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DESIGNING A ROBUST SUPPLY CHAIN NETWORK AGAINST DISRUPTIONS

Mahmood Pariazar

Dr. Mustafa Y. Sir, Dissertation Supervisor

ABSTRACT

Supply chains are vulnerable to disruptions at any stage of the distribution system.

These disruptions can be caused by natural disasters, production problems, or labor

defects. The consequences of these disruptions may result in significant economic

losses or even human deaths. Therefore, it is important to consider any disruption

as an important factor in strategic supply chain design. Consequently, the primary

outputs of this dissertation include insights for designing robust supply chains that

are neither significantly nor adversely impacted by disruptions.

The impact of correlated supplier failures is examined and how this problem can

be modeled as a variant of a facility location problem is described. Two main prob-

lems are defined, the first being the design of a robust supply chain, and the second

being the optimization of operational inspection schedules to maintain the quality of

an already established supply chain. In this regard, both strategic and operational

decisions are considered in the model and (1) a two-stage stochastic programming

model; (2) a multi-objective stochastic programming model; and (3) a dynamic pro-

gramming model are developed to explore the tradeoffs between cost and risk.

Three methods are developed to identify optimal and robust solutions: an integer

L-shaped method; a hybrid genetic algorithm using Data Envelopment Analysis; and

an approximate dynamic programming method. Several sensitivity analyses are per-

formed on the model to see how the model output would be affected by uncertainty.

The findings from this dissertation will be able to help both practitioners designing

supply chains, as well as policy makers who need to understand the impact of different

disruption mitigation strategies on cost and risk in the supply chain.
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CHAPTER 1. INTRODUCTION

1.1 Significance and Motivation

A supply chain is a network of suppliers, production centers, warehouses, and distribu-

tion centers. It is through supply chains that raw materials are acquired, transformed,

produced, and delivered to the customer [1]. The performance of a supply chain is

dependent on the performance of each component in the network, and the ability of

those components to be organized and integrated.

Due to the complicated interrelations and interactions between a highly diverse set

of suppliers, production centers, distribution centers, and customers, supply chains

are subject to variety of risk factors. Coordination between those entities is typically

an important and difficult activity. A relatively small disruption and failure in one

component can lead to a massive negative impact across the entire network.

A disaster is an unforeseen and often sudden event that brings about damage,

loss, and destruction to life and property. Common causes of supply chain disruption

include natural disasters, production problems, accidents, labor availability, terrorist

attacks, unexpected and sudden shocks, political/economic disasters, and war.

In this dissertation, two types of supply chain disruptions are considered. The first

type of disruption is one that leads to a quality problem with the product. Failure

in this context is a function of low-quality raw materials that a facility receives and

consequently that facility will produce some materials that are tainted. The second

type of disruption is one that affects the quantity (availability) of the product.

For example, in Japan, the March 11, 2011 earthquake (magnitude 9.0) and sub-

sequent tsunami, nuclear crisis, and infrastructure damage created a significant influ-

ence on many companies. Disrupted supply chains affected a broad range of manufac-

turing industries such as car manufacturing, consumer electronics, and data process-
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ing. These disrupted industries were located not just within Japan but also around

the world. Automotive companies such as Honda, Toyota, and Nissan had to shut

down production upon being faced with lack of component availability [2, 3]. Clearly,

lack of necessary materials creates serious issues for global manufacturing.

Another example: Heparin, a widely used anticoagulant, is produced from the

mucosal tissue of pigs. In 2008, when blue ear pig disease swept through China,

tainted heparin was produced and distributed [4]. Contaminated heparin caused

81 deaths and several allergic reactions in the United States and around the world.

Thereafter, further testing and product recalls of heparin have occurred on order of

the U.S. Food and Drug Administration (FDA) [5].

These examples indicate the danger of failures in supply chains. These examples

also point to the importance of considering risk in supply chain design. Disruption in

supply chains creates significant risk with life and death implications. For example,

distributing tainted drugs and/or the lack of availability of drugs can have significant

impact on patients’ health, a circumstance that can lead to death.

One of the issues raised by the examples is that of correlated supplier failure.

These failures are not independent. Such correlation in supply failures can occur for

different reasons, including inclement weather, political unrest, or labor issues such as

strikes affecting multiple facilities. As a result, it is critical to consider the correlation

between suppliers when considering their failure probabilities, since supplier failures

are often not independent – as is typically assumed in this type of research.

Moreover, in some supply chains, inventory shortages and unavailability of prod-

ucts are as problematic as the shipment of low quality products. For example, un-

availability of heparin can cause serious complications for surgery patients since sub-

stitutions for this drug cannot be easily made. Therefore, care should be used when

selecting suppliers, so that products are available even in the face of failures and

disruptions.

2



Furthermore, although the suppliers typically produce high-quality products, they

can fail and produce (at least partially) a low-quality product. Such failures require

the building-in of redundant capacity that can be used to obtain quality product in

the face of supplier failures. Another issue raised by these supply chain disruptions

is that of supplier inspection. Inspection can be an effective method to ensure that

only high-quality products reach customers when a disruption occurs.

Considering all the points mentioned above, this dissertation studies how supply

chains should be designed to mitigate the effects of supplier failures, and explores how

integrating inspection policy decisions into facility location and supply chain design

can impact the solutions that are recommended.

In general, in addressing the risk of supplier unreliability in the supply chain, three

optimization models and algorithms are developed in order to:

• explore the tradeoffs between costs and risk in the supply chain;

• investigate the effect of correlated failures in a supply chain;

• consider different failure scenarios and examine their effects on inspection strate-

gies;

• develop insights into when/where redundant capacity should be installed in the

supply chain;

• incorporate the ability to inspect the goods that are produced from failed loca-

tions to see if they can be shipped to the customer;

• understand when and where inspections should be performed to prevent low-

quality product from reaching customers;

• study various supply chain configurations resulting from these models on the

overall performance of the supply chain;

3



• investigate solution methods for this class of computationally challenging large-

scale problems.

The findings from this dissertation can help practitioners while designing supply

chains, as well as helping policymakers to understand the impact of different disrup-

tion mitigation strategies on cost and risk in the supply chain.

Table 1.1 represents a summary of proposed chapters considering decision, prob-

lem, model, and solution approaches in each chapter.

Table 1.1: Summary of proposed chapters
Chapter Decision Problem Model Solution approach
Chapter Long-term Designing a Two-stage Integer

2 (Strategic) robust supply stochastic L-Shaped
chain programming method

Chapter Long-term Designing a Multi-objective Hybrid
3 (Strategic) robust supply stochastic genetic

chain programming algorithm
Chapter Short-term Inspection Dynamic Approximate

4 (Operational) scheduling programming DP
decision model algorithm

In Chapter 2 and Chapter 3 of this dissertation, a supply chain that is both reli-

able and cost-efficient is designed. Designing a robust supply is a long-term strategic

decision and cannot change quickly due to the influence of supply chain infrastruc-

ture. Supplier sourcing is considered in two-tiered supply chains. First-tier suppliers

are those who produce a product from raw materials or sub-assemblies. Second-tier

suppliers harvest or produce the raw materials or sub-assemblies that are ultimately

shipped to the first-tier suppliers. It is assumed that customers must partner with

one or more first-tier suppliers to obtain the required demand for quality products.

Therefore, ”opening a facility” in the models is equivalent to entering a long-term

contractual agreement with a first-tier supplier. The expected costs are minimized

considering disruption scenarios. Operational decisions, such as optimizing the in-

spection schedules, are considered in the model as well. Both strategic supply chain
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design and operational inspection scheduling are important to ensure availability and

quality in supply chains in order to mitigate disruption impacts. A two-stage stochas-

tic programming model is developed and solved with integer L-Shaped method and

a hybrid genetic algorithm.

In Chapter 4, the operational inspection decision is examined for a given supply

chain with multiple unreliable supply sources. Disruption directly affects the quality

of products. The quality of products can be improved by considering inspection of

the units received from the suppliers. Even for a robust supply chain, it is essential

to optimize inspection decisions to ensure quality. A dynamic programming model

is developed to indicate which set of suppliers need inspection at various periods,

according to the various cost terms. An approximate DP algorithm is developed to

solve the model.

1.2 Specific Aims

In the following parts, goals or aims, are explained for each chapter.

Aim 1: Robust supply chain design considering correlated failures

and inspection. In Chapter 2, a robust supply chain design is studied considering

unreliable suppliers, correlated failures, and the option to inspect. A comprehensive

two-stage stochastic programming model is developed to explore the tradeoffs between

costs and risk when designing a supply chain. The first-stage decisions represent

strategic decisions such as location and capacity of suppliers. In the second stage,

operational decisions related to transportation and inspection are determined. To

determine an optimal solution, the integer L-shaped method is used and a sensitivity

analysis is applied to the model to see how the model output is affected by uncertainty.

Aim 2: A multi-objective approach for designing a robust supply. In

Chapter 3, the single objective version of the problem is extended which is described

in Chapter 2, and a multi-objective stochastic model is developed to explore the

5



tradeoffs between costs and risk. “Operating cost”, “unsatisfied cost”, and “tainted

and inspection cost” are explicitly considered as three conflicting goals that must

be minimized simultaneously. The first objective (operational cost) minimizes the

supply chain configuration cost under normal circumstances without disruptions or

failures. The second and third objective attempt to minimize the effect of disruption

in quantity and quality aspect.

It is important to consider these objectives simultaneously to gain a better under-

standing of disruption in the supply chain. Since this is a NP-hard problem, multiple

Pareto-optimal solutions are generated by using the genetic algorithm, in which data

envelopment analysis is used to calculate the fitness value of supply chain configura-

tions. The hybrid approach removes dominated individuals and yields to desirable

efficient frontiers.

Aim 3: A Dynamic programming approach for optimal inspection

scheduling. In Chapter 4, operational inspection decisions are investigated in multi-

period supply chain with multiple unreliable supply sources. Even if the supply chain

design is robust, it is still important to inspect suppliers to ensure quality. Therefore,

Inspection of suppliers is critical to ensure that only high-quality products reach

customers. Also, by preventing potential failure, the disruption cost would be cut

out. FDA requires inspection every two years. This may not be the most effective and

efficient policy because of the limited number of inspection resources and differences

in supplier characteristics.

A dynamic programming (DP) model is performed to minimize the total inspection

and corrective costs as well as the cost of disruption caused by missed detection in the

supply chain. The current FDA inspection policy is evaluated; numerical experiments

indicate that proposed DP models result in significantly lower costs than the FDA’s

current inspection policy.
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1.3 Innovation

In this dissertation, an extension of the capacitated facility location problem is pro-

posed that considers correlated supplier failures and integrates the operational deci-

sion of whether or not to inspect suppliers while making the long-term decision of

which supplier should be selected. This adds to the growing body of literature that

integrates tactical-level decisions when making strategic-level facility location deci-

sions. Furthermore, the operational inspection decision is studied for a given supply

chain with multiple unreliable supply sources. This dissertation makes a number of

contributions to the literature.

First, it relaxes the assumption traditionally made that the failure of suppliers

is independent. In practice, this is often not the case, as illustrated by the heparin

example above. It is explained how correlated failures can be incorporated into the

model via the generation of scenarios that are used in the stochastic program. The

computational results show that this has a significant impact both on the cost of the

obtained solutions, and the solutions themselves.

Second, this dissertation integrates the strategic decisions of where facilities should

be opened with operational level decisions of whether or not inspection should be

instituted at each facility.

Third, the assumption that supplier failures are absolute is relaxed - that is, partial

failures of suppliers are allowed in the model (i.e., some of the supplies produced from

a facility are damaged whereas others are not). This is an important consideration

when the underlying cause of failures is due to the second-tier suppliers. In this case,

the quality problems may or may not appear in all of the first-tier suppliers depending

on their quality practices and the second-tier suppliers with whom they work.

Fourth, a comprehensive two-stage stochastic program is developed. This adds

to the growing body of research on robust facility location by considering correlated

7



scenarios and incorporating inspection decisions in the second stage. This model is

exercised to provide insights about how key parameters (capacity, correlation, inspec-

tion) impact the obtained solutions and the expected total cost of solutions.

Fifth, a multi-objective stochastic model is developed to explore the tradeoffs

between cost and risk in the supply chain when a disruption occurs.

Sixth, two types of disruption are considered in the model. The first type of

disruption is one that leads to a quality problem of the product (low-quality raw

materials that a facility receives). This helps us to develop insights about tainted

cost and inspection policy. The quality failures are simulated by considering the

supplier’s correlation. The disruptions that affect the quantity (availability) of the

product are considered to be the second type of disruption. This helps us to develop

insights about capacity and unsatisfied demand.

Seventh, a hybrid genetic algorithm is developed to solve the multi-objective

stochastic model. In this algorithm, data envelopment analysis is used to calcu-

late the fitness value of supply chain configurations. The hybrid approach removes

dominating individuals and yields to desirable efficient frontiers faster than methods

based on only genetic algorithm.

Eighth, in the last chapter, the operational inspection decisions are examined

for a given supply chain. However, the same concept can be used in a variety of

application areas such as machine replacement problems, maintenance optimization

problems, and bridge inspection problems.

Finally, a dynamic programming model is developed that finds an inspection

schedule for a group of suppliers in a infinite planning horizon. In addition, an efficient

approximate dynamic programming algorithm is developed to solve the model.
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CHAPTER 2. ROBUST SUPPLY CHAIN DESIGN

CONSIDERING CORRELATED FAILURES AND

INSPECTION

Abstract

This chapter studies the impact of correlated supplier failures as well as inspection

to detect these failures in the context of a supplier selection problem. Also, this

chapter explains explains how this problem can be modeled as a variant of a facility

location problem, and develops a two-stage stochastic programming model to explore

the tradeoffs between costs and risk when designing a supply chain. The first-stage

decisions represent strategic decisions such as location and capacity of suppliers while

in the second stage, operational decisions related to transportation and inspection

are determined. In the computational results, the effect of supplier correlation and

inspection on supplier selection, transportation, and inspection strategies are exam-

ined. A sensitivity analysis is also performed to explain the effect of key parameters

(capacity, correlation, and inspection) on expected total cost and expected cost of

shipped tainted materials.

2.1 Introduction and motivation

Issues in supply chain are of both practical and theoretical importance, as demon-

strated both by the amount of research in this area and the increasing prevalence of

supply chain issues in the popular media [6, 7, 8]. The supply chain comes under

particular scrutiny when there are failures that either prevent necessary items from

being supplied, or cause damaged goods to reach consumers. This dissertation studies

how supply chains should be designed to mitigate the effects of supplier failures, and

explores how integrating inspection policy decisions into facility location and supply

chain design can impact the solutions that are obtained.
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This dissertation is motivated by several recent examples of supply chain failures

that occurred in the pharmaceutical and food supply chains. In 2008, tainted heparin

– a widely-used anticoagulant produced from the mucous membranes of pig intestines

– was widely distributed and administered to patients. The contaminated heparin

was responsible for 81 patient deaths and hundreds of allergic reactions in the United

States alone. Tainted heparin also affected patients in an additional eleven countries

[4]. In 2011, lettuce, cucumbers, and tomatoes were recalled in Germany before

ultimately determining that E. coli-contaminated sprouts were responsible for the

deaths of 31 people and making more than 3,000 gravely ill [9]. Similarly in the United

States in 2010, more than 500 million eggs were recalled after salmonella-tainted eggs

made more than 1,500 people ill [10]. These examples illustrate how serious supply

chain failures can be, particularly when compromised goods reach consumers.

Motivated by these cases, this dissertation considers supplier sourcing in two-

tiered supply chains. First-tier suppliers are those who produce a product from raw

materials or subassemblies. In the case of heparin, for example, this dissertation

assumes that pharmaceutical manufacturers such as Baxter are the first-tier sup-

pliers. Second-tier suppliers harvest or produce the raw materials or subassemblies

that are ultimately shipped to the first-tier suppliers. In the heparin example, pig

farmers who sell their pigs to pharmaceutical companies are examples of second-tier

suppliers. This dissertation assumes that customers (typically healthcare or group

purchase organizations) must partner with one or more first-tier suppliers to obtain

the required demand for quality products. Therefore, “opening a facility” in these

models is equivalent of entering a long-term contractual agreement with a first-tier

supplier. Although the suppliers typically produce high-quality product, they can fail

and produce (at least partially) tainted product. Such failures require customers to

build in redundant capacity that can be used to obtain quality product in the face of

supplier failures.
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One of the issues raised by the motivating examples is the issue of correlated

supplier failure. In the case of heparin, quality problems were ultimately traced to

the contaminated pig intestines used to produce the drug. Blue pig ear disease, a

highly-contagious reproductive and respiratory disease that affects droves of pigs,

swept through the region in China where pigs were raised to produce heparin. As

a result of consuming tainted raw material, at least 12 Chinese companies produced

and shipped tainted heparin throughout the world [11].

These failures were not independent – rather, they were all the result of a disease

outbreak that affected an entire region. Similar correlated failures were responsible for

the food contamination. E. coli contamination in produce, such as sprouts, is caused

when animal waste is used either as a fertilizer or contaminates groundwater. When

groundwater becomes contaminated, it can affect many farms in an area. Both of

these examples illustrate how supply chain disruptions are often not independent, but

instead the result of a shared underlying cause for the disruption. Such correlation in

supply failures can also occur for other reasons such as inclement weather, political

unrest in a region, or labor issues such as strikes that affect multiple facilities. As a

result, it is critical to consider the correlation between suppliers when considering their

failure probabilities since supplier failures are often not independent as is typically

assumed in this type of research [12].

Another issue raised by these supply chain disruptions is that of supplier inspec-

tion. Prior to the deaths and illnesses of patients, heparin plants were rarely inspected

by regulatory agencies such as the FDA. However in the aftermath of the heparin in-

cident, an inspection of the Changzhou SPL facility that produced heparin did not

have “adequate systems for evaluating the suppliers of crude heparin materials, or

the crude materials themselves, to ensure that these materials are acceptable for use”

[13].

Subsequent testing was developed to detect tainted heparin. Similarly, food can
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be tested to ensure that it is free of contaminants such as salmonella or E. coli. Had

these inspections and tests been performed prior to the shipment of tainted produce,

perhaps lives could have been saved and illnesses prevented.

As this example clearly shows, inspection can be an effective method to ensure

that only high-quality products reach to customers when a disruption occurs. There

is a vast literature on inspection in the context of production systems and supply

chains. David et al. [14] study inspection decisions in a production-inventory system

with multiple unreliable supply sources. They assume that the units supplied by each

supply source have a certain defect rate. They consider two related, sequential deci-

sions. The first set of decisions is the amount of material they should order from each

supplier to satisfy the customers’ demand. The second set of decisions is whether

to inspect some part of units received from each source and consequently repair any

identified defective items. Hariga and Azaiez [15] consider inspection scheduling for

a continuous production process which is subject to random failure. The failures are

not visible and only revealed by inspection. At any inspection, if failure is detected

then repair action is applied to restore the process. A non-Markovian failure process

with increasing failure rate is used to formulate the problem and three cost-effective

heuristic procedures are developed. Chun [16] designs a Bayesian inspection pro-

cedure for a production process, which is subject to a random failure. The model

simultaneously determines how often to inspect items on the production line, devel-

ops a procedure to identify how to search economically to detect more defective items,

and finally decides when to stop the search process and salvage the remaining items.

A stochastic dynamic programming approach is used to formulate the renewal-reward

process as a profit-maximization model considering several cost factors.

In some supply chains, inventory shortages and unavailability of products are as

problematic as the shipment of tainted products. For example, the unavailability of

heparin can cause serious complications for surgery patients since substitutions for
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this drug cannot be easily made. Therefore, care should be when selecting suppliers

so that products are available even in the face of failures and disruptions. There are

several papers that study the effect of product unavailability. For example, Berger

et al. [17] developed a decision tree approach to investigate the risk of unavailability of

suppliers. Ruiz-Torres and Mahmoodi [18] extend this model by considering various

levels of supplier failure probability. Sawik [19] developed single and bi-objective

mixed integer programming models for the supplier selection and order allocation

problem considering disruption risks. He assumes that supplies are subject to random

local disruptions as a result of local labor strike or equipment breakdowns. He also

considers global disasters that render supplies from all suppliers disrupted. In his

model, disruption risk is controlled through the use of (conditional) value-at-risk

approach.

This dissertation falls into the broad category of supply chain design that considers

risk. Several typologies have been proposed to categorize risks in the supply chain

[20, 21]. The research problem of this dissertation is best categorized as one that

designs supply chains that are robust against supply side disruptions – that is, this

research wants locate facilities so that systems are able to perform their intended

functions well when the supply chain is transformed due to the failure of suppliers.

This research relaxes the assumption that suppliers fail independently of each other,

and simultaneously consider whether or not inspection should be instituted at each

facility when determining which facilities should be opened. This research shows how

this problem can be modeled as a facility location problem under uncertainty. As

explained before, opening a facility is entering a long-term contractual agreement

with a first-tier supplier. The fixed cost of opening a facility therefore is not the cost

of building the facilities, but the legal fees and other costs associated with signing a

long-term contract.

For a research overview of facility location under uncertainty, the reader is referred
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to a survey by Snyder [12]. The initial research in this area focused on demand

uncertainty – specifically, facility congestion that results from uncertain demand [e.g.,

22, 23, 24, 25, 26, 27]. Most of this research was motivated by the placement of

emergency facilities. More recently, researchers have focused on uncertainty that

results from the availability of suppliers. For example, Snyder and Daskin [28] propose

an extension of the uncapacitated p-median problem to ensure the robustness of the

solutions obtained in the face of supplier failures. In particular, their work that

considers not only the operating cost when all facilities are functioning normally, but

also the operating cost when facilities fail. In their proposed framework customers

are assigned to both a primary facility and to backup facilities in case closer facilities

have failed. They propose a Lagrangian relaxation algorithm to solve this problem,

and explore the tradeoff between the cost to construct the network and the operating

cost when the network fails.

Motivated by areas that are particularly prone to disruption (e.g., Gulf Coast

states during hurricane season), Cui et al. [29] extend this work to consider site-

dependent failure probabilities. They propose a Lagrangian Relaxation algorithm to

solve this problem, and a continuous approximation algorithm to predict the total

system cost without explicitly obtaining solutions, which is particularly valuable for

large-scale instances of this problem. Gade and Pohl [30] introduce a capacitated

facility location problem considering supplier failure. They model this problem as a

two-stage stochastic program, and solve the problem using sample average approxi-

mation. Additionally, Peng et al. [31] propose a heuristic to solve the p-robustness

problem, which ensures that the operating cost under disruption is within an accept-

able factor of the normal operating costs. Their work generalizes the uncapacitated

facility design problem in that it considers multiple echelons of the supply chain (e.g.,

determining transshipment nodes in addition to supply nodes).

Additional related research has been completed by Lee [32] who develops heuristics
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to solve the p-median problem with supplier unreliability; Bundschuh et al. [33] who

considers an n-tiered supply chain with sourcing limits; Gaonkar and Viswanadham

[20] who develop two quadratic integer linear programs for supplier selection prob-

lems that minimize the total expected cost or that minimize the expected shortfall;

and Iakovou et al. [21] which considers a variation of the news vendor problem that

maximizes total profit and captures the tradeoff between optimal inventory policy

and supply chain protection level.

