 
filtering  
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3.4    Differential Morphological Profile 

              A differential morphological profile (DMP) is the most important component in 

the automated building extraction processing chain because it extracts bright and dark 

structures in the image depending on their shape and size. Mathematical morphology 

employs a set of image operators to extract and analyze image components based on the 

shape and size of quasi-homogeneous regions in the image. Mathematical morphology 

has been applied to a wide variety of practical problems such as image pre-processing, 

noise filtering, shape detection and decomposition, and pattern association. The DMP is a 

relatively new technique.  It was first introduced by Pesaresi and Benediktsson (2001) 

who used it to segment high-resolution satellite imagery. The DMP has also been used 

for urban land cover classification by Benediktsson et al. (2003). The DMP is a multi-

scale image analysis technique where a morphological profile of the image is constructed 

through the use of morphological opening and closing by reconstruction operations while 

varying the size of the structuring element (SE). The following sections introduce the 

concepts of morphological opening and closing, then opening by reconstruction, and 

finally the DMP itself. 

3.4.1   Morphological Opening and Closing   

  Morphological dilation of A by B, denoted BA⊕ , is defined as 

                                                                          (1) })ˆ(|{ φ≠∩=⊕ ABzBA z

The dilation of A by B then is the set of all displacements, z, such that B and A overlap by 

at least one element. Set B is commonly referred to as the structuring element in all 

morphological operations.  

The process of dilation can be visually illustrated as  
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                          A                                 B                                  BA⊕  
Figure 3.4: Example of Morphological Dilation 
 
One of the simplest applications of dilation is bridging the gap between two points. 

Similarly morphological erosion of A by B, denoted BAΘ , can be defined as  

                               (2) })ˆ(|{ ABzBA z ⊆=Θ

Thus erosion of A by B is the set of all points z such that B, translated by z, is contained in 

A. Visually, erosion can be illustrated as  

       

       
  
 
 
 

              A                                    B                                  BAΘ  
Figure 3.5: Example of Morphological Erosion 

 One of the simplest applications of erosion is eliminating irrelevant detail in an 

image. Two important and most commonly used morphological operators are opening 

and closing.  Each of these operators uses sequential combinations of dilation and 

erosion. 

              Opening A by B is the erosion of A by B followed by a dilation of the result by B. 

Mathematically this is defined as 

BBABA ⊕Θ= )(o                            (3) 

Similarly closing A by B is the dilation of A by B followed by erosion of the result by A  
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BBABA Θ⊕=• )(                            (4) 

Opening generally smoothes the contour of an object, breaks narrow isthmuses and 

eliminates thin protrusions. Closing also tends to smooth contours but, in contrast to 

opening, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and 

fills gaps in the contour. See (Gonzalez and Woods, 2002) for more details. 

3.4.2 Opening and Closing by Reconstruction  

 The opening by reconstruction γ* of an image I with structuring element SE=B is 

defined as the erosion of I with SE=B followed by grayscale geodesic dilation with 

SE=B1 iterated until stability is reached. The opening by reconstruction can be calculated 

as follows: 

)0(J = BIΘ  

0=n  

Repeat  

   =+ )1(nJ  IBnJ ∧⊕ )1)((  

   1+= nn  

Until =+ )1(nJ )(nJ  

γ *  )1( += nJ  

Where is dilation of by B1 i.e. structuring element with radius 1 and 

 is the point wise minimum. The effect of opening by reconstruction is to remove all 

structures in an image that are both smaller than SE and brighter than the surroundings.  

IBnJ ∧⊕ )1)(( )(nJ

∧

              The closing by reconstruction φ* of an image I with structuring element SE=B is 

defined as the dilation of I with SE=B followed by grayscale geodesic erosion with 

SE=B1 iterated until stability is reached. The closing by reconstruction can be calculated 

as follows: 
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)0(J = BI ⊕  

0=n  
Repeat  

   =+ )1(nJ  IBnJ ∨Θ )1)((  

   1+= nn  

Until =+ )1(nJ )(nJ  

Φ*  )1( += nJ  

              Where  is erosion of by B1 i.e. structuring element with 

radius 1 and  is the point wise maximum. The effect of closing by reconstruction is to 

remove all structures in an image that are both smaller than the SE and darker than the 

surroundings. For more detailed description see Pesaresi and Benediktsson [2001] and 

Vincent (1993).  

IBnJ ∨Θ )1)(( )(nJ

∨

              In our application, we just need the bright structures (i.e. large buildings have 

higher elevation than surroundings and are bright in a raster black and white image) so 

we only utilize opening by reconstruction. Closing by reconstruction can be used in the 

case of dark structures, i.e. structures with relatively less height above ground level like 

roads, etc. 

