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ABSTRACT

With the increasing competition in global trade, many US companies purchase

parts and finished products overseas in a just-in-time and low-inventory operation.

Therefore, buying and transporting items efficiently are critical and challenging prob-

lems for many companies. The objective of this study is to design a cost-effective

consolidation and distribution method to transport shipments in a global network.

In the dissertation, we investigate an integrated consolidation problem in the in-

ternational supply chain, where a US manufacturing company buys multiple items

from China. A proactive order consolidation strategy is proposed to improve the

performance of the supply chain. Different from current practices, our approach con-

solidates items at the early stage in China considering inland transportation to final

destinations in US. This strategy is modeled to minimize the total costs by effectively

loading items into an ocean container considering subsequent inland transportation

cost and handling cost given container capacity and packing constraints. Two difficult

combinatorial optimization problems, such as a mode selection problem and a three-

dimensional bin packing problem, are combined into the model. Due to the problem

complexity, approximation algorithms are proposed to solve the model. The basic

model is extended to consider the inland multi-stop delivery and multi-period plan-

ning horizon. Several solution methodologies are developed and evaluated to solve

large-scale problems. Based on the numerical results, it is observed that our proposed

methods could achieve up to 30% cost savings compared with the current shipping

practices. The algorithms we developed could obtain the good implementable solution

in a reasonable time for real-world problems.

This research provides new insights into the global supply chain management

area. The methodologies developed not only provide practical solutions, but also the

theoretical research in the area.

x



Chapter 1

Introduction

1.1 Background

1.1.1 The Effect of Globalization on Supply Chain

With the rapid development of the world-wide transportation systems and the fast

growth of global trades, many companies are being more international than ever

before. They have suppliers, manufacturing plants, warehouses and customers in sev-

eral different countries. By building manufacturing factories overseas and utilizing

offshore sourcing from low-cost countries, especially in some Asian countries, compa-

nies improve their competitive advantages and make more profits thanks to bigger

foreign markets and cheaper labor and material resources.

However, being international not only brings opportunities, but also challenges.

In the international network, raw materials, parts and semi-products are moved be-

tween suppliers, manufacturing plants, and distribution centers in different countries

of the world, which increases the cost of a supply chain significantly. These costs are

driven by multiple factors. Long-distance movement of a flow of goods by using mul-
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tiple transportation modes increases transportation cost. The continually increasing

fuel price is another critical factor in the rise of logistics costs. Besides, more han-

dling costs incur since shipment flows are transferred multiple times among multiple

carriers, port authorities and consolidators from origin to destination. Furthermore,

the variability and uncertainty from a longer supply chain, such as delayed or in-

complete shipments, lead to higher inventory buffers and freight expedition expenses.

All of these factors result in the increase of logistics cost, being an obstacle to rev-

enue growth. According to the IBM 2005 Industry-Week Value-Chain Survey(Vinas

(2005)), a half of the survey respondents say their logistics costs are 10 percent or

more of sales revenues.

The global supply chains that most companies deal with nowadays are more dif-

ficult to manage than domestics models (Dornier et al. (1998); Wood et al. (2002);

MacCarthy and Atthirawong (2003); Meixell and Gargeya (2005)). There are lots

of complex decision activities involved in every function of a supply chain, such as

procurement, replenishment, inventory policy, production, distribution, and trans-

portation planning. All of them are intertwined to each other and any bad decision

on one function would influence the performance of an entire supply chain (measured

by the total cost). Besides, two critical characteristics of an international supply

chain, such as long lead time and high transocean transportation cost, are needed to

consider for any strategic, tactical and operational decisions.

A decision on the oversea outsourcing, in particular, has a series of impacts on

other functions of the supply chain, such as inventory, transportation, cargo loading,

packing, and the overall performance of the supply chain. Figure 1.1 and the following

descriptions illustrate the relationships of these functions.

• An inventory policy is important for outsourcing overseas. An inventory policy

consists of order quantity and order frequency. In practice, a full-container-load

ordering strategy will lead to a high inventory level and a long cycle time, but

2
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Capacity Limits.

Figure 1.1: Oversea sourcing example

less ordering and transocean transportation costs. Small volume purchasing

strategy will bring less inventory and shorter cycle time, but more frequent

ordering and higher transocean transportation cost. Hence, any decisions on

ordering policy affect inventory cost and transportation cost.

• For international shipments, at least two transportation modes are needed from

an origin to a destination. With regard to cross-border transportation, air and

marine are two commonly used modes. The marine transportation has a long

transit time with a lower rate. The air transportation is fast, but has high cost.

Thus, if the marine transportation is chosen, a high inventory buffer needs to

be set to provide good customer service due to the long lead time-subsequently

leading to a high inventory cost. The inland transportation mode is determined

by order quantity and characteristics. For heavy and large size shipments, Full-

Truck-Load is more economical than Less-than-Truckload. Otherwise, Less-

than-Truckload is more advantageous. In addition, other operational decisions

on the inland transportation, such as routing vehicles, assigning shipments to

3



vehicles, also need to be taken into account to reduce cost.

• Issues, such as a shipment’s geometric shape, container capacity limits and

loading patterns, need to be considered when planning for cargo loading and

packing. Good loading techniques not only maximize the utilization of contain-

ers, but also save subsequent inland distribution costs.

Given from the examples above, it is clear that global supply chain manage-

ment involves complex systems engineering. Its overall performance is influenced by

many interdependent decisions involved in the supply chain. Therefore, it is essential

to study and design an effective, efficient and scientific decision-making tool aimed

at helping companies identify cost-effective alternatives when designing their supply

chain. Using such a tool, companies can better provide the desired customer service

with minimal costs. To date, many practitioners and academics have emphasized

two innovative practices in global supply chain design - the integration and consoli-

dation of decisions across the supply chain (Meixell and Gargeya (2005)). Our work,

consistent with the topics, is to explore potential cost-saving opportunities by in-

tegrating transportation, packing and inventory through order consolidation in the

international supply chain.

In this chapter, Section 1.1.2 provides a general introduction to supply chain

and logistics management. Section 1.1.3 introduces consolidation strategies. Section

1.1.4 presents the integrated inventory and transportation strategy. Section 1.1.5

describes various transportation modes and their economical pricing on intermodal,

Full-Container-Load (FCL), Less-than-Container-Load (LCL), Full-Truck-Load (TL)

and Less-than-Truckload (LTL) transportation. Section 1.2 presents an overview of

the research problem. Section 1.3 discusses the motivations for this research while the

objective of the research is given in Section 1.4. Section 1.5 summarizes the contribu-

tion of the dissertation. The last section shows the organization of the dissertation.
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1.1.2 Supply Chain and Logistics Management

A supply chain is a system of facilities and activities that functions to procure, pro-

duce, and distribute goods to customers (Shen (2007)). According to the Council

of Supply Chain Management Professionals (CSCMP), supply chain management

encompasses the planning and management of all activities involved in sourcing, pro-

curement, conversion, and logistics management. Its main objective is to enhance the

operational efficiency, profitability and competitive position of a firm and its supply

partners by best-planned movements of goods within the supply chain (Min and Zhou

(2002), Shen (2007)). The performance of supply chain can be measured by three

main factors: system-wide costs, cycle (transit) time and customer service level.

Logistics deals with the planning and control of material flows and related in-

formation in organizations, both in the public and private sectors. Its mission is to

get the right materials to the right place at the right time, while optimizing a given

performance measure (e.g. minimizing total operating cost) and satisfying a given

set of constraints (Ghiani et al. (2004)). According to the Council of Logistics Man-

agement, logistics management activities typically include inbound and outbound

transportation management, fleet management, warehousing, materials handling, or-

der fulfillment, logistics network design, and inventory management of third party

logistics service providers.

Logistics is one of the most important activities in modern societies. Based on the

2010 State of Logistics report of CSCMP, logistics costs, which includes inventory,

transportation, and logistics administration costs, are equal to about 1.1 trillion dol-

lars in 2009, representing 7.7 percent of the gross domestic’ product (GDP) (Gilmore

(2010)). Figure 1.2 shows the trend of logistics costs as a percentage of GDP between

the years 2000 to 2009.

The cost reduction from 2000 to 2003 is explained by the fact that Just-in-Time

initiatives were adopted by many US companies during that period of time. The
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Figure 1.2: The trend of logistics costs as a percentage of GDP

raise after 2003 is primarily due to increasing inventory and transportation costs.

At that time, lots of companies changed their warehousing strategies from central,

mega-warehousing to a large number of smaller distribution centers across country in

an effort to improve delivery times and reliability. The increase in transportation cost

was also caused from rising gas and diesel costs (Cooke (2006)). However, the big

drop from 2007 to 2009 was due almost entirely to the recession. The economy had

a negative impact on the two main components of logistics costs, such as inventory

and transportation cost. Low interest rates pushed down inventory carrying cost

significantly. Low volumes and increased fuel price caused transportation cost to

decrease a lot.

Among the cost components, transportation cost accounts for a big proportion

(62%) of the logistics costs, and inventory cost represents about 32% (Cooke (2006)),

shown in Figure 1.3. Therefore, it is crucial to control these two key cost components

to reduce overall logistics cost.

6



Transportation cost
62%

Inventory cost
32%

Administration cost

6%

Figure 1.3: Breakdown of logistics costs

1.1.3 Consolidation

Consolidation, as an innovative and important industrial practice, can achieve con-

siderable transportation cost savings by taking advantage of economies of scale in

transportation (Ghiani et al. (2004)). Bowersox (1978) illustrates the concept “ship-

ment consolidation” as

“A significant opportunity existing in all logistical operations is the
potential for reducing transportation expenditures as a result of shipment
consolidation. Quantity discounts are provided in the published rate struc-
tures of common carriers. Generally speaking, the larger the shipments,
the lower the freight rate per hundredweight.”

This practice has been applied for more than three decades since the 1980s. In

a survey by Jackson (1985), 100% of the firms indicated that freight consolidation

is important (16%) or very important (84%) as a competitive tool in terms of cost,

while 77% of the responding firms indicated freight consolidation is an important

competitive tool in terms of service. With regard to cost, by comparing rate struc-

tures of Less-than-Container-Load (LCL) with Container-Load (CL), and Less-than-

Truckload(LTL) with Truck-Load (TL), the findings indicate that per unit freight rate

decreases as the shipment size increases. If the shipments to the same destination can

fill up a single container or truck, it is more economical to aggregate them into CL or

7



TL instead of multiple separate LCLs or LTLs. Besides, freight consolidation could

reduce shipments damages. Forwarding small shipments separately will have a higher

risk of damage due to more transshipping and handling from origin to destination.

Another advantage of consolidation is reliability. Generally speaking, the transit time

of CL and TL has a smaller variance than that of LCL and LTL.

According to existing literature (Hall (1987); Higginson and Bookbinder (1994);

Ghiani et al. (2004)), consolidation strategies could be achieved in three ways. The

first one is a vehicle or multi-stop consolidation (over stops), where small load ship-

ments are picked up and dropped off along the multi-stop route by the same vehicle

so that combined big loads could maximize the capacity of the container or truck. For

this problem, some operational issues, such as how to route trucks and how to assign

shipments into trucks or containers, need to be taken into account. The second one is

inventory or temporal consolidation (over time), where the current shipments are held

to wait for future shipments. By waiting for one period or multiple periods, the total

combined load could be shipped using one container or one truck so as to save multi-

ple separate LCL or LTL costs. Two fundamental operational issues in this area are

(1) when to dispatch a vehicle so that service requirements are met, and (2) how large

the dispatch quantity should be so that the scale of economies are realized (Cetinkaya

(2005)). The third consolidation strategy is terminal or facility consolidation (over

space), where the small shipments among several facilities are transported over long

distances to the transshipment center to consolidate into larger shipments. For this

problem, some tactical and operational decisions on hub locations, hub service areas

and vehicle routing are needed to optimize for better system performance.

Consolidation strategies have already been widely applied in ground, sea and air

transportation (Tyan et al. (2003)). For example, LTL trucking, liner cargo shipping

and airline optimize their logistics network through consolidation strategies to save

costs. Usually, shipments are transported in their pre-established transportation net-
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work, where there are fixed hubs, hub service areas, and transportation frequency.

Cargo or passengers from different origins are consolidated in the hubs, and then

shipped to some intermediate hubs, and/or finally to destinations. Vendor Managed

Inventory (VMI) practice is another application of freight consolidation. Vendors

manage inventory of downstream warehouses or customers, their deliveries, and their

own inventory. By consolidating inbound and outbound shipments, transportation

cost can be reduced significantly. In addition, several big companies mimic the pro-

cedures of LTL trucking companies and third party freight forwarders to redesign

their own distribution network and optimize the loading plan, which might be more

beneficial because companies know more and better about their own problems.

1.1.4 The Integration of Transportation and Inventory

Substantial geographical distances on the international level not only raise transporta-

tion costs, but also increase inventory costs due to the long lead time. In general,

inventory control involves decisions on ordering quantity and frequency. If the sizes of

orders are too big, they would reduce fixed ordering cost, but tie up so much capital

and lead to high average inventory level. Otherwise, it would reduce average inventory

level, but increase fixed ordering and transportation costs. Order quantity directly

influences the way how cargoes are shipped from origin to destination, such as FCL for

large volume order size, CLC or consolidated FCL for small volume purchase quanti-

ties. Thus, incorporating transportation cost into inventory replenishment decisions

is important in supply chain management. The integration of transportation and in-

ventory involves both inventory and transportation aspects of management concerns.

An inventory policy relates to determinations on replenishment quantity, frequency,

safety stock and inventory allocation on vehicles. In transportation planning, deci-

sions need to be made on mode and route selection, the assignment of vehicles on

the route, and the visiting sequence of customers on the route. Usually, the decisions
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on these two aspects are simultaneously made to minimize the total cost. Literature

reviews in this field are detailed in Chapter 2.

1.1.5 Multi-modal Transportation

There are five basic transportation modes: sea, rail, road, air and pipeline. Multi-

modal transportation is to use at least two transportation modes to move the ship-

ments from origin to destination. In most international trade, transit of shipments

from a sea or air mode to an inland mode is inescapable. In our work, we focus on

the sea-truck transportation modes.

The use of ocean containers has been increasing for oversea transportation. Two

primary sizes of ocean containers, 20- and 40-foot containers, are commonly used.

Their features (Ghiani et al. (2004)) are summarized in Table 1.1. There are two

types of international cargoes: LCL and FCL cargoes. LCL cargoes are used to

describe the international cargoes which cannot fill an entire 20- or 40-foot ocean

container. And their bookings are usually made by small companies while FCL book-

ings are usually from bigger firms. LCL cargoes are consolidated with shipments from

other companies at the same port. Their rates are typically calculated by volume.

For FCL cargoes, customers only pay the price per container and can load any ship-

ments as long as the total weight and volume do not violate capacity limits (Ang

et al. (2007)).

Type Size (ft3) Tare(lbs) Capacity (lbs) Capacity (ft3)
ISO 20 8*8*20 4,850 61,289 1,169
ISO 40 8*8*40 8,380 57,759 2,385

Table 1.1: Main features of the most common ocean containers

Trucking is the most important mode of road transportation, and trucks transport

71% of US freight by value and 83% by volume (Agrahari (2007)). Trucking includes
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both LTL and TL transportation. LTL service is for small volume shipments. LTL

loads are not usually shipped directly to their destination. They are shipped to

multiple transshipment hubs and then to final destination. For TL, trucks usually

go to the destination directly or via one or two intermediate stops consigned by

shippers to destination. Hence, in terms of transit time, TL is relatively faster and

more reliable than LTL. With regard to pricing, LTL and TL have different rules.

Determination of LTL rates can be very complicated in practice. Generally speaking,

LTL rates depend on the delivery distance, geographic region, the shipment weight

and the shipping class based on density. TL pricing is relatively simple because rates

are typically structured as per-mile cost depending on the given geographic regions

of origin and destination. Thus, if the volume or weight of shipments are big enough

to utilize a truck container fully, it can be more economical to ship them using TL

rather than multiple separate LTLs.

1.2 Overview of the Research Problem

Our work considers a global supply chain, which consists of overseas suppliers, one

overseas consolidation center, one US deconsolidation center and multiple US manu-

facturing plants and distribution centers. In the supply chain, a multinational com-

pany orders semi-products and finished-products overseas, and transports the inter-

national shipments into US and distributes them domestically. In order to reduce the

logistics costs, several tactical and operational decision aspects across this chain are

studied. With the consideration of the two most common problems in a global net-

work, such as high inventory and high transocean transportation costs, we propose an

order consolidation strategy to reduce them. A frequent and small-volume ordering

policy is applied to reduce inventory and an order consolidation strategy is proposed

to maximize the utilization of ocean containers. The order consolidation strategy is
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modeled in such a way that the total costs are minimized by effectively loading items

into an ocean container considering subsequent inland transportation planning given

container capacity and packing constraints. A mixed integer programming model is

formulated for this problem. Then, the model is extended to consider more practical

issues, such as multi-stop, and multi-period aspects and efficient heuristics algorithms.

Our proposed consolidation strategy is proactive and considers the consolidation pro-

cess at the early stage of the supply chain. Numerical examples show that it can

achieve substantial logistics cost reduction. In addition, a coordinated replenishment

policy is investigated. The optimal ordering quantity and frequency are determined

with regard to the consolidation process. The whole research integrates the decisions

on the transportation planning, packing, and inventory policy. The methodology dis-

cussed in this dissertation is to use mathematical models to solve practical logistics

problems, and research results discuss several managerial implications, which can help

logistics managers plan and adopt better supply chain operations.

1.3 Thesis Objectives

The goal of our approach is to design, model and implement a cost-effective consoli-

dation method to transport international shipments in the global network to improve

and evaluate the performance of a supply chain. Several tactical and operational de-

cision aspects are investigated. Practical and value added cost drivers are considered

by integrating decisions across transportation, packing and inventory to search for

opportunities of cost reduction.

1.4 Research Motivation

Our research is motivated by four main factors.
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1. A real-life logistics optimization project initiated from a US Fortune 500 manu-

facturing company, which operates more than 200 manufacturing factories and

warehouses scattering in the wide geographic area of US. With more and more

outscourcing and trade with China, the company has thousands of ocean con-

tainers enter US each month for distribution throughout US. Being faced with

high inventory and high transportation costs, the company sought an optimiza-

tion method to reduce their logistics costs. In this context, our research started

with the integrated order consolidation strategies in a global network to ex-

plore the potential cost-saving opportunities. More issues on the integration of

transportation and inventory were emerged and investigated during the project.

2. The growth in globalization and managerial challenge make our research impor-

tant and necessary. We briefly discussed the growth of global trade and complex

issues involved in the global supply chain in Section 1.1.1. In academia, several

books (Dornier et al. (1998); Wood et al. (2002)) and papers (MacCarthy and

Atthirawong (2003); Meixell and Gargeya (2005)) talk about the difficulties in

managing and controlling global supply chains. Thus, it is necessary to explore

some effective methods to improve its performance so that the multinational

companies can benefit from it.

3. The increasing academic interests and trend on inter-functional integration of

supply chain also motivate our work. There are lots of papers focusing on the

integrations across different functions of the supply chain, such as procurement-

production (Goyal and Deshmukh (1992); Munson and Rosenblatt (2001)),

production-inventory (Yang and Wee (2002); Hwang et al. (2005); Hill and

Omar (2006)), production-distribution (Chandra and Fisher (1994); Jayaraman

and Pirkul (2001); Jang et al. (2002)) and transportation-inventory (Thomas

and Griffin (1996); Bertazzi et al. (2005);Kang and Kim (2010)). And the
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increasing trend also influences the design of the global supply chain. Some

papers (Arntzen et al. (1995); Hadjinicola and Kumar (2002); Trent and Mon-

czka (2003)) explore the value and need for integration of decisions in the global

supply chain. Our study fits current research trends and is to investigate the

value of integration of transportation, inventory and packing.

4. There are real industry needs, but relevant literature lacks in the proposed

research area. Currently, companies are increasing global trades and outsourc-

ing overseas. The most common problems they face are: how to transport

cargoes from foreign countries to domestic destinations, and how to make re-

plenishment more effective and efficient in terms of cost and service. Although

these problems are crucial, to the best of our knowledge, there is few litera-

ture investigating the specific problem. Attanasio et al. (2007) work on the

integrated shipment dispatching and packing problem in a case study. Crainic

et al. (2009) firstly illustrate the concept: “proactive order consolidation” and

apply bin packing model and simulation method to evaluate three strategies

of the integration of inventory and transportation. However, there are several

important issues which are not considered in their models, such as multi-modal

transportation, the integration of transportation, packing and inventory. Our

work tries to fill this gap.

1.5 Thesis Contributions

The contributions of our research are as follows:

1. We develop a series of mathematical models, which show the consolidation

process in the international network with regard to several practical issues.

2. The approximation solution methodologies are proposed to solve the models.
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Since all of our models combine several difficult combinatorial problems, no

exact solution can be obtained even for small size problems. We propose ap-

proximation solution methodologies to disaggregate the problem into subprob-

lems, and then to solve them iteratively. The methodologies can obtain good

solutions within a satisfactory computational time.

3. The problem we investigate in the dissertation integrate many issues, such as bin

packing problem, mode and route selection problem, inventory problem, which

occur commonly in practice. However, there is few literature, which studies

the integrated problem. Our models, methodologies and results can give some

insights for academic and commercial industries.

1.6 Organization of the Thesis

The remainder of this dissertation is organized as follows. Chapter 2 gives a sum-

marization of relevant literature. Specifically, four research areas are reviewed. They

include global supply chain design models with consideration of the integration of

decisions; models and algorithms for cargo loading and packing problems; models for

freight consolidation strategies; and coordinated models for inventory and transporta-

tion.

Chapter 3 proposes an integrated and proactive order consolidation strategy in the

global network and studies how logisticians effectively load items into ocean containers

considering subsequent inland transportation planning given container capacity and

packing constraints. In order to view the structure of the problem clearly, only single

period and two transportation modes’ direct delivery are taken into account in this

chapter. A mixed integer linear programming model is formulated to minimize the

total costs involved in the entire supply chain. The heuristics solution algorithms

are developed and numerical examples are tested to evaluate different consolidation
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strategies.

Chapter 4 discusses more complicated but practical situations. In particular,

we assume that shipments arrive at each time period in a finite planning horizon

t = 1, 2, · · · , T . The consolidation planner has some knowledge of future shipment

arrival. Consequently, he has to make the consolidation and shipment dispatch plan

at the beginning of the planning horizon considering future shipments in order to

save costs as much as possible. A mixed integer programming model is formulated to

solve the multi-period and multi-stop problem. A heuristic algorithm is developed to

solve the large-scale problem.

Chapter 5 extends the model proposed in Chapter 3 and integrates TL multi-stop

delivery and route selection into the model to explore further cost-saving opportuni-

ties. A modified model is proposed and the freight is consolidated into ocean contain-

ers with the consideration of subsequent inland transportation mode, route and stop

selection. The objective is to minimize the total costs, including ocean container cost,

handling cost, TL cost and LTL cost. The problem is constrained by ocean container

capacity and freight packing.

The last chapter concludes our research and provides discussions on the future

research direction.
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Chapter 2

Literature Review

2.1 Introduction

Our work is to study how to improve the performance of the international supply chain

through consolidation strategies. A series of issues are involved in the consolidation

process, such as load planning problem, consolidation problem, packing problem,

and integrated inventory and transportation problem. Hence, due to its relevance, a

large amount of literature is reviewed in order to better understand the nature of the

problem, the available research methodologies and solution algorithms in the field.

In this chapter, papers concerning consolidation models and strategies are intro-

duced in Section 2.2. Section 2.3 summarizes different models and algorithms of

the integrated inventory and transportation system. In Section 2.4, the literature on

mode selection and routing models is reviewed. The studies considering cargo loading

and bin packing problems are discussed in Section 2.4. At last, a summary is given

in Section 2.5.
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2.2 Consolidation Models

Consolidation is the process of combining different items, produced and used at dif-

ferent locations and different times, into single vehicle loads (Hall (1987)). Due to

its importance and complexity, this topic has received a great deal of attention from

academia and industry during the last three decades. The main motivation behind

the studies is to take advantage of cost savings from economies of scale in transporta-

tion by combining several small shipments as a single load. The studies in the area

are investigated in various aspects. Early research (the late 1980s and early 1990s) is

primarily focused on simulations. During the period from the middle 1990s to present,

a great amount of analytical papers come out. The methodologies based on math-

ematical models, such as mixed-integer programming and stochastic programming,

are primary skills to study the problem. Different subjects of consolidation problems

are explored. For example, some papers focus on order consolidation problem in the

international context due to the growth of globalization. Some research has analyzed

the tradeoffs between transportation and inventory costs of consolidation versus di-

rect shipping. Some literature has investigated the optimal shipment dispatch policy

through consolidation, for instance, determining the optimal dispatch quantity and

timing, in the deterministic and stochastic settings. Other work discusses consoli-

dation problems in the design of Hub-and-Spoke networks, for example, determining

hub locations and assigning spokes to hubs. The following subsections summarize the

work on consolidation models.

2.2.1 Initial Studies on Freight Consolidation

Initial studies on freight consolidation began in the early 1980s. Most papers use

descriptive methodologies or simulation models to analyze shipment consolidation

strategies and evaluate the effects of related factors with regard to the costs and
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service level.

Jackson (1981) studies consolidation strategies and develops a simulation approach

to investigate major variables, such as the number of pool points, length of maximum

holding time, and the shipment release strategies, involved in an order consolidation

system. In the paper, a medium-sized national packaged goods distributor receiving

daily orders with average size of 1,300 pounds is studied in a simulation experiment.