Although these are the most closely-related research papers to our own, there is a

large and diverse literature on problems that require joint strategic and operational

decisions, mostly considering multiple objectives, that are relevant to our problem.

Lin and Kwok [34], Caballero et al. [35], Yildiz et al. [36] present metaheuristics for

multi-objective location routing problems. Yildiz et al. [37] present joint transporta-

tion decision making among multiple customers and suppliers along with a strategic

crossdock location decision. The model of this research can be modified to incorporate

several practical considerations included in these papers.

This research considers an extension of the capacitated facility location problem.

Also, it considers correlated supplier failures and integrates the operational decision

of whether or not to inspect suppliers while making long-term decision of supplier

should be selected. This adds to the growing body of literature that integrates tactical

level decisions when making strategic level facility location decisions (e.g., Erlebacher

and Meller [38], Daskin et al. [39] which consider the integration of facility location

and inventory decisions; Min et al. [40], Nagy and Salhi [41] which offer surveys of

location-routing problems).

The previous research on correlated supplier failures is limited. For example, Li

and Ouyang [42] studied spatial correlation among facility disruptions in the context

of the reliable uncapacitated fixed charge location problem. They developed a model

to minimize the costs under normal and failure scenarios by considering different
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structure of the spatial correlation. They use the continuum approximation method

to solve their model. Liberatore et al. [43] present a tri-level formulation to optimize

the protection plan for a capacitated median problem considering disruptions. The

objective is to reduce the impact of the worst-case loss of non-fortified facilities, by

fortifying facilities in the present system where the disruption can occur in large areas.

They analyze the impact of partial or complete disruptions based on the correlation

effects between the facilities. They proposed an exact solution approach based on a

tree-search procedure.

This dissertation makes a number of contributions to the literature. First, it

relaxes the assumption traditionally made that the failure of suppliers is independent.

In practice, this is often not the case as illustrated by the heparin and food examples

shared above. It is explained how correlated failures can be incorporated into the

model via the generation of scenarios that are used in the stochastic program. The

computational results show that this has a significant impact both on the cost of the

obtained solutions, and the solutions themselves. Second, this dissertation integrates

the strategic decisions of where facilities should be opened with operational level

decisions of whether or not inspection should be instituted at each facility. Third, this

research relaxes the assumption that supplier failures are absolute – that is, partial

failures of suppliers are allowed in the proposed model (i.e., some of the supplies

produced from a facility are damaged whereas others are not). This is an important

consideration when the underlying cause of failures is due to the second-tier suppliers

as demonstrated by the motivating examples shared above. In this case, the quality

problems may or may not appear in all of the first-tier suppliers depending on their

quality practices and the second-tier suppliers they work with. To the best of our

knowledge, partial failures have not been considered in the literature before. Finally, a

comprehensive two-stage stochastic program is developed, which adds to the growing

body of research on robust facility location by considering correlated scenarios and
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incorporating inspection decisions in the second stage. This model is exercised to

provide insights about how key parameters (capacity, correlation, inspection) impact

on the obtained solutions and the expected total cost of these solutions.

The remainder of the chapter is outlined as follows. Section 2.2 explains the

problem and detail of mathematical model and the solution methodology is used to

solve this problem. Section 2.3 exercises this model and analyzes the effect of capacity,

supplier quality, correlation, and inspection both on the selected suppliers, and the

total cost of the obtained solutions. Finally Section 2.4 offers conclusions.

2.2 Model

A two-stage stochastic program is developed to model the Robust Supply Chain

Design with Correlated Failures and Inspection (RSCDCFI). As described in the

introduction, this research considers supplier sourcing in two-tiered supply chains.

Recall that first-tier suppliers produce a product from raw materials or subassemblies,

whereas second-tier suppliers are those who supply the raw materials to the first-tier

suppliers. This research assumes that a customer (e.g., group purchase organizations

in a pharmaceutical supply chain) have multiple sites and must determine which

first-tier suppliers to partner with to fulfill demand at its sites. In this framework,

the customer determines which first-tier suppliers should be selected to fulfill the

demand across all customer sites during the first stage. After these relationships are

established, it is assumed that failures may occur at each of the selected suppliers.

When the failures occur, the customer must determine at the start of the second stage

how to assign customer sites to suppliers.

This research assumes that the failure of first-tier suppliers occurs when second-

tier material suppliers supply them with contaminated raw materials as occurred in

the heparin outbreak. If this occurs, then it is assumed that all first-tier suppliers re-

ceiving tainted raw materials will produce damaged product. Because in this research
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failures arise as a function of tainted raw materials, it is assumed that the degree of

failure is proportional to the amount of tainted raw material that they receive instead

of binary – that is, a facility can be open and producing some materials that are good

and some which are tainted. The framework is used to generate and describe these

failures is described in detail in Section 2.2.3.

The scenario generation requires three types of information: a marginal mean

vector, a correlation matrix, and cumulative density function (cdf) for tainted pro-

duction. The marginal mean is a measure of quality at the facility, and represents the

long term percentage that some of its production is tainted. The correlation between

two facility failures is proportional to the number of common second-tier suppliers

they use. The cumulative density function for tainted production determines the ex-

tent of a random disruption. The data for these parameters can be obtained from

historical data. In the case of pharmaceutical supply chains, for example, the Food

and Drug Administration (FDA) requires inspection of pharmaceutical suppliers every

two years to ensure that only high-quality drugs reach to patients [44]. An inspection

can reveal that a supplier is in an out-of-compliance state for a number of reasons

including operator errors, machine errors, or defective raw materials. The outcome of

these inspections can be used to estimate the marginal mean. Moreover, the cdf for

tainted production can be calculated from defect rates calculate by quality assurance

procedures.

This research assumes that in addition to determining which first-tier suppliers

to build relationships with, customers can also decide whether or not to institute

inspection at each facility. If inspection is instituted, it is assumed that this inspection

will detect and discard a proportion of the tainted material that is produced at the

facility. If the customer forgoes the opportunity to inspect the materials at a facility,

it is assumed that all of the tainted materials produced at that facility reach the

customer. If inspection is not instituted, customers will likely be assigned to facilities
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that are producing damaged goods since tainted materials cannot be detected. If,

however, inspection is instituted then the model will determine which customers to

assign to which site and may determine that some demand should go unsatisfied.

The objective of proposed model is to minimize total expected cost. In the model,

five types of costs are considered:

1. Fixed costs – these costs are one-time costs that represent the costs required

to establish a formal relationship with the first-tier suppliers (e.g., initial in-

spection and legal costs to establish a contractual relationship). These costs

are analogous to those required to open a facility in a facility location frame-

work. It is assumed that the fixed costs are proportional to the capacity of the

facilities (i.e., higher capacity leads to a higher fixed cost).

2. Variable costs – these costs represent the cost of producing and transporting

material to fulfill customer orders. Note that it is assumed that these variable

costs must be paid whether the material produced is quality product or tainted.

3. Shortage costs – these costs represent the costs that are incurred for each unit

of customer demand is not satisfied (e.g., lost sales). Shortage costs are very

high, as the unavailability of product can cause serious supply chain issues (e.g.,

the unavailability of heparin may result in significant health complications).

4. Cost of tainted material – these costs are incurred when damaged material

reaches the customer. Tainted material costs are very high, as they cause sig-

nificant damage to consumers or the reputation of the company (e.g., damaged

heparin reaching a patient).

5. Inspection cost – this represents the cost of instituting inspection at a supplier

facility. If the decision to inspect products is made, it must be paid whether or

not tainted material is detected at supplier facilities. However, if tainted mate-
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rials are found, most of the materials detected and discarded prior to reaching

the customer.

Since the objective of the problem is to minimize the total expected cost, the

mathematical model must effectively trade off the costs of installing capacity, shorting

customers, shipping tainted materials, and inspecting material against each other.

In the following subsections, notation is defined first, which is followed by the

two-stage stochastic formulation of the Robust Supply Chain Design with Correlated

Failures and Inspection.

2.2.1 Sets and Parameters

• I is the set of customers (i ∈ I).

• L is the set of candidate facility locations (l ∈ L). Included in the set L is a

dummy facility indexed by m (with no fixed cost: fm = 0) which can satisfy all

demand.

• fl is the fixed cost of opening a facility at candidate location l.

• cl is the capacity at candidate location l.

• nl is the fixed cost of inspection at candidate location l.

• bi is the total demand of customer i.

• dil is the per unit cost of satisfying demand from customer i from location l.

• ui is the per unit cost of customer i’s unsatisfied demand (i.e., dim = ui).

• ti is the cost per unit of “tainted” material shipped to customer i.

• S is the set of scenarios (s ∈ S). A scenario is defined as an event where facilities

that belong to a subset J ⊆ L of candidate facility locations that have failed.

It is assumed that plausible S are known in advance.
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– s′ ∈ S represents the scenario where all facilities are working normally.

– ps is the probability of scenario s occurring.

– qls represents the fraction of tainted material produced at facility l under

scenario s (one can also consider this as the probability that an item pro-

duced is tainted). Note that qms = 0, i.e., the dummy facility m never

fails.

– rls represents the fraction of tainted material produced at facility l under

scenario s after inspection, i.e., the proportion of tainted material that is

not detected even after inspection and still reaches the customer. Note

that if inspection is used 100(qls− rls)% of material produced is discarded.

– To make the definitions of qls and rls clearer, consider the following ex-

ample. Suppose that under scenario s, the extent of failures at unreliable

facility l is given by qls = 0.2 and rls = 0.05. This means that for every

100 units of material produced at facility l, 20 of them will be tainted. In

the event of no inspection, all of these 20 tainted units will be shipped to

customers. If inspected, 15 of these 20 tainted units will be detected and

discarded while 5 of them will go undetected and be shipped to customers.

2.2.2 Stochastic Programming Formulation

The following decision variables are defined as part of the formulation:

• xl =


1, if the facility l is opened,

0, otherwise.

• yil ∈ [0, 1] is the proportion of production capacity at facility l assigned to

customer i.

• wil ∈ [0, 1] is the proportion of demand of customer i satisfied by facility l.
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• vil ∈ [0, 1] is the tainted proportion of the demand of customer i supplied by

facility l.

• zl =


1, if inspection is used at facility l,

0, otherwise.

A two-stage stochastic program for making facility location and facility-to-customer

assignments that minimizes overall expected costs can be written as follows:

min
∑
l∈L

flxl + E [Q(x, s̃)] (2.1)

subject to xm = 1 (2.2)

xl ∈ {0, 1}, ∀l ∈ L (2.3)

where
∑

l∈L flxl is the fixed cost of opening facilities. Also, E[·] is the expectation

function taken with respect to random scenario s̃ and Q(x, s̃) is the optimal solution

of the second stage problem:
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min
∑
i∈I

∑
l∈L

bidilwil +
∑
i∈I

biuiwim +
∑
i∈I

∑
l∈L

bitivil +
∑
l∈L

nlzl (2.4)

subject to
∑
i∈I

yil ≤ xl, ∀l ∈ L (2.5)∑
l∈L

wil = 1, ∀i ∈ I (2.6)

biwil ≤ clyil, ∀i ∈ I, l ∈ L (2.7)

biwil ≤ (1− (qls̃ − rls̃))clyil + cl(1− zl), ∀i ∈ I, l ∈ L (2.8)

bivil ≤ qls̃clyil, ∀i ∈ I, l ∈ L (2.9)

bivil ≤ rls̃clyil + qls̃cl(1− zl), ∀i ∈ I, l ∈ L (2.10)

vil ≥ qls̃wil − zl, ∀i ∈ I, l ∈ L (2.11)

vil ≥ rls̃wil − (1− zl), ∀i ∈ I, l ∈ L (2.12)

yil, wil, vil ∈ [0, 1], ∀i ∈ I, l ∈ L (2.13)

zl ∈ {0, 1}, ∀l ∈ L. (2.14)

Here xl are first and yil, wil, vil, and zl are second stage decision variables respec-

tively. Part of the data in the second stage problem depends on random scenario

s̃, which has the discrete distribution Prob{s̃ = s} = ps. Since the set L includes a

dummy facility m (the expected cost of unsatisfied demand is calculated by consid-

ering dummy facility) which can satisfy all the demand and never fails, for every x in

the set {x : xm = 1, xl ∈ {0, 1}, l ∈ L}, the feasible set of the second stage problem

(2.4)-(2.14) is nonempty for all s ∈ S. Therefore, the recourse is relatively complete

(i.e., every possible solution x in the first stage has a feasible completion in the second

stage) and, for any realization s̃ = s, Q(x, s) < ∞. This implies that the following

expectation always exists: E [Q(x, s̃)] =
∑

s∈S psQ(x, s).

The Objective (2.1) in the first stage problem is the sum of fixed cost of opening

facilities and overall expected costs. The first stage Constraint (2.2) ensures that the
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dummy facility with infinite capacity is always open. The other first stage constraint

(2.3) restricts the location variables, xl, to be binary. Given a feasible first stage so-

lution vector x, the Objective (2.4) of the second stage problem for random scenario

s̃ minimizes the sum of the transportation cost (dil), the cost of unsatisfied demand

(ui), the cost of supplying tainted material (ti), and the cost of inspection (zl). Con-

straint (2.5) requires a facility to be open if any portion of customer demand is served

from the facility. In addition, it ensures that the total customer demand (bi) assigned

to any facility (l) cannot exceed the facility’s capacity. Constraint (2.6) requires that

the entire demand of every customer (i) is met, possibly with some portion satis-

fied by the dummy facility m. Constraints (2.7) and (2.8) calculate the amount of

product that is shipped to customer i from facility l to satisfy a customer’s demand.

In particular, if inspection is not implemented, zl = 0 and Constraint (2.8) becomes

inactive. In this case, Constraint (2.7) becomes binding and ensures that the amount

shipped is the proportion of facility l’s capacity dedicated to customer i. However, if

inspection is implemented, zl = 1 and Constraint (2.8) becomes binding. This will ad-

just the amount of product shipped to account for the tainted product that is caught

in inspection and discarded. Constraints (2.9) and (2.10) together trade the amount

of tainted material that is shipped to the customer. Without inspection, Constraint

(2.9) implies that all of the tainted goods will reach the customer. With inspection,

Constraint (2.10) implies that only material passing inspection will be shipped to the

customer. Constraints (2.11) and (2.12) together ensure that the tainted proportion

of the demand of customer i supplied by facility l is higher than total amount of

tainted material send from facility l to customer i, with or without implementing the

inspection. Constraints (2.13) and (2.14) indicate the continuous and binary decision

variables in the second stage.
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Scenario-based Formulation

This part presents the deterministic equivalent (i.e., RSCDCFI) of the formulation

(2.1)-(2.14). Note that the second stage decision variables are now indexed by a

scenario index, s. The objective and constraints are similar to those presented in

Section 2.2.2.

min
∑
l∈L

flxl +
∑
s∈S

ps

(∑
i∈I

∑
l∈L

bidilwils +
∑
i∈I

biuiwims +
∑
i∈I

∑
l∈L

bitivils +
∑
l∈L

nlzls

)
(2.15)

s.t. xm = 1 (2.16)∑
i∈I

yils ≤ xl, ∀l ∈ L, s ∈ S (2.17)∑
l∈L

wils = 1, ∀i ∈ I, s ∈ S (2.18)

biwils ≤ clyils, ∀i ∈ I, l ∈ L, s ∈ S (2.19)

biwils ≤ (1− (qls − rls))clyils + cl(1− zls), ∀i ∈ I, l ∈ L, s ∈ S (2.20)

bivils ≤ qlsclyils, ∀i ∈ I, l ∈ L, s ∈ S (2.21)

bivils ≤ rlsclyils + qlscl(1− zls), ∀i ∈ I, l ∈ L, s ∈ S (2.22)

vils ≥ qlswils − zls, ∀i ∈ I, l ∈ L, s ∈ S (2.23)

vils ≥ rlswils − (1− zls), ∀i ∈ I, l ∈ L, s ∈ S (2.24)

yils, wils, vils ∈ [0, 1], ∀i ∈ I, l ∈ L, s ∈ S (2.25)

zls ∈ {0, 1}, ∀l ∈ L, s ∈ S (2.26)

xl ∈ {0, 1}, ∀l ∈ L (2.27)

2.2.3 Scenario Generation for Correlated Facility Failures

As explained in the introduction, many real-world problems have correlation between

facility failures. Although such correlated failures can have a substantial impact on

the operations of a supply chain, they have not been considered previously. One

straightforward way of accounting for correlation in robust supply chain design is
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to incorporate it into scenario generation. Although there are several other models

which utilize scenario-based approaches that could be adapted to do this [e.g., 19, 31],

they have not explored the effect of this important real-world phenomenon previously.

As mentioned earlier, failure at a first-tier supplier is not absolute. In other words,

after a failure a facility may still be producing materials; some of these will be high-

quality, whereas others will be tainted. It is assumed that main cause of failures is

low-quality raw materials from the second-tier suppliers but the amount of tainted

material produced as a result of failure is ultimately determined by a facility’s internal

quality practices. Therefore, first correlated binary variables to indicate failure must

be generated and then the fractions of tainted products (i.e., the extend of a failure)

must be simulated given that a failure has occurred. This scenario generation method

is comprised of the following two steps, as described in detail below:

1. Simulate correlated binary variables representing whether a facility has failed

or not.

2. If a facility has failed, simulate the fraction tainted of production at that facility.

Step 1: Simulation of Correlated Binary Variables:

In order to simulate correlated failures in Step 1 above, a method described by Qaqish

[45] for generating L binary correlated variables Y1, Y2, . . . , YL is adapted. Here, Yl,

l = 1, 2, . . . , L, is a Bernoulli random variable, which takes the value of 1 if some

portion (not necessarily 100%) of production at facility l is tainted; 0 otherwise.

Qaqish’s method [45] was selected for its flexibility in terms of not requiring equal

marginal means and allowing unpatterned correlation and its computational efficiency.

Qaqish’s method [45] requires two inputs: a marginal mean vector, and a correlation

matrix.

It is assumed that marginal mean of facility l, denoted by µl, represents the long-

run percentage that some fraction of its production is tainted. In order words, a high
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marginal mean implies that a facility has low quality standards therefore frequently

produces tainted materials. It is also assumed that the marginal means are available

through historical data and expert knowledge.
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Figure 2.1: Two-tier supply supply chain.

Motivated by the heparin example, a two-tier supply chain is assumed in order

to obtain the correlation matrix (see Figure 2.1). The facilities (e.g., heparin man-

ufacturers) represent the first-tier and the raw material suppliers (e.g., pig farms)

represent the second-tier. Correlation between two facilities is determined by a sim-

ple ratio of number of common raw material suppliers that they share to the total

number of raw material suppliers that they use. As an example, consider the two-tier

supply chain in Table 2.1 and its corresponding correlation matrix in Table 2.2. If

a facility works with a particular raw material supplier, the corresponding entry in

Table 2.1 is 1; 0 otherwise. For instance, according to this simple approach for cal-
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culating correlation, the correlation between Facility A and Facility B is 6/8 = 0.75

since there are six common raw material suppliers that both facilities work with and

the total number of raw material suppliers used by either of the two facilities is eight.

Despite its simplicity, this formula is reasonable for many real-world situations, where

facilities prefer working with raw material suppliers that are geographically close and

a natural disaster or a pandemic can affect many neighboring raw material suppliers

simultaneously.

Table 2.1: Example of a two-tier supply chain.

Raw Material Suppliers Facility A Facility B Facility C Facility D Facility E
1 0 0 1 1 0
2 1 1 1 1 0
3 1 1 1 0 1
4 1 0 0 1 0
5 0 0 0 1 1
6 1 1 1 0 0
7 1 1 0 0 0
8 1 1 0 0 0
9 1 0 1 0 0
10 1 1 0 0 1

Table 2.2: Correlation matrix of the two-tier supply chain in Table
A B C D E

A 1 0.750 0.444 0.200 0.222
B 0.750 1 0.375 0.111 0.286
C 0.444 0.375 1 0.285 0.143
D 0.200 0.111 0.285 1 0.167
E 0.222 0.286 0.143 0.167 1

Given the marginal means and correlation matrix, Qaqish [45] describes an efficient

procedure to calculate conditional probabilities Prob{Yl = 1|Xl = xl}, l = 2, 3, . . . , L,

where Xl ≡ [Y1, Y2, . . . , Yl−1]T. Using these conditional probabilities, the Bernoulli

random variables Y1, Y2, . . . , YL representing facility failures can be easily simulated.
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Step 2: Simulation of Tainted Production at Failed Facilities:

Let Ql be a random variable representing the fraction of tainted material produced at

facility l. When Yl = 0 (i.e., facility l is operating under normal conditions), the value

of Ql is also zero, which means that facility l produces 100% high quality material.

However, when Yl = 1 (facility l has failed), facility l produces tainted material, the

quantity of which is determined by random variable Tl having a known cumulative

density function (CDF) Fl with support [0, 1]. Therefore,

Ql = Yl × Tl (2.28)

It is assumed that the CDF Fl of random variable Tl can be obtained from historical

data, quality inspections, and expert knowledge.

Here Rl denotes the random variable representing the fraction of tainted material

produced at facility l after inspection. It is assumed that Rl is a function of Ql:

Rl = gl(Ql) (2.29)

Figure 2.2 gives an outline of the scenario generation procedure for correlated

facility failures.

INPUTS
• Marginal means
• Correlation matrix
• Cdf for tainted production

QAQISH’S METHOD
• Calculate conditional 

probabilities for facilities

SCENARIO GENERATION
For each scenario:
• Step 1: Simulate correlated binary 

variables representing facility failures
• Step 2: Simulate tainted production at 

failed facilities.

Figure 2.2: Outline of scenario generation procedure for correlated facility failures.

29



2.2.4 Solution Methodology

RSCDCFI is a two-stage mixed-binary stochastic program. To solve it, the integer

L-shaped method for stochastic integer programs developed by Laporte and Louveaux

[46] is used. It is a general branch-and-cut procedure similar to the well-known L-

shaped method for classical two-stage linear stochastic programs developed by Slyke

and Wets [47], but it allows first stage decision variable to be binary and the second

stage decision variables to be discrete or continuous. In numerical experiments, it was

observed that the running time of the integer L-shaped method increases dramatically

as the number of candidate facility locations increases. To improve solution time, the

improved optimality cuts described by Laporte and Louveaux [46] are implemented.

Even though improved optimality cuts reduced the solution time, it is believed that

the recently proposed integer stochastic programming algorithms [e.g., 48, 49, 50,

51] may better be able to solve large-scale instances of RSCDCFI, and should be

considered in future research. The objective in this dissertation is to gain insights

about how key parameters (e.g., capacity, correlation, inspection) impact the solutions

and the expected total cost of these solutions. The ability to solve large-scale instances

is left for future study.

2.3 Computational Experiments

In this section, several computational experiments are conducted to gain insights

into the effect of capacity, correlation, and inspection on supplier selection and total

cost. A workstation with two 3.066 GHz Quad-Core Intel Xeon processors and 32 GB

memory is used to run all experiments. Both the scenario generation procedure (see

Section 2.2.3) and the integer L-shaped method (see Section 2.2.4) are implemented

in Python. Gurobi Optimizer 4.5.1 is used to solve both the master and subproblem

in the the integer L-shaped method.