 

3.4.3 Differential Morphological Profile  

              Let γ* be a morphological opening by reconstruction operator with SE= λ. The 

opening profile at pixel x of image I is defined as a vector 

]},[),(:{)( noxx ∈∀=ΠΠ=Π ∗ λγ λγγγ λλ
.                (5) 

Let  be a morphological closing by reconstruction with operator SE = λ. Then, the 

closing profile at pixel x of the image I is defined as a vector  

λ
∗Φ
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]},[),(:{)( noxx ∈∀=ΠΠ=Π ∗ λϕ λϕϕϕ λλ
.             (6)     

              In the above two equations, )0(γΠ = )0(ϕΠ =I(0) for λ = 0 by the definition of 

opening and closing by reconstruction. The derivative of the morphological profile is 

defined as a vector storing the slope of the opening/closing profile for each step of 

increasing SE size. The derivative of the opening profile is defined as the vector 

]},1[|,|:{)( 1 nx ∈∀Π−Π=∆∆=∆ − λγγγγγ λλλλ .     (7) 

By duality, the derivative of the closing profile is defined as the vector 

]},1[|,|:{)( 1 nx ∈∀Π−Π=∆∆=∆ − λϕϕϕϕϕ λλλλ .    (8) 

In general, the derivative of the morphological profile (DMP) can be written as the vector  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+∈∀∆=∆

∈∀∆=∆
∆=∆

−=

+−=

]2,1[,

],1[,
:)( 1

nnc

nc
x

ncc

cnc
c

λϕ

λϕ  .         (9) 

Where n is the total number of iterations (SE sizes), and c = 1… 2n. The responses of the 

derivative calculated using small SEs are near the central position of the DMP vector, 

while the responses for the largest SEs in the closing and opening profile are recorded at 

the beginning (c=1) and the end (c=2n), respectively.  

            The signal recorded in the DMP provides information about the size and contrast 

of multi-scale structures in the image. Small structures will have strong response for 

small SE sizes, yielding a large response near the center of the DMP, while large 

structures will have strong response for large SE sizes, yielding a large response near the 

beginning or end of the DMP. Also, brighter structures will have high response in the 

opening portion of the DMP (c = n+1… 2n). Since we are concerned with only 

commercial buildings and other large structures, structuring elements with radii starting 
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from 10 m through 65 m are used with a variable step size, i.e. the step size increases as 

the SE size moves towards the larger values (i.e. 65 m). 

   

3.5 Results and Discussion 

              As discussed in the theory section, each level in the morphological profile 

corresponds to the objects of different shapes and sizes. As the radius of the structuring 

element increases, the object size captured in each level of the DMP also increases. Small 

structures have strong response for small SE sizes, yielding a large response near the 

center of the DMP, while large structures have strong response for large SE sizes, 

yielding a large response near the beginning or end of the DMP. We can also observe 

some non-building structures in the DMP levels because of their high contrast in the 

original image. So the next step of the algorithm is essentially to eliminate these non-

building structures while keeping the building structures intact.  Figure 3.4 demonstrates 

the various DMP levels for one of the lidar DEMs. 

 

(a) 
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                                   (b)                                                                               (c) 
                                   

 

 

                              (d)                                                                                   (e) 
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                                   (f)                                                                                (g) 

 

 

(h)                                                                                (i) 
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          (j)                                                                                     (k) 

 

 

 

                                                                           (l) 

Figure 3.6: Original Image (a) & Differential Morphological Profile Levels (b)-(l) 
corresponding to disks of radii 12 m, 13 m, 14 m, 15 m, 16 m, 17 m, 18 m, 19 m, 20 
m, 36 m, 65 m respectively. 
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3.6 Summary 

              This chapter’s primary focus was to present an overview of the processing 

chain and then the Differential Morphological Profile, which is the backbone of this 

research. The chapter starts with a overview of the processing chain used in this research 

along with a brief discussion. Then, the next section discusses the image interpolation 

strategy needed to remove the “No Data Value” pixels and the median filtering step 

which is essential for removing random noise present in the image. 

              After this, a brief introduction of morphological erosion, dilation, opening, and 

closing is presented. This is followed by a detailed discussion of opening and closing by 

reconstruction and the Differential Morphological Profile (DMP). The DMP is a multi-

scale image analysis technique where a morphological profile of the image is constructed 

through the use of morphological opening and closing by reconstruction operations while 

varying the size of the structuring element (SE).  

              The signal recorded in the DMP provides information about the size and contrast 

of multi-scale structures in the image. Small structures will have strong response for 

small SE sizes, yielding a large response near the center of the DMP, while large 

structures will have strong response for large SE sizes, yielding a large response near the 

beginning or end of the DMP. Also, brighter structures will have high response in the 

opening portion of the DMP (c = n+1… 2n). Since we are concerned with only 

commercial buildings and other large structures, structuring elements with radii starting 

from 10 m through 65 m are used with a variable step size, i.e. the step size increases as 

the SE size moves towards the larger values (i.e. 65 m).  
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These DMPs have non-building structures along with the building structures. So 

the next step is to eliminate these non-building structures using different shape measures 

and combine their outputs to form a final output. This is explained in detail in the next 

chapter.The chapter concludes with the actual images showing the DMP levels of an 

image for different disk sizes. 
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Chapter 4 

 

Feature Extraction and Fusion 

4.1 Introduction 

              Once the different DMP levels are obtained, a variety of shape measures are 

applied to extract different feature parameters like rectangularness, elongation, 

branchiness, compactness, etc. Since each DMP level is composed of objects at one 

specific scale, the above mentioned shape features vary between DMP levels (different 

scales). So each DMP level is evaluated for the three shape features, i.e. rectangularness, 

elongation, and minimum area rectangle. Then, three final feature images are obtained 

from the 11 different DMP levels, one for each shape measure. Then from these three 

feature images, a final fused image is obtained that represents the final building 

extraction output.  Various statistical measures are then used to quantify the accuracy of 

the building extraction results. 

