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SPECIFIC BIOMODELING AND ANALYSIS TECHNIQUES 

AT CELLULAR AND SYSTEMS LEVEL 

Tai Seung Jang 

Dr. Satish S. Nair, Dissertation Supervisor 

ABSTRACT 

Computational models provide an effective avenue to test hypotheses regarding 

mechanisms that underlie the behavior of biological system, at all levels, including  

molecular, cellular, systems, and behavior levels, and to model emergent properties for 

such systems.  Modeling approaches are developed for two different levels, cellular (Part 

I) and systems (Part II), and used to develop insights into system performance.  The 

approaches are illustrated using two real-world example cases of systems that are 

nonlinear, large dimensional, and have significant parametric and unmodeled 

uncertainties.   

 PART I consists of three chapters focusing on computational neuroscience models at 

cellular level, each written in the form of a journal paper. Accurate modeling and analysis 

techniques are developed for the dynamics of single cell and networks of mammalian 

neurons for two different applications, and validated using experimental data. The 

mechanisms of action of a drug on prefrontal cortical cells are elucidated with two 

possible hypotheses, and a systematic methodology to study the excitability of cells under 

inhibitory post synaptic currents (IPSCs) is developed. For the second application, single 

cell models are developed for baroreceptor cells and it is shown to successfully model the 

conversion of an analog blood pressure signal to discrete firing patterns.  Also, we 

investigate whether spike frequency adaptation is mediated by a pre- or post-synaptic 
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mechanism.  Nucleus tractus solitarius (NTS) cells which receive the baroreceptor 

afferents are also modeled, and three specific network configurations of these are 

investigated as examples of the possible ‘functional’ circuitry that can implement the 

required ‘signal transfer’ from a pulse synchronous format (baroreceptors) at the input to 

one that lacks  pulse-synchronocity in the network (NTS neurons), back to a pulse 

synchronous format at the output (NTS output neuron). 

 PART II focuses on mathematical models at the systems level.  Specifically, thermal 

physiology models of the entire human body are developed using statistical and black 

box (artificial neural network, ANN) techniques.   

 MU 2-D Man is a human thermal model developed by our group at the University of 

Missouri (MU).  The model has been developed for designing an automatic thermal 

comfort control strategy for NASA astronaut space suits and for the US Air Force 

warfighters in chemo-bio suits. It is a general purpose model and can be used to predict 

thermal responses of human beings under transient environmental conditions. The model 

has been enhanced using more accurate modeling of digits incorporating arterio-venous 

anastomoses (AVA) mechanisms that the fingers and toes use for better control of heat 

transfer. Also, a black box model has bee developed using ANN techniques to predict the 

thermal response of supine subjects to transient environmental conditions, using a US 

Army data set. A variation of this study was also published as a journal paper that is not 

included here. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

 Control of a system requires that the system be understood ‘adequately’.   The term 

‘adequately’ implies that the level of understanding of the system is related to the 

accuracy of control or understanding required.  This requirement on control or 

understanding, typically takes the process of mathematical modeling, for most systems.  

A spectrum of models exists ranging from crude ones for human behavior and weather 

modeling, to very accurate models for aircraft and automobiles.  Interestingly, the process 

of modeling is the same for all the models in the spectrum, except for the level of 

complexity and uncertainties involved. Several mathematical frameworks have been 

proposed to develop computational models.  Computational models thus help transition 

from the ‘real world’ to the ‘math world’ where systems from all levels of the spectrum 

described above look similar.  Thus, for systems and control engineers, the techniques of 

modeling and control are ubiquitous throughout nature, and seem similar.  

 Biological systems are increasingly being studied by systems engineers, and funding 

agencies such as the National Science Foundation and the National Institutes of Health, 

are encouraging interdisciplinary research involving engineers to understand biological 

systems across all scales ranging from genes to cells to tissue to organs to entire systems 

and behavior.   This dissertation considers these modeling issues for two high order 

nonlinear example case biological systems: 

(i) Cellular level modeling for neurons and networks, which is representative of complex 

nonlinear systems with multiple inputs and outputs. 
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Example Case I – cell modeling to study two types of neural circuits.  One deals with a 

study of a single cell where the focus is on the mechanism of action of clonidine on 

prefrontal pyramidal cells.  Clonidine is a drug used to treat attention deficit hyperactivity 

disorder (ADHD) patients. The second study deals with characterizing the neural 

circuitry involved in modulating the blood pressure, the nucleus tractus solitarius (NTS). 

 

 (ii) Systems physiology modeling for human thermal system, which represents a ‘higher 

level’ model, again with multiple inputs and outputs. 

Example Case II –human thermal physiology modeling to better understand human 

thermal responses under transient environmental conditions and to develop automatic 

thermal control for astronauts during extra-vehicular activity (EVA). 

All mathematical models considered for these systems are developed using nonlinear 

differential equations.   

 

 The two real-world example cases mentioned above are multi-input multi-output 

(MIMO), large dimensional, have significant nonlinearities and uncertainties (parametric 

uncertainties and unknown dynamics). There are no good models presently available for 

understanding how they work.  The difference between two example cases is their scale 

and complexity.  Example Case 1 systems are modeled at the cellular level, while 

Example Case 2 is modeled at the systems level.    Both these example cases are 

described in detail next, followed by the objectives of the research. 
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1.1 Example Cases: 

Two real world example cases have been considered to illustrate the proposed modeling 

and analysis tools: 

1.1.1  Example Case I −− Cellular level Modeling to study mechanism of action of 

clonidine 

 

Figure 1:  Hippocampal pyramidal cell.  

 

 An understanding of information processing at the level of individual nerve cells (e.g. 

of a hippocampal cell in Figure 1) requires detailed information about interactions 

between the anatomical structure, physiological properties, and synaptic inputs.  

Compartmental models have been used to explore ideas about current flows, voltage 

perturbations, and input-output relations, for cells which can be described as a 

capacitance with various variable resistances as will be explained shortly.   In 

compartmental modeling, a cell is divided into sufficiently small compartments. One 

makes a negligibly small error by assuming that each compartment is isopotential and 
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spatially uniform in its properties. Non-uniformity in physical properties and differences 

in voltage occur between compartments rather than within them.  

 Throughout the cell, from an engineer’s point of view, there are passive channels that 

remain partly open all the time, leading to a leakage resistance.  An insulating cell 

membrane separates the conductive cytoplasm inside the cell from the extra cellular 

environment outside, giving rise to a membrane capacitance.  As the cytoplasm has some 

resistance, there is an axial resistance along the dendrites and axon. To an engineer, a 

section of dendrite acts like a leaky cylindrical capacitor, coupled to neighboring sections 

with resistances. 

 If the goal is to understand the way that individual neurons "compute", rather than to 

implement some abstract model of "neural computation", one has to necessarily 

understand the method by which the dendritic structure processes its many inputs.  After 

achieving this understanding with a structurally realistic model it might be possible to 

produce a simpler "ball and stick" model (Figure 2)  that will function equivalently in a 

large network model. If one ultimately wants a simple, computationally efficient neuron 

model that can be used in simulations of very large neuronal networks, one should 

perform a model order reduction with careful consideration of the dynamics.    
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. 

Figure 2:  A hyppocampal pyramidal cell and a simplified model with a lumped 

parameter model in which the neuron is divided into a finite number of compartments 

containing resistances, capacitances and batteries to represent ionic equilibrium 

potentials. 

 

Figure 3: A computational model of a Purkinje cell from the cerebellum made with 

GENESIS by De Schutter and Bower. It has 4550 comparments and 8021 active channels 
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Figure 4:  Equivalent circuit for a compartmental model 

  

 Figure 4 shows how a cell can be modeled as an equivalent circuit.  In this diagram 

Vm represents the membrane potential at a point inside the compartment, relative to the 

"ground" symbol outside the cell. The membrane capacitance Cm can be charged or 

discharged as current flows into or out of the compartment, changing the value of Vm.  

This current can come from adjacent compartments, from the passage of ions through ion 

channels, or from a current ‘injected’ through an external probe as in electrophysiology 

experiments.  Adjacent compartments have membrane potentials Vm' and Vm'', and the 

difference in potential across the axial resistances Ra and Ra' can cause current to enter or 

leave the compartment.  The "leakage resistance" Rm and its associated equilibrium 

potential Em represent the passive channels, and the resistor with the arrow through it 

represents one of the possible variable conductances that are specific to a particular ion or 

combination of ions.  By convention, these are represented by a conductance Gk, rather 

than a resistance, 1/Gk.  Each one of these conductances has an associated equilibrium 

potential represented by the voltage Ek.  The equilibrium potential (reversal potential) is 

the value of Vm at which there is no net flow of the ion through the conductance.  Most 

neural simulation packages provide a way to calculate these from the Nernst equation [4].  

Typically, there will be several of these variable resistances, with different conductances 
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and equilibrium potentials, corresponding to the different types of channels in the 

compartment.  For example, the area near the region of the soma called the "axon 

hillock" may contain voltage dependent sodium and potassium channels, and regions in 

the dendrites are likely to contain channels that are chemically activated from synaptic 

connections.  The index k is being used here to represent one of these various types of 

conductances.   

 A model is particularly valuable if it succeeds in reproducing, or predicting, behaviors 

in addition to those it was originally constructed to replicate [2].  For example the 

Hodgkin-Huxley model of voltage-gated currents was constructed to reproduce the 

properties of those currents as observed in experiments with each current isolated.  That 

the model would, in addition, succeed in simulating an action potential was not evident a 

priori, and was of great significance. 

 Using the compartmental modeling approach, a single cell model along with a 

GABAergic interneuron has been developed to understand the effects of alpha2 agonist 

clonidine on working memory and ADHD.   The model thus has applications in the area 

of drug discovery, in addition to providing a better understanding of the functioning of 

brain circuits for this disorder.  This is collaborative project with Antonieta Lavin, MD, 

Ph.D., of the Medical University of South Carolina, Charleston, SC.  In the other study, 

we develop both single cell and network models for baroreceptor and NTS cells to better 

characterize the functional circuitry involved in modulating the signals involved in the 

control of blood pressure. 
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1.1.2  Example Case II −− Modeling Human Thermal Physiology     

 

Figure 5:  Human Thermal Model in MALAB/SIMULINK software for Space and 

General Application 
 

 Example Case II focuses on mathematical thermal physiology models of the entire 

human body, statistical models using artificial neural networks (ANN), belonging to the 

category of black box models), and the combined system of both models to enhance the 

limitations of the individual models.  

 MU 2-D Man is a human thermal model developed by our group at the University of 

Missouri (MU).  The model has been developed for designing an automatic thermal 

comfort control strategy for NASA astronaut space suits and for the US Air Force 

warfighters in chemo-bio suits.  It is a general purpose model and can be used to predict 

thermal responses of human beings under transient environmental conditions.  It has two 

main components, one being the passive thermal system including the solid tissue 
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structure and circulatory system and the other being the active thermal system including 

the thermoregulation mechanisms. 

Two statistical models using ANN have also been developed for the US Army and the 

US Air Force to predict individual human thermal responses under transient 

environmental conditions. 

1.2  Objectives 

 The objectives of the dissertation are to study accurate modeling and analysis 

techniques for two classes of bio-systems: dynamics or brain circuits (single cell and 

network levels – Part I) for a psychiatric disorder, and human thermal system dynamics 

for heat stress tolerance and comfort control (Part II). 
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PART I  CELLULAR LEVEL MODELING 

(i) develop single cell and network modeling techniques including the various channels 

and afferent/efferent connections, and compare with experimental data from co-advisor 

at Medical University of South Carolina, Charleston, SC.  (Chapters 2)   

Details of  Chapter 2:  The executive function deficits observed in Attention Deficit 

Hyperactivity Disorder (ADHD) include short attention span, perseverance, impulse 

control, self-monitoring and working memory (WM), all attributed to the dorso-lateral 

prefrontal cortex (DLPFC).  Increasing evidence indicates a central role of dysfunctional 

catecholaminergic systems in PFC in promoting the observed deficits. To study the 

mechanism of action of clonidine, an alpha 2 agonist used clinically to treat ADHD, a 

computational model of a single PFC pyramidal cell and a network model has been 

developed.  A single, fast-acting GABAergic interneuron is also modeled to provide 

inhibition for the pyramidal cell in the form of negative feedback.  

Details of  Chapter 3:  Cardiovascular homeostasis involves the complex interaction 

among key organs (ie. heart, blood vessels, kidney) which are under the control of 

autonomic circuits in the brain. Recent findings have indicated that alterations in 

autonomic brainstem circuits contribute to the development of cardiovascular disease, 

including hypertension and congestive heart failure. A better understanding of how the 

brain processes neural signals may provide new avenues for the therapeutic treatment of 

both neurological disorders, such as Alzhiemers disease, as well as cardiovascular 

diseases which impacts millions of Americans annually. The overall objective of this 

interdisciplinary project is to develop a predictive model of the arterial baroreceptor 
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reflex, and to identify the precise mechanisms underlying “information transfer” by the 

autonomic barosensitive circuit, including pathology leading to these disorders. Here we 

intend to reproduce the behavior of individual baroreceptors and nucleus tractus solitarii 

(NTS) neurons and understand effect of potassium channels.  

