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ABSTRACT 

This dissertation investigates statistical optimization of acoustic models in speech 

recognition. Two new optimization methods are proposed for phonetic decision 

tree (PDT) search and Hidden Markov modeling (HMM)-- the knowledge-based 

adaptive PDT algorithm and the HMM gradient boosting algorithm. 

Investigations are conducted to applying both methods to improve word error 

rate of the state-of-the-art speech recognition system. However, these two 

methods are developed in a general machine learning background and their 

applications are not limited to speech recognition.  

The HMM gradient boosting method is based on a function approximation 

scheme from the perspective of optimization in function space rather than the 

parameter space, based on the fact that the Gaussian mixture model in each 

HMM state is an additive model of homogeneous functions (Gaussians). It 

provides a new scheme which can jointly optimize model structure and 

parameters. Experiments are conducted on the World Street Journal (WSJ) task 

and good improvements on word error rate are observed. 

The knowledge-based adaptive PDT algorithm is developed under a trend toward 

knowledge-based systems and aims at optimizing the mapping from contextual 

phones to articulatory states by maximizing implicit usage of the phonological 

and phonetic information, which is presumed to be contained in large data 

corpus. A computational efficient algorithm is developed to incorporate this prior 

knowledge in PDT construction. This algorithm is evaluated on the Telehealth 

conversational speech recognition and significant improvement on system 

performance is achieved.   

 vi



 

C h a p t e r  1  

INTRODUCTION 

Telemedicine or telehealth is becoming an important means of providing quality 

health care to rural areas and needed patients in the United States [1], among 

which an important application of spoken language processing is to provide 

voice-driven automatic captioning system to hearing impaired users. Developing 

such a system in telemedicine domain is challenging in several ways. First, 

telehealth conversations are spontaneous and contain various amounts of filled-

pauses, repetitions, repairs and noises. Second, relatively sparse training data make 

it difficult to train a large number of parameters in both acoustic and language 

modeling. Third, variations in speaking style and fluency call for effective 

methods to describe the pronunciation patterns of different speakers [2]. This 

dissertation is an effort to answer these challenges from a perspective of acoustic 

modeling, which includes of several innovative works carried out at the Spoken 

Language and Information Processing Lab in the University of Missouri-

Columbia.   

Major contributions of this work can be divided into two parts: firstly, a new 

acoustic modeling architecture is developed under a unified view of hidden 

Markov process (HMP) to improve the mapping between two traditional 

structures in speech-one physical or phonetic, the other cognitive or linguistic. In 

this new framework, a distinct “distinctive feature parsing” module is introduced 

to project logical models (triphones) into a high dimensional space, as defined by 

phonological rules. These logically generated features are then used to interpret 

correlations of the phonologically defined states. This standalone module can be 

as simple as generating “yes” or “no” answers to the traditional question sets as 

used by HTK, or as complex as those layered structures in [3], and most 
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importantly, it can also be made adaptive to different task domains. Therefore, 

the traditional HMM state-tying procedure can be divided into two sequential 

processes: linguistic knowledge based “distinctive feature parsing” and decision 

theoretical class mapping. Each of them requires different expertise and can be 

developed independently. Although standard class mapping algorithms can be 

developed for different problems, such as classification and regression tree 

(CART), the “distinctive feature parsing” mechanism of reading speech should be 

different from that of conversational speech.  

The second part of the contributions relates to investigation of two core 

algorithms used in traditional acoustic modeling-phonetic decision tree search 

and HMM training, which optimal solutions are still unknown. Two new 

statistical learning algorithms are proposed for overcoming known weaknesses in 

the existing algorithms, i.e., the difficulties in selecting optimal phonological rule 

sets in PDT construction and in determining optimal HMM structures. For the 

first problem, a knowledge-based adaptive PDT algorithm is developed on the 

basis of the concept of articulatary state mapping, which aims at optimizing the 

implicit usage of rich linguistic-phonetic information contained in large speech 

recognition corpuses. For the second problem, a gradient boosting algorithm is 

developed to jointly optimize model structure and parameters, given the fact that 

the Gaussian mixture densities in each HMM state is an additive model of 

homogeneous functions (Gaussians). Work presented here shows that each of the 

newly proposed algorithms can consistently improve speech recognition 

performance over existing algorithms. 

The rest of this dissertation is organized as following: Chapter 2 introduces the 

speech recognition problem and gives a brief overview of automatic speech 

recognition, Chapter 3 discusses acoustic modeling in a statistical dynamic system 

framework and presents the new architecture of the knowledge-based adaptive 

 2



 

PDT modeling, Chapter 4 concerns the theory of HMM gradient boosting and 

issues of its implementation with experiments presented in Chapter 5, Chapters 6 

and 7 give detailed description and experiments of the knowledge-based adaptive 

PDT algorithm, and conclusion as well as discussions are made in Chapter 8.  

 

 

 3



 

C h a p t e r  2  

STATISTICAL SPEECH RECOGNITION 

2.1 The Speech Recognition Problem 

The speech recognition problem, as traditionally defined, is the task of taking an 

utterance of speech signal and converting it into a text sequence as close as 

possible to what was represented by the acoustic data. The task can be viewed as 

a decoding problem in a source-channel representation, shown in Figure 2.1 [4]. 

 

This representation begins with a speaker creating an utterance which consists of 

sound waves. The sound waves are then captured by a microphone and 

converted to electrical signals, which are then transmitted through some channels 

(such as telephone line or network). As a result, the original signal undergoes 

some known or unknown filtering and may also be contaminated by additive 

noise before it reaches the receiver for processing by a speech recognition system. 

Modern speech recognition system works by searching over a large space of 

sentence representations to determine the hypothesis which has the highest 

probability of generating the speech utterance. To do this, acoustic signals first 
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need to be pre-processed to generate features which retain only information 

necessary for speech recognition task. Second, statistical models of word-level 

sentence realization (N-grams), phone-level word realization (HMMs) and 

acoustic realization of phones (GMMs) need to be estimated from certain 

amount of training data. Finally, fast and memory-efficient searching algorithms 

are needed for picking the best match of the utterance out of a huge number of 

hypotheses. Figure 2.2 shows a general diagram for speech recognition. 

 

Figure 2.2 Diagram of Speech Recognition System 

2.2 Statistical Speech Recognition 

Given the acoustic observation sequence ToooO ,...,, 21= , the recognition 

system needs to find a word string W  which is the closest guess to the sequence 

of words spoken by the speaker, . According to Bayesian 

decision theory, W  is determined by a MAP decision rule, i.e. 

ˆ

NwwwW ,...,, 21
* =

ˆ

( )

( ) (
( )

)

( ) (WPWOp
OP

WPWOp

OWpW

W

W

W

|maxarg

|maxarg

|maxargˆ

=

=

=

)

                                                                         (2.1) 
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where the observation likelihood ( )WOp |  is evaluated based on an acoustic 

model and the prior probability ( )Wp  is determined by a language model. Note 

that the denominator ( ) ( ) ( )∑=
'

''|
W

WpWOpOp , the probability of acoustic 

observation, can be neglected because it is the same for all hypotheses W and will 

not affect the decision. 

Statistical modeling for estimating the prior probability ( )Wp  of a given 

utterance W is called language modeling. The most commonly used language 

model is the n-gram, which uses the previous n-1 words to predict the nth word, 

i.e., the probability of the nth word is conditional on the previous n-1 words. These 

conditional probabilities are estimated from counting the relative frequencies in a 

large speech corpus. Given the conditional probabilities, the joint probability of 

sequence of words NwwwW ,...,, 21=  can be computed by the chain rule: 

( ) (∏
=

+−−− =
N

k
nkkknn wwwpwwwwp

1
11121 ,...,|,,...,, )                                         (2.2) 

Most commonly used n-grams are bigram (n = 2) and trigram (n = 3) language 

models. 

The acoustic model ( )WOp |  typically consists of two parts. The first is to 

describe how a word sequence can be represented by sub-word units, often 

known as pronunciation modeling. The second is the mapping from each sub-

word units to acoustic observations [3]. Algorithms used in acoustic modeling 

involves phonetic decision tree (PDT) and hidden Markov model (HMM). HMM 

will be explained in section 2.4, and introduction of PDT will be given in chapter 

3. 
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2.3 Pre-processing of Speech 

Speech recognition requires effective representation of speech signals. The raw 

data as input to ASR system is the speech waveform sampled at a rate perhaps 8 

kHz (for telephone speech) or between 16-20 kHz. This data is pre-processed to 

generate feature vectors which retain only necessary information for the speech 

recognition task, referred to as feature extraction. Each feature vector is often 

computed from a 10ms frame, with an overlapped sliding window of 20 to 25 ms. 

Well-known feature extraction algorithms include [5]: 

1. Mel Frequency Cepstral Coefficients (MFCC)- the cepstrum resulted 

from first warping the log energy spectrum according to the Mel 

frequency scale and then taking the cosine transform. 

2. Perceptual Linear Prediction (PLP)- a variation of linear prediction 

coefficients taking into account human auditory perceptions [6]. 

MFCC and PLP are considered to be short-term locally stationary features and 

can not cover the temporal dynamics in speech. It is a common practice to use 

first-order and second-order time-derivatives of static features to capture such 

information.  

Extracted features can be further transformed to improve ASR system 

performance. Such transformation algorithms include principal components 

analysis (PCA), linear discriminant analysis (LDA or HLDA [7]), vocal tract 

length normalization (VTLN) and independent component analysis (ICA) [8]. 

The ultimate goal of speech pre-processing is to produce discriminative and 

robust features to close the gap between the performance of human listeners and 

that of ASR systems. However, there is still much work remains to be done to 

fulfill this task. 
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2.4 Use of HMMs in Speech Recognition 

The core statistical modeling technique in ASR system is Hidden Markov Model 

(HMM), which is used to model the production of speech signals and to compute 

the acoustic score  [9]. When the emphasis is on the dynamic process 

itself rather than on its function as a statistical model, HMM is also referred to as 

hidden Markov process (HMP). In an information theoretical view, HMP is 

defined to be a discrete-time finite state homogeneous Markov chain observed 

through a discrete-time memoryless invariant channel, shown in Figure 2.3 [10].   

( WOp | )

Memoryless
invariant channel

b(yt|st)
St Yt

Markov chain Observation
sequence

 

Fig. 2.3 A hidden Markov process (HMP). 

where the state variable , observation variable , and the emission probability 

 are as defined in the following section. 

tS tY

( tt syb | )

2.4.1. Statistical Definition of HMM 

There is a substantial literature on the theory and application of HMM, see for 

instance [10], [11], [12], [13] and [14]. The definitions and notations of a basic 

HMM presented here follow those given in [10]. Let { }TYYY ...,, 21  denote an 

observation sequence taking the values in an observation space Y, which is 

regarded as a realization of a discrete-time Markov process { }TSSS ...,, 21  that 

takes the values in a finite state space S. Without loss of generality 

denote , let { }MS ,...,2,1= ( )jSpj == 1π  be the probability that the initial state 

is j and { M }πππ ,...,1=  represent the prior distribution. The Markov process is 
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assumed (time-) homogeneous and the Markov property is specified by the 

transition probabilities ( )iSjSpa ttij === −1|  , where { }ijaA =  is called the 

transition matrix. The memoryless invariant channel is described by the 

observation probability ( )tttt sSyYb == | , also known as emission probability, 

which denote the probability of emitting the observation from the current state. 

The joint density of  can be written as ( nn SSYY ,...,,,..., 11 )

)( ) ( ) (∏
=

−=
n

t
tttnn ssypsypssyyp

2
11111 |,,,...,,,...,                                         (2.3) 

Where 

( ) ( )
( ) ( ) ,...3,2,||,

|,

1

1

1

1111

==

=

−− tsybassyp

sybsyp

ttssttt

s

tt

π
                                             (2.4,2.5) 

Using the convention Ssa sss ∈= 1 allfor  
110

π  and marginalizing over all state 

sequence, we have the likelihood function 

( ) (∑ ∏
=

−
=

n

tt
ss

n

t
ttssn sybayyp

,..., 1
1

1

1
|,..., )                                                          (2.6) 

There are usually three problems concerning learning and inference of HMM, 

namely, likelihood computation, parameter estimation, and state sequence 

decoding. These problems can be solved by the forward-backward recursion, ML 

parameter estimation (Baum algorithm), and dynamic programming (Viterbi 

algorithm) respectively, which will be introduced in the following. 