A major finding of the paper is the sensitivity of order consolidation to the volume of

orders, which has a big impact on the number of pool points, the holding time, and the

shipment release strategies. The low-volume system has a longer and more variable

order cycle. Longer cycle time leads to lower transportation costs. In addition, high

volume of orders and a longer holding time make it possible to reduce transportation

costs through the addition of pool points to the distribution network. However, a

low volume system and short holding time cannot accumulate shipments of sufficient

size to produce savings to the newly added points. For shipment release strategies,

a combination of a scheduled- and weight-based policy is faster, but more costly

than a schedule-based policy. The future research directions pointed out in the paper

include the effects on system performance of the distribution of order weights, multiple

shipping locations, inbound consolidation and international order consolidation.

Jackson (1985) surveys freight consolidation practices and illustrates the findings

of a study of how and why order consolidation is practiced. A questionnaire is devel-

oped to survey fifty-three US business firms. According to the findings, cost reduction

is the most important reason for engaging in consolidation. And its biggest disad-

vantage is more complex planning and operations. The common decisions involved in

the consolidation practice include consolidated shipment dispatch rule, the number

of pool points (hubs), transportation mode, the number of intermediate stops and

distribution service. The combination of the choices is large and most of firms make

the planning and operations manually. Thus, it is not easy to implement consolida-
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tion strategies optimally in the practice. Finally, it is mentioned that scientific and

integrated approaches are needed to be developed in the future.

Hall (1987) groups the consolidation strategies into three categories which con-

sist of inventory consolidation (over time), vehicle consolidation (over stops), and

terminal consolidation (over space) and discusses the trade-offs between consolida-

tion benefits and penalties. The main benefits are the lower transportation charges

that come from larger load sizes. The penalties might include inventory costs, longer

truck routes, transit time and handling costs. Common issues in the consolidation

system include frequencies of vehicle dispatches, the number of stops, the number of

terminals and the routing policy. It is concluded that a properly planned, rational,

coordinated consolidation strategy can greatly reduce transportation costs without

sacrificing quality.

Pooley and Stenger (1992b) evaluate and compare the logistical performance for

a mix of multiple stop TL distribution strategy and standard LTL strategy. Five

key factors, which affect logistics system performance, measured by total costs, are

tested. They are mean order cycle, internal cycle time, geographic distribution of

customer demand, carrier price levels, and type of network design model. Empirical

data which came from two shippers are used. Results are obtained by applying a

heuristic shipment consolidation algorithm, a simulation model, and a mixed integer

mathematical programming model. Additionally, a 2k full factorial experiment is

designed to determine significance of the factors. Results show that LTL discount,

increased internal cycle time, a larger mean order size result in lower unit costs.

They also show that the geographic distribution of customer demand was relatively

unimportant.

There are other papers in this period. For instance, Masters (1980) investigate

the effects of freight consolidation on customer service. Cooper (1983), Closs and

Cook (1987), Higginson and Bookbinder (1994) discuss consolidation problems using
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simulation tools. Burns et al. (1985), Blumenfeld et al. (1987) seek consolidation

strategies to reduce logistics costs at General Motors.

2.2.2 International Order Consolidation

International order consolidation problems consider consolidation strategies in the

international logistics network. These studies come out due to the growth of glob-

alization and the recent trend of JIT (just-in-time) and OPT (optimized production

technology) that emphasize small-quantity ordering (Popken (1994)). Most work is

concerned with assigning shipments to airplanes or marine containers, selecting trans-

portation mode and routes so that the total cost is minimized over the network.

Tyan et al. (2003) model and evaluate the freight consolidation policies in a global

third party logistics network, where a global 3PL provider collects and consolidates

products from a manufacturer in Taiwan and provides the door-to-door distribution

service for B2B and B2C customers in US. Due to the feature of volatile demands

in the build-to-order (BTO) and configuration-to-order (CTO) market, consolidation

strategies are considered to reduce the total cost. Three different polices are pro-

posed. Policy A represents the common as-is practice, where B2C orders are packed

as loose cartons and B2B orders are packed as skids consisting of 40 cartoons. Policy

B considers breaking skid shipments into a loose mode to increase unit-load-device

(ULD) utilization. Policy C improves service level by loading the shipments which

should be delivered the next day when the flight capacity is not full. Three linear

programming models are developed based on these policies. Numerical analysis shows

that policies B and C yield 6.7 percent of total cost savings over policy A. The service

level measured by average cycle time shows that Policy B is better than Policy A by

2.4 percent, while policy C achieves a 20.2 percent better service level than policy A.

The sensitivity analysis is performed on flight capacities, shipment volume, minimum

ULD profit and the skid loaded ULDs load factor. The results show that the change of
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flight capacities affects allocations of shipments and the total costs. And the changes

of shipment volume do not influence the total cost of different policies. Hence, it is

implied that the selection of the consolidation policy will not be altered with volume

fluctuations. Additionally, the analysis of changing ULD profit and load factor give

valuable suggestions for policy A. The methodology and its managerial implications

proposed in this paper are helpful for a distribution industry.

Attanasio et al. (2007) investigate a consolidation and dispatching problem when a

multinational chemical company in Europe routinely decides the best way of delivering

a set of orders to its customers over a multi-day planning horizon. The company makes

decisions on the mode of the transportation (TL and LTL), consolidation plan, TL

route and stops selection and loading plan. An integer linear programming model

is developed based on the problem. Packing constraints are firstly relaxed using

volume constraint, and thus a lower bound of the solution is obtained for the original

problem. Infeasible solutions are pruned by feasibility checking with consideration of

actual shipment packing. A constructive heuristic for two dimensional bin packing

problems is proposed to pack items into truck. At last, the rolling horizon technique

is used to improve the computational efficiency by reducing the problem size. The

methodology proposed in the paper has been applied to solve a real-world problem.

Results show that the algorithm achieves significant savings over the current manual

procedure.

Crainic et al. (2009) study the proactive order consolidation strategy in the global

retail supply chain. In the paper, the international procurement process, the roles

and functions of merchandizing, purchasing and logistics in the supply are analyzed.

Due to the disadvantages of a full-container-load (FCL) purchasing strategy, a order

consolidation policy is proposed where small-volume orders are combined as FCL in

order to maximize the utilization of the containers. A mathematical model for 1-BP

problems is used to pack the items into the containers and a simulation approach is
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developed to evaluate three order strategies including a FCL ordering policy, a LCL

ordering policy, and order consolidation policy. Results show that order consolidation

policy is the most favorable policy, which achieves 4.6 percent cost savings over the

second policy, and 7.5 percent savings over the first policy even though it has more

ordering costs. In addition, the results also implies a FCL ordering policy is a bad

choice for slow moving products.

2.2.3 Consolidation for Optimal Order Dispatch

Research on order dispatch through consolidation investigates the methods for de-

termining the optimal quantity and timing of order dispatch. When shipments or

customer orders arrive randomly, how long should they be held and/or what quan-

tity should be accumulated before a consolidated load is released (Higginson and

Bookbinder (1994))? When they are held, it is more possible for small shipments to

aggregate into a larger load which can benefit from lower transportation cost per unit

weight. However, inventory and customer waiting cost will incur and increase when

more shipments are delayed. Thus, there exist a tradeoff between inventory and dis-

patch cost. This consolidation method is known as temporal (inventory) consolidation

(Hall (1987); Higginson and Bookbinder (1995); Bookbinder and Higginson (2002);

Cetinkaya and Bookbinder (2003); Ghiani et al. (2004)), and it is also implemented in

VMI (Vendor Managed Inventory) practice which considers inbound inventory policy

and outbound shipment dispatch.

Bookbinder and Higginson (2002) apply probabilistic approaches to the dispatch

of vehicles in freight consolidation by private carriage. Stochastic clearing theory is

employed to study a time-and-quantity policy. Under this policy, the shipments are

dispatched based on two factors: a pre-determined shipping date and the accumula-

tion of a fixed weight or volume. If the latter occurs first, the orders are dispatched

before the specified release date. Otherwise, they are shipped on time. It is assumed
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that order weight is Ga-distributed and the arrivals form a Poisson process. This

paper firstly recognize (via probability) a possible inability to obtain the target load

in an acceptable time. Then a four-graph nomograph is developed to discuss the

relationships between the optimal consolidation quantity, the acceptable cycle time,

the probability and the cost structure. And nomograph is a simple tool to evaluate

the impact of altering any factors.

Cetinkaya and Bookbinder (2003) develop stochastic models for the dispatch of

consolidated shipments and derive the optimal solutions under two dispatch policies

and two carriers, respectively. One dispatch policy is to send the combined load

which are accumulated to a fixed weight (quantity policy), the other one is to ship

them every fixed cycle (time policy). Two carriers consist of private carrier (ship-

ments are moved in trucks owned or leased by the shipper) and commercial carrier

(a commercial trucking company is hired). In their model, renewal theory is ap-

plied to obtain the optimal target weight or the optimal cycle length by minimizing

the total cost including transportation cost and inventory cost. Some examples are

developed assuming that shipment’ arrival and the weight follow a Poisson process

and exponential distribution, respectively. For private carriage, key results show that

the expected dispatch quantity under time policy is larger than the optimal critical

weight, but smaller than the mean load dispatched under the quantity policy. And

quantity policy has a mean cycle length longer than that of the corresponding opti-

mal time policy. So the time policy offers superior service to customers. For common

carriage, the approximate solutions under time policy and quantity policy are sum-

marized. And key results show that it is not necessary to consolidate shipments for

some optimal quantity policy and time policy.

Chen et al. (2005) investigate an integrated inventory replenishment and temporal

shipment consolidation problem in context of VMI. A vendor controls its own inven-

tory according to (R,Q) inventory replenishment policy, and fulfills customer orders
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based on one of two policies: time-based and quantity-based consolidation policies.

The objective of this study is to compare the two order-dispatch policies and find

which one is cost-effective. The total cost consists of four cost component: cost of

replenishing inventory, cost of dispatching shipment to customers, inventory carry-

ing cost and customer waiting cost. The results of numerical experiment show the

quantity-based policy always outperforms the time-based policy because the time-

based policy will result in higher customer waiting costs. Other papers, such as

Gupta and Bagchi (1987), Cetinkaya and Lee (2000), Cetinkaya (2005),Cetinkaya

et al. (2006), and Mutlu and Cetinkaya (2010), also work on this topic. Readers can

refer to these papers for extensive understanding.

2.2.4 Network and Other Consolidation Models

Network consolidation problems study consolidation strategies in the Hub-and-Spoke

network. Research in this subject concerns how to locate hubs and how to assign

spokes to hubs so that the total cost of transporting shipments from origin to desti-

nation is minimized. This problem has wide applications in air transportation, LTL

transportation, and telecommunications. O’Kelly (1986a,b, 1987) begin the studies in

this area and investigate single-hub and two-hub network using mathematical models

in airline passenger networks. Powell and Sheffi (1989) explored loading planning

problem, such as how to route the shipments from origin to intermediate hubs to

destination, in the LTL transportation industry. Campbell (1992, 1994a,b, 1996) and

Campbell et al. (2005a,b) present a series of models for hub location problems.

In other studies, Popken (1994) studies an inbound freight consolidation problem

at transshipment points in a multi-commodity and multi-attribute flow network where

commodities are shipped between origin and destination through a maximum of one

transshipment terminal. Each commodity has three attributes: weight, volume, and

inventory holding cost. And each vehicle has weight and capacity constraints. A
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non-linear programming model is developed. And the objective is to determine the

vehicle and commodity flows that minimize vehicle and inventory holding costs, while

satisfying demand requirements. Service level considerations are included via inven-

tory holding costs. Since the nonlinear structure of cost function results in multiple

local optima, a heuristic algorithm is presented to make local improvements for a

local optimum. The algorithm is evaluated by comparing the solutions with those

from MINOS mathematical programming software, and results show that the pro-

posed algorithm could obtain good solutions. At last, a series of numerical examples

are created to test the benefits of the multi-attribute (weight and volume constraints)

formulation compared with a formulation only considering weight constraints. The

results indicate a significant relative advantage in using a technique that considers

both weight and volume constraints in achieving a solution; the change of inventory

holding cost have little effect on the relative advantage of the multi-attribute method.

With the average weight per commodity flow increase, the advantage decreases.

2.3 Integrated Inventory and Transportation Mod-

els

The integration of inventory and transportation is critical to improve the performance

of supply chain. The research on this integration concerns two aspects of the joint de-

cisions. One is from inventory policy, and the other one is from transportation policy.

Inventory policy involves the determinations on replenishment quantity, frequency,

safety stock and inventory allocation on vehicles. For transportation policy, decisions

need to be made on mode and route selection, the assignment of vehicles on the route,

and the visiting sequence of customers on the route. Usually, the decisions on the

two aspects are simultaneously made to minimize the total cost. Among reviewed

literature, some studies (Cetinkaya and Lee (2000, 2002); Chen et al. (2005); Moon

26



and Park (2008); Moon et al. (2011)) deal with the problems on the replenishment of

inbound shipments and the dispatch of outbound orders, which have applications in

the VMI practice. Some papers (Qu et al. (1999); Kang and Kim (2010); Moin and

Salhi (2007)) focus on inventory routing problems, where the inventory allocation and

vehicle routing are solved.

Qu et al. (1999) investigate an integrated inventory-transportation approach for an

inbound material-collection problem with multi-items, multi-suppliers and stochastic

demand over a time horizon. They consider the network which consists of a central

warehouse (where all stock are kept) and several geographically dispersed suppliers.

The central warehouse makes the replenishment by dispatching vehicles to collect

the goods from vendors. And the vehicles with unlimited capacity make round trips

which start from the warehouse and end there. The total cost incurred consists of

the transportation cost, which includes stopover and routing costs, and the inventory

cost, which includes ordering, holding and backlog costs. Based on the problem, a

mathematical model is formulated to determine optimal periodic inventory policy

and vehicles routing patterns that enables the warehouse to meet its demand at

minimum long-run total cost per unit time. The solution method for the model is

to decompose the model into two parts: an inventory problem as a master problem,

and a transportation problem as a subproblem. An inventory problem is solved item

by item and a transportation problem is solved period by period. And the overall

model is solved by iterating between these two problems. The lower bounds for the

original problem and the special case when each supplier provide exactly one item

are constructed to evaluate the effectiveness of the heuristic solution algorithm. The

results of numerical examples demonstrate that the solution method could achieve

satisfactory results. At last, large scale problems are tested using the method. The

computational results show that the heuristic method is more effective when there

are more items in the system with a given number of suppliers. They also conclude
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that their method could applies to practical problems.

Cetinkaya and Lee (2002) present an optimization model for coordinating inven-

tory and transportation decisions at an outbound distribution warehouse that needs

to fulfil the orders of downstream supply chain members in a given area. The ware-

house keeps all the inventory and downstream customers carries zero inventory. With

the knowledge of deterministic customer demands and the motivation of cost-savings,

the warehouse need to make decisions on the replenishment policy and freight consol-

idation simultaneously. In their work, two questions are addressed: (1) how often to

dispatch a truck so that transportation scale economies are realized and timely deliv-

ery requirements are met. (2) how often, and in what quantities, the stock should be

replenished at the warehouse. In order to solve these two questions effectively, a math-

ematical model is developed with the objective of minimizing the total cost, including

inventory replenishment cost, inventory carrying cost, customer waiting cost and out-

bound transportation cost. An approximate and exact algorithms are presented for

computing the policy parameters for both the uncapacitated and finite cargo capacity

problems. Numerical examples are generated to compare the approximate and the

exact algorithm. Some insights about the sensitivity of the other optimal solution

parameters to the model are also discussed.

Moon et al. (2011) explore a multi-item joint replenishment and freight consolida-

tion problem for a third party warehouse. The warehouse order multiple (n different

types) item from multiple suppliers and then fulfill customer’ order. This paper ad-

dresses three questions: (1) what is the basic replenishment cycle for the warehouse?

(2) what is the replenishment cycle for each item? (3) what is the cycle for outbound

delivery schedule for each item? Two delivery policies are discussed. Under station-

ary policy, customer orders are delivered on a fixed interval. The quasi-stationary

policy is where the successive interval is changed over time. Four heuristic algorithms

are developed to obtain the near optimal decisions for these two policies. Numerical
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examples are tested to evaluate the performance of the heuristic algorithms and two

policies. Experimental results illustrate that the quasi-stationary policy is better than

the stationary policy due to cheaper transportation cost while not affecting customer

service. Besides, the proposed algorithm gives better solutions than the common

cycle approach.

Kang and Kim (2010) work over the integrated inventory and transportation man-

agements in a two-level supply chain which consist of a single supplier and multiple

retailers. In the network, the supplier manage the inventory of retailers, and dispatch

trucks to make replenishment for retailers. Each dispatched truck has to visit multi-

ple retailers in a single trip. Thus, the supplier has to determine the replenishment

quantities and the frequencies for each retailer as well as the quantity delivered to

the retailers by each vehicle. The objective is to minimize total cost, including fixed

vehicle cost, retailer-dependent material handling cost, and the inventory cost of the

whole supply chain. A mixed integer programming model is formulated and two-

phrase heuristic algorithms are developed for solving the problem. In the first phrase,

the replenishment quantities are determined, and eight solution algorithms, such as

lot sizing algorithms of Wagner and Whitin (1958), Silver and Meal (1973), Lambert

and Luss (1982) and etc., are applied. In the second phrase, the shipments of the

replenishment quantities are assigned to the vehicles, and a modified FFD algorithm

for 1-BP problems are used for shipment assignments. Numerical examples are tested

to evaluate the performance of the heuristic algorithm suggested in the study. The

results show that the algorithms provide good solutions in a reasonable time.

2.4 Mode Selection and Routing Models

Since in the Chapter 4, the mode and route selection are integrated in our consol-

idation model, some relevant papers are reviewed. Research on this topic seeks an
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optimal strategy to deliver shipments from a single source (central warehouse) to local

customers by two alternative transportation modes, TL and/or LTL, with the objec-

tive of minimal total cost. The decisions involved in the problem include TL/LTL

mode selection, assignment of shipments to TL, and TL route selection. Most heuris-

tic algorithms in the reviewed literature apply and modify the savings algorithm of

Clarke and Wright (1964).

Pooley and Stenger (1992a) presents a heuristic algorithm to solve the problem of

selecting mode between a multiple-stop TL and LTL, assigning a shipment to a TL

vehicles, and sequencing the stops for a TL vehicle, where TL is one-way delivery from

origin to local customers. It is proved in the paper, due to combinatorial complexity,

this problem is more difficult to solve than a basic vehicle routing problem (VRP). The

heuristic algorithm proposed is based on the savings algorithm of Clarke-Wright. For

the characteristic of the specific problem, three modifications on the Clarke-Wright

method are made. (1) the proposed algorithm is based on cost analysis instead of

original distance measurement. (2) saving formula is changed. (3) processing logic is

altered. In the multiple-stop TL versus LTL problem, the algorithm needs to test if

the shipper’s consolidation savings from a multiple-stop TL vehicles exceed its cost.

While in the original method, a routed truck needs to visit all the destinations, and

only the sequence of visiting need to be decided. The algorithm is beneficial for the

companies which deliver their most shipments using LTL and much more efficient than

manual generated shipping pattern. Pooley (1993) applies a simulation to explore the

effect of LTL pricing discounts on the LTL versus multiple-stop TL carrier selection

decision. Results from the study show that the discount of LTL can result in the

increase of LTL loads.

Chu (2005) studies the problem of mode selection between LTL and TL for out-

bound shipments. For TL mode, private trucks are used to customers for delivery,

and then back to the warehouse (a round-trip delivery). For LTL mode, a outsider

30



carrier is used. The objective is to develop a heuristic algorithm to route the private

trucks and to select LTL by minimizing a total cost. The mixed integer programming

model and the algorithm are proposed based on the problem. The algorithm is also

based on the Clarke and Wright’s savings algorithm. The modifications include cost

criterion and saving calculation. The main steps of the heuristic algorithm are: (1)

select customers served by LTL. (2) construct the initial routes for TL using modi-

fied Clarke and Wright’s savings algorithm. (3) use local improvement heuristic to

improve the solution. The results of computational results show that the heuristic

algorithm obtains the optimal or near-optimal solutions.

Bolduc et al. (2007) investigate the same problem with Chu (2005). He proposes

a more efficient and effective algorithm. Different from the algorithm of Chu (2005),

he constructs two initial solutions by implementing sequentially and parallelly the

modified Clarke-Wright algorithm, respectively, and then make local improvements by

using 4-opt heuristic for both initial solutions, and at last choose the better solution as

final solutions among improved solutions. Computational results show the algorithm

performs well in terms of time and accuracy.

2.5 Bin-Packing Models and Algorithms

Since our work concerns packing constraints in our model, the general area of bin

packing problems is relevant. Below, we provide brief literature review on bin packing

models and algorithms. Bin packing models is to solve the problems, where given a

set of items and an unlimited number of identical bins with finite capacity, how are

items allocated into the bins so that the number of required bins is minimized. They

can be classified into three categories according to the number of parameters needed

to characterize an item and bin (Ghiani et al. (2004)).

1. One-dimension packing (1-BP) problem. It deals with weight-oriented (high-
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density) or volume-oriented (low-density) items, where weight or volume is bind-

ing. For example, if loading weight-oriented items into containers or trucks,

items can be characterized just by their weight, without any considerations

with their length, width and height, and vice versa for volume-oriented items.

2. Two-dimension packing (2-BP) problem. In this case, items and bin are only

characterized by length and width. And it is about to load a set of rectangular

items to larger rectangular standardized bin by minimizing the waste. It has the

industrial applications in wood or glass industries, warehousing and newspapers

paging (Lodi et al. (2002)). It is also applied in cargo loading when loading

pallets with items having the same height (Ghiani et al. (2004)).

3. Three-dimension packing (3-BP) problem. It deals with loading three-dimensional

rectangular items into identical three-dimensional bins. It has applications in

container/ truck loading and packaging design. In many cases, it arises as a

subproblem. Our work focuses on three-dimension packing problem.

All the bin packing problems are strongly NP-hard problems (Martello et al. (2000);

Lodi et al. (2002)). The mathematical model for 1-BP problem is formulated as

follows. Take loading weight-oriented items into container as an example. Given I

items, each item i ∈ I with a weight fi, and J (or an upper bound on the number of

containers) containers, each j ∈ J with weight capacity F . The decision variable is

xij, i ∈ I, j ∈ J , which is a binary variable and equal to 1 when the item i is allocated

into the container j, and 0 otherwise. And yj, j ∈ J is a binary variable and equal to

1 when the bin j is used, and 0 otherwise.

Minimize

∑
j∈J

yj (2.1)
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subject to:

∑
j∈J

xij = 1, ∀i ∈ I (2.2)

∑
i∈I

fixij ≤ Fyj, ∀j ∈ J (2.3)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (2.4)

yj ∈ {0, 1}, ∀j ∈ J (2.5)

The objective function (2.1) is to minimize the number of required bins. Con-

straints (2.2) state that each item is assigned to exactly one container. Constraints

(2.3) ensure that the item i cannot be loaded into the container j unless it is used

and the total weight carried in the container must not exceed its weight capacity F .

Constraints (2.4) and (2.5) guarantee xij and yj are binary variables.

A lower bound z on the number of bins in any 1-BP solutions is z = d
∑

i∈I fi/F e.

1-BP problem is a NP-hard problem (Karp (2010); Coffman Jr. et al. (1997)). Lots

of papers use heuristic algorithms to get approximate solutions efficiently. Two of

the fastest heuristics are First-Fit Decreasing (FFD) and Best-Fit Decreasing(BFD)

greedy algorithms, which have been shown to use at most 22.2 percent more bins than

required by the optimal solution (Martello and Toth (1990); Ben-Khedher and Yano

(1994)). In the FFD algorithm, the items are sorted by weight in a non-increasing

order, and iteratively are assigned to the bin where its residual capacity is greater

than or equal to the item’s weight, and if the item will not fit into any non-empty

bin, a new bin is started. BFD algorithm is similar to FFD, and the only difference is

in BFD, item is inserted to the bin with a residual capacity greater and much closer

to the item’s weight (best fit).

For 2-BP problems, the lower bound z on the number of bins is z = d(l1w1 +

l2w2 + · · ·+ lmwm)/LW e, given L and W , li and wi are the length and width of bins
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and items, respectively. Currently 2-BP problems are well-studied. Lots of papers

investigate the exact and approximate algorithms. Lodi et al. (2002) summarize

the mathematical models, classical approximation algorithms, recent heuristic and

metaheuristic methods and exact enumerative approaches. Most algorithms are based

on the idea of forming layers of items inside the bins. The width of each layer is W ,

equal to the width of the bin, and the length of each layer is the longest length of the

item in that layer. Berkey and Wang (1987) study two approaches for 2-BP problems.

One is finite first fit algorithm (FFF), the other is finite bottom-left (FBL) algorithm.

FFF is to sort the items by length in a non-increasing order, and then sequentially

assign the item into the left-bottom of first layer of the first bin, and create a new

layer if the current layer cannot fit the items, and start a new bin if no layer can

be used in current bins. In FBL, the items are sorted by non-increasing length and

assigned to the bin in the lowest and leftmost position, and a new bin is started if

no such bin exists. Chung et al. (1982) propose a two-phase approach to solve 2-BP

problems. In the first phrase, it is assumed that items are packed in one bin with the

width W and infinite length. And items are packed into the bin using modified FFF

algorithm in order to minimize the length of the bin. So at the end of the first phrase,

the bin is composed of layers with the same width and different length. In the second

phrase, each layer is considered as a big item, and FFD algorithm for 1-BP problems

is applied to provide the solution for 2-BP problems.