The behavior of individual baroreceptors and nucleus tractus solitari (NTS) neurons is 

studied to understand their role in the autonomic circuit controlling systemic blood 

pressure.  The electrical properties of these cells are characterized with particular focus 

on the role of potassium channels in modulating membrane potential. The computational 

model predictions matched experimental membrane potential traces for such cells 

reported in the literature 

Details of  Chapter 4: The network model is used to identify whether an alteration in 

GABAergic transmission in the NTS can mimic the reduction in baroreflex gain reported 

in hypertension. 

We used the network based model to manipulate network architecture in such a manner 

as to predict the input-output characteristics of the NTS circuit. Baroreceptor afferent 

signals to the NTS, as well as output signals from the NTS, are pulsatile in nature. 

However, the discharge patterns of baosensitive NTS network neurons are generally not 

pulse-modulated. We have used our newly developed model to provide a working 

framework to explain this phenomenon. 
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PART II  SYSTEMS LEVEL MODELING 

 As mentioned earlier, Part II focuses on systems level physiology using the human 

thermal system dynamics as the example case, representing a higher level, ‘systems level’ 

model, again with multiple inputs and outputs.  Human thermal physiology modeling is 

important to better understand human thermal responses under transient environmental 

conditions, which will aid in the development of automatic thermal control for astronauts 

during extra-vehicular activity (EVA), and in characterizing heat stress tolerance times 

for war-fighters in extreme conditions (cold to desert) in chem-bio suits.  A specific 

control technique, model predictive control is also investigated  for EVA thermal comfort, 

is then proposed.  The specific objectives for this part are listed below:  

(ii)  Develop techniques to model and characterize the role of various subsystems and 

quantify the uncertainties, in a human thermal system, to capture inter-subject variations, 

with the objective of better understanding variations in nominal (NASA astronauts) and 

extreme (warfighters and astronauts) among subjects.  (Chapters 5-6)  

Details of Chapter 5:  The effect of individual differences on thermal stress response for 

semi-nude supine human subjects in transient environments is studied using an 

experimental data set.  Two transient climatic parameters and seven individual 

characteristics are used as inputs to predict three thermal responses using a novel 

transient computational model.  The model is developed using a neural network after 

ensuring generalization and also checking with results reported in the literature for 

predictions.  A methodology is then proposed to identify the relative importance of the 

individual parameters and of environmental conditions on thermal stress, using a 

sensitivity analysis.  
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Details of Chapter 6:  A new human thermal model has been developed that accounts for 

asymmetric environments and includes extremities.  The model incorporates 2-

dimensional (radial and circumferential) heat transfer along with arterial and venous 

countercurrent blood flow.  To this model we add models for digits to predict heat 

transfer through toe and fingertip via arteriovenous anastomoses (AVAs) mechanisms, all 

of which are important in extremity discomfort. 

Appendices 1-3 include other relevant material, including listing of the software code 

developed as part of this dissertation. 

 

OTHER STUDIES:  The author was also involved in other studies which are not included 

in this dissertation. One of these involved mathematical modeling of optimal triage in 

pediatric trauma care using advanced modeling techniques, which to date has resulted  in 

two journal papers listed below: 

• Burd, R. S., Jang, T., and Nair, S., “Evaluation of the relationship between mechanism of 

injury and outcome in pediatric trauma,” The Journal of Trauma (accepted for publication). 

 

• Burd, R. S., Jang, T. S., Nair, S. S., 2006, “Predicting hospital mortality among injured 

children using a national trauma database,” Journal of Trauma, 60:792-801. 

 

 

On the experimental side, he was a key member in a large scale human thermal 

experimental study involving 7 male and 7 female subjects for a US Air Force project.  

Using the data, he was the lead person for the development of a computer model to predict 

thermal responses in extreme conditions.  All these have not been discussed in the 

dissertation, but mentioned here since it was performed during the author’s Ph.D. program 

at MU. 
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                                          PART I 

                    CELLULAR LEVEL MODELING 

      Computational models provide an effective avenue to test hypotheses regarding 

mechanisms that underlie a system’s behavior with applicability to the entire 

neuroscience spectrum including molecular, cellular, systems, and behavior levels. An 

improved understanding of the functional or physiological system/organ, organization 

typically requires connection of multiple levels, something that can be facilitated by 

computational models (Koch and Segev 2001,Terman et al. 2002).  Koch and Segev 

(2001) predict that laboratories and researchers will rely on models and modeling 

software to check the significance and accuracy of their data, and that these models will 

enhance collaboration and communication within neuroscience.   

 PART I consists of three chapters focused at computational neuroscience models at 

cellular level, each written in the form of a journal paper. The objectives for this part are 

to develop accurate modeling and analysis techniques for the dynamics of single cell and 

networks of mammalian neurons for two different applications with collaborators who 

specialize in wet lab neuroscience experiments. The first application is to characterize the 

mechanism of action of a drug and the second is to characterize barosensitive circuits 

from a functional viewpoint. The models developed can be used to check prevalent ideas 

and competing theories, identify unknown relationships, i.e., to delineate ‘gaps’ in 

knowledge, and generate new possibilities.  

 In Chapter 2, a computational model of a PFC pyramidal cell and an interneuron is 

developed to study the mechanism of action of clonidine, an alpha 2 agonist, used 

clinically to treat patients with ADHD. Two specific hypotheses are tested and model 
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predictions are compared to experimental data from co-advisor Dr. Lavin of Medical 

University of South Carolina, Charleston, SC.  Also, a novel methodology is reported to 

characterize the effects of IPSCs on PFC pyramidal cells. 

      In Chapter 3, single cell models of baroreceptor and NTS cells are developed with the 

objective of reproducing the behavior of individual baroreceptor cells and nucleus tractus 

solitari (NTS) cells and understand the effect of potassium channels. A and C –type 

baroreceptor models are used to develop a predictive model of the arterial baroreceptor 

reflex, and to identify the precise mechanisms underlying “information transfer” by the 

autonomic barosensitive circuit, including pathology in the circuits leading to conditions 

such as cardiovascular disease.  

 Extending the study in Chapter 3, Chapter 4 focuses on a network model to identify 

whether an alteration in GABAergic transmission in the NTS can mimic the reduction in 

baroreflex gain reported in hypertension. The model developed provides a working 

framework to explain these phenomena and study emergent properties of such 

computational circuits.   

 As mentioned earlier, each chapter is in the form of a self-contained journal paper. 
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CHAPTER2 

MODULATION OF PFC PYRAMIDAL CELL EXCITABILITY BY CLONIDINE 

- A computational modeling study 

 

Abstract 

     In vitro data have shown that application of clonidine, an alpha-2 agonist, to cortical slices 

increases pyramidal cell excitability (Andrews et al. 2004). We propose two hypotheses, the 

first that GABA-mediated conductances underlie the increases in excitability elicited by 

activation of alpha 2 receptors, and the second that the closure of HCN channels results in the 

increased excitability. In order to test these hypotheses we developed a computational model 

consisting of a pyramidal cell connected to a fast spiking interneuron. 

     Model predictions show that the modulation of Ca 
2+ 

and K 
+ 

channels, including Kir, by 

clonidine has little effect on the excitability of the pyramidal cell. The model also shows that 

activation of alpha-2 receptors can increase excitability of the pyramidal cell by decreasing 

the GABAergic inhibitory input from the interneuron. This theoretical result is consistent 

with experimental findings in slices (Andrews et al. 2004).  However, GABAergic synaptic 

inputs to pyramidal cells are heterogeneous, thus, the underlying mechanisms (i.e., types of 

interneuron, subunit receptor composition, plasticity, desensitization, modulation, occupancy, 

and transmitter concentration and uptake) responsible for the change are not clear (Aradi et al. 

2002).   In a systematic study, we show how these mechanisms could lead to increased 

variance in the conductance or decay constant of IPSCs that could, in turn, modulate the 

firing rate of the pyramidal cell.  Based on this analysis we develop regression models 

linking firing rate of pyramidal cells to IPSC characteristics such as mean IPSC amplitude, 
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charge transfer and variance. The simulation also showed that a closure of HCN channels 

could result in the observed increase in intrinsic excitability, confirming the second 

hypothesis. The actual mechanism could be a combination of the two effects, and possibly 

involve other channels also. 

Keywords:  Computational modeling, α-2NAR, norepinephrine, neuromodulators, IPSC, heterogeneity, PFC, ADHD 

 

 

INTRODUCTION   

      The prefrontal cortex (PFC) is critically involved in cognitive processes underlying 

working memory (WM), attention, and inhibition of responses to non-relevant stimuli 

(Fuster, 2000; Goldman-Rakic, 1996). In this context, catecholaminergic inputs have proven 

to be critical for the regulation of these cognitive processes (Levitt et al., 1984; Lewis et al., 

1987; Lewis and Morrison, 1989; Porrino and Goldman-Rakic, 1982).  Indeed, dopamine 

(DA) and norepinephrine (NE) are involved in aspects of executive function (selective 

attention, response selection/control), as well as arousal (NE) that contribute to the efficiency 

of information processing. Numerous studies have focused on the role of DA in the PFC 

(Arnsten et al., 1994, 1995; Castner et al., 2000; Durstewitz et al., 1999; Gao et al., 2001; 

Gao and Goldman-Rakic, 2003; Goldman-Rakic, 1998; Goldman-Rakic et al., 2000; Lavin 

and Grace, 2001; Lavin et al., 2005;  Lewis and O’Donnell, 2000; Murphy et al., 1996; 

Sawaguchi et al., 1990; Williams and Goldman-Rakic, 1995; Yang and Seamans, 1996). 

However, DA is not the only catecholamine modulating PFC activity; the noradrenergic 

projection arising from the locus coeruleus (LC) also plays a very important role in the 

modulation of cortical activity (Berridge, et al., 1993; Coull, 1994). Aston-Jones and Bloom 

(1981a, b) showed that the NE neurons located in LC and terminating in the PFC are 
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important in mediating selective and sustained attention and vigilance. Moreover, stimulation 

of the LC increases the discrimination of incoming external stimuli to the PFC by reducing 

the background noise, therefore enhancing the cortical signal-to-noise ratio (Aston-Jones et 

al., 1985; Berridge and Waterhouse, 2003; Foote et al., 1980, 1983; Waterhouse et al., 1980; 

Robbins, 2000). More recently, several studies have shown that adrenergic agonists, 

especially specific alpha-2 agonists, are very effective in enhancing WM and attention. 

Indeed, administration of alpha-2 agonists can ameliorate some of the negative effects on 

cognition produced by NE depletion due to aging in monkeys (Arnsten and Goldman-Rakic, 

1985; Arnsten et al., 1988; Arnsten and Leslie, 1991) and improve performance in WM-

related tasks in young monkeys with NE depletion (Arnsten and Goldman-Rakic, 1985; Cai 

et al., 1993). Moreover, the therapeutic effects of the specific alpha-2 agonists, clonidine and 

guanfacine in treating disorders related to dysfunction of WM in patients have been proved 

(Fields et al., 1988; Mair and McEntree 1986, 1988; Hunt et al., 1985, 1990, 1995).  

  As a first step to further the understanding of the mechanisms involved in the 

catecholaminergic modulation of cortical activity, we have developed a computational 

model consisting of a single PFC pyramidal neuron, with a fast-acting GABAergic 

interneuron providing inhibition for the pyramidal cell in the form of negative feedback. 

Our goal is to use this model to predict the effects of activation of NE receptors on the 

cortical network.  In particular, we will investigate two hypotheses about how clonidine 

would increase the intrinsic excitability of PFC pyramidal cells, the first hypothesis 

involving GABA IPSCs and the second hypothesis involving hyperpolarization-activated 

cation (HCN) channels.  
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MATERIALS AND METHODS 

Electrophysiological experiments   

Slice preparation and aCSF solutions:  Infant, male Sprague-Dawley rats (P15-25) were 

deeply anesthetized with chloral hydrate (400 mg/kg ip) and rapidly decapitated.   

Surgical removal of the brain was quickly accomplished with the brain submerged in a 

near-frozen sucrose solution (in mM: sucrose, 200; KCl, 1.9; Na2HPO4, 1.2; NaHCO3, 33; 

MgCl2, 6; CaCl2, 0.5; dextrose, 10; ascorbic acid, 0.4) aerated with a mixture of 

5%CO2/95%O2. Coronal slices (300-350µm) were made to include infralimbic and 

prelimbic cortices using a Vibratome (Leica, VT1000).  Slices were incubated for a 

minimum of 1h in a separate solution (containing in mM: NaCl 125; KCl 2.5; NaH2PO4, 

1.25; NaHCO3, 25; MgCl2, 4; CaCl2, 1; sucrose, 15; glucose 10; ascorbic acid, 0.4; 

osmolarity: 312 mOsmols) which was continuously aerated with 5%CO2/95%O2 mixture 

at 23-25°C. During recording, oxygenated aCSF (in mM: NaCl 125; KCl 2.5; NaHCO3, 

25; MgCl2, 1.3; CaCl2, 2; glucose 10; ascorbic acid, 0.4, osmolarity: 299 mOsmols) was 

perfused into the recording chamber at a rate of 1ml/min.   