4.2 Fuzzy S and П Membership Functions  

Classification and feature extraction techniques normally use crisp classification, 

i.e. every pixel or object is assigned to only one class. However, remote sensing images, 

especially for urban environments, often contain mixed pixels i.e., smaller sub-pixels 

with different signatures that together form a larger mixed pixel. Fuzzy classification 

techniques allow pixels to have more than one class and therefore better represent the 

imprecise nature of the data Wang [1990].  
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              Fuzzy classification techniques are based upon the fuzzy set theory. For the 

basic concept of the fuzzy set theory please see Klir and Yuan (1995).  This section 

describes the fuzzy S- and П–membership functions which are the primary functions used 

in this research. 

4.2.1 Fuzzy S – Membership Function 

              According to the definition of fuzzy set theory, membership values must fall 

within the range of 0 to 1.  As the name suggests, the S-membership function maps the 

original values along an S – curved function. This function has three control points a, b 

and c as shown in Fig. 4.1.  

 

Figure 4.1: A fuzzy S-membership function 

 

All points below a have a zero membership value.  Points above a and below b have 

membership values between 0 and 0.5.  Similarly, points above b and below c have 

membership values between 0.5 and 1.0. Finally, points above c all have a membership 

value of 1.  The equations controlling these values are as follows: 

 41



for x<=a                        (1) 
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for a<x<=b                    (2) 

for b<x<=c                    (3) 

Otherwise                      (4) 

4.2.2 Fuzzy П–Membership Function  

              A П – membership function consists of 2 S-functions as shown in Fig. 4.2. 

 

Figure 4.2: A fuzzy П – membership function 

The equations governing this function are: 

   for x<=a or x>=f          (5) 
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   for a<x<c                     (6) 

   for c<=x<=d                (7)           

   for d<x<f                     (8) 

Thus, each point is assigned a value depending upon its proximity to the threshold points 

(i.e. a, b, c, d, e, or f).  
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4.3 Minimum Bounding Rectangles 

              Minimum Bounding Rectangles (MBRs) are also called minimum enclosing 

rectangles or minimum area encasing rectangles. These are defined as the rectangular 

structure that completely encloses a given closed curve ensuring a minimum area ratio 

(i.e. ratio of area of the closed curve to the area of the enclosing rectangle). 

              From the DMP objects there are sometimes closed curved objects along with the 

building structures caused by vegetation areas, noise, or other non-building structures. 

These structures need to be eliminated and one of the most efficient ways is to use 

MBRs. Fig. 4.3 illustrates the MBR concept. 

 

                                                               (a)                                  (b) 

Figure 4.3: Minimum bounding rectangles for some closed curves. Original curves 

are shown in (a) and their corresponding MBRs are shown in (b) 

  

              In the above figure, the first curve has an area ratio (closed curve area divided by 

MBR area) less than that for the second one because the second curve itself is a rectangle 

so the MBR is the same as the curve (area ratio of 1). From the shape of the two curves 
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we can see that second object is more likely to be a building structure than the first one. 

Therefore, we can eliminate the first object (irregular object) by setting an appropriate 

MBR threshold to reject it. When calculating the minimum bounding rectangle we must 

consider the following three theorems: 

• Given a rectangle with four points arbitrarily chosen such that no edge contains 

more than one point, there exists another rectangle such that each edge contains 

one and only one of these points and the area of the rectangle is less than the 

given rectangle. 

• The rectangle of minimum area enclosing a convex polygon has a side collinear 

with one of the edges of the polygon. 

• The minimum area rectangle encasing the convex hull of a simple, closed, chain 

coded curve is one and the same as the minimum area rectangle enclosing the 

curve. 

              For more details regarding the theory and the algorithm please refer to Freeman 

and Shapira (1975) and Gonzalez and Woods (2002). Thus for every object in each DMP 

level, a minimum enclosing rectangle is found. Depending upon the mean value of the 

area ratios of all objects in each DMP level, a fuzzy value is assigned to each object in 

that particular DMP level using an S-membership function. Since each pixel has a 

different membership value in each DMP, a maximum value from all the DMP levels is 

found for each pixel to form a final image.  A final MBR output is shown in Fig. 4.4. 
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                          (a)                                                                                          (b) 

Figure 4.4: (a) original DEM image (b) output of fuzzy minimum bounding 

rectangle measure.  

4.4 Fuzzy Rectangular Measure 

              Shape information for each DMP object can also be measured using the 

morphological skeleton of the object. Morphological skeletonization is a process of 

reducing a binary shape into a graph that largely preserves the extent and connectivity of 

the shape while discarding the foreground pixels. There are a variety of methods to 

produce a skeleton. The method used here is part of the image processing toolbox in the 

Matlab environment1 and it always produces a connected and one pixel thick skeleton.  