For 3-BP problems, the simple continuous lower bound z on the number of bins

is z = d(l1w1h1 + l2w2h2 + · · · + lmwmhm)/LWHe, given L, W and H, li, wi and hi

are the length, width and hight of bins and items, respectively. Chen et al. (1995)

use the exact method to solve 3-BP problems in container loading. In his paper, a

mixed integer programming model is developed and numerical examples are tested

to validate the model. Martello et al. (2000) investigate an exact and approximation

algorithms for 3-BP problems. The exact algorithm is two-phrased. During the first
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phrase, the items are assigned into bins without considering their actual position

using a branch-and-bound algorithm. Under the second phrase, the algorithm to fill

a single bin is applied to determine the position of items. Lodi et al. (2002, 2004)

introduce a Tabu search framework for 3-BP problems and provide a unified Tabu

search code for two- and three-dimensional bin packing problems. Ghiani et al. (2004)

discuss a two-phrase heuristic algorithm for this problem. In the first phrase, items

are firstly sorted by volumes in a non-increasing order. And then items are assigned

into bins according to the algorithms for 2-BP problems characterized by the hight

and width of items and bins. The floor of the first layer is the surface (W × H) of

the bin. The floor of subsequent layer in the bin is equal to the length of the largest

item. In the second phrase, 1-BP problem associate with the floors is solved.

2.6 Summary

In this chapter we review and summarize a large amount of literature related to our

topic. The consolidation problem investigated in this dissertation integrates several

issues, such as freight consolidation, transportation mode selection, routing, bin pack-

ing and inventory management. Hence, the relevant literature reviewed is classified

into four categories, consolidation models, integrated inventory and transportation

models, mode selection and routing models and bin packing models and algorithms.

Initial consolidation studies focus on descriptive methodologies and simulations

to identify the value of consolidation strategies and evaluate the related factors which

affect cost and service level, such as the length of holding time, shipment release

strategies and the type of network. The current literature has mostly focused on

mathematical models to study the problem. Some papers concern order consoli-

dation problem in the international network; Some literature discusses the optimal

shipment release strategies during consolidation; Other research has investigated the
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optimization of distribution network design, for example, determining the optimal

number of hubs and assigning spokes to hubs.

The literature on integrated inventory and transportation models studies effects

of joint decisions on the system performance. Most papers work on the inbound

material-collection and outbound freight distribution problems. The joint decisions

includes how to determine replenishment quantity, frequency, safety stock, transporta-

tion mode and routing selection and the sequence of customer visiting, and etc. The

common methodologies among the literature are mathematical models and heuristic

algorithms.

Research on mode selection and routing models seeks an optimal strategy to de-

liver shipments from a single source (central warehouse) to local customers and then

go back to warehouse by two alternative transportation modes, TL and/or LTL, with

the objective of minimal total cost. The decisions involved in the problem include

TL/LTL mode selection, assignment of shipments to TL, and TL route selection.

Most heuristic algorithms in the reviewed literature are based on the savings algo-

rithm of Clarke-Wright, and some more efficient algorithms are also proposed.

Bin packing models are used to evaluate problems, where items are to be allocated

into identified bins so that the number of required bins is minimized. Bin packing

problems include one-, two- and three-dimensional bin packing problems based on

dimensions considered while packing. Bin packing problems are known to be strongly

NP-hard problems. Therefore, only small-size problems can be solved exactly. As

such, much research has focused on heuristic and meta-heuristic algorithms to solve

the problems.

By reviewing through the relevant literature, we find that the integrated problem

of consolidation, three-dimensional, mode and route selection and inventory manage-

ment, are rarely studied although some aspects of the problem have been mentioned.

In the following chapters, we will present the models and algorithms to better inte-
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grate these planning aspects.
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Chapter 3

An Integrated Consolidation
Model for Single Period and Direct
Delivery

3.1 Introduction

In this chapter, an integrated multi-commodity consolidation problem is considered

in the global supply chain network, which consists of overseas suppliers, one overseas

consolidation center, one US deconsolidation center and multiple US manufacturing

plants and distribution centers. In the network, a US manufacturing company op-

erates more than 200 manufacturing factories and warehouses, called branches, scat-

tered around the wide geographic area from east coast to west coast. Each branch

purchases parts or finished products from China according to a frequent and small-

volume replenishment policy to keep low inventory. The parts and finished products

are not homogeneous and have different sizes and shapes. The commodities ordered

by each branch are collected and consolidated into ocean containers in the overseas

consolidation center. They are then shipped to the US deconsolidation center, where

the commodities are broken down and are delivered to their final destinations by road
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transportation. Two alternative road transportation modes, such as LTL and TL, are

taken into account. Different modes are chosen according to the shipment’s quantity,

size and cost. In this chapter, we consider LTL and TL direct delivery without stops

during a trip. The decisions to be made for this problem include:

1. the number of ocean containers used

2. the assignment of multi-commodities to the ocean containers

3. the TL and LTL mode selection for final delivery

The goal of our approach is to develop a cost-effective consolidation method to

transport international shipments in the global network. Thus, the objective in the

model is to minimize the total costs involved in the global supply chain, including

ocean container costs, handling costs, TL and LTL costs. Ocean container costs

are the costs of shipping containers from China to US. Handling costs are incurred

during unloading/loading shipments from containers onto the trucks. A fixed handling

cost incur for shipments to the same destinations in the same container. Inland

transportation costs consist of both TL costs and LTL costs. The TL mode is often

preferable if the shipments to the same destination are heavy or big. Otherwise, it

may be more economical to choose LTL for delivery.

The proposed method in this chapter is a proactive consolidation strategy, which

makes consolidation planning at the early stage of the supply chain. Commodities to

different branches are effectively grouped and loaded into ocean containers considering

final destinations before they are shipped to US. Consequently, once ocean containers

arrive at US, commodities already grouped in China could be directly reloaded into

trucks for final delivery based on the predetermined distribution plan. No additional

sorting or storage procedures are needed during the US deconsolidation. This saves

transit time and ensures timely delivery to the final destinations. Furthermore, it

eliminates handling and storage costs, which could be significant at the expensive
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US deconsolidation sites. If shipments are randomly loaded without a consolidation

planning, and handling/ sorting processes in China , the road transportation costs

in US will significantly increase due to more frequent LTL deliveries. Therefore, an

effective order consolidation in a proactive way could achieve significant cost savings

compared to other strategies. In Section 3.5, some examples and numerical analysis

show the comparison results for different consolidation planning strategies.

The concept of “proactive order consolidation” is introduced by Crainic et al.

(2009). In their paper, a one-dimensional bin packing model is used to effectively

group the orders from several suppliers and a simulation approach is developed to

compare order consolidation strategies with a full-container ordering strategy. They

conclude that an order consolidation strategy could save substantial costs on inven-

tory and transportation. Attanasio et al. (2007) investigate the integrated shipment

dispatching and packing problems in a case study. In their model, TL & LTL selection

and bin packing constraints are considered. A cutting plane method and a construc-

tive heuristic are developed for the packing problem. A rolling horizon technique is

also used to reduce the problem size. The methodology proposed in the paper has

been applied to solve a real-world problem. Results show that the algorithm achieves

significant cost savings over the current manual procedure. Tyan et al. (2003) model

and evaluate the freight consolidation policies in global third party logistics network,

and discuss the managerial implications from the proposed policies.

Our method also integrates the problem of selection between LTL and TL mode.

Selecting right mode to transport shipments might bring significant cost savings to

the company. However, there is little research in this area. Pooley and Stenger

(1992b); Pooley (1993) investigates the problem on LTL VS. multi-stop and one-

way TL problem. He analyzes the differences between this problem with a general

routing problem, and modifies Clarke and Wright vehicle routing algorithm to solve

the problem. Chu (2005) works on a problem of LTL & TL routing problem, presents
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a mathematical model and a heuristic algorithm to solve the mode selection problem.

Results show that his algorithm obtains the optimal or near-optimal solutions in an

efficient way in terms of time and accuracy. Bolduc et al. (2007) study the same

problem with Chu (2005), and improve their algorithm and get better performance.

Côté and Potvin (2009) apply a Tabu search heuristic to solve the vehicle routing

problem with private fleet (TL) and common carrier (LTL).

There is other literature concerning consolidation problems in the different as-

pects. For example, some papers (O’Kelly (1986a,b, 1987); Klincewicz (1991); Camp-

bell (1996), Campbell et al. (2005a,b); Yoon and Current (2008); Cunha and Silva

(2007); Wagner and Whitin (1958); Alumur and Kara (2008)) discuss the consoli-

dation problem in a Hub-and-Spoke network, where hub location problem, hub arc

location problem and node assignments are mostly explored and optimized. Other pa-

pers (Higginson and Bookbinder (1995); Bookbinder and Higginson (2002); Cetinkaya

and Bookbinder (2003); Cetinkaya (2005); Chen et al. (2005)) work on the optimal

shipments dispatch strategy for the consolidation problem. Time-based consolidation

policies, quantity-based consolidation policies, and hybrid consolidation policies are

investigated to determine the tradeoffs between the inventory costs and transporta-

tion costs.

Our work is different from existing research in three aspects. First, the consoli-

dation problem is studied in the international and multi-modal logistics network. In

our study, marine and road (TL and LTL) transportation modes are used to trans-

port freight from China to multiple destinations in US, while other studies consider

only single transportation mode. For example, Tyan et al. (2003), Attanasio et al.

(2007) and Crainic et al. (2009) investigate the international consolidation problem

with air, road and marine transportation mode, respectively. Second, more issues are

integrated into our mathematical model, such as mode selection, three-dimensional

bin packing problem and handling operations. The integrated issues can help explore
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more potential opportunities for cost reduction and real-world logistics problems.

Third, we consider the multi-commodity shipment flows in our model. The attributes

of commodities include: weight, shape (length, width and height), and corresponding

LTL transportation cost. In addition, a CzarLite software is used for the estimation

of LTL rate rather than an assumed LTL rate.

The remainder of this chapter is organized as follows. Next, in Section 3.2, a

mixed integer program formulation for our problem is developed. In Section 3.3, we

make the model approximation. In Section 3.4, model complexity is analyzed. In

Section 3.5, a special case based on the original problem is presented. In Section

3.6, general algorithm is proposed for large scale problem. In the last section, some

examples are tested to evaluate different strategies and compare the cost savings.

3.2 Mathematical Model

In this section, a mathematical formulation of the problem is presented. The objective

in the model is to minimize the total costs including ocean container shipping cost,

handling cost and inland transportation cost, such as TL and LTL cost. In addition,

the container capacity constraints and shipments packing constraints are considered.

The total weight of shipments in each container must not exceed the container ca-

pacity. And also the shipments in each container must be feasibly (non-overlapping)

packed into a loading space of length L, width W and height H. Definitions of

variables and a mathematical model are presented in the next subsections.

3.2.1 Variables and Parameters Definitions

In order to develop a mathematical model, the notations for variables and parameters

are given as follows.

Parameters definitions:
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I: a set of shipments;

J : a set of available containers;

K: a set of destinations;

ei: the volume of shipment i ∈ I;

fi: the weight of shipment i ∈ I;

(sli, s
w
i , s

h
i ): length, width and height of shipment i;

E: the volume capacity of a standard ocean container;

F : the weight capacity of a standard ocean container;

(L,W,H): length, width and height of a standard ocean container;

dik = 1: if shipment i ∈ I is assigned to destination k ∈ K, and 0 otherwise;

COC : unit ocean container cost from China to US;

CH : handling cost for shipments to one destination within a container;

CTL
k : TL transportation cost from the US deconsolidation center to destination

k ∈ K;

CLTL
k (v, w): LTL transportation cost from the US deconsolidation center to destina-

tion k for a shipment with volume v and weight w;

M : an arbitrary large number;

Decision variables:

xij: a binary type having a value equal to 1 if shipment i ∈ I is loaded into container

j ∈ J , and 0 otherwise;

yj: a binary variable equal to 1 if container j ∈ J is used, and 0 otherwise;

zjk: a binary variable equal to 1 if handling cost to destination k ∈ K is incurred in

container j ∈ J , and 0 otherwise;

ujk: a binary variable equal to 1 if using TL to deliver the shipments which are in

container j ∈ J and to destination k ∈ K, and 0 otherwise;

vjk: the volume of the shipments in container j ∈ J to destination k ∈ K, which are
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transported by LTL.

wjk: the weight of the shipments in container j ∈ J to destination k ∈ K, which are

transported by LTL.

(cxi, cyi, czi): continuous variables indicating the coordinates of the front-left bottom

corner of box i ∈ I;

aii′ : a binary variable equal to 1 if the shipment i ∈ I is on the left of the shipment

i
′ ∈ I, and 0 otherwise;

bii′ : a binary variable equal to 1 if the shipment i ∈ I is on the right of the shipment

i
′ ∈ I, and 0 otherwise;

cii′ : a binary variable equal to 1 if the shipment i ∈ I is on the behind of the shipment

i
′ ∈ I, and 0 otherwise;

oii′ : a binary variable equal to 1 if the shipment i ∈ I is on the front of the shipment

i
′ ∈ I, and 0 otherwise;

pii′ : a binary variable equal to 1 if the shipment i ∈ I is on the below of the shipment

i
′ ∈ I, and 0 otherwise;

qii′ : a binary variable equal to 1 if the shipment i ∈ I is on the above of the shipment

i
′ ∈ I, and 0 otherwise;

3.2.2 Model Formulation

The integrated shipment consolidation and dispatch problem with container capacity

and packing restrictions can be formulated as:

Minimize

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk +
∑
j∈J

∑
k∈K

CTL
k ujk +

∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk) (3.1)
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Subject to:

∑
j∈J

xij = 1, ∀i ∈ I (3.2)

xij ≤ yj, ∀i ∈ I, ∀j ∈ J (3.3)∑
i∈I

xijfi ≤ F, ∀j ∈ J (3.4)

cxi + sli ≤ cxi′ + (1− aii′ )M, ∀i, i′ ∈ I, i < i
′

(3.5)

cxi′ + sl
i′
≤ cxi + (1− bii′ )M, ∀i, i′ ∈ I, i < i

′
(3.6)

cyi + swi ≤ cyi′ + (1− cii′ )M, ∀i, i′ ∈ I, i < i
′

(3.7)

cyi′ + sw
i′
≤ cyi + (1− oii′ )M, ∀i, i′ ∈ I, i < i

′
(3.8)

czi + shi ≤ czi′ + (1− pii′ )M, ∀i, i′ ∈ I, i < i
′

(3.9)

czi′ + sh
i′
≤ czi + (1− qii′ )M, ∀i, i′ ∈ I, i < i

′
(3.10)

aii′ + bii′ + cii′ + oii′ + pii′ + qii′ ≥ xij + xi′j − 1, ∀i, i′ ∈ I, i < i
′
, ∀j ∈ J (3.11)

cxi + sli ≤ L, ∀i ∈ I (3.12)

cyi + swi ≤ W, ∀i ∈ I (3.13)

czi + shi ≤ H, ∀i ∈ I (3.14)

Mzjk ≥
∑
i∈I

xijdik, ∀j ∈ J, ∀k ∈ K (3.15)

Mujk + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (3.16)

Mujk + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (3.17)

xij, yj, zjk, ujk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀k ∈ K (3.18)

aii′ , bii′ , cii′ , oii′ , pii′ , qii′ ∈ {0, 1}, ∀i, i′ ∈ I, i < i
′

(3.19)

vjk, wjk ≥ 0, ∀j ∈ J, ∀k ∈ K (3.20)

cxi, cyi, czi ≥ 0, ∀i ∈ I (3.21)
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In this formulation, the objective function (3.1) minimizes the total costs which

include the ocean container shipping cost, handling cost and inland transportation

cost. The first term in (3.1) is a linear ocean container shipping cost where
∑

j∈J yj

is the total number of ocean containers used. The second term in (3.1) is handling

cost. The handling cost occurs proportionally to the number of destinations shipped

in each container. The last two terms in (3.1) are inland transportation costs. The

company has two alternatives for delivering a set of shipments, such as TL and LTL

modes. TL pricing is relatively simple because its rate is typically given as per-mile

cost depending on the given geographic regions of origin and destination. So CTL
k is

used as the fixed TL cost from the US deconsolidation center to destination k. On the

other hand, the LTL pricing is very complicated in practice. Generally speaking, LTL

rate depends on the delivery distance, geographic region, the shipment weight and its

determined class based on density. Hence, in our objective function, CLTL
k (vjk, wjk)

represents the LTL cost of shipments with volume vjk and weight wjk delivered to

destination k.

Constraints (3.2) state that each shipment is assigned to exactly one container.

Constraints (3.3) ensure that shipment i cannot be loaded into container j unless it

is selected for use. Constraints (3.4) guarantee that the total weight carried in the

container must not exceed its weight capacity F . Constraints (3.5)∼(3.14) are three

dimensional packing constraints. For the sake of simplicity, we assume the shipments

in the container cannot rotate or translate and are placed in a fixed orientation. If

more orientations are considered, nine new decision variables need to be added (Chen

et al. (1995)). Specifically, Constraints (3.5)∼(3.10) stipulate that any two shipments

in the same container must not overlap each other. Constraints (3.11) shows that the

placement relationship between any two shipments only exists if they are loaded into

the same container. Constraints (3.12)∼(3.14) ensure that all the shipments loaded

in a container don’t violate the geometric dimensions (length, width and height) of
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the container. Constraints (3.15) ensure the conditions of handling cost incurred.

Because shipments to the same destination are grouped together as one batch, the

handling procedure is needed only once (i.e., zjk = 1) as long as there are shipments

in container j to destination k, and 0 otherwise. Constraints (3.16)∼(3.17) select the

inland transportation mode such as TL and LTL. These two transportation modes

are mutually exclusive for given shipments with destination k in container j. If TL

mode is selected (i.e., ujk = 1), then both volume and weight variables (vjk and wjk)

become zero to minimize the total cost. On the other hand, if LTL mode is selected,

vjk and wjk represent appropriate volume and weight, respectively, of shipments with

destination k in container j. Constraints (3.18)∼(3.21) define the types of decision

variables.

3.3 Model Complexity Analysis

The mathematical model (3.1)∼(3.21) is a non-linear mixed integer programming

model, which optimally solves the three dimensional packing problem and the mode

selection problem together in the international consolidation context. Its size com-

plexity, which indicates how large a problem is, depends on the number of decision

variables and constraints in the problem. For example, for the case of 100 shipments,

4 ocean containers, and 5 final destinations, there are 100×4 variables for xij, 4 for yj,

4×5 for zjk, ujk, vjk and wjk, 100 for cxi, cyi and czi, and (99+98+ · · ·+1) variables

for aii′ , bii′ , cii′ , dii′ , pii′ and qii′ . Hence, there are 30, 144 binary variables and 340

continuous variables. In total, there exist 230,144(≈ 109,074) possible integer solutions.

In addition, there are 51, 264 constraints. For a general case with m shipments, n

containers, and k destinations, there are 3m2 +mn+ 2nk+ n− 3m binary variables,

2nk + 3m continuous variables, 1
2
m2n + 3m2 + 7

2
mn + 3nk − 2m constraints. The

number of possible integer solutions is 23m2+mn+2nk+n−3m, which increases exponen-
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tially as m, n and k increase. Thus, in the worst case, it takes exponential time to

find an optimal solution using enumerative techniques.

Currently, several commercial software packages exist to solve mixed integer pro-

gramming models, such as CPLEX, Gurobi, and LINGO. CPLEX uses the branch-

and-cut algorithm with some pre-solving techniques, cutting planes, search strategies,

and heuristic techniques to solve mixed integer programming models (MIP). Gurobi is

a high-performance optimization software package for linear programming, quadratic

programming and mixed-integer programming. It uses multi-core processors and

parallel processing, and could solve difficult problems fast. Gurobi Optimizer uses

cutting planes and heuristics algorithms to solve MIP. LINGO uses the branch and

bound algorithm to find solutions for MIP. Usually, it takes much longer time to find

solutions than CPLEX and Gurobi. According to Mittelmann benchmark tests on

various MIP solvers, including Gurobi 3.0.1, CPLEX 12.2, and other commercial and

non-commercial solvers, Gurobi is the fastest solver. However, not all MIP models

can be solved by commercial software packages. Moreover, their computational times

depend on the specific characteristics of models.

Our model includes two combinatorial optimization problems, such as a mode

selection problem and a three-dimensional bin packing problem. It has been proved

that three-dimensional packing problems are strongly NP-hard, and extremely diffi-

cult to solve in practice (Martello et al. (2000, 2007), Lodi et al. (2004)). Chen et al.

(1995) develop a mixed integer programming for this problem and a small instance

with only 6 items is solved optimally using an MIP solver in around 15 minutes.

Based on the research of Martello et al. (2000, 2007) and Fuellerer et al. (2010), sev-

eral instances with less than 50 items cannot be solved to optimality using an exact

branch-and-bound algorithm. Because the actual number of items need to be packed

into a container in our problem is much larger than 50, it would be hard to solve it

in a reasonable time. Thus, in the next section, approximate solution methods are
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proposed to get good solutions.

3.4 Approximation Solution Approaches

The problem presented in the previous section is an integration of mode selection

and three-dimensional bin packing problems. According to the complexity analysis

in the previous section, we find that the three-dimensional packing problem signifi-

cantly increases the number of constraints and decision variables. For example, the

case of 100 shipments, 4 ocean containers, and 5 final destinations results in 30, 144

binary variables, 340 continuous variables, and 51, 264 constraints. However, if three-

dimensional packing constraints (3.5-3.14) are eliminated, there would be only 444

binary variables, 40 continuous variables and 564 constraints in total. The decrease in

the number of decision variables and constraints can largely reduce the computational

difficulty. Hence, in our approximation method, we loosely disaggregate the problem

to two parts such as mode selection / consolidation and bin packing and solve them

iteratively. That is, the mode selection / consolidation problem is first solved with

relaxed three-dimensional packing constraints. The packing feasibility of the initial

solution is subsequently evaluated. If the solution is feasible, it is optimal. Otherwise,

the initial problem is modified to tighten the volume capacity, and the procedure is

repeated. In the following subsections, the relaxation method of packing constraints,

the algorithms for packing feasibility check, and detailed approximation algorithms

are discussed.

3.4.1 Packing Constraints Relaxation

In order to relax packing constraints (3.5-3.14), a volume load factor α is introduced

into the model. The load factor αj, 0 < αj ≤ 1, represents the utilization of the

volume capacity of container j. Its value depends on shipments’ characteristics such
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as shipment shape and size. In most cases, αj can be set between 0.5 to 1. The larger

shipments’ sizes are or the more odd the shapes are, the lower α is. In this situation,

it is possible that a container could not be filled any more based on its geometric

dimensional limits, although the volume capacity has not been reached at all. Hence,

αj can be set lower to represent the low volume utilization of the container. On the

other hand, if most of shipments are small-sized, αj could be set to the value close to

1, because container volume could be fully utilized. In practice, logistics manager can

estimate the value of αj well based on the knowledge of shipment contents and past

experiences. In our work, we introduce an algorithm to determine right αj values by

solving problems iteratively.

Based on the above arguments, the packing constraints (3.5-3.14) are substituted

by new constraints ∑
i∈I

xijei ≤ αjE,∀j ∈ J (3.22)

where αj is the volume load factor for container j, ei is the volume of shipment i, and

E is the volume capacity of the standard ocean container. The constraints state that

the total volume of the shipments loaded into container j cannot violate a certain

percentage of container volume limit determined by αj values. The original model is

now rewritten as follows.

Minimize

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk +
∑
j∈J

∑
k∈K

CTL
k ujk +

∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk) (3.23)
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Subject to:

∑
j∈J

xij = 1, ∀i ∈ I (3.24)

xij ≤ yj, ∀i ∈ I (3.25)∑
i∈I

xijfi ≤ F, ∀j ∈ J (3.26)

∑
i∈I

xijei ≤ αjE, ∀j ∈ J (3.27)

Mzjk ≥
∑
i∈I

xijdik, ∀j ∈ J, ∀k ∈ K (3.28)

Mujk + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (3.29)

Mujk + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (3.30)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (3.31)

yj ∈ {0, 1}, ∀j ∈ J (3.32)

zjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K (3.33)

ujk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K (3.34)

vjk ≥ 0, ∀j ∈ J, ∀k ∈ K (3.35)

wjk ≥ 0, ∀j ∈ J, ∀k ∈ K (3.36)

This relaxed model can solve the problem optimally if αj is selected well by man-

agers or items are small and well-shaped. However, in general, the solution from the

relaxed model may or may not load into containers when geometric shapes of ship-

ments are considered. Hence, it might be necessary to check the feasibility of loading

for each container. The next section describes algorithms used for this purpose.
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3.4.2 Algorithms for Packing Feasibility Check

As discussed in Section 3.3, the three-dimensional bin packing problem is NP-hard in

the strong sense. That is, an optimal solution cannot be found in a reasonable time for

many instances. Because the packing feasibility check, as a subproblem in our model,

is performed repeatedly, the computational efficiency and effectiveness are two key

factors to consider during algorithm development. Hence, heuristics rather than exact

methods are suggested in our algorithm to check the packing feasibility within a short

time. There are multiple methods that can be used to check the packing feasibility

(see Martello et al. (2000); Lodi et al. (2002, 2004); Ghiani et al. (2004)), but we use

a two-step algorithm as follows. Given shipments assigned to each container from

(3.22-3.35), in the first step, the lower bound of the number of containers needed is

determined based on the three-dimensional bin packing algorithm in Martello et al.

(2000). If any lower bound is larger than one, the current shipment assignment is

infeasible. On the other hand, if the lower bound is one for every shipment assignment,

we apply another three-dimensional packing algorithm called TSpack (Lodi et al.

(2004)) to make sure the packing feasibility. If the shipment assignment is feasible

according to TSpack, we accept the current solution. If the assignment is infeasible in

either step, the current solution is modified and the feasibility test is run again. We

next briefly explain two three-dimensional bin packing algorithms used in our work.

1. Packing algorithm 1. Martello et al. (2000) propose lower bounds L1 and L2

for three-dimensional bin packing problems.