 Electrophysiological Recording and Stimulation Protocol:  Deep layer pyramidal 

neurons (layers V-VI) were targeted for recording by using a Leica DMLFSA 

microscope, equipped with a Nomarski differential interference contrast optics, infrared 

videoimaging
 
camera (C2400, Hamamatsu) and fitted with an 40× water immersion 

objective. Whole-cell current-clamp recordings of targeted cells were made using 

microelectrodes (3-7 MOhms) pulled with an horizontal Flamming-Brown puller (model 

P97) from glass capillary tubing (Corming 7056; OD 1.5mm; ID 1.1mm) and filled with 

internal solution (in mM:  K-Gluconate 125; KCl 20; HEPES 10; EGTA 1, MgCl2 2, 

ATP 4.0; GTP 0.3; pH 7.2-7.4, osmolarity: 298 mOsmols).  The signal was amplified 
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using an AxoPatch 200B (Axon Instruments) and stored for off-line analysis using a 

custom-made, LabView based program. 

 In current-clamp mode, rectangular depolarizing pulses (25-300 pA, 1 sec duration) 

were delivered every 30 seconds (intrinsic stimulation). The intensity of current 

stimulation was adjusted to elicit an average of 3-4 action potentials. Once a minimum 5 

minute stable baseline was established the drug was applied followed by a 5 min, non-

recording perfusion period during which the drug was allowed to diffuse into the slice.  

Stimulation protocols were then reinstituted.  The baseline holding membrane potential 

and the intensity of stimulating current were maintained throughout the experiment.  

 Stimulation (synaptic stimulation) was delivered via a concentric bipolar stimulating 

electrode placed in layer II/III, located approximately 300-500 µm diagonal from the 

recording cell. The duration of the stimulation pulse was 0.12 msec and the frequency 

was 2 Hz. In some experiments, stimulation intensity was adjusted to ½ of the ePSP 

maximum amplitude and that intensity was maintained throughout the experiment. The 

intensity of stimulation ranged from 0.3 to 1 mA.   

 Morphological examination:  A subset of pyramidal cells were filled with 0.3% 

biocytin and fixed in a 4% paraformaldehyde solution for post-hoc immunohistochemical 

staining and morphological identification.          

 Drugs:  All drugs were aliquoted and stored at -20 °C. Drugs were dissolved into the 

recording aCSF and bath-applied at a constant rate of 1ml/1min.  The depth of the 

recorded cell in the slice varied between experiments thus altering the time of initial drug 

effect.  All drugs used were Sigma products and were applied at 10 µM unless stated 

otherwise:  
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 Statistics:  The average number of spikes/pulse represents the average among all cells 

with each cell’s mean being derived from results over time for that cell.  All data are 

presented as X ± SE. For comparisons between two groups (e.g., control/drug) a paired t-

test was used with a significance level of p<0.05 unless otherwise stated.  For statistical 

analysis of 3 groups (e.g., control/antagonist/drug or drug/response curve) a one-way 

ANOVA with Fisher post-hoc test were used. The significance level was p<0.05 unless 

stated otherwise.  The changes in excitability were evaluated individually for each cell 

using a paired Student’s t-test (p<0.05 unless stated).  

 

Development of the computational model 

 The computational model consists of a PFC pyramidal cell and an interneuron with the 

various conductances, and Ca
2+

 pools. These and the specifics of the ionic and synaptic 

currents are described next. We propose a mechanism to explain the transient 

hyperpolarization seen in the membrane upon immediate application of clonidine. The two 

hypotheses for modulation of intrinsic excitability by clonidine are then discussed. 

PFC Pyramidal and fast-spiking GABAergic interneuron model.  Multi-compartmental 

models were developed for a PFC pyramidal cell and a fast-spiking GABAergic interneuron. 

Simulations were run on a PC, using the GENESIS (GEneral NEural SImulation System, 

Bower and Beeman 2003) software package, with an integration time step dt=0.01 ms. The 

passive parameters for both pyramidal cell and a basket-type fast spiking Gabaergic 

interneuron were determined from published values.    

 The specific membrane resistance (Rm) of the pyramidal model was adjusted to 64 

Kohm-cm
2
 to reproduce the cell firing rate at a given injected current (15 pA) for an in vitro 

case (Andrews et al. 2004). The input resistance is 205 Mohms for control and 274 Mohms 
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during alpha 2 agonist activation which is within the range of recordings from pyramidal cell 

in vitro (319 ± 149 for control and 365.3 ± 219 Mohms during alpha 2 agonist activation). 

Ionic currents.  The biophysical models for currents were taken from the following sources: 

leakage current ( LI ), a fast, spike-generating Na
+
 current ( NaI ), the delayed rectifier 

potassium current ( DRI ), and persistent current ( NaPI ) were from Durstewitz et al. (2000); the 

high-voltage activated Ca
2+

 current ( HVAI ) from Brown et al. (1993); slow inactivating K 

current ( KSI ) and a fast BK Ca and voltage-dependent C-type K current ( CI ) were from 

Wang (1993); AHPI  from Warman et al. (1994); IRI  from Niesenbaum and Wilson (1995) 

and modified by the authors to account for the intracellular Ca
2+

 concentration; and the Ca
2+

 

dependent cationic current ( CATI ) from Kang et al.  The ionic currents are summarized 

below: 

)( LLL EVgI −=                                                                      (1-1) 

)(3
NaNaNa EVhmgI −=                                                          (1-2) 

)(4
KDRDR EVngI −=                                                              (1-3) 

)( KKSKS EVabgI −=                                                               (1-4) 

)())5.6/)9.111exp((1( 1
KIRIR EVVgI −++=

−

                      (1-5)  

)(
2

CaHVAHVA EVvugI −=                                            (1-6) 

)(
2

KCC EVcgI −=                                                                   (1-7) 

)( KAHPAHP EVqgI −=                                                          (1-8) 

)( HHH EVhgI −=                                                                              (1-9) 

)( catcatcatcat EVmgI −=                                                        (1-10) 

 

where V can be sV  or dV ,  the reversal potentials for Na
+
 and K

+
 are 55=NaE mV and Ek = 

25 x ln([K
+
]o/[K

+
]i) where [K

+
]o=3.82 mmol/l and [K

+
]i=140mmol/l (Durstewitz et al. 2000). 

EH was set at – 80 while Ecat was set at -42 mV for the reversal potential of mixed cationic 

channel and the cationic channel respectively. Ecat was set at -42 mV for the reversal 
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potential of the cationic channel.  The kinetic equation for each of the gating variables m, h, 

n, a, b, u, v, c and q takes the form 

 
)][,(

)][,(
2

2

ix

i

CaV

xCaVx

dt

dx
+

+

∞
−

=

τ

                                                         (2) 

where iCa ][ 2+  is the intracellular Ca
2+

 concentration, 
∞

x  is the voltage- (or Ca
2+

-) dependent 

steady state and xτ is a voltage- (or Ca
2+

-) dependent time constant. 
∞

x  and xτ  are given by 

the rate functions, xα  and xβ , for the gating variables m, h, n and r   

)( xxxx βαα +=
∞

                                                            (3) 

)(1 xxx βατ +=                                                                     (4) 

For the gating variables c and q,  
∞

x  is given by Eq (3) and xτ  is either a constant or a 

function of xα  and xβ  in a form different from Eq (4).  For the remaining gating variables a, 

b, u, and v, 
∞

x  and xτ  are directly given.  All the rate functions, steady state 
∞

x  and time 

constant xτ  are listed in Table 1.  

Fast-spiking (FS) GABAergic interneurons were modeled using two compartments based 

on the one in Durstewitz et al. (2000). FS interneurons provide most of the inhibition to the 

PFC cell.  A fast, spike-generating Na
+
 current ( NaI ), the delayed rectifier potassium current 

( DRI ), the high-voltage activated Ca
2+

 current ( HVAI ), a fast BK Ca
2+

 and voltage-dependent 

C-type K current ( CI ), AHPI , IRI  included in the somatic and dendritic compartment.  The 

kinetics of Na
+
 and K

+
  channels differs from those of the pyramidal neuron so as to 

reproduce the much shorter spike duration in interneurons as compared to the pyramidal cells. 

All conductance kinetics are summarized in Table 1. 

 

Modeling the IRI current.  The model for the inward rectifying potassium current, IRI ,  was 

modified from the one in Niesenbaum and Wilson (1995) to account for its dependency on 
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intracellular and extracellular calcium concentration, and placed both on the dendrites and 

soma of pyramidal neuron and interneuron (Takigawa and Alzheimer 1999, Kitano et al. 

2002). IRI  activates at hyperplarization around and below a potassium equilibrium potential 

Ek=-80 mV. It contributes to both depolarization and repolarization of the action potential 

and is significant in the maintenance of the resting membrane potential by opposing the 

depolarizing effect of the leakage current ( LI ) at low voltage (Torres et al. 2004). The 

modified kinetics reflect dependency of IRI on intercellular calcium concentration (Grabov et. 

al., 1999).  

))]([)(]([))/exp((1/(1( 2

_ oKmicirhmPeakIRIR KEVCaEEVGI
++

−−+= ζ               (5) 

where Ecir characterizes the curvature of the I-V relation. Ecir is a slope factor and was held 

constant at 10mV. Vm is the membrane potential, Eh is the half-activation voltage and was 

equal to Ek-15 mV.  Ek = 25 x ln([K
+
]o/[K

+
]i) where [K

+
]o=3.82 mmol/l and [K

+
]i=140mmol/l 

(Durstewitz et al. 2000).  A shift in Ek shift from -70 mV to -110 mV leads to a 

corresponding shift in the hyperpolarizing direction. Ecir, which determines the degree of 

slope, the curvature of the I-V relation, is set to 10. The sigmoid function )]([
2

iCa
+

ζ  which 

represents a steep dependence curve on [Ca
2+

]i  above resting [Ca
2+

]i  levels (Grabov and 

Blatt 1999) is as follows,  

)]([
2

iCa
+

ζ = [1/(1+exp(([Ca
2+

]i-Cah)/Cair))                                            (6) 

where [Ca
2+

]i  is set at 50 nmol initially (Durstewitz 2000).  In simulation runs, [Ca
2+

]i varied 

from 50 to 100 nmol for soma, 50 to 210 nmol for both proximal and basal dendrites and 50 

to 81 nmol for distal dendrites. Cah  is the value at which G/Gmax = ½ and its value was set at 

0.06. Cair was set at 0. 002 and  PeakIRG _ at 0.4 mS (Kitano et al. 2002).  The IRI  current was 
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open at resting Vm and increased during injection of a depolarizing current. As [Ca
2+

]i  was 

increased Kir deactivated because the inactivation curve decreased significantly as [Ca
2+

]i  

moved closer to inactivation threshold.  The current IRI is not involved in modulating 

pyramidal cell excitability during the action potential period since it is inactivated but it is 

active before and after activation potential period and contributes to maintaining the resting 

potential around Ek. 

Modeling synaptic currents: EPSCs and IPSC 

 AMPA-like synaptic and NMDA currents were modeled by a double exponential 

function as in Durstwitz (2000).  Random background synaptic activity is provided to 

GABAergic cells.  IPSC due to GABA is modeled as 

 ),)((),( ,gabaIPSCIPSC EVtgtVI −=                                                               (7) 

where the time course of the synaptic conductance is: 

))/exp()/))(exp(/(()(
max, risedecaydecayriseIPSCIPSC ttgAtg ττττ −−−−=   for ,21 ττ >   (8) 

where the normalization constant A is chosen so that gsyn reaches a maximum value of 

max,IPSCg , 

))/()//((1 )/()/( risedecayrise

decayrise

risedecaydecay

decayriseA
ττττττ

ττττ
−−

−−=                   (9) 

The parameters max,IPSCg  , τdecay, and Egaba were varied to study their effects on variances in 

IPSC phase and frequency.  Background excitatory synaptic inputs were placed on all 

dendritic compartments of pyramidal cells and interneurons, while inhibitory inputs are 

limited to the soma where cortical pyramidal cells receive most of their inhibitory input.  

 

Calcium Dynamics.  Based on the description in Warman et al. (1994), two different Ca
2+

 

pools are modeled, one mediating the activation of CI  ([Ca
2+

]i1) and the other mediating the 

activation of AHPI  ([Ca
2+

]i2).  This permits CI  to deactivate rapidly following an action 
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potential to generate the fast AHP, while AHPI  can activate gradually after each spike to 

produce the slow AHP (Warman et al. 1994).  Extracellular calcium is assumed to be 

constant ( 2][ 2
=

+

oCa  mmol/l), while intracellular calcium in the dendrite compartment is 

regulated by a simple first-order differential equation of the form (Warman et al. 1994) 

 

Caj

ijrestCa
j

ij CaCa

wzFA

I
f

dt

Cad

τ

][][][ 222 +++

−

+−=                              (10) 

where 1=j or 2 to represent the first or second calcium pool, jf is the fraction of the Ca
2+

 

influx (f1 = 0.7; f1 = 0.024), w is the shell thickness (1µm), A is the dendritic area, F is the 

Faraday constant, Cajτ is the Ca
2+

 removal rate of the jth pool ( 11 =Caτ ms and  

5002 =Caτ ms).  ).  In our study HVAI  is the total CA
2+

 current for the soma and dendrite. The 

resting Ca
2+

 concentration is 50][ 2
=

+

restCa  nmol/l, which is the same as the initial 

concentration (Durstewitz et al. 2000).  In Eq (3), the unit of the Ca
2+

 concentration is µm/l.  