              Since the skeleton is very sensitive to small-scale variations in the object’s 

original shape, the original shape should be initially smoothed by performing a 

                                                 
1 Bwmorph (I, ’skel' , inf): I is the input image matrix 
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morphological closing operation with suitable structuring element. The morphological 

filtering operation ensures that the smoothening will preserve the shape.  

              Once the skeleton is found for each object in a DMP level, the endpoints of the 

skeleton are identified using a binary hit and miss transform. For more details see 

Gonzalez and Woods (2002). Line segments are then found to connect the endpoints and 

then the angle between the two line segments connected to each endpoint is calculated. 

This process is illustrated in the Figure 4.5. 

 

 
Figure 4.52: Morphological skeleton processing for image segments shown in (a) and 
(d). Result of skeletonizing algorithm shown in (b) and (e) for image segments (a) 
and (d), respectively. The endpoints of the skeletons have been highlighted in gray. 
In (c) and (f), the skeleton endpoints have been connected by line segments and the 
endpoint angles identified.  
 
 

                                                 
2 From Shackelford and Davis (2002). 
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              The angles and the line segment lengths are used as shape information to help 

classify the building as “approximately rectangular”. A shape with about four endpoints 

with angles close to 900 and large separation, about two or less endpoints with angles 

much larger than 90o and about two or less endpoints with angles much smaller than 90o 

is classified as an “approximately rectangular”. Since these attributes are imprecise and 

the shapes of buildings vary, fuzzy membership functions are used to measure how 

closely the endpoint angles and the line segment lengths match the different criteria.  

              First, three fuzzy membership values are calculated for each skeleton endpoint 

angle θBiB: about 900, µB~90 B(θBiB), larger than 900, µB>90 B(θBiB), and smaller than 900, µB<90 B(θBiB). 

First, µ~90 B(θBiB) is calculated using a π-function as  

  µB~90 B(θBiB)=П (θBiB; 70,80,85,95,100,110)                         (9) 

Where П (θBiB; 70, 80, 85, 95,100,110) is a П-membership function as explained earlier. 

µB>90 B(θBiB) and µB<90 B(θBiB) can be calculated using S-functions as 

 µB>90 B(θBiB)= S(θBiB; 95,100,110)                                            (10) 

 µB<90 B(θBiB)= 1- S(θBiB; 70,80,85)                                            (11) 

The reference angle values are chosen so that angles matching the description of the 

membership functions would have membership values close to one, while angles 

deviating from the descriptions would have membership values approaching zero.  

Similarly a membership value to quantify the large separation between the skeleton 

endpoints, µLS (ei) is calculated for each line segment connecting the segment skeleton 

endpoints as  

 µLS (ei) = S (min [di, di+1]; 3, 5, 7)                                         (12)  

 47



where ei is the ith endpoint and di is the distance between ei and ei-1. “Large separation” is 

defined as being sufficiently larger than 5 m. To identify endpoints that have both angles 

near 90o and large separation (µB~90, LS (ei)), the fuzzy intersection (i.e. the minimum 

value) of (1) and (4) is calculated.  

              Fuzzy quantifiers (Klir, 1996) are used to calculate membership values for fuzzy 

sets describing ‘about four’ or ‘about two or less’. The membership value for a segment 

having about four endpoints with angles close to 900 and large separation, µB4B, is 

calculated as  

µB4B = П (∑ µB~90, LS (e
=

n

i 1
i); 1.0, 1.5, 2.5, 5.5, 6.5, 7.0)          (13) 

The membership values for a segment having about two or less angles much larger than 

900, µ2> and having about two or less angles much smaller than 900, µ2< are calculated as: 

µ2> = 1-S (∑ µB>90 B(θBiB); 2.0, 3.0, 4.5)                                   (14) 
=

n

i 1

µ2< = 1-S ( µ∑
=

n

i 1
<90 B(θBiB); 2.0, 3.0, 4.5)                                     (15) 

Finally, the membership value for a shape being “approximately rectangular” µR is 

calculated using fuzzy intersection of (13), (14) and (15) with the minimum operator. 

              As with the fuzzy MBR, this procedure is repeated for each DMP level and then 

a final image is obtained by taking a pixel wise maximum from all DMP levels.  Fig. 4.6 

demonstrates the output of the fuzzy minimum bounding rectangle measure on one of the 

images.     
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                                     (a)                                                                      (b) 

Figure 4.6: (a) original DEM (b) output of fuzzy rectangular shape measure. 

 

From this figure we see that almost all the shapes delineated are rectangular or L-shaped. 

Hence when we fuse all three detector outputs into one final image, a confidence value of 

1 is assigned to this measure.  This is explained in more detail in the coming sections. 

 

4.5 Fuzzy Branchiness Measure 

 One efficient way to eliminate non-building structures is to measure the “area 

porosity” or the “branchiness” (Soh, Tsatsoulis, Gineris and Bertoia, 2002) of the 

structure. This is given as 

area
widthlengthporosityarea max_max__ ×

=  ,                   (16) 
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where area is area of the object under consideration, max_length and max_width are the 

lengths of the object’s major axis and minor axis respectively. These can be calculated as 

follows: 

• First we need to determine the orientation of the object using  

Orientation = 
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        x and y are the lists of all the x-coordinates and y-coordinates of the all     

        the points in that object and µx and µy are their means.   