The simple continuous lower bound for this problem is L0 = d
∑

i∈I ei
E
e, where ei is

the volume of shipment i, and E is the volume capacity of the container, respectively.

However, L0 produces a tight value when item sizes are small respect to the container

size, and it is not appropriate for large-sized shipments. Because large-sized shipments

might need more containers than small-sized ones do, even though they are within

volume limits. The paper shows the worst-case performance ratio of lower bound L0

52



is 1
8
, which means a heuristic algorithm could produce a feasible solution requiring 8

times the L0 value.

Lower bound L1

L1 is obtained based on the lower bound L1BP for one-dimensional bin packing

problems (Boschetti (2004)). Given a set of items I with volume ei for shipment i, and

container capacity E, one-dimensional bin packing problem is to find the minimum

number of container to fill all the items. L1BP is calculated according to the following

theorem.

Theorem 1. Given any integer p, such that 1 ≤ p ≤ 1
2
E, let S1 = {j ∈ S : ej >

E − p}, S2 = {j ∈ S : 1
2
E < ej ≤ E − p} and S3 = {j ∈ S : p ≤ cj ≤ 1

2
E}. A valid

lower bound on the optimal one-dimensional bin packing solution value is

L1BP (S,E) = max1≤p≤ 1
2
E{max{Lα(p), Lβ(p)}} (3.37)

where

Lα(p) = |S1

⋃
S2|+max{0, d

∑
j∈S3

ej +
∑

j∈S2
ej

E
− |S2|e}, (3.38)

Lβ(p) = |S1

⋃
S2|+max{0, d

|S3| −
∑

j∈S2
bE−ej

E
c

bE
p
c

e} (3.39)

Base on this theorem, the lower bound L1 is proposed for three-dimensional bin

packing problem. Given L, W and H, li, wi and hi are the length, width and hight

of bins and items, respectively, let JWH = {j ∈ J : wj >
W
2

and hj >
H
2
}. Hence,

L1 = max{LWH
1 , LWD

1 , LHD1 } (3.40)
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where

LWH
1 = |{j ∈ JWH : dj >

D

2
}| (3.41)

+max1≤p≤D
2
{d
∑

j∈Js(p) dj − (|Jl(p)|D −
∑

j∈Jl(p) dj)

D
e, (3.42)

d
|Js(p)| −

∑
j∈Jl(p)b

D−dj
p
c

bD
p
c

e}, (3.43)

Jl(p) = {j ∈ JWH : D − p ≥ dj >
D

2
}, (3.44)

Js(p) = {j ∈ JWH :
D

2
≥ dj ≥ p}. (3.45)

LWD
1 (resp. LHD1 ) is obtained from (3.40-3.44) by interchanging hj (resp. wj) with

dj and H (resp. W ) with D. The overall lower bound can be computed in o(n2).

Lower bound L2

The lower bound L2 is calculated as follows. Given any pair of integers (p, q), such

that 1 ≤ p ≤ 1
2
W and 1 ≤ q ≤ 1

2
H, let

K1(p, q) = {j ∈ J : wj > W − p, hj > H − q}, (3.46)

K2(p, q) = {j ∈ J\K1(p, q) : wj >
1

2
W,hj >

1

2
H}, (3.47)

K3(p, q) = {j ∈ J\(K1(p, q)
⋃

K2(p, q)) : wj ≥ p, hj ≥ q}. (3.48)

Hence,

LWH
2 = LWH

1 +max1≤p≤(1/2)W,1≤q≤(1/2)H{max{0, d
∑

j∈K2∪K3
ej +

∑
j∈K1 djWH

E
−LWH

1 e}}

(3.49)

The lower bound L2 is:

L2 = max{LWH
2 , LWD

2 , LHD2 } (3.50)
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Where LWD
2 (resp. LHD2 ) is obtained from (3.45-3.48) by interchanging hj (resp. wj)

with dj and H (resp. W ) with D. The overall lower bound can be computed in o(n2).

It has been proved that L1 doesn’t dominate L0, but L2 dominates L0 and L1.

And numerical experiments show that the average deviation of new lower bounds to

the optimal solution is 9.6%, while the deviation of L0 is 28.4%.

2. Packing algorithm 2. TSpack (Lodi et al. (2004)) implements the general Tabu

search technique and provides a unified search code to solve three-dimensional bin

packing problems with the objective of minimizing the number of bins used. The

inputs of the algorithm include number of items (n), length (li), width (wi), and

height (hi) for item i, and length (L), width (W ), and height (H) for containers. The

outputs of the algorithm are the number of containers used, and the assignment plan

of items and the coordinates of packing in each container.

In the algorithm, the continuous lower bound L0 is first calculated. And then the

modified classical hybrid next fit algorithm (Johnson (1973)) as an inner heuristic is

applied to get the initial upper bound. If the lower bound and the upper bound are

equal, the algorithm terminate and the optimal solution is obtained. Otherwise, local

improvement based on Tabu search is implemented.

The filling in each container is first calculated based on the filling function

ϕ(Si) = α

∑
j∈Si

ej

E
− |Si|

n
(3.51)

Where Si denote the set of items currently packed into container i, ej the volume of

shipment j ∈ Si, E the volume of container, and α a user-specified positive value.

The container with the minimum filling is selected as target container, say t. One

item, say j, in container t is removed. And then item j and the contents of k other

containers, where k defines neighborhood size, consist of a subset S. By repacking S
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and the items {1, 2, · · · , n}\S, the new solution is obtained. If the overall number of

containers are not more than the previous solution, the move is accepted. In other

words, they try to move item j out of container t without creating extra containers.

The neighborhood size k, which defines the size of the neighborhood and works

as a tool of intensification/diversification, is changed as follows. If the move doesn’t

increase the previous solution, the move is accepted and k = k − 1. If the move

increase the previous solution by more than one unit, this move is penalized and

the penalty is infinity. If the move increase the previous solution by only one unit,

k = k + 1, and this move is penalized according to the penalty formula.

The key aspect of the overall framework is the switch between neighborhoods of

different size. Experiments show this algorithm produces better solutions compared

with simple heuristics. This algorithm is easy to be implemented and a time limit

could be set as a stopping conditions according to real problems. In TSpack, we set

a time limit to be 100 seconds. The procedure for packing feasibility check is sum-

marized as follows.

Procedure for Packing Check

STEP 1: Apply packing algorithm 1 to each container. If any lower bound is larger

than one, the current shipment assignment is infeasible. Otherwise, go to STEP 2.

STEP 2: Apply packing algorithm 2 to each container. If any container needed is

larger than one, the current shipment assignment is infeasible.

3.4.3 Approximation Algorithms

In this section, three algorithms solving the original integrated model (3.1-3.21) are

proposed. They are called General Capacity Reduction Algorithm, Simplified Capac-

ity Reduction Algorithm and Shipment Reduction Algorithm because the solution is

sought by reducing either available capacity of containers or assigned shipment size
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iteratively. The performance of these algorithms is evaluated in the next section.

We use two parameters such as αj and α̂j, 0 ≤ αj, α̂j ≤ 1, in these algorithms

to represent the available and the actual usage of capacity/volume of container j.

Specifically, αj, an input parameter for each mathematical optimization iteration,

represents how much portion of container j can be used to load shipments. The po-

tential amount of shipments assigned to a container can be controlled by this param-

eter. The smaller value of αj will reduce the shipment volume, which is appropriate

for large and odd-shaped shipments. On the other hand, α̂j, an output after each

mathematical optimization iteration, represents actual volume used in container j.

It is calculated by using the formula α̂j =
∑

i xijei
E

, where xij is a binary type with a

value equal to 1 if shipment i is loaded into container j, and 0 otherwise; ei is the

volume of shipment i; and E is the volume capacity of a container. Next, we explain

three algorithms in detail.

General Capacity Reduction Algorithm

This algorithm solves the integrated consolidation problem by iteratively tightening

the available capacity of containers. The method starts with solving the relaxed model

(3.22-3.35) with αj = 1, ∀j ∈ J to obtain an initial solution. If the solution is feasible

after applying the packing feasibility check for all containers, it is optimal, and the

algorithm terminates. Otherwise, αj values for infeasible containers are decreased

by a step size ∆. The relaxed model (3.22-3.35) is solved again with updated αj

values and the packing feasibility is checked subsequently. The procedure is repeated

iteratively until all the containers become feasible.

A container is determined to be infeasible if it holds too many items in terms of the

container’s physical dimensional (length, width and height) constraints, although the

items’ total volume and weight are still within the given container volume and weight

capacities. Hence, some items have to be taken out from an overloaded infeasible
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container, which is achieved by decreasing αj value. The amount of removed items

depends on the step size ∆. If ∆ is small enough, a near-optimal solution can be found

with potentially very long computational time due to the large number of iterations.

On the other hand, a large ∆ finds a feasible solution quickly. Appropriate ∆ values

will be experimentally obtained in our work.

Besides, we note that, if we only change αj values to do mathematical optimiza-

tion, certain dead loops might appear in the algorithm. One of the ways to avoid

them is to add the following constraints to fix certain loads in infeasible containers

for each iteration while updating αj.

xij = 1 (3.52)

where i represents a shipment in a set of TL loads and j denotes an infeasible con-

tainer. In the algorithm, if there exist TL loads in an infeasible container, we fix one

TL load with the largest volume which can be feasible for packing in the container

during each iteration. Because the idea behind our model is try to group the ship-

ments to the same destination in the same container and ship them using TL, the

procedure by adding constraints do not affect the performance of the model. If there

are no any TL loads in an infeasible container, we fix one LTL load with the smallest

volume during each iteration, because it is more possible for small-volume shipments

for LTL delivery no matter what containers they are loaded.

A procedure “SortShipments” is used in this algorithm. It is to sort the shipments

in an infeasible container according to a defined rule. The output of the procedure is

a sorted list. The sorting rule is described as follows.

58



Procedure for SortShipments

For an infeasible container:

Scenario 1. If the shipments in it are all LTL loads,

group the shipments by destination and sort each destination’s volume in non-

increasing order.

Scenario 2. If the shipments in it are the mixes of TL and LTL loads,

group the TL shipments by destination and sort each destination’s shipments by vol-

ume in non-decreasing order.

Scenario 3. If the shipments in it are all TL loads,

group the TL shipments by destination first and sort each destination’s shipments by

volume in non-decreasing order.

The specific steps of the algorithm are as follows:

STEP 0: Initialize αj = 1, ∀j ∈ J .

STEP 1: Solve the relaxed model (3.23-3.36). Let N be the number of contain-

ers used, Aj be the set of shipments assigned to container j, and α̂j be the volume

utilization of container j in the solution obtained.

STEP 2: Call procedure PackingCheck for each container. If all the containers

are feasible, accept the current solution and STOP. Otherwise, go to STEP 3.

STEP 3: For infeasible container(s), set new αj = αj − ∆. For feasible con-

tainer(s), set αj to its value of last step.

STEP 4: Call procedure SortShipments for infeasible containers. Pick one set of
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shipments from the top of the sorted list. Add constraints xij = 1 for these shipments

to the relaxed model (3.23-3.36). Go to STEP 1.

Simplified Capacity Reduction Algorithm

In practice, General Capacity Reduction Algorithm can be modified to a simpler

version. In the simplified algorithm, αj’s are assumed to be the same regardless of

container j. In each iteration, all αj’s are decreased by ∆ if there is any infeasible

container. The simplified algorithm is easier to implement and very effective for small-

sized shipments. Because small-sized items are easy to be packed in the container and

the container could become feasible from infeasible status just by removing a small

amount of items. The detailed steps of the algorithm are as follows.

STEP 0: Initialize αj = 1, ∀j ∈ J .

STEP 1: Solve the relaxed model (3.23-3.36). Let N be the number of contain-

ers used, Aj be the set of shipments assigned to container j, and α̂j be the volume

utilization of container j in the solution obtained.

STEP 2: Call procedure PackingCheck for each container. If all the containers

are feasible, accept the current solution and STOP. Otherwise, go to STEP 3.

STEP 3: Set new αj = αj −∆, 1 ≤ j ≤ N . Go to STEP 1.

Shipment Reduction Algorithm

This algorithm removes assigned items to make containers feasible instead of adjusting

the capacity of infeasible containers. In the algorithm, the relaxed model (3.23-3.36) is

60



first solved with αj = 1, ∀j ∈ J to obtain an initial solution. If the solution is feasible

for all containers, the current solution is accepted and the algorithm terminates.

Otherwise, items are removed one by one from infeasible containers until they become

feasible. For containers of which status is from infeasible to feasible, they are tagged

“finished”. Items in “unfinished” containers and removed items are re-optimized using

the relaxed model (3.23-3.36), and then the entire procedure is repeated until all the

containers are tagged “finished”.

The performance of the algorithm depends on the method to remove items. It

becomes an NP problem to remove items optimally. In our algorithm, we use a

greedy-type method to reach a feasible solution quickly. A procedure “SortShip-

ments” (shown in the following) is also used in this algorithm but in a different rule.

Procedure for SortShipments2

For an infeasible container:

Scenario 1. If the shipments in it are all LTL loads,

sort the volume in non-decreasing order.

Scenario 2. If the shipments in it are the mixes of TL and LTL loads,

sort LTL shipments by volume in non-decreasing order. Group the TL shipments by

destination first and sort each destination’s shipments by volume in non-decreasing

order. Then sort the shipments to the same destination by volume in non-decrasing

order.

Scenario 3. If the shipments in it are all TL loads,

group the TL shipments by destination first and sort each destination’s shipments by

volume in non-decreasing order. Then sort the shipments to the same destination by

volume in non-decreasing order.

The specific steps of the algorithm are described as follows.
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STEP 0: Initialize αj = 1, ∀j ∈ J .

STEP 1: Solve the relaxed model (3.23-3.36). Let N be the number of contain-

ers used, Aj be the set of shipments assigned to container j, and α̂j be the volume

utilization of container j in the solution obtained.

STEP 2: Call procedure PackingCheck for each container. If all the containers

are feasible, accept the current solution and STOP. Otherwise, go to STEP 3.

STEP 3: Call procedure SortShipments2 for infeasible containers.

STEP 4: Remove One shipment from the top of the sorted list.

STEP 5: Apply procedure PackingCheck for this container. If the container is

feasible, tag it “finished”. Go to STEP 6. Otherwise, go to STEP4.

STEP 6: Remove the shipments in the “finished” containers from the original

order list. And then go to STEP 1.

3.5 Computational Experiments

The objectives of our computational experiments are to evaluate the performances

of three approximation algorithms on the basis of solution quality and time, and to

validate the value of our integrated model in comparison to a traditional strategy.

A traditional strategy is an uncoordinated strategy where the original problem is

optimized in two separate phases, such as a shipment-loading phase and an inland
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transportation-planning phase.

Three approximation algorithms in this section are abbreviated using the notation

GCRA for General Capacity Reduction Algorithm, SCRA for Simplified Capacity

Reduction Algorithm and SRA for Shipment Reduction Algorithm.

3.5.1 Data

Our examples are generated based on the international logistics network of a US

Fortune 500 manufacturing company. Data were obtained from the company, but were

modified substantially to avoid revealing any proprietary information. The tested

network consists of one overseas consolidation center, one US deconsolidation center

and 15 US branches. Based on the actual business operations with China in the

company, Shanghai, China serves as a consolidation center in China, and Los Angeles,

CA as a deconsolidation center in US.

We test multiple-commodity flows, which include a wide range of commodity

classes from light to heavy shipments. The scheme of Popken (1994) is applied to

generate shipment types. It is assumed there are ten commodity classes (listed in

3.1), which are mostly typical in manufacturing companies. The light commodities

stand for foam products, fabric, and light plastic components with less-than-10 lb/ft3

density. The medium density commodities represent machinery parts, furniture com-

ponents, and building materials with density in the range of 10 to 50 lb/ft3. The

density of heavy commodities, such as heavy metal, is more than 50 lb/ft3.

Shipment sizes in our examples are similar to instances of Pisinger (2002), where

he investigates container loading problems and generates box types to reflect typical

characteristics of industrial loading problems. However, we add some bigger-size

shipments to accurately represent the problem of our industry partner (shown in

3.1).

We test cases with 5 and 10 branches selected from 15 target branches, and each

63



Type Weight Volume Density
(lb) (ft3) (lb/ft3)

1 40.00 1.00 40.00
2 20.00 2.00 10.00
3 20.00 4.00 5.00
4 5.00 5.00 1.00
5 1,000.00 10.00 100.00
6 400.00 20.00 20.00
7 50.00 25.00 2.00
8 1,500.00 30.00 50.00
9 40.00 40.00 1.00
10 80.00 60.00 1.33

Table 3.1: Commodity class

Dataset 1 Dataset 2

Instance No. of No. of Average Average Instance No. of No. of Average Average
No. Destinations shipments Volume Weight No. Destinations shipments Volume Weight

(ft3) (lb) (ft3) (lb)
1 5 1,395 3.61 58.42 21 5 181 33.29 340.61
2 5 995 3.75 73.62 22 5 172 32.09 345.12
3 5 1,025 3.79 71.61 23 5 171 24.53 216.08
4 5 1,018 3.74 65.23 24 5 193 32.25 324.82
5 5 1,075 3.66 70.14 25 5 168 27.74 570.24
6 5 1,125 3.54 68.80 26 5 243 31.32 530.62
7 5 1,225 3.58 64.82 27 5 150 31.87 565.07
8 5 1,490 3.38 33.83 28 5 175 31.31 520.91
9 5 1,400 3.38 41.71 29 5 165 34.42 676.12
10 5 1,540 3.49 31.92 30 5 225 34.84 646.22
11 10 925 3.94 142.54 31 10 260 31.37 651.65
12 10 1,205 4.27 196.06 32 10 233 32.55 640.56
13 10 850 3.46 78.59 33 10 250 30.22 674.52
14 10 1,260 3.29 44.01 34 10 401 28.82 600.67
15 10 1,450 3.44 39.93 35 10 331 27.80 579.97
16 10 1,660 3.35 37.65 36 10 289 26.00 574.22
17 10 1,770 3.31 19.60 37 10 260 27.42 499.15
18 10 1,630 3.64 29.82 38 10 301 25.95 477.01
19 10 1,670 3.85 15.05 39 10 305 25.41 518.36
20 10 1,270 3.88 14.69 40 10 320 27.03 517.81

Table 3.2: Details on the instance generation
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branch orders two types of commodities chosen from the listed commodities. The

purchase quantity of each branch is feasible for one ocean container since we focus on

small-quantity order consolidation problem.

Two data sets have been generated, each containing 20 instances. The first set

was used to test the performance of algorithms on small-size shipments, which are

selected from type 1 to type 5 in Table 3.1. The other set includes shipments, which

are big items from type 6 to type 10 in Table 3.1. The corresponding instances in

these two datasets consider the same destinations. Their statistical characteristics

are summarized in Table 3.2.

3.5.2 Model Parameters

The following parameters are used in our examples.

1. Ocean container cost: The cost of shipping one 40-foot ocean container from

Shanghai, China to Los Angeles, CA is set as $2,000 dollars per container. It

is estimated according to the logistics market snapshot (Siplon (2011)).

2. Handling cost: The fixed handling cost is incurred for each set of the shipments

to the same destination in the same container. The default value is $80, but its

sensitivity effect is tested.

3. TL rate: The value is $1.5 per mile, estimated based on Flatbed Truckload

Market Price Index(Group and Freight Audit Services (2012)).

4. LTL rate: In our analysis, we use actual LTL rates used in practice. The value

is computed as follows. According to the SMC3 white paper (2009), CzarLite,

one of the most widely used and accepted LTL rates, is used by nearly half of

the Fortune 500 including our industry partner and more than 2,000 shippers,

including some of the largest US logistics service providers. It computes LTL
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base rate based on zip codes of origin and destination, shipment weight, and

class. We use LTL base rate and 60% discount to estimate the actual LTL rate

in practice.

5. Ocean container capacity: According to ISO standards for international con-

tainers, a 40-foot ocean container has a weight capacity (excluding tare weight)

of 59,000 lbs, and a volume capacity of 2,560 (40× 8× 8) cubic feet.

3.5.3 Results

The proposed three algorithms have been coded in MatLabR2009a and run on a

computer with Intel Core 2 Duo CPU L7500 1.60GHz processor and 1GB RAM

under Windows 32. The optimization solver embedded in the algorithms is Gurobi

4.0.1.

Numerical results for performance comparison of three algorithms are summarized

in Table 4.4. The first column of Table 4.4 gives the instance identifier. The char-

acteristics of each instance are described in Table 3.2. The values such as UBGCRA,

UBSCRA and UBSRA are provided by implementing the algorithms GCRA, SCRA

and SRA, respectively. Associated runtimes are also recorded upon termination. The

best upper bound (UBbest) is the minimum of UBGCRA, UBSCRA and UBSRA. We

employ a stopping criteria of 3600 seconds time limit for Gurobi solver in each itera-

tion for k = 10 and no time limit for k = 5. The step size ∆ in GCRA and SCRA is

set to 0.1. The optimality gap is calculated as 100 × (UB − LB)/LB, where UB is

the objective function value of the corresponding approximation solution, and LB is

the lower bound.

It is known that it is extremely hard to solve our original model directly, hence

it is difficult to use exact solutions as benchmark solutions to evaluate the quality

of the solutions obtained by our algorithms. Here we provide a method to compute
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the lower bound. The lower bound (LB) is calculated as the sum of optimal con-

tainer cost, handling cost and in-land transportation cost. The optimal number of

containers needed is obtained by implementing a three-dimensional bin packing al-

gorithm (TSpack), which is introduced in Section 3.4.2. Thus, the product of the

optimal number of containers and unit container cost is the optimal container cost.

The optimal handling cost depends on optimal container cost. If the optimal con-

tainer cost is the same with the container cost of implementing any one algorithms

such as GCRA, SCRA and SRA, the optimal handling cost is the handling cost of the

algorithm. If the optimal container cost is the same with the container cost of two

or three algorithms, the optimal handling cost is the minimum among them. Other-

wise, the optimal handling cost is determined according to the loading pattern under

the optimal packing. The optimal in-land transportation cost is the minimum cost

of delivering the shipments from US consolidation center to their destinations after

deconsolidating. The LTL and TL costs to each destination are computed separately,

and the cheaper one is chosen.

In terms of solution quality GCRA is clearly superior to SCRA and SRA. For the

instances of Dataset1, which represent small-size shipments, GCRA performs always

better than SRA except in one case (instance 4). GCRA always finds slightly better

solutions than SCRA. And its average of percentage gap is 2.16%, which is lower by

1.36% and 11.68% than that of SCRA and SRA, respectively. Similar phenomenon is

observed in Dataset 2, which are large items, GCRA outperforms SCRA and SRA in

18 out of 20 instances. In the remaining two instances, SRA produces better solutions

compared to those obtained by SCRA and SRA. In respect to average percentage gap,

GCRA still achieves the lowest percentage gap (2.82%), followed by SCRA (7.05%)

and SRA (8.27%). From Table 4.4, we observe that if these three algorithms are used

together and the best results are chosen, the solution quality could be improved.