2.4.2. Forward-backward Recursion 
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The forward-backward recursions were first introduced by Chang and Hancock 

[13] and later rediscovered by Baum, Petrie, Soules, and Weiss [15][16]. Define 

the forward probability by ( ) ( )tttt yysps ,...,, 1=α  and the backward probability 

by ( ) ( )tnttt syyps |,...,1+=β  with ( ) 1=tn sβ . Then, we have 

( ) (
( ) (
( ) ( )tttt

tnttt

ntttnt

ss
syypyysp

yyyyspyysp

βα=
=
=

+

+

                     
|,...,,...,,                     

,...,,,...,,,...,,

11

111 )
)                                          (2.7) 

for t = 1, …, n. Note that equation (2.7) is from the conditional independence 

property of sequences { }tyy ,...,1  and { }nt yy ,...,1+  given state . The forward 

and backward recursions are given in the following induction equations. 

ts

( )
( )

( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

−=

=
=

⎪
⎩

⎪
⎨

⎧

=

=

=

∑

∑

=
++++

=
−−

+

+

−

−

1,...,1   ,|

                  ,1

,...,2   ,|

1    ,|

1
1111

1
11

11

1

1

1

1

1

ntsybas

nt
s

ntassyb

tsyb
s

M

s
ttsstt

tt

M

s
sstttt

s

tt

t

tt

t

tt

β
β

α

π
α

                        (2.8,2.9) 

The conditional probabilities ( ) ( )nttnt yysspyysp ,...,|, and ,...,| 111 −  can be 

computed as 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )∑

∑

=
−−

−−
−

=

−

−

−=

==

M

ss
ttsstttt

ttsstttt
ntt

M

s
tttt

tttt
nt

tt

tt

tt

t

sybass

sybass
yyssp

ss

ssyysp

1,
11

11
11

1

1

1

1

1

|

|
,...,|,

n1,...,   t,,...,|

βα

βα

βα

βα

                  (2.10,2.11) 
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The likelihood function can be obtained by using the forward recursion as 

( ) (∑
=

=
M

s
nnn

n

syyp
1

1,..., α )

( )

}

       ,                                                                   (2.12) 

or by using the backward recursion as: 

( ) ( )∑
=

=
M

s
sn ssybyyp

1
11111

1

1
|,..., βπ                                                          (2.13) 

2.4.3. ML Parameter Estimation 

Let { θπφ ,, A=  denote the parameter set of a HMP, where { }Mjj ,..,1, == θθ  

is the parameter set of the conditional observation distributions. Assume an 

observation sequence { }nyy ,...,1  was generated by an identifiable HMP with 

parameter , the maximum likelihood (ML) estimator of  is defined by  Φ∈0φ 0φ

( nyyL ,...,|maxargˆ
1φφ

φ Φ∈
= )                                                                       (2.14) 

where ( ) ( )φφ |,...,log,...,| 11 nn yypyyL =  is the log-likelihood function. 

There is no known closed form solution for the optimization in equation (2.14) 

and numerical algorithms are often used. The Baum algorithm is such a 

computationally efficient algorithm which belongs to the family of expectation-

maximization (EM) algorithms proposed by Dempster, Laird and Rubin [17]. As 

other EM algorithms, the Baum algorithm uses an iterative hill-climbing 

technique based on an auxiliary function Q. Let Φ∈mφ  be the estimator at 

iteration m, and  denote a new estimator, Q is defined as following: Φ∈φ̂
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( ) ( )[ ]φφφ φ
ˆ|,...,,,...,log,ˆ 11 nnm yySSpEQ

m
=                                              (2.15) 

where the observation sequence { }nyy ,...,1  is given and the expectation is taken 

over the state space . { } n
n SSS ∈,...,1

The rational of using this auxiliary function is that the increase in Q will result in 

increase in L, because [15], 

( ) ( ) ( )
( )
( )
( )
( )
( )

( ) ( )

( ) ( ) ..|,...,,,...,ˆ|,...,,,...,

ifonly  and if holdsequality   where,inequality sJensen'by 

,,ˆ                                            

|,...,,,...,

ˆ|,...,,,...,log                                             

|,...,,,...,

ˆ|,...,,,...,
log                                             

|,...,

ˆ|,...,
log,...,|,...,|ˆ

1111

11

11

11

11

1

1
11

eayySSpyySSp

QQ

yySSp
yySSpE

yySSp
yySSp

E

yyp
yyp

yyLyyL

mnnnn

mmm

mnn

nn

mnn

nn

mn

n
nmn

m

m

φφ

φφφφ

φ
φ

φ
φ

φ
φ

φφ

φ

φ

=

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

=−

           (2.16) 

Given Q, the new estimator at (m+1)th iteration is obtained from 

( mm Q )φφφ
φ

,maxarg1
Φ∈

+ =                                                                            (2.17) 

Substitute (2.6) into (2.17), the auxiliary function can be written as [16] 
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( ) ( )

(

( ) ( )jt

M

j

n

t
mnt

ij

M

ji

n

t
mntt

M

j
jmnm

ybyyjSp

ayyjSiSp

yyjSpQ

θφ

φ

πφφφ

|log;,...,|

log;,...,|,

log;,...,|,

1 1
1

1, 2
11

1
11

∑∑

∑∑

∑

= =

= =
−

=

=+

==+

==

)                             (2.18) 

Maximizing (2.18) gives re-estimation formulas for { }jππ =  and { }ijaA =  as 

following 

( ) ( )

( )
( )

( )∑

∑

=
−

=
−

=

==
=+

==+

n

t
mnt

n

t
mntt

ij

mnj

yyiSp

yyjSiSp
ma

yyjSpm

2
11

2
11

11

;,...,|

;,...,|,
1

;,...,|1

φ

φ

φπ

                               (2.19,2.20) 

where ( )mnt yysp φ;,...,| 1  and ( )mntt yyssp φ;,...,|, 11−  can be computed by 

equations (2.10) and (2.11). For Gaussian conditional observation densities, the 

re-estimation formulas for the Gaussian mean { }jµµ =  and covariance 

{ }j∑=∑  are given by 

( )
( )

( )

( )
( ) ( )( ) ( )( )

( )∑

∑

∑

∑

=

=

=

=

=

+−+−=
=+∑

=

=
=+

n

t
mnt

n

t

T
jtjtmnt

j

n

t
mnt

n

t
tmnt

j

yyjSp

mymyyyjSp
m

yyjSp

yyyjSp
m

1
1

1
1

1
1

1
1

;,...,|

11;,...,|
1

;,...,|

;,...,|
1

φ

µµφ

φ

φ
µ

        (2.21,2.22) 

2.4.4. Viterbi Decoding 
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In speech recognition, the state sequence of HMP corresponds to a sequence of 

classification labels (words or phoneme units). The recognition task is performed 

by finding the most likely state sequence and matching it with the corresponding 

word sequence. The state sequence is found by the following maximization: 

{ } ( ) ( )nn
ss

nn
ss

n yysspyysspss
nn

,...,,,...,maxarg,...,|,...,maxarg,..., 11
,...,

11
,...,

*
1

11

==     (2.23) 

This is achieved by the Viterbi algorithm, which is in fact an application of 

Bellman’s dynamic programming algorithm [18]. Define new variable 

( ) ( jSssyyptjV tttss t

)== −
−

,,...,,,...,max, 111,..., 11

                                             (2.24) 

which can be computed using the following recursive formulas: 
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1
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1,|maxarg,
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ttk
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sypjV

tkVkSjSptjk

tkVkSjSpjSyptjV

π=

−===

−====

−

−

               (2.25,2.26) 

where  tracks the best previous state of state j at time t. At the end of the 

recursion, the optimal state at time n is identified by  and 

the best state sequence is obtained by back-tracking using 

( tjk ,* )

)( njVS
j

n ,maxarg* =

( )tSkS tt ,***
1 =− . 

2.4.5. The Baum-Viterbi Algorithm 

The Baum-Viterbi algorithm is also known as Viterbi extraction or segmental k-

means in literature. Viterbi extraction was first introduced by Jelinek at IBM in 

1976 [19]. This algorithm was further studied by Rabiner, Wilpon, and Juang, 
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where it was referred to as segmental k-means [20]. The name Baum-Viterbi used 

here follows [10] and it is more descriptive since the iteration involves Viterbi 

decoding and Baum’s re-estimation. The Baum-Viterbi algorithm jointly 

optimizes the parameter and state sequence as following 

( )φ
φ

|,...,,,...,maxmax 11
,...,1

nn
Sss

yyssp
n

n∈Φ∈
                                                         (2.27) 

Given a parameter estimate at the mth iteration Φ∈mφ , the best state sequence 

 is first estimated by the Viterbi algorithm. Then a new parameter 

estimate 

{ } ( mnss φ*
1,.., )

Φ∈+1mφ  is obtained by maximizing (2.27) given the optimal state 

sequence 

{ } ( )( )φφφ
φ

|,...,,,..,maxarg 1
*

11 nmnm yyssp
Φ∈

+ =                                           (2.28) 

The auxiliary function for maximizing (2.28) is given as following 

( ) { } { } ( )( ) ( )∑ −=
nss

nnmnnm yysspssssQ
,...,

11
*

111
1

|,...,,,...,log,...,,...,, φφδφφ  (2.29) 

where ( )⋅δ  is the Kronecker delta function. Recall that the auxiliary function 

(2.15) for the Baum algorithm can be written as  

( ) ( ) ( )∑=
nss

nnmnnm yysspyysspQ
,...,

1111
1

|,...,,,...,log;,...,|,...,, φφφφ        (2.30) 

Comparing equation (2.29) with (2.30), the re-estimation formulas for Baum-

Viterbi algorithm can be obtained by substituting ( )mnn yyssp φ;,...,|,..., 11  by 

{ } { } ( )( )mnn ssss φδ *
11 ,...,,..., −  in corresponding formulas for Baum algorithm, 
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i.e., in equations (2.19), (2.20), (2.21) and (2.22). In speech recognition, this 

substitution is also called Viterbi approximation. 

The Baum-Viterbi algorithm generates inconsistent estimators of the state 

sequence and parameters when the dimension of observation variables, say k,  is 

fixed and the number of observations ∞→n  [21]. In speech recognition, the 

number of observations in each sentence is always limited and the observations 

are extracted from a feature space with relatively large dimension. When ∞→k , 

it can be shown that ( )mnn yyssp φ;,...,|,..., 11  converges to { } { } ( )( )mnn ssss φδ *
11 ,...,,..., −  

almost surely [22], which justifies the use of Baum-Viterbi algorithm in speech 

recognition applications. 

2.4.6. Dynamical System Approach 

The hidden Markov process in Figure 2.3 has a representation of a linear 

dynamical system, which can be written in a form of state-space model. The state 

variable S is assumed to evolve according to first-order Markov dynamics; the 

observed variable Y is presumed to be generated from the current state by a linear 

observation process. Assume that the state variable S takes continuous values, the 

state-space model can be described by the following equations 

111

11

+++

++

+=
+=

ttt

ttt

WCSY
VASS

                                                                              (2.31,2.32) 

where A is the state transition matrix, C is the observation matrix, V and W are 

taken to be Gaussian random variables with . Two 

diagrams of state-space model are shown in Figure 2.4 [23]. In this figure, the top 

graph is a representation in control theory, while the bottom diagram is illustrated 

by a probabilistic graphical model. Probabilistic graphical models are graphs in 

( ) ( RNWQNV
iidiid

,0~ and ,0~ )
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which nodes represent random variables and arcs represent conditional 

dependencies, and they provide a compact representation of joint probability 

distributions. Although discussions of graphical models are beyond the scope of 

this dissertation, it is important to point out that they provide a very useful view 

of the speech recognition problem, since the speech production and perception 

processes of human-being are far more complex than a simple hidden Markov 

process. We will come back to this topic in Chapter 3. 

C

AZ-1

+

+
St

Vt

Wt

Yt

Z-1

Yt

Wt

St

Vt

C

A

Figure 2.4 Diagrams of State-space Model  

An example of continuous-state dynamical system is Kalman filter, which 

parameter estimation and inference algorithms are well developed [24][25][26].  
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When the state variable S only takes on integer values { }N,...,2,1  corresponding 

to N different regimes, the state equation (2.31) is equivalent to the traditional 

Markov chain with transition matrix A, with { } ( ){ }iSjSpa ttij === + |1 . 

Therefore, this discrete-state dynamical system is equivalent to a standard HMP if 

the conditional observation densities at each state share the same covariance 

matrix. Note that when the covariance matrices are diagonal and not shared 

among different states, the observation equation (2.32) can be written as 

( )

 state. ingcorrespondin  deviations standard represents in column each 
 and , variablesrandomGaussian  ate)(multivari standard i.i.d. is  where 1

1111

∑

∑+=

+

++++

t

tttt

W

WSCSY

(2.33) 

For detailed discussion of state-space model and HMP, please refer to [23][26].  