In Eq. (2-8), the reversal potential of Ca
2+

 current is determined by the Nernst equation 

 )]/[]ln([5.12 1
22

ioCa CaCaE
++

×=                                                            (11)                                           

NaI , DRI , CATI , NaPI , HVAI  , KSI , CI , AHPI ,and LeakI  were placed in soma, proximal, basal, and 

distal dendrites of the pyramidal cell and IRI  was only placed in proximal and distal  

dendrites of the pyramidal cell. NaI , DRI , HVAI , CI , IRI , and LeakI  were placed on both soma 

and dendrite compartment of the interneuron. 
AGABAI placement was limited to the soma of the 

pyramidal and  interneuron while AMPAI  and NMDAI were placed in all dendrites compartments 

of the pyramidal cell and interneuron (Durstweitz et al. 2000). 

Experiments in the Lavin lab (REF) showed that the frequency of sIPSCs measured in the 

PFC cell decreased with the application of clonidine. This provides the basis for our first 
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hypothesis that GABA-mediated conductances underlie the increases in excitability of the 

PFC cell, i.e., GABA synaptic input to the pyramidal cell was decreased due to 

stimulation of alpha 2 NAR located in interneurons leading to decreased inhibition on the 

PFC cell.  

Spontaneous IPSCs reflect a scenario more analogous to basal conditions of inactivity.  It 

is important to note that sIPSCs are a mixture of quantal release of neurotransmitter 

(miniature IPSCs) and the neurotransmitter release from intrinsic spontaneous stimulation 

(in this case enhanced interneuron activation by increasing external K
+
 concentration). 

The latter form of release requires the influx of Ca
2+

, and clonidine, known to inhibit 

voltage-gated calcium channels, would be expected to cause a decrease in sIPSCs but its 

mechanism of action is not well understood presently.  

Modeling IPSC variations. Pyramidal neuron traces for control and clonidine cases were 

obtained and compared with experimental data, for the same depolarizing injection current of 

20 pA.  The IPSC maximum conductance was 2.4 nS and rise and decay times were 2.5 and 

10.5 ms respectively (Aradi et al. 2002). The maximum conductance of the Kir channel was 

set at 0.3 mS/cm
2
 for control and 0.4 mS/cm

2
 for the clonidine case (Wolf et al. 2005, Kitano 

et al. 2002) while for the calcium current IHVA it is 0.65 mS/cm
2
 for proximal and basal 

dendrites and 0.327 mS/cm
2
 for soma and distal dendrite. The increased conductance of Kir 

channels in the pyramidal cell due to the activation of clonidine caused an increased in 

hyperpolarized membrane potential by 5 mV compared to controls. The decreased high 

voltage activated channel, HVAI  conductance actually suppressed excitability leading to a 

decrease in the number of action potentials by 2 spikes, over control.  Therefore, without 

decreased GABAA synaptic inhibition on pyramidal cell, the activation by clonidine would 
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eventually hyperpolarize the both interneuron and the pyramidal cell through increased 

hyperpolarizing potassium and calcium channels. The decreased synaptic inhibition on 

pyramidal cell through GABAergic interneuron was simulated by decreasing the interneuron 

excitability or decreased GABA release to pyramidal cell assuming the release was activity-

dependent. Interneuron excitatory input through AMPA/NMDA was decreased and so was its 

GABA release. As a result, the alteration in IPSC is a key mechanism in modulating 

pyramidal cell excitability, which we consider as hypothesis 1.  To study this mechanism in 

the presence of considerable GABA synaptic diversity, we develop a systematic 

methodology in the next section for this hypothesis, by focusing on IPSC modulation of 

pyramidal cell excitability through GABAergic interneuron while maintaining the increase of 

Kir channels and IHVA channel at a low level. 

 

Modeling modulation of pyramidal cell firing rate by clonidine  via GABA mediated IPSCs – 

first hypothesis 

  Synaptic input diversity or heterogeneity in pyramidal cell and its mechanism are not 

well understood.  The activation of synaptic GABAA receptors produces an inhibitory 

postsynaptic current (IPSC) shaped by the properties and number of receptors and by the 

magnitude and duration of the GABA transient.  It is known that the number of synaptic 

GABAA receptors is subject to large alterations during neuronal plasticity and development 

(Fritschy et al. 2003). The factors underlying the diversity of inhibitory neurotransmission 

through GABAA receptors can be many including subunit composition which affect decay 

kinetics (Sieghart et al. 2002), localization, activation, number and phosphorylation states, 
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variance of GABA concentration in the synaptic cleft, and some of the presynaptic factors 

regulating GABA release (Mody et al. 2004). 

 At the level of the postsynaptic cells, the diversity of the presynaptic interneuronal 

populations is reflected as the heterogeneity in the synaptic GABAergic inputs, which can be 

detected electro physiologically as variances in the conductance, or decay of sIPSCs (Aradi 

et al. 2002). Using the computational model described earlier, a systematic study of the effect 

of GABA related IPSCs on the excitability of the cell is explored.  This is done in simulation 

with the IPSCs initiated by an interneuron which in turn was excited by random synaptic 

inputs as stated below.  This is based on the hypothesis that clonidine might modulate the 

pyramidal neuron excitability through GABAergic interneurons.  Decay time constants, peak 

GABA conductance, and synaptic input rate have been altered systematically.  

 

Modeling modulation of pyramidal cell firing rate by closure of HCN channels – second 

hypothesis 

 We also investigated a second hypothesis to explain the increase in excitability 

mediated by clonidine blocking hyperpolarization-activated/cyclic nucleotide gated 

cation (HCN) channels. These channels have the ability to generate rhythmic cellular 

activity known as h currents (Ih) and allow neuronal cells to be rhythmically active over 

precise intervals of time. As a result, they function as pacemakers. HCN channels 

regulate synaptic integration (Magee, 1999) and influence factors such as resting 

membrane potential, input resistance, and membrane time and length constants.  These 

channels are activated (opened) by hyperpolarizing currents and are deactivated (or 

closed) by depolarizing currents.  When activated, HCN channels decrease the efficacy of 
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synaptic inputs and dampen cellular response to inhibitory stimuli. Activation of cAMP 

serves to enhance the opening of the HCN channels (Ulens and Siegelbaum, 2003) on the 

dendritic spines. This contributes to the observed impairment of PFC function associated 

with the activation of the adenylyl cyclase-cAMP-PKA pathway.  In the PFC, HCN 

channels are co-localized with post-synaptic alpha 2A receptors on dendritic spine necks 

and spine heads. Alpha 2A receptor-activation-induced inhibition of adenylyl cyclase-

cAMP-protein kinase A (PKA) therefore, indirectly deactivates the HCN channels 

enhancing the ability of PFC to modulate inhibiting and interfering stimuli and, as a 

result, strengthening the main impulses. 

 Based on separate spikes/pulse experiments, following administration of IH blocker 

and then clonidine IH current was blocked. 

The signal to noise ratio was also increased due to the presence of Clonidine. 

The role of Kir channel remains same as its main role was to hyperpolarize the membrane 

potential initially. The hyperpolarization-activation cationic current, IH, was modeled by a 

continuous and bell-shaped function of membrane potential, with the slowest rate of 

activation (time constant around 1s) occurring at -80mV.  

The activation curve was represented by the following equation. 

 
( ) )exp1(1 )5.13/75( −

∞
+=

Vh                                                   (13) 

IH does not inactivate, even with prolonged (minutes) hyperpolaization (McCormick 1990, 

Hugenard 1992). For control case hmax was set at 20 nS well within the experimental range 

(15-30 nS; McCormick 1990) while with clonidine, hmax was set zero simulating the blocking 

of IH by the presence of clonidine. Our reversal potential was set at -67 mV lower than the 
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reported values which range form -24 to -50 mV (Halliwell and Adams 1982; Spain et al. 

1987; van Ginnken and Giles 1991) to account for net outward current during control case. 

 

RESULTS 

Input Resistance. The specific membrane resistance (Rm) and the axial membrane resistance 

of the pyramidal model were adjusted to 64 Kohm/cm
2
 and 1.8 Kohm-cm respectively to 

reproduce the cell firing rate at a given injected current (15~20pA) for an in vitro case 

(Andrews et al. 2004) for both hypotheses. The inwardly rectifying potassium current 

conductance and Gabaergic inhibitory synaptic conductance variations accounted for the 

significant change in input resistance of control and clonidine cases where it was 205 Mohms 

for control and 274 Mohms with clonidine which is within the range of recordings from 

pyramidal cell in vitro (319 ± 149 for control and 365.3 ± 219 Mohms after application of 

clonidine). See Figure 1.   

 

Transient depression in membrane potential with clonidine. The conventional Kir model 

(Niesenbaum and Wilson 1995) showed that an increase in Kir conductance totally or 

partially suppressed the pyramidal cell’s excitability failing to produce more spikes.  The 

conventional Kir model does not include dependency on [Ca
2+

]i but a recent study showed 

that Iir is strongly dependent on [Ca
2+

]i in inactivating Iir (Grabov et al. 1999). A steep 

dependence curve on [Ca
2+

]i above resting [Ca
2+

]i levels (left) and modified Kir channel 

considering [Ca
2+

]i  and membrane potential dependency were considered in the modified Kir 

model. This modified Kir model successfully reproduced then experimental data, showing 

the same transient depression in resting membrane potential of 5 mV with the application of 
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clonidine.  The next section considers the modulation of pyramidal cell firing rate by 

clonidine. 

Modulation of pyramidal cell firing rate by clonidine  via GABA-mediated IPSCs – first 

hypothesis 

 The GABA synaptic regulation was modeled as being dependent on interneuron activity 

so that each spike that the interneuron generates sends a signal to GABA channel to activate 

according to the kinetics described in Eq. (7).  This activation is modeled using NMDA and 

AMPA receptors.  Pyramidal cells excite interneurons, along with inputs from other regions, 

and since precise excitation profiles are difficult to determine, the study used a range of 

frequencies as input to the interneuron instead for varying peak GABA conductance and 

decay time systematically.  The interneuron receives this input through AMPA/NMDA 

channels.  At low frequencies, the interneuron was less excited and released relatively small 

amount of GABA transmitter to pyramidal cell. Its inhibitory effect on pyramidal cell 

resulted in increased spikes. We altered max,IPSCg  and decay time systematically and showed 

that same pc firing rate could be obtained with a different combination of max,IPSCg  and the 

decay time constants and the interneuron excitation.  With a max,IPSCg  and the decay time 

constant fixed at 6.4 nS and 2.5 ms, respectively and with the frequency range of 35 to 50 Hz 

to the interneuron for example, the pyramidal cell showed 3 to 4 spikes, and at higher 

frequencies, it showed lesser number of spikes as interneuron was excited and released more 

GABA to the pyramidal cell.  Larger events of IPSCs were clearly seen in pyramidal cells for 

control, but rarely seen during the activation of alpha-2 agonist shown in the histogram and 

cumulative probability plot in Fig. 2.   
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 The computational model shows that despite of the existence of diversity of GABAergic 

synaptic input and heterogeneity of interneuron types, IPSC characteristics such as a total 

charge transfer (area under the IPSC-time curve), mean IPSC amplitude, IPSC standard 

deviation among others could be used as an indicator of pyramidal cell firing rate. For 

instance, using a fixed max,IPSCg  value of 4.4 nS, different pyramidal firing rates ranging from 

0 to 7 action potentials were obtained as shown in Fig. 2 along with experimental results. Fig 

7 shows the IPSC histograms and cumulative probability plots.  In the case of the alpha 2 

agonist, lesser events of IPSC were seen yielding lower charge transfer and lower maximum 

IPSC amplitude, compared to the control case.  

 In Fig. 3, four different IPSC traces for different max,IPSCg values (with the same rise and 

decay time constants and an injection current of 15 pA) yield the same pyramidal cell firing 

rate of 4 action potentials (these are shown in Fig. 4) each in the duration shown. Table 2 

shows the IPSC characteristics including total charge transfer and interneuron firing rates for 

the four max,IPSCg values. Interestingly, a large total charge transfer or the area under the IPSC 

curve did not necessarily imply the largest inhibitory effect on pyramidal excitability. This 

observation was same with minimum IPSC amplitude. It seemed that pyramidal excitability 

was more of a combined effect of a total charge transfer, standard deviation for IPSC 

amplitudes and other possible factors. 

