A U-shaped pulsating heat pipe is an excellent heat transfer performance device. This study has been investigated step by step.

The entropy generation is based on the second law of thermodynamics. In the present study, the entropy generation in a U-shaped Pulsating Heat Pipe (PHP) is numerically investigated. The results show that the entropy generation is significantly affected by the initial temperature in the PHP. However, the frequency of the entropy generation with the pressure loss is faster than that without the pressure loss at the bend.

The temperatures of heating and cooling sections are extremely important parameters, and play significant roles for the performance of pulsating heat pipes. The objective of this work is to study the effects of fluctuations of heating and cooling section temperatures on the oscillatory flow, temperature and pressure of the vapor plugs, as well as latent and sensible heat transfer of a pulsating heat pipe.

A numerical study is performed to investigate heat transfer performance and effect of nanofluids on a pulsating heat pipe (PHP). Pure water is employed as the base fluid while Al₂O₃ with two different particle sizes, 38.4 and 47 nm, is used as nanoparticle. The results show that nanofluid has significant effect on heat transfer enhancement of the system and with increasing volume fraction and decreasing particles diameter the enhancement intensifies.