A particular problem with discrete-state models is that the state sequence 

obtained from concatenating the most likely state estimated at each time step may 

have zero posterior probability, which is not an issue for continuous-state 

models. This is because in the discrete case, transition between two consecutive 

maximum a posteriori (MAP) states might not be allowed, but in the continuous 

case, the conditional distribution of state variable is Gaussian and the joint 

distribution of MAP states is the maximum among all possible state sequences. 

Therefore, a separate algorithm (Viterbi algorithm, see Section 2.4.4) is needed 

for inference of the most likely state sequence in discrete-state models, while for 

continuous-state models, the forward-backward recursions suffice.   

2.5 Discriminative Training 

In speech recognition, ML estimation of HMM parameters are traditionally used. 

The standard objective function for ML training is as follows 
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which is the log-likelihood of the complete data { }rr Yw , : 

( ) ( ) ( )∑
=

=
R

r
rrrModel wpwYpL

1

|log λλ                                                                (2.35).  

with the prior  being dropped. ( rwp )

As stated in section 2.1, speech recognition is a process of classifying speech 

utterance into word sequence. One concern about ML training is that it is a 

density estimation method and might not be optimal for classification tasks such 

as speech recognition. Recent developments in non-ML training methods address 

this problem by using a decision theoretic framework. In literature, this family of 

algorithms is often called discriminative training method. Define sentence string 

 as class label for utterance , the training problem can be conducted by 

minimizing the following empirical risk: 
rw rY

                                                       (2.36) 
( ) ( )

function loss  theis  where

,
1

λ

λλ

Q

YwQL
R

r
rr∑

=

=

The best-known discriminative algorithms are the maximum mutual information 

(MMI) [2, 27] and minimum classification error (MCE) [28]. In MMI, the loss 

function is based on the empirical Bayesian risk with 0/1 loss [29, 30], i.e., MMI 

maximizes the posterior probabilities of observed word sequences, written as 

following 
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The MCE approach simultaneously minimizes the empirical error rate of the 

recognizer over all training utterances. The recognition error is represented by an 

indicator variable and is approximated by the sigmoid function [29]. Let  

( ) ( ) ( )

( ) ( )( )
1,

|

|log /1 ≥
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≠
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rww
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wpwYp

wpwYpYd                                    (2.38) 

Note that (2.38) is not exactly the same as equation (13) in [28], where the priors 

 and  are not present. For large ( rwp ) ( )wp η  

( ) ( ) ( )
( ) ( )( ) 0,

|max
|log >>−≈

≠

η
λ

λ

wpwYp
wpwYpYd

rww

rrr
rr

r

                                        (2.39) 

where the numerator represents the posterior of true transcription and the 

denominator is the best competing alternative hypothesis. From the MAP 

decision rule in recognition, the indicator variable of classification error is  

( )( ) ( )
⎩
⎨
⎧ >

=
otherwise                ,0

0              ,1 rr
rr

Yd
YdI                                                         (2.40) 

Approximate this indicator variable with sigmoid function and sum over all 

training utterances, the MCE objective function can be written as 

( ) ( )( ) 0    
exp1

1
1

>
−+

=∑
=

γ
γ

λ
R

r rr
MCE Yd

L                                                  (2.41) 
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In [26], MMI and MCE are generalized to a family of unified discriminative 

training criteria, defined by the following expression: 

( ) ( ) ( )
( ) ( )∑ ∑= ⎟
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1 |

|log1

λ

λλ                                              (2.42) 

where f is called the smoothing function, which is actually a special form of the 

loss function Q in (2.36). It is also shown that MCE training can be made 

equivalent to the extended Baum algorithm (EBW) for MMI training through 

scaling the accumulated statistics by ( )
x
xf

∂
∂ in EBW iteration (f is the sigmoid 

function), which can be easily shown by taking the gradient in (2.42) [27]. 

2.6 Difficulties in Speech Recognition 

Speech recognition is a difficult problem due to the ambiguity in language 

generation, complexity in speech production, and variation in acoustic signals. 

Natural language has inherent ambiguities, for example, homophones and 

boundary ambiguity. Homophones refers to two different words which sound 

the same; boundary ambiguity appears when there are multiple ways of grouping 

phones into words. Normal speech is usually filled with hesitations, repetitions, 

filled-pauses, and there is often reduction of morphemes and words in 

pronunciation.  

In acoustic realization of phonemes, the composition of basic contrastive sound 

units is strongly dependent on the context, speaking style, speaking rate, or voice 

quality. Variations in speaker physical and emotional characteristics and regional 

or social dialects also account for large variations in pronunciation of speech. 

Finally, change in the acoustic environment (noise) or the communication 
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channel can create additional variability in speech. All these instabilities in speech 

are big challenges for designing a robust ASR system [3]. 
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C h a p t e r  3  

STATISTICAL ACOUSTIC MODELING 

3.1 Information’s Role in Speech Recognition 

 Traditional automatic speech recognition systems use the phone as basic 

symbolic representation of speech. Frames of acoustic features (MFCCs) are 

associated with specific phonetic units and form a sequence of phones which are 

obtained by lexical expansion of words. In speech recognition literature, this is 

often referred to as the “beads-on-a-string” procedure. Despite the long use of 

phone as fundamental units in speech recognition, it is increasingly apparent that 

more sophisticated models are required to incorporate linguistic and phonetic 

knowledge into the ASR system. For example, a study on the Switchboard corpus 

showed significant amount of non-canonical (standard) phonetic phenomena in 

spontaneous speech, including spurious friction, devoicing and acoustic cue 

trading, which suggests that articulatory patterns can not be purely inferred from 

biomechanical factors [31]. In [32], an acoustic model clustering approach was 

developed based on syllable structure in addition to contextual phonemes, and 

significant improvement in performance over traditional systems was observed. 

Recently, attempts were made to design a next-generation knowledge-based large 

vocabulary speech recognition system, as described in [33]. This system replaces 

traditional acoustic features (MFCC) with some distinctive features obtained from 

a bank of phonetic event detectors (neural nets), which are later used in 

phonological inference. The distinctive feature space consists of variables induced 

by articulatory phonetics and hence such defined features are knowledge-based. 

For example, 60 phonetic attributes were used in [34] and 5 multiple-categorical 
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valued articulatory features were defined in [35]. An articulatory state detection 

based speech recognition system is shown in Figure 3.1. 

Acoustic Feature
Generation

Speech
Production State

Detection
Lexical Access

Knowledge Sources

State to
Sub-Lexical

Unit
Mapping

Speech Words

Feature Extraction State Specification &
Detection

Lexical Representation &
Phonology

Lexicon Creation &
Parsing

 

Figure 3.1 An articulatory state detection based speech recognition framework [35] 

The performance of this system depends on the goodness of the knowledge and 

its efficient handling. Conceptually, by defining the articulatory state variable in a 

phonological-phonetic space, it resolves to some extent the ambiguity caused by 

PDT tying in traditional ASR systems. Although it is a promising direction 

toward a next-generation system, a lot of problems are waiting to be solved. In 

the following sections, we will focus on how to maximize the usage of knowledge 

in existing ASR systems. 

3.2  Dynamical System Revisited 

In the next generation ASR system design, the knowledge sources encompass a 

vast field of disciplines, including speech science, acoustics, linguistics and 

cognitive science [34]. Combining all the knowledge, what will be the observables 

in speech processing? An incomplete review in literature shows that most 

observations in speech processing fall into three major categories: distinctive 
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variables associated with the word sequence, biomechanical factors related to 

articulatory movements, and acoustic features generated by the vocal tract. In a 

speech production view [36], these observables are summarized in Figure 3.2. 

 

Figure 3.2 Observable Features in Speech Processing-in a Speech Production View [36] 

where vocal-tract spectrum is derived from recorded waveform,  articulator 

positions are directly measured with an electro-magnetic articulographic (EMA) 

system [37], and distinctive features are extracted from word sequence by 

applying  cognitive knowledge of the speaker. Denote acoustic features as 

, articulatory features as { TYYYY ,...,, 21= } { }TXXXX ,...,, 21= , distinctive 

features as , and hidden articulatory state variables as 

 for a word sequence W which is formulated according to 

{ TVVVV ,...,, 21= }
}{ TSSSS ,...,, 21=
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some knowledge M,  the speech production process can be represented by a 

multi-layer dynamical system, shown in Figure 3.3. 

 

Figure 3.3. Speech production dynamics 

Assuming the complete dynamics can be described by some model Λ, estimation 

and inference of this system can be performed as usual by mixmum likelihood  

estimation ( ( )Λ=Λ
Λ

,|maxargˆ WYp ) and MAP rule ( ). 

However, considering complexity of the problem and number of variables 

involved, modeling such a multi-layered system is hard even with the power of 

graphic models. In practice, the whole system is often simplified and reduced to 

manageable tasks by “divide and conquer”.  For instance, in traditional ASR 

systems, language modeling, phonetic decision trees (PDTs) and hidden Markov 

models (HMMs) are used to determine the conditional probabilities , 

 and 

( )Λ= ,|maxargˆ YWpW
W

( )MWp |

( )MWVSp ,,| ( )MWVSXYp ,,,|,  correspondingly, where 

 is actually made deterministic (taking 0/1 values) by PDTs.  ( MWVSp ,,| )

One major benefit of deterministic mapping from linguistic space to articulatory 

space by PDTs is to reduce the computation needed in decoding. To show this, 

consider an alternative approach for modeling variables V, S and X by input-

output hidden Markov models (IO-HMMs). IO-HMMs are HMMs whose 

emission probabilities of the output sequence, X, and transition probabilities are 

conditional on an input sequence, V [38]. It represents the statistical relationship 

between the input and output observations modulated by a hidden state variable. 

Estimation and inference of IO-HMM are based on conditional probabilities 

 26



 

( VXp | ) ) and , which can be computed by a dynamic Bayesian network 

(DBN), shown in Figure 3.4 

( XVp |

 

Figure 3.4 DBN representation of IO-HMM 

It can be seen that computing ( )XVp |  involves integration over the state space 

and decoding will incur much more computation than traditional PDT based 

methods. One may also notice that IO-HMM provides another way to compute 

 which is one of the objectives of the next generation ASR system 

discussed in Section 3.1. 

( XVp | )

To summarize, in this section we gave a complete view of speech production 

dynamics, investigated possible observable information sources and discussed 

estimation and inference problems under a general statistical formulation. In next 

section, we will examine the traditional acoustic modeling approach under a 

simplified framework for modeling speech production dynamics and explore 

opportunities of improving current ASR systems with the “knowledge-based” 

concept. The focus will be on distinctive features V and their use in PDT 

construction on which few studies were found in speech recognition literature. 

3.3 Acoustic Modeling System 
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Two questions are often asked before designing an acoustic modeling system: 

first, “what entities of the phonological process can be associated with the 

articulatory state?”, and second, “how speech sounds are pronounced at the 

articulatory state subject to vocal-tract constraints?”. These two questions 

corresponds to different layers of speech production dynamics in Figure 3.3, 

reside in different space, and are traditionally resolved by different modeling 

techniques. A Bayesian network (BN) representation of the simplified dynamics is 

shown in Figure 3.5 

l-ah+f h-ah+f… … …

…… Contextual Phone

S 

 

Figure 3.5 BN representation for traditional modeling of speech dynamics 

In most existing ASR systems, the mapping from contextual phones to 

articulatory states is deterministic by phonetic decision trees. Therefore, this layer 

of dynamics in Figure 3.5 is eliminated by associating (multiple) contextual phone 

labels with a particular articulatory state, and the BN representation is compacted 

to a simple hidden Markov process. One known weakness of this approach is 

that certain degree of ambiguity is introduced by deterministically associating 

multiple contextual phones with a single state, because in inference, these tied 

2 M Articulatory State1 ….. S=1, 2,…,M 

Observation 
Y Y∈Rp 
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phones can not be distinguished by their acoustic scores (which are also shared), 

and this kind of ambiguity can only be handled by lexicon and language models in 

decoding. However, given the intrinsic ambiguity in language itself, leaving the 

ambiguity in acoustic models untreated and passing it to language models is risky, 

and sometimes disastrous if the PDTs are ill-structured.  