In the experimental design, six US cities listed in Table 2.3 consider as candidate
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facility locations and the capitals of all continental US states as customers. Al-

though it could be argued that it would have been preferable to apply the model (i.e.,

RSCDCFI) to a large-scale realistic supply chain design problem, the main goal in

this dissertation is to clearly show the effect of supplier correlation and inspection on

supplier selection, transportation, and inspection strategies. As a result, a small but

nontrivial example is used. A relatively large number of scenarios are also considered

to capture the effect of correlated random supplier failures. Specifically, 500 scenarios

are considered while large-scale examples of two-stage stochastic mixed-binary pro-

grams reported recently use only up to 100 scenarios [50, 51, 52]. The deterministic

equivalent of the proposed two-stage stochastic mixed-binary with random recourse

model includes 432,000 continuous variables, 3,006 binary variables and 1,326,007

constraints.

150 points were randomly generated in the US as locations of raw material suppli-

ers. If a raw material supplier falls within a pre-specified distance from a particular

facility, it is assumed that raw material supplier is assigned to that facility (see Figure

2.3); further details are discussed below.

Facility Location
1 Seattle
2 Los Angeles
3 Denver
4 Chicago
5 Atlanta
6 Boston

Table 2.3: Candidate facility locations.
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Figure 2.3: Candidate facility locations, raw material supplier locations, and cus-
tomers.

In computational experiments, the following factors are varied to study the effect

of capacity, supplier quality, correlation, and inspection on supplier selection and total

cost:

a) Radius of circular regions centered at candidate facility locations.

The circular regions shown in Figure 2.3 are used to determine the raw material

suppliers of a facility. As the radius of the circles increase, facilities will share

larger numbers of common raw material suppliers. This implies that larger

radii result in higher correlation (recall the simple correlation formula defined
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in Section 2.2.3). Three different radii are used as shown in Figure 2.3. The

resulting correlation matrices are shown in Tables 2.4, 2.5, and 2.6.

Table 2.4: Correlation matrix (radius = 5).
R = 5 facility 1 facility 2 facility 3 facility 4 facility 5 facility 6

facility 1 1 0 0 0 0 0
facility 2 0 1 0 0 0 0
facility 3 0 0 1 0 0 0
facility 4 0 0 0 1 0 0
facility 5 0 0 0 0 1 0
facility 6 0 0 0 0 0 1

Table 2.5: Correlation matrix (radius = 9).
R = 9 facility 1 facility 2 facility 3 facility 4 facility 5 facility 6

facility 1 1 0.19 0.08 0 0 0
facility 2 0.19 1 0.27 0 0 0
facility 3 0.08 0.27 1 0.13 0.01 0
facility 4 0 0 0.13 1 0.44 0.14
facility 5 0 0 0.01 0.44 1 0.17
facility 6 0 0 0 0.14 0.17 1

Table 2.6: Correlation matrix (radius = 12).
R = 12 facility 1 facility 2 facility 3 facility 4 facility 5 facility 6

facility 1 1 0.45 0.28 0 0 0
facility 2 0.45 1 0.37 0 0 0
facility 3 0.28 0.37 1 0.28 0.13 0
facility 4 0 0 0.28 1 0.66 0.34
facility 5 0 0 0.13 0.66 1 0.39
facility 6 0 0 0 0.34 0.39 1

b) Marginal means of failure.

As mentioned above, the marginal mean of a facility represents the long-run

percentage that some fraction of its production will be tainted. Thus, a high

33



marginal mean implies that a facility has low quality standards, and vice versa.

Two cases for marginal means are considered as shown in Table 2.7. In Case

1, the means of failure for facilities over the range [0.015, 0.06] were arbitrarily

selected. In Case 2, the marginal means for all facilities are set to 0.02.

Table 2.7: Cases for marginal means of facility failures.
µ1 µ2 µ3 µ4 µ5 µ6

Case 1 0.025 0.02 0.015 0.06 0.05 0.015
Case 2 0.02 0.02 0.02 0.02 0.02 0.02

c) Capacity of candidate facilities.

48 random demands were generated over the range of [100, 300] and assigned

these demands to customers based on their population. The same demands

were used for all experiments.

Four cases for facility capacities were considered as shown in Table 2.8. In all

four cases, the capacity of all candidate facilities (cl) are equal for all locations

l. In Case 1, the total capacity is equal to the total demand. In Cases 2, 3

and 4, the total capacity is 5% , 30%, and 80% higher than the total demand,

respectively.

Table 2.8: Facility Capacities.
Description Capacity (cl)

Case 1 capacity = demand 1,608
Case 2 capacity = (1.05) demand 1,688
Case 3 capacity = (1.30) demand 2,090
Case 4 capacity = (1.80) demand 2,894

d) Availability of inspection option.

To study the benefits of the inspection option, two cases are considered. In the

first case, inspection is not an option. That is, all second stage variables zls (see
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Section 2.2.2) are set to zero so that inspection is not implemented anywhere

in the supply chain. In the second case, the regular stochastic programming

formulation (2.15)-(2.27) is used when optimizing the inspection decisions.

Aside from the factors listed above, it is assumed the values of other parameters

in the experiments were fixed. These fixed values are given below.

• Fixed cost of opening a facility. Clearly fixed cost of opening a facility depends

both on its marginal mean of failure (i.e., quality level) and capacity. Since the

facility capacities are set to be equal to each other in all experiments, the fixed

cost of a facility by the following simple function of marginal mean:

f = 1, 150, 000− 7, 500, 000µ (2.30)

The fixed cost is further adjusted according to the capacity. For example, if the

capacity of a facility is increased by 30%, its fixed cost is also increased 30%.

• Cost of inspection. Inspection cost is assumed to be $100,000 for each facility

if inspection is instituted.

• Transportation cost. There are 48 × 6 arcs in the supply chain from each facility

to each customer. 48 × 6 random transportations costs were generated over the

range [$100, $1,000] and assigned to arcs based on the geographical distances.

• Cost of unsatisfied demand. The per unit cost of unsatisfied demand is $1,000,000

for all customers.

• Cost of shipping tainted materials. The cost per unit of tainted material shipped

to customers is sampled from a uniform distribution over the range [$10,000,

$20,000].
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• Tainted Production at Failed Facilities. In the numerical experiments (see Sec-

tion 2.3), Tl for all facilities, l = 1, 2, . . . , L, is assumed to be a discrete random

variable with the following probability mass function:

Tl =


0.2, with probability 0.2

0.3, with probability 0.5

0.4, with probability 0.3

Furthermore, it is assumed here that there is a simple linear relationship between

Rl and Ql:

Rl = 0.05×Ql,

which means that inspection is able to detect 95% of tainted materials while

5% of tainted materials go undetected.

• Number of scenarios. In all experiments, 500 scenarios are used.

2.3.1 Effect of Capacity

As described above, fixed cost of opening a facility is proportional to its capacity.

Figure 2.4 shows the effect of capacity on expected total cost and expected cost of

shipped tainted materials. As expected, it was observed that higher capacity levels for

each facility result in fewer opened facilities. As can be seen from Figure 2.4(b), the

less redundant capacity there is with respect to total demand, the higher the expected

cost of tainted material is. In the extreme case when available capacity equals demand,

tainted material is shipped to satisfy demand since the cost of unsatisfied demand

is higher than that of shipping tainted material. Even a small increase in capacity

(e.g., 5% more than total demand) results in a substantial reduction in the expected

cost of shipped tainted materials. The same trend can be observed for expected total

cost in Figure 2.4(a) when capacity is 5% and 30% higher than the total demand.
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Figure 2.4: Effect of capacity on (a) expected total cost and (b) expected cost of
shipped tainted materials. Radius determines the level of correlation: radius = 5
represents no correlation, radius = 9 medium correlation, and radius = 12 high cor-
relation. In the experiments, the marginal mean of failure is 0.02 for all facilities.

However, when capacity increased 80% with respect to total demand, it results in

the highest expected total cost in all four cases. This is because it is cheaper to

have a modest amount of excess capacity but implement inspection than it is to

have a substantial amount of excess capacity. Beyond a certain point, the fixed

cost paid for extra capacity outweighs the savings from the tainted material cost.

In conclusion, investing in a small amount of redundant capacity while instituting

inspection may reduce the cost of shipping tainted materials substantially in the face

of facility failures.

2.3.2 Effect of Correlation

In order to understand the effect of correlation in facility failures on the design of

a supply chain, several failure scenarios with different levels of correlation were gen-

erated using the scenario generation method described in Section 2.2.3. Recall that

smaller radii imply that the generated failures have little or no correlation between

suppliers, whereas larger radii cause facilities to share raw material suppliers and,

hence, have correlated failures.

Figures 2.5(a) and 2.5(b) show that higher correlation results in both higher ex-
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Figure 2.5: Effect of correlation on (a) expected total cost and (b) expected cost
of shipped tainted materials. Radius determines the level of correlation: radius =
5 represents no correlation, radius = 9 medium correlation, and radius = 12 high
correlation. In the experiments, the marginal mean vector of facility failures is set to
[0.025 0.02 0.015 0.06 0.05 0.015] .

pected total cost and expected cost of shipped tainted materials. One interesting

observation is that even though the same marginal mean vector is used in these ex-

periments, highly correlated facility failures always lead to higher cost solutions than

independent failures (e.g., in Figure 2.3 when radius is 5, the facility failures are es-

sentially independent; compare to the case when radius is 12 where correlation is very

high). In addition, high correlation may lead to different facilities being opened. For

example, in the experiments with capacity 30% more than the demand, while facility

2 was closed in the optimal solutions when radius is 5 and 9, it was open when radius

is 12. A simple explanation for this observation is that more facilities are opened to

hedge against the risk of shortage/supply failure when the correlation is high. Hence,

it is crucial to take correlations into accounts when designing a supply chain since

they may lead to substantially different decisions and higher costs, especially when

the correlation is high.

This has important design implications. Models traditionally assume that the fail-

ures of facilities are independent. In practice, this is not always true for the reasons

described in Section 2.1. However, ignoring this correlation can both underestimate

the cost of the solutions obtained and alter the characteristics of the solutions them-
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selves. For this reason, it is critical to account for the correlation of facility failures

when determining which facilities to open.

2.3.3 Effect of Inspection

Previous work on facility location under uncertainty has not considered widely the

operational level decision of whether or not inspection should be instituted at a facil-

ity in the face of failure [12]. In order to understand benefits of inspection, two cases

are compared. In the first case, inspection is not available. That is; all second stage

variables zls (see Section 2.2.2) are set to zero so that inspection is not implemented

anywhere in the supply chain. In the second case, the regular stochastic program-

ming formulation (2.15)-(2.27) is used and optimized the operational level inspection

decisions after a random failure scenario is realized.

Figures 2.6 and 2.7 clearly show that inspection of goods in the face of failures

substantially reduces expected total cost and expected cost of shipped tainted ma-

terials. When capacity is equal to the total demand (i.e., capacity=0%), inspection

is not instituted under any scenario (see Figures 2.6(a) and 2.6(b)). This is because

inspection discards a certain portion of the tainted materials and high cost of unsat-

isfied demand prevents this when there is no extra capacity. Therefore, inspection is

effective only when there is redundant capacity.

As can be seen from Figures 2.7(a) and 2.7(b)), inspection is also effective in

reducing costs at different levels of correlation in facility failures.

2.4 Conclusions

In this chapter, a two-stage stochastic model was developed to study the problem

of supply chain design with unreliable suppliers, correlated failures, and the option

to inspect. Computational results suggest that inspection of goods is critical, as it

is much cheaper to inspect and discard tainted material than it is to ship damaged
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Figure 2.6: Effect of inspection option on (a) expected total cost and (b) ex-
pected cost of shipped tainted materials. In the experiments, radius of facil-
ity circles is set to 9 and the marginal mean vector of facility failures is set to
[0.025 0.02 0.015 0.06 0.05 0.015] while capacity is varied.
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Figure 2.7: Effect of inspection on (a) expected total cost and (b) expected cost
of shipped tainted materials. In the experiments, capacity is set to 30% more
than the total demand and the marginal mean vector of facility failures is set to
[0.025 0.02 0.015 0.06 0.05 0.015] while radius of facility circles is varied.
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goods to the customer. Further, the results show that when the failure of suppliers is

correlated with each other, the total expected cost of supply chain increases relative

to cases when the failures are independent. Furthermore, correlated failures can alter

the structure of the solutions that are obtained. The numerical experiments show

that more facilities are required to hedge against the risk of shortage/supply failure

when the correlation is high.

The computational results also indicate that installing redundant capacity is ben-

eficial so that, in the case of disruption, inspection can be instituted to detect and

discard a large portion of tainted materials while customers are still able to satisfy

their demand. However, redundant capacity can be costly to install – as a result,

there is a tradeoff between obtaining enough redundant capacity to recover from

supply disruptions, but not too much so that costly capacity goes unused.

In Chapter 3, a multi-objective genetic algorithm will be developed and discussed

in details. This algorithm can be easily simplified to handle single objective problem

of this chapter for large scale examples.
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CHAPTER 3. A MULTI-OBJECTIVE APPROACH FOR

DESIGNING A ROBUST SUPPLY CHAIN

Abstract

In this chapter, a multi-objective stochastic model is developed to explore the trade-

offs between costs and risk in the supply chain in the event a disruption occurs.

Operating cost, unsatisfied cost, tainted and inspection cost are explicitly consid-

ered as three conflicting goals to be minimized simultaneously. The first objective

(operational cost), minimizes the supply chain configuration cost under normal cir-

cumstances without disruptions or failures. The second and third objective minimize

the effect of disruption in quantity and quality aspect. Different scenarios for failures

of the suppliers are considered and their effect on supplier selection, transportation,

unsatisfied demand, tainted materials and inspection strategies is examined. Since

this is a NP-hard problem, multiple Pareto optimal solutions are generated by us-

ing a genetic algorithm, in which data envelopment analysis is used to calculate the

fitness value of supply chain configurations. The proposed hybrid approach removes

dominated solutions and yields desirable efficient frontiers.

3.1 Introduction and motivation

A supply chain is a network of suppliers, production centers, warehouses, and distri-

bution centers. It is through supply chains that raw materials are acquired, trans-

formed, produced, and delivered to the customer [1]. The performance of a supply

chain is dependent on the performance of each component in the network, and the

ability of those components to be organized and integrated. Due to the complicated

interrelations and interactions between a highly diverse set of suppliers, production

centers, distribution centers, and customers, supply chains are subject to variety of
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risk factors. Coordination between those entities is typically an important and dif-

ficult activity. A relatively small disruption and failure in one component can lead

to a massive negative impact across the entire network. Disruption is an unfore-

seen and often sudden event that brings about damage, loss, and destruction to life

and property. Common causes of supply chain disruption include natural disasters,

production problems, accidents, labor availability, terrorist attacks, unexpected and

sudden shocks, political/economic disasters, and war. Snyder and Daskin [53] listed

some actual cases of supply chain disruptions which occurred from 2002 to 2005. For

example, in 2005, Hurricane Katrina in the U.S. Gulf Coast region in created a se-

rious impact on all levels of supply chains across different industries and companies.

Affected industries included coffee production, oil refining, lumber storage, banana

imports, groceries, and retail.

This dissertation is motivated by several real supply chain failures. Heparin, a

widely used anticoagulant, is produced from the mucosal tissue of pigs. In 2008,

when blue ear pig disease swept through China, tainted heparin was produced and

distributed. Contaminated heparin caused 81 deaths and several allergic reactions

in the United States and around the world. Thereafter, further testing and product

recalls of heparin have occurred on order of the U.S. Food and Drug Administration

(FDA) [4]. In addition, in 2008, infant formula was contaminated with melamine in

China. China’s Administration of Quality Supervision, Inspection and Quarantine

(AQSIQ) investigated the issue involving 154 manufacturers. Melamine contamina-

tion had been found in 13% of the sampled manufacturers [54]. Tainted milk impacted

over three dozen countries. Thousands of victims (humans, cats, and dogs) fell ill or

were killed by the chemical melamine [55, 56].

Furthermore, in Japan, the March 11, 2011 earthquake (magnitude 9.0) and sub-

sequent tsunami, nuclear crisis, and infrastructure damage created a significant influ-

ence on many companies. Disrupted supply chains affected a broad range of manufac-

43



turing industries such as car manufacturing, consumer electronics, and data process-

ing [2]. Automotive companies such as Honda, Toyota, and Nissan had to shut down

production upon being faced with lack of component availability. For example, the

Toyota factory in Japan (which makes approximately half the vehicles that Toyota

sells worldwide [3]) was closed for a while after the earthquake. In another instance,

thirty five Nissan suppliers were disrupted by this natural phenomenon. Also, 60%

of the world’s silicon wafers are supplied by Japan [2]. Silicon wafers are applied in

electronic circuit manufacturing and used in many micro devices. The occurrence

of Janpan’s earthquake and tsunami led to serious damage in silicon manufacturing.

Clearly, lack of necessary materials creates serious issues for global manufacturing.

Motivated by these cases, in this dissertation, two types of supply chain disruptions

are considered. The first type of disruption is one that leads to a quality problem

with the product (see the heparin or contaminated milk examples above for more

clarification). Failure in this context is a function of low-quality raw materials that

a facility receives and consequently that facility will produce some materials that are

tainted. The second type of disruption is one that affects the quantity (availability)

of the product (see the car manufacturing or silicon wafer examples above for more

clarification).

Considering these cases, supplier sourcing in two-tiered supply chain is examined.

First-tier suppliers are those who produce a product from raw materials. Second-tier

suppliers are those who produce the raw materials for the first-tier suppliers. For in-

stance, in the heparin example, pig farmers are second-tier suppliers who produce raw

materials for first-tier suppliers, which would include pharmaceutical companies such

as Baxter or APP. Here, customers are assumed to be group purchase organizations.

“Opening a facility” in this model is equivalent to entering a long-term contractual

agreement with a first-tier supplier in order to satisfy the required demand.

Motivated by these cases, this dissertation considers correlated supplier failures.
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For example, in the heparin outbreak, the second-tier suppliers were affected region-

ally by blue ear pig disease. As a result, more than 12 Chinese first-tier suppliers

produced and distributed tainted heparin around the world. A similar correlated fail-

ure pattern was seen in other cases. Inclement weather, economic instability, riots,

agitation, political unrest, and strikes are other reasons that can cause supplier fail-

ure in a region. Previous research [42, 43] indicates that correlation among facilities

has important impact on the solution and cost. The results presented in Chapter 2

suggest that higher correlation leads to both higher expected total cost and cost of

shipped tainted materials. Moreover, correlated failure can modify the structure of

the solution.

Motivated by the heparin outbreak and tainted milk cases, this dissertation in-

tegrates supply chain design decisions (strategic decisions) with inspection decisions

(tactical decisions). For example, in the heparin outbreak, if there had been a proper

inspection, tainted heparin would have been detected before reaching customers. Both

strategic supply chain design and tactical inspection decision are important to ensure

availability and quality in supply chains to mitigate disruption impacts. There is a

rich literature [e.g., 57, 14, 15] on inspection decisions in supply chain. For example,

Rosenkrantz et al. [57] study the placement of inspection stations on networks (such as

transportation and communication). They use two different optimization objectives.

In the first optimization problem, the objective is to minimize the maximum interval

between two successive inspection stations along the path. In the second category, the

objective is to minimize the total cost which includes inspection cost and expected

penalty cost. A polynomial time algorithm and fully polynomial approximation are

presented for analyzing the results.

There are variety of approaches for optimization multi-objective decision-making

under uncertainty in supply chain management. For example, Azaron et al. [58] con-

sider several uncertain parameters (such as demands, supplies, processing, transporta-
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tion, shortage and capacity expansion costs) and develop a multi-objective stochastic

programming model. The objective is to minimize the variance of the total cost,

and the probability of not meeting a certain budget. A goal attainment technique is

used to obtain the Pareto-optimal solutions. Guillen et al. [59] construct a two-stage

stochastic model to illustrate uncertainty in the production scenario. Three objec-

tives (net present value, demand satisfaction and financial risk) are considered and

trade-off between the objectives (Pareto curve) obtained by applying the ε-constraint

method. Liu and Nagurney [60] investigate the influence of foreign exchange rate

as one of the main uncertainty on supply chain firms who are involved in offshore-

outsourcing activities. They develop a series of simulation to analyze different risk

attitudes considering outsourcing and pricing decisions. Franca et al. [61] examine

tradeoffs between quality and profit in the multi-objective stochastic modeling frame-

work. A Monte Carlo sampling is used to generate the demand scenarios according to

a normal distribution. Financial risk is analyzed considering six sigma measures and

finally, a set of Pareto efficient solutions is evaluated. Sabri and Beamon [62] present

a multi-objective decision analysis to evaluate cost, customer service levels, and fex-

ibility in supply chain. They consider production, delivery, and demand uncertainty

and provide a performance measure to assess network. Matisziw et al. [63] develop a

multi-objective linear-integer spatial model to optimize network restoration strategies

during disaster recovery. Two objectives (system cost and system flow) are considered

and trade-off between the objectives obtained by using the weighting method.

A related branch of literature studies disruption risk in supply chain. For a re-

search overview in this area, the reader is refereed to study Snyder and Daskin [53]

and Snyder et al. [64]. Snyder and Daskin [28] develop reliability models based on

the P-median problem and fixed charge problem. All facility locations are subject

to random disruptions with identical failure probabilities. Models minimize facility

location cost and expected transportation cost after failures of facilities. Both mod-
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els are solved using Lagrangian relaxation and a trade-off curve between operating

cost and expected failure cost is generated. Qi et al. [65] present a continuous-review

inventory problem for a retailer who faces random disruptions both internally and

externally. They prove that the cost function is quasi-convex and can therefore be

efficiently optimized using standard numerical algorithms. Cui et al. [29] use a mixed

integer program formulation and a continuum approximation model to study the re-

liable uncapacitated fixed charge location problem (RUFL). They use Lagrangian

relaxation algorithm and heuristic approach to find near-optimum solutions. Qi et al.

[66] consider a nonlinear integer programming model to evaluate the impact of ran-

dom supply disruptions at the suppliers and retailers side on the retailer location and

customer demand allocation decisions. An approximation of the objective function

of this model is used to make the model easier to analyze and to solve. Matisziw

et al. [67] investigate the sensitivity of network robustness to the network nodes’ level

of interaction. A mathematical programming model is developed to identify bounds

on robustness to arc deletion. Serrano et al. [68] develop a non-dominated sorting

genetic algorithm to minimize the impact of supply chain disruption. Disruption is

considered by scenarios as unavailabilty of supply side and inaccessibility of path to

transport the product. Cost, risk and the place of facilities supporting the supply

chain recuperation are considered as different objectives to evaluate algorithm.

The single objective optimization model (2.15)-(2.27) described in Chapter 2 is

extend to include a multi-objective two-stage stochastic programming formulation

that models disruptions in the supply chain. In Chapter 2, all the expected costs

are combined as a single objective to obtain best set of suppliers to use and decide

whether or not to inspect their products. In reality, however, the nature of this de-

cision is multi-objective. For ensuring to have a successful result, each objectives

need to be considered separately. Therefore in this dissertation, the multi-objective

model is solved to obtain an acceptable tradeoff between supply chain configuration
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cost and risk. Operating cost, unsatisfied cost, tainted and inspection cost are explic-

itly considered as three conflicting goals that have to be minimized simultaneously.