• Then for each pixel <x, y>  find  

α = x * cos (orientation) + y * sin (orientation)                (19) 

β= -x * sin (orientation) + y *cos (orientation)                 (20) 

• Identify maximum and minimum values of both α and β and call them αmin , αmax 

and βmin and βmax.  

• Then the principle axes can be given as 

dα = αmax -αmin and dβ= βmax -βmin                                         (21)                         

max_length=max (dα, dβ) and max_width=max (dα, dβ) 

              It is observed that usually non-building structures will have area porosity values 

that are higher than for building structures. Normally buildings tend to be more 

rectangular and smoother than their non-building counterparts. If the structure has a 

branchy nature then the numerator of the area porosity ratio becomes large as compared 

to the area of the object. 
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              As with the first two measures, every object in each DMP level is assigned a 

fuzzy value depending on the mean value of the branchy measures of all the objects.  

This procedure is then repeated for all the DMP levels and a final image is obtained by 

taking the pixel-wise maximum. At the end of this step we have three detector outputs; 

one from the fuzzy minimum bounding rectangle measure, one from the fuzzy 

rectangular shape measure, and one from the fuzzy branchiness measure.   

                                    (a)                                                                             (b) 

Figure 4.7: (a) Original DEM (b) Output of fuzzy branchiness measure.  

 

4.6 Multi-Detector Fusion  

  We have three different detector outputs that must be combined into one final 

output image.  However, we must consider the fact that each detector output has some 

incorrectly identified objects, e.g. non-building structures. Conversely, each detector 

output may have some building structures that are not identified by the other two 
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detectors. Thus, our goal is to fuse these three detector outputs in such a way that 

minimizes the number of non-building structures while maximizing the correct identified 

building structures.  

              One approach to this problem is to assign confidence values (on the scale of 0 to 

1) to each of the detector outputs and set a fuzzy rule base for their fusion. Here we 

assign a maximum confidence (i.e. 1) to the output from the fuzzy rectangular shape 

measure because it actually considers the angles and the lengths of the sides of each 

object, and, accordingly, most of the structures identified by this measure are perfectly 

rectangular or L-shaped structures. The rules used for the fusion are as follows: 

 

Given pixel is an output pixel if 

• It is in the fuzzy rectangular measured image OR 

• If the confidence value of that pixel in the fuzzy minimum bounding rectangle 

measure is above 0.75 OR in fuzzy branchiness measure is 0.7. 

• OR IF the confidence value of that pixel in the fuzzy minimum bounding rectangle 

measure is above 0.6 AND in fuzzy branchiness measure is 0.6; ELSE pixel is not 

an output pixel. 

The threshold values used above were determined from empirical evaluations on two 

tuning images and were shown to produce good results for these tuning images. 
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                                           (a)                                                                 (b) 

Figure 4.8: Final output after combining detector outputs from 4.3, 4.5, and 4.6 

using the fusion method discussed in the text.   

 
 

4.7 Accuracy Assessment 

 Accuracy assessment of the final algorithm output can be done in two ways.  The 

first way is to compare the final output image and a reference image on a pixel by pixel 

basis. The second approach is to compare these on an object or building basis. The first 

method represents the best case while the second method is a worst- case assessment. The 

following subsections explain both methods. 
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4.7.1   Pixel-Based Assessment  

In this method every pixel in the output image is either marked as True Positive, 

True Negative, False Positive, or False Negative (Jin and Davis,2004) using the 

following definitions. 

• True Positive (TP): Both manual and automated methods label the pixel 

belonging to the same building. 

• True Negative (TN): Both manual and automated methods label the pixel 

belonging to the background. 

• False Positive (FP): The automated method incorrectly labels the pixel as 

belonging to the building 

• False Negative (FN): The automated method incorrectly labels the pixel as 

belonging to the background. 

Once we determine the number of pixels in each category we can evaluate the 

algorithm performance using the following statistical measures: 

• Branching factor = 
TP
FP                                                          (22) 

• Miss factor = 
TP
FN                                                                   (23) 

• Completeness percentage = 
RTP

TP*100                                   (24) 

• Correctness percentage = 
FPTP

TP
+

*100                               (25) 

• Quality percentage = 
FNFPTP

TP
++

*100  ,                         (26) 
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 where TPR represents the number of building pixels (TP+FN) in a reference image.  

 The detection percentage denotes the percentage of building pixels correctly labeled by 

the automated process. The branching factor is a measure of the commission error of the 

system that incorrectly labels the background pixels as building. The miss factor 

measures the omission error of the system that incorrectly labels valid building pixels as 

the background. The miss factor can be derived from the detection percentage. Among 

these statistics, the quality percentage measures the absolute quality of the extraction and 

is the most stringent measure. To obtain 100% quality, the extraction algorithm must 

correctly label every object pixel (FN = 0). The accuracy of any algorithm will be lower 

when assessed at the pixel level. Low completeness values for the pixel-level accuracy 

assessment are caused by discrepancies between the shape of the buildings extracted by 

the algorithm and the reference building footprints. 