The second level of dynamics, and most often, the core dynamics in current ASR 

systems, is the process of observations modulated by articulatory states, which is 

modeled by a hidden Markov process with mixture of multivariate Gaussian 

conditional observation distributions (GMM-HMMs). Such models have two 

regime variables,   for state at time t and  for the mixture component in 

state , and is a simple extension of HMM with single Gaussian emission 

densities. Without loss of generality, assume  take values from { , and 

let 

tS tH

tS

tH }

)

J,...,1

( jSlHpw ttjl === || .  Using the conditional independence properties, 

equation (2.6) can be re-written as 

( ) (∑ ∑ ∏
=

−
=

n n

tttt
ss hh

n

t
tttshssn hsybwayyp

,..., ,..., 1
|1

1 1

1
,|,..., )                                        (3.1) 

The principles presented in section 2.4 can be easily applied to GMM-HMMs. 

3.4 PDT and Distinctive Features 

In traditional ASR systems, PDT is the only bridge linking the dynamics between 

linguistic and articulatory-phonetic channels, playing an important role in message 

passing. The architecture of PDTs subject to the variations in language and 

speech production and should not be deemed as the same over different speech 

domains. For instance, studies conducted in [32] and [39] demonstrated strong 

evidence that PDTs generated from reading speech are different from those of 
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conversational speech. However, decision tree algorithms have been traditionally 

viewed as a nonparametric approach [40] and adaptation of tree structures to new 

domain of speech remains an open problem in speech recognition. In this 

section, we will first give a parametric representation of PDT structures under a 

statistical approach to decision tree modeling as proposed in [41], continue with 

discussions on applying prior knowledge to guide structural changes in adapting 

PDTs, and finally come with a PDT-adaptive system design. 

3.4.1.  Statistical Decision Tree Modeling 

The probability models for decision trees will be introduced here follows what is 

given in [41]. Assume in a decision tree, a given input x follows a sequence of 

probabilistic decisions and hit a state which generates a corresponding output y. A 

probabilistic model of a decision tree involves a sequence of probabilistic 

decisions, each conditional on the input x and on previous sequence of decisions.  
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Introduce a set of random decision variables { }DvvV ,...,1= , a diagram of a 

probabilistic decision is shown in Figure 3.6, with additional parameters list on 

the nodes. Staring from the root node, the first decision is modeled by a 

probability distribution of random decision variables V, conditional input x and 

node-specific parameters 0η , defined as 

 ( 0,| )ην xp i                                                                                      (3.2) 

The second decision depends on the first with conditional probabilities 

 ( )iiij vxp ην ,,|                                                                                 (3.3) 

Propagating toward the leaf, the conditional observation probability is of the 

form 

 ( )kijijivxyp ...,...,,,| θν                                                                     (3.4) 

where { }kij...θθ =  is the set of parameters of emission probabilities. Assuming 

Markov property, the likelihood of y given x can be obtained by 

( ) ( ) ( )

( ) ( )kijiji
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kijijikij

i j
iiiji

vvxypvvxvp

vxvpxvpxyp

.........

0
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θη

ηη

∑

∑ ∑

−

=
                  (3.5) 

where  is the index preceding k as in the sequence i,j,…, ,k. Using Bayes 

rule, the posterior probability of the decision sequence at depth k can be written 

as 

−k −k
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which can be computed using the upward-downward recursions [41], which is 

analogous to the forward-backward algorithm in HMMs. 

Each subtree in a decision tree by itself is a decision tree and is a structural unit of 

its parent tree. Since each decision sequence is associated with a tree node, the 

posterior probability obtained from (3.6) assigns a credit score to the 

corresponding node and the subtree beneath it. Therefore, (3.6) provides a 

goodness measure of subtrees, which can potentially leads to adaptive learning of 

decision tree structures within a Bayesian framework.  

3.4.2. Distinctive Feature as Decision Variable  

In speech recognition, it is common practice to resort to higher level dynamics in 

speech production for decision variables. In traditional PDT modeling, decision 

variables are often called phonetic questions. For example, a total of 202 

questions were used in the HTK system [44].  As previously discussed, these 

questions belong to a bigger class of knowledge-based features, called distinctive 

features. One important benefit of knowledge-based decision variable is to 

provide easy handling of unseen triphones.  

Refer to the multi-layered speech production dynamics shown in Figure 3.3, 

distinctive feature V is an obvious choice for the role of random decision variable 

in PDT modeling. Defining a suitable set of distinctive features for speech 

recognition requires expertise knowledge in linguistic related fields and is an 
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immerging research topic. Note that the distinctive features used in [34][35] are 

closely related to traditional phonetic questions and far from complete.  

3.4.3. Knowledge-based Phonetic Decision Tree Modeling 

So far we have completed review of the theoretical backgrounds for designing a 

knowledge-based adaptive phonetic decision tree modeling framework, in the 

trend toward next generation ASR systems, which is part of the mission of this 

research. The proposed system is shown in Figure 3.7 

 

Figure 3.7 Proposed knowledge-based adaptive PDT modeling 

Sub-word units x are often taken as lexical phonemes, or sub-phonemes when 

left-right HMM is used to represent a single phoneme, and distinctive features v 

consist of various factors which influence pronunciation variation (such as 

surrounding phones, stress and syllable structure, part-of-speech, etc.). Instead of 

specifying a parametric expression for the tree prior, we approximate it implicitly 

by a tree-generating process based on a large corpus, which is used to select good 

candidate decision variables for PDT splitting. These candidate decision variables 
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represent credible realizations of sub-trees and therefore called sub-tree goodness 

prediction. Note that the PDT modeling is still a greedy search with implicitly 

specified priors on decision variables.   

Existence of a larger corpus for inference of prior knowledge is a valid 

assumption in most ASR applications, because each application confines to a 

specific domain which shares the same general pronunciation rules with a larger 

domain. Well-known existing large corpora include WSJ (Word Street Journal) 

for read speech and Switchboard for conversational speech. For tasks where large 

corpora are not available, a Monte Carlo strategy [42][43] can be used for 

empirical analysis of sub-tree instead of the proposed greedy algorithm. 

3.5 PDT Algorithm 

A phonetic decision tree is a binary tree which recursively partition the 

pronunciations of a lexical phoneme (or sub-phoneme unit) specified by 

distinctive features into subsets in which the acoustic features distributed more 

homogeneously, referred to as “surface forms” which are realizations of 

associated articulatory states. Each tree is built using the greedy algorithm by 

sequentially choosing splitting rules for nodes so as to maximize the increase in 

log likelihood. This process generates a sequence of trees with increasing sizes, 

and stops when the increase in log likelihood falls below a threshold.  

Observation sequence { }tyY =  of acoustic features and sub-word sequence 

(associated with distinctive features) ( ){ }ivxO +=  need to be first paired in 

probability by the forward-backward recursions. This requires direct access to 

speech data, which is computationally expensive for large data sets. Therefore, 

efficient PDT algorithms have been developed, although with limitations, by [44] 
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• structured organization of data: let { }jcC =  denote the set of unique 

classes specified by the distinctive features (traditionally defined as 

triphones), sufficient statistics of training data are accumulated according 

to their class label Cc∈ , and  

• fast computation of log-likelihood based on sufficient statistics. 

Assuming single Gaussian conditional observation density, fast computation is 

achieved by approximating the total log likelihood by a simple average of the log 

likelihoods weighted by state occupancy: 
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where r represent the rth utterance in training corpora, ( )cc
r
typ ∑,| µ  is single 

Gaussian, i.e. 
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therefore 
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From (2.22), we have 

 35



 

( )( )( )

( )∑∑

∑∑

= =

= =

=

−−=
=∑

R

r

T

t

rr
t

R

r

T

t

T
c

r
tc

r
t

rr
t

c r

r

ycsp

yyycsp

1 1

1 1

|

| µµ
 

hence 

( ) ( ) ( ) (∑∑∑∑
= == =

− ===−∑−
R

r

T

t

rr
t

R

r

T

t

rr
tc

r
tc

T
c

r
t

rr

ycspdycspyy
1 11 1

1 ||µµ )        (3.10) 

substitute into (3.9) gives 
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This is the logarithm of the joint likelihood of all the sub-word units. Any 

decision tree will be a partition on C. Let B be a binary decision tree with leaf 

node  , the log likelihood of B can be obtained by rewriting (3.11) as Bb∈
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the covariance matrix of node b can be computed by 
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where  represent the partition by tree B, ( )bB ccc ∑,, µγ  are accumulated 

sufficient statistics 
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During each split of a leaf node, in order to use (3.12), only the covariance 

matrices and accumulated state occupancies of newly generated child nodes need 

to be computed, assuming that the values of the parent node have already been 

calculated. The computation complexity is only dependent on the number of 

sufficient statistics stored in the parent node since the split is a local operation. 

3.6 GMM-HMM 

In this section, we give the Baum re-estimation formulas for GMM-HMM which 

was defined in (3.1). The formulas for prior π and transition A are the same as 

(2.19) and (2.20). For the parameters of the Gaussian mixture emission densities, 

the estimates are given by 
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C h a p t e r  4  

GRADIENT BOOSTING OF HMMS 

4.1 Introduction 

Two important issues in EM algorithm are local optima and model complexity, 

which depend on the initialization of mixture components. In Gaussian mixture 

modeling of phone units, local optima often involve overlapped mixture 

components in over-populated center regions and too few components near class 

boundary. Furthermore, model complexity can not be determined within the ML 

framework since more complex models usually result in higher likelihood, which 

may ultimately lead to overtraining.  

The key problem associated with local optima and model complexity is the lack 

of schemes which can jointly optimize model structure and parameters. In this 

chapter, we present the general framework of gradient boosting learning to 

address above problems. The theory of gradient boosting learning was first 

introduced in statistics literature. Friedman developed a general gradient-descent 

boosting paradigm for additive expansions of functions based on any fitting 

criterion [45]. This paradigm is extended to estimation of GMD based HMMs in 

our algorithm where GMDs are additive in nature. In addition, a partial EM 

algorithm for optimal component search is developed based on the ML criterion. 

In this new framework, GMDs are recursively constructed in a greedy manner— 

an optimal new component is located and inserted to the mixture model. In 

comparison with conventional algorithms, it offers a mechanism of dynamically 

allocating new components outside the local optimum regions. Conceptually, this 

algorithm differs from optimal splitting algorithm in that it uses an optimal 

insertion step instead of splitting, where the new component is found by a global 
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search to avoid local optima. To illustrate the difference of gradient boosting and 

conventional EM, in Figure 4.1, we show the 16-Gaussian component densities 

for a sub-phonetic unit /dh/ generated by the two methods. The densities are 

plotted against the first 2 principle components derived from 39 speech feature 

components. It can be seen that gradient boosting has more focus on the class 

boundaries. 

 

EM Gradient Boosting

Figure 4.1.Two mixtures of 16 Gaussians obtained by EM & GB 

4.2 Gradient Boosting Learning 

In conventional parametric methods for estimation of function  , model 

parameters  Λ are estimated by optimizing some specified objective function  

. For most 

( Λ;xF )

)( )( Λ;xFL ( )Λ;xF  and ( )( )Λ;xFL , closed form solution is difficult 

to find and numerical optimization methods are used. When steepest-decent 

method is used, the solution can be expressed as a sum of subsequent steps 

starting from an initial guess λ0, i.e., , where ∑
=

=Λ
m

i
im

0
λ migiii ,..,1, == ρλ  is 

the incremental step of size ρi taken at the direction gi.. In contrast to 

conventional methods, gradient boosting learning targets the function 
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approximation problem from the perspective of numerical optimization in 

function space, rather than parameter space. The solutions seeking are “additive” 

expansions of the form 

( ) (∑
=

=Λ
M

m
mm xhxF

0

;; θα )

)

                                                                              (4.1) 

where ( mxh θ;  is a basis function characterized by parameters θm , which is usually 

chosen as the best fit of the gradient in the function space at stage m, and αm is 

the step size. Given N training observations ( )NxxX K,1= , the general 

paradigm of gradient boosting contains the following steps [45]: 

Algorithm 1: Gradient Boost 

1. Initialize ( )Λ;0 xF . 

2. For m = 1 to M do: 

3.       ( )( )
( ) ( ) ( )

.,...,1,
;
;
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xFLg
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4.        Fit basis function ( )mixh θ;  to {gi}.  

5.         ( ) ( )( ).;;maxarg
1

1∑
=

− +Λ=
N

i
miimm xhxFL θαα

α

6.        ( ) ( ) ( ).;;; 1 mmmm xhxFxF θα+Λ=Λ −  

7. End For 
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The analogy of gradient boosting to steepest-descent gives insight to estimation 

of GMDs in the model space instead of parameter space. Our goal is to estimate 

a probability density function ( )Λ;xf  which optimizes some specified objective 

function  with the solution in the form of mixture of Gaussians 

 to obtain largest gain of 

(( Λ;xfL ))

( ) ( )∑
=

=
k

i
kk xNxf

1

α ( )( )Λ;xfL  in a steepest-descent 

manner. 