Designing a robust supply chain considering all objectives can reduce the significant

portion of the costs associated with risk of failure. An effective supply chain not only

bring the direct cost of providing customer service down, but it also offer a number of

other significant benefits, such as ensuring high quality, high availability, increasing

options, and increasing responsiveness.

The proposed model is a multi-objective stochastic mixed-binary model. The

model can quickly become intractable for large-scale supply chain since the number

of scenarios increases exponentially as the number of candidate facility locations in-

creases. The main problem with the model is having lots of variables, one for each

scenario which is computationally intractable by increasing the scales of the problem.

Exact solution approaches (that guarantee a provably optimal solution) such as Inte-

ger L-Shaped method are not able to solve the single objective version of this problem

for more than ten suppliers (see Chapter 2). Approaches based on metaheuristic al-

gorithms, such as Genetic Algorithm (GA), promising alternatives to reduce the high

complexity and difficulty of optimization problems under uncertainty. Metaheuristics

can search very large spaces of feasible region to find good solutions in a generally

smaller computation time. However, there is no guarantee that the solution is optimal

[69].

In the solution methodology, multiple Pareto-optimal solutions are generated by

using a Genetic Algorithm, in which Data Envelopment Analysis (DEA) is used to cal-

culate the fitness value of supply chain configurations. In the numerical experiments,

it is observed that proposed hybrid approach removes dominated solutions and yields

desirable efficient frontiers faster than methods based only on GA. A short descrip-

tion of the improved genetic algorithm using data envelopment analysis is described

below.
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Genetic Algorithm. A Genetic Algorithm is an iterative algorithm inspired

by biological process of natural selection [70]. The search technique starts with a

randomly generated population of feasible solutions; each member of the population

is equated to a chromosome and represents a possible solution of the optimization

problem. In each iteration, the fitness of each chromosome is evaluated with respect

to the objective function. For creating the next generation, the current generation

will be modified using crossover or mutation operator. The new generation is then

a combination of the initial generation and modified chromosomes considering the

fact that chromosomes with the higher fitness value have the higher chance of being

selected. The iterations will be continued until the termination condition is satisfied.

Data Envelopment Analysis. Data envelopment analysis (DEA) is a power-

ful non-parametric, linear programming technique to measure the relative efficiency

frontier of decision making units (DMUs). The inefficient DMUs are projected onto

the best practice frontiers to increase the efficiency of inefficient DMUs [71]. DEA

can handle multiple inputs and multiple outputs even with different units. Seiford

and Zhu [72] study a DEA model, in the context of undesirable factors. Desirable

factors should increase while undesirable factors should decrease. They propose an

approach for case where some inputs (outputs) are undesirable and all outputs (in-

puts) are desirable. Hadi-Vencheh et al. [73] extend the DEA model described in

Seiford and Zhu [72] and propose a model considering both of the undesirable fac-

tors (inputs/outputs). Bian [74] presents a weighted additive DEA model to evaluate

efficiencies without requiring user specified direction vector or any data transforma-

tion. Also, their model is designed for any type of desirable/undesirable inputs and

outputs.

Integration of GA and DEA. The research on combining GA with DEA

to solve multi-objective problems is very limited. Yun et al. [75] propose a hybrid

GA and DEA method for generating efficient frontiers in multi objective optimiza-
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tion problems. Whittaker et al. [76] develope a hybrid genetic algorithm considering

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for calculating the multiple

objective Pareto optimal set and activity analysis (or a proper DEA model) as a local

search method. Li et al. [77] propose a two-stage method for solving multiple ob-

jective system reliability optimization problems. An improved version of NSGA-II is

used to identify the Pareto optimal solutions. Then, a self-organizing map is applied

to classify optimal Pareto solutions into several clusters. Also, they use DEA method

to reduce the size of Pareto optimal set in each cluster. Wang et al. [78] propose an

approach based on GA and DEA to solve multi-stage distribution network expansion

planning problems. Lin et al. [79] propose a framework for multi-objective simulation

optimization that combine GA and DEA used to evaluate the simulation results.

This dissertation provides a number of important insights and contributions to

the literature. First, a multi-objective stochastic model is developed to explore the

tradeoffs between costs and risk in the supply chain. It is important to consider these

objectives simultaneously to gain a better understanding of disruption effects in the

supply chain. Second, this dissertation integrates the supply chain design decision

(strategic decision) with inspection decision (tactical decision). Both strategic supply

chain design and tactical inspection decision are important to ensure availability and

quality in supply chains in order to mitigate disruption impacts. Third, this research

considers correlated supplier failures. An approach is adapted to generate correlated

binary variables to indicate disruptions, and then, simulate the fractions of tainted

products where disruptions occur. Fourth, two types of disruption are considered

in the model. The first type of disruption is one that leads to a quality problem

of the product (low-quality raw materials that a facility receives). This helps us

to develop insights about tainted cost and inspection policy. The quality failures

are simulated by considering the supplier’s correlation. The disruptions that affect

the quantity (availability) of the product are considered to be the second type of
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disruption. This helps us to develop insights about capacity and unsatisfied demand.

Finally, a powerful hybrid genetic algorithm is developed, in which data envelopment

analysis is used to calculate the fitness value of supply chain configurations to solve

the multi-objective stochastic model. In addition, several modifications of the genetic

algorithm are proposed. For example, scenario subsampling is considered to evaluate

offspring and a simulated annealing approach is used to re-evaluate the acceptance of

candidate chromosome. These modifications help to accelerate the GA search process

and enhance the search of the feasible region.

The remainder of this Chapter is organized as follows. In Section 3.2, a multi-

objective supply chain design model is formulated and a disruption scenario genera-

tion approach is discussed. In Section 3.3, a hybrid metaheuristic solution approach

is proposed which is based on Data Envelopment Analysis and a Genetic Algorithm.

Computational results are presented in Section 3.4. Finally in Section 3.5, the findings

are summarized.

3.2 A Multi-objective supply chain model

As mentioned previously, the single objective optimization model described in Chap-

ter 2 is extended and a multi-objective optimization model is developed to produce

trade-off curves between different types of risks/objectives, with a primary focus on

understanding the tradeoff between risk and cost. In this chapter, a supplier sourcing

in two-tiered supply chains is considered. First-tier suppliers are those who produce

a product from raw materials and second-tier suppliers are those who produce the

raw materials for the first-tier suppliers. Also, customers are assumed to be group

purchase organizations and “opening a facility” in equates to entering into a long-

term contractual agreement with a first-tier supplier. The model determines which

subset of a set of candidate locations L should be opened to satisfy the demand of a

set of customers in the event of a disruption. It is assumed that each of the selected
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locations can fail and multiple failures may occur simultaneously.

Two types of disruption are considered: failures that affect the quantity of the

products and failures that affect the quality of the products. The quality failures

are simulated by considering the suppliers’ correlation. Also, it is assumed that once

a supplier fails, it can still continue supplying products with an additional cost of

safety tests/quality control measures. Details of the scenario generation process for

disruption are described in Section 3.2.2.

Moreover, the option to inspect is integrated in the model. Disruption directly

affects the quality of products. The quality of products can be improved by consid-

ering inspection of the units received from the suppliers. Especially in cases such as

pharmaceutical supply chains, inspection is critical in ensuring that only high-quality

drugs are distributed to patients.

“Operating cost”, “unsatisfied cost” , and “tainted and inspection cost” are explic-

itly considered as three conflicting goals that have to be minimized simultaneously.

The first objective (operational cost) minimizes the supply chain configuration cost

under normal circumstances without disruptions or failures. While, the second and

third objectives attempt to minimize the effect of disruption in quantity and quality

aspect. It is important to consider these objectives simultaneously to gain a better

understanding of disruption in the supply chain.

It is assumed that if demand of customer i is not satisfied, a per unit penalty ui is

assessed for the unmet demand of customer i. In some cases, it may be less expensive

to pay a penalty than to assign a customer to the facility. This is modeled using a

dummy “emergency facility”, m, which has no fixed cost to be opened and never fails.

Note that the emergency facility m is included in the set of candidate locations L.

The transportation cost dim is simply the penalty for unsatisfied demand, ui.

Model notation:

• I is the set of customers (i ∈ I).
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• L is the set of candidate facility locations (l ∈ L). Included in the set L is a

dummy facility indexed by m (with no fixed cost: fm = 0) which can satisfy all

demand.

• fl is the fixed cost of opening a facility at candidate location l.

• cl is the capacity at candidate location l.

• nl is the fixed cost of inspection at candidate location l.

• bi is the total demand of customer i.

• dil is the per unit cost of satisfying demand from customer i from location l.

• ui is the per unit cost of customer i’s unsatisfied demand (i.e., dim = ui).

• ti is the cost per unit of “tainted” material shipped to customer i.

• S is the set of scenarios, indexed by s. A scenario is defined as an event where

facilities that belong in a subset J ⊂ L candidate facility locations have failed,

and facilities that belong in the set L\J have not failed.

– ps is the probability of scenario s occurring.

– qls represents the fraction of tainted material produced at facility l under

scenario s (one can also consider this as the probability that an item pro-

duced is tainted). Note that qms = 0, i.e., the dummy facility m never

fails.

– rls represents the fraction of tainted material produced at facility l under

scenario s after inspection, i.e., the proportion of tainted material that is

not detected even after inspection and still reaches the customer. Note

that if inspection is used 100(qls− rls)% of material produced is discarded.
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– hls represents the fraction of available material produced at facility l under

scenario s, i.e., based on some other kind of disruption, some proportion

of material will not be available.

Decision variables in the model:

• xl =


1, if a facility is opened at candidate facility location l,

0, otherwise.

• yils ∈ [0, 1] is the proportion of production capacity at facility l assigned to

customer i under scenario s.

• wils ∈ [0, 1] is the proportion of demand of customer i satisfied by facility l

under scenario s.

• vils ∈ [0, 1] is the tainted proportion of the demand of customer i supplied by

facility l under scenario s.

• zls =


1, if inspection is used at facility l under scenario s,

0, otherwise.

3.2.1 Mathematical formulation of the model:

In this section, a multi-objective supply chain model with unreliable supply sources is

presented. To provide insights into the tradeoffs between different types of risks/costs,

three objectives are defined as below:

1. Operating cost (g1): Let g1 be the operating cost under normal circumstances.

In other words, g1 minimizes supply chain configuration cost when all facilities

are working normally without disruptions or failures, which includes the fixed

cost of opening facilities and the cost of transportation. Also, no dummy facility
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and scenario index exist.

min g1 =
∑
l∈L

flxl +
∑
i∈I

∑
l∈L

bidilwil (3.1)

2. Unsatisfied cost (g2): Let g2 be the expected cost of unsatisfied demand when

some disruption or failure occurs. In other words, g2 minimizes disruption

cost that affects the quantity (availability) of the products. Note that the

decision variables are indexed by a scenario index and also, the dummy facility

is available to use.

min g2 =
∑
s∈S

ps

(∑
i∈I

biuiwims

)
(3.2)

After optimizing the second objective, the result of wims (the proportion of

demand of customer i satisfied by dummy facility under scenario s) will be used

as a parameter for the third objective.

3. The summation of tainted and inspection cost (g3): Let g3 be the expected cost

of tainted material and inspection. In other words, g3 minimizes disruption costs

that affect the quality of the products when dummy facility decisions (wims) are

fixed based on the second objective results.

min g3 =
∑
s∈S

ps

(∑
i∈I

∑
l∈L

bitivils +
∑
l∈L

nlzls

)
(3.3)

The constraints in the model are as follows:

1. Dummy facility constraint: the Constraint (3.4) refers to availability of the

dummy facility with infinite capacity in case of disruption.

xm = 1 (3.4)
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2. Capacity constraint: Constraint (3.5) prevents demand from being assigned to a

facility unless the facility is opened. Besides, it ensures that the total customer

demand (bi) assigned to any facility (l) cannot exceed the facility’s capacity.

∑
i∈I

yils ≤ xl, ∀l ∈ L, s ∈ S (3.5)

3. Demand constraint: Constraint (3.6) requires that the entire demand of every

customer is satisfied. Note that in case of any disruption, a portion of customer

demand may be satisfied by the dummy facility m.

∑
l∈L

wils = 1, ∀i ∈ I, s ∈ S (3.6)

4. Shipping constraints: Constraints (3.7) and (3.8) track the amount of product

that is shipped to customer i from facility l to satisfy a customer’s demand.

In particular, if inspection is not implemented, zls = 0 and Constraint (3.8)

becomes inactive. In this case, Constraint (3.7) becomes binding and ensures

that the amount shipped is the proportion of facility l’s capacity dedicated to

customer i. However, if inspection is implemented, zls = 1 and Constraint (3.8)

becomes binding. This will adjust the amount of product shipped to account

for the tainted product that is caught in inspection and discarded.

biwils ≤ clhlsyils, ∀i ∈ I, l ∈ L, s ∈ S (3.7)

biwils ≤ (1− (qls − rls))clhlsyils + clhls(1− zls), ∀i ∈ I, l ∈ L, s ∈ S (3.8)

5. Tainted-capacity constraints: Constraints (3.9) and (3.10) together calculate the

amount of tainted material that is shipped to the customer. Without inspection,

Constraint (3.9) implies that all of the tainted goods will reach the customer.
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With inspection, Constraint (3.10) implies that only material passing inspection

is shipped to the customer.

bivils ≤ qlsclhlsyils, ∀i ∈ I, l ∈ L, s ∈ S (3.9)

bivils ≤ rlsclhlsyils + qlsclhls(1− zls), ∀i ∈ I, l ∈ L, s ∈ S (3.10)

6. Tainted-demand constraints: Constraints (3.11) and (3.12) together track the

amount of tainted material that is shipped to a customer. Without inspection,

Constraint (3.11) becomes binding while with inspection, Constraint (3.12) be-

comes binding.

vils ≥ qlswils − zls, ∀i ∈ I, l ∈ L, s ∈ S (3.11)

vils ≥ rlswils − (1− zls), ∀i ∈ I, l ∈ L, s ∈ S (3.12)

7. Non-negativity and binary constraints: Constraints (3.13), (3.14) and (3.15)

denote the decision variables (continuous and binary) in the model.

yils, wils, vils ∈ [0, 1], ∀i ∈ I, l ∈ L, s ∈ S (3.13)

zls ∈ {0, 1}, ∀l ∈ L, s ∈ S (3.14)

xl ∈ {0, 1}, ∀l ∈ L (3.15)

3.2.2 Disruption scenario generation

As mentioned earlier, two types of disruption are considered in the model. The first

type of disruption is one that leads to a quality problem of the product. Failure in

this context is a function of tainted raw materials that a facility receives. In other

words, failure of facilities is not complete (absolute) and a facility can be function-

ing, producing some materials that are good and some that are tainted. This is an
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important point to take into account when the second-tier suppliers are the cause of

failures. Therefore, an approach for generating correlated binary variables to indicate

disruptions is proposed, and then, the fractions of tainted products where disruptions

occur are simulated. In this dissertation, the Qaqish [45] method for generating L

binary correlated variables from a given marginal mean vector and correlation ma-

trix is used. The mechanism proposed by Qaqish [45] is computationally efficient for

large L, while simultaneously permitting unpatterned correlation and non-stationary

data. The scenario generation computational procedure for qls, rls are implemented

as follows.

Step 1: Data preparation

– correlation matrix and marginal mean vector (long-run percentage of tainted

production by facilities) are created based on historical data or expert

knowledge.

Step 2: conditional probabilities are calculated by following Qaqish [45].

Step 3: scenario generation

– correlated binary variables (representing facility failures) are simulated.

– qls is simulated by using the cumulative density function (CDF) of tainted

production.

– rls is calculated by rls = F(qls) where function F(qls) needs to be adjusted

based on particular characteristic of applications.

For details of correlated scenario generation failures, the reader is referrd to the

Section 2.2.3.

Disruptions that affect the quantity (availability) of the product are considered

to be the second type of disruption. It is assumed that some suppliers may lose their

ability to supply, such as oil suppliers in the Middle East. This help us to generate
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insights about capacity and unsatisfied demand. In this dissertation, it is assumed

that the fraction of available material produced at facility l under scenario s (hls) is

uniformly distributed over the range [0.8, 1].

3.3 Solution approach

In the proposed solution methodology, multiple Pareto-optimal solutions are gener-

ated by using the GA, in which DEA is used to calculate the fitness value of supply

chain configurations. In addition, several modifications in the genetic algorithm are

applied. For example, scenario subsampling is considered to evaluate offspring and

also simulated annealing approach is used to re-evaluate the acceptance of candidate

chromosome. These modifications help to accelerate the GA search process and also

extend the visited areas of feasible region. Also, the same experiment is repeated for

regular GA-DEA ignoring mentioned modifications (i.e., ignoring scenario subsam-

pling and simulated annealing approach) in order to compare their relative perfor-

mance. A short description of the improved genetic algorithm using data envelopment

analysis is given below.

3.3.1 Data Envelopment Analysis.

In this dissertation, the relative efficiency scores are used as a fitness function in the

GA process. One input (g1) and two undesirable outputs (g2, g3) are considered.

The DEA models presented in [72, 73, 74, 80] were investigated for both the CCR-

Input-oriented version and BCC-Output-oriented version. The CCR-Input-oriented

version (as is shown below) of the model presented by Seiford and Zhu [72] provides

best improvement in the discriminatory power of DEA and helps differentiating truly

efficient design points from inefficient ones. Therefore, here the DEA model is as
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below.

min θo (3.16)∑
l∈L

λl · g1,l ≤ θo · g1,o, (3.17)∑
l∈L

λl · (−g2,l + γ1) ≥ − g2,o + γ1, (3.18)∑
l∈L

λl · (−g3,l + γ2) ≥ − g3,o + γ2, (3.19)

λl ≥ 0, l = 1, 2, ..., L. (3.20)

where θo, g1,o, g2,o, g3,o represent the relative efficiency score, the input, and the two

output vectors of DMUo under evaluation. It is assumed that

γ1 = 1 + max{g2,1, g2,2, ..., g2,L}, γ2 = 1 + max{g3,1, g3,2, ..., g3,L} to satisfy the

conditions required by the method.

In the case that the problem includes only one objective, instead of using DEA,

the actual value of the objective can be used as the fitness value.

3.3.2 Hybrid Genetic Algorithm.

The proposed hybrid algorithm is an effective way to provide a set of most pre-

ferred alternatives. This way, the decision-maker needs to focus only on limited

non-dominated solutions for the final choice. The general framework of the proposed

hybrid GA is illustrated in Figure 3.1. Details of the proposed GA framework are

given below.
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Figure 3.1: Framework for hybrid genetic algorithm.

Chromosome representation. Each chromosome represents a potential sup-

ply chain configuration (i.e., the locations of the open facilities). A chromosome is

composed of genes. Here, each gene has a binary value which represents whether the

facility is chosen to be open or not. The chromosome length is equal to the total

number of potential facilities (L) and the location of a gene indicates the number of

the facility (l ∈ L). An example of a chromosome is illustrated in Figure 3.2. Based

on the definition of the first objective, the supply chain configuration should satisfy

demand under normal circumstances. Therefore, each chromosome needs to satisfy

the capacity constraint to make sure that current configuration has the ability to

establish a supply chain.

Figure 3.2: An example of chromosome representation
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Initial population. Out of 2L possible combination of chromosomes, a pool of

n feasible chromosomes is generated randomly as an initial population.

Fitness function. The fitness value evaluates the chromosome structure and

returns the relative strength of a chromosome. Chromosomes with larger fitness value

are stronger and more desirable. For a given population (x1, x2, ..., xn), the value of

{g1(x1), ..., g1(xn)}, {g2(x1), g2(x2), ..., g2(xn)}, {g3(x1), g3(x2), ..., g3(xn), g3(xn+1)}

are calculated and used as DMU’s input and outputs in the DEA model. The relative

efficiency score (θ(xl)) that is calculated by using the DEA model, will be used as a

fitness value for each xl. Also for calculating θ(xl) in the DEA model, all the efficient

frontier points in previous iterations are considered to improve the discriminatory

power within DEA. In other words, the global and local impacts are simultaneously

modeled to differentiate truly efficient design from inefficient ones.

Selection. The selection operator is selecting the parent (mom and dad) chro-

mosomes for the next crossover process. In this research, the roulette wheel selection

method is used to select the parents according to their fitness value. The chromosomes

with higher fitness values therefore have a greater chance to be selected.

Crossover operation. The crossover operator is assembling the new chromo-

some (offspring) from a given parent’s chromosome. A single point crossover is used

to generate new solutions.

Mutation operation. The purpose of mutation operations is to increase the

diversity of the population to avoid solution process from falling into local optimum.

The exchange mutation is used to promote diversity of solutions.

Replacement operation. The replacement operation is used to generate a new

population. In this dissert-ation scenario sub-sampling is used to evaluate offspring.

A simulated annealing approach is used to re-evaluate the acceptance of candidate

chromosome. These modifications help to accelerate the GA search process and also

extend the areas of feasible region searched. The replacement operation is imple-
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mented as follows given a candidate chromosome (xn+1).

Step 1: candidate chromosome (xn+1) has to be distinct from the current population

(in iteration j). If the condition is satisfied, go to the next step; otherwise,

regenerate a new candidate chromosome.

Step 2: for a given candidate chromosome (xn+1), calculate the values of objectives func-

tion (g1(xn+1), g2(xn+1), g3(xn+1)). In this regard, the scenario sub-sampling

method is used to evaluate offspring and decrease computing time. In other

words, instead of optimizing the model for all possible scenarios (|S|), the model

is optimized by considering some proportion of scenarios. In this way, a quick

estimate of the performance of candidate chromosome can be computed.

Step 3: recalculate the fitness values of the current population and new candidate chro-

mosome (x1, x2, ..., xn, xn+1) by using DEA. Assume that θ(x1), θ(x2), . . .,

θ(xn), θ(xn+1) are new relative efficiency scores (fitness values).

Step 4: compare the min{θ(x1), θ(x2), ..., θ(xn)} and θ(xn+1).

– if θ(xn+1) ≤ min{θ(x1), θ(x2), ..., θ(xn)}, then, move to Step 5.

– otherwise, move to Step 6.

Step 5: use simulated annealing cooling approach to re-evaluate the acceptance of candi-

date chromosomes. In this way, the candidate chromosome has a greater chance

to be part of the new population, which ultimately reduces the computational

time. In this step

– set an initial temperature T and a reduction factor r, 0 < r < 1.

– calculate the acceptance probability (η). The current solution xn+1 with

probability η = e
θ(xn+1)−min{θ(x1), θ(x2), ..., θ(xn)}

T is kept.
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– set T ← rT (it is assumed that the T is same for each generation and

reduction factor is implemented after moving to the next generation).

– generate a random number ∈ [0, 1].

– if the random number is bigger than or equal to the η, ignore this candidate

chromosome and regenerate a candidate chromosome and move to Step 1.

– if the random number is less than the η, move to Step 6.

Step 6: keep the input candidate chromosome as a new candidate for the next popula-

tion and repeat the previous steps until finding n candidate chromosomes.