We also considered the case where the IPSCs were manipulated directly (without taking 

it as the output of the interneuron) to consider the trends involved, and found predictions 

similar to the ones discussed. These are shown in Figures 4 and 5.  As Fig. 4A shows, 

increasing synaptic input rate from 10 to 140 Hz in 14 steps resulted in an increased 

inhibitory effect on the pyramidal cell. In Fig. 4B, the decay time was varied from 1.5 ms to 
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146 ms while its rise time was kept constant. The synaptic input was kept at 100 Hz 

(indicated by the letter “B” in Fig. 4A).  A normalized charge transfer or normalized total 

area under the curve of IPSC for each pyramidal firing rate form Fig. 4A was calculated and 

shown in Fig. 4C. An approximate linear relationship can be observed in this particular case 

when mean IPSC conductance was increased gradually except when the pyramidal cell 

excitability is completely suppressed. The function increasing IPSC peak conductance 

( max,IPSCg ) was shown in Fig. 2D where synaptic input was kept at 30 Hz as indicated by the 

letter “D” in Fig. 4A. The cumulative plots of IPSC amplitudes obtained from Fig. 4A for 

different synaptic inputs are shown in Fig. 5. It was observed that the lower the synaptic 

input, the larger the slope of the curve in this particular case where synaptic input increased 

monotonically. 

These findings complement some of the results reported by Aradi and colleges (Aradi et 

al. 2002 and 2003) since both studies deal with the modulation of cell firing rates by 

GABAergic heterogeneity inputs. However, our study focuses on understanding IPSC 

characteristics as a result of the heterogeneous nature of the fast, GABAA, synaptic inputs.  

Multi-linear regression model for pyramidal cell firing rate.  We believed that after observing 

the simulation data the IPSC characteristics might determine pyramidal cell firing rate when 

the external injection current to pyramidal cell kept constant during the simulation period.   A 

multiple regression approach is used to determine the IPSC characteristics that could explain 

the variation in pyramidal cell excitability. The data was obtained from the simulation results 

of 58 different runs where GABA peak conductance ( max,IPSCg ) was varied from 0.8 to 12.4 

nS for each pyramidal cell firing rate value that ranged from 0 to 8 Hz. The pyramidal cell 

firing rate was then taken as the dependent variable in the analysis, with the independent 
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variables being the IPSC characteristics for one step period of depolarizing current (1000 ms 

in our study; 58 runs).  These independent variables were mean IPSC amplitude (MEANIPSC), 

standard deviation of IPSC (SDIPSC) , variance, and  the coefficient of variance of IPSC 

(CVIPSC =SD/Mean). The inter-correlation of all variables (17 variables including charge 

transfer-area under the IPSC curve, mean conductance of IPSC, standard deviation of IPSC 

conductance, variance of conductance, delay time constant, interneuron firing rate, and 

synaptic input rate among them) was tested and used to avoid multicollinearity of the input 

variables.  Next the regression analysis was performed stepwise to select the salient variables 

in the multiple regression model. We used forward stepwise regression. At each step it added 

the most statistically significant term (the one with the highest F statistic or lowest p-value) 

until there was none left.  

 Finally two multiple regression models were developed chosen from 17 variables that 

represent IPSC characteristics.  In the first model, only the IPSC parameters were used to 

investigate how much of the variability could be explained by them. This model is shown as 

Eqn. 11 with 

IPSCIPSC VARMEANrateFiring *0014048.0*548716.08809.12 ++=       (11) 

where MEANIPSC, VARIPSC    are the mean and variance of IPSC. In this model, only the 

IPSC parameters were used to see how much these variables can explain the variability in 

firing rates. This model yielded an adjusted R
2
 value of 0.793, thus accounting for 79% of the 

variability in the pyramidal cell firing rates. The F statistic of about 104.868 and its p-value < 

0.000001 indicated that it was highly unlikely that all of the regression coefficients were zero. 

T-tests for MEANIPSC and VARIPSC were 14.0576 and 7.1400 respectively with p-value < 

0.0001 for all three variables. In the second regression model, the cell conductance 
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parameters were also used along with IPSC parameters, to yield a prediction given by Eqn. 

12, 

CONDIPSCIPSC MEANVARMEANrateFiring *75869.0*00116.0*358144.05734.11 −++=      

(12) 

where MEANIPSC, VARIPSC  ,and  MEANCOND are the mean and variation of IPSC and mean of 

conductance.  This model yielded an adjusted R
2
 value of 0.94, accounting for 94% of the 

variability in the pyramidal cell firing rates. The F statistic of about 240.4 and its p-value < 

0.0001 indicated that it was highly unlikely that all of the regression coefficients were zero. 

T-tests yielded values of 12.1053, 9.9197, and -10.0418, respectively with p-values < 0.0001 

for all three variables. This regression model was validated using a separate test data set of 

20 cases. The result showed that the model was able to interpolate and extrapolate with the 

same accuracy as for the training patterns. 

 

Modulation of pyramidal cell firing rate by HCN channels – second hypothesis 

A second possible explanation for the increase in excitability mediated by clonidine 

was that alpha 2 agonists block IH (HCN) currents in the pyramidal cell. No IH channels 

are present in the interneuron model for this case.   

Voltage clamp studies done by Lavin’s group demonstrated that clonidine inhibited a 

hyperplarizaton activated inward current with similar characteristics to the current 

sensitive to the HCN channel blocker ZD7288. By increasing Rin, inhibition of HCN 

channels enhanced the amplitude and duration of the response to a burst of excitatory 

synaptic input.  
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Deactivation of HCN channels by distal EPSPs result in a snet outward current that 

opposes subsequent EPSPs, resulting in sublinear summation of EPSP trains. According 

to Dr.Lavin, inhibition of these channels prevents this sublinear summation and increases 

the probability that a train of excitatory input will bring the neuron to pike threshold. By 

increasing Rin , inhibition of HCN channels enhances the amplitude and duration of the 

response to a burst of excitatory synaptic input.  

The role of Kir channel remains the same as its main role was to hyperpolarize the 

membrane potential initially. The result is shown in figure 6E. The conductance was 0 nS 

for clonidine and 8.4 nS for control respectively. 

 

 

 

DISCUSSION 

A computational model of a single pyramidal cell connected to a single fast spiking 

interneuron was used to study the mechanism of action of clonidine, an in particular two 

hypothesis. The predictions compared well with in-vitro experimental data, including the 

transient depression of membrane potential with application of clonidine. The first hypothesis 

on the mechanism of action was that the increase in excitability of the pyramidal cell occurs 

via a decrease in GABAergic inhibition on the cell by the interneuron. A systematic study of 

this hypothesis forms the main part of the paper. In the process, we developed a general 

methodology for studying the effect of IPSCs on the excitability of a cell, with applicability 

to any cell type with IPSCs. This was done by systematically varying the IPSC 

characteristics of mean and standard deviation, an indirect means of modeling the diversity of 

GABA-ergic inputs to a cell. 
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 For the pyramidal cell studied, Ca 
2+ 

and K 
+
, including the Kir channel, were found to 

have little effect on modulation of excitability. It is known that an increased variance in the 

conductance or decay of IPSCs could modulate the firing rate of the postsynaptic cell. 

However, since GABAergic synaptic inputs to principal cells are heterogeneous in terms of 

their anatomical , molecular and physiological properties,  underlying mechanisms (eg., types 

of interneuron, GABAa receptor composition, plasticity, desensitization, modulation, 

occupancy, and in transmitter concentration and uptake) are not clear.  We used the reverse 

engineering method to study how IPSC currents modulate the excitability of a pyramidal cell. 

IPSC characteristics were varied systematically to generate data which was then used to 

generate a multiple regression relationship between IPSC characteristics and the cell firing 

rate. The process helped identify the important IPSC characteristics such as MEANIPSC and 

SDIPSC , and VARIPSC, and also reveal how the same firing rate could be obtained with 

different, but non-intuitive, combinations of these characteristics. For instance, a larger IPSC 

area doesn’t necessarily translate to a larger inhibitory effect on the postsynaptic cell. The 

variance around IPSC conductance plays an important role to tune the firing rate, for the 

same charge transfer or IPSC area. The variability in pyramidal cell firing rates could thus be 

explained by a few IPSC characteristics despite the possibility of significant diversity in 

GABA synaptic inputs. Thus, the complexities and uncertainties involved with GABA 

synaptic heterogeneity were simplified by focusing on IPSC characteristics as regulatory 

factors in the modulation of cell excitability.  

 In the second hypothesis we were also able to show that the excitably could have been 

easily modulated by blocking the IH channel simulating the effect of an alpha 2 agonist. In 
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this case uncertainty was relatively small and no additional analysis was necessary as in the 

first hypothesis. 

The study also illustrates how a computational model can be used to investigate several 

possible hypotheses in silico complementing wet lab experiments, determining possible 

emergent properties, and also providing new ideas for wet lab experiments.   
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Tables and Figures 

Table 1. Maximal conductances (in mS/cm
2
) and compartment dimensions (in µm) 

 Maximal conductance densities (mS/cm
2
) Compartment dimensions (µm) 

 Basic 

Properties 
65000=MR Ohm/cm^2; 1800=Ra Ohm cm 

c_bdend=1.2 * 1.92       mu F/cm^2 

c_soma=1.2                 mu F/cm^2  

c_pdend=1.2 * 1.92    mu F/cm^2  

c_ddend=1.2 * 1.92 mu F/cm^2 

 

Basal 4.36=Nag ;  0.1=NaPg 2.9=DRg ; 

24.0=KSg ; 4.0=IRg ; 67.0=HVAg ; 

01.0=Catg ; 8.3=Cg ; 02.0=AHPg  

0.16=d ;  150=l  

Soma 8.111=Nag ;  2.2=NaPg ; 8.33=DRg ; 

14.0=KSg ; )(5 Controlg H = ; 323.0=HVAg ; 

0.5=Catg ; 2.2=Cg ; 02.0=AHPg  

dendrite: 23=d ;  23=l  

Proximal 4.36=Nag ; 0.1=NaPg ; 2.9=DRg  

24.0=KSg ; 4.0=IRg ; 67.0=HVAg  

01.0=Catg ; 8.3=Cg ; 2=AHPg  

6.2=d    400=l  

Distal 4.36=Nag ;  0.1=NaPg ; 2.9=DRg  

24.0=KSg ; 4.0=IRg ; 323.0=HVAg  

01.0=Catg ; 2.2=Cg ; 02.0=AHPg  

6.2=d    400=l  

 Interneuron 0.100000=Rm  Ohm/cm^2   0.150=Ra  Ohm 

cm 

c_soma=2.2                 mu F/cm^2  

c_dend=3.8              mu F/cm^2  

 

Soma 0.100=Nag ;  0.40=DRg ;; 4.0=IRg  

323.0=HVAg ; 2.2=Cg   

soma:  15=d ;  15=l  

Dendrite 0.20=Nag ;  ; 0.8=DRg ;; 4.0=IRg  

323.0=HVAg ; 01.0=Catg ; 8.3=Cg  

dendrite: 10=d ;  150=l  

Synaptic 

currents 

  

AMPA 1392.15=AMPAg   55.0=RISEτ  2.2=DECAYτ   

GABA 0912.0=NMDAg      6.10=RISEτ  

0.285=DECAYτ  

 

NMDA 4.8=GABAg             5.1=RISEτ  5.2=DECAYτ   
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Rate functions, steady states and time constants of the pyramidal cell model  
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Rate functions of the Gabaergic interneuron model  
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Table 2.  IPSC characteristics for four different peak conductances yielding same PC firing 

rate from 1000 ms runs (Case 2) 

PC rate 

(Hz) 

Peak 

Conductance 

(nS) 

Decay  

constants

(ms) 

Charge 

Transfer 

(fq) 

Mean 

Amplitude 

(pA) 

Minimum 

Amplitude 

(pA) 

SD CV 

abs 
((SD/Mean)) 

IPSC 

frequency 

(Hz) 

Mean 

conductance 

(nS) 

IN Firing Rate 

(Hz) 

4 12.4 2.5 -20903 -19.003 -703.16 48.32 2.5 40 2.68 44 

4 8.4 2.5  -15350 -13.954 -167.42 26.2 1.87 44 1.848 44 

4 4.4 2.5 -15384 -13.9856 -216.719 21.73 1.55 68 1.503 67 

4 1.4 2.5  -14710 -13.373 -284.23 16.52 1.24 145 1.3849 155 
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I_V curve reproduction
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Figure 1: Input resistance for PFC pyramidal cell with current injection, Clonidine vs. control. 

The application of Clonidine to a subset of total cells did not produce significant changes in         

input resistance. 

 

 

 

Figure 2. IPSC histograms and cumulative probability plots for both control and alpha 2 

agonist cases obtained from model predictions, using hypothesis 1. Smaller events of low 

IPSC amplitudes were seen during the activation of alpha-2 agonist as a result of increased 

GABAergic synaptic input.  
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Figure 3. Top: IPSC for four different G peak conductances yielding same PC firing rate of 4 

spikes; Bottom:  Pyramidal traces plot for four different G peak conductances yielding same 

PC firing rate of 4 spikes. 

 

 



   

 49 

 

   

Figure 4.  Direct modulation of IPSCs seen by the pyramidal cell, without the interneuron 

present.  
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Figure 5.  Cumulative probability plots at different synaptic input rates and pyramidal cell 

firing plots along with IPSC traces obtained from the simulation studies.   