Special properties associated with GMD estimation present difficulties in direct 

application of gradient boosting. First, the sequential learning equation in line 6 

needs to be constrained by being a proper GMD density function.  This can be 

assured by defining the new GMD to be 

( ) ( ) ( ) ( ) 10;;1; 1 <<+Λ−=Λ − mmmmmm xNxfxf αθαα                      (4.2) 

Second, fitting the steepest-descent direction in line 4 is sensitive to low valued 

probabilities. For example, in the case of MLE, the gradient of log-likelihood 

function is ( )
( ) ( )Λ=

Λ∂
Λ∂

=
;

1
;

;log

ii

i
i xfxf

xf
g . This implies fitting a bell-shaped 

Gaussian kernel to the reciprocals of current probabilities, which could approach 

infinity when  is small. Third, steepest-descent methods have known 

problems of local optima. To overcome these problems, we developed an 

alternative searching procedure to obtain the basis function in line 4. This scheme 

consists of candidate generation, re-estimation and selection. In our candidate 

generation design, all candidates are obtained by randomly splitting the existing 

Gaussian components, which will maintain appropriate coverage of the model 

space. Each candidate is re-estimated using local data and its contribution to the 

improvement in the objective function is measured. The one which contributes 

the most to the objective function is chosen as the new component. Within this 

( Λ;xf )
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scheme, the entire model space is covered by the globally generated candidates, 

and hence local optima can be alleviated. More details on new component 

allocation will be discussed in section 4.4. 

Model complexity is one important issue in GMD estimation. The best value for 

number of components M can be determined by model selection methods, such 

as BIC, cross-validation, etc. By considering the GMD-related issues and 

incorporating model selection criterion, the gradient boosting algorithm for S-

class GMDs {  is formulated as following: }Sff ,...,1

Algorithm 2: GMD Gradient Boost 

1. Initialize ( ) ( )0,0, ;; sss xNxf θ=Λ , s = 1,…,S , set m = 1. 

2. For s = 1 to S do: 

3.       Find a basis Gaussian ( )msxN ,
~;θ  . 

4.      { }  use ( ) ( ) ( )( ),;;1maxarg,
1

1,
,

,, ∑
=

− +Λ−=
N

i
iimsmsms xNxfL θααθα

θα
( )msxN ,

~;θ  

found in line 3 for initialization. 

5.      ( ) ( ) ( ) ( ).;;1; ,,1,,, msmsmsmsms xNxfxf θαα +Λ−=Λ −  

6.      Update fs,m using EM [optional]. 

7. End For 

8. Set m = m+1.  

9. If a stopping criterion is met then exit, else go to line 2. 
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In line 4, as a modification of line 5 in Algorithm 1, the parameters αs,m and θs,m 

are jointly optimized, which is an inherent property of EM algorithms. In this 

case the new component found in line 3 is used for initialization. Also note that 

the re-estimation step in line 6 is not in Algorithm 1. The step is added because in 

GMD estimation, it is often desirable to tune the model parameters after a 

structural change caused by insertion of a new component. 

There is no closed-form solution for the optimization in line 4. However, it can 

be viewed as a sequential learning of two component models, with the 

component  fixed. A partial EM algorithm was proposed in [47] for ML 

estimation of GMDs, which can be easily extended to the ML estimation of 

HMMs. The update equations for the m

( Λ− ;1 xfm )

th component of GMD at state s are given 

as following: 
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Normally, a global search as required in line 3 is computationally prohibitive. 

Since only one component needs to be re-estimated at each iteration, partial EM 

requires much less computation than full EM. The computational efficiency 

demonstrated by partial EM is critical in developing a global searching heuristic 

[46][47]. 

4.3 Model Complexity Selection 

Both ML and gradient boosting have over-fitting problems and it is of high 

interest to automatically select a model and the number of mixture components. 

In statistics literature, most often used model selection criteria are cross validation 

(CV) and Bayesian Information Criterion (BIC). BIC is derived within the 

Bayesian statistics framework, and is preferred in a density estimation perspective. 

Denote the model M and parameter set θ , let ( )M|θπ  be the prior of θ  given 

M, a classical way is to choose the model which maximizes the integrated 

likelihood, 

( ) ( ) ( )∫== θθπθ dMMXfMXfM
MM

|,|maxarg|maxargˆ                     (4.7) 

with . Under regularity conditions, an asymptotic 

approximation of the integrated likelihood can be shown to be [48] 

( ) (∏
=

=
n

i
i MxfMXf

1

,|,| θθ )

( ) ( ) ( )nvMXfMXf M log
2

,ˆ|log|log −≈ θ                                             (4.8) 

where  is the ML estimator of θ,   is the number of free parameters in 

model M. It leads to minimize the so-called BIC criterion 

θ̂ Mv

 45



 

( )nvLBIC MMM log2 +−=                                                                       (4.9) 

where ( )MXfLM ,ˆ|log θ=  is the maximum log likelihood. 

4.4 Approximate Gradient Boosting for HMM 

In gradient boosting, searching for the new component requires evaluating the 

candidates using entire set of observation data, resulting in very high computation 

cost and memory requirement. Approximation is made based on following 

observations: 

• Gradient boosting starts from the coarsest model, i.e., the single 

Gaussian model, and introduces finer models sequentially. Therefore, it 

is reasonable to reduce the range of training data for evaluating a finer 

candidate, as in the case of sparse EM [49]. 

• As shown in Figure 4.1, placing Gaussian components along class 

boundary may result in better coverage of data for classification tasks. To 

enhance this behavior, the influence on the class boundary from data in 

the center regions needs to be reduced.  

Above observations indicate that it is desirable to evaluate the candidates in a 

localized neighborhood in order to save computation cost and improve model 

quality. To reduce computation complexity, sufficient statistics are accumulated 

in each HMM state by Viterbi approximation. We further assume that state 

transition probabilities remain unchanged during gradient boosting, then the 

approximated procedure can be summarized as the following three steps: 

1) Train single Gaussian HMMs and segment training data to states of 

phone units by Viterbi segmentation. 
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2) Use gradient boosting to train Gaussian mixture model for individual 

state. 

3) Re-estimate HMMs by conventional EM. 

For each phone state, in order to generate candidates for the (m+1)th component, 

the training data set is quantized into m disjoint sets: . 

Then for each set , a pair of candidates is generated by randomly splitting  

into two disjoint subsets. The data sample means and variances in these two sets 

are chosen as candidate parameters, and the initial weight for each candidate 

component is set to be the half weight of 

( )
⎭
⎬
⎫

⎩
⎨
⎧ =∈=

=
xjPiXxQ

mj
i |maxarg:

,...,1

iQ iQ

( )iN θ|• . If more candidates are needed 

from this component, then the random splitting process is carried out repeatedly 

to obtain the required number of candidates. Assuming k candidates are 

generated from each existing component, then km candidates are generated for 

the new component. Each candidate is re-estimated by using the partial EM. The 

candidates are first validated by their shapes (eigenvalues) and volumes 

(determinants) with pre-defined thresholds. Among surviving candidates, the one 

that gives the greatest likelihood increment when mixed into the existing mixture 

becomes the new member of the model.   

Candidates are evaluated locally by a sparse partial EM. If a candidate is 

generated from the component , then it is evaluated only by data of . 

Specifically, the sparse algorithm approximates the likelihood of data x 

as

iQ iQ

( ) ( )xCpxp =' , ( ) ,0; =∈ xpQx i otherwise, where C is a normalizing constant 

taken as 1. Based on this approximation, the updating formulas for partial EM are 

put in the forms of (4.10-13).  This approximation greatly reduces computation 

cost, and enables local measurement of each candidate on its capacity of 

modeling local pattern.  
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GEM requires more computation than EM. Denote Tj as the size of the data set 

segmented to phone sate j. Assuming k candidates are generated from each 

existing mixture component, then cost for component search is O(kTj ). Adding 

the cost for EM update of fi, which is O(iTj ), the sum is O((k+i)Tj ). The run time 

of training a sequence of 1 to m mixture models in the phone state is 

then  if k<< m. In total, the running time of training will 

be , where the complete training data size , which is 

a factor of m times slower than conventional EM. 
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4.5 Toward Large Margin HMM 

A closer look at the misclassification measure in MCE reveals that it can be 

considered as a generalized log likelihood ratio (GLLR), which represents a 
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distance between the target model and its competing models [50]. Following this 

observation, we define the margin as  
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      (4.14) 

where { }rww ≠  is the number of competing hypothesis,  is the 

misclassification measure. 

( )rr Yd

To obtain a large margin speech recognizer, we define some convex loss function 

, and seek a set of HMMs that minimize the L-risk, RRL →: ( )( )( )YLERL ζ=  

[51]. The resulting HMMs are called large margin HMMs. Boosting has been 

shown to be a successful method for solving large margin problems by 

constructing ensembles of classifiers. However, boosting large margin HMMs 

appears to be a new topic in speech recognition. Therefore, the materials 

presented here are without supporting experiments and only for discussion 

purposes.  

Several cost functions have been studied in literature. For instance, AdaBoost 

uses the exponential loss ( ) ( )αα −= expL  [52], and LogitBoost takes the logistic 

loss ( ) ( )( )αα 2exp1ln −+=L  as the cost function [53]. Considering both forms 

of loss, boosting for large margin HMMs attempts to minimize: 

( ) ( )( ) 0exp
1

exp >−=∑
=

γγζζ
R

r
rr YL   for exponential loss,  and                  (4.15)   

( ) ( )( )( ) 0exp1ln
1

log >−+=∑
=

γγζζ
R

r
rrit YL   for logistic loss.                    (4.16) 
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Comparing (4.15) and (4.16) with the MCE objective function (2.41) 

( ) ( )( ) 0    
exp1

1
1

>
−+

=∑
=

γ
γ

λ
R

r rr
MCE Yd

L  ,                                                   

it can be seen that they all attempt to maximize the separation between models 

but in different functional forms. In a boosting view, this will resulting in 

different weighting schemes on the samples in search for the additive base 

models. Note that there are other related ensemble learning approaches such as in 

[54].  
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C h a p t e r  5  

EVALUATION OF GRADIENT BOOSTING 

5.1 Experimental Setup 

The approximate gradient boosting algorithm was evaluated on the WSJ 20K 

Nov 92 task. The standard training data set (WSJ0+WSJ1) including speech of 

384 speakers were used. Speech feature analysis was made at a 10msec frame rate 

with a 25msec window-size. Speech feature components included 13 MFCCs and 

their first and second derivatives. Cepstral means were removed for every 

utterance. The baseline acoustic model was trained using HTK with a fixed 

number of Gaussians in each mixture. 

The acoustic models were trained as the following. First, single Gaussian models 

were trained using conventional EM and were tied by phonetic decision tree with 

HTK. Second, a Viterbi forced alignment using the trained single Gaussian 

models was performed to segment training data into phone states. Third, 

Gaussian mixture models were trained for each tied state using segmented data by 

gradient boosting, where the maximum allowed number of Gaussians for each 

phone state was 32. As the last step, an ordinary embedded EM was applied to all 

the boosted models by using the entire set of training data. 

For the WSJ task, standard trigram language model provided by LDC was used, 

including 19,982 unigrams, 3,518,595 bigrams, and 3,153,527 trigrams. Only 

within-word triphone acoustic model was tested. One-pass time-synchronous 

beam search was used for decoding speech with conservative pruning thresholds 

optimized for testing. The test set used was the WSJ si_et_20 evaluation set 

which consists of 333 sentences. 
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5.2 Comparing Gradient Boosting with EM 

Word accuracy achieved under the same number of mixture components per 

mixture density was compared for baseline and gradient boosted models. A fixed 

number of Gaussian components per state were obtained by the standard 

splitting procedure during baseline training. For gradient boosting, the recursive 

procedure is controlled by a stopping criterion. In this experiment, the insertion 

of new component is terminated if no candidate can be found to improve the log 

likelihood by a pre-defined threshold. Therefore, the number of Gaussians in 

each mixture density varies based on available observations and true distribution 

of data. As a consequence, the model complexity can only be described by an 

average number over all states. Experimental results are listed in Table 6.1. The 

last row of the table gives the relative rate of error reduction (RER). 

 
Mix. size 8 10 12 15 16 17 

Baseline 88.37 88.66 88.59 88.84 89.31 89.33 

GB 88.96 88.92 89.14 89.54 89.86 89.77 

RER 5.1% 2.3% 4.8% 6.3% 5.1% 4.1% 

 
Table 5.1.  Word accuracy of conventional EM and GB 

Over the range of studied model complexity, gradient boosting performs 

consistently better than EM, resulting in an average error reduction rate of 4.6%. 