 

4.7.2 Object-Based Assessment 

The object-based assessment is very similar to the pixel-based assessment. It 

provides a more generalized idea about the accuracy of the algorithm compared to the 

pixel-based counterpart since it compares the number of objects in the output image 

rather than the pixels. Here again the buildings in the reference image are manually 

labeled (TPR) and, similar to the previous method, objects are marked as TP, FP or FN. 

Here usually completeness, correctness, detection percentage, and quality measures are 

calculated using the same formulae provided by the pixel-based accuracy assessment 

section.  
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4.8     Summary 

              In Chapter 3 we discussed the Digital Morphological Profile in detail. This 

chapter described the application of a variety of shape measures followed by a multi-

detector fusion technique to generate the final output image with 2D building footprints 

(polygons). 

              Classification and feature extraction techniques normally use crisp classification, 

i.e. every pixel or object is assigned to only one class. Here we adopted fuzzy 

classification techniques that allow the image pixels to have multiple shape measures to 

better represent the imprecise nature of the image objects. Thus, this chapter first 

provided a brief introduction for fuzzy S and П membership functions which are 

primarily used in this research.  

              Next, Minimum Bounding Rectangles (MBRs) are explained in detail. These are 

defined as the rectangular structure that completely encloses a given closed curve 

ensuring a minimum area ratio (i.e. ratio of area of the closed curve to the area of the 

enclosing rectangle).Since buildings are usually rectangular and L-shaped, a high area 

ratio indicates a higher probability that a given object is a building. Depending upon the 

mean value of the area ratios of all objects in each DMP level, a fuzzy value is assigned 

to each object in that particular DMP using an S-membership function. Since each pixel 

has a different membership value in each DMP, a maximum value from all the DMP 

levels is found for each pixel to form a final image. 

After this, a shape measure is used in this research to quantify the “rectangularness” of a 

building. First the skeleton of each object is determined. Morphological skeletonization is 
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a process of reducing a binary shape into a graph that largely preserves the extent and 

connectivity of the shape while discarding the foreground pixels. Once the skeleton is 

found for each object in a DMP level, the endpoints of the skeleton are identified. Line 

segments are then found to connect the endpoints and then the angle between the two line 

segments connected to each endpoint is calculated. A shape with about four endpoints 

with angles close to 900 and large separation, about two or less endpoints with angles 

much larger than 90o and about two or less endpoints with angles much smaller than 90o 

is classified as an “approximately rectangular”. Since these attributes are imprecise and 

the shapes of buildings vary, fuzzy membership functions are used to measure how 

closely the endpoint angles and the line segment lengths match the different criteria. As 

with the fuzzy MBR, this procedure is repeated for each DMP level and then a final 

image is obtained by taking a pixel wise maximum of each DMP.  

              The third and final measure used here is area porosity or “branchiness”. It is 

observed that usually non-building structures will have area porosity values that are 

higher than building structures because normally buildings tend to be more rectangular 

and smoother than their non-building counterparts. As with the first two measures, every 

object in each DMP level is assigned a fuzzy value depending on the mean value of the 

branchy measures of all the objects.  This procedure is then repeated for all the DMP 

levels and a final image is obtained by taking the pixel-wise maximum. 

              At the end of these steps we have three detector outputs; one from the fuzzy 

minimum bounding rectangle measure, one from the fuzzy rectangular shape measure, 

and one from the fuzzy branchiness measure. Confidence values (on the scale of 0 to 1) 
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are then assigned to each of the detector outputs and a fuzzy rule base is used for their 

fusion.  

              Finally the output image is assessed on a pixel-level and object-level basis. 

Initially each pixel is marked either as true positive or true negative or false positive or 

false negative depending on whether it belongs to building or background. Once we 

determine the number of pixels in each category we can evaluate the algorithm 

performance using some statistical measures like detection, completeness, correctness 

and quality percentages. The object-based assessment is very similar to the pixel- based 

assessment. It provides a more generalized idea about the accuracy of the algorithm 

compared to the pixel-based counterpart since it compares the number of objects in the 

output image rather than the pixels. Here again the buildings in the reference image are 

manually labeled (TPR) and, similar to the previous method, objects are marked as TP, 

FP or FN. The statistical measures remain the same as for the pixel-based assessment.  

 In the next chapter, these statistical measures are presented for five different 

images along with their detailed discussion. Two of the images are the tuning images or 

the images used to design the algorithm while the rest three are validation images on 

which the algorithm is run without making any changes. 
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Chapter 5 

 

Results and Discussion 

5.1 Introduction 

              In Chapters 3 and 4 the building extraction processing strategy developed in this 

research was presented. This chapter presents the actual output of the processing strategy 

for five high resolution LIDAR DEM test images along with the accuracy statistics and a 

brief discussion.  

5.2 Results and Discussion 

              The algorithms designed in this research were developed and tested on two 

images to obtain the best possible pixel- and object-based accuracy statistics. Once we 

finalized the technique, we then tested it on three other images without any further 

modification to demonstrate the repeatability of its  performance.  