With respect to different CPU speeds, GCRA takes less time to find the best
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Dataset 1

GCRA SCRA SRA
Instance UBGCRA Runtime UBSCRA Runtime UBSRA Runtime UBbest LB % Gap

No. ($) (seconds) ($) (seconds) ($) (seconds) ($) ($) GCRA SCRA SRA Best
1 20,501.28 82.82 20,501.28 245.10 24,810.18 2,595.49 20,501.28 20,501.28 0.00 0.00 21.02 0.00
2 18,501.28 1.24 18,501.28 1.25 18,501.28 3.33 18,501.28 18,501.28 0.00 0.00 0.00 0.00
3 20,501.28 23.42 20,501.28 132.53 22,308.92 321.74 20,501.28 18,741.28 9.39 9.39 19.04 9.39
4 20,501.28 25.72 20,501.28 216.14 19,336.45 92.76 19,336.45 18,501.28 10.81 10.81 4.51 4.51
5 21,761.19 24.74 21,761.19 175.06 23,568.83 325.21 21,761.19 20,001.19 8.80 8.80 17.84 8.80
6 21,761.19 27.67 21,761.19 149.10 24,461.31 598.94 21,761.19 20,001.19 8.80 8.80 22.30 8.80
7 21,761.19 42.96 24,169.50 266.17 24,381.31 2045.04 21,761.19 21,761.19 0.00 11.07 12.04 0.00
8 21,978.49 105.76 24,169.50 2,121.21 28,423.59 3,730.46 21,978.49 21,761.19 1.00 11.07 30.62 1.00
9 19,400.70 45.07 19,400.70 355.84 23,180.80 2,716.68 19,400.70 19,400.70 0.00 0.00 19.48 0.00
10 19,544.92 376.14 21,400.70 2,264.85 21,597.40 3,027.06 19,544.92 19,400.70 0.00 0.74 11.32 0.00
11 37,802.83 181.46 37,802.83 175.44 37,802.83 192.24 37,802.83 36,202.83 4.42 4.42 4.42 4.42
12 37,802.83 40.63 37,802.83 123.13 42,276.10 1,505.46 37,802.83 37,802.83 0.00 0.00 11.83 0.00
13 35,802.83 21.27 35,802.83 12.54 36,226.09 1,684.35 35,802.83 35,802.83 0.00 0.00 1.18 0.00
14 37,802.83 48.99 37,802.83 262.75 43,779.62 2,365.15 37,802.83 37,802.83 0.00 0.00 15.81 0.00
15 37,802.83 73.14 37,802.83 1,107.58 41,634.51 3,767.61 37,802.83 37,802.83 0.00 0.00 10.14 0.00
16 37,802.83 387.43 39,802.83 1,147.39 42,508.59 4,477.99 37,802.83 37,802.83 0.00 5.29 12.45 0.00
17 37,802.83 1,155.77 37,802.83 295.17 41,401.28 503.92 37,802.83 37,802.83 0.00 0.00 9.52 0.00
18 38,709.49 484.80 39,802.83 987.06 47,393.82 3,882.31 38,709.49 38,709.49 0.00 0.00 19.07 0.00
19 37,344.90 423.31 37,344.90 1,220.52 44,612.61 5,202.65 37,344.90 37,344.90 0.00 0.00 19.46 0.00
20 35,344.90 77.73 35,344.90 318.66 40,580.80 2,314.03 35,344.90 35,344.90 0.00 0.00 14.81 0.00

AVG 29,011.59 182.50 29,489.01 578.87 32,439.31 2,067.62 28,953.35 28,604.18 2.16 3.52 13.84 1.85

Dataset 2

21 22,146.47 15.08 24,424.19 17.15 24,283.64 49.35 22,146.47 22,066.47 0.36 10.68 10.05 0.36
22 21,688.56 10.58 22,236.53 48.38 21,848.56 20.70 21,688.56 21,688.56 0.00 2.53 0.74 0.00
23 21,440.01 8.31 21,440.01 13.64 22,235.16 45.24 21,440.01 21,440.01 0.00 0.00 3.71 0.00
24 24,362.86 38.02 24,562.10 20.32 23,612.22 36.82 23,612.22 22,362.86 8.94 9.83 5.59 5.59
25 21,497.50 24.40 21,497.50 10.12 23,854.19 47.25 21,497.50 21,497.50 0.00 0.00 10.96 0.00
26 24,501.28 116.39 33,850.48 1,297.06 26,354.00 145.86 24,501.28 24,501.28 0.00 38.16 7.56 0.00
27 24,169.21 24.85 24,169.21 5.40 24,100.78 30.09 24,100.78 22,169.21 9.02 9.02 8.71 8.71
28 26,207.50 77.81 27,432.05 27.37 26,631.12 40.15 26,207.50 25,304.56 3.57 8.41 5.24 3.57
29 25,498.27 15.01 27,370.36 66.24 29,210.13 23.19 25,498.27 25,304.56 0.77 8.16 15.43 0.77
30 27,224.56 31.77 27,766.02 32.93 29,446.04 56.14 27,224.56 27,224.56 0.00 1.99 8.16 0.00
31 44,578.41 4,966.42 44,658.41 759.33 45,161.41 37.77 44,578.41 42,578.41 4.70 4.89 6.07 4.70
32 40,067.70 435.42 40,067.70 435.42 40,469.32 62.09 40,067.70 40,067.70 0.00 0.00 1.00 0.00
33 41,904.55 1,274.25 41,984.55 1,139.84 42,426.54 60.70 41,904.55 39,904.55 5.01 5.21 6.32 5.01
34 50,586.90 7,881.61 52,974.87 6,394.15 58,999.62 187.99 50,586.90 47,962.83 5.47 10.45 23.01 5.47
35 47,802.83 8,574.94 50,357.14 4,048.24 51,324.15 97.95 47,802.83 45,802.83 4.37 9.94 12.05 4.37
36 43,798.34 5,255.82 43,798.34 270.39 46,861.74 104.81 43,798.34 41,798.34 4.78 4.78 12.11 4.78
37 42,752.40 2,095.29 44,752.40 1,170.70 44,288.67 68.69 42,752.40 42,752.40 0.00 4.68 3.59 0.00
38 45,658.68 1,208.68 45,738.68 1,326.52 46,303.03 78.42 45,658.68 43,658.68 4.58 4.76 6.06 4.58
39 45,658.68 10,894.37 45,904.43 1,077.00 47,195.02 104.20 45,658.68 43,658.68 4.58 5.14 8.10 4.58
40 46,063.96 4,854.80 47,011.28 3,640.14 50,930.76 84.66 46,063.96 45,914.49 0.33 2.39 10.93 0.33

AVG 34,380.43 2,395.19 35,599.81 1,090.02 36,276.80 69.10 34,339.48 33,382.92 2.82 7.05 8.27 2.64

Table 3.3: Performance comparison for three proposed algorithms
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solutions for the instances of Dataset1, while SRA is much more efficient for instances

of Dataset2. The main reason is that SRA achieves final solutions by removing

assigned items in infeasible containers. The shipments in Dataset2 are all of large

size, thus it takes shorter time to remove items to make the container from a infeasible

status to a feasible one. Based on that, SRA might identify final solutions in one

iteration, whereas GCRA might need more iterations to obtain solutions. The average

computation time of GCRA for Dataset1 is 182.50 seconds (about 3 minutes), which is

two times faster than that for SCRA (578.87 seconds), and ten times faster than that

for SRA (2067.62 seconds). In Dataset2, SRA achieve solutions within an average

computation time of 69.10 seconds (about 1 minute). By observing Table 4.4, we can

conclude that the three algorithms are able to solve all the instances with up to 1770

items within a moderate computing time. For these algorithms, the time for solving

the instances of k = 10 is much longer than those of k = 5, that’s because the number

of decision variables and constraints grows largely with the increase of k and n, which

makes the solution time going up.

Therefore, based on the results of Table4.4, we conclude that GCRA performs

the best both in terms of solution quality and computational time for small-size

shipments. For large-volume shipments, GCRA provides the best solution quality.

However, SRA is a good alternative in this case because it can generate satisfactory

solutions within very short computational time. Besides, we also notice that SCRA

does not have significant advantages in terms of computational time and solution

quality compared to other two algorithms. But its solution quality and time are also

at acceptable levels.

We tested whether small step size ∆ could improve the solution quality of GCRA

and SCRA, as seen in Table 3.4. The tested ∆ values are 0.1 and 0.01. By observing

Table 3.4, we find that a small step size improves the solutions in most cases. And

the solution improvement of SCRA is bigger that that of GCRA.
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Dataset 1

∆ = 0.1 ∆ = 0.01 Improvement
GCRA SCRA GCRA SCRA

Instance UBGCRA Runtime UBSCRA Runtime UBGCRA Runtime UBSCRA Runtime GCRA SCRA
No. ($) (seconds) ($) (seconds) ($) (seconds) ($) (seconds) % %
1 20,501.28 82.82 20,501.28 245.10 20,501.28 98.22 20,501.28 624.54 0.00 0.00
2 18,501.28 1.24 18,501.28 1.25 18,501.28 1.22 18,501.28 3.13 0.00 0.00
3 20,501.28 23.42 20,501.28 132.53 20,501.28 122.60 20,501.28 186.95 0.00 0.00
4 20,501.28 25.72 20,501.28 216.14 18,501.28 21.34 20,501.28 187.72 9.76 0.00
5 21,761.19 24.74 21,761.19 175.06 21,761.19 85.70 21,761.19 548.38 0.00 0.00
6 21,761.19 27.67 21,761.19 149.10 21,761.19 95.65 21,761.19 227.05 0.00 0.00
7 21,761.19 42.96 24,169.50 266.17 21,761.19 84.10 21,761.19 223.93 0.00 9.96
8 21,978.49 105.76 24,169.50 2,121.21 21,761.19 116.22 21,761.19 832.08 0.99 9.96
9 19,400.70 45.07 19,400.70 355.84 19,400.70 57.83 19,400.70 479.22 0.00 0.00
10 19,544.92 376.14 21,400.70 2,264.85 19,400.70 345.12 21,400.70 2,155.58 0.74 0.00
11 37,802.83 181.46 37,802.83 175.44 37,802.83 195.37 37,802.83 197.64 0.00 0.00
12 37,802.83 40.63 37,802.83 123.13 37,802.83 80.86 37,802.83 189.84 0.00 0.00
13 35,802.83 21.27 35,802.83 12.54 35,802.83 32.06 35,802.83 25.03 0.00 0.00
14 37,802.83 48.99 37,802.83 262.75 37,802.83 41.25 37,802.83 356.45 0.00 0.00
15 37,802.83 73.14 37,802.83 1,107.58 37,802.83 68.06 37,802.83 1,404.84 0.00 0.00
16 37,802.83 387.43 39,802.83 1,147.39 37,802.83 706.20 37,802.83 678.23 0.00 5.02
17 37,802.83 1,155.77 37,802.83 295.17 37,802.83 283.13 37,802.83 719.88 0.00 0.00
18 38,709.49 484.80 39,802.83 987.06 37,802.83 631.25 39,802.83 1,244.09 2.34 0.00
19 37,344.90 423.31 37,344.90 1,220.52 37,344.90 1,337.57 37,344.90 11,032.21 0.00 0.00
20 35,344.90 77.73 35,344.90 318.66 35,344.90 35.42 35,344.90 1,298.14 0.00 0.00

AVG 29,011.59 182.50 29,489.01 578.87 28,848.18 221.96 29,148.18 1,130.75 0.69 1.25

Dataset 2

21 22,146.47 15.08 24,424.19 17.15 22,146.47 37.05 22,146.47 128.06 0.00 9.33
22 21,688.56 10.58 22,236.53 48.38 21,688.56 38.25 22,007.04 29.45 0.00 1.03
23 21,440.01 8.31 21,440.01 13.64 21,440.01 18.83 21,440.01 65.91 0.00 0.00
24 24,362.86 38.02 24,562.10 20.32 24,442.86 126.97 24,999.82 70.18 -0.33 -1.78
25 21,497.50 24.40 21,497.50 10.12 21,497.50 23.11 21,497.50 45.27 0.00 0.00
26 24,501.28 116.39 33,850.48 1,297.06 24,501.28 108.73 24,501.28 258.30 0.00 27.62
27 24,169.21 24.85 24,169.21 5.40 24,169.21 28.68 24,169.21 13.44 0.00 0.00
28 26,207.50 77.81 27,432.05 27.37 25,728.17 98.71 27,687.04 164.13 1.83 -0.93
29 25,498.27 15.01 27,370.36 66.24 25,418.27 126.04 25,498.27 187.29 0.31 6.84
30 27,224.56 31.77 27,766.02 32.93 27,224.56 38.31 27,224.56 21.42 0.00 1.95
31 44,578.41 4,966.42 44,658.41 759.33 42,578.17 286.48 42,738.41 717.44 4.49 4.30
32 40,067.70 435.42 40,067.70 435.42 39,907.70 178.19 39,907.70 19.53 0.40 0.40
33 41,904.55 1,274.25 41,984.55 1,139.84 39,824.55 9.78 41,904.55 4,260.53 4.96 0.19
34 50,586.90 7,881.61 52,974.87 6,394.15 50,586.30 57,086.3 50,955.07 23,056.38 0.00 3.81
35 47,802.83 8,574.94 50,357.14 4,048.24 46,719.43 19,048.02 48,023.83 15,551.86 2.27 4.63
36 43,798.34 5,255.82 43,798.34 270.39 42,578.41 295.99 43,798.34 2,216.22 2.79 0.00
37 42,752.40 2,095.29 44,752.40 1,170.70 42,592.40 2,881.00 42,752.40 4,608.88 0.37 4.47
38 45,658.68 1,308.68 45,738.68 1,326.52 43,738.68 779.50 45,738.68 1,222.64 4.21 0.00
39 45,658.68 10,894.37 45,904.43 1,077.00 45,658.68 27,024.58 45,824.43 8,572.75 0.00 0.17
40 46,063.96 4,854.80 47,011.28 3,640.14 46,063.96 11,300.80 48,627.56 4,133.72 0.00 -3.44

AVG 34,380.43 2,395.19 35,599.81 1,090.02 33,925.30 5,976.77 34,572.11 3,267.17 1.06 2.93

Table 3.4: The effect of step size
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We have so far shown the performance comparison of the proposed three algo-

rithms. We next investigate the value of our integrated model compared with an

uncoordinated strategy, which solves the cargo loading and inland transportation

planning separately. During the process of the cargo loading and packing, only the

physical dimensions of the shipments are considered. The three-dimensional bin pack-

ing algorithm (TSpack) is implemented to obtain good packing pattern. The subse-

quent inland transportation planning are determined based on the packing pattern

in the last process. Each container is unpacked and shipped by TL or LTL directly

according to cost after arriving at the deconsolidation center. Dataset1 and Dataset2

are still used for numerical experiments. Our model is solved by three algorithms

GCRA, SCRA and SRA.
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Figure 3.1: Strategy comparison for dataset1

Table 3.1 and Table 3.2 demonstrate the comparison of our strategy and unco-

ordinated one. Based on the figures, we find that our method performs quite well

compared with uncoordinated one. The cost savings of our method for dataset1 are

much bigger than those for dataset2. Table 3.5 displays the results in detail. The first

column refers to the problem instance identifier. The second to fourth column report

the corresponding solutions (UB) of three algorithms, measured by total cost. The
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Dataset 1

Instance Coordinated Uncoordinated % Cost decrease
No. GCRA SCRA SRA Best GCRA SCRA SRA Best
1 20,501.28 20,501.28 24,810.18 20,501.28 33,781.00 39.31 39.31 26.56 39.31
2 18,501.28 18,501.28 18,501.28 18,501.28 23,626.32 21.69 21.69 21.69 21.69
3 20,501.28 20,501.28 22,308.92 20,501.28 23,626.32 13.23 13.23 5.58 13.23
4 20,501.28 20,501.28 19,336.45 19,336.45 27,501.84 25.46 25.46 29.69 29.69
5 21,761.19 21,761.19 23,568.83 21,761.16 27,243.52 20.12 20.12 13.49 20.12
6 21,761.19 21,761.19 24,461.31 21,761.19 27,243.52 20.12 20.12 10.21 20.12
7 21,761.19 24,169.50 24,381.31 21,761.19 32,486.00 33.01 25.60 24.95 33.01
8 21,978.49 24,169.50 28,423.59 21,978.49 35,390.58 37.90 31.71 19.69 37.90
9 19,400.70 19,400.70 23,180.80 19,400.70 29,901.31 35.12 35.12 22.48 35.12
10 19,544.92 21,400.70 21,597.40 19,544.92 30,690.06 36.32 30.27 29.63 36.32
11 37,802.83 37,802.83 37,802.83 37,802.83 49,189.09 23.15 23.15 23.15 23.15
12 37,802.83 37,802.83 42,276.10 37,802.83 62,463.76 39.48 39.48 32.32 39.48
13 35,802.83 35,802.83 36,226.09 35,802.83 52,069.56 31.24 31.24 30.43 31.24
14 37,802.83 31,002.83 43,779.62 37,802.83 53,257.77 29.02 29.02 17.80 29.02
15 37,802.83 37,802.83 41,634.51 37,802.83 67,156.77 43.71 43.71 38.00 43.71
16 37,802.83 39,802.83 42,508.59 37,802.83 69,063.78 45.26 42.37 38.45 45.26
17 37,802.83 37,802.83 41,401.28 37,802.83 71,947.90 47.46 47.46 42.46 47.46
18 38,709.49 39,802.83 47,393.82 38,709.49 65,196.93 40.63 38.95 27.30 40.63
19 37,344.90 37,344.90 44,612.61 37,344.90 46,592.24 19.85 19.85 4.25 19.85
20 35,344.90 35,344.90 40,580.80 35,344.90 61,500.87 42.53 42.53 34.02 42.53

AVG 29,011.59 29,489.01 32,439.31 28,953.35 44,496.45 32.23 31.02 24.61 32.44

Dataset 2

21 22,146.47 24,424.19 24,283.64 22,146.47 25,848.32 14.32 5.51 6.05 14.32
22 21,688.56 22,236.53 21,848.56 21,688.56 25,344.67 9.14 9.14 5.77 9.14
23 21,440.01 21,440.01 22,235.16 21,386.08 23,597.50 9.14 9.14 5.77 9.14
24 24,362.86 24,562.10 23,612.22 23,612.22 26,926.30 9.52 8.78 12.31 12.31
25 21,497.50 21,497.50 23,854.19 21,497.50 28,533.80 24.66 24.66 16.40 27.19
26 24,501.28 33,850.48 26,354.00 24,501.28 37,501.97 34.67 9.74 29.73 34.67
27 24,169.21 24,169.21 24,100.78 24,100.78 29,073.51 16.87 16.87 17.10 17.10
28 26,207.50 27,432.05 26,631.12 26,207.50 30,361.26 13.68 9.64 12.29 13.68
29 25,498.27 27,370.36 29,210.13 25,498.27 32,625.81 21.85 16.11 10.47 21.85
30 27,224.56 27,766.02 29,446.04 27,224.56 38,473.69 29.24 27.83 23.46 29.24
31 44,578.41 44,658.41 45,161.41 44,578.41 46,080.76 3.26 3.09 2.00 3.26
32 40,067.70 40,067.70 40,469.32 40,067.70 44,377.81 9.71 9.71 8.81 9.71
33 41,904.55 41,984.55 42,426.54 41,904.55 44,376.02 5.57 5.39 4.39 5.57
34 50,586.90 52,974.87 58,999.62 50,586.90 66,202.72 23.59 19.98 10.88 23.59
35 47,802.83 50,357.14 51,324.15 47,802.83 55,156.70 13.33 8.70 6.94 13.33
36 43,798.34 43,798.34 46,861.74 43,281.68 48,364.51 9.44 9.44 3.11 9.44
37 42,752.40 44,752.40 44,288.67 42,752.40 46,511.89 8.08 3.78 4.78 8.08
38 45,658.68 45,738.68 46,303.03 45,658.68 50,150.63 8.96 8.80 7.67 8.96
39 45,658.68 45,904.43 47,195.02 45,658.68 51,628.76 11.56 11.08 8.59 11.56
40 46,063.96 47,011.28 50,930.76 46,063.96 56,011.00 17.76 16.07 9.07 17.76

AVG 34,380.43 35,599.81 36,272.80 34,339.48 40,357.38 14.98 11.83 10.68 15.13

Table 3.5: Performance comparison for coordinated and uncoordinated strategies
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Figure 3.2: Strategy comparison for dataset2

fifth column shows the best solution of three algorithms. The sixth column presents

the total cost (z) of the uncoordinated strategy, which is the sum of optimal packing

cost and inland transportation cost, computed separately. The optimal packing cost

is obtained by implementing TSpack, which was introduced in Section 3.4.2. The

next four columns give the percentage cost decrease between two strategy, computed

as 100(z − UB)/z.

By observing Table 3.5, we find that our integrated strategy always performs

significantly better than the uncoordinated strategy. For the instances of Dataset1,

the average costs of integrated model, produced by GCRA, SCRA and SRA, are

$29,011.59, $29,489.01 and $32,439.31, respectively, which are lower by 32.23%, 31.02%

and 24.61% than the uncoordinated strategy. For the instances of Dataset2, the max-

imal cost savings could achieve 14.98%. By comparing the results of Dataset1 and

Dataset2, we observe that the cost savings of integrated model for small-size ship-

ments are bigger than those for large-size ones. That’s because small-size shipments

are easily packed into containers, hence those of the same destination could be packed

in one container as much as possible so that handling cost and subsequent inland

transportation cost could be decreased. But for large-size shipments, due to their
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physical dimensions, it is more likely that those of the same destination are separated

into different containers, which will make the total cost go up.

Table 3.6 presents the cost components’ comparison of our integrated method

and the uncoordinated one. The solution of our method in Table 3.6 is obtained by

implementing GCRA.

By looking through the cost components, we observe that ocean container cost

of our integrated model is slightly more than that of the uncoordinated strategy.

Because the uncoordinated strategy always optimize the packing procedure, which

makes it use the minimum number of containers, while our method focuses on the

overall cost. In terms of handling cost, the uncoordinated strategy produces about

twice more cost than our approach on average. Under our approach, the shipments

to the same destination are grouped and loaded into the same containers as much as

possible instead of separate several containers, which reduces handling cost. The un-

coordinated strategy only consider the packing optimization and capacity limits while

loading shipments. Thus, its loading patterns might need more handling procedures.

Concerning inland transportation cost, it is a dominant influencing factor for total

cost because LTL expenditures can be more expensive than TL. That’s why we con-

sider the joint decisions on loading and inland distribution, which can create proper

loading patterns to obtain more economical distribution plan. Our joint strategy

should have a high value if inland transportation cost is high. This hypothesis is

supported by the results in the Table 3.6, which shows that the total inland trans-

portation cost, as the sum of TL and LTL cost, accounts for about 70% of total

cost on average. Our strategy could yield about 30%, 15% savings for Dataset1 and

dataset2 over the uncoordinated one on road transportation. The most cost savings

are obtained by TL mode selection. Although the uncoordinated strategy also consid-

ers the economical delivery plan, it is only optimal for the second phase rather than

the whole process. Hence, it still spends more money on LTL. We believe that the
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Dataset 1

Instance Coordinated(GCRA) Uncoordinated
No. Container Handling Road Total Container Handling Road Total
1 6,000.00 400.00 14,101.28 20,501.28 6,000.00 880.00 26,901.00 33,781.00
2 4,000.00 400.00 14,101.28 18,501.28 4,000.00 640.00 18,986.32 23626.32
3 6,000.00 400.00 14,101.28 20,501.28 4,000.00 640.00 18,986.32 23,636.32
4 6,000.00 400.00 14,101.28 20,501.28 4,000.00 640.00 22,861.83 27,501.84
5 6,000.00 400.00 15,361.19 21,761.19 4,000.00 640.00 22,603.52 27,243.52
6 6,000.00 400.00 15,361.19 21,761.19 4,000.00 640.00 22,603.52 27,243.52
7 6,000.00 400.00 15,361.19 21,761.19 6,000.00 720.00 25,766.00 32,486.00
8 6,000.00 480.00 15,498.49 21,978.49 6,000.00 800.00 28,590.58 35,390.58
9 6,000.00 400.00 13,000.70 19,400.70 6,000.00 800.00 23,101.31 29,901.31
10 6,000.00 480.00 13,064.92 19544.92 6,000.00 800.00 23,890.06 30,690.06
11 6,000.00 800.00 31,002.83 37,802.83 4,000.00 1,200.00 43,989.09 49,189.09
12 6,000.00 800.00 31,002.83 37,802.83 6,000.00 1,440.00 55,023.76 62,463.76
13 4,000.00 800.00 31,002.83 35,802.83 4,000.00 1,360.00 46,709.56 52,069.56
14 6,000.00 800.00 31,002.83 37,802.83 6,000.00 1,280.00 45,977.77 53,257.77
15 6,000.00 800.00 31,002.83 37,802.83 6,000.00 1,600.00 59,556.70 67,156.70
16 6,000.00 800.00 31,002.83 37,802.83 6,000.00 1,600.00 61,463.78 69,063.78
17 6,000.00 800.00 31,002.83 37,802.83 6,000.00 1,680.00 64,267.90 71,947.90
18 8,000.00 800.00 29,909.49 38,709.49 8,000.00 1,680.00 55,516.93 65,196.93
19 8,000.00 800.00 28,544.90 37,344.90 8,000.00 1,840.00 36,752.24 46,592.24
20 6,000.00 800.00 28,544.90 35,344.90 6,000.00 1,680.00 53,820.87 61,500.87

AVG 5,900.00 604.00 22,396.73 29,011.59 5,500.00 1,128.00 37,868.45 44,496.45

Dataset 2

21 8,000.00 560.00 13,586.47 22,146.47 8,000.00 800.00 17,048.32 25,848.32
22 8,000.00 480.00 13,208.56 21,688.56 8,000.00 880.00 16,464.67 25,344.67
23 8,000.00 480.00 12,960.01 21,440.01 8,000.00 1,040.00 14,557.50 23,597.50
24 10,000.00 400.00 13,962.86 24,362.86 8,000.00 800.00 18,126.30 26,926.30
25 8,000.00 480.00 13,017.50 21,497.50 8,000.00 960.00 19,573.80 28,533.80
26 10,000.00 400.00 14,101.28 24,501.28 10,000.00 1,120.00 26,381.97 37,501.97
27 8,000.00 480.00 15,689.21 24,169.21 6,000.00 1,200.00 21,873.51 29,073.51
28 8,000.00 560.00 17,647.50 26,207.50 8,000.00 1,040.00 21,321.26 30,361.26
29 8,000.00 560.00 16,938.27 25,498.27 8,000.00 1,040.00 23,585.81 32,625.81
30 10,000.00 400.00 16,824.56 27,224.56 10,000.00 1,120.00 27,353.69 38,473.69
31 14,000.00 880.00 29,698.41 44,578.41 12,000.00 1,840.00 32,240.76 46,080.76
32 10,000.00 960.00 29,107.70 40,067.70 10,000.00 1,760.00 32,617.81 44,377.81
33 12,000.00 880.00 29,024.55 41,904.55 10,000.00 1,920.00 32,456.02 44,376.02
34 18,000.00 960.00 31,626.90 50,586.90 16,000.00 2,160.00 48,042.72 66,202.72
35 16,000.00 800.00 31,002.83 47,802.83 14,000.00 2,080.00 39,076.70 55,156.70
36 14,000.00 960.00 28,838.34 43,798.34 12,000.00 1,920.00 34,444.51 48,364.51
37 12,000.00 1,040.00 29,712.40 42,752.40 12,000.00 1,840.00 32,671.89 46,511.89
38 14,000.00 880.00 30,778.68 45,658.68 12,000.00 1,920.00 36,230.63 50,150.63
39 14,000.00 880.00 30,778.68 45,658.68 12,000.00 1,840.00 37,788.76 51,628.76
40 14,000.00 960.00 31,103.96 46,063.96 14,000.00 2,000.00 40,011.00 56,011.00

AVG 11,200.00 700.00 22,480.43 34,380.43 10,300.00 1,464.00 28,593.38 40,357.38

Table 3.6: Cost component comparison for coordinated and uncoordinated strategies
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value of our proposed joint strategy under the most conditions can be significantly

high.