For many states, gradient boosting produced models with smaller number of 

Gaussian components than EM. For example, when average model complexity is 

16 Gaussians per state, nearly 50% GMDs have less than 16 Gaussians. This 

result confirms the fact that different phonetic units need models with different 

complexities under typical speech model training conditions. Figure 5.1 shows a 

histogram of number of Gaussians in each state. 
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Figure 5.1. Histogram of number of Gaussians per state 

In Figure 5.1, we can see that there were about 20% GMDs containing 32 

components. An analysis shows that these states have large training data samples 

and the ML criterion is likely to result in overfitting. Therefore, BIC model 

selection is used for further investigation. 

5.3 Comparing BIC selected Models 

To perform BIC model selection, baseline models are grown to have maximum 

32 Gaussian components in each state, which is comparable to the number used 

in gradient boosting. After BIC model complexity selection, the average numbers 

of Gaussians per state for GB and baseline models are reduced to 15 and 13, 

respectively. The word accuracy results are given in Table 5.2 

 Mix. Size without BIC  with BIC  

Baseline 13 88.84 89.10 

GB 15 89.54 89.74 

 
Table 5.2.  Comparison of BIC results of GB and EM models 
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Comparing tables 5.1 and 5.2, we can see that although BIC model selection can 

greatly reduce the complexity of the baseline models, reducing the number of 

Gaussians per state from 32 to 13 on average, it can not produce a model 

comparative to any one of the GB models. For instance, the GB model of same 

complexity level (average mixture size 13) still performed better than the BIC 

selected baseline model, although not by a significant margin. The reason is 

because of the structural difference as depicted in Figure 4.1. To show the effect 

of this structural difference on model selection, we plot histograms of number of 

Gaussians per state for the BIC selected models in Figures 5.2 and 5.3. 
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Figure 5.2 Histogram for BIC selected Baseline Models 
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Figure 5.3 Histogram for BIC selected Gradient Boosted Models 

Figure 5.3 shows a form of smooth distribution but Figure 5.2 does not.  The 

pattern in Figure 5.2 reveals that a lot of models have been trapped at local 

optima and the standard splitting method by a small perturbation on existing 

components can not effectively move the model toward global optimum. This 

implies that by putting more components on the margin, gradient boosting 

embraces the power to avoid local optima and produce a fine-tuned model 

structure.  
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C h a p t e r  6  

KNOWLEDGE BASED ADAPTIVE PDT MODELING 

6.1 Introduction 

Pronunciation variation in conversational speech has been shown to pose a great 

challenge to current-generation automatic speech recognition (ASR) systems. 

Pronunciation variations can be influenced by various levels of factors, including 

linguistic features of a word (such as morphology, part of speech, tense, etc.), the 

syllabic and lexical structure, the presence of disfluencies or geographical dialects, 

and these variations are typically modeled by a combination of a lexical 

pronunciation dictionary and context dependent acoustic models [55, 39, 56]. In 

general, pronunciation modeling methods can be categorized into explicit and 

implicit approaches [57]. Explicit methods model pronunciation variations at a 

symbolic level by using multiple pronunciations per word or by tree-shaped 

pronunciation network in word pronunciation dictionaries. However, introducing 

multiple pronunciations per word may add in confusability in Viterbi decoding of 

speech, and in practice only small performance gains were observed [58]. On the 

other hand, pronunciation variation can be implicitly captured in HMM-based 

acoustic modeling process by utilizing the power of Gaussian mixture densities. 

In implicit modeling, a soft or hierarchical parameter tying scheme is used to 

represent the mapping between a phoneme sequence and its acoustic realization 

as HMMs. Works presented in [57] and [59] demonstrate that implicit methods 

can perform equally or better than explicit methods when evaluated on the 

Switchboard corpus. Both works suggest that acoustic modeling in spontaneous, 

conversational speech can be improved by robust mappings between context-

dependent phonemes and HMM states, which is traditionally performed by 

phonetic decision tree (PDT) state tying. 
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Recently, many efforts have been made to improve PDT state tying based 

acoustic modeling for continuous speech recognition [60, 61, 62]. Tree-structured 

adaptation methods were also reported, which attempt to apply hierarchically 

organized priors in building more accurate acoustic models from speaker 

adaptation [32, 63].  Researchers tackled the tree construction problem from 

different perspectives, which can be roughly grouped into two categories, namely 

the knowledge-based and data-driven approaches. The knowledge-based method 

refers to phonetic decision tree state tying which uses phonetic decision rules for 

clustering of HMMs, and the data-driven method employs an agglomerative 

clustering procedure based on a distance measure between Gaussian densities. An 

earlier work in [44] has shown that the two approaches have similar performances 

while the knowledge-based method has the advantage of allowing model 

construction for unseen triphones. Another limitation of the data-driven method 

is its lack of robustness in dealing with mismatches between acoustic feature 

spaces caused by pronunciation variation when being applied to speaker 

adaptation in conversational speech.  

It is our belief that knowledge-based modeling can be generalized better in large 

pronunciation variation situations. However, knowledge-based approach could 

possibly suffer from mismatches between the information source and the specific 

domain for which it has to be applied, if without adaptive learning [64]. Our 

hypothesis is that there are systematic relationship between phonological 

variation and acoustic realizations which can be extracted by a dynamic PDT 

process growing on the relatively larger data source. Such information can be in 

turn used selectively for generating domain-specific or speaker-dependent 

acoustic models. 

The common framework of tree growing methods is recursive partitioning of the 

input space by using a one-step lookahead strategy. Research efforts on 

 57



 

improving phonetic decision tree modeling have been focused on tree growing 

strategy [60], model structure selection with information criterion [61], and 

enriching the set of splitting questions [60, 62]. However, without using 

appropriate prior knowledge on the favored decision tree structure, uncertainty 

remains in the resulting phonetic decision trees. This problem is acute when 

speaker adaptation is carried out based on an unreliable tree structure. To the best 

knowledge of the authors, adaptive learning of phonetic decision tree structures 

has not yet been shown in previous literatures. 

In this work, we present a novel acoustic modeling approach using knowledge-

based adaptive decision tree clustering. The prior knowledge on phonological 

rules is implicitly represented by a tree-generating process on a large corpus, 

which is used to select good candidate splitting variables for construction of 

target PDTs in a specific domain. In contrast to traditional methods which find 

an optimal tree cut in a single large tree (a single realization of prior tree), the 

proposed method employs prior knowledge on decision rules in greedy search 

for domain-specific PDTs, and thus results in transformed tree topology.  The 

contributions of this paper are  

 --A general Bayesian learning framework for PDTs which incorporates prior 

knowledge on tree structure. The probability distribution of a decision tree is 

decomposed into probabilities on tree structure, which contains the tree topology 

and the tests carried out at internal nodes, and the observation distributions at leaf 

nodes. By making appropriate simplification, our tree priors mainly compose of 

prior probabilities of splitting variables at internal nodes. 

 --A Bayesian tree information criterion (BTIC) which is used as splitting rule. 

Assuming informative priors on favored tree structure, BTIC is derived as an 

extension to the well-known Bayesian information criterion (BIC). 

 --A hierarchical prior of splitting questions implicitly represented by a 

decision tree growing process based on a large corpus. In general, considering 
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the number of possible realizations of a decision tree, the computation of priors 

on tree structure would be intractable without specifying a computational 

efficient algorithm. We propose a novel solution to this problem by introducing 

an identical process of the targeting PDT on the large corpus, providing 

recursive estimation of prior probability of splitting variables.  

6.2 Background on Bayesian Decision Tree 

6.2.1. Statistical Decision Tree Modeling 

The theory and algorithms on Bayesian learning of decision trees were first 

studied in [65], where probability distribution of a decision tree was decomposed 

into probabilities of a tree structure, which contains the tree topology and the 

tests at each splitting node, and the observation distribution densities at each leaf 

node. Subsequently, effective Bayesian stochastic search algorithms using Markov 

Chain Monte Carlo (MCMC) simulation were developed for Bayesian inference 

of trees [66, 67]. In introducing the framework of Bayesian decision tree, we will 

follow the notations as used in [67]. 

A binary decision tree is uniquely identified by a set of variables 

( ) 1,...,1 ,,, var −== kisssT rule
ii

pos
i , where  ,  and  denote the position, 

variable and the point where the variable is split for each splitting node, i, and 

thus, k represents the number of terminal nodes. A parameter set associated 

with k terminal nodes is further defined as 

pos
is var

is rule
is

( )1,..., kθ θΘ = , where jθ  is the 

parameter of the observation distribution density at the jth terminal node. A 

training data set is defined as ( ) { }, , ,  1,...,t tY X y x t n= = , where ( )1,...,
T

dy y y=  is 

the d-dimensional observation variable and ( )1,...,
T

px x x=  is the p-dimensional 

splitting variable. Assuming conditioned on ( )T,Θ , the observations across 
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terminal nodes are independent, and those within terminal nodes are i.i.d.. The 

joint distribution is of the form 

( ) (
1 1

| , , |
ink

ij i
i j

p Y X T p y )θ
= =

Θ =∏∏  (6.1) 

where { } ,  1,...,i ijY y j= = in  denote the data points in terminal node i. The 

posterior distribution of T is given by 

( ) ( ) ( )
( ) ( ) ( )∫ ΘΘΘ=

∝

dTpTXYpTp

TpTXYpYXTp

|,,|                   

,|,|
 (6.2) 

up to a normalizing constant. Analytical forms of the integral 

( ) ( ) ( )| , | , , |p Y X T p Y X T p T d= Θ Θ∫ Θ  can be obtained by using conjugate 

priors or Laplace approximation [66,67,48].  

6.2.2. Non-Informative Tree Prior 

The prior on tree ( ) 1,...,1 ,,, var −== kisssT rule
ii

pos
i  can be specifies as follows. 

First, a discrete distribution ( )var
isp  is defined over the domain  

which corresponds to index of the p splitting variables in 

{ }psi ,...,1var ∈

( )1,...,
T

px x x= . 

Second, a conditional distribution ( )var| i
rule
i ssp  is specified with  taking a 

total number of  possible values for the splitting variable . Finally, 

an upper bound of splits allowed in one path down the tree, , is set to 

ensure a finite number of possible trees, i.e., 

rule
is

( var
in s ) var

is

maxS

{ }12,...,1 1max −∈ +Spos
is . 

Usually the distributions ( )var
isp  and ( )var| i

rule
i ssp  are chosen as uniform 
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distributions. In such a case, the prior distribution for a complete tree structure 

becomes 

( ) ( ) ( ) { }( )

( )

1 1var var

1
1

1

var
1

|

1 1 ! 1         

k krule pos
i i i i

i

k

i ki

p T p s s p s p s

k
p S Kn s

− −

=

−

=

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏

∏

 (6.3) 

where  is the total number of possible ways of choosing kS { } 1
1
−kpos

is  to produce 

a k-terminal node tree, and K is the maximum number of terminal nodes. For 

binary decision trees,  is given in graphics theory as the Catalan number kS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
k
k

k
Sk

2
1

1   (6.4) 

The prior on tree topology { }( )1

1

! 1kpos
i

k

kp s
S K

−
=  is a function of the number of 

terminal nodes k and independent of the rule assignment in splitting nodes. 

In [66], a recursively defined prior on tree topology which favors “bushy” trees 

is specified by the node splitting probability 

( ) ( ) βα −+= sSPLIT dTsp 1,   (6.5) 

where  is the depth of node s, sd 0 ,10 ≥<< βα . Although a “bushy” tree is 

often preferred in practice, we opt to the prior specified in (6.3) for the reason 

of simplicity. Since our interest is on informative priors of splitting rules and the 

prior on tree topology will be considered nuisance in our later discussions. This 

kind of simplification would not affect the justification of our findings to be 

presented in the following sections.  
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6.3 Bayesian PDT Learning based on Informative Prior 

6.3.1. Informative Prior on Tree Structure 

Note that the prior  defined in (6.3) is non-informative. When prior 

knowledge of favored tree structures is available, it is beneficial to consider 

more informative priors on tree structures. In phonetic decision tree based state 

tying, this knowledge is carried by the splitting variables, i.e., linguistic questions 

being asked at each splitting node. Since the answers to the linguistic questions 

only take Boolean values (true/false), we have 

( )Tp

( ) 1| var =i
rule
i ssp  conditioned on a 

given splitting variable. Assuming an implicitly defined belief on ( )var
isp , we use 

the following form of prior in PDT modeling 

( ) ( ) { }( ) (
1 1var var

1
1 1

k kpos
i i

i i

p T p s p s p s
− −

= =

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
∏ )

1k

i

−

∝∏  (6.6) 

where { }( )1
1
−kpos

isp  only depends on tree topology and will be treated as nuisance 

factor when focus is on splitting rules. The strategy of implicit modeling for 

( )var
isp  will be given in Section IV. 