              In this section we will show actual polygonal building footprint outputs for two 

images. The first image was used to develop and test the algorithms, and the second 

image was used to validate the results on a independent image. The statistics for the other 

three images are presented in the later section. All the test images used for this research 

were obtained from Springfield, Missouri and have a resolution of 1 m.  
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              After this, the accuracy statistics are reported and this is followed by a brief 

discussion about the algorithm’s performance. The chapter is then concluded with a brief 

summary and discussion. 

Development/Test Image 1 (size 1540*1295): 

 

                            (a)                                                                       (b)       

Figure 5.1: (a) Original DEM image and (b) Final building output.  

 

Table 5.1: Pixel Based and Building Based Accuracy Statistics for Development  

     Image 1 

a. Pixel-Based Statistics: 

TP TN FP FN Completeness% Correctness% Quality% 

              

171451 1724083 62157 36609 82.4 73.39 63.45 
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b. Object-Based Statistics: 

TP FP FN 
Total 

buildings Completeness% Correctness% Quality% 

              

97 3 22 119 81.51 97 79.5 
 

Discussion: 

              Since this image is one of the two images used to develop and test the 

algorithms, the accuracy statistics are better than those for the validation images. The 

correctness percentage is the probability that the algorithm will extract a building from all 

the extracted structures.  A high correctness value of 97% for the object-level extraction 

indicates that most of the extracted building objects are at least partially overlapping with 

the actual buildings present in the image. However, a lower completeness value of 81.5% 

indicates that about one fifth of the buildings present in the image are not being identified 

at all. As expected, the pixel statistics are considerably less than their object counterpart. 

Low completeness values for the pixel-level accuracy assessment are caused by 

discrepancies between the shape of the buildings extracted by the algorithm and the 

reference building footprints. It can be observed that false negatives (FNs) play an 

important role in the accuracy assessment. False negative pixels are pixels that are 

incorrectly identified as background pixels. The process of multi-detector fusion 

eliminates some valid building structures (resulting in false negative pixels) which are 

detected by individual detectors.  
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Validation Image 1(size 1000*1000):  

 

                              (a)          (b)   

Fig re 5.2  (a) V ( l building output. 

Table 5.2: n Image 

a. Pixel Based Statistics: 

T  Completeness% Correctness% Quality% 

        

u : alidation image and b) Fina

Pixel Based and Building Based Accuracy Statistics for Validatio

1   

P TN FP FN

              

26371 938 67 14882 20680 56.05 63.92 42.58 0
 

b. Object Based Statistics: 

TP FP FN 
 

buildings Completeness% Correctness% Quality%
Total

              

24 2 29 82 5 9  77.42 5 .7 2.3
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Discussion:  

entioned earlier, this image is a validation image since the algorithm was 

images.  Here, the 

es                  

              As m

NOT tuned for this image.  Accordingly, the statistical results are not as good as they 

were for the first image.  As we can observe in Figure 5.2 and its statistical results, almost 

all the buildings (24 out of 29) are correctly extracted, but two buildings (bottom left and 

right corners) are falsely detected which leads to a large number of false positives 

deteriorating the pixel statistics. Also we can observe that the algorithm has failed to 

detect a triangular-shaped building. This was expected because the shape measures used 

in this algorithm only consider rectangular and L-shaped buildings.  

              The following tables show accuracy statistics for three more 

first one is for a development/test image and the remaining two are validation images. 

Table 5.3: Pixel Based Accuracy statistics for Development/Test Images (All Imag

Of size 1000*1000 pixels) 

Images 
TP TN FP FN Completeness% Correctness% Quality%

   
 

     

Validation 

 
 

Image 1 169143 1172375 49345 39137 77.41 81.2 65.65 
        

Validation 
Image 2 45345 817077 134652 2926 25.19 93.94 24.78 
        

Validation 
Image 3 27822 942015 17731 12432 61 69.11 47.98 
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Table 5.4: Building Based Accuracy statistics for Development/Test Images (All  

 

Discussion: 

for the tuning image 2 both the statistics are convincing. Though 

Images of size 1000*1000 pixels) 

 

Images 
TP FP FN 

Total 
buildings Completeness% Correctness% Quality%

   
 

     

Validation 
Image 1 62 6 22 84 73.8 91.17 68.89 
        

Validation 
Image 2 16 0 9 25 64 100 64 
        

Validation 
Image 3 24 5 6 30 80 82.76 68.57 

              As expected 

Test image 2 has fewer false negative pixels, it is the presence of false positives in a large 

number which lowers the completeness and quality significantly. It can be seen from the 

object statistics of test image 2 that it is possible to get 100% correctness (i.e. zero FP). 

To reduce the false negatives and hence improve the completeness and quality more 

effective preprocessing can be used such as morphological filtering than just using 

median filtering.  
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5.3 Summary and Conclusion 

actual algorithm output and provided both pixel-

at the algorithm will extract a 

 

              In this chapter we presented 

based and object-based statistics. The first image (Fig 5.1) was used along with one 

additional image to develop and test the processing algorithms. Accuracy statistics were 

calculated for each image as explained in the Chapter 4.  