 

 

 

 

 

 

 

 

 



   

 51 

 

 

D. Traces of model predictions (control and after clonidine administration) during a single depolarizing period of 

15 pA 

 

E. Traces of model predictions (control and after clonidine administration) during a single depolarizing period of 

15 pA  by blocking IH channel 

 

 

D  Simulated single cell model with current injection of 15 pA inputs. 
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Figure 6.  Comparison of model predictions and experiments for effects of the α-2 agonist 

clonidine on pyramidal cells, using hypothesis 2. A) EXPTL- Representative traces of 

intrinsic excitability in control and clonidine cases. B) EXPTL - Histogram shows the 

average increase in intrinsic excitability produced by clonidine administration (10 µM) to the 

population of pyramidal cells sampled (n=35).  C) EXPTL - Bar graph indicates the 

percentage of cells that exhibited significant increases, no changes or significant decreases 

following clonidine administration. The arrow indicates clonidine administration.  In this 

figure, the data are presented as mean ± SE. The current trace represents 500 pA. D) 

MODEL –First hypothesis:  Traces of simulated single pyramidal cell model (control and 

after clonidine administration) during a single depolarizing period of 15pA with peak IPSC 

conductance of 6.5 nS and a decay time of 2.5 ms (Case 2). E) MODEL – Second 

hypothesis: Traces of simulated single pyramidal cell model (control and after clonidine 

administration). Clonidine blocks IH channel and the excitability of  pyramidal cell is 

increased. 
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CHAPTER  3 

Computational model of the baroreflex arc, Nucleus tractus solitarius – 

Cellular models 

 

Abstract.    

The behavior of individual baroreceptors and nucleus tractus solitari (NTS) neurons is 

studied to understand their role in the autonomic circuit controlling systemic blood 

pressure.  The electrical properties of these cells are characterized with particular focus 

on the role of potassium channels in modulating membrane potential. The computational 

model predictions matched experimental membrane potential traces for such cells 

reported in the literature.    

 

 

Introduction 

Cardiovascular homeostasis involves complex interactions among key organs such as 

heart, blood vessels and the kidney, which are under the control of autonomic circuits in 

the brain. Recent findings have indicated that alterations in autonomic brainstem circuits 

contribute to the development of cardiovascular disease, including hypertension and 

congestive heart failure. A better understanding of how the brain processes neural signals 

may provide new avenues for the therapeutic treatment of both neurological disorders, 

such as Alzhiemers disease, as well as cardiovascular diseases which impacts millions of 

Americans annually.  The overall goal of the project is to develop a predictive model of 

the arterial baroreceptor reflex is developed to identify the precise mechanisms 
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underlying “information transfer” by the autonomic barosensitive circuit, including 

pathology leading to these disorders.   

 The arterial baroreceptor reflex is the essential controller for short-term and longer-

term changes in systemic blood pressure. Primary baroreceptor afferents project to the 

nucleus tractus solitarius (NTS) and synapse onto a complex system of network 

interneurons. In the mammalian brain, the NTS contains 600 – 900 barosensitive neurons 

that contain either excitatory or inhibitory neurotransmitters. Some of these neurons 

receive input from primary baroreceptor afferents (second order cells), some project to 

target nuclei which generate autonomic motor command signals (output neurons), while 

the remainders are network interneuons which form reciprocal synaptic contacts with 

other NTS neurons. Currently, we do not have the electrophysiological tools to study a 

large number of barosensitive neurons simultaneously or to predict network behavior. 

Therefore, it is essential to establish a network based model of barosensitive circuits that 

could then be used to guide new experimentation into the mechanisms involved in 

information transfer in the NTS. Currently, there are a very limited number of 

computational models for barosensitive circuits and these have focused exclusively on 

the intrinsic properties of second order neurons and their synaptically evoked responses.  

  Single cell models of barosensitive second order NTS neurons have previously been 

reported (Schild et al., 1993; Schwaber et al., 1993; Rogers et al., 2000). These models 

are based on a typical, one-compartment neuron of the Hodgkin-Huxley type consisting 

of a membrane capacitance shunted by time- and voltage-dependent ion-selective 

channels, in addition to ion pumps, exchangers and other background currents. These 

models have been successful in simulating several of the intrinsic properties and synaptic 
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responses of second order barosensitive neurons. However, they have failed to include 

network and output neurons in their models. Moreover, there is a virtual absence of 

information regarding the intrinsic and synaptic properties of network and output 

neurons. This has resulted in a significant gap in our understanding the role of NTS 

neurons in baroreceptor neurotransmission. This application will provide a complete 

network model of neural circuits responsible for processing and transmitting baroreceptor 

signals in the NTS.    

The medial NTS is the first relay site in the baroreceptor pathway and receives 

substantial afferent input on a second-to-second basis. Information transfer between 

primary baroreceptor afferents and second order NTS cells has been extensively 

examined. Of these studies, it has been shown that the second order neuron acts as a low-

frequency filter limiting its degree of excitation. Consequently, there is a paucity of NTS 

cells which exhibit pulse-synchronous discharges in relation to baroreceptor discharge.  

While the NTS is a heterogeneous population of neurons that encode a variety of sensory 

inputs, their cellular properties may be segregated by cell morphology.  

Changes in ionic conductance can alter the action potential discharge pattern of 

neurons and its associated network. Potassium (K+) channels are vital for information 

transfer in the nervous system because of their ability to set the resting membrane 

potential (RMP), control action potential duration, terminate periods of activity, and time 

the interspike intervals during repetitive firing. The contribution of these channels to 

neuronal activity depends not only on the current subtype (i.e., voltage or calcium-

dependent, etc.), but also on where the channels are expressed. Second-order cells can be 

characterized as receiving either A- or C-type baroreceptor inputs based on the presence 
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or absence of A-type K+ currents. The presence of an A-type current significantly 

modulates the firing properties of NTS neurons. For instance, removing inactivation of 

these channels significantly increases the delay of action potential firing; a property 

termed “delayed excitation”. Calcium entry during a spike can induce calcium-activated 

K currents (IKCa), which are known to modulate action potential/post-burst 

afterhyperpolarization as well as spike frequency adaptation. The importance of these 

currents in the NTS (cells and network) has recently been modeled and suggests IKCa has 

a significant impact on network activity  

The importance of understanding the role a particular ion channel plays in 

cardiovascular disease in underlined by the increasing number of identified 

channelopathies. For instance, mutations in the potassium channel gene Kv1.1 are 

associated with human episodic ataxia type 1 (EA-1) syndrome characterized by 

continuous myokymia, exercise, and stress-induced episodic attacks of ataxia, spastic 

contractions of skeletal muscles, and partial epilepsy (Zuberi et al., 1999; Benatar, 2000). 

The association of ataxic episodes with exercise or emotional stress suggests a prominent 

role for the autonomic nervous system, including the NTS. Previously, we have 

demonstrated in mice deletion of this K+ subunit significantly alters sensory fiber 

discharge and neurotransmitter release in the NTS. 

This paper reports computational biophysical models for baroreceptor and NTS cell 

types and comparison of their predictions with experimental data. Using the single cell 

models, one of the objectives is to determine whether spike frequency adaptation is 

mediated by a pre- or post-synaptic mechanism. Spike frequency adaptation is a 
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recognized property of most NTS neurons. However, the precise mechanism has not been 

established.  

The details pertaining to the model are listed in the next section ‘Methods’.   

 

Methods 

       Baroreceptor afferent model:  We have completed the development of preliminary 

models for A- and C-type baroreceptors based on the structure reported in Durstwitz et al 

(2000),  Schilds et al (1994) and Rogers et al. (2000).  

Ionic currents.  The biophysical models for currents were taken from the pyramidal cell 

model used in Chapter 2. : leakage current ( LI ), a fast, spike-generating Na
+
 current ( NaI ), 

the delayed rectifier potassium current ( DRI ), and persistent current ( NaPI ) were from 

Durstewitz et al. (2000); the high-voltage activated Ca
2+

 current ( HVAI ) from Brown et al. 

(1993); slow inactivating K current ( KSI ) and a fast BK Ca and voltage-dependent C-type K 

current ( CI ) were from Wang (1993); AHPI  from Warman et al. (1994); IRI  from 

Niesenbaum and Wilson (1995) and modified by the authors to account for the intracellular 

Ca
2+

 concentration; and the Ca
2+

 dependent cationic current ( CATI )from Kang et al.  The 

details of all channel characteristics are listed in the previous chapter. 

The passive properties and the maximal conductance of channels of the A and C type 

baroreceptors  were tuned to match the experimental data such as resting potential (Vrest). In 

addition, the baroreceptors reproduced the basic properties of spiking behavior of these 

neurons (Fig. 1-4). 

A type nodose show faster and more repetitive action potential dynamics. 
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Current injections into the soma of A type nodose model elicited repetitive spikes at a 

relatively low activation threshold (-50mV).   

C type nodose neurons exhibit slower and more complicated action-potential dynamics with 

a distinct “hump” during repolarization. To account this characteristic  dynamics the 

maximal conductance of transient sodium current INaP were set at 55% of the maximum 

conductance used in Durstewitz et al (2000) while membrane capacity was set at 70 2/ cmFµ . 

Threshold for firing is slightly higher in the C type cell than the A type cell and in the 

presence of a strong depolarizing stimulus neither C types cells nor the model fired 

repetitively while the C type model elicits only a single action potential.  

In the presence of identical step depolarization from rest membrane potential , the A type 

nodose model fires repetitively. All other parameters are listed in the table 1-2. 

 

Single NTS cell model 

The single cell neuron model has six ion channels. The expression used for conductances 

of these channels (gi), their steady state values (m∞i and h∞i) and time constants (τmi and 

τhi) are listed in Table 1. 

As representative examples of the six currents modeled, we list the mathematical 

expressions for two currents here, the fast sodium and calcium-activated potassium 

currents.  The sodium current is modeled using the standard Hodgkin-Huxley equation, 

Eqn. 1, 

  )(
3

NaNaNa EVhmgI −=                                                          (1) 
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where V is the membrane potential, maximum conductance Nag = 3 µS;  reversal potential 

ENa = 55 mV (Rogers 2000). Similarly, a representative calcium-activated current is the 

potassium AHP current IK,Ca, which is modeled as Eqn. 2, 

  )(2

,, KCaKCaK EVqgI −=                                                         (2) 

where, again, V is the membrane potential, maximum conductance CaKg , = 0.15 µS;  

reversal potential EK = -94 mV. The kinetic equation for each of the gating variable x in 

the various current equations, e.g., m, h in Eqn. 1 and q in Eqn. 2, take the form 

    
)][,(

)][,(
2

2

ix

i

CaV

xCaVx

dt

dx
+

+

∞
−

=

τ

                                                        (3) 

where iCa ][ 2+  is the intracellular Ca
2+

 concentration, 
∞

x  is the voltage- (or Ca
2+

) dependent 

steady state and xτ is a voltage- (or Ca
2+

-) dependent time constant. The expressions for
∞

x  

and xτ  for the gating variables are given in terms of the rate functions, xα  and xβ   

   )( xxxx βαα +=
∞

                                                               (4a) 

   )(1 xxx βατ +=                                                          (4b) 

For the sodium current, INa, the rate functions are 

)5)38(exp(1/()38(91.0 +−−+= VVmα , 1)5)38(exp(/)38(062.0 −++= VVmβ , 

)15/)55(exp(016.0 +−= Vhα , 17)/21))-exp(-(v2.07/(1 +=hβ .  For the calcium-

dependent potassium current, IK,Ca, q∞ is given directly as 

)5.2][*825.1(][*825.1 22 22

+=

++

∞ ii CaeCaeq  and  )5.2][*825.1/(1000
22

+=

+

iq Caeτ . 

Concentration of the calcium pool inside the cell, [
+2

iCa ], is modeled using a first order 
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equation, assuming the external concentration to be constant, with details omitted here 

due to space considerations. 

 

GABAergic interneuron model:   

A basket-type fast spiking (FS) neocortical aspiny interneuron was implemented based on 

a description by Durstewitz (2000). Passive membrane properties were as follows: the 

membrane capacity was set  at 6 and 8 2/ cmFµ  for dendrite and soma respectively.  

Membrane resistance and cytoplasmatic receptivity were  90 2
cmk ⋅Ω and 150 cm⋅Ω .  

The leakage current ( LI ), a fast, spike-generating Na
+
 current ( NaI ), the delayed rectifier 

potassium current ( DRI ) were from Durstewitz et al. (2000); the high-voltage activated Ca
2+

 

current ( HVAI ) from Brown et al. (1993); slow inactivating K current ( KSI ) and a fast BK Ca 

and voltage-dependent C-type K current ( CI ) were from Wang (1993); IRI  from 

Niesenbaum and Wilson (1995); and the Ca
2+

 dependent cationic current ( CATI )from Kang et 

al.  The ionic currents and maximum conductance for each channel are summarized in Table 

2. 

The GABAergic interneuron was then tuned to trigger action potentials when it receives 

synaptic inputs through AMPA and NMDA. AMPA-like synaptic currents were modeled by 

a double exponential function as described by Durstewitz. AMPA and NMDA synapses then 

were placed in the dendrite compartment only while GABA synapse was placed in soma only. 

The values for these synapses were summarized in Table 2. 
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Modeling sysnaptic currents: EPSCs and IPSC 

 AMPA-like synaptic and NMDA currents were modeled by a double exponential function 

as in Durstwitz (2000).  Random background synaptic activity is provided to GABAergic 

cells.  IPSC due to GABA is modeled as 

),)((),( ,gabaIPSCIPSC EVtgtVI −=                                                              (7) 

where the time course of the synaptic conductance is: 

))/exp()/(exp())/(()(
max, risedecaydecayriseIPSCIPSC ttgAtg ττττ −−−•−•=      for ,21 ττ >            

(8) 

where A is a normalization constant chosen so that gsyn reaches a maximum value of max,IPSCg .  