6.3.2. Bayesian Tree Information Criterion 

The Bayesian model selection criterion chooses the tree structure which has the 

highest posterior probability. Substitute (6.11) and (6.6) into (6.2) yields  

( ) ( ) ( ) ( )

( ) ( ) ( )
1

var

1 1 1

| , | , , |

                 | |
ink k

i ij i i
i i j

p T X Y p T p Y X T p T d

p s p y pθ θ
−

= = =

∝ Θ Θ Θ

T d
⎧ ⎫⎧ ⎫ ⎪ ⎪∝ ×⎨ ⎬ ⎨ Θ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

∫

∏ ∏ ∏∫ % %%

 (6.7) 

 62



 

The Bayesian tree information criterion (BTIC) is defined to be the logarithm 

of the tree posterior probability 

( ) ( )log | ,BTIC T p T X Y=   (6.8) 

A key problem in evaluating BTIC is to compute the evidence of observations, 

( | , )p Y X T  , given as follows, 

( ) ( ) ( )
1 1

| , | |
ink

ij i i
i j

p Y X T p y p T dθ θ
= =

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏ ∏∫ Θ       (6.9) 

The integral over parameter space Θ  is often intractable when considering 

complex model architectures. In PDT literature, two kinds of approaches were 

commonly employed to tackle this problem, referred to as exact methods and 

approximate method, respectively. Exact methods make assumption on the 

parametric forms of observation distributions and prior of parameters at leaf 

nodes. For multivariate normal observation distributions at leaf nodes, i.e.,  

( ) ( )| |ij i p ij i i,p y N y mθ = R

)

  (6.10) 

where   is p-dimensional multivariate normal distribution with mean  

and precision matrix 

( | ,p ij i iN y m R im

iR , exact methods use the normal-Wishart conjugate prior 

as follows [61][65], 

( ) ( )

( ) ( ) ( )

/ 2, | , , ,

1 exp exp
2 2

i p
i i i i i i i

Ti
i i i i i i i

p m R R

m R m tr R

ατ µ α

τ µ µ

−Ψ ∝

⎧ ⎫ ⎧ ⎫× − − − − Ψ⎨ ⎬ ⎨
⎩ ⎭⎩ ⎭

⎬

i

 (6.11) 

where , , ,i i iτ α µ Ψ  are hyper-parameters. Analytical results show that the 
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evidence ( )| ,p Y X T  is in the form of p-dimensional multivariate student t distribution 

( ) ( ) [ ] ( )
1/ 2

/ 2/ 2| , 1 i ii i nni
i i i

i i

p Y X T s t
n

αατ
τ

− +− +⎛ ⎞
∝ Ψ × + +⎜ ⎟+⎝ ⎠

i                 (6.12) 

where ( ) ( )1

1

in
T

i it i i it
t

is y y y y−

=

= − Ψ −∑ , and ( ) ( )1Ti i
i i i i i

i i

nt y y
n i

τ µ µ
τ

−= − Ψ −
+

. 

The Laplace approximation method for exponential family as described in [48] 

has been extensively used in literature to evaluate the integral in (6.9). Assuming 

that the function ( ) ( )|i i i |p Y p Tθ θ  is strongly peaked at the ML estimate îθ , 

i.e., ( ) (|i i i )|p Y p Tθ θ  is dominated by the term ( )|i ip Y θ , a second order Taylor 

expansion of the logarithm of this function around îθ  leads to a tractable form 

( ) ( ) ( )
( ) ( ) ( )

( )0

ˆlog | | log |

1ˆ log | log 2 log log
2 2 2

ˆ  log | log
2

i i i i i i

i i

n

i i i

p Y p T d p Y

p pp T n I

pp Y n BIC

θ θ θ θ

y iθ π

θ
>>

≈

+ + − −

≈ − =

∫
θ  (6.13) 

where p is the number of free parameters in the model and ( )y iI θ  is the Fisher 

information matrix. The resulting value is equivalent to the well known 

Bayesian information criterion (BIC), also known as Schwarz information 

criterion (SIC) [48]. 

Choosing between the exact and approximate methods can be considered as 

application dependent. One advantage of exact method is that it performs both 

roles of model selection and adaptation, since the MAP estimates of model 

parameters can be easily obtained by the expectation-maximization (EM) 
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algorithm [61]. But it also has limitations by requiring appropriate assumptions 

on probability distributions of data and specification of hyper-parameters. In 

PDT modeling for speech recognition, a choice between the two methods also 

implies a choice between access to data or sufficient statistics. Since BIC only 

needs to evaluate observations in the log-likelihood function, sufficient statistics 

from the Baum-Welch algorithm can be directly used to compute the BIC score 

[44]. In current study, we adopt the approximate method provided with its 

computation convenience. After standard analytical simplification, the Bayesian 

tree information criterion as defined in (6.8) can be found to be 

( ) ( ) (
1

var

1
log

k

i
i

BTIC T BIC T p sγ
−

=

= + ∑ )                 (6.14) 

where γ  is a regularizing parameter. 

6.3.3. Relationship to Other Model Selection Criterion 

From previous discussion we can see that the proposed Bayesian tree 

information criterion is an extension to the traditional Bayesian information 

criterion by introducing informative prior on tree structure. In general, 

considering prior model probability ( )mp M  with { }mM M= , BIC is defined to 

be 

( )
( ) ( ) ( )( )

log ,

       log | |

m

m m

BIC p Y M

p M p Y p M dθ θ θ

=

= ∫
   (6.15) 

However, the priors ( )mp M  and ( )| mp Mθ  are often taken as non-informative 

because of the lack of prior knowledge on distributions of parameters and 

model structure. From this point of view, equation (6.14) is a misuse of the 
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term BIC, since conceptually, BIC already considers the model prior which was 

later ignored as a small term during numerical approximation. Therefore, 

equation (6.14) is only considered numerically correct. 

The predictive information criterion (PIC) differs from BIC in two ways [61]. 

First, PIC leaves out the term ( )mp M  in definition, which has been shown 

important in selecting appropriate decision trees in our study, and second, PIC 

uses exact calculation of the integral, as illustrated in equations (6.10), (6.11) and 

(6.12). By definition, PIC is given as 

( ) ( ) ( )
( ) ( )

log | log | |

      log
m

m m

mPIC p Y M p Y p M d

BIC M p M

θ θ θ= =

= −
∫                        (6.16) 

Therefore, BTIC can be specified in terms of PIC as 

( ) ( ) (
1

var

1
log

k

i
i

BTIC T PIC T p sγ
+

=

= + ∑ )                  (6.17) 

following the definition in (6.8), when exact integration is used assuming proper 

conjugate priors. 

6.4 Knowledge-Based Adaptive Decision Tree Clustering 

Recently, much attention has been drawn to employing knowledge-based features 

for speech recognition, ranging from directly using linguistically derived features, 

so called “distinctive features” [34], in the recognition process, to implicitly 

integrating high-level contexts, such as syllable and stress, into decision tree based 

parameter sharing [58, 32]. Rational behind these methods is that incorporating 

human understanding of acoustics-phonetics about speech variation will provide 
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more accurate and consistent modeling of speech. The performance of these 

systems depends on the goodness of the knowledge used and the effectiveness of 

information handling in the system. In PDT modeling, this implies that two 

additional functions are needed, one is for coding the phoneme sequence in an 

utterance with distinctive features using an external knowledge source of 

language, and the other one is for interpreting the knowledge based on a relatively 

large corpus and providing a goodness measure of distinctive features when to be 

used in construction of PDTs. Following the discussions in Section 3.4, a PDT 

modeling system scheme which incorporates these two parts is named 

knowledge-based adaptive PDT clustering, and is depicted in Figure 6.1, where 

sub-word unit v is often taken as lexical phoneme, or sub-phoneme when left-

right HMM is used to represent a single phone, and distinctive feature x consists 

of various factors which influence pronunciation variation (such as surrounding 

phones, stress and syllable structure, part-of-speech, etc.). 

 

Figure 6.1 Diagram of knowledge-based adaptive PDT 

The key part of this system is the “subtree goodness prediction,” which is based on 
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the BTIC model selection where the subtree goodness is measured by the prior 

probability ( )var
isp  of splitting variables estimated from a large corpus. 

However, considering the huge number of possible realizations of a decision 

tree, the estimation for ( )var
isp  would be intractable if no computational 

efficient algorithm is specified [66, 67]. In an adaptive learning setting, we 

propose a novel solution to this problem by recursively defining ( )var
isp  based 

on the belief represented by a dynamic decision tree growing process on a large 

data set, as follows 

( )
var

var ,  if  top  variables
0,                               otherwise

i
i

BTIC s h
p s

⎧∆ ∈
∝ ⎨
⎩

             (6.18) 

where  

( )_ _( ) ( ) (i L i R iBTIC BTIC s BTIC s BTIC s∆ = + − )   (6.19) 

is the information gain by splitting the node  to its left and right children 

nodes  and . This probability is defined positive only for the top h 

number of hypothesis on splitting variables (distinctive features) which give the 

best improvement in BTIC, and its value is proportional to the corresponding 

information gain with the stochastic constraint that sum of the probabilities 

equal to one. Forcing the probabilities of ineffective splitting variables to zero is 

for reducing noise and uncertainty in the tree learning process. 

is

_i Ls _i Rs

As discussed above, BTIC model selection is performed by two interleaved tree 

growing processes, as shown in Figure 6.2. The primary tree process is the 

domain-specific PDT which we are searching for, and hence called a target tree. 

The secondary tree process provides beliefs on splitting variables to the primary 
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tree, and is therefore called an oracle tree. The splitting of oracle tree is 

governed by the targeting tree and is in fact an identical tree copy of the 

targeting tree but growing in a different observation space. Note that each tree 

can use its own representation of acoustic features, for instance, MFCCs can be 

used in one tree while PLPs being used in the other tree. When both trees use 

matched form of acoustic features, the oracle tree also generates prior 

information on observation distribution parameters. Equation (6.17) provides 

an option to integrate this information into the targeting tree process using the 

exact form in (6.12). 

Both trees are constructed based on the splitting method as in [12], except that 

the splitting rule used is BTIC. Recall that we use the approximated BTIC given 

by 

( ) ( )
1

var

1 1
( ) log log log

2

k k

i i
i i

pBTIC T L T n p sρ γ
−

= =

≈ − +∑ ∑   (6.20) 

where ( )L T  is the likelihood of the tree, ρ  and γ  are adjustable regularizing 

factors, and the sample count at leaf node i, , is approximated by accumulated 

state occupancies which were estimated from the Baum-Welch algorithm. In 

splitting the oracle tree, 

in

( )var
isp  is assumed non-informative, i.e., uniformly 

distributed. 
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Figure 6.2. The BTIC based decision tree construction scheme 
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C h a p t e r  7  

EVALUATION OF KNOWLEDGE BASED ADAPTIVE DECISION 
TREE 

7.1 Experimental Setup 

The knowledge-based adaptive PDT algorithm was evaluated on the telemedicine 

automatic captioning task developed in the Spoken Language and Information 

Processing Laboratory at the University of Missouri-Columbia. The objective of 

this project is to develop an online captioning system to help hearing impaired 

users in telemedicine interviews. Developing such a system in telemedicine 

domain is challenging in several ways. First, telemedicine conversations are 

spontaneous and contain various amounts of filled-pauses, repetitions, repairs 

and noises. Second, relatively sparse training data make it difficult to train a large 

number of parameters in both acoustic and language modeling. Third, variations 

in speaking style and fluency call for effective methods to describe the 

pronunciation patterns of different speakers. The knowledge-based adaptive 

decision tree clustering algorithm is a powerful tool developed to combine 

acoustic-phonetic knowledge for resolving these difficulties from a perspective of 

acoustic modeling.  Besides development and evaluation of new algorithms, 

acoustic modeling efforts also include tedious work on data collection and 

preprocessing, feature analysis as well as noise and filled pause modeling. For a 

comprehensive description of this project, interested readers are advised to refer 

to [68].  A brief layout of the telemedicine automatic captioning system is shown 

in Figure 7.1. 
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Figure 7.1. Automatic captioning system for telemedicine [68]. 