              The correctness percentage is the probability th

building out of all the extracted structures. A high correctness value for the object-level 

extraction indicates that most of the extracted building objects are at least partially 

overlapping with the actual buildings present in the image. It is possible to obtain 100% 

correctness in the object level extraction which can be observed from the statistics of 

validation image 2. The completeness percentage indicates the number of buildings 

algorithm failed to extract. Since this algorithm focuses only on rectangular and L-shaped 

buildings, completeness percentage is adversely affected by buildings with irregular 

shapes (e.g. triangular). Also the process of multi-detector fusion eliminates some 

building structures that are detected by individual detectors. This fusion algorithm can be 

further improved by implementing fuzzy integral techniques resulting in better 

completeness and quality percentages.    
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Chapter 6 

Summary and Future Work 

6.1 Summary 

 of this research was to develop a robust automated building footprint 

ced Geographical Information Systems (GIS) and 

           

 

              The goal

extraction technique from high-resolution DEM raster data generated by airborne 

LIDAR. The development of automated and semi-automated techniques for generation of 

urban geospatial information products is important not only because of the many 

applications for which they can be used, but also because the large volume of the data 

collected by the remote sensing systems exceeds the capacity of trained geospatial 

professionals to analyze. Many applications, especially military and intelligence related 

activities require near real time exploitation of geospatial data. Both the quantity of data 

and the speed with which that data must be analyzed illustrate the need for automated 

geospatial information extraction.  

              In Chapter 1 we introdu

discussed their role in different applications like urban planning, environmental 

management, agriculture, transportation, utilities (water, electricity, sewage etc.). Then a 

brief history of remote sensing imagery was presented and spatial and temporal 

characteristics of different satellite imaging systems were listed with a variety of 

background material on different high resolution geospatial image and data including 

aerial photography, Landsat, IKONOS and Digital Elevation Models (DEMs)etc.   
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In Chapter 2, a literature review for building extraction from high-resolution satellite 

images like IKONOS and DEM data was presented along with accuracy and quality 

statistics This was followed by a brief description of two algorithms (DRAW and 

Rubberband) implemented before on the DEM data used in this research. Since the 

accuracy statistics of these two algorithms were not satisfactory and because they were 

very computational complex, a completely new approach was needed. 

              Chapter 3 presented the overall processing strategy explaining the approach used 

 presented the actual accuracy statistics (pixel-based and object-based) 

in this research. The image preprocessing (Image Interpolation and Median filtering) and 

the Differential Morphological Profile (DMP), which is the backbone of this algorithm, 

were presented. The generation of the different DMP levels from the interpolated median 

filtered data was described for a predefined spatial scale range. The DMP is a multi-scale 

image analysis technique that provides information about both the size and contrast of 

multi-scale structures in the image. Once the DMP levels are generated, three different 

shape extraction algorithms namely Fuzzy Minimum bounding rectangles, Fuzzy 

Rectangularness measure and Fuzzy Branchiness measure were applied to these DMPs to 

get the three different detector outputs. The final building footprint output is obtained 

from the three detector outputs using a fusion technique based on some simple fuzzy 

rules. Finally, a variety of accuracy statistics were calculated to evaluate the performance 

of our algorithm.  

              Chapter 5

like completeness, correctness, detection rate, miss factor, branching ratio, and quality. 

Completeness is the percentage of the buildings extracted compared to the total number 

of buildings in the reference image. Correctness represents the percentage of the correctly 
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extracted buildings from the total number of buildings in the data. Detection rate is the 

probability of correctly extracting a building. The quality percentage measures the 

absolute quality of the extraction and is the most stringent measure.  

The results of our algorithm show that we have obtained 82% correctness, 73% 

comple

            

teness and 65% quality pixel wise and 82% correctness, 97% completeness and 

65% quality object wise for the tuning images and  similar results for the test images.  

The accuracy of the algorithm is significantly lower when assessed at the pixel level. The 

low completeness value in the pixel-level accuracy assessment is caused by discrepancies 

between the shape of the buildings extracted by the algorithm and the reference building 

footprints. The high correctness value of the object-level extraction indicates that most of 

the extracted building objects at least partially overlap the actual buildings present in the 

image. However, the lower completeness value indicates that almost one third of the 

buildings present in the image are not being identified at all. 
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6.2 Future Work 

umber of areas that were not explored in this research due to time 

meters - minimum bounding rectangles and area 

              There are a n

constraints.  For example, all three detectors utilize fuzzy membership functions to model 

the uncertainty and ambiguity associated with the shape of the structures. In each case, 

the parameters governing the shape of these membership functions have been manually 

set. While these parameters are intuitively chosen based on characteristics of the raster 

data and the type of features they are to represent, it would be beneficial to develop 

techniques for learning these directly from the data. One possible approach would be to 

utilize neural network type techniques. 

              There are only two shape para

porosity or branchiness - that were considered here. However there are number of other 

shape or object-level parameters that could be explored including contrast, perimeter 

porosity, and texture measures like average roughness, elongation, roundness, etc. See 

Soh, Tsatsoulis, Gineris and Bertoia [10] for more details. In the image preprocessing 

stage, morphological opening and closing filters can be used to further image 

smoothening. The fuzzy integral approach used here to combine the multiple detector 

outputs is in its basic stage.  
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