3.6 Summary

In this chapter, we investigate a shipment consolidation problem in a global sup-

ply chain network, which is a common practice seen in the international companies,

especially in the context of globalization. More and more US companies are purchas-

ing parts or finished products from China in a Just-in-Time (JIT) and low-inventory

fashion, which makes consolidation be a cost-effective strategy to transport shipments

in the global network. We propose a proactive consolidation strategy, which makes

consolidation planning at the early stage of the supply chain. That is, shipments are

consolidated overseas, and transported to US as a whole, and then distributed sepa-

rately to their destinations by TL or LTL. A mathematical formulation is developed

to model the procedure with the objective of minimizing the total costs involved in

the international network, as the sum of ocean container costs, handling costs, and

TL and LTL costs. Our model considers multi-commodity flows, and combines two

difficult combinatorial optimization problems, such as a mode selection problem and

a three-dimensional bin packing problem. These two problems are extremely hard to

get exact solutions in practice. Hence, an approximation methodology is proposed to

solve the model.

In the methodology, three-dimensional packing constraints are first relaxed in the

original model. A volume factor αj, which represents the utilization of the volume

capacity of container j, is introduced into the model. The relaxed model can solve

the problem optimally if αj is chosen well. Thus, three algorithms are developed to

solve the original problem by effectively determining good αj values. They are called

General Capacity Reduction Algorithm (GCRA), Simplified Capacity Reduction Al-
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gorithm (SCRA) and Shipment Reduction Algorithm (SRA) because the solution

is sought by reducing either available capacity of containers or assigned shipment

size iteratively. A simple three-dimensional packing heuristic is applied during each

iteration to check whether the solution is feasible for containers.

Our computational study with two different data sets representing varying ship-

ment sizes evaluates the performance of three algorithms on the basis of solution

quality and time. The results show that GCRA performs the best both in terms of

solution quality and solution time for small-size shipments. And SRA is an effective

and efficient approach for big-volume shipments. SCRA is a simple version of GCRA

and it is easily implemented.

In addition, we also validate the value of our integrated model in comparison to a

traditional strategy in the computational experiments. It is observed that our method

performs significantly better than the traditional strategy, especially for small-size

shipments. The biggest cost savings could reach about 30%.
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Chapter 4

An Integrated Consolidation
Model for Multi-Period and
Single-Stop Delivery

4.1 Introduction

The integrated consolidation problem for single period was studied in the last chapter.

The problem provided valuable insights on the shipment consolidation, but it did not

reflect the value of a long-term planning. Hence, we investigate the effect of the time

factor on the consolidation problem in this chapter and develop the multi-period

consolidation model.

The problem is described as follows. Consider a finite planning horizon t =

1, 2, · · · , T . Each time period may represent one day, one week, or one month and

shipments arrive at each time period. These shipments have to be consolidated and

shipped within a given finite planning horizon T . For example, those arriving in the

last time period T have to be shipped in the same period. The consolidation planner

knows all of the shipment information at the beginning of the planning horizon, such

as the number, size and destination of every shipment in each time period. Conse-
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quently, he or she can make the consolidation plan at the beginning of the planning

horizon to decide what shipments need to be shipped and what shipments need to be

stored to ship later in order to minimize the total cost of the entire planning horizon.

The shipments could be shipped at the period in which they are arriving or delayed

to any following period until the end of a planning horizon. If shipments are delayed,

waiting costs, which are proportional to the waiting periods, will incur. However, if

additional shipments with the same destination arrive later, it may be advantageous

to postpone current shipments and combine them with future shipments to reduce

handling and shipping costs. Note that it may reduce inland transportation costs,

because, for example, using one TL instead of two separate LTLs often saves costs.

Therefore, the consolidation planner has to balance different types of operation costs

while considering the container capacity and packing constraints.

The objective of our research is to minimize the total costs in the entire planning

horizon including waiting costs, ocean container costs, handling costs, and inland

transportation costs (TL and LTL costs). Waiting costs are the inventory costs which

are positively correlated to the value of the shipments and waiting periods. Ocean

container costs are the costs of shipping containers from China to the US. Handling

costs are incurred when unloading/loading shipments from containers onto the trucks

after they arrive at the deconsolidation center or warehouses in the US. It is assumed

that the shipments to the same destination in the same container can be handled

together and that the handling cost is fixed regardless of the shipment size and des-

tination. Inland transportation costs consist of TL costs and LTL costs. Different

transportation modes are chosen according to shipments’ quantity and size. TL rate

is typically given as per-mile costs, which are dependent on distance between origin

and destination. LTL rate depends on the distance between origin and destination

as well as the shipment weight and volume. The decisions considered in this chapter

include

79



1. the number of ocean containers used at each period,

2. the assignment of shipments to ocean containers at each period, and

3. the TL and LTL mode selection for each shipment

4.2 Mathematical Modeling

In this section, we develop a mathematical model for the multi-period and single-stop

consolidation problem. We seek to minimize the total cost in a multi-period planning

horizon subject to container capacity and packing constraints. In order to present

the mathematical formulation, some notations are introduced as follows.

Parameters:

T : the number of time periods {1, 2, · · · , t, · · · , T};

It: a set of shipments arriving at period t;

I: a total set of shipments where I = I1
⋃
I2 · · ·

⋃
It · · ·

⋃
IT ;

Jt: a set of ocean containers which are available at time period t;

J : a total set of available ocean containers where J = J1
⋃
J2 · · ·

⋃
Jt · · ·

⋃
JT ;

K: a set of destinations where k ∈ K;

ei: the volume of shipment i ∈ I;

fi: the weight of shipment i ∈ I;

(sli, s
w
i , s

h
i ): length, width and height of shipment i ∈ I;

E: the volume capacity of a standard ocean container;

F : the weight capacity of a standard ocean container;

(L,W,H): length, width and height of a standard ocean container;

dik = 1: if the destination of shipment i ∈ I is k ∈ K, and 0 otherwise;

CWC
i : waiting cost for shipment i per period;
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COC : unit ocean container cost from China to US;

CH : handling cost for shipments to one destination in a container;

CTL
k : TL transportation cost from the US port to destination k ∈ K;

CLTL
k (v, w): LTL transportation cost from the US port to destination k ∈ K for a

shipment with volume v and weight w;

M : an arbitrary large number;

Decision variables:

xij: a binary variable equal to 1 if shipment i is loaded into container j, and 0 oth-

erwise;

yj: a binary variable equal to 1 if container j is used, and 0 otherwise;

zjk: a binary variable equal to 1 if container j ∈ J includes shipments to destination

k ∈ K, and 0 otherwise;

ujk: a binary variable equal to 1 if shipments to destination k ∈ K in container j ∈ J

are delivered using TL, and 0 otherwise;

vjk: the total volume of the shipments to destination k ∈ K in container j ∈ J ,

which are transported by LTL.

wjk: the total weight of the shipments to destination k ∈ K in container j ∈ J , which

are transported by LTL.

(cxi, cyi, czi): continuous variables representing the coordinates of the front-left bot-

tom corner of shipment i ∈ I;

aii′ : a binary variable equal to 1 if shipment i ∈ I is on the left of shipment i
′ ∈ I,

and 0 otherwise;

bii′ : a binary variable equal to 1 if shipment i ∈ I is on the right of shipment i
′ ∈ I,

and 0 otherwise;

cii′ : a binary variable equal to 1 if shipment i ∈ I is positioned behind shipment

i
′ ∈ I, and 0 otherwise;
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oii′ : a binary variable equal to 1 if shipment i ∈ I is positioned in front of shipment

i
′ ∈ I, and 0 otherwise;

pii′ : a binary variable equal to 1 if shipment i ∈ I is positioned below shipment i
′ ∈ I,

and 0 otherwise;

qii′ : a binary variable equal to 1 if shipment i ∈ I is positioned above shipment i
′ ∈ I,

and 0 otherwise;

4.2.1 Model Formulation

The problem can be mathematically formulated as follows.

Minimize

T−1∑
r=1

T−r∑
t=1

∑
i∈It

∑
j∈Jt+1

rCWC
i xij +

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk (4.1)

+
∑
j∈J

∑
k∈K

CTL
k ujk +

∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk)
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subject to:

∑
j∈Jt

⋃
Jt+1

⋃
···

⋃
JT

xij = 1 ∀i ∈ It, t = 1, 2, · · · , T (4.2)

xij ≤ yj ∀i ∈ I,∀j ∈ J (4.3)∑
i∈I

xijfi ≤ F, ∀j ∈ J (4.4)

cxi + sli ≤ cxi′ + (1− aii′ )M, ∀i, i′ ∈ I, i < i
′

(4.5)

cxi′ + sl
i′
≤ cxi + (1− bii′ )M, ∀i, i′ ∈ I, i < i

′
(4.6)

cyi + swi ≤ cyi′ + (1− cii′ )M, ∀i, i′ ∈ I, i < i
′

(4.7)

cyi′ + sw
i′
≤ cyi + (1− oii′ )M, ∀i, i′ ∈ I, i < i

′
(4.8)

czi + shi ≤ czi′ + (1− pii′ )M, ∀i, i′ ∈ I, i < i
′

(4.9)

czi′ + sh
i′
≤ czi + (1− qii′ )M, ∀i, i′ ∈ I, i < i

′
(4.10)

aii′ + bii′ + cii′ + oii′ + pii′ + qii′ ≥ xij + xi′j − 1, ∀i, i′ ∈ I, i < i
′
, ∀j ∈ J (4.11)

cxi + sli ≤ L, ∀i ∈ I (4.12)

cyi + swi ≤ W, ∀i ∈ I (4.13)

czi + shi ≤ H, ∀i ∈ I (4.14)

Mzjk ≥
∑
i∈I

xijdik, ∀j ∈ J, ∀k ∈ K (4.15)

Mujk + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (4.16)

Mujk + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (4.17)

xij, yj, zjk, ujk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀k ∈ K (4.18)

aii′ , bii′ , cii′ , oii′ , pii′ , qii′ ∈ {0, 1}, ∀i, i′ ∈ I, i < i
′

(4.19)

vjk, wjk, cxi, cyi, czi ≥ 0, ∀i ∈ I, ∀j ∈ J,∀k ∈ K (4.20)

In this formulation, the objective function (4.1) minimizes the total cost which
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includes waiting cost, ocean container shipping cost, handling cost and inland trans-

portation cost. The first term
T−1∑
r=1

T−r∑
t=1

∑
i∈It

∑
j∈Jt+1

rCWC
i xij in (4.1) displays waiting

costs. It is assumed that waiting cost has a linear correlation with the waiting pe-

riod. For example, if a shipment i ∈ I is delayed for one period, the waiting cost

is CWC
i , which is dependent upon i. If it is postponed for t periods, the waiting

cost would be tCWC
i . Hence, if collecting all the shipments that are delayed for r

periods, the waiting cost becomes r
T−r∑
t=1

∑
i∈It

∑
j∈Jt+1

CWC
i xij, and the total waiting cost

in the entire T periods is
T−1∑
r=1

T−r∑
t=1

∑
i∈It

∑
j∈Jt+1

rCWC
i xij. The next terms in (4.1) include

the linear ocean container shipping cost, where
∑

j∈J yj is the total number of ocean

containers used, handling cost and inland transportation cost, including TL cost and

LTL cost.

Constraints (4.2) state that each shipment arriving at current period t is assigned

to exactly one container, which is available at the current period or any following

time period, from t+ 1 to T in the planning horizon. The remaining constraints are

the same as those in the single period model in Chapter 3.

The model (4.1)∼(4.20) is an extension of the single-period model of Chapter 3.

Because current shipments can be delayed to ship out in the subsequent planning

periods in order to minimize the total cost, it increases the flexibility, but adds the

complexity of the model. Table 4.1 presents the model complexity comparison be-

tween the single-period and the multi-period model. The number of variables and

constraints of the multi-period model tends to grow significantly as more periods

are considered. Because the multi-period model still includes three dimensional con-

straints, which is a NP-hard problem, it is very difficult to solve optimally. Hence, in

the next section, we propose three approximation algorithms to solve the model.
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Single-Period Model T-Period Model
Given Parameters

the number of shipments at period i mi mi

the number of containers at period i ni ni
the number of destinations k k

Model Complexities

the number of binary variables 3m2
i +mini + 2nik + ni − 3mi 3(m1 +m2 + · · ·+mT )2 + (n1 + n2 + · · ·+ nT )(m1 +m2 + · · ·+mT + 1 + 2K)− 3(m1 +m2 + · · ·+mT )

the number of continuous variables 2nik + 3mi 2(n1 + n2 + · · ·+ nT )k + 3(m1 +m2 + · · ·+mT )
the number of constraints 1

2
m2
ini + 3m2

i + 7
2
mini + 3nik − 2mi

1
2
(m1 +m2 + · · ·+mT )2(n1 + n2 + · · ·+ nT ) + 3(m1 +m2 + · · ·+mT )2+

7
2
(m1 +m2 + · · ·+mT )(n1 + n2 + · · ·+ nT ) + 3(n1 + n2 + · · ·+ nT )k − 2(m1 +m2 + · · ·+mT )

Table 4.1: Model complexity comparison of single- and T-period model

4.3 Solution Methodology

In this section, three approximation algorithms are developed to solve the multi-

period model. All of them use the algorithm CRA in Chapter 3 as a basis and relax

the model similarly with the volume factor αj. The relaxed model is displayed as fol-

lows. The parameters and decision variables are the the same with those in previous

chapter.

Minimize

T−1∑
r=1

T−r∑
t=1

∑
i∈It

∑
j∈Jt+1

rCWC
i xij +

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk (4.21)

+
∑
j∈J

∑
k∈K

CTL
k ujk +

∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk)
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Subject to:

∑
j∈Jt

⋃
Jt+1

⋃
···

⋃
JT

xij = 1 ∀i ∈ It, t = 1, 2, · · · , T (4.22)

xij ≤ yj ∀i ∈ I,∀j ∈ J (4.23)∑
i∈I

xijfi ≤ F, ∀j ∈ J (4.24)

∑
i∈I

xijei ≤ αjE, ∀j ∈ J (4.25)

Mzjk ≥
∑
i∈I

xijdik, ∀j ∈ J, ∀k ∈ K (4.26)

Mujk + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (4.27)

Mujk + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (4.28)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (4.29)

yj ∈ {0, 1}, ∀j ∈ J (4.30)

zjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K (4.31)

ujk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K (4.32)

vjk ≥ 0, ∀j ∈ J, ∀k ∈ K (4.33)

wjk ≥ 0, ∀j ∈ J, ∀k ∈ K (4.34)

While the first algorithm seeks the solution of the entire planning periods at

each iteration, the second and third algorithms focus on the solution of the current

period. Specifically, the second algorithm obtains the solution by iteratively changing

the volume factor αj for the current period. In the third algorithm, a rolling horizon

technique is applied and the solution of the T-period model is computed by iteratively

solving the 2-period model. The three algorithms are introduced in the following

subsections in detail.
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4.3.1 Algorithm 1

The first algorithm starts with solving the relaxed model, and then, simultaneously

evaluates the packing feasibility of all the containers for the entire planning horizon.

If the solution is feasible, it is terminated. Otherwise, the initial problem is modified

to tighten the volume capacity of infeasible containers, and the procedure is repeated.

The specific steps of the algorithm are described as follows.

STEP 0: Initialize αj = 1, ∀j ∈ J .

STEP 1: Solve the relaxed model considering a finite planning horizon from 1 to T .

STEP 2: Call procedure PackingCheck to check feasibility for each container j ∈ J .

If all the containers are feasible, accept the current solution and STOP. Otherwise,

go to STEP 3.

STEP 3: Set new αj = αj −∆ for any infeasible container j ∈ J , where ∆ is a step

size. Go to STEP 1.

Algorithm 1 seeks the solution of the entire planning period at each iteration.

Hence, it is expected to generate a good solution, but take longer computational

time.

4.3.2 Algorithm 2

The second algorithm focuses on the solution of current period at each iteration in-

stead of considering the entire planning periods. If the solution is feasible at the

current period, it is accepted and the next following periods planning is solved. Oth-

erwise, the volume factor αj for the current period is decreased, and the relaxed

model is solved again. The procedure is repeated until the solutions of all periods are

feasible. The detailed steps of the algorithm are as follows.

STEP 0: Initialize αj = 1, ∀j ∈ J . Set the current period t = 1.
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STEP 1: Solve the relaxed model considering a finite planning horizon from t to T .

STEP 2: Call procedure PackingCheck to check feasibility for each container j ∈ Jt.

If all containers are feasible, accept the solution for period t and remove shipments

in container j ∈ Jt. If t = T , STOP. Otherwise, set t = t + 1 and αj = 1, and go to

STEP 1. If any container is not feasible, go to STEP 3.

STEP 3: Set new αj = αj −∆ for any infeasible container j ∈ Jt. Go to STEP 1.

Since algorithm 2 seeks the solution at the current period at each iteration, it

takes shorter time than algorithm 1, but sacrifices the solution quality.

4.3.3 Algorithm 3

This algorithm is based on a rolling horizon framework, where the T-period model

is repeatedly solved over a 2-period moving period. More specifically, the model is

solved only for the next two periods using Algorithm 2. The solution for the current

period is then accepted, and the 2-period planning horizon is shifted by a period. The

process is repeated until all T periods loading plans are determined. The 2-period

relaxed model, which is a simpler version of (1.1) and used in the algorithm, is given

below.

Minimize

∑
i∈I1

∑
j∈J2

CWC
i xij +

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk +
∑
j∈J

∑
k∈K

CTL
k ujk

+
∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk) (4.35)
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subject to:

∑
j∈J

xij = 1, ∀i ∈ I1 (4.36)

∑
j∈J2

xij = 1, ∀i ∈ I2 (4.37)

∑
i∈I

xijfi ≤ F, ∀j ∈ J (4.38)

Mzjk ≥
∑
i∈I

xijdik, ∀i ∈ I, ∀j ∈ J (4.39)

Mujk + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (4.40)

Mujk + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (4.41)

xij, yj, zjk, ujk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀k ∈ K (4.42)

vjk, wjk ≥ 0, ∀j ∈ J, ∀k ∈ K (4.43)

The size complexity of single- and 2-period model is compared in Table 4.2. By

observing Table 4.1 and 4.2, we find that the size (the number of binary, continuous

variables and constraints) of 2-period model deceases dramatically compared with the

T-period model because only two periods are considered. However, it is still more

complex than single-period model because shipments delay is taken into account.

Therefore, it would take shorter time to solve the 2-period model than the general

T-period model, and longer time than single-period model.

Single-Period Model 2-Period Model
Given Parameters

the number of shipments at period i mi mi

the number of containers at period i ni ni
the number of destinations k k

Model Complexities

the number of binary variables 3m2
i +mini + 2nik + ni − 3mi 3(m1 +m2)

2 + (n1 + n2)(m1 +m2) + 2(n1 + n2)K + (n1 + n2)− 3(m1 +m2)
the number of continuous variables 2nik + 3mi 2(n1 + n2)k + 3(m1 +m2)

the number of constraints 1
2
m2
ini + 3m2

i + 7
2
mini + 3nik − 2mi

1
2
(m1 +m2)

2(n1 + n2) + 3(m1 +m2)
2 + 7

2
(m1 +m2)(n1 + n2) + 3(n1 + n2)k − 2(m1 +m2)

Table 4.2: Model complexity comparison of single- and 2-period model

The steps of the algorithm is given as follows.
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STEP 0: Initialize αj = 1, ∀j ∈ J . Set period t = 1.

STEP 1: Solve the relaxed 2-period model with period t and t+ 1.

STEP 2: Call procedure PackingCheck to check feasibility for each container j ∈ Jt.

If all containers are feasible, accept the solution for period t and remove shipments

in container j ∈ Jt. If t = T − 1, STOP. Otherwise, set t = t+ 1, and αj = 1, and go

to STEP 1. If any container is not feasible, go to STEP 3.

STEP 3: Set new αj = αj −∆ for any infeasible container  ∈ Jt. Go to STEP 1.

Algorithm 3 only solves the 2-period model at each iteration, so it could obtain

the solution much quicker than the previous two algorithms, but at the expense of

solution quality. However, when the future shipment information is not completely

available or changes dynamically in the future periods, algorithm 3 is a method to

generate good solutions. Because it only considers the information for two periods,

the shipment changes in the future do not affect the solution quality.

4.4 Computational Results and Analysis

In order to evaluate the performance of three algorithms, computational experiments

are performed in this section. With the consideration of computational complex-

ity, we first test three algorithms on small-scale problem instances. Based on the

initial results, the efficient algorithm is selected to solve larger problems. All three

algorithms were coded in MatLabR2012a and run on a computer with Intel Core i7-

3520M CPU 2.90GHz processor and 8GB RAM under Windows 64. The optimization

solver embedded in the algorithms is Gurobi 5.0.2.

Table 4.3 demonstrates the characteristics of the instances tested in the numer-

ical experiments. Two datasets are generated to evaluate the performances of the
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algorithms to solve 3- and 5-period model (T = 3 and T = 5). Dataset 1 represents

small-scale instances. It includes 6 subsets, where small- and big-size shipments, and

5 and 10 destinations are taken into account. Real-world instances are displayed in

Dataset 2, where the case at each period are selected from the examples of Chapter

3. It includes 4 subsets which consider small- and big-volume shipments of 5 des-

tinations. 10 destination cases are not included in Dataset 2 due to computational

complexity.

Dataset 1: small-scale instances
T = 3 T = 5

Dataset Instance No. of No. of Average Average Dataset Instance No. of No. of Average Average
No. Destinations shipments Volume Weight No. Destinations shipments Volume Weight

(ft3) (lbs) (ft3) (lbs)

Subset1

1 5 1,035 4.03 108.50

Subset4

16 5 1,520 3.94 119.88
2 5 1,270 3.93 108.64 17 5 1,310 4.06 120.32
3 5 615 4.02 165.98 18 5 1,025 4.02 165.98
4 5 820 4.60 198.29 19 5 1,090 4.17 154.77
5 5 1,060 3.49 164.95 20 5 1,310 3.84 181.60

Subset2

6 5 262 34.92 293.51

Subset5

21 5 405 34.26 340.12
7 5 302 32.95 307.62 22 5 300 34.00 304.00
8 5 338 34.25 297.49 23 5 342 34.12 321.11
9 5 303 33.09 324.92 24 5 342 34.12 321.11
10 5 300 34.00 304.00 25 5 363 34.17 328.18

Subset3

11 10 300 4.85 265.25

Subset6

26 10 500 4.85 265.25
12 10 730 4.75 220.55 27 10 930 4.77 230.16
13 10 1,160 4.72 208.99 28 10 1,145 4.70 216.29
14 10 1,375 4.67 200.75 29 10 1,245 4.69 220.44
15 10 1,160 4.72 208.99 30 10 1,345 4.82 241.80

Dataset 2: real-world instances

Subset7

1 5 2,985 3.75 73.62

Subset9

11 5 5,625 3.54 68.80
2 5 3,038 3.76 70.13 12 5 5,051 3.75 69.83
3 5 3,038 3.76 70.13 13 5 5,108 3.74 70.81
4 5 3,095 3.73 71.75 14 5 5,090 3.74 65.23
5 5 3,065 3.72 72.40 15 5 5,375 3.66 70.14

Subset8

6 5 399 30.08 612.63

Subset10

16 5 665 28.57 624.66
7 5 432 30.79 579.91 17 5 686 29.33 626.82
8 5 432 30.79 579.91 18 5 686 29.33 626.82
9 5 442 28.51 548.60 19 5 707 30.04 628.85
10 5 462 31.95 634.29 20 5 728 30.71 630.77

Table 4.3: Instances of multi-period model

Table 4.4 summarizes the comparison of three algorithms when T = 3 and T = 5

for Dataset 1. For each instance, the total cost and runtime of the algorithms are

reported. Lower bounds are obtained by solving the model (4.1)∼(4.20) without con-

sidering 3D packing constraints. We compare the solution quality of three algorithms

by calculating the percentage gaps between the total cost of each algorithm and lower

bound, which are evaluated as %gap = 100(TotalCost−LowerBound)/LowerBound.

AVG1∼ AVG6 give the average values of each corresponding subset. The last row
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shows the average values of each column.