Step 7: recalculate the fitness values of the current population (x1, x2, ..., xn) and

all the n new candidate chromosomes (xn+1, xn+2, ..., x2n) by using the DEA

model. In this step, assume θ(x1), θ(x2), ..., θ(xn), θ(xn+1), θ(xn+2) ..., θ(x2n)

are fitness values based on the DEA model.

Step 8: sort {θ(x1), θ(x2), ..., θ(xn), θ(xn+1), θ(xn+2) ..., θ(x2n)} and select the top n

design points with highest efficiency scores as the next population.

Figure 3.3, shows an example of the replacement operation.
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Figure 3.3: An example of the replacement operation.

Terminal condition. All the above-mentioned steps are repeated until a ter-

mination condition is reached. A maximum number of generations or a time limit

can be used as a stopping criteria. At the end, final solutions are those chromosomes

which have the largest fitness values.

3.4 Numerical Experiments

In this section, the data used for the experiments and the computational results are

summarized. A workstation with two 3.066 GHz Quad-Core Intel Xeon processors

and 32 GB memory was used to run all experiments. Both the scenario generation

procedure and the improved GA were implemented in the Python programming lan-
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guage. The Gurobi Optimizer 4.5.1 was used to solve all the optimization problem.

3.4.1 An example of a medium scale problem

Ten U.S. cities are considered as candidate facility locations (see Table 3.1). All

the capitals of all 48 contiguous U.S. states are chosen as customer locations (48

customers).

Table 3.1: Potential facilities
Potential facilities Location Potential facilities Location

F1 Seattle, WA F6 Austin, TX
F2 los Angeles, CA F7 St. Louis, MO
F3 Boise, ID F8 Chicago, IL
F4 Denver, CO F9 Atlanta, GA
F5 Bismarck, ND F10 Boston, MA

Also, 150 raw material suppliers (second-tier suppliers) are generated randomly

in the U.S. map, as shown in Figure 3.4. If a raw material supplier falls within a pre-

specified distance (circular regions shown in Figure 3.4(a)) from a particular facility,

it is assumed that raw material supplier is assigned to that facility.
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The fixed cost of opening a facility l (or fl) is the same for all facilities (fl =

$10, 000, 000). The dummy facility has no fixed cost to be opened (fm = 0). The

cost of inspection is the same for all facilities (nl = $100, 000). The dummy facility

has no inspection cost and never fails (nm = 0). The transportation cost of the

facilities (or dil), excluding the dummy facility, are normalized over the range [$100,

$1000] based on their distance in the U.S. map. The cost of satisfying demand

from the dummy facility is equal to the per unit cost of unsatisfied demand (i.e.,

dim = ui) and assumes to be $20,000 for all custmers. The cost per unit of tainted

material shipped to customers (or ti) is $40,000 for each customer. The demand of

the customers (bi) are normalized in range [100, 300] based on their population. It

is assumed that capacity of the facilities (cl, excluding the dummy facility) are all

the same (cl = 2, 145). Note that the capacity of dummy facility is assumed to be

infinite (dummy facility m can satisfy all the demand). The circular regions shown

in Figure 3.4(a) are used to determine the raw material suppliers of a facility. The

correlation coefficient between two facilities is calculated by considering common raw

material suppliers that both facilities work with and the total number of raw material

suppliers used by either of the two facilities. For example, the correlation coefficient

of F4, F7 is calculated as below.

Correlation (F4, F7) = n(F4∩F7)
n(F4∪F7)

= n(F4∩F7)
n(F4)+n(F7)−n(F4∩F7)

= 40
86+88−40

= 0.299

The result of correlation matrix is shown in Table 3.2.

Table 3.2: Correlation matrix
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 1 0.451 0.596 0.277 0.261 0 0 0 0 0
F2 0.451 1 0.565 0.370 0.148 0.127 0 0 0 0
F3 0.596 0.565 1 0.505 0.410 0.082 0.058 0.077 0 0
F4 0.277 0.370 0.505 1 0.562 0.364 0.299 0.280 0.134 0
F5 0.261 0.148 0.410 0.562 1 0.146 0.259 0.295 0.092 0
F6 0 0.127 0.082 0.364 0.1461 1 0.356 0.282 0.292 0
F7 0 0 0.058 0.299 0.259 0.356 1 0.859 0.711 0.293
F8 0 0 0.077 0.280 0.295 0.282 0.859 1 0.656 0.341
F9 0 0 0 0.134 0.0917 0.292 0.711 0.656 1 0.386
F10 0 0 0 0 0 0 0.293 0.341 0.386 1
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It is assumed that the marginal mean of a facility (i.e., µl: long-run percentage

that some fraction of its production will be tainted) is equal to 0.05 for all facilities.

One hundred correlated failure scenarios (s ∈ {1, 2, ..., 100}) are simulated where

ps = 0.01. In addition, qls = Tls × (corresponding correlated binary variable)

where, correlated binary variable is simulated in the scenario generation part and Tls

is as below.

Tls =


0.2, with probability 0.2

0.3, with probability 0.5

0.4, with probability 0.3

Furthermore, it is assumed that rls is a linear function of qls (rls = 0.05× qls) and hls

is uniformly distributed over the range [0.8, 1].

Analysis of the entire feasible solution set

Experiments for all of the possible supply chain configuration (i.e., each configuration

is a binary vector which represents which facilities are chosen to be open or not) were

conducted. Knowing the results of all possible feasible solutions assisted in validating

and understanding the performance of the proposed hybrid GA. Table 3.3 shows the

results for some of the possible supply chain configurations and descriptive statistics.

For each possible supply chain configuration, the values of g1, g2, g3 are calculated.

Also considering all feasible solutions, the global efficiency scores (θ) are calculated

using DEA. As is shown in this particular example, the global efficiency scores vary

from 0.0827 to 1. Also, four supply chain configurations with highest global efficiency

score (the efficient frontier solutions) where θ = 1 are shown in Table 3.3.
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Table 3.3: Some examples of possible solutions
x g1 g2 g3 θ

[0, 0, 1, 1, 0, 0, 1, 1, 1, 1] 61,618,657.0 0.0 682,105.9 1
[0, 0, 1, 1, 0, 1, 0, 1, 1, 1] 61,621,050.0 0.0 286,927.1 1
[0, 0, 1, 0, 1, 1, 0, 1, 1, 1] 61,667,077.0 0.0 167,161.6 1
[1, 0, 1, 0, 1, 1, 0, 0, 1, 1] 61,844,253.0 0.0 128,702.6 1
[0, 0, 1, 1, 0, 1, 1, 0, 1, 1] 61,621,425.0 0.0 544,625.5 0.999968591
[1, 0, 0, 1, 0, 1, 0, 1, 1, 1] 61,636,645.0 0.0 280,731.6 0.99979
[1, 0, 0, 1, 0, 0, 1, 1, 1, 1] 61,634,252.0 0.0 703,805.0 0.999746975
[1, 0, 0, 1, 0, 1, 1, 0, 1, 1] 61,637,020.0 0.0 525,977.4 0.999717417
[1, 1, 0, 1, 0, 0, 0, 1, 1, 1] 61,679,146.0 0.0 195,614.4 0.999627042
[0, 1, 1, 0, 0, 1, 1, 0, 1, 1] 61,685,314.0 0.0 180,245.2 0.999622841

...
...

...
...

...
[1, 0, 1, 1, 0, 1, 0, 1, 1, 1] 71,582,567.0 0.0 56,565.1 0.8740

...
...

...
...

...
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0] 82,210,488.0 0.0 54,855.9 0.7612

...
...

...
...

...
[1, 1, 1, 1, 0, 1, 1, 1, 1, 1] 91,502,401.0 0.0 14,413.6 0.6882

...
...

...
...

...
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 101,480,611.0 0.0 9,360.8 0.6211

...
...

...
...

...
[1, 1, 0, 0, 1, 1, 0, 0, 1, 0] 52,865,612.0 3,089,880.0 6,114,880.3 0.137225035
[0, 1, 0, 1, 1, 1, 0, 0, 0, 1] 52,351,705.0 3,206,400.0 5,787,996.0 0.112014898
[1, 1, 0, 1, 1, 0, 0, 0, 1, 0] 53,026,365.0 3,173,880.0 6,017,124.0 0.1089
[1, 1, 0, 1, 1, 1, 0, 0, 0, 0] 53,402,702.0 3,226,740.0 5,907,978.0 0.0908
[0, 1, 0, 1, 1, 1, 0, 0, 1, 0] 52,579,375.0 3,325,620.0 5,941,122.0 0.0827

global min 51,706,865.0 0 9,360.8 0.0827
global max 101,480,611.0 3,502,200.0 6,380,832.0 1.0

global average 62,000,467.8 1,044,342.0 2,370,255.8 0.6742

In addition, Figure 3.5 represents two by two comparison between g1, g2, g3, θ.

This example clearly shows why a multi-objective approach is important for better

trade-off between cost and risk. For example from the data in the Figure 3.5(a), it is

apparent that higher g1 leads to lower g2 and lower g1 reaches to higher g2. In other

words, there is a specific value for g1 that for any g1 larger than that specific value,

g2 leads to zero. A similar trend is seen between g1 and g3 in Figure 3.5(b). As is

shown in the Figure 3.5(c), g2 and g3 go together, so that an increase (or decrease)

in g2 tends to be associated with an increase (or decrease) in g3.

Comparing g1 and θ in Figure 3.5(d) indicates the higher value of θ is associated

with a tight range of g1 (in this case between 61.6M and 63.3M). In other words, θ will
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be reduced if the value of g1 is out of this range. Also, opening fewer facilities than

mentioned range (g1 < 61.6M) leads to lowest θ. In addition, opening more facilities

than mentioned range (g1 > 63.3M) is not economical and just leads to higher cost

and reduced efficiency trend of the supply chain. However, value of θ associated with

g1 > 63.3M, is better than value of θ associated with g1 < 61.6M.

A comparison of g2 with θ in Figure 3.5(e) indicates that in general, solutions with

lower g2 lead to better θ. However, several solutions with g2 = 0 and different θ values

were found. Thus, further investigation is needed to identify possible cofounding

variables that may affect θ.

A comparison of g3 and θ in Figure 3.5(f) indicates the higher value of θ is as-

sociated with a tight range of g3 (in this case between 118K and 1.4M). In other

words, θ will be reduced if the value of g3 is out of this range. However, value of

θ associated with g3 < 118K, is better than value of θ associated with g3 > 1.4M.

Another important point to consider is that those efficient frontiers don’t necessarily

containing extreme (minimum or maximum) values of g1, g2, g3.
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(a) g1 vs. g2 (b) g1 vs. g3

(c) g2 vs. g3 (d) g1 vs. θ

(e) g2 vs. θ (f) g3 vs. θ

Figure 3.5: Two by two comparison between g1, g2, g3, θ.

72



Performance and analysis of hybrid GA solutions

several different GA parameters and time limits are used to evaluate the performance

of the proposed solution approach. Table 3.4 summarizes all parameters for config-

uring the GA. Also, the same experiment is repeated for regular GA-DEA, ignoring

mentioned modifications (i.e., ignoring scenario sub-sampling and simulated anneal-

ing cooling approach) in order to compare their performances. In this dissertation,

the first approach is called “Modified GA-DEA”, while the second is called “Regular

GA-DEA”.

Table 3.4: GA parameters
parameters values
population size {5, 10, 15}
crossover rate 1
mutation rates {0.1, 0.2}
scenario subsampling ratio 0.1
initial temperature 1
reduction factor 0.95
running time (sec) {3000, 4000, 5000, 6000}

In order to evaluate the performance of both approaches (Modified GA-DEA vs.

Regular GA-DEA), the same GA parameters are used. Results of each approach are

called local frontier DMUs. In other words, in both approaches, results are the best

non-dominated frontier solutions. Since, the value of global efficiency score for each

possible feasible solution was already calculated in the section 3.4.1, those values

are again used to make a fair comparison of the performance of both approaches.

Therefore, for each set of local frontier DMUs, their global efficiency scores and the

average of their global efficiency scores (for the given set of local frontier DMUs) are

used for final comparison. Figure 3.6 shows a comparison of the two approaches using

different GA parameters.
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(a) running time=3000 sec (b) running time=3000 sec

(c) running time=4000 sec (d) running time=4000 sec

(e) running time=5000 sec (f) running time=5000 sec

(g) running time=6000 sec (h) running time=6000 sec

Figure 3.6: Comparison between two approaches
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As mentioned earlier, the Regular GA-DEA does not have scenario sub-sampling

and simulated annealing cooling approach while the Modified GA-DEA have them. As

it is shown in Figure 3.6, the numerical experiments indicate that the performance of

the Modified GA-DEA approach is much better than the Regular GA-DEA. It seems

that the Modified GA-DEA version is able to search the space in a more efficient

manner. In other words, considering different GA parameters and time limits, the

proposed Modified GA-DEA approach can find local frontier DMUs with a higher

global efficiency score than Regular GA-DEA.

3.4.2 An example of a large scale problem

Next, the scale of the problem is increased by adding more facilities. This is done

to gain better insight on the performance of the proposed hybrid GA-DEA to larger

application. Twenty U.S. cities are considered as candidate facility locations (see

Table 3.5). 220 possible supply chain configurations exist, some of which may not be

acceptable due to capacity constraints. This dissertation is interested in finding the

efficient frontier solutions (or DMUs with higher efficiency scores) without evaluating

all 220 possible supply chain configurations.

Table 3.5: Potential facilities
Potential Location Potential Location Potential Location Potential Location
facilities facilities facilities facilities

F1 Salem, OR F6 Denver, CO F11 Des Moines, IA F16 Atlanta, GA
F2 Seattle, WA F7 Cheyenne, WY F12 St. Paul, MN F17 Columbus, OH
F3 los Angeles, CA F8 Bismarck, ND F13 St. Louis, MO F18 Raleigh, NC
F4 Boise, ID F9 Austin, TX F14 Chicago, IL F19 New Jersey, NY
F5 Phoenix, AZ F10 Oklahoma City, OK F15 Jackson, MS F20 Boston, MA

All the parameters in the model are the same as in Section 3.4.1 except the

capacity. It is assumed that the capacity of the facilities (cl, excluding the dummy

facility) are all cl = 1, 207. The resulting correlation matrix is shown in Table 3.6.
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Table 3.6: Correlation matrix
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

F1 1 0.917 0.5 0.614 0.390 0.274 0.290 0.239 0 0.009 0.027 0.031 0 0 0 0 0 0 0 0
F2 0.917 1 0.45098 0.596 0.35 0.277 0.293 0.261 0 0.009 0.037 0.042 0 0 0 0 0 0 0 0
F3 0.5 0.451 1 0.565 0.74 0.370 0.374 0.148 0.127 0.115 0.035 0 0 0 0.009 0 0 0 0 0
F4 0.614 0.596 0.565 1 0.552 0.505 0.527 0.410 0.082 0.147 0.154 0.140 0.058 0.077 0 0 0 0 0 0
F5 0.390 0.35 0.74 0.552 1 0.478 0.483 0.205 0.215 0.206 0.116 0.057 0.055 0.04 0.056 0 0 0 0 0
F6 0.274 0.277 0.370 0.505 0.478 1 0.921 0.562 0.364 0.459 0.414 0.348 0.299 0.280 0.205 0.134 0.131 0.051 0 0
F7 0.290 0.293 0.374 0.527 0.483 0.921 1 0.605 0.314 0.425 0.417 0.364 0.281 0.292 0.178 0.119 0.141 0.052 0.008 0
F8 0.239 0.261 0.148 0.410 0.205 0.562 0.605 1 0.146 0.303 0.409 0.439 0.259 0.295 0.111 0.092 0.140 0.048 0.011 0
F9 0 0 0.127 0.082 0.215 0.364 0.314 0.146 1 0.623 0.366 0.226 0.356 0.282 0.468 0.292 0.216 0.165 0.034 0
F10 0.009 0.009 0.115 0.147 0.206 0.459 0.425 0.303 0.623 1 0.621 0.454 0.577 0.486 0.554 0.406 0.368 0.279 0.136 0.049
F11 0.027 0.037 0.035 0.154 0.116 0.414 0.417 0.409 0.366 0.621 1 0.765 0.694 0.713 0.510 0.469 0.485 0.364 0.240 0.147
F12 0.031 0.042 0 0.140 0.057 0.348 0.364 0.439 0.226 0.454 0.765 1 0.611 0.682 0.389 0.424 0.473 0.356 0.277 0.2
F13 0 0 0 0.058 0.055 0.299 0.281 0.259 0.356 0.577 0.694 0.611 1 0.859 0.667 0.711 0.707 0.576 0.402 0.293
F14 0 0 0 0.077 0.04 0.280 0.292 0.295 0.282 0.486 0.713 0.682 0.859 1 0.546 0.656 0.727 0.591 0.459 0.341
F15 0 0 0.009 0 0.056 0.205 0.178 0.111 0.468 0.554 0.510 0.389 0.667 0.546 1 0.727 0.581 0.55 0.35 0.225
F16 0 0 0 0 0 0.134 0.119 0.092 0.292 0.406 0.469 0.424 0.711 0.656 0.727 1 0.776 0.783 0.529 0.386
F17 0 0 0 0 0 0.131 0.141 0.140 0.216 0.368 0.485 0.473 0.707 0.727 0.581 0.776 1 0.8 0.594 0.449
F18 0 0 0 0 0 0.051 0.052 0.048 0.165 0.279 0.364 0.356 0.576 0.591 0.55 0.783 0.8 1 0.690 0.517
F19 0 0 0 0 0 0 0.008 0.011 0.034 0.136 0.240 0.277 0.402 0.459 0.35 0.529 0.594 0.690 1 0.756
F20 0 0 0 0 0 0 0 0 0 0.049 0.147 0.2 0.293 0.341 0.225 0.386 0.449 0.517 0.756 1

Different population sizes and iteration limit are considered to evaluate the per-

formance of the proposed solution approach. Table 3.7 summarizes all parameters

used to configure the GA.

Table 3.7: GA parameters
parameters values
population size {20, 25, 30}
crossover rate 1
mutation rates {0.1, 0.2}
scenario sub sampling ratio 0.1
initial temperature 1
reduction factor 0.95
number of iterations {50, 100}

For purposes of illustration, twelve problem instances are solved considering differ-

ent GA’s parameters. A summary of the hybrid GA-DEA results is shown in Figure

3.7 and Figure 3.8. For example, Figure 3.7(a) shows the GA results when the pop-

ulation size is 20 in each iteration and the GA’s process is repeated 50 times with a

crossover rate equal to 1, and a mutation rate equal to 0.1. The first graph shows

the average efficiency score of each generation (iteration). The second graph shows

the number of local efficient frontier DMUs per generation. Local efficient frontier

DMUs are desirable efficient frontier points (chromosomes) which are calculated after

reaching the terminal condition in the GA process as below.
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Step 1: a pool of chromosomes is created considering all the chromosomes from the

first generation until the last generation. For example, in Figure 3.7(a), the

corresponding pool includes 20× 50 = 1000 chromosomes.

Step 2: all the corresponding [g1(xi), [g2(xi), g3(xi)]] are used as a DMU’s input and

outputs in the DEA model as previous.

Step 3: chromosomes with the highest efficiency scores are selected as local efficient

frontier DMUs.

The general trend of the average efficiency scores among all the experiments is in-

creasing. Also, as is shown, by increasing the iteration number, the total number of

local efficient frontier DMUs increases.
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(a) 20, 1, 0.1 (b) 25, 1, 0.1

(c) 30, 1, 0.1 (d) 20, 1, 0.2

(e) 25, 1, 0.2 (f) 30, 1, 0.2

Figure 3.7: GA results for a given population number, crossover rate, and mutation
rate where required iterations are equal to 50.
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(a) 20, 1, 0.1 (b) 25, 1, 0.1

(c) 30, 1, 0.1 (d) 20, 1, 0.2

(e) 25, 1, 0.2 (f) 30, 1, 0.2

Figure 3.8: GA results for a given population number, crossover rate, and mutation
rate where required iterations are equal to 100.
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Analysis of results. As mentioned previously, the supply chain design objec-

tive is to identify configurations with the highest potential for consistently meeting a

firm’s needs at the lowest risk cost. In order to select the best supply chain configu-

ration, it is necessary to make a trade-off between these goals, some of which may be

conflicting. The aim of the proposed solution approach is to support decision-makers

facing such a problem. Because of the nature of a multi-objective problem, usually no

unique optimal solution is found. Therefore, a set of most preferable alternatives are

provided. This way, the decision-maker needs to focus only on limited non-dominated

solutions for the final choice.

For the purpose of illustration, Table 3.8 shows top five extreme results of the

proposed hybrid GA-DEA in terms of g1, g2, g3, θ. For example by looking at

top five non-dominated solutions (θ = 1), in two configurations, 10 facilities are

used and in the remaining three configurations 9 facilities are used. Opening 10

facilities needs a higher g1 (supply chain configuration cost), but leads to less g2, g3

(disruption costs). When by opening 9 facilities, the supply chain configuration cost

is less but leads to higher disruption costs. Locations of the open facilities (supply

chain configuration structure) are another main factor that the decision-maker needs

to consider, in addition to cost and risk of supply chain.

All top five worst solutions (lowest θ) have 8 open facilities. These configurations

lead to saving around $10,000,000 in supply chain configuration cost (compared to

non-dominated solutions with 9 facilities) but at the same time increase disruption

costs by approximately $25,000,000.

In the remaining extreme solutions, only supply chain configurations with lowest

g2 have more or less acceptable solutions, but none of the remaining extreme results

lead to reasonable costs.
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Table 3.8: Extreme results
x g1 g2 g3 θ

[1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1] 101,632,911 0 160,987 1
[1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1] 101,539,452 0 188,025 1

highest θ [1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1] 91,735,175 579,584 3,592,853 1
[1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1] 91,919,252 489,508 4,054,018 1
[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] 91,867,513 454,028 4,530,014 1
[0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0] 81,934,826 19,567,208 6,519,731 0.051522818
[0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0] 82,226,612 19,555,138 6,408,204 0.057992678

lowest θ [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1] 82,151,746 19,323,394 6,479,176 0.065143378
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0] 82,112,496 19,243,732 6,715,748 0.067784557
[0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1] 82,105,073 19,494,788 6,355,579 0.068016575
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 201,221,352 0 0 0.517485102
[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1] 171,487,311 0 6,040 0.606665315

highest g1 [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1] 171,372,952 0 5,509 0.607118199
[1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1] 171,332,100 0 5,557 0.60725859
[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1] 171,316,517 0 14,960 0.606462786
[0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0] 81,579,581 19,897,926 4,867,107 0.351357194
[0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0] 81,584,088 19,308,910 5,033,190 0.319773372

lowest g1 [0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1] 81,584,364 19,229,248 5,131,681 0.301053924
[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0] 81,584,558 19,045,784 5,218,585 0.284537041
[0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1] 81,584,834 18,966,122 5,317,076 0.265817819
[0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0] 81,790,771 20,455,560 5,443,570 0.241168942
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0] 81,700,321 20,441,076 5,147,131 0.297694592

highest g2 [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0] 82,727,684 20,320,376 4,565,840 0.402945908
[0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0] 82,291,766 20,320,376 5,903,196 0.153099223
[1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0] 82,924,183 20,310,720 4,854,071 0.348097398
[0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0] 101,445,962 0 768,730 0.988606285
[0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0] 101,447,845 0 743,442 0.989124225

lowest g2 [0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0] 101,448,775 0 599,123 0.992175705
[0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0] 101,449,441 0 576,511 0.992648727
[0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0] 101,450,699 0 604,017 0.992053112
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0] 82,112,496 19,243,732 6,715,748 0.067784557
[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1] 82,427,779 18,637,818 6,532,767 0.101287898

highest g3 [0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0] 81,934,826 19,567,208 6,519,731 0.051522818
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1] 82,151,746 19,323,394 6,479,176 0.065143378
[0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0] 82,226,612 19,555,138 6,408,204 0.057992678
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 201,221,352 0 0 0.517485102
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1] 171,290,547 0 1,258 0.607795078

lowest g3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1] 161,382,861 0 1,258 0.645109094
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1] 151,341,032 0 4,251 0.687606905
[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1] 171,372,952 0 5,509 0.607118199

Reliable vs. unreliable solution. Table 3.9 and Figure 3.9 show the results

of two different supply chain configurations in terms of g1, g2, and g3. As it is shown

in Table 3.9, the first configuration is a reliable design (i.e., a robust design which is

a non-dominated solution with θ = 1) while the second configuration is an unreliable

design (i.e., dominated solution with θ << 1).