))/()//((1 )/()/( risedecayrise

decayrise

risedecaydecay

decayriseA
ττττττ

ττττ
−−

−−=                                     (9) 

Background excitatory synaptic inputs were placed on all dendritic compartments of 

interneurons, while inhibitory inputs are limited to the soma where cortical pyramidal cells 

receive most of their inhibitory input.  

        NaI , DRI , CATI , NaPI , HVAI  , KSI , CI , AHPI ,and LeakI  were placed in the somatic 

compartment of the A and C-type baroreceptors. NaI , DRI , HVAI , CI , and LeakI  were placed on 

both soma and dendrite compartment of the interneuron. 
AGABAI AMPAI  and NMDAI  were placed 

in the somatic compartment of the baroreceptor and NTS nodose neuron while for 

interneuron AMPAI  and NMDAI were placed in a dendrite compartment and 
AGABAI in a soma 

(Durstweitz et al. 2000). 

    

 

Results 

Single cell baroreceptors  The membrane potential spike dynamics for the A-Type nodose 

model with a 2-ms current pulse of 400 pA is shown in Figure 1. The model is capable to 

reproducing the rapid dynamic characteristic of A-type nodose neurons. Such neurons 
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exhibit relatively low activation threshold (-50 mV) and resting potential (-59 mV) and 

fire repetitively in response to a step depolarization with a current injection of 40 pA as 

seen in Figure 2. 

Our C-Type nodose neuron model required a 2-ms current pulse of 860 pA.  This 

value is higher than the value of 450 pA used by Schilds et al. (2000) but still within the 

experimental range (400 ~ 900 pA). The model is capable of reproducing the slower and 

more complicated action-potential dynamics with a distinct “hump” during repolarization 

(Fig.3). C-type nodose neurons do not fire repetitively in the model, in the presence of a 

step depolarization with a current injection of 60 pA for a period of 1000 ms (Fig 4.). 

This agrees well with experimental and simulation results obtained by Schilds (2000). 

 

Coding the pressure signal using A-type baroreceptors.  We report a technique to model 

the pressure thresholds of the individual A-type baroreceptors by tuning the membrane 

capacitance of each neuron, Cm from 5 to 70 pF. The baroreceptor with the smallest Cm 

has the highest sensitivity to arterial pressure waveform firing action potentials 

repetitively with higher frequency. This technique works well for our case as shown in 

Figures 5 which shows the responses of the five baroreceptors of type-A with different 

input thresholds simulating arterial pressure thresholds. The arterial pressure frequency 

oscillations were mimicked by injecting a 3500ms-long, 5-Hz sinusoidal function 

))2(sin(00 tfAI ⋅⋅•+ π  where f=5 HZ and 0A =20 pA. 0I  was gradually increased from 

0 until the maximum injected current reached 85 pA. The generation of baroreceptor 

spikes is adaptive and contains a dP/dt sensitivity, as real baroreceptors do.  

 The response of C-type baroreceptors to a pressure signal is shown in Fig 6.  
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NTS neuron model.   Figures 7 and 8 show the membrane potential predictions for NTS 

neuron and experimental data, for different depolarizing step inputs ranging from 40 to 

200 pA. The NTS neuron is capable of reproducing the spike frequency for different step 

depolarization currents. 

 

 

Discussion 

 

Our study successfully reproduced the dynamic behaviors of A and C type baroreceptors 

and NTS neurons.  In particular a methodology was developed to successfully replicate 

the coding of pressure signal by A-type baroreceptors.   

The role of potassium (K+) channels in this process needs to be studied systematically 

since they set the resting membrane potential, control action potential duration, terminate 

periods of activity, and time interspike intervals during repetitive firing, all of which are 

vital to information transfer in the nervous system.   This part will be completed later. 
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Table 1. Expression for Conductances of Ionic Channels Explored in NTS Neuron Models  
 

Channel Conductance, g Parameters 
Fast sodium,  

Nafast 

gNa = gNa x m3
Na x h m∞Na =                           0.091(V+38)/(1-exp(-(V+38)/5)                           

              0.091(V+38)/(1-exp(-

(V+38)/5)+0.062(V+38)/(exp(((V+38)/5)-1) 

τmNa = 1/(0.91 x (V+38)/(1-exp(-

(V+38)/5)+0.062(V+38)/(exp((V+38)/5)-1)) 

 

h=∞Na =                         0.016exp(-(V+55)/15) 

            0.016(exp(-(V+55)/15)+2.07/(1+exp(-(V-17)/21) 

τhNa =   1/(0.016exp(-(V+55)/15)+2.07/(1+exp(-(V-17)/21)) 

Potassium delayed rectifier,  

KDR 

gdr = gdr x m4
dr  m∞DR =                     0.01(V+45)/(1-exp(-(V+45)/5) 

           0.01(V+45)/(1-exp(-(V+45)/5)+0.17exp(-(V+50)/40) 

τmDR = 1/(0.01(V+45)/(1-exp(-(V+45)/5)+0.17exp(-

(V+50)/40)) 
Transient potassium-A,  

KA 

gA=gAx(0.6m4
A1xhA1+0.4xm4

A2xhA2) m∞A1 = 1/(1+exp(-(V+60)/8.5)) 

τmA1 = 1/((exp(V+35.82)/19.69)+exp(-(V+79.69)/12.7)+0.37) 

h=∞A1  = 1/(1+exp(-(V+78)/6) 

τhA1   = if V<-63,1/(1+exp((V+46.05)/5)+exp(-

(V+238.4)/37.45)) 

else 19.0 

m∞A2 = 1/(1+exp(-(V+36)/20)) 

τmA2 = 1/((exp(V+35.82)/19.69)+exp(-(V+79.69)/12.7)+0.37) 

h=∞A2  = 1/(1+exp(-(V+78)/6) 

τhA2  = if V<-73,1/(1+exp((V+46.05)/5)+exp(-

(V+238.4)/37.45)) 

else 60.0 

 
Calcium-dependent 

potassium, KCa+2 

gcak = gcak x m2
Cak m∞AHP = 1.25*10^8*[cai]^2/(1.25*10^8*[cai]^2 +2.5) 

τmAHP = 1000/(1.25*10^8*[cai]^2 +2.5) 

 
High-threshold calcium, 

CaL 

gcal = gcal x m3
cal m∞cal = 1.6/( 1 +exp(-0.072 * (V - 5))))/((1.6/(1 + exp(-0.072 * 

(V _ 5)))) 

+ (0.02 * (V -1.31)/(exp((V - 1.31)/5.36) - 1))) 

 τmcal = 1.0/((1.6/(1 + exp(-0.072 * (V - 5)))) 

+ (0.02  (V * 1.31)/(exp((V -1.31)/5.36) - 1)) 
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Table 2. Maximal conductances (in mS/cm
2
) and compartment dimensions (in µm)  

of interneuron used in simulation  
 

 Maximal conductance densities (mS/cm
2
) Compartment dimensions (µm) 

Interneuron 0.100000=Rm  Ohm/cm^2   0.150=Ra  Ohm 

cm 

c_soma=1                mu F/cm^2  

c_dend=1              mu F/cm^2  

 

 

Soma 0.100=Nag ;  0.40=DRg ;; 4.0=IRg  

323.0=HVAg ; 2.2=Cg   

soma:  15=d ;  15=l  

Dendrite 0.20=Nag ;  ; 0.8=DRg ;; 4.0=IRg  

323.0=HVAg ; 01.0=Catg ; 8.3=Cg  

dendrite: 10=d ;  150=l  

Synaptic currents for NTS nodose neuron, Baroreceptors, 

and Interneuron 

 

AMPA 1392.15=AMPAg   55.0=RISEτ  2.2=DECAYτ   

GABA 0912.0=NMDAg      6.10=RISEτ  

0.285=DECAYτ  

 

NMDA 4.8=GABAg             5.1=RISEτ  5.2=DECAYτ   
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Figures  

 

  

 

 

 
Figure 1. Somatic action potential waveform from an A-type nodose model, using a 2-ms 

current pulse from near rest potential. 

 

 

 

 

 

 

 
 

 
Figure 2. 1000 ms of model activity using a depolarizing step current injection.   
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Figure 3. Somatic action potential waveform from an c-Type nodose model using a 2-ms 

current pulse from near rest potential. 
 

 

 

 

 

 

 

 

 

 
 

Figure 4. 1000 ms of model activity using a depolarizing step current injection.   
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Figure 5. A type Nodose Neuron with different sensitivity responses to same sinusoidal 

input simulating elevated arterial pressure.  From the bottom to top membrane capacity 

(Cm) of each nodose neuron was set at 70, 30, 25, 10, and 5 pF respectively. 
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Figure 6. C type Nodose neuron responses to a 5 Hz sinusoidal input simulating elevated 

arterial pressure. The membrane capacity (Cm) of C-type nodose neuron was set at 70 pF. 
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Figure 7. Current evoked responses from whole-cell patch clamped NTS cell 

Figure 8. Current evoked responses from model NTS cell 
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CHAPTER  4 

Computational model of the baroreflex arc, Nucleus tractus solitarius – Network 

model 

 

Abstract.    

 Baroreceptor afferent signals to the NTS, as well as output signals from the NTS, are 

pulsatile in nature. However, the discharge patterns of baosensitive NTS network neurons 

are generally not pulse-modulated. Using single cell models for baroreceptor and NTS 

neurons that are validated using experimental data, a computational model of the NTS 

network is developed to mapt its input-output characteristics and to further investigate 

functional details of the circuitry. We also investigate whether an alteration in 

GABAergic transmission in the NTS can mimic the reduction in baroreflex gain reported 

in hypertension.  

 

Introduction 

The NTS network receives pulse-synchronous input from arterial baroreceptor 

afferents and transmits pulse-synchronous output to brainstem target nuclei (such as the 

CVLM). However, NTS cells generally lack pulse modulated activity based on direct 

recording from barosensitive neurons. The lack of pulse synchronicity may result from 

network inputs (i.e., from both excitatory and inhibitory interneuons) onto barosensitive 

neurons. There is a need to develop a comprehensive network model that can accurately 

predict the pulse synchronous input-output characteristics of the NTS network, as well as 

the asynchronous activity of barosensitive NTS neurons. Development of such a network 
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model would provide a powerful platform to test hypotheses regarding sensory 

neurotransmission in the NTS.    

Arterial Baroreflex and Network Properties  

The arterial baroreceptor reflex provides rapid compensation for changes in systemic 

pressure by regulating cardiovascular organs in a negative-feedback manner. Arterial 

baroreceptors are sensory neurons that discharge phasically with each pulse pressure 

generated by the heart. These pulse synchronous signals are transmitted to the nucleus 

tractus solitarius (NTS) which is the termination site for thinly myelineated A-type and 

unmyelinated C-type baroreceptors originating from arterial baroreceptors, in addition to 

a variety of cardiorespiratory receptors. The NTS contains a network of barosensitive 

neurons that integrate and process baroreceptor signals in a manner that retains pulse-

synchronous output to central targets such as the caudal ventrolateral medulla 

(Schreihofer and Guyenet, 2003). However, despite the phasic nature, baroreceptor 

activity into and out of the NTS, barosensitive NTS neurons lack pulse-synchronousity. 

This suggests that NTS circuit neurons are more then simple relay neurons and are 

involved in dramatically altering sensory neurotransmission. Although the functional 

properties of the arterial baroreflex are well characterized, the synaptic mechanism(s) and 

network architecture by which this afferent information is integrated in the NTS is poorly 

understood.  

The cytoarchitecture of the NTS is highly complex and consists of a 

heterogeneous distribution of neurons (Kumada et al., 1990;Van Giersbergen et al., 

1992). Glutamatergic transmission plays an important role of sensory transmission in the 

NTS. Blockade of ionotropic glutamate receptors with kyurenic acid (non-selective 

glutamate receptor antagonist) or NBQX (selective AMPA receptor antagonist) blocked 
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excitatory post-synaptic conductance in second order NTS cells . This suggests that fast 

glutamatergic transmission between a primary baroreceptor afferent and the second order 

NTS cell is mediated by non-NMDA glutamate receptors. In addition to glutamatergic 

transmission, GABAergic neurons are densely distributed throughout the NTS. 

Anatomical studies have demonstrated that the NTS contains a high density of both 

GABAergic terminals and somata (Izzo et al., 1992; Sved, 1994; Kawai & Senba, 1996; 

Stornetta & Guyenet, 1999; Tanaka et al., 2003). In addition, physiological studies have 

shown that local depolarization of NTS neurons evokes GABA release (Kubo & Kihara, 

1987; Sved, 1994) and that GABAergic inhibition alters baroreceptor neurotransmission 

in the NTS (Miura et al., 1996;Kubo and Kihara, 1988;Kubo and Kihara, 1987). In vivo 

experiments have reported that activation of NTS neurons by electrical stimulation of the 

aortic depressor nerve, carotid sinus nerve, or cardiopulmonary vagal afferents was 

strongly inhibited by GABA application (Bennett et al., 1987; Jordan et al., 1988; 

McWilliam & Shepheard, 1988). The inhibitory effect of GABA was prevented by pre-

application of GABAA receptor antagonists. Together, these studies provide strong 

evidence that GABA inhibition in the NTS modulates the transmission of inputs from 

cardiovascular afferents.  