7.1.1. Data Collection 

Speech data of telemedicine conversations were collected on the sites of the 

University of Missouri Telemedicine Network. A total of seven medical 

professionals contributed their voices in mock telemedicine interviews. Speech 

recordings were taken in sessions, each with one volunteered client and lasts 

20~30 minutes long. Conversation topic of each session was determined by the 

health care provider and ranged from neuropsychology to dermatology, which 

choice mainly depended on the health care provider’s professional background. 

About 51 hours of conversational data were collected from the health providers’ 

sites, within which about 24 hours of speech were from the seven health care 

providers. The speech data of health care providers were then manually 

transcribed into word sentences by experienced personal. The resulting 

transcriptions consist totally 305,818 words of which 8.02% are medical terms. 
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A lexicon dictionary was built with special concern on covering medical terms. At 

lexicon level, pronunciation variations were roughly modeled by multiple 

pronunciations in dictionary, resulting in a vocabulary size of 46,489, with 3.07% 

of vocabulary words being medical terms [68].  

7.1.2. Preprocessing of Speech Data 

The original speech recordings and word transcriptions were too raw to be 

directly used by the speech recognition system. They need to be cleaned, aligned, 

and organized into a telemedicine corpus. Currently, speech recording data of five 

speakers, two female (D1 and D5) and three males (D2, D3 and D4) have been 

processed. One or two sessions of a speaker’s speech were randomly chosen to 

be set aside for model evaluation purposes. A summary of the telemedicine 

corpus is given in Table 7.1. The conversation set consist patients’ speech, and 

the training and test data sets which altogether constitute doctor’s speech. Word 

counts from transcription texts are also listed [68]. 

 Conversation Training set Test set 

D1 630 210/35,348 29.8/5,105 

D2 480 200/39,398 14.3/2,760 

D3 300 145/28,700 19.3/3,238 

D4 420 180/39,148 27.8/6,492 

D5 380 250/44,967 12.1/3,998 

Table 7.1. Data sets of 5 doctors: speech(min)/text(no. of words) 

7.1.3. Noise and Filled Pause Modeling 

Symbolic forms of filled pauses and noises were first extracted from text 

transcriptions. Acoustically similar forms were then identified and merged into 
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one class. Finally, seven filled pause units and one dummy “fp” unit representing 

noise-like sounds including lip smack and microphone ruffling were defined. 

Details are given in Table 7.2. 

Model unit Filled pause/noise pattern 

aah AH     

om OM OMM AHM   

umm UM UMM UHM 

hum HUM   
UMHM, UMHUM 

oh OH    

uhh UH   
UHOH 

huh HUH   
UHUH 

fp (smack) (mic. Sound) MMM HMM 

Table 7.2. Summary of filled pause and noise model units 

7.1.4. Acoustic Modeling 

Speaker dependent models were trained for each speaker. Speech features 

consisted of 39 components including 13 MFCC parameters and their first and 

second order time derivatives. Feature analysis was made at a 10msec frame rate 

with a 20msec window size. Adding in the filled pause and noise units, a total of 

52 sound units were defined, including 42 speech monophone units as well as 

silence and short pause units. Within word context dependent triphone modeling 

was used for speech monophones, while context independent modeling was used 

for the rest units. Left-right hidden Markov model (HMM) with three states was 

used for acoustic modeling, where state emission probability was modeled by 16-

Gaussian mixture density with diagonal covariance matrix. Baum-Welch 

estimation of CDGMM-HMM parameters were carried out by using the HTK 

toolkit [69]. 
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7.2  Evaluation Issues 

The proposed knowledge-based adaptive decision tree learning is a general 

statistical modeling approach, and therefore can be used to fulfill different goals 

in data modeling tasks, including but not limited to 

• Construction of a decision tree with optimal prediction power. 

• Inference on the splitting variables that may be used in a rule-based 

decision system. 

• Adaptation of tree-structured models, where traditional adaptation 

methods such as MAP and MLLR may be involved. 

• Model complexity selection based on BTIC. 

• Combination with other tree construction techniques, for instance, 

lookahead algorithms. 

In this work, we show the effectiveness of the proposed algorithm for 

construction of PDTs (KBA-PDTs) using the telemedicine automatic captioning 

corpus, and the effectiveness is judged based on the speech recognition word 

accuracy as well as the resulting acoustic model complexity. Possible extensions 

of this algorithm will be discussed in section 7.4. 

7.3 Experimental Results 

Speaker dependent triphone acoustic models were trained using the BTIC based 

decision tree state tying, where the large corpus for oracle tree construction 

contains pooled speech from all the speakers. Phonetic question set used was the 

202-questin set as in [44]. Prior to building the trees, single Gaussian acoustic 
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models were first estimated for untied triphones and sufficient statistics were 

accumulated for corresponding oracle and target PDTs. The resulting speaker 

dependent PDTs were then used to cluster HMM states and to construct unseen 

triphones. At last, tied single Gaussian models were augmented to 16-Gaussian 

mixture models by the HTK splitting procedure. Baseline models were also 

trained using the maximum likelihood criterion (ML-PDTs). The model 

complexity and word accuracy results are summarized in Table 7.3 

  KBA-PDT ML-PDT 

Number of states 1611 2238 
D1 

Word accuracy 81.75 81.17 

Number of states 1119 1569 
D2 

Word accuracy 73.73 73.15 

Number of states 799 1156 
D3 

Word accuracy 74.98 73.95 

Number of states 1027 1521 
D4 

Word accuracy 78.35 77.96 

Number of states 1552 1838 
D5 

Word accuracy 83.55 82.80 

 

Table 7.3. Effectiveness of knowledge-based adaptive PDT 

7.3.1. Effects of the Number of Active Questions h 

The value h for the prior probability of splitting variables as defined in (6.18) is 

called a tuning constant; smaller value of h means strong belief on the knowledge 

extracted from the large corpus and more resistant to noise and uncertainty in the 

domain-specific training data, but at the expense of lower robustness when the 

large data set is less representative. For example, in our pilot experiments, using 
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read speech (WSJ) as prior knowledge source for telemedicine conversational 

speech resulted in degraded recognition performance. The performance of KBA-

PDTs versus different values of h for five speakers is give in Table 7.4 

 h 1 5 10 200 

Number of states 1250 1463 1611 1804 
D1 

Word accuracy 80.83 80.83 81.75 81.28 

Number of states 871 1021 1119 1278 
D2 

Word accuracy 73.13 73.01 73.73 73.20 

Number of states 581 727 799 944 
D3 

Word accuracy 74.67 74.67 74.98 74.73 

Number of states 852 1027 1098 1204 
D4 

Word accuracy 77.57 78.35 78.29 78.35 

Number of states 1002 1216 1397 1552 
D5 

Word accuracy 82.95 83.40 83.02 83.55 

 
Table 7.4. Performance of knowledge-based adaptive PDT (effects of h-factor)   

From this table we can see that best (D1, D2 and D3) or almost best (D4 and 

D5) recognition results in word accuracy can be achieved with reduced model 

complexity by setting a small value of h. This implies that there was strong 

agreement between the oracle tree and target tree, which is not a surprise because 

the large corpus used was just the pooled speech from all five speakers. The 

effects of h on model complexity and word accuracy are plotted in Figures 7.2 

and 7.3. From these plots we can also see that the word accuracy curves for 

speakers D1, D2 and D3 have similar patterns and all peaked at h = 10, but such 

patterns for speakers D4 and D5 are less obvious. This is because that the five 

speakers were from two different groups: D1, D2 and D3 were  
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Figure 7.2. Model Complexity (number of states) vs. h 

 

Figure 7.3. Word accuracy (%) vs. h 
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neuropsychologists, while speakers D4 and D5 were dermatologists. This kind of 

variation is caused by mismatch in speech topics, and is thus called knowledge 

variation. It is also noticed that the gender difference (which is often a major 

source of acoustic variation) within the Neuropsychologists’ group (D1 is female, 

D2 and D3 are male) did not cause much disagreement across speakers in the 

results. The evidences from this experiment support our assumption that the 

knowledge-based adaptive PDTs can capture the knowledge variation in 

conversations and remains robust to the acoustic variations. 

7.4 Discussions 

From the discussions in Chapter 6, it is natural to extend the knowledge-based 

adaptive decision tree algorithm to decision tree model adaptation. Since the 

proposed approach is a Bayesian learning framework, MAP estimates of model 

parameters are easily computable by the expectation-maximization (EM) 

algorithm. When training data is even sparse, hierarchical linear transformation 

based adaptation may be used, where more complex analytical forms will be 

involved. However, given previous works on Bayesian linear transformation 

based adaptation [62], derivation of such algorithms is still straightforward. 

Another direction of research is the inference of the knowledge source, in the 

form of decision rules. Research interests could be focused on posterior inference 

of splitting variables, which can be used to investigate knowledge variation from a 

linguistic-phonological perspective or to facilitate a rule-based decision system.  

At last, BTIC can be used as a general model selection criterion for tree based 

models. In order to effectively apply BTIC based model selection, accurate 

representation for the prior probability of splitting variables need to be specified. 

This includes appropriate specification of knowledge source, and computational 
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efficient probability estimation algorithms. For the latter, existing tree lookahead 

algorithms might be a feasible choice [53].  
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C h a p t e r  8  

SUMMARY 

This work has investigated optimization techniques of acoustic model training for 

large vocabulary speech recognition in a statistical learning framework. Its main 

contributions include two innovative machine learning algorithms, tailored for 

acoustic modeling: 

• The knowledge-based adaptive decision tree algorithm was developed, 

where 

o A general Bayesian learning framework for PDTs was derived to 

incorporate prior knowledge on tree structure. The probability 

distribution of a decision tree is decomposed into probabilities 

on tree structure, which contains the tree topology and the tests 

carried out at internal nodes, and the observation distributions at 

leaf nodes. By making appropriate simplification, our tree priors 

mainly compose of prior probabilities of splitting variables at 

internal nodes. 

o A Bayesian tree information criterion (BTIC) was introduced as a 

splitting rule. Assuming informative prior on favored tree 

structures, BTIC was derived as an extension to the well-known 

Bayesian information criterion (BIC). The similarities and 

differences between BTIC and other information criterions 

including BIC and PIC were described. 
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o  A computational efficient algorithm for prior probability 

induction was developed. The prior of splitting questions are 

implicitly represented by a decision tree growing process based 

on a large corpus. In general, considering the large number of 

possible realizations of a decision tree, direct computation of 

priors on tree structure is intractable. We proposed a novel 

solution to this problem by introducing an oracle process which 

provides recursive estimation of prior probability of splitting 

variables. 

• The Gradient-Boosting function machine was developed for hidden 

Markov model with mixture of Gaussian observation densities, where 

o Gaussian mixture densities (GMDs) are recursively constructed 

in a greedy manner. An optimal new component is located and 

inserted to the mixture model, offering an efficient mechanism 

of allocating new components outside the local optimum 

regions. 

o A partial EM algorithm is developed for global component 

search based on the maximum likelihood (ML) criterion. By 

fixing the previously learned model, partial EM can be viewed as 

learning of two component models, and thus requires much less 

computation than full EM. This property is the key for 

developing a computational efficient global search algorithm for 

allocating optimal new components. 

The value of this research is, firstly, it provides the theoretical investigation of 

applying Bayesian method (knowledge-based adaptive decision tree) and 
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ensemble learning (Gradient Boosting) to PDT-GMMHMM based acoustic 

modeling; secondly, the implementations on real data set showed that the 

proposed methods indeed lead to improved model quality and recognition 

accuracy in large vocabulary speech recognition tasks; and lastly, there are 

potential extensions of this work, including but not limited to, the following 

• It is natural to extend the knowledge-based adaptive decision tree 

framework to decision tree model adaptation. Formulation of MAP 

adaptation has been briefly described in Chapter 6, and derivation of 

linear transformation based adaptation methods is also straightforward.  

• One important part of the knowledge-based adaptive decision tree is the 

specification for the prior probability of the splitting variables. Future 

research interests could be focused on either posterior inference of 

splitting variables that may be used to facilitate a rule-based decision 

system, or on seeking of more accurate representation for the prior 

probability of splitting variables. Toward the latter task, one possibility 

we can think of is to incorporate the tree lookahead approaches which 

have been described in literature. 

• Extension of the Gradient Boosting function learning is towards 

discriminative training. A novel concept of “large margin HMM” has 

been introduced in Chapter 4. The rational behind this method is to 

follow the aggressive weighting scheme on marginal data in existing 

Boosting procedures. The proposed “large margin HMM” criterion is 

just a modification of the MCE criterion, and there is a high possibility 

that this idea will work out. 
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