Table 3.9: Reliable vs. unreliable solution
x g1 g2 g3 θ

[1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1] 91,735,175 579,584 3,592,853 1
[0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1] 81,584,834 18,966,122 5,317,076 0.265817819
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In the reliable solution, nine facilities are used and in the unreliable solution eight

facilities are used. Unreliable solution has 11% lower g1 (supply chain configuration

cost) than reliable solution. However, unreliable solution leads to much higher g2

and g3 (disruption costs). In other words, reliable solution results in 3100% saving

on g2 and 48% saving on g3. In addition, in this particular example, the reliable

solution leads to 10% saving on the summation of costs (i.e, g1 + g2 + g3) compared

to unreliable solution.

Figure 3.9: Reliable vs. unreliable solution

3.5 Conclusions

In this dissertation, a specific focus on the risks inherent in the supply chain was given

to understand the impact of different disruptions on the cost of the supply chain. A

multi-objective optimization model and solution algorithm was proposed to explore

the tradeoffs between costs and risk in the supply chain. Two types of disruption

(disruption in quality and/or quantity of the products), were considered and stochas-

tic formulations were proposed attempt to capture uncertainty in the model. An

efficient hybrid metaheuristic approach was proposed given some difficulties in the
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current large-scale stochastic optimization solutions. The multiple Pareto-optimal

solutions were generated by using a Genetic Algorithm, in which Data Envelopment

Analysis was used to calculate the fitness value of supply chain configurations. In

addition, several modifications to the basic genetic algorithm were applied. For ex-

ample, scenario sub-sampling was considered to evaluate offspring. Also simulated

annealing approach is used to re-evaluate the acceptance of candidate chromosome.

The numerical experiments indicate that these adjustment help to accelerate the GA

search process and also extend the visited areas of feasible region. The findings from

this dissertation can help practitioners while designing supply chains, as well as help

policymakers understand the impact of different disruption mitigation strategies on

cost and risk in the supply chain.
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CHAPTER 4. A DYNAMIC PROGRAMMING

APPROACH FOR OPTIMAL INSPECTION

SCHEDULING

Abstract

Inspection of suppliers is critical to ensure that only high-quality products reach the

marketplace. The Food and Drug Administration (FDA) requires inspection of phar-

maceutical suppliers every two years [44]. This may not be the most effective or

efficient policy because of the limited number of inspection personnel, and because

of differences in supplier characteristics. To this end, a dynamic programming (DP)

model is proposed to determine an optimal inspection schedule for a group of sup-

pliers. This schedule can move from an in-compliance state to an out-of-compliance

state according to a known probability distribution. A supplier can be in an out-of-

compliance state due to operator error, machine error, defective raw materials, etc.

Numerical experiments indicate that the proposed DP model results in significantly

lower costs than the FDA’s current inspection policy.

4.1 Introduction and motivation

In quality management, inspection is an important method for controlling and rais-

ing the level of product quality. The quality of a system can improve by considering

inspection of the units received from suppliers. Especially in some cases, such as phar-

maceutical suppliers, inspection is critical in ensuring that only high-quality drugs

reach patients. Distributing a tainted drug would obviously have a significant impact

on patients’ health, even leading to death. This has actually occurred, such as the

Heparin case. Heparin is a widely used anticoagulant and produced from the mucosal

tissues of pigs. In 2008, at least 12 Chinese companies produced and shipped tainted

Heparin throughout the world. Contaminated Heparin caused 81 deaths and several
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allergic reactions in the United States and around the world. Therefore, further test-

ing and recalls of Heparin have occurred by the U.S. Food and Drug Administration

[5]. Distribution of the contaminated Heparin has had a serious impact on the health

of patients. However, there is always a high chance of a Heparin shortage which may

endanger the health and safety of patients. As this example clearly shows, inspec-

tion can be an effective method to ensure that only high-quality products reach to

customers when a disruption occurs.

There are several other similar cases in the food industry. For example, 1,500

people were reportedly sickened by consuming contaminated eggs [10]. Similarly in

Germany in 2011, lettuce, cucumbers, and tomatoes were recalled as a result of the

deaths of 31 people and the grave illness of more than 3,000 [9].

These examples indicate the danger of failures in various industries and also un-

derscore the need for policies and interventions that help with quicker detection of

quality problems and resultant corrective actions. In addition, by preventing poten-

tial failure, the disruption cost would be cut out. For example, The FDA requires

inspection of pharmaceutical suppliers at least once every two years [44]. Further, the

Maine Department of Transportation (MDOT) inspects all bridges every 24 months

[81].

Motivated by these cases, in this dissertation, the operational inspection deci-

sion is examined for a given supply chain with multiple unreliable supply sources.

Disruption directly affects the quality of products. The quality of products can be

improved by considering inspection of the units received from the suppliers. Even for

a robust supply chain, it is essential to optimize inspection decisions to ensure qual-

ity. A dynamic programming model is developed to indicate which set of suppliers

need inspection at various periods, according to the various cost terms. In addition,

an efficient approximate dynamic programming algorithm is developed to solve the

model. The current FDA inspection policy is evaluated; numerical experiments in-
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dicate that proposed DP models result in significantly lower costs than the FDA’s

current inspection policy.

4.1.1 Literature review

There is a vast literature [e.g., 82, 83, 14, 84, 85, 86, 87, 88, 15, 89, 16, 90] on inspec-

tion in the context of production systems and supply chains. For example, Hariga

and Azaiez [15] discuss about inspection schedules mechanism for an unreliable fa-

cility where a minimal repair is carried out. A non-Markovian failure process with

increasing failure rate is used to formulate the problem and three cost-effective heuris-

tic procedures are developed. Anily and Grosfeld-Nir [89] study optimal policy for a

lot-sizing (batch production) and off-line inspection problem to minimize the expected

total of production, inspection, and shortage costs. A finite-time partially observable

Markov decision process is used to formulate the inspection problem where the failure

time is geometrically distributed. They show that the optimal policy for the inspec-

tion problem has a control limit threshold structure. Chun [16] designs a Bayesian

inspection procedure for the production process which is subject to random failure.

The model simultaneously answers three main questions: how often to inspect; how

to search; and when to stop the search. A stochastic dynamic programming approach

is used to formulate the renewal-reward process as a profit-maximization model con-

sidering several cost factors. Also several ways of estimating are provided for the

failure rate by Bayesian methods. Wang et al. [90] investigate an off-line inspection

policy for a production batch produced from an unreliable process under a required

confidence level. An approach based on an information theory of entropy is developed

which selects the un-inspected unit to minimize the uncertainty of the transition unit.

A related branch of literature studies machine replacement and maintenance op-

timization problem. For example, McClurg and Chand [91] study parallel machine

replacement problem and present a forward-time dynamic programming algorithm to
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minimizes the sum of the discounted costs for a finite horizon problem. The num-

ber of possible options is reduced by using dominance property. A forecast horizon

result is presented. Childress and Durango-Cohen [92] study stochastic parallel ma-

chine replacement problem as a set of N independent Markovian processes. General

replacement-cost function is used and the structures of optimal policies (No-Splitting

and Worse Cluster Replacement Rules) are used to reduce the computational effort

to solve the problem. Guillaumot et al. [93] study joint inspection and maintenance

policies for infrastructure facilities. An adaptive optimization model is performed

by combining the latent MDP with the adaptive control formulations to minimize

the total expected social cost of managing facilities over a finite planning horizon.

The case study result shows that providing the wrong information may be less costly

than providing no information about deterioration. Also, when the initial beliefs are

adequate, consideration of a flexible inspection schedule leads to considerable benefits.

Additional related research has been completed by Rosenkrantz et al. [57] who

study the placement of inspection stations on networks (such as transportation and

communication). They use two different optimization objectives. In the first opti-

mization problem, the objective minimizes the maximum interval between two suc-

cessive inspection stations along the path. In the second category, the objective

minimizes the total cost, which includes inspection cost and expected penalty cost.

Polynomial time algorithms and fully polynomial approximations are presented for

analyzing the results. Ozekici and Pliska [94] develop a dynamic inspection strategy

to choose an inspection schedule which minimizes the expected value of the costs.

Their model adjusts for medical screening and considers four kinds of costs: inspec-

tion costs; false positive costs (e.g., cost of doing the super test); true positive costs

(when a defect is detected); and finally failure cost (whether resulting from unsuc-

cessful treatment or not). The model is applied to two sample problems in medicine:

post-operative periumbilical pruritis; and breast cancer. Also, for a research overview
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in inspection allocation problem, the reader is refereed to study Shetwan et al. [95].

In this dissertation, a supply chain system with multiple (i.e., two or more) un-

reliable supply sources is studied that have different grades of reliability, in terms

of the quality of orders delivered. A supplier can be in an out-of-compliance state

due to several reasons that can include operator errors, machine errors, defective raw

materials, etc. It is assumed that suppliers can move from an in-compliance state

to an out-of-compliance state according to a known probability distribution. Con-

sidering capacity constraint and a constrained Markov decision program (MDP), a

dynamic programming model is developed to find an optimal inspection schedule for

suppliers. The suppliers’ last known condition and the number of periods since the

last inspection are used in the model for identifying a group of the suppliers that

must be inspected. Cost function includes the cost of inspection, cost of corrective

actions, and the cost of missed detection of a low-quality supply from suppliers. The

structural properties of the proposed DP model are then examined for a single sup-

plier. The properties of the single supplier are then incorporated to multi suppliers

problem to develop an effective approximate DP algorithm to find high-quality solu-

tions. The numerical experiments indicate that the proposed DP model can result in

significantly lower costs than the FDA’s current inspection policy.

The remainder of this chapter is organized as follows. In Section 4.2, the problem

description is presented and formulated as a DP model. In Section 4.3, the structural

property of proposed DP is discussed in a single supplier version, including threshold

policy. In Section 4.4, linear programming approach is discussed as an alternative

model. An effective approximate dynamic programming algorithm is introduced in

Section 4.5. Computational results are presented in Section 4.6. Finally Section 4.7

summarizes the findings.
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4.2 Problem description and notation

Consider a supply chain system with multiple unreliable supply sources that are

subject to random failures at each time period (see Figure 4.1). If a supplier fails to

produce high-quality products, it’s status can be revealed (and therefore corrected)

via an inspection process. Therefore, at the beginning of each time period, a decision

as to whether or not to inspect a supplier or not must be made. It is assumed that

the inspection decisions are made and the results are revealed at the beginning of

the period. In a supply chain with K suppliers, if the supplier i is known to be “in

compliance (IC)” at the beginning of time period t, it is assumed that the materials

received from supplier i in period t are not tainted. However, it can transition into

“out-of-compliance (OC)” status with a positive probability at the beginning of period

t + 1 and therefore supply low-quality material in period t + 1 and will continue

supplying the low-quality material until it is inspected.

Supplier 1

Time Periods 

1 2 3 4 5 6 7 8

Supplier 2

Supplier 3

Supplier 4

Quality failure High-quality supply

Low-quality supplySupply inspection 

Figure 4.1: Supply Inspection

Without any inspection, a supplier that is OC will keep supplying low quality

product indefinitely. On the other hand, a supplier that is IC might transition to OC

status with probability θi or stay in IC status with probability (1−θi). The underlying
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Markov process of this system without the effect of decisions (i.e., inspection decision)

is represented in Figure 4.2.

In compliance 
state

Out of 
compliance 

state


11

Figure 4.2: Markov process for a given supplier without inspection

The Markov process explained above is for a system without any inspection de-

cisions. Based on the results of inspection process, however, the suppliers can be

forced to complete certain corrective actions and therefore the quality of the supplied

material would change. Specifically, in this model it is assumed that, if the result

of inspection on supplier i at the beginning of period t revealed the supplier to be

OC, then the corrective actions will be performed and the material supplied in period

t + 1 will be high quality with probability one. The material supplied in period t,

however, will be low quality and therefore it will incurs a shortage cost in period t.

On the other hand, if the supplier is found to be IC, then no corrective actions are

taken and the supplier might become OC or stay IC with probabilities θi and (1−θi),

respectively. A schematic representation of the model with the inspection decisions

and the corresponding costs are provided in Figure 4.3.
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 i 

Figure 4.3: Decision tree (IC: in compliance, OC: out of compliance)

Sets and Parameters. Suppose there are products from k sources, indexed by

i = 1, ..., k while they are independent of each other.

• Infinite horizon Markov decision process model

• k is the total number of suppliers.

• n is the maximum number of inspections in a period (i.e., capacity limit).

• θi : probability that state moves from in-compliance to another in one period

for supplier i.

• s is the inspection cost of a supplier if capacity is not exceeded (assume that

the inspection cost is same for all suppliers).

• s̄ is the inspection cost of each supplier that has to be inspected beyond capacity

limit (assume that the inspection cost is same for all suppliers).
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• ri is the cost of corrective actions to move supplier i from an out-of-compliance

to an in-compliance state (i.e., discard cost, cost of unsatisfied demand, and

cost of legal actions).

• hi : cost of shipped tainted material to customers from supplier i (i.e., cost of

missed detection of low-quality supply).

• γ : is the one-period discount factor (as the present value of one dollar received

one period from now)

4.2.1 Dynamic Programming Formulation

Assume there is a limit on the number of periods that a supplier can operate without

inspection. i.e., need to inspect each supplier at least once every ρ + 1 periods. To

ensure this, the capacity constraint can be relaxed but assigned a high cost if the

“capacity” is exceeded.

State. In the proposed model, a state is represented by the tuple of two vectors.

z = (x,y) =





xt1

xt2
...

xtk


,



yt1

yt2
...

ytk




z ∈ Z = {(x,y)|xti ≤ ρ+1, xti ∈ N, yti ∈ {0, 1} ∀i}

where

• xti is the number of periods past since the last inspection of supplier i at time

period t,

• yti is the last known condition of supplier i.

yti =


1, if the last inspection showed in compliance state at time period t,

0, if the last inspection showed out of compliance state at time period t.
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Action. The action space is either to inspect the supplier or to do nothing. ati is the

decision regarding the inspection of supplier i

ati =


1, if supplier i is inspected at time period t,

0, otherwise.

Let A(z) be the set of feasible actions given state z defined as follows:

A(z) =





at1

at2
...

atk


| ati ∈ {0, 1} and ati = 1 if xti > ρ+ 1


State Transitions. State transition is defined by:

z =





xt1

xt2
...

xtk


,



yt1

yt2
...

ytk




=⇒ z′ =





xt+1
1

xt+1
2

...

xt+1
k


,



yt+1
1

yt+1
2

...

yt+1
k




where

xt+1
i =


xti + 1, if ati = 0,

1, if ati = 1.

(4.1)

yt+1
i =


yti , if ati = 0,

ζti , if ati = 1.

(4.2)

where ζti is the current actual condition of supplier that would be revealed if the

supplier is inspected. It is important to emphasize the distinction between ζti and
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yti ; the former represents the actual state of the supplier at the beginning of period

t, whereas the latter denotes the last known state of the supplier which might be

different from the actual state. Given the current state at time t, the probability

distribution of ζti can be calculated as follows:

Prob{ζti = 0 |xti = 1, yti = 1} = θi (4.3)

Prob{ζti = 1 |xti = 1, yti = 1} = 1− θi (4.4)

Prob{ζti = 0 |xti = 1, yti = 0} = 0 (4.5)

Prob{ζti = 1 |xti = 1, yti = 0} = 1 (4.6)

Above, xti = 1, yti = 1 means the supplier i was inspected at the beginning of period

t − 1 and it was IC according to the result of the inspection. Therefore in period t,

the supplier i might have transitioned to an OC state with a probability θi. On the

other hand, the given information (xti = 1, yti = 0) means the supplier i was inspected

at the beginning of period t − 1 and the result was OC. Therefore, according to the

assumptions, corrective actions are taken and the supplier transitioned into IC state

with probability 1 in period t. Now, given the state at the beginning of period t (i.e.,

xti and yti) and the decision to inspect or not (i.e., ati), the probability distribution on

the state transitions in one period can be calculated as follows:

Prob{xt+1
i = 1, yt+1

i = 0 |xti = 1, yti = 1, ati = 1} = θi (4.7)

Prob{xt+1
i = 1, yt+1

i = 1 |xti = 1, yti = 1, ati = 1} = 1− θi (4.8)

Prob{xt+1
i = 2, yt+1

i = 1 |xti = 1, yti = 1, ati = 0} = 1 (4.9)

Prob{xt+1
i = 1, yt+1

i = 1 |xti = 1, yti = 0, ati = 1} = 1 (4.10)

Prob{xt+1
i = 2, yt+1

i = 0 |xti = 1, yti = 0, ati = 0} = 1 (4.11)
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Above, Equations 4.7 and 4.8 represent the probability distribution if the supplier

was inspected in period t− 1 and the result was IC and it is decided to inspect again

in period t. Equation 4.9 states that if the supplier was inspected in period t− 1 and

the result was IC and it is decided not to inspect, the state in period t + 1 will be

(xt+1
i = 2, yt+1

i = 1). According to Equation 4.10, if the supplier was inspected in

period t − 1 and the result was OC and if it is decided to inspect, we will find the

supplier to be IC with probability one (because of the corrective actions). Finally,

if the supplier was inspected in period t − 1 and the result was OC, even though

we would know that the supplier is IC in period t + 1 we would transition to state

(xt+1
i = 2, yt+1

i = 0), in which the last known condition is kept at OC (See Figure

4.4 for a schematic representation of these transition probabilities). If more than one

period has passed since the last inspection, the probability distribution on ζti can be

calculated as follows:

Prob{ζti = 0 |xti = m, yti = 1} = 1− (1− θi)m (4.12)

Prob{ζti = 1 |xti = m, yti = 1} = (1− θi)m (4.13)

Prob{ζti = 0 |xti = m, yti = 0} = 1− (1− θi)m−1 (4.14)

Prob{ζti = 1 |xti = m, yti = 0} = (1− θi)m−1 (4.15)

The probabilities given in Equations 4.12 and 4.13 are obtained for a supplier that is

known to be IC m periods ago using the Markovian process explained above. On the

other hand, if the last known condition of the supplier is OC, then it is known that

it will be IC in the next period with probability one. Therefore, the same Markov

chain transition probabilities for m−1 periods can be used as given in Equations 4.14

and 4.15. Using these Equations 4.12–4.15, the state transition probabilities can be
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generalized as follows:

Prob{xt+1
i = 1, yt+1

i = 0 |xti = m, yti = 1, ati = 1} = 1− (1− θi)m (4.16)

Prob{xt+1
i = 1, yt+1

i = 1 |xti = m, yti = 1, ati = 1} = (1− θi)m (4.17)

Prob{xt+1
i = m+ 1, yt+1

i = 1 |xti = m, yti = 1, ati = 0} = 1 (4.18)

Prob{xt+1
i = 1, yt+1

i = 0 |xti = m, yti = 0, ati = 1} = 1− (1− θi)m−1 (4.19)

Prob{xt+1
i = 1, yt+1

i = 1 |xti = m, yti = 0, ati = 1} = (1− θi)m−1 (4.20)

Prob{xt+1
i = m+ 1, yt+1

i = 0 |xti = m, yti = 0, ati = 0} = 1 (4.21)

Dynamic Programming Recursion. In this section, inspection process in the

context of a system with multiple unreliable supply sources is examined, focusing on

inter-stage coordination with capacity limits. In other words, there are restrictions

in the number of available inspection personnel.

Immediate cost. Let c(z, a) be a function representing the immediate cost of action

a while in state z = (x,y). Immediate cost c(z, a) includes the cost of inspection,

cost of corrective actions, and the cost of missed detection of a low-quality supply

from suppliers.

c(z, a) = Inspection cost+ expected corrective action cost+ expected missed detection

cost

c(z, a) = s ·min

{
k∑
i=1

ai, n

}
+ s̄ ·max

{
k∑
i=1

ai − n, 0

}
+

k∑
i=1

ai · ri · Prob{ζi = 0 |xi, yi} +

k∑
i=1

(1− ai) · hi · Prob{ζi = 0 |xi, yi} (4.22)

Note that in this section the time index t is omitted to simplify the notation.

Therefore, Prob{ζi = 0 |xi, yi} denotes the probability that the actual “current”
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state of supplier is OC given the “current” state is (xi, yi) as defined in Equations

4.12 and 4.14.

Let J(z) denote the value of being in state z. The Bellman equation can be written

as

J(z) = ∞ if xti > ρ+ 1 for any i (4.23)

J(z) = min
a∈A

c(z, a) +
∑

z′∈Ω(z,a)

γ · Prob{z′ |z, a} · J(z′)

 (4.24)

where Ω(z, a) denotes the set of states that can be transition into given the current

state z and action a and

Prob{z′ |z, a} =
k∏
i=1

Prob{x′i, y′i |xi, yi, ai} (4.25)

Note that, since it is assumed that all suppliers are independent, the product of all

the transition probabilities for individual suppliers can be used as shown in Equation

4.25.