 To date, no attempt has been made to develop a predictive model of the arterial 

baroreflex system that includes network, interneurons and output neurons. This paper 

attempts to propose a network-based predictive model of arterial baroreceptor circuitry in 

the NTS and to characterize the circuitry from a functional perspective (see Fig 1). 
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Methods 

 The number of neurons in each NTS population was initially based on data from 

Rogers et al (2000), as well as loosely on the relative proportion of excitatory and 

inhibitory barosensitive NTS neurons. The probability of synaptic connections between 

each population is listed. Model 1 represented the architecture proposed by Rogers et al 

(2000) using single compartment cell representation. The architecture presented in Model 

2 was based on the finding that second order NTS neurons receive long latency excitatory 

input from NTS circuit following tract stimulation. Finally, the architecture in Model 3 

was based on the following findings: i) a moderate percentage of second order cells 

receive long latency inhibitory input from NTS circuit neurons following tract 

stimulation, and ii) a recent finding that some inhibitory second order NTS cells receive 

monosynaptic excitatory input from tract stimulation.     

 Further refinement of the model will be based on numerical fits to quantitative 

voltage- and current-clamp data obtained from in vitro brainstem slice experiments and 

the discharge patterns of barosensitive neurons to physiological activation from in situ 

experiments. Similar to the single cell model, a sensitivity analysis is performed with 

each model to identify the importance of each of the channels (e.g., K+) and connectivity 

parameter (e.g., synaptic weights, probability of connections) on for instance, the 

property of asynchronous firing. The study will reveal the effect of the number of cells 

within a population on the overall function, i.e., what effect does an increase in the 

number of baroreceptors from 30 to 50, or the second order cells from 100 to 200 have on 

overall network behavior. The network model also permits a systematic evaluation of the 

existence of functional sub-circuits relevant to the overall function of NTS circuitry such 
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has been reported in gain control in the visual cortex and short term memory in prefrontal 

cortex (Wilson 2003). 

The paper considers three network architectures. The schematic for the first network we 

consider is presented in the top of Fig. 2. The model consists of two populations of 

baroreceptors, each with 10 cells. The Type A-baroreceptors have lower pressure 

thresholds and greater pressure sensitivity than the Type C baroreceptors. The two 

baroreceptor populations provide fully-connected input exclusively to two populations 

provide fully-connected input exclusively to two populations of NTS cells, each with 10 

cells. The NTS(C) neurons (i.e., those receiving only Type C baroreceptor inputs) 

provide fully connected excitatory inputs to the population of inhibitory neurons, which 

in turn provide a fully connected inhibitory connection to the NTS(A) (i.e., those 

receiving only Type A baroreceptor inputs) population. Finally, the synaptic weights and 

delays are Gaussian distributed with a variance of 50% and 20% between connected 

populations, but with a different mean for each connection. Figure 2 shows the responses 

by the cells of all neurons to an arterial pressure increase. Two main responses types are 

evident. Both the inhibitory population and the NTS(C) neurons yield monotonic 

responses to increases in arterial pressure. The NTS neurons driven by Type A 

baroreceptors respond to increases in pressure with an increase, followed by a decrease in 

firing frequency due to the increased inhibition received from GABAergic interneurons.  

Another proposed structure is given in the top of Fig. 3. In this model, 10 

baroreceptors of each type provide input to a common poll of 30 NTS second-order 

neurons, each with the same active membrane kinetics. These neurons are reciprocally 

connected to a population of 10 inhibitory interneurons, none of which receive direct 
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baroreceptor input. Aside from the differences in circuit arrangement, this model differs 

from the previous model in its connectivity distribution. In this model, both the number 

and strength of inputs is randomized by the following probability of connectivity 

specifications: Baroreceptor � NTS (p=0.25); NTS � Inhibitory (p=1.0), Inhibitory � 

NTS (p=0.10). These are the probabilities of connection between the different 

populations. The weights and delays of each individual neuronal connection are 

randomized. For example, any individual NTS second-order neuron receives 2 to 3 total 

baroreceptor inputs, each of random strength and type (A vs. C).  

 The network architecture #3 is shown in Fig 4. In this network, 10 baroreceptors of 

each type provide input to both pools of 30 NTS second order neurons and a pool of 10 

inhibitory neurons. The NTS second order neurons then provide inputs to a network of 30 

NTS neurons. The network of NTS neurons then provides inputs to 30 NTS output 

network and reciprocally, to the pool of NTS second order neurons. 

The interneurons also receive inputs from the NTS second order neurons. 

In this model, both the number and strength of inputs is randomized by the following 

probability of connectivity specifications: Baroreceptor � NTS second order(p=0.25); 

Baroreceptor � inhibitory (p=0.60); NTS second order � NTS network (p=0.25); NTS 

network � NTS second order (p=0.25);  NTS network � NTS output network (p=0.25); 

NTS second order� Inhibitory (p=1.0), Inhibitory � NTS second order (p=1.0); 

Inhibitory � NTS second order (p=1.0). Finally, the synaptic weights and delays are 

Gaussian distributed with a variance of 30~40% and 70% respectively between 

connected populations, but with a different mean (i.e., weights (0.2~0.5) and delays 

(2~20ms) for each connection. 
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In this configuration the baroreceptors and interneurons were monotonically excited 

to increase to the arterial pressure. 

Sensitivity analysis: Selected model parameters, such as maximal conductance and time 

constant for each current will be systematically increased and decreased by a fixed 

percentage while noting its effect on the membrane potential and firing pattern. Such an 

analysis will help identify the importance of each parameter on a given current, and will 

provide finer insights into the dynamics of the NTS cell types,  

Reduced membrane analysis: We will “turn off” the spike producing Na+ and K+ 

currents, and will study the dynamics of the ‘reduced membrane’ as performed by 

Hutcheon, et al. (1996) using dynamic clamp ideas. This will provide further insights into 

the parameters of each current that contribute to known properties of NTS cells, such as 

delayed excitation (DE) and spike frequency adaptation (SFA), and should assist in the 

generation of hypotheses for testing using dynamic clamp techniques in the Kline lab. 

Again, we will perform such analyses for all the different cell types investigated. 

  

Results 

 Initial model runs focused on replicating the asynchronous firing pattern of 

barosensitive NTS neurons to pulsatile baroreceptor input and the reconstitution of pulse-

synchronous activity by NTS output neurons adjusted in order to simulate the electrical 

behavior of these NTS populations.  The arterial pressure frequency oscillations were 

modeled by injecting a 3500ms-long, 5-Hz sinusoidal current ))2(sin(00 tfAI ⋅⋅•+ π  

where f=5 Hz and 0A =20 pA. 0I  was gradually increased from 0 until the maximum 

injected current reached 85 pA. 
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In the case of network #2, the NTS second order neurons did monotonically excited 

to arterial blood increase suggesting that GABAergic inhibition from interneuron was not 

strong enough to suppress NTS neuron’s excitability. 

In the case of network #3, the NTS second order neurons however were 

monotonically less excited due to the strong inhibition received from interneurons. As 

NTS second order neurons provided fewer inputs to next network of NTS network 

neurons, these neurons were also inactivated.  It is not hard to imagine that a model with 

greater structural variability would be capable of reproducing a wider range of responses 

to arterial pressure increases including all those that have been observed in vivo. The 

response type of any given neuron is determined by its connectivity and the architecture 

of the network. 

Sensitivity and other studies will be added, to the extent possible. 
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Figures 

 

 

 

Figure 1. Network of arterial baroreceptor circuitry in the NTS. 
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Figure 2. Initial population model of architecture 1 proposed to explain variability of 

nucleus tractus solitarius (NTS) neuronal responses to arterial pressure increases. Top: 

network architecture showing “labeled lines” for processing A and C type baroreceptor 

inputs. Bottom_left: plots of membrane traces generated by each of the neuron model in 

the network to an increase of arterial pressure. Red marks indicate spike packs above 0 

mV. Bottom-right: raster plots of action potentials generated by each neuron with a 

threshold of 0 mV. 
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Figure 3. Population model of architecture 2 proposed to explain variability of nucleus 

tractus solitarius (NTS) neuronal responses to arterial pressure increases. Top: network 

architecture showing “labeled lines” for processing A and C type baroreceptor inputs.  

Bottom: raster plots of action potentials generated by each neuron with a threshold of 0 

mV. GABAergic inhibition was not strong enough to suppress NTS neurons excitability. 

NTS neurons became more excited as arterial blood pressure increased. 
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Figure 4. Population model of architecture 3 proposed to explain variability of nucleus 

tractus solitarius (NTS) neuronal responses to arterial pressure increases. Top: network 

architecture showing “labeled lines” for processing A and C type baroreceptor inputs.  

Bottom: raster plots of action potentials generated by each neuron with a threshold of 0 

mV. GABAergic inhibition was strong enough to suppress NTS neurons excitability. 

NTS neurons became less excited as arterial blood pressure increased. 
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PART II 

SYSTEMS LEVEL MODELING 

 

 

 Part II focuses on systems level physiology using the human thermal system 

dynamics as the example case, representing a ‘higher level’ model, again with multiple 

inputs and outputs.  Human thermal physiology modeling is important to better 

understand human thermal responses under transient         conditions, to facilitate 

development of automatic thermal control for astronauts during extra-vehicular activity 

(EVA), and in characterizing heat stress tolerance times for war-fighters in extreme 

conditions (cold to desert) in chem-bio suits.  A specific control technique, model 

predictive control is also investigated  for EVA thermal comfort, is then proposed.  The 

details in each of the chapters is listed below.  

 In  Chapter 5, the effect of individual differences on thermal stress response for semi-

nude supine human subjects in transient environments is studied using an experimental 

data set.  Two transient climatic parameters and seven individual characteristics are used 

as inputs to predict three thermal responses using a novel transient computational model.  

The model is developed using a neural network after ensuring generalization and also 

checking with results reported in the literature for predictions.   

 In  Chapter 6, a new human thermal model has been developed that accounts for 

asymmetric environments and includes  extremities.  To this model we add models for 
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digits of toes to predict heat transfer through toe and fingertip via arteriovenous 

anastomoses (AVAs) mechanisms, all of which are important in extremity discomfort. 

  

 As mentioned earlier, each chapter is in the form of a self-contained journal paper. 
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CHAPTER  5  

MODELING INDIVIDUAL VARIATIONS IN THERMAL STRESS RESPONSE 

FOR HUMANS IN TRANSIENT ENVIRONMENTS 

 

 

 

Abstract 

The effect of individual differences on thermal stress response for semi-nude supine 

human subjects in transient environments is modeled using an experimental data set.  

Two transient climatic parameters and seven individual characteristics are used as inputs 

to predict three thermal responses using a novel transient computational model.  The 

model is developed using a neural network after ensuring generalization and also 

checking with results reported in the literature for predictions.  It reliably predicts core 

temperature, skin temperature and heart rate in transient environmental conditions for 

individual subjects.  A methodology is then proposed to identify the relative importance 

of the individual parameters and of environmental conditions on thermal stress, using a 

sensitivity analysis.  The results have applications for heat stress monitoring, and other 

biomedical applications.   

Keywords:  individual differences in heat stress; heat stress prediction; heat tolerance 

time limit 

 

INTRODUCTION 

Researchers have developed thermal computational models using different approaches 

such as analytical, statistical, empirical, and physiological, to forecast and to better 

understand human thermal responses under different environmental conditions (Bue et 
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al.; Campbell et al. 1994; French et al. 1997; Fu et.al 1995; Gonzalez  et al. 1997; 

Gonzalez et al. 2001; Guan et al. 2003; Hsu et al. 1971; -17; Pennes 1948; Stolwijk  

1971; Tanabe et al. 2002; Wissler 1971).   However, due to the complexity of human 

thermoregulation including interactions with the environment, the suitability of such 

models to real world applications has been limited.  Better characterization of the 

uncertainties involved, including physiological mechanisms and parameter variations will 

be important as we seek improved understanding of human thermophysiology related to 

heat stress. 

 One of the earliest human thermal efforts was the development of a steady-state 

model to analyze heat transfer in a resting human forearm by Pennes in 1948 (Pennes 

1948).  This cylindrical model served as the basis for a more advanced model by Wissler 

(Wissler 1971) and is still being used for the prediction of temperature elevation during 

hyperthermia (Frank et al. 1999).  Subsequent advances in computing technology and 

increased experimental data on human physiology helped researchers in developing more 

sophisticated human thermal models.  In the 1960s, early versions of the well-known 

Wissler (1961), Stolwijk models were being developed.  Later human thermal models 

derive their ideas largely from these three mathematical models.  

 Various research teams (Fu 1995, Huizenga 2001, Iyoho 2002) have developed 

models in the past decade to be used in environments that range from steady state to 

transient and non-uniform cases.  Examples of models that are being improved include 

the Wissler model, a detailed finite element model (Fu 1995), a model by Huizenga 

(2