Dataset 1: small-scale instances

T = 3

Lower Bound Algorithm 1 Algorithm 2 Algorithm 3
Dataset Instance Total cost Total cost Runtime % gap Total cost Runtime % gap Total cost Runtime % gap

No. ($) ($) (seconds) ($) (seconds) ($) (seconds)

Subset1

1 31,862 37,814 19 18.68 33,862 14 6.28 38,042 10 19.40
2 37,522 39,965 3,725 6.51 40,320 22 7.46 41,424 22 10.40
3 26,091 27,413 4 5.07 28,091 5 7.67 29,909 2 14.64
4 35,941 37,793 37 5.15 37,941 22 5.56 41,750 6 16.16
5 39,090 39,362 7 0.70 41,090 10 5.12 41,180 8 5.35

AVG1 34,101 36,469 759 7.22 36,261 15 6.42 38,461 9.74 13.19

Subset2

6 34,348 45,379 754 32.11 42,162 287 22.75 45,656 67 32.92
7 34,301 45,473 5,941 32.57 44,301 76 29.15 43,524 12 26.89
8 35,924 46,817 2,257 30.32 46,373 3,141 29.08 46,969 80 30.75
9 33,342 42,271 2,636 26.78 41,771 66 25.28 41,485 15 24.42
10 31,531 40,332 1,202 27.91 42,171 223 33.74 43,246 67 37.15

AVG2 33,889 44,054 2,558 29.94 43,355 758 28.00 44,176 48 30.43

Subset3

11 31,541 31,541 1 0.00 31,541 1 0.00 31,541 1 0.00
12 52,218 52,218 5 0.00 52,218 6 0.00 55,577 2 6.43
13 62,207 62,852 1,145 1.04 63,099 405 1.43 65,345 22 5.04
14 62,480 63,253 4,007 1.24 63,253 1,161 1.24 71,791 119 14.90
15 55,981 56,461 7,909 0.86 57,411 351 2.55 64,037 149 14.39

AVG3 52,885 53,265 2,613 0.63 53,504 385 1.04 57,658 58 8.15

T = 5

Subset4

16 45,634 47,634 2,371 4.38 47,667 77 4.46 50,540 22 10.75
17 40,613 42,073 30,149 3.59 42,073 273 3.59 48,043 18 18.30
18 42,942 43,356 150 0.96 44,942 3,771 4.66 52,816 10 22.99
19 46,711 46,944 88 0.50 46,944 68 0.50 54,467 4 16.60
20 49,659 49,659 25 0.00 49,659 59 0.00 57,207 7 15.20

AVG4 45,112 45,933 6556 1.88 46,257 850 2.64 52,614 12.25 16.77

Subset5

21 40,793 57,173 10,984 40.15 55,262 6,344 35.47 59,607 123 46.12
22 37,576 41,522 508 10.50 45,556 10 21.24 49,660 5 32.16
23 41,442 49,488 33,862 19.42 49,402 27 19.21 52,519 8 26.73
24 39,700 47,230 11,297 18.97 50,050 9,095 26.07 50,801 32 27.96
25 39,179 53,093 6,384 35.51 52,935 544 35.11 54,344 54 38.71

AVG5 39,738 49,701 12,607 24.91 50,641 3,204 27.42 53,386 44.46 34.34

Subset6

26 48,742 48,742 11 0.00 48,742 24 0.00 52,099 1 6.89
27 68,615 68,615 318 0.00 68,615 923 0.00 78,526 2 14.44
28 71,914 71,914 1,024 0.00 71,914 1,101 0.00 85,516 6 18.91
29 75,115 75,115 598 0.00 75,115 938 0.00 82,262 16 9.52
30 78,382 78,382 1,836 0.00 78,382 2,155 0.00 85,184 71 8.68

AVG6 68,554 68,554 757 0.00 68,554 1,028 0.00 76,717 19.29 11.69

Total AVG 45,713 49,663 4,308 10.76 49,762 1,040 10.92 53,835 32 19.10

Table 4.4: Algorithms comparison on small problem instances

By observing Table 4.4, we find that algorithms 1 and 2 are clearly superior to

algorithm 3 in terms of solution quality. The average percentage gaps of algorithms

1 and 2 are 10.76% and 10.96%, while algorithm 3 has 19.10% gaps. By looking

into different subsets, it is observed that the percentage gaps of three algorithms

for small-size shipments are much smaller than those for big-size shipments. For

example, the average percentage gaps of three algorithms for small shipments range

from 0 to 16.77%, while those for big shipments are from 24.91% to 34.34%. The

reason is that the lower bound is obtained by solving the multi-period model without

92



considering three dimensional packing constraints. Hence, the lower bound is achieved

at the first iteration. The approximation solutions from three algorithms are obtained

by iteratively updating αj for infeasible containers. For large-size shipments, more

iterations are required to obtain the solution because it requires more containers due

to its physical dimensions. Therefore, the percentage gaps are bigger.

As expected, algorithm 3 is much faster than both algorithms 1 and 2. The

average solution time is only 32 seconds, compared with algorithm 1 (4,308 seconds)

and algorithm 2 (1,040 seconds). Because algorithm 3 only considers two periods

per iteration, the size of the problem and computational time decrease significantly.

Algorithm 1 is the slowest with several instances taking more than one hour to run,

because it seeks the solution of the entire planning period at each iteration.

Therefore, based on the results of Table 4.4, we conclude that algorithm 2 provides

satisfactory solutions within relative small amounts of time, and algorithm 3 is the

most efficient algorithm. Although algorithm 3 performs much worse than algorithms

1 and 2 in terms of solution quality, it still performs better than single period model, as

we test later. Moreover, if only limited shipment information is available, algorithms

1 and 2 may not be used.

Dataset 2: real-world instances

T = 3 T = 5
Dataset Instance Total cost Runtime Dataset Instance Total cost Runtime

No. ($) (seconds) No. ($) (seconds)

Subset7

1 54,891 298

Subset9

11 92,789 1,748
2 54,899 345 12 94,249 1,161
3 60,096 848 13 93,976 1,902
4 56,728 809 14 96,599 1,819
5 61,651 474 15 96,774 3,914

AVG7 57,653 555 AVG9 94,877 2,109

Subset8

6 61,939 240

Subset10

16 93,570 1,195
7 63,733 249 17 93,953 813
8 54,061 459 18 92,170 631
9 56,320 343 19 92,853 4,457
10 59,831 90 20 96,820 429

AVG8 59,177 276 AVG10 93,873 1505

Table 4.5: Results on real-world instances

Because algorithm 3 achieves the solution very quickly, we choose it to test real-

world instances. The results are shown in Table 4.5. By observing the results, we find

that algorithm 2 can obtain the solution within a reasonable time for most of cases.
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Moreover, it takes more time to solve 5-period model than 3-period model, which is

consistent with our complexity analysis.

We next investigate the value of our multi-period model compared with single

period one. The results are given in Table 4.6. Single period addition means that

single period model is applied at each period, and the total cost is the summation of

the cost of each period. Only the performance of algorithm 3, which is the worst out

of three algorithms, is used to validate the value of the multi-period model. The last

row shows the average value of each column. According to the results of Table 4.6,

we find that the multi-period model always performs significantly better than using

single period model separately. The average cost savings for T = 3 and T = 5 are

11.97% and 11.03%, respectively.

Dataset 1: small-scale instances
T = 3 T = 5

Instance Algorithm 3 Single Period Addition Cost Decrease Instance Algorithm 3 Single Period Addition Cost Decrease
No. Total Cost($) Total Cost($) % No. Total Cost($) Total Cost($) %
1 38,042 45,840 17.01 16 50,540 64,978 22.22
2 41,424 51,092 18.92 17 48,043 61,380 21,73
3 29,909 42,268 29.24 18 52,816 70,447 25.03
4 41,750 54,110 22.84 19 54,467 75,448 27.81
5 41,180 49,531 16.86 20 57,207 73,465 22.13
6 38,505 43,360 11.19 21 59,607 67,068 11.12
7 43,524 46,233 5.88 22 49,660 54,112 8.22
8 46,969 54,849 14.37 23 52,519 59,294 11.43
9 41,485 49,645 16.44 24 50,801 59,294 14.32
10 43,246 51,312 15.72 25 54,344 61,886 12.19
11 31,541 35,184 10.36 26 52,099 58,640 11.15
12 55,577 57,755 3.77 27 78,526 81,211 3.31
13 65,345 80,325 18.65 28 85,516 95,147 10.12
14 71,791 94,261 23.84 29 82,262 99,899 17.65
15 64,037 82,325 22.21 30 85,184 105,673 19.39

Dataset 2: real-world instances
1 54,891 55,504 1.10 11 102,269 108,806 6.00
2 54,900 59,504 7.74 12 94,249 98,506 4.32
3 60,096 61,504 2.29 13 93,976 98,506 4.60
4 56,728 57,503 1.35 14 96,599 102,506 5.76
5 61,650 65,284 5.56 15 96,773 102,506 5.59
6 61,939 68,107 9.06 16 93,570 94,007 0.47
7 63,733 69,293 8.02 17 93,953 97,219 3.36
8 54,061 58,266 7.22 18 92,170 95,231 3.21
9 56,320 59,830 5.87 19 92,852 96,456 3.74
10 59,831 60,076 0.41 20 96,820 97,679 0.88

AVG 51,139 58,118 11.84 AVG 74,673 83,175 11.03

Table 4.6: Results on comparison between multi- and single-period model

We also verify the effect of waiting cost on the total cost. Five different values,

such as $10, $50, $100, $500 and $10,000, are tested. When the waiting cost is very

expensive, it would not save any cost by delaying shipments. Hence, the solution of
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multi-period model should be the same as the single period addition. By observing

the results in Table 4.7, the total cost goes up as the waiting cost increases and

converges to the value of single period addition. It is also noted that the multi-period

model could bring cost savings as long as the waiting cost is not too expensive.

T = 3
Single Period Addition Algorithm 2

Instance Cw = $10 Cw = $50 Cw = $100 Cw = $500 Cw = $10, 000
No. Total Cost($) Total Cost($) Total Cost($) Total Cost($) Total Cost($) Total Cost($)
1 45,840 33,862 44,454 43,867 44,340 45,840
2 51,092 40,320 50,085 51,092 51,092 51,092
3 42,268 28,091 40,004 41,989 42,268 42,268
4 54,110 37,941 49,079 53,189 54,110 54,110
5 49,531 41,090 46,476 47,731 47,931 49,531
6 43,361 36,477 41,307 43,091 43,361 43,361
7 46,233 44,301 45,601 48,963 46,233 46,233
8 54,849 46,373 49,663 53,607 54,769 54,848
9 49,645 41,771 44,724 47,896 49,645 49,645
10 51,312 42,171 45,436 45,994 50,090 51,312
11 35,184 31,541 35,161 35,184 35,184 35,184
12 57,755 52,218 57,755 57,755 57,755 57,755
13 80,325 63,099 78,990 80,286 80,325 80,325
14 94,261 63,253 88,722 94,081 94,261 94,261
15 82,325 57,411 76,749 80,589 82,325 82,325

T = 5
16 64,978 50,540 61,171 64,502 64,978 64,978
17 61,380 48,043 60,417 61,101 61,380 61,380
18 70,447 52,816 66,644 69,889 70,447 70,447
19 75,448 54,467 68,791 74,527 75,448 75,448
20 73,465 57,207 68,224 71,386 72,465 73,465
21 67,068 55,262 61,527 65,291 67,068 67,068
22 54,112 45,556 49,122 50,610 54,112 54,112
23 59,295 49,402 55,438 56,983 59,375 59,295
24 59,295 50,050 54,394 57,745 59,295 59,295
25 61,886 52,935 59,216 58,727 61,886 61,886
26 58,640 48,742 58,561 58,640 58,640 58,640
27 81,211 68,615 81,132 81,211 81,211 81,211
28 95,147 71,914 92,013 93,347 94,147 95,147
29 99,899 75,115 96,156 98,099 98,899 99,899
30 105,673 78,382 99,534 103,054 104,674 105,674

Table 4.7: Sensitivity analysis

4.5 Summary

In this chapter, we considered a shipment consolidation problem in a multi-period

planning horizon. In contrast to Chapter 3, a long-term planning is addressed in

order to explore more potential cost savings. It is assumed that the shipments arrive

at any period from 1 to T , based on the estimation of a consolidation planner. Hence,

he or she needs to determine whether the shipments that arrive at the current period

are shipped currently or delayed to the next periods. If the shipments are delayed,

95



waiting costs will incur. However, if the future shipment has the same destination

with the current shipments, they can be combined together as a batch to ship in one

TL delivery, instead of multiple separate LTLs. It might save inland transportation

and handling costs. Therefore, there are trade-offs among waiting, handling and

inland transportation costs.

This multi-period shipment consolidation problem is formulated as a mixed integer

programming model with the objective of minimizing the total cost, including waiting,

ocean container, handling, and TL and LTL costs. This model still combines a

mode selection problem and a three dimensional bin packing problem. The model

complexity is compared between the single- and multi-period models. We observed

that the multi-period model has more variables and constraints than the single-period

model. Hence, the size of model increases greatly as the periods considered increase.

Based on the natural characteristics of the model, it is not possible to solve it

directly. Three heuristic algorithms are proposed to approximate the solution. All of

these algorithms use the algorithm CRA in Chapter 3 as a basis, where the original

multi-period model is relaxed by adding the volume factor αj to substitute the three-

dimensional bin packing constraints. The first algorithm seeks the solution of the

entire planning periods at each iteration by updating the αj of any infeasible container

for the periods from 1 to T . The second and third algorithms achieve the solution

of the model by iteratively obtaining the current period’s solution. Specifically, the

second algorithm only updates the αj of any infeasible container for the current period.

The third algorithm applies a rolling horizon technique, and the T-period model is

solved by iteratively solving a 2-period model.

Computational experiments are implemented to evaluate three approximation al-

gorithms in terms of solution quality and time. Two data sets are tested. The first

data set is generated randomly considering only small-scale problems. The second

data set, wherein instances for each period are selected from Chapter 3, represents
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large-scale problems. According to the results, we find that three algorithms can ob-

tain good approximation solutions within a reasonable time for small-scale problems.

Algorithms 1 and 2 are superior over Algorithm 3 in terms of solution quality. How-

ever, algorithm 3 is the most efficient one. Specifically, Algorithm 1 receives good

solution at the expense of computational time. Algorithm 2 has a good performance

in terms of solution quality and time. Although Algorithm 3 performs much worse

than Algorithms 1 and 2 in terms of solution quality, it requires shorter time to

achieve a solution. For large-scale problems and cases in which future information is

limited, Algorithm 3 is useful. We also evaluate the value of our multi-period model

over the single-period model, and we observe that the multi-period model could bring

an additional 10% savings.

97



Chapter 5

An Integrated Consolidation
Model for Single Period and
Multi-Stop Delivery

5.1 Introduction

In the previous chapters, we studied integrated consolidation models using direct

delivery of TL and LTL. In this chapter, TL multi-stop deliveries are taken into

account since they may achieve more cost-savings in road transportation. That is,

the multi-stop delivery of TL shipments could be considered when shipments are

loaded into ocean containers in our proactive consolidation problem. This results in

more effective loading patterns, although it is more complicated, to reduce the overall

cost.

In a survey of industrial firms’ consolidation practices, Jackson (1985) finds that

97% of the responding firms use multi-stop truckloads to consolidate orders domes-

tically. The price that a multi-stop TL carrier charges is typically a function of the

distance between origin and destination and the number of stops in a trip, no matter

what the shipments are and how they are packed. Thus, a shipper can consolidate
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several shipments, going to different destinations, in a single truck. A truck takes the

combined loads, makes intermediate stops, and drops shipments during the assigned

one-way trip. According to Jackson (1985), 93% of the firms accepts less than four

stops including the final destination per TL trip, since the more stops a route has,

the less reliable its delivery time is.

The problem in this chapter can be described as follows. The same multi-commodity

international network is given as described in Chapter 3. The orders are consolidated

into ocean containers in China, shipped to a deconsolidation center in US by ship,

and finally delivered to destinations by road transportation. We consider container

cost, subsequent handling cost and inland transportation cost simultaneously. Our

objective is to investigate how to transport shipments from origin to destination in

the international multi-modal network with the minimum overall cost by consolidat-

ing shipments in ocean containers. In this chapter, the inland transportation modes

include LTL, direct TL, and multi-stop TL, where direct TL and multi-stop TL are

one-way truckload services. We assume that a consolidated TL is limited to at most

three delivery stops (including the final destination). In addition, TL routes are not

fixed and changed as the destinations of shipments change. The decisions addressed

in this chapter consist of

1. the number of ocean containers needed

2. the assignment of multi-shipments to the ocean containers

3. the multi-stop TL and LTL mode selection

4. TL route and stop selection

The multi-stop (vehicle) consolidation model is first introduced by Hall (1987). He

defines vehicle consolidation as a cost-effective transportation strategy, where trucks

pick-up and drop-off items at different origins and destinations. Then, several key
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factors, such as the time between dispatches and the number of stops per route, are

discussed. Pooley and Stenger (1992b) and Pooley (1993) present an algorithm for

the mode selection on LTL versus one-way multi-stop TL problem. He finds that

this problem is more complicated than a traditional vehicle routing problem. For

example, for n destination points, a truck vehicle routing problem has (n!
2

) possible

solutions, while this problem has
∑n

i=0(
n!
i!

) solutions. Finally, a heuristic algorithm is

proposed using a modified Clarke and Wright savings algorithm. Brown and Ronen

(1997) develop a mathematical model and implement a computerized system for con-

solidating customer orders into truckload while minimizing truck miles and meeting

all customer service requirements. Some papers (Chu (2005), Bolduc et al. (2007),

Côté and Potvin (2009)) work on the problem of routing the round-trip private trucks

(TL) and making a selection of LTL by minimizing a total cost. Most of them apply a

Clarke-Wright savings-based constructive heuristic followed by intra- and inter-route

local improvement. Some papers (Iori and Salazar-González (2007), Gendreau et al.

(2006), Moura and Olliverira (2009), Fuellerer et al. (2010), Iori and Martello (2010))

study a vehicle routing problem with two- and three-dimensional loading constraints.

They integrate two difficult combinatorial optimization problem such as vehicle rout-

ing problem and bin packing problem. Iori and Salazar-González (2007) propose an

exact approach, while most of others apply metaheuristics to solve this problem.

From our review of the existing literature, we find that most papers focus on

classical vehicle routing problem and corresponding heuristic algorithms. There is

very little research which examines the integration of mode selection, TL one-way

routing and three-dimensional bin packing problem in the context of multi-modal

international logistics network. Our approach in this chapter tries to fill this gap.

The remainder of this chapter is organized as follows. In Section 4.2, a mixed inte-

ger programming is developed for our problem. In Section 4.3, a heuristic approach is

described. It is followed by numerical validations in Section 4.4. Finally, we provide
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a summary of our conclusions in Section 4.5.

5.2 Mathematical Model

This section presents a mathematical model for the problem. It is based on the model

in Chapter 3 with an addition of the TL multi-stop consideration. Since at most three

delivery stops are assumed for one assigned TL trip, we enumerate all the possible

routes from US deconsolidation center to shipments’ destinations via one-, two-, and

three-stops. Hence, given K destinations, the total number of routes is equal to(
K
1

)
+
(
K
2

)
+
(
K
3

)
in the model. In the model, it is assumed that all the shipments are

rectangular-shaped.

5.2.1 Variables and Parameters

In order to develop a mathematical formulation, the definitions of all the parameters

and variables are described as follows.

Given Parameters:

I: a set of shipments;

J : a set of available ocean containers;

K: a set of destinations;

R: a set of pre-established routes;

Sr: a set of stop locations in route r ∈ R. For ∀r ∈ R, Sr ⊆ K and |Sr| ≤ 3;

ei: the volume of shipment i ∈ I;

fi: the weight of shipment i ∈ I;

(sli, s
w
i , s

h
i ): length, width and height of shipment i;

E: the volume capacity of the standard ocean container;

F : the weight capacity of the standard ocean container;
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(L,W,H): length, width and height of a standard ocean container;

dik = 1: if shipment i ∈ I to destination k ∈ K, and 0 otherwise;

COC : unit ocean container cost from China to US;

CH : handling cost for shipments to one destination within a container;

CTL
r : the fixed cost for each route r ∈ R using TL;

CLTL
k (v, w): LTL transportation cost from the US deconsolidation center to destina-

tion k ∈ K for a shipment with volume v and weight w;

M : an arbitrary large number;

Decision variables:

xij: a binary variable equal to 1 if shipment i ∈ I is loaded into container j ∈ J , and

0 otherwise;

yj: a binary variable equal to 1 if container j ∈ J is used, and 0 otherwise;

zjk: a binary variable equal to 1 if handling cost to destination k ∈ K is incurred in

container j ∈ J , and 0 otherwise;

ujr: a binary variable equal to 1 if the shipments in container j ∈ J are transported

by TL on route r ∈ R, and 0 otherwise;

vjk: the total volume of the shipments in container j ∈ J to destination k ∈ K, which

are transported by LTL;

wjk: the total weight of the shipments in container j ∈ J to destination k ∈ K, which

are transported by LTL;

(cxi, cyi, czi): continuous variables indicating the coordinates of the front-left bottom

corner of shipment i ∈ I;

aii′ : a binary variable equal to 1 if shipment i ∈ I is on the left of shipment i
′ ∈ I,

and 0 otherwise;

bii′ : a binary variable equal to 1 if shipment i ∈ I is on the right of shipment i
′ ∈ I,

and 0 otherwise;
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cii′ : a binary variable equal to 1 if shipment i ∈ I is on the behind of shipment i
′ ∈ I,

and 0 otherwise;

oii′ : a binary variable equal to 1 if shipment i ∈ I is on the front of shipment i
′ ∈ I,

and 0 otherwise;

pii′ : a binary variable equal to 1 if shipment i ∈ I is on the below of shipment i
′ ∈ I,

and 0 otherwise;

qii′ : a binary variable equal to 1 if shipment i ∈ I is on the above of shipment i
′ ∈ I,

and 0 otherwise;

5.2.2 Model Formulation

The problem can be formulated as follows:

Minimize

∑
j∈J

COCyj +
∑
j∈J

∑
k∈K

CHzjk +
∑
j∈J

∑
r∈R

CTL
r ujr +

∑
j∈J

∑
k∈K

CLTL
k (vjk, wjk) (5.1)

103



subject to:

∑
j∈J

xij = 1 ∀i ∈ I (5.2)

xij ≤ yj ∀i ∈ I, ∀j ∈ J (5.3)∑
i∈I

xijfi ≤ F ∀j ∈ J (5.4)

cxi + sli ≤ cxi′ + (1− aii′ )M, ∀i, i′ ∈ I, i < i
′

(5.5)

cxi′ + sl
i′
≤ cxi + (1− bii′ )M, ∀i, i′ ∈ I, i < i

′
(5.6)

cyi + swi ≤ cyi′ + (1− cii′ )M, ∀i, i′ ∈ I, i < i
′

(5.7)

cyi′ + sw
i′
≤ cyi + (1− oii′ )M, ∀i, i′ ∈ I, i < i

′
(5.8)

czi + shi ≤ czi′ + (1− pii′ )M, ∀i, i′ ∈ I, i < i
′

(5.9)

czi′ + sh
i′
≤ czi + (1− qii′ )M, ∀i, i′ ∈ I, i < i

′
(5.10)

aii′ + bii′ + cii′ + oii′ + pii′ + qii′ ≥ xij + xi′j − 1, ∀i, i′ ∈ I, i < i
′
, ∀j ∈ J (5.11)

cxi + sli ≤ L, ∀i ∈ I (5.12)

cyi + swi ≤ W, ∀i ∈ I (5.13)

czi + shi ≤ H, ∀i ∈ I (5.14)

Mzjk ≥
∑
i∈I

xijdik, ∀j ∈ J, ∀k ∈ K (5.15)

M
∑
r:k∈Sr

ujr + vjk ≥
∑
i∈I

xijdikei, ∀j ∈ J, ∀k ∈ K (5.16)

M
∑
r:k∈Sr

ujr + wjk ≥
∑
i∈I

xijdikfi, ∀j ∈ J, ∀k ∈ K (5.17)

xij, yj ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (5.18)

zjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K (5.19)

ujr ∈ {0, 1}, ∀j ∈ J, ∀r ∈ R (5.20)

aii′ , bii′ , cii′ , oii′ , pii′ , qii′ ∈ {0, 1}, ∀i, i′ ∈ I, i < i
′

(5.21)

vjk, wjk ≥ 0, ∀j ∈ J, ∀k ∈ K (5.22)

cxi, cyi, czi ≥ 0, ∀i ∈ I (5.23)104



In this formulation, the objective function (4.1) minimizes the total costs which

include the ocean container shipping cost, handling cost and inland transportation

cost. The first term in (4.1) is a linear ocean container shipping cost where
∑

j∈J yj

is the total number of ocean containers used. The second term in (4.1) is han-

dling cost. The handling cost occurs proportionally to the number of destinations

shipped in each container. The last two terms in (4.1) are inland transportation

costs.
∑

j∈J
∑

r∈R C
TL
r ujr is the cost of the multi-stop TL routes. CLTL

k (vjk, wjk)

represents the LTL cost of shipments with volume vjk and weight wjk delivered to

destination k.

Constraints (4.2) state that each shipment is assigned to exactly one container.

Constraints (4.3) ensure that shipment i cannot be loaded into container j unless

container j is used. Constraints (4.4) guarantee the shipments in container j can-

not exceed the container weight limit. Constraints (4.5)-(4.10) imply that any two

shipments in the same container do not occupy the same space. Constraints (4.11)

shows that the placement relationship between any two shipments only exists if they

are loaded into the same container. Constraints (4.12)-(4.14) ensure that all the

shipments loaded in a container do not violate the geometric dimensions (length,

width and height) of the container. Constraints (4.15) impose the condition of han-

dling costs incurred because
∑n

i=1 xijdik is the number of shipments in container j

to destination k, its positive value necessitates the handling if there are shipments

to destination k in container j. Therefore,
∑n

i=1 xijdik > 0, zjk = 1. Constraints

(4.16) and (4.17) state the mode selection of inland transportation. LTL and TL are

mutually exclusive for shipments in container j to destination k. If TL transportation

is selected, there is a route r such that ujr = 1, where k ∈ Sr. Thus the total volume

of those shipments cannot violate the volume capacity constraints of the container.

Also it enforces that vjk = 0 since the total cost is minimized. Each destination k
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Direct-delivery model Multi-stop model
Given Parameters

the number of shipments m m
the number of containers n n

the number of destinations k k

Model Complexities

the number of binary variables 3m2 +mn+ 2nk + n− 3m 1
6
nk3 + 3m2 +mn+ 11

6
nk + n− 3m

the number of continuous variables 2nk + 3m 2nk + 3m
the number of constraints 1

2
m2n+ 3m2 + 7

2
mn+ 3nk − 2m 1

2
m2n+ 3m2 + 7

2
mn+ 3nk − 2m

Table 5.1: Model complexity comparison

belongs to one or zero route in each container. Because the shipments to destination

k have to be shipped by a multi-stop TL or LTL deliveries. Also each location can be

served by multiple routes because because each container can have different routes.

Constraints (4.18)-(4.23) define types of decision variables.

5.3 Model Complexity Analysis

The mathematical model (4.1)-(4.23) is an extension of the model in Chapter 3. The

comparison of model complexity between two models is listed as shown in Table

5.1. Two models have the same number of continuous variables and constraints,

but the multi-stop model has approximately 1
6
nk3 more binary variables since

(
K
3

)
is

dominant in the number of routes
(
K
1

)
+
(
K
2

)
+
(
K
3

)
. Thus, it would take potentially

more computational time as k increases.

5.4 Solution Approaches

The model presented in this chapter is a non-linear mixed-integer programming. It

integrates a three-dimensional bin packing problem, a mode selection problem and

a route selection problem into one model. Any one of these problem is a difficult

combinatorial problem to solve exactly. Thus, approximation algorithms are still

necessary to solve our model. Since the model in this chapter is an extended version
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of previous model, we apply the same solution methodology presented earlier. A brief

description of the solution methodology is explained as follows.

1. Disaggregate the problem into two subproblems such as a mode and route se-

lection and a bin packing problem.

2. Solve a mode and route selection problem with relaxed capacity constraints

replacing bin packing constraints.

3. Check the solution with the three-dimensional packing feasibility. If feasible,

the solution is final. Otherwise, go to the previous step with tightened capacity

constraints. The procedure is repeated until a solution is found.

To tighten the container capacity, the algorithm GCRA proposed in Chapter 3 is

used in this chapter, because it showed superior solution quality in the single stop

model. The details of the algorithm are given in Section 3.4.3.

5.5 Computational Experiments

In the previous sections, we have developed a mathematical model for our problem

and proposed a solution approach (algorithm GCRA) to find good feasible solution to

our model. Theoretically, the multi-stop model can achieve bigger cost-savings than

the one-stop model, but may take significantly more computational time. In this

section, a numerical test is implemented to evaluate cost savings and computational

time.

5.5.1 Data and Model Parameters

The detailed process of generating test instances was introduced in Section 3.5.1.

There are ten typical commodity classes with the density from 1 lb/ft3 to 100 lb/ft3,
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Instance No. of No. of Average Instance No. of No. of Average
Dataset No. Destinations shipments Volume Dataset No. Destinations shipments Volume

(ft3) (ft3)

Subset1

1 5 1,395 3.60

Subset3

11 10 925 3.94
2 5 995 3.75 12 10 850 3.46
3 5 1,025 3.79 13 10 882 4.89
4 5 1,018 3.74 14 10 828 5.50
5 5 1,075 3.66 15 10 965 4.19

Subset2

6 5 166 31.93

Subset4

16 10 213 33.26
7 5 130 30.58 17 10 259 25.93
8 5 138 24.89 18 10 204 26.54
9 5 154 28.80 19 10 244 27.11
10 5 144 26.67 20 10 183 26.69

Table 5.2: Details on the instance generation

Parameters Value

Ocean container cost (COC) $2,000
Handling cost (CH) $80
TL one stopover cost $100
Route cost (CTL

r ) 1.5× route distance+ 100× the number of stops
LTL cost (CLTL) calculated by Czar program for each type of shipment
Ocean container weight capacity (F ) 59,000 lbs
Ocean container volume capacity (E) 2,560 ft3

Ocean container dimensions (L×W ×H) 40ft×8ft×8ft

Table 5.3: Parameters of multi-stop model

which represent varieties of shipments. They are the same commodity types, shown

in Table 3.1. New dataset including 4 subsets with 20 instances in total listed in

Table 5.2. The first and the second subsets consider the small- and big-volume ship-

ments with five destinations. The third and fourth subsets take those shipments with

ten destinations. The order quantities are assumed to be somewhat smaller in this

dataset so that they are more appropriate for multi-stop consolidation.

The parameters to set up numerical tests are summarized in Table 5.3. The value

of parameters are mostly the same with those in Section 3.5.1. It is noted that the

route cost CTL
r is computed using the following formula

CTL
r = TL rate× route distance+ TL one stopover cost× the number of stops

(5.24)

where TL rate is assumed to be $1.5 per mile and TL one stopover cost is $100,
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estimated based on Flatbed Truckload Market Price Index and US Domestic Freight

Policy, respectively. The route distance is the shortest distance of the route based on

the predetermined destinations.

5.5.2 Results

We implemented the solution approach using MatLabR2009a on a computer with

Intel Core 2 Duo CPU L7500 1.60GHz processor and 1GB RAM under Windows 32.

The inner solver for optimization is Gurobi 4.0.1.

Before we present the complete results of numerical examples, we illustrate three

different scenarios. Figure 5.1 shows the first scenario of the multi-stop model. In

Figure 5.1(a), only direct delivery (i.e., one stop) of the inland transportation is

considered. In this situation, two containers are packed in China: one container

with destinations of A, B, and E and the other with C and D. The optimal inland

transportation plan is to separate shipments to five batches based on destinations

and send them using TL deliveries. The total cost associated with the operation is

$18,501.
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(a) One stop deliveries

(b) Two stop deliveries

(c) Three stop deliveries

Figure 5.1: Scenario 1
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Figure 5.1(b) shows the case when two stops are considered. It uses the same

packaging of two containers from China, but their inland transportation is different.

Shipments in the first containers are separated into two inland deliveries. The ship-

ments to destinations A and E are delivered in a single two-stop TL route, and the

shipments to B are transported by another direct TL delivery. Shipments in the sec-

ond container are sent to C and D using a two-stop TL route. In this case, the total

cost is $13,379, which saves 27.69% over the one stop deliveries.

The three stop deliveries are considered in Figure 5.1(c). Although the same two

containers are used in China, their original loading patterns are changed in this case.

The shipments to destinations A and B are consolidated in one container in the China,

and delivered in a two-stop TL route. The other container has shipments to C, D and

E and is delivered in a three-stop route. Because destinations C, D and E are located

close to each other, shipments to those are packed together in China and delivered

together in a single three-stop route. The total cost is $11,195 , which represents

additional cost savings of 16.32% over the two-stop model.

Figure 5.2 illustrate the second scenario. Figure 5.2(a) shows the consolidation

with only direct deliveries. Two containers are loaded in China: one container with

destinations of A, B and D and the other with C and E. The optimal inland trans-

portation plan is to separate shipments to five TL deliveries based on destinations

with the total cost of $18,501. Note that the total cost is the same as that of case in

2.1(a) even though shipments are different because TL used for inland transportation

is charged by miles instead of the quantity of shipments.
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(a) One stop deliveries

(b) Two stop deliveries

(c) Three stop deliveries

Figure 5.2: Scenario 2
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In Figure 5.2(b), two stop deliveries are taken into account. In this case, three

containers are packed in China, and the shipments to destination B are separated

into two containers. a part of them is loaded with shipments to destination A and

the remaining shipments consolidated are with those to C. The shipments to D and

E in the first container are delivered in a two-stop TL route. In the second container,

the shipments to B and C are also sent using a two-stop TL route. The shipments

in the third container are sent to B by LTL and to A by a direct TL delivery. The

total cost is $15,921, which saves 13.95% over one stop deliveries. This loading and

transportation planning increase handling cost compared with one stop deliveries.

However, this saves the overall cost by creating multi-stop TL and LTL deliveries,

because the cost of multi-stop TL deliveries are much cheaper than multiple separate

LTL or TL deliveries.

The case of three-stop deliveries is shown in Figure 5.2(c). Three containers are

still used. The shipments in the first container are sent to C by a direct TL delivery.

In the second container, the shipments to B, D and E are delivered by a three-stop

TL route. The shipments in the third container are delivered to A by using a direct

TL delivery. The total cost is $15,594, which achieves additional savings of 2.1% over

two stop deliveries. Note that although the destinations of C, D and E are located

closely, the shipments of these destinations are not put one containers for a multi-

stop TL delivery. That happens because the total volume of the shipments violate

the capacity of one container.

In this scenario, the consolidations with two- and three-stop deliveries consume

one more ocean container than the consolidation with only direct delivery. However,

the total costs associated with multi-stop deliveries are still lower because the cost

savings from inland road transportation are bigger.

Figure 5.3 represents a more complicated scenario with 10 destinations. Figure

5.3(a) shows the situation with only direct deliveries. Four containers are used in
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(a) One stop deliveries

(b) Two stop deliveries

(c) Three stop deliveries

Figure 5.3: Scenario 3
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this case. The first one with destinations C, D, G and H, the second one with C,

the third one with A and I, and the last one with B, E, F and G. The shipments in

the four containers are separated to nine TL direct deliveries and two LTL deliveries.

The shipments to B and part of shipments to C are sent by using LTL and all the

others are shipped by direct TL deliveries. The total cost involved in the operation

is $39,487.

In Figure 5.3(b), two stop deliveries are considered. Four containers are still

needed. The shipments to B, D, G and F are loaded in the first container and sent to

two separate two-stop TL deliveries. The shipments in the second container are sent

to C and E using a two-stop TL delivery. In the third container, the shipments to A

and H are delivered in a two-stop TL route, and the shipments to C are transported by

LTL. The last container are loaded with the shipments to I and J, which are delivered

in a two-stop TL route. The total cost in this case is $26,893, which reaches 31.90%

cost savings over one stop deliveries. The shipments originally shipped separately

using LTL and TL in the Figure 5.3(a) are loaded into one ocean container because

two-stop TL deliveries are allowed. For example, the shipments to B, D, G and F are

now loaded into one container and sent to two separate two-stop TL deliveries, while

they were delivered by using one LTL and three TL separately in the previous case.

This type of TL consolidation achieves significant inland transportation cost savings.

Figure 5.3(c) considers three stops deliveries. The shipments to C are separated

into two containers and two three-stop TL deliveries. In the first container, the

shipments to C, D and E are packed together and sent by using a three-stop TL

delivery. The shipments to C, F, and G in the second container are also delivered

in a three-stop TL route. The third container has shipments to A, B and H, which

are delivered in another three-stop TL route. In the last container, the shipments

to I and J are delivered in a two-stop TL route. The total cost associated with this

operation is $23,786, which represents additional 11.55% cost savings over two stops
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deliveries. Hence, three-stop TL deliveries could reduce the total cost significantly.

Based on these scenarios, it is observed that the proactive consolidation with

multiple stops could significantly save the total cost involved in the supply chain. In

addition, it is seen that the loading pattern can change substantially.

In Table 5.4 we present more extensive computational analysis on the multi-stop

model. The first column in Table 5.4 shows the index of subset. The second col-

umn in Table 5.4 reports the index of the instance. The upper bounds such as

UBone−stop, UBtwo−stop, UBthree−stop are the solutions of GCRA on one-stop, two-stop

and three-stop models, respectively. Associated runtimes are the termination time

of the algorithm. The last two columns give the percentage savings of two-stop and

three-stop models compared with one-stop model, evaluated as

%savingtwo−stop = 100((Uone−stop − Utwo−stop)/Uone−stop), (5.25)

and

%savingthree−stop = 100((Uone−stop − Uthree−stop)/Uone−stop) (5.26)

AVG1∼4 give the average values of each subset. The last row gives the average

values of each column.

In Table 5.4, we find that two- and three-stop models achieve lower costs than

one-stop model, which validates our conjecture. The average costs of two- and three-

stop models are $22,135 and $20,644, which represent savings of 21.27% and 25.99%,

respectively, over the one-stop cost of $28,694. It is also observed in Table 5.4 that the

three-stop model does not improve over the two-stop model in some cases. That is,

the three-stop routes were not beneficial because the shipments to three destinations

cannot be filled into one container due to their physical dimensions. Overall, the

significant cost saving was mostly achieved by using the two-stop model. The usage

of the three-stop model improved solutions only a little more. This tendency will
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One-stop Model Two-stop Model Three-stop Model Savings
Dataset Instance UBone−stop Runtime UBtwo−stop Runtime UBthree−stop Runtime Two-stop Three-stop

No. ($) (seconds) ($) (seconds) ($) (seconds) (%) (%)

Subset1

1 20,501 55 15,680 90 15,680 159 23.52 23.52
2 18,501 3 15,921 669 15,594 717 13.95 15.71
3 20,501 26 15,590 298 15,590 298 23.95 23.95
4 20,501 28 13,379 17 11,521 332 34.74 43.80
5 21,761 27 16,768 833 16.768 833 22.95 22.95

AVG1 20,353 28 15,467 391 15,031 468 23.82 25.99

Subset2

6 24,527 16 22,638 64 22,451 69 7.70 8.46
7 18,238 5 15,934 6 15,641 26 12.63 14.24
8 17,906 6 16,213 9 15,819 12 9.46 11.66
9 20,937 23 19,264 62 19,025 69 7.99 9.13
10 20,702 8 18,370 18 15,929 25 11.26 23.05

AVG2 20,462 12 18,484 32 17,773 40 9.80 13.30

Subset3

11 37,803 265 23,977 350 20,104 875 36.57 46.82
12 35,803 25 21,977 30 18,104 22 38.62 49.43
13 39,943 549 26,893 641 24,092 3,603 32.67 39.68
14 39,487 561 26,893 415 23,786 3,603 31.89 39.76
15 38,228 308 24,893 360 21,160 3,607 34.88 44.65

AVG3 38,253 342 24,926 359 21,449 2,342 34.93 44.07

Subset4

16 38,542 97 29,115 18 27,290 1,239 24.46 29.19
17 40,569 910 33,578 31 32,759 11,261 17.23 19.25
18 32,725 29 28,101 78 26,543 203 14.13 18.89
19 37,951 291 31,733 263 31,969 7,482 16.38 15.76
20 28,761 24 25,777 19 23,048 80 10.37 19.86

AVG4 35,710 270 29,661 82 28,322 4,053 16.52 20.59
Total AVG 28,694 163 22,135 216 20,644 1,726 21.27 25.99

Table 5.4: Cost savings for multi-stop model
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continue if we consider more than three stop routes, because the consolidation of

shipments is limited due to their physical dimensions. By comparing average savings

of subset1 and subset3 with subset2 and subset4, we find that small-size shipments

could achieve more cost savings than large-size shipments. For example, for the small-

size shipments with 5 destinations, the average savings of two- and three-stop model

are 23.82% and 25.99%, which is two and three times bigger than those of large-size

shipments. That’s because small-size shipments can realize the higher utilization of

ocean containers than those big-size ones according to their geometric dimensions,

which could decrease the inland transportation costs by using more multi-stop TL

transportation instead of separate TL and LTL deliveries. It is also observed that the

savings achieved in the 10-destination network is bigger than that in the 5-destination

network, because more multi-stop TL routes are can be utilized. Hence, the industrial

practice of using multi-stop deliveries is a good practical approach. In terms of

computational time of each subset, it is observed that the solution time rises as the

number of stops and the number of destinations increase, which is consistent with

the theoretical proofs provided in Section 1.3, that is, the solution time of multi-

stop models largely depends on the number of destinations and stops. For example,

the average solution time for two- and three-stop models are 216 and 1,680 seconds

respectively, which is about two and ten times higher than one-stop model. By

observing the computational time of the three-stop model, we found that the solution

time for 10 destinations (subset3∼4) are 2342 and 4053 seconds, which is about 100

times larger than the solution time for 5 destinations.

5.6 Summary

In this chapter, we examined the multi-stop consolidation problem in the interna-

tional logistics network. Different from the previous model in Chapter 3, the proactive
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consolidation strategy considers multi-stop TL deliveries when shipments are consol-

idated into containers in China. In addition, a three-dimensional packing problem

and a mode selection problem are still taken into account in the mathematical model.

Multi-stop delivery, due to its commercial value, has been widely applied in the freight

distribution. On the other hand, the problem is also of academic interest, and the

literature investigate the problem in some aspects. However, few papers have so far

studied the integration of the three difficult combinatorial problems.

We developed a mixed integer programming model for the multi-stop consolidation

problem. Because no exact solution can be found due to the complicated nature of the

model, the approximation algorithm (GCRA), the same solution methodology used in

Chapter 3, is applied to solve the model. The proposed algorithm is successfully tested

on 20 instances, involving up to 10 destinations and 1,395 items. All the instances

can be solved within an acceptable computational time. In addition, we evaluate the

cost savings of the multi-stop model by comparing the costs of one-stop, two-stop

and three-stop models. The results show two- and three-stop models achieve 21.27%

and 25.99% more cost savings on average than the one-stop model. Moreover, it is

also observed that the savings of multi-stop consolidation could be more significant

for small-size shipments and more destinations.
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Chapter 6

Summary and Concluding Remarks

6.1 Summary of the Dissertation

With increasing competition in global trades, many US companies purchase parts

and finished products overseas in a just-in-time and low-inventory operation. There-

fore, effective management of a distribution system to transport items from overseas

vendors to US destinations is a key and challenging problem for most companies.

The objective of this study is to design a cost-effective consolidation and distribution

method to transport shipments in a global network.

This research work is first motivated by a real-world world project with a US

manufacturing company. The problem in our work is described as follows. A manu-

facturing company operates several manufacturing factories in the US. Each factory

purchases parts and finished products from China, according to a given replenish-

ment policy, which frequently orders small-volume shipments to maintain low inven-

tory. Their current distribution strategy is called the “consolidation-deconsolidation”

strategy. The commodities ordered by each factory are collected and consolidated

into ocean containers in the China consolidation center. Currently, items are packed
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into containers as much as possible to save the ocean transportation cost. They are

then shipped to the US deconsolidation center, where commodities are separated and

delivered to their final destinations by road transportation (TL or LTL). This practice

requires extensive shipment handling, such as sorting and packing at the deconsolida-

tion center, and items might have to be stored at the center for the arrival of the next

ocean containers to have larger road shipments transportation, incurring unnecessary

inventory costs.

In order to save costs, a proactive consolidation strategy is proposed. Differing

from current practices, our approach consolidates items at the early stage in China,

considering inland transportation to final destinations in the US. Consequently, once

ocean containers arrive at the US, commodities already grouped in China could be

directly reloaded onto trucks for final delivery based on the pre-determined distribu-

tion plan. No additional sorting or storage procedures are needed; hence, the delivery

operation can be performed without the US deconsolidation center. Furthermore,

this eliminates operation costs, such as handling and storage costs, which could be

significant at the expensive US deconsolidation sites. This strategy saves transit time

and ensures timely delivery to the final destinations. If shipments are fully loaded

in China to maximally utilize the container capacity without a carefully designed

consolidation planning, handling/sorting processes and the road transportation costs

in the US will significantly increase due to more frequent LTL deliveries. Therefore,

an effective and proactive order consolidation could achieve significant cost savings

compared to other strategies.

By looking into this problem, we find that this research topic is related to five im-

portant models, which are consolidation models, integrated inventory and transporta-

tion models, bin packing models, mode selection and routing models, and capacitated

vehicle routing problems with loading constraints models. Due to the relevance, a

wide array of literature is reviewed in order to better understand the nature of the

121



problem, the available research methodologies, and solution algorithms in the field.

By reviewing the relevant literature, we find that there is very little research work that

investigates the integrated problem of consolidation, three dimensional bin packing,

and mode and route selection, although each problem is studied separately. Therefore,

in this dissertation, a series of mathematical models and algorithms are developed to

study this problem extensively.

Based on the proposed strategy, a mixed integer programming model is first devel-

oped to solve a single-period and direct delivery consolidation problem. The objective

of this model is to minimize the total cost involved in the global supply chain, in-

cluding ocean container, handling, TL and LTL costs. Two difficult combinatorial

problems are combined into the model. One is a transportation mode (TL or LTL) se-

lection problem; the other one is a three-dimensional bin packing problem. Hence, we

cannot expect to solve the model directly. Three approximation algorithms (GCRA,

SCRA and SRA) are developed to solve the model. The solution method starts with

the model relaxation, where a new parameter αj, a volume load factor, is added

to relax the three-dimensional bin packing constraints. GCRA and SCRA achieve

the solution by iteratively updating αj of infeasible containers, while SRA seeks the

solution by iteratively reducing the shipments from infeasible containers. All of the al-

gorithms can obtain good solutions in a reasonable time. We also investigate the value

of the proposed proactive strategy over a traditional “consolidation-deconsolidation”

strategy. Based on the results of numerical examples, we find that our strategy can

achieve up to 30% cost savings.

Although the single-period model provides valuable insights into the shipment

consolidation problem, it does not reflect the value of a long-term planning. Hence,

we extend our first model to solve a multi-period problem. A finite planning horizon

t = 1, 2, · · · , T is considered. It is assumed that shipments arrive at each period. Ad-

ditionally, a consolidation planner needs to determine whether the shipments arriving
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at the current period are shipped currently or delayed to the next periods. Waiting

costs incur if the shipments are delayed. However, if the future shipments have the

same destination as the current shipments, inland transportation costs might be saved

by using one TL delivery, instead of multiple LTLs. Handling costs are also reduced

correspondingly. Therefore, there is a trade-off between waiting, ocean container, TL

and LTL costs.

We present a mixed integer programming model for the multi-period problem.

Due to the computational complexity, three heuristic algorithms are developed to

approximate the solution. All of these algorithms use the algorithm GCRA in Chapter

3 as a basis for relaxing the model similarly with the volume factor αj. The first

algorithm seeks the solution by adapting αj of infeasible containers for the entire

planning horizon. The second algorithm obtains the solution of each period by only

updating the αj of any infeasible container for the current period. The third algorithm

applies a rolling horizon technique and the T-period model is solved by iteratively

solving a 2-period model. Numerical examples are tested to evaluate the performances

of three heuristics. The first two algorithms perform better than the third algorithm in

terms of solution quality. Algorithm 3 is the most efficient algorithm. Additionally,

it is a good alternative if only limited shipment information is available. We also

compare the total cost of the single- and multi-period models. We found that the

multi-period model can obtain an approximate additional 10% cost savings on average

over the single-period model.

In order to explore more opportunities to reduce the cost, the TL multi-stop

delivery is taken into account when shipments are loaded into ocean containers in

our proactive consolidation problem. This results in more effective loading patterns,

although these patterns are more complicated, to save the overall cost. Therefore,

the shipments of the destinations that are close to each other can be loaded into the

same container with regard to the container capacity and packing constraints. Once
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the ocean containers arrive at the US, the batch of shipments to the same area can

be loaded into trucks for multi-stop deliveries, instead of multiple LTL and TL direct

deliveries, which can save the inland transportation and handling costs largely.

The basic model is extended to solve the multi-stop consolidation problem. In

this new model, we consider only three stops at most for TL multi-stop deliveries

because 93% of the firms accept less than four stops including the final destination

per TL trip; since the more stops a route has, the less reliable its delivery time is

(Jackson (1985)). Hence, we enumerate all the routes, including one-, two-, and

three-stop routes in the model. The algorithm GCRA is used to solve the multi-stop

model. Twenty instances, which include small- and large-size shipments with 5 and

10 destinations, are generated to test the algorithm. All of the instances can be

solved within an acceptable time. We also compare the cost savings of the multi-

stop model (including two- and three-stop models) with the single-stop model. The

results show two- and three-stop models achieve 21.27% and 25.99% more savings on

average, respectively, than the one-stop model. It is also observed that the savings of

multi-stop consolidation could be more significant for small-size shipments and more

destinations.

6.2 Contributions

The major contributions of this dissertation are summarized as follows:

1. A proactive consolidation strategy. This research provides new insights into the

global supply chain management area. As we know, consolidation strategies

have been studied since the 1980s. However, the concept of “proactive” is still

rarely discussed in the area of consolidation. Additionally, they can achieve

significant cost savings. This idea can be used for other companies with similar

distribution structures.
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2. A series of integrated consolidation models. This work provides mathemati-

cal modeling approaches to solve complicated shipment consolidation problems

faced by most international companies. The problem we investigate in the dis-

sertation integrates many issues, such as three-dimensional bin packing problem,

as well as mode and route selection problem, which occur commonly in prac-

tice. However, there is little literature that studies the integrated problem. Our

models, methodologies, and results can provide some insights for academic and

commercial industries.

3. Approximation solution methodologies. Because all of our models combine sev-

eral difficult combinatorial problems, no exact solution can be obtained, even for

small-size problems. We propose a variety of approximation solution method-

ologies to disaggregate the problem into subproblems, and then to solve them

iteratively. The solution methods obtain good solutions within a satisfactory

computational time. The solution methods are helpful in solving other opti-

mization problems with similar structures.

6.3 Future Work

The current research work in this dissertation can be extended in the future to the

following aspects:

1. An efficient algorithm for the multi-stop model. In Chapter 5, we develop a

mixed integer programming model to solve a consolidation problem with multi-

stop deliveries. In the mathematical model, we enumerate all of the possible

routes including one-, two-, and three-stop routes. Next, an approximation

algorithm is proposed to solve the multi-stop model. Currently, vehicle routing

problems have been studied extensively. A variety of models and algorithms

have been developed to solve various problems in this area. Hence, it might
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be a good extension to combine an efficient Vehicle Routing Problem algorithm

into our model.

2. An integrated inventory and shipment consolidation model. The main cost that

we focus on so far in the dissertation is transportation cost, including trans-

ocean cost and inland distribution cost. However, inventory cost is a very

important cost term for the international consolidation problem that we studied.

This is because inventory policy of each branch, such as order quantity and order

frequency, can affect not only the decisions on the consolidation planning, but

also the total cost in the system. Therefore, incorporating inventory cost into

our consolidation model is of importance in order to reduce the total logistics

cost in the international network. Our models can be extended to include

inventory issues.

3. Meta-heuristic algorithms. In our solution methodologies, the relaxed mod-

els are solved by using the commercial solver Gurobi. The solution quality

and time of the proposed algorithms are restricted by the performance of the

solver. Currently, meta-heuristic algorithms, such as simulated annealing, Tabu

search, and genetic algorithms, are becoming good alternatives to solve large-

scale mixed integer programming models due to their high computational per-

formance. Therefore, applying meta-heuristic skills to solve our models is a

potential future extension of our methodologies.

4. Time window constraints. Most companies have time window constraints to

transport the shipments from vendors to destinations. This is an important

measurement for customer service. In our consolidation models, time window

constraints are not included. Future extensions of our models can be extended

to address time window constraints.
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