4.3 Single supplier

In this section, the structural properties of the optimal inspection policies for a single

supplier version of the supply chain inspection problem are examined. The results

of structural properties for a single supplier version will be used to develop an ef-

fective approximate DP algorithm to retain a fairly good solution. Consider the DP

model given in Equation 4.24 for only one supplier and ignore the cost s̄ of exceeding
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inspection capacity. Then the model simplifies to:

J(x, y) = min


s+ r · P{ζ = 0|x, y}+ γ[P{x = 1, y = 0|x, y, a = 1}J(1, 0)+

P{x = 1, y = 1|x, y, a = 1}J(1, 1)],

h · Prob{ζ = 0 |x, y}+ γ · J(x+ 1, y)

(4.26)

where the first term represents the cost of inspecting and the second term is for not

inspecting. More specifically:

J(x, 0) = min


s+ r(1− (1− θ)x−1) + γ[(1− (1− θ)x−1)J(1, 0)+

(1− θ)x−1J(1, 1)],

h(1− (1− θ)x−1) + γ · J(x+ 1, 0)

(4.27)

J(x, 1) = min


s+ r(1− (1− θ)x) + γ[(1− (1− θ)x)J(1, 0)+

(1− θ)xJ(1, 1)],

h(1− (1− θ)x) + γ · J(x+ 1, 1)

(4.28)

and the following are obtained when x = 1

J(1, 0) = min{s+ γJ(1, 1), γJ(2, 0)} (4.29)

J(1, 1) = min{s+ rθ + γ[θJ(1, 0) + (1− θ)J(1, 1)], hθ + γJ(2, 1)} (4.30)

When x = ρ:

J(ρ+ 1, 0) = s+ r(1− (1− θ)ρ) + γ[(1− (1− θ)ρ)J(1, 0) + (1− θ)ρJ(1, 1)] (4.31)

J(ρ, 1) = s+ r(1− (1− θ)ρ) + γ[(1− (1− θ)ρ)J(1, 0) + (1− θ)ρJ(1, 1)] (4.32)
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A limit (cap) on the maximum number of periods that a supplier can go without an

inspection is set to make the model finite state space. Also, note that in this problem

it is assumed if a supplier is known to be out-of-control, it will be in-control in the

following period with probability one. Therefore, to make the problem consistent, the

policies in states (ρ, 1) and (ρ+1, 0) are set to be “inspect”, resulting in J(ρ+1, 0) =

J(ρ, 1). Note that, having a limit (cap) ρ is not a simplifying assumption as one

can set ρ to be a significantly large number so that it does not imply restrictions on

optimal policies.

For the case of notation, two functions are defined as follows:

f(x) = s+ r(1− (1− θ)x) + γ[(1− (1− θ)x)J(1, 0) + (1− θ)xJ(1, 1)] (4.33)

g(x) = h(1− (1− θ)x) (4.34)

Lemma 1. J(x, 1) = J(x+ 1, 0) for all x = 1, 2, . . .

Proof: Proof is straightforward by induction on x; the number of periods since the

last inspection. Note that, by construction J(ρ+ 1, 0) = J(ρ, 1). Assume the lemma

is true for all x = n+ 1, n+ 2, . . . ρ. Then for x = n there are:

J(n+ 1, 0) = min


s+ r(1− (1− θ)n) + γ [(1− (1− θ)n)J(1, 0) + (1− θ)nJ(1, 1)] ,

h(1− (1− θ)n) + γ · J(n+ 2, 0)

J(n, 1) = min


s+ r(1− (1− θ)n) + γ[(1− (1− θ)n)J(1, 0) + (1− θ)nJ(1, 1)],

h(1− (1− θ)n) + γ · J(n+ 1, 1)

Since J(n+ 2, 0) = J(n+ 1, 1) by the inductive hypothesis: J(n+ 1, 0) = J(n, 1). �

Due to this lemma, it would be sufficient to prove any result either for states (x, 0)

or (x, 1).

Lemma 2. J(1, 0) ≤ J(1, 1)
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Proof: From Equation 4.29 and Lemma 1:

J(1, 0) ≤ γJ(2, 0) ≤ J(2, 0) = J(1, 1) �

Lemma 3. J(1, 0) = γJ(1, 1)

Proof: From Lemma 1, we have J(2, 0) = J(1, 1) and therefore s + γJ(1, 1) ≥

γJ(2, 0). So, from Equation 4.29 we have

J(1, 0) = γJ(2, 0) = γJ(1, 1)

and the optimal decision in state (1, 0) is “do not inspect”. �

Lemma 4. J(1, 1) ≤ s+rθ
(1−γ)(1+γθ)

Proof: Following Equation 4.32:

J(1, 1) ≤ s+ rθ + γ[θJ(1, 0) + (1− θ)J(1, 1)]

= s+ rθ + γ2θJ(1, 1) + γ(1− θ)J(1, 1)

where the second inequality is by Lemma 3. With some algebra, we can easily obtain:

J(1, 1) ≤ s+ rθ

(1− γ)(1 + γθ)
�

Lemma 5. Assume the function f(x) in Equation 4.33 is defined for all x ∈ R. Then

the function f(x) is either non-increasing and convex or non-decreasing and concave.

Proof: By definition;

f(x) = s+ r(1− (1− θ)x) + γ[(1− (1− θ)x)J(1, 0) + (1− θ)xJ(1, 1)]

= s+ r(1− (1− θ)x) + γ2(1− (1− θ)x)J(1, 1) + γ(1− θ)xJ(1, 1)
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The second inequality follows from Lemma 3. With some algebra we can easily obtain:

f(x) = s+ r + γ2J(1, 1) + [(γ − γ2)J(1, 1)− r](1− θ)x (4.35)

In the equation above, the only term that depends on x is (1 − θ)x and the term in

brackets is constant since J(1, 1) only depends only on the parameters s, r, h, γ and

θ. Therefore depending on the sign of the term in brackets, which is defined by the

given parameters in the problem, f(x) can be either convex or concave. To show

monotonicity, consider the difference:

f(x+1)−f(x) = [s+r(1−(1−θ)x+1)+γ[(1−(1−θ)x+1)J(1, 0)+(1−θ)x+1J(1, 1)]]−

[s+ r(1− (1− θ)x) + γ[(1− (1− θ)x)J(1, 0) + (1− θ)xJ(1, 1)]]

Again, algebraically, we can obtain;

f(x+ 1)− f(x) = [(γ2 − γ)J(1, 1) + r]θ(1− θ)x (4.36)

Note that, the term in brackets in the above equation is the negative of the term in

brackets in Equation 4.35. Therefore, if (γ − γ2)J(1, 1)− r ≤ 0 then f(x) is concave

and non-decreasing, otherwise it is convex and non-increasing. �

In this dissertation, it is tried to prove the results for as general a model as

possible. Therefore, no assumptions on the cost parameters such as s, r or h are

made. However, the values of these parameters are important to define the optimal

policy of the problem. For example, if h = 0, then there is no penalty for missed

detection and therefore, there is no incentive for inspection. As a result, if h = 0

then the optimal policy would be “do not inspect” with J(x, y) = 0 for any feasible

state (x, y). Therefore, for inspection to be optimal h must be “high enough”. The

following lemma defines a lower bound on h, for which the suppliers would have to

be inspected in some future state in the optimal solution.

Lemma 6. Set h > s+rθ
θ

1−γ+γθ
1+γθ

then there exists n > 0 such that the optimal action
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is to inspect in state (n, y) for y = 0 or y = 1.

Proof: We will show the result only for y = 1. Assume h > s+rθ
θ

1−γ+γθ
1+γθ

but the

statement does not hold, in other word such an n does not exists. Therefore, it is

never optimal to inspect so the optimal actions for all x > 0 are “do not inspect”.

This means;

J(1, 1) = hθ + γJ(2, 1)

= hθ + γ(h(1− (1− θ)2) + γJ(3, 1))

= hθ + γ(h(1− (1− θ)2) + γ(h(1− (1− θ)3) + γJ(4, 1)))

= . . .

= hθ + hγ + hγ2 + hγ3 + . . .− hγ(1− θ)2 − hγ2(1− θ)3 − hγ3(1− θ)4 − . . .

= hθ + hγ(1 + γ + γ2 + . . .)− hγ(1− θ)2[1 + γ(1− θ) + γ2(1− θ)2 + . . .]

= hθ + h
γ

1− γ
− hγ (1− θ)2

1− γ(1− θ)

from Equation 4.32 we have

J(1, 1) = min{s+ rθ + γ[θJ(1, 0) + (1− θ)J(1, 1)], hθ + γJ(2, 1)}

and therefore

J(1, 1) = hθ + h
γ

1− γ
− hγ (1− θ)2

1− γ(1− θ)
≤ s+ rθ + γ[θJ(1, 0) + (1− θ)J(1, 1)]

= s+ rθ + γ2θJ(1, 1) + γ(1− θ)J(1, 1)

= s+ rθ + [γ2θ + γ(1− θ)](hθ + h
γ

1− γ
− hγ (1− θ)2

1− γ(1− θ)
)

The third equality follows Lemma 3, the fourth equality is obtained by using J(1, 1) =

hθ+h γ
1−γ−hγ

(1−θ)2
1−γ(1−θ) . With some algebra we can easily obtain h ≤ s+rθ

θ
1−γ+γθ

1+γθ
which

contradicts the initial assumption. �
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In the following two lemmas, two new functions φ′(x) = f(x)− g(x) and φ′′(x) =

f(x)− g(x)− γf(x + 1) are defined and the conditions under which these functions

are monotone are analyzed. These results are then going to be helpful to prove the

main result.

Lemma 7. If h > s+rθ
θ

then φ′(x) = f(x)− g(x) is a decreasing convex function.

Proof:

φ′(x) = f(x)− g(x) = s+ r(1− (1− θ)x) +

γ[(1− (1− θ)x)J(1, 0) + (1− θ)xJ(1, 1)]− h(1− (1− θ)x) =

s+ r + γ2J(1, 1)− h+ [(γ − γ2)J(1, 1)− r + h](1− θ)x (4.37)

Above, the last equality is obtained by replacing J(1, 0) by γJ(1, 1). As discussed

before J(1, 1) is a constant function the value of which depends on the parameters

given in the problem. Therefore, the first 4 terms in Equation 4.37 are constant.

Also, since h > s+rθ
θ

then J(1, 1) ≥ s+ rθ. To see this consider Equation 4.32:

J(1, 1) = min{s+ rθ + γ[θJ(1, 0) + (1− θ)J(1, 1)], hθ + γJ(2, 1)}

both of the terms in the minimization function above are greater than or equal to

s+ rθ. Next, we consider the term in brackets:

(γ − γ2)J(1, 1)− r + h

The only negative term above is − and by assumption h > s+rθ
θ

> r. Therefore, the

term in brackets is positive and φ′(x) is a decreasing convex function. �

Lemma 8. If h > s+rθ
θ

then φ”(x) = f(x)− g(x)− γf(x+ 1) is a decreasing convex

function.
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Proof:

φ′′(x) = f(x)− g(x)− γf(x+ 1)

= s+ r(1− (1− θ)x) + γ[(1− (1− θ)x)J(1, 0) + (1− θ)xJ(1, 1)]−

h(1− (1− θ)x)−

γ ∗ (s+ r(1− (1− θ)x+1) + γ[(1− (1− θ)x+1)J(1, 0) + (1− θ)x+1J(1, 1)])

= (1− γ)(s+ r + γ2J(1, 1))− h+

[h− r(1− γ + γθ) + γ(1− γ)(1− γ + γθ)J(1, 1)](1− θ)x (4.38)

Again, the last equality is obtained by replacing J(1, 0) by γJ(1, 1). As discussed

before, the first 2 terms in Equation 4.38 are constant. The terms in bracket can be

written as follow:

h− r(1− γ + γθ) + γ(1− γ)(1− γ + γθ)J(1, 1) =

(h− r) + rγ(1− θ) + γ(1− γ)(1− γ(1− θ))J(1, 1) (4.39)

Using the assumption h > s+rθ
θ

it is easy to show the terms given above are positive

and therefore φ′′(x) is a decreasing convex function. �

Lemma 9. Assume h ≥ s+rθ
θ

. If the optimal action in state (x, 1) is to inspect the

supplier for x ≥ 1, then the optimal action in state (x+ 1, 1) is also to inspect.

Proof: If it is optimal to inspect in state (x, 1), then;

f(x) ≤ g(x) + γJ(x+ 1, 1)

= g(x) + γ ·min{f(x+ 1), g(x+ 1) + γJ(x+ 2, 1)}

≤ g(x) + γf(x+ 1) (4.40)
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Using the inequality f(x) ≤ g(x) + γf(x+ 1) and Lemma 7, there is;

f(x+ 1) ≤ g(x+ 1) + γf(x+ 2) (4.41)

and similarly,

f(x+ k) ≤ g(x+ k) + γf(x+ k) (4.42)

for any k ∈ {1, 2, . . .}. Iteratively combining Equations 4.41 and 4.42 for any k, we

can easily obtain;

f(x+ 1) ≤ g(x+ 1) + γf(x+ 2)

≤ g(x+ 1) + γg(x+ 2) + γ2f(x+ 3)

≤ g(x+ 1) + γg(x+ 2) + γ2g(x+ 3) + γ3f(x+ 4)

...

≤ g(x+ 1) + γg(x+ 2) + . . .+ γk−1g(x+ k) + γkf(x+ k + 1) (4.43)

for any k ∈ {1, 2, . . .}. Therefore, if it is optimal to inspect in state (x, 1) then cost

of inspection in period (x + 1, 1) results in lower cost than any other alternative

policy such as not inspecting for the next k ∈ {1, 2, . . .} periods and then inspecting.

Therefore, it is also optimal to inspect in state (x+ 1, 1). �

Lemma 10. The optimal policy of a single-supplier problem is a threshold policy.

Proof: Follows from Lemma 9.

An optimal inspection decision has a simple threshold structure. An optimal policy is:

“do not inspect” if the information state (xi, yi) is behind the threshold. In addition,

the optimal decision is: “inspect” if the information state is ahead of the threshold.

Figure 4.5 shows an example of threshold policy for a single-supplier. Threshold

structure can move to right or left by changing the parameters of the model.
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Figure 4.5: An example of threshold policy for a single-supplier (DI: Do not inspect,
I: Inspect)

4.4 Linear programming formulation of DP model

The proposed dynamic programming formulation can be equivalently formulated as

a linear programming problem as shown in Equations 4.44 and 4.45.

max
J(z)

∑
z

α(z) · J(z) (4.44)

subject to J(z) ≤ c(z, a) +
∑

z′∈Ω(z,a)

γ · Prob{z′ |z, a} · J(z′) ∀ z, a (4.45)

Linear programming (LP) approaches for solving dynamic programming formulation

have been studied in literature [e.g., 96, 97, 98]. However, the size of a state space

increases exponentially when the problem size increases linearly. For instance, Table

4.1 shows the possible states and actions for single supplier.

Table 4.1: Possible states and actions for single supplier
# possible states possible actions
1 (1,0) (0,1)
2 (1,1) (0,1)
3 (2,0) (0,1)
4 (2,1) (0,1)
5 (3,0) (0,1)
6 (3,1) (0,1)
...

...
...

2ρ− 1 (ρ, 0) (0,1)
2ρ (ρ, 1) (1)

2ρ+ 1 (ρ+ 1, 0) (1)
Totoal 2ρ+ 1 4ρ
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Therefore, considering k suppliers there are:

Number of decision variables = Total number of states = (2ρ+ 1)k (4.46)

Total number of constraints = (4p)k (4.47)

For example, Table 4.2 shows the number of decision variables and number of con-

straints where k = {6, 7} and 2 6 ρ 6 k.

Table 4.2: Problem size for a given k, ρ
k ρ # of decision variables # of constraints
6 2 15,625 262,144
6 3 117,649 2,985,984
6 4 531,441 16,777,216
6 5 1,771,561 64,000,000
6 6 4,826,809 191,102,976
7 2 78,125 2,097,152
7 3 823,543 35,831,808
7 4 4,782,969 268,435,456
7 5 19,487,171 1,280,000,000
7 6 62,748,517 4,586,471,424
7 7 170,859,375 13,492,928,512

As can be seen in Table 4.2, there are many decision variables and constraints even

given the small size of the problem. An efficient approach to handle this difficulty is

to generate an approximation with relatively few variables and constraints.

4.5 An approximate dynamic programming model

An exact solution approach may include several hundreds of thousand decision vari-

ables and constraints. This would result in a state space too large to be solved in a

reasonable amount of time by the exact algorithm (since this is an operational deci-

sion, it is assumed that a reasonable time is less than one hour). Methods based on

the Decomposition (e.g. column generation, bender decomposition) and Lagrangian

Relaxation techniques are not options any more due to the huge size of the prob-

lem. A simplified model, however, can greatly reduce computation time while still
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producing effective solutions. An Approximate Dynamic Programming (ADP) model

is presented below that approximates the model based on the structure of the single

supplier characteristics. Next, some simplification assumptions are outlined to reduce

the size of the problem.

4.5.1 Action reduction-Constraints reduction

In the original LP (standard form) formulation, there is a constraint for each com-

bination of z, a. However, part of the possible combinations of z, a can be ignored

using optimal action policy of single supplier version of problem. Let:

a′i : Optimal action for single supplier i

a′′i : Possible actions for multiple case for a given supplier i

Table 4.3 summarizes the four different constraint structures considered in this dis-

sertation using single supplier results.
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Table 4.3: Action reduction process
Policy Constraint structure

Before action reduction ∀ z
∀ a If a satisfies cap (ρ)

Action reduction version 1. ∀ z

• if (xi = ρ, yi = 1) or (xi = ρ+ 1, yi = 0) −→ a′′i = 1,

• if xi ≤ ρ, a′i = 1 −→ a′′i = 1,

• else −→ a′′i = {0, 1}

Action reduction version 2. ∀ z

• if
∑k

i=1(a′i) ≤ n −→ only consider a′ = (a′1, a
′
2, . . . , a

′
k),

• if
∑k

i=1(a′i) > n :

– if (xi = ρ, yi = 1) or (xi = ρ+ 1, yi = 0) −→ a′′i = 1,

– else −→ a′′i = {0, 1}

Action reduction version 3. ∀ z

• if
∑k

i=1(a′i) ≤ n −→ only consider a′ = (a′1, a
′
2, . . . , a

′
k),

• if
∑k

i=1(a′i) > n :

– if xi ≤ ρ, a′i = 0 −→ a′′i = 0,

– if (xi = ρ, yi = 1) or (xi = ρ+ 1, yi = 0) −→ a′′i = 1,

– else −→ a′′i = {0, 1}

Action reduction version 4. ∀ z

• if
∑k

i=1(a′i) ≤ n :,

– if (xi = ρ, yi = 1) or (xi = ρ+ 1, yi = 0) −→ a′′i = 1,

– if xi ≤ ρ, a′i = 1 −→ a′′i = 1,

– else −→ a′′i = {0, 1}

• if
∑k

i=1(a′i) > n :

– if xi ≤ ρ, a′i = 0 −→ a′′i = 0,

– if (xi = ρ, yi = 1) or (xi = ρ+ 1, yi = 0) −→ a′′i = 1,

– else −→ a′′i = {0, 1}

In the numerical experiments, it was realized that proposed action reduction pro-

cess was not strong enough to reduce a significant number of the constraints. Even

only considering one action per state, the number of constraints would be equal to

total number of states which is a huge number and unsolvable in large-scale applica-

tions.
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4.5.2 State reduction-Variables reduction

As mentioned earlier, in the proposed DP formulation, the number of state variables

increases exponentially which is intractable in practical scale. Therefore, an effective

approach to approximate cost-to-go function with relatively few variables is proposed.

As shown in Equation 4.48, an approximation of J(z) (i.e., J̃(z)) is developed similar

to statistical regression method considering results of optimal value of J for a single

supplier.

J̃(z) = J̃





z1

z2

...

zk




= λ1J

′
1(z1) + λ2J

′
2(z2) + · · ·+ λkJ

′
k(zk) + β (4.48)

where, J ′i(zi) is optimal value for single supplier i and λi is a new variable. For each

supplier i, there are 2ρ+ 1 possible states for zi and therefore, λi would be one of the

{λi,1 or λi,2 or . . . or λi,2ρ+1}. following this approach there is:

Number of decision variables = (2ρ+ 1)k + 1 (4.49)
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For example if k = 2, ρ = 2 :



z1 = (1, 0) , λ1 = λ1,1 or

z1 = (1, 1) , λ1 = λ1,2 or

z1 = (2, 0) , λ1 = λ1,3 or

z1 = (2, 1) , λ1 = λ1,4 or

z1 = (3, 0) , λ1 = λ1,5


,



z2 = (1, 0) , λ2 = λ2,1 or

z2 = (1, 1) , λ2 = λ2,2 or

z2 = (2, 0) , λ2 = λ2,3 or

z2 = (2, 1) , λ2 = λ2,4 or

z2 = (3, 0) , λ2 = λ2,5


(4.50)

J̃(z) = J̃


 z1

z2


 = λ1J

′
1(z1) + λ2J

′
2(z2) + β (4.51)

if

 z1 = (1, 0)

z2 = (1, 0)

→ J̃(z) = J̃


 (1, 0)

(1, 0)


 = λ1,1J

′
1(1, 0) + λ2,1J

′
2(1, 0) + β (4.52)

if

 z1 = (1, 0)

z2 = (1, 1)

→ J̃(z) = J̃


 (1, 0)

(1, 1)


 = λ1,1J

′
1(1, 0) + λ2,2J

′
2(1, 1) + β (4.53)

...

if

 z1 = (3, 0)

z2 = (3, 0)

→ J̃(z) = J̃


 (3, 0)

(3, 0)


 = λ1,5J

′
1(3, 0) + λ2,5J

′
2(3, 0) + β (4.54)

if α(z) = 1 :

OF = max
J̃(z)

∑
z

J̃(z)

= {λ1,1J
′
1(1, 0) + λ2,1J

′
2(1, 0) + β}+ {λ1,1J

′
1(1, 0) + λ2,1J

′
2(1, 0) + β}+

· · ·+ {λ1,5J
′
1(3, 0) + λ2,5J

′
2(3, 0) + β}

= 5 [λ1,1J
′
1(1, 0) + λ1,2J

′
1(1, 1) + λ1,3J

′
1(2, 0) + λ1,4J

′
1(2, 1) + λ1,5J

′
1(3, 0)] +

5 [λ2,1J
′
2(1, 0) + λ2,2J

′
2(1, 1) + λ2,3J

′
2(2, 0) + λ2,4J

′
2(2, 1) + λ2,5J

′
2(3, 0)] +

52β (4.55)
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subject to:

J̃(z) ≤ c(z, a) +
∑

z′∈Ω(z,a)

γ · Prob{z′ |z, a} · J̃(z′) ∀ z, a (4.56)

if


z1 = (1, 0)

z2 = (1, 0)

a = (0, 0)

 → J̃


 (1, 0)

(1, 0)


 ≤ c


 (1, 0)

(1, 0)

 , (0, 0)

+

γ · 1 · J̃


 (2, 0)

(2, 0)


 (4.57)

if


z1 = (1, 0)

z2 = (1, 0)

a = (0, 1)

 → J̃


 (1, 0)

(1, 0)


 ≤ c


 (1, 0)

(1, 0)

 , (0, 1)

+

γ · 1 · J̃


 (2, 0)

(1, 1)


 (4.58)

...

if


z1 = (3, 0)

z2 = (3, 0)

a = (1, 1)

 → J̃


 (3, 0)

(3, 0)


 ≤ c


 (3, 0)

(3, 0)

 , (1, 1)

+

γ(1− θ1)2(1− θ2)2 · J̃


 (1, 1)

(1, 1)


+

γ(1− θ1)2(1− (1− θ2)2) · J̃


 (1, 1)

(1, 0)


+

γ(1− (1− θ1)2)(1− θ2)2J̃


 (1, 0)

(1, 1)


+

γ(1− (1− θ1)2)(1− (1− θ2)2)J̃


 (1, 0)

(1, 0)


 (4.59)

113



By using Equation 4.48, the previous constraints can be rewritten as follows:

λ1,1J
′
1(1, 0) + λ2,1J

′
2(1, 0) + β ≤ c


 (1, 0)

(1, 0)

 , (0, 0)

+

γ(λ1,3J
′
1(2, 0) + λ2,3J

′
2(2, 0) + β) (4.60)

λ1,1J
′
1(1, 0) + λ2,1J

′
2(1, 0) + β ≤ c


 (1, 0)

(1, 0)

 , (0, 1)

+

γ(λ1,3J
′
1(2, 0) + λ2,1J

′
2(1, 1) + β) (4.61)

...

λ1,5J
′
1(3, 0) + λ2,5J

′
2(3, 0) + β ≤ c


 (3, 0)

(3, 0)

 , (1, 1)

+

γ(1− θ1)2(1− θ2)2 · (λ1,2J
′
1(1, 1) + λ2,2J

′
2(1, 1) + β) +

γ(1− θ1)2(1− (1− θ2)2) · (λ1,2J
′
1(1, 1) + λ2,1J

′
2(1, 0) + β) +

γ(1− (1− θ1)2)(1− θ2)2 · (λ1,1J
′
1(1, 0) + λ2,2J

′
2(1, 1) + β) +

γ(1− (1− θ1)2)(1− (1− θ2)2)(λ1,1J
′
1(1, 0) + λ2,1J

′
2(1, 0) + β) (4.62)

In the numerical experiments it was realized that J̃(z) is a strong approximation func-

tion of J(z). Also, using this approach, the number of the variables from polynomial

form ((2ρ + 1)k) in the original LP can be significantly reduced to the linear form

((2ρ+1)k+1) in ADP. However, the number of the constraints is still huge and likely

unsolvable in large-scale applications.

4.5.3 Extreme states method - State and action reduction

In this section, an effective approach to reduce the overall size of the problem while

retaining a fairly good solution is discussed. This approach is based on use of J̃(z)

instead of J(z), and incorporating subset of the constraints. The Extreme-states

method computational procedure is implemented in the following steps.

114



Step 1: Constraints reduction using subset of possible states (extreme states):

– for each supplier i, consider all possible states ((1,0), (1,1), (2,0), (2,1),

· · · , (ρ+ 1, 0)) for supplier i, but fixed all the remaining suppliers in state

(ρ+ 1, 0).

– ignore all the remaining possible states from constraints

Step 2: Constraints reduction using subset of possible actions:

– For each possible state of Step 1, action will be fixed based on the optimal

action of single supplier version.

Step 3: Variables reduction using J̃(z) instead of J(z).

Following this approach there are:

Number of decision variables = (2p+ 1)k + 1 (4.63)

Total number of constraints = (2p)k + 1 (4.64)

For example if k = 2, ρ = 2 :





z1 = (1, 0) or

z1 = (1, 1) or

z1 = (2, 0) or

z1 = (2, 1) or

z1 = (3, 0)


, z2 = (3, 0)


or


z1 = (3, 0),



z2 = (1, 0) or

z2 = (1, 1) or

z2 = (2, 0) or

z2 = (2, 1) or

z2 = (3, 0)




(4.65)

In order to prevent unbounded solution, an upper bound (UB) value for λi,j, β can be

imposed. Initially, it is started with a large UB value and reduced iteratively until all

the dual values are equal to zero (i.e., all the constraints are binding). For example,

Table 4.4 shows results of Dual and Slack values in case where k = 2, n = 2, θ =
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[0.15, 0.15], s = 200, s̄ = 250, r = [350, 350], h = [700, 700], γ = 0.95, ρ = 2.

Table 4.4: Dual and Slack values in small example

Constraint
UB= 1.4 UB= 1.2 UB= 1.0 UB= 0.8 UB= 0.6

Dual Slack Dual Slack Dual Slack Dual Slack Dual Slack
Z = ([1, 0], [3, 0]), a = (0, 1) 4.5 0 4.5 0 4.5 0 0 59.4 0 118.8
Z = ([1, 1], [3, 0]), a = (0, 1) 0 98.5 0 49.3 0 0.04 0 80.39 0 160.8
Z = ([2, 0], [3, 0]), a = (0, 1) 9.3 0 9.3 0 9.3 0 0 80.4 0 160.82
Z = ([2, 1], [3, 0]), a = (1, 1) 0 21.7 0 10.9 0 0.04 0 118.81 0 237.7
Z = ([3, 0], [1, 0]), a = (1, 0) 4.5 0 4.5 0 4.5 0 0 59.4 0 118.82
Z = ([3, 0], [1, 1]), a = (1, 0) 0 98.5 0 49.3 0 0.04 0 80.39 0 160.8
Z = ([3, 0], [2, 0]), a = (1, 0) 9.3 0 9.3 0 9.3 0 0 80.4 0 160.8
Z = ([3, 0], [2, 1]), a = (1, 1) 0 21.7 0 10.9 0 0.04 0 118.81 0 237.7
Z = ([3, 0], [3, 0]), a = (1, 1) 0 281.17 0 140.65 0 0.14 0 118.81 0 237.67

As it is shown in 4.4, when UB ≥ 1.0, there is at least one dual value unequal to

zero (or there is at least one slack value equal to zero). However, when UB ≤ 0.8,

all the dual values are equal to zero (or all the slack values are unequal to zero).

The range [0.8, 1] can be further analyzed to further refine the range for UB. In this

example, the range [0.9998, 0.9999] has the best upper-bound value.

The best UB can be calculated without any optimization. In other words, the

standard LP version of the Extreme-states model can be expressed in matrix form

as max{cTx | Ax ≤ b, x ≤ UB · 1} where x = [λ1, λ2, · · · , λk, β]T , and A is a

matrix of coefficients, and b is right hand side of the constraints. Due to the fact that

A(UB.1) ≤ b and this a maximization problem, the best UB would be the highest

value of UB where all inequalities are satisfied.

In the numerical experiments, it was realized that by using this approximation

approach the value of J(z) can be estimated within an acceptable gap difference.

4.5.4 An extended of the Extreme-states method

In this section, the approximation approach based on the Extreme-states method is

extended and another approach to reduce gap difference is discussed. The Extreme-

states method is used as a base model and then additional constraints are added.

These constraints should have certain characteristics. The following steps show the
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details of extended of the Extreme-states scenario approach.

Step 1: Consider Extreme-states model: max{cTx | Ax ≤ b, x ≤ UB · 1}

– find the best UB for Extreme-states model,

– UB→UB+ε where, ε is a really small positive number.

– consider updated UB as a parameter in the model and solve the model

Step 2: ∀ c ∈ {Constraints set}: If ∃ c | c · slack = 0

– consider all the z included in the constraint c,

– for each possible z, consider optimal a from single supplier version.

Step 3: Add all corresponding constraints (z, a) to the {Constraints set}.

– find the best UB for updated model,

– UB→UB+ε where, ε is a really small positive number.

– consider updated UB in the updated model and solve the model.

Step 4: move to the Step 2.

Step 5: Stop if @ c | c · slack = 0.

In other words, this approach uses all the benefits of Extreme-states method and tries

to incorporate a part of the most effective remaining constraints to the model. The

numerical experiments indicate that by using this approximation approach the better

estimation of J(z) and/or better action policy could be found.

4.6 Numerical Results

In this section, the computational results are summarized. A workstation with two

3.066 GHz Quad-Core Intel Xeon processors and 32 GB memory was used to run

all the experiments. The Original-LP model, and approximation procedures were
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implemented in the Python language. The Gurobi Optimizer 5.1.0 was used to solve

all the optimization problems.

Table 4.5 shows the comparison results of exact method vs. two proposed approx-

imation methods. The exact method is unable to solve the problem in acceptable

time when k = 5, ρ ≥ 5 while, both of approximation approaches can deliver high

quality results very fast (in the experiments of Table 4.5: θi = 0.15, s = $1000, s̄ =

$1500, n = bk/2c, ri = $2000, hi ∈ [$1500, $4000], γ = 0.9). The average absolute

difference (aad) between J∗(z), J̃(z) is also shown. In other words,

aad =

(2ρ+1)k∑
i=1

|J∗(zi)− J̃(zi)| / (2ρ+ 1)k (4.66)

where, J∗(zi), J̃(zi) are calculated based on exact and approximation approaches,

respectively.

Table 4.5: Exact method vs. Approximation method
Exact method Approximation method
Original-LP Extreme-states method Extended extreme-states method

k ρ time (sec) time (sec) aad (%) time (sec) aad (%)
2 2 0.14 0.07 3.52% 0.31 3.55%
2 3 0.17 0.12 0.44% 0.32 0.46%
2 4 0.25 0.12 0.40% 0.23 0.40%
2 5 0.31 0.12 0.40% 0.24 0.40%
2 6 0.46 0.14 0.47% 0.27 0.47%
3 2 0.37 0.12 4.75% 0.35 8.15%
3 3 0.88 0.12 10.44% 0.35 1.22%
3 4 2.12 0.14 9.66% 0.40 1.08%
3 5 3.45 0.21 8.91% 0.71 1.15%
3 6 6.61 0.23 8.17% 0.81 1.35%
4 2 2.55 0.13 7.39% 0.42 2.17%
4 3 16.69 0.22 8.04% 0.46 0.26%
4 4 64.88 0.25 7.33% 0.66 0.28%
4 5 245.94 0.33 6.70% 0.77 0.38%
4 6 823.31 0.33 6.18% 0.85 0.51%
5 2 38.58 0.22 9.24% 0.67 4.73%
5 3 679 0.3 12.20% 0.80 0.58%
5 4 7531.91 0.41 11% 1.04 0.67%
5 5 58738.25 0.71 10% 1.13 0.85%
5 6 - 0.75 - 1.42 -
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As it is shown in Table 4.5, the performance of both proposed approximation

approaches is acceptable. However, the performance of the extended Extreme-states

method is better than the Extreme-states method. The extended Extreme-states

approximation approach can estimate the value of J∗(z) with very low gap difference

(less than 2% gap in most of cases).

Two proposed approximation approaches are exercised to provide insights about

how key parameters (s̄, ri, hi) impact the obtained solutions. In this regard, initially,

it is assumed that k = 4, n = 2, θi = 0.15, s = $1000, s̄ = $1500, ri = $2000, h =

[$1500, $2500, $3000, $3000], γ = 0.9. By using these parameters, both proposed

approximation approaches are solved to make inspection action decision. First, all

the parameters are fixed as the mentioned values above except for the value of s̄. The

value of s̄ is changed from $1,500 to $3,000 (i.e., double of initial value) and then,

both proposed approximation approaches are solved. Table 4.6 shows comparison

between both approximation approaches considering aad.

Table 4.6: Comparison between approximation approaches changing s̄
Extreme-states method Extended extreme-states method
s̄ = $1500 s̄ = $3000 s̄ = $1500 s̄ = $3000

k ρ aad(%) aad(%) aad(%) aad(%)
4 2 7.39% 34.99% 2.17% 2.95%
4 3 8.04% 32.51% 0.26% 0.59%
4 4 7.33% 29.92% 0.28% 0.43%
4 5 6.70% 27.83% 0.38% 0.48%
4 6 6.18% 26.15% 0.51% 0.60%

As shown in 4.6, almost optimal policy can be found by extended extreme state

method. In other words, this approach utilizes capacity very efficiently and there

is not much required inspection beyond the capacity limit. Therefore, by increasing

s̄ from $1,500 to $3,000, there is not any big differences in the aad value (i.e., this

approach is not sensitive in to changes of s̄). In contrast, extreme state method is

not very efficient and its output is very sensitive to changes of s̄.
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Same procedure is used for analyzing the effect of r, h on the performance of

approximation approaches. Table 4.7 and Table 4.8 summarize the effect of r and s

on the results of two proposed approximation approaches. In Table 4.8, it is assumed

that h1 = [$1500, $2500, $3000, $3000], and h2 = [$3000, $5000, $6000, $6000]. The

results of numerical experiments indicate that, almost optimal policy can be found

by extended extreme state method and this approximation approach is not sensitive

to parameters. In contrast, extreme state method is less efficient and more sensitive

to parameters compared to extended extreme state method.

Table 4.7: Comparison between approximation approaches changing r
Extreme-states method Extended extreme-states method
ri = $2000 ri = $4000 ri = $2000 ri = $4000

k ρ aad(%) aad(%) aad(%) aad(%)
4 2 7.39% 5.39% 2.17% 1.85%
4 3 8.04% 5.76% 0.26% 0.15%
4 4 7.33% 5.09% 0.28% 0.14%
4 5 6.70% 4.58% 0.38% 0.18%
4 6 6.18% 4.21% 0.51% 0.21%

Table 4.8: Comparison between approximation approaches changing h
Extreme-states method Extended extreme-states method
h = h1 h = h2 h = h1 h = h2

k ρ aad(%) aad(%) aad(%) aad(%)
4 2 7.39% 8.33% 2.17% 0.61%
4 3 8.04% 7.37% 0.26% 0.62%
4 4 7.33% 6.47% 0.28% 0.86%
4 5 6.70% 5.74% 0.38% 1.10%
4 6 6.18% 5.19% 0.51% 1.28%

Simulation results. A simulation model is provided to compare the perfor-

mance of inspection policy obtained from the proposed approximate DP algorithm

with other Baseline policies. The baseline policy considers periodically inspection of

suppliers without considering capacity, underling supply chain structure, and stochas-

ticity. In other words, the Baseline policy requires the inspection of suppliers every t

periods (t ∈ {2, 3, 4, 5, 6}).
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Approximately similar baseline policy is being used by several organizations. For

example, The FDA requires inspection of pharmaceutical suppliers at least once ev-

ery two years [44]. In addition, the Maine Department of Transportation (MDOT)

inspects all bridges every 24 months [81].

Further, the simulation computational procedure is implemented as follows:

Step 1: Initialization (t=1): suppose SA = actual-state, SDP = DP-state

– SA =



t = 1

supplier1 IC

supplier2 IC

...
...

supplierk IC


, SDP =



t = 1

supplier1 (1, IC)

supplier2 (1, IC)

...
...

supplierk (1, IC)


Step 2: Iteration: ∀ t ∈ {2, 3, · · · ,Number of periods}:

– randomly sample SA

∗ if Rand() 5 θi : SA(i) = OC ∀i ∈ {1, 2, · · · , k}

∗ else: SA(i) = IC.

– OA= Optimal-Action(SDP ), update SDP ,

– calculate immediate cost (SA, OA)

– t = t+ 1

Step 3: End: calculate the present value and return it.

Table 4.9 shows the comparison results of Approximation method vs. Baseline policy.

In order to get the most accurate results, each simulation run is repeated 1,000 times

and average present value of 1,000 independent simulation runs, is used for comparison

(in the experiments, θi = 0.15, s = $1000, s̄ = $1500, n ∼= bk/2c, ri = $2000, hi ∈

[$1500, $4000], γ = 0.9).
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Table 4.9: Simulation results: Approximation method vs. Baseline policy
Aproximation Baseline policy

k ρ Number
of periods

Extended
extreme-states

Inspect every
2 periods

Inspect every
3 periods

Inspect every
4 periods

Inspect every
5 periods

Inspect every
6 periods

2 2 1000 $17,229 $21,043 $18,702 $18,181 $18,675 $18,914
2 3 1000 $16,211 $21,043 $18,702 $18,181 $18,675 $18,914
2 4 1000 $15,098 $21,043 $18,702 $18,181 $18,675 $18,914
2 5 1000 $14,715 $21,043 $18,702 $18,181 $18,675 $18,914
2 6 1000 $14,758 $21,043 $18,702 $18,181 $18,675 $18,914
3 2 1000 $28,456 $33,522 $30,098 $29,708 $30,451 $31,271
3 3 1000 $24,812 $33,522 $30,098 $29,708 $30,451 $31,271
3 4 1000 $24,138 $33,522 $30,098 $29,708 $30,451 $31,271
3 5 1000 $23,793 $33,522 $30,098 $29,708 $30,451 $31,271
3 6 1000 $24,101 $33,522 $30,098 $29,708 $30,451 $31,271
4 2 1000 $35,781 $43,584 $40,093 $40,355 $40,995 $43,532
4 3 1000 $33,453 $43,584 $40,093 $40,355 $40,995 $43,532
4 4 1000 $33,000 $43,584 $40,093 $40,355 $40,995 $43,532
4 5 1000 $33,204 $43,584 $40,093 $40,355 $40,995 $43,532
4 6 1000 $32,990 $43,584 $40,093 $40,355 $40,995 $43,532
5 2 1000 $47,965 $56,607 $52,574 $53,085 $55,772 $58,059
5 3 1000 $42,974 $56,607 $52,574 $53,085 $55,772 $58,059
5 4 1000 $42,368 $56,607 $52,574 $53,085 $55,772 $58,059
5 5 1000 $42,384 $56,607 $52,574 $53,085 $55,772 $58,059
5 6 1000 $42,346 $56,607 $52,574 $53,085 $55,772 $58,059
6 2 1000 $54,087 $65,701 $60,323 $60,711 $62,834 $66,052
6 3 1000 $49,459 $65,701 $60,323 $60,711 $62,834 $66,052
6 4 1000 $49,454 $65,701 $60,323 $60,711 $62,834 $66,052
6 5 1000 $49,253 $65,701 $60,323 $60,711 $62,834 $66,052
6 6 1000 $49,386 $65,701 $60,323 $60,711 $62,834 $66,052
7 2 1000 $65,563 $78,124 $71,318 $71,567 $74,148 $76,409
7 3 1000 $58,380 $78,124 $71,318 $71,567 $74,148 $76,409
7 4 1000 $57,278 $78,124 $71,318 $71,567 $74,148 $76,409
7 5 1000 $64,882 $78,124 $71,318 $71,567 $74,148 $76,409
7 6 1000 $62,234 $78,124 $71,318 $71,567 $74,148 $76,409
8 2 1000 $74,074 $87,409 $80,979 $81,821 $84,526 $89,441
8 3 1000 $73,992 $87,409 $80,979 $81,821 $84,526 $89,441
8 4 1000 $73,158 $87,409 $80,979 $81,821 $84,526 $89,441
8 5 1000 $66,805 $87,409 $80,979 $81,821 $84,526 $89,441
8 6 1000 $66,752 $87,409 $80,979 $81,821 $84,526 $89,441
9 2 100 $87,015 $97,395 $90,870 $91,310 $95,892 $100,354
9 3 100 $76,273 $97,395 $90,870 $91,310 $95,892 $100,354
9 4 100 $75,829 $97,395 $90,870 $91,310 $95,892 $100,354
9 5 100 $75,337 $97,395 $90,870 $91,310 $95,892 $100,354
9 6 100 $75,625 $97,395 $90,870 $91,310 $95,892 $100,354
10 2 100 $89,689 $109,346 $100,499 $100,553 $104,636 $109,009
10 3 100 $82,507 $109,346 $100,499 $100,553 $104,636 $109,009
10 4 100 $81,574 $109,346 $100,499 $100,553 $104,636 $109,009
10 5 100 $81,683 $109,346 $100,499 $100,553 $104,636 $109,009
10 6 100 $82,041 $109,346 $100,499 $100,553 $104,636 $109,009

As it is shown in Table 4.9, in all the experiments the performance of proposed

approximation approach (extended Extreme-states method) is better than Baseline

policy. The extended Extreme-states approximation approach has almost 20% lower

cost than Baseline policy.
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4.7 Conclusions

In this chapter a dynamic programming model to determine the suppliers’ inspection

strategy in a supply chain is proposed. A multi-period system was considered where

there was a capacity limit for inspection. The objective was to minimize the inspection

cost, the expected corrective action cost, and the expected missed detection cost

simultaneously.

The structural properties of the proposed DP model for a single supplier were

examined. The properties of the single supplier were incorporated to multi suppliers

problem to develop an effective approximate DP algorithm to find high-quality solu-

tions. The numerical experiments indicate that the proposed model entails a lower

cost than the FDA’s current inspection policy.
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CHAPTER 5. SUMMARY AND CONCLUDING

REMARKS

This dissertation, examines how supply chains should be designed to mitigate the

effects of supplier failures. It is explored how integrating inspection policy decisions

into facility location and supply chain design can impact the solutions. In addressing

the risk of supplier unreliability in the supply chain, three optimization models and

algorithms were proposed. In Chapter 2 and Chapter 3 of this dissertation, a supply

chain design that is both reliable and cost-efficient is sought. In Chapter 4, the op-

erational inspection decision for a given supply chain with multiple unreliable supply

sources is examined.

Further, in chapter 2, a comprehensive two-stage stochastic programming model to

design a robust supply chain is developed. Unreliable supplier sourcing was considered

in two-tiered with correlated failures, and the option to inspect. A method based

on improved Integer L-shaped method was used to solve the model. This model

was exercised to provide insights about how key parameters (capacity, correlation,

inspection) impact on the obtained solutions and the expected total cost of solutions.

This dissertation naturally leads to a number future research extensions. In this

dissertation, it was assumed that when tainted material is detected, it is discarded.

In the motivating application, this must occur as pharmaceutical and food products

cannot typically be reworked or fixed once discovered. However, for other types of

products such as electronics, faulty material can be reworked to return it to working

order prior to shipping it to a customer. This can be considered in future research.

As explained, the solution methodology used for this problem is not tailored solve

the large-scale instances of problem. This is an area of future research that should be

considered. Another direction for future research is to examine the effect of disruption

on connectivity in the network.
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In addition, in Chapter 3, the single objective version of the problem is extended

to a multi-objective stochastic model to explore the tradeoffs between costs and risk.

Also, two types of disruption (quality and availability) have been considered in the

model. A hybrid genetic algorithm is then developed to solve the multi-objective

stochastic model. In this algorithm, data envelopment analysis was used to calcu-

late the fitness value of supply chain configurations. The hybrid approach removes

dominating individuals and yields to desirable efficient frontiers faster than methods

based on only genetic algorithm. A number of future research extensions of the cur-

rent study may be conducted. First, in this dissertation, a supply chain design that

is robust against supply side disruption is sought. However, another important point

is demand uncertainty and its effect on supplier selection and risk. Second, several

different DEA models exist in the literature and may be implemented. Nevertheless,

the numerical experiments indicated that most of them are not effective enough to

distinguish truly efficient design points from inefficient ones. Also, in this dissertation

one input and two outputs for the DEA were considered. However, it is believed that

the performance of the proposed solution approach would be much better in case

there are more number of inputs and/or outputs in the DEA.

Finally, in Chapter 4, operational inspection decisions were investigated in multi-

period supply chain with multiple unreliable supply sources. A dynamic programming

(DP) model is performed to minimize the total inspection and corrective costs as well

as the cost of disruption caused by missed detection in the supply chain. Also, an ap-

proximate DP algorithm is developed to identify high-quality solutions. The current

FDA inspection policy was evaluated; numerical experiments indicated that proposed

DP models result in significantly lower costs than the FDA’s current inspection pol-

icy. This dissertation leads to a number of future research possibilities. The proposed

approximate DP may be improved by incorporating approaches based on the con-

straints generation. In addition, in the numerical experiments, the performance of
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proposed approximate DP algorithm with Baseline policy were compared. Also, it

was assumed that Baseline policy requires the inspection of suppliers every t periods.

However, it is possible that suppliers have different t considering their characteristics.

Thus, there is a need to evaluate and compare these types of policies with proposed

approximate DP algorithm to better understand the performance of approximate DP

algorithm.

Overall, the findings from this dissertation can help practitioners while designing

supply chains, as well as helping policymakers to understand the impact of different

disruption mitigation strategies on cost and risk in the supply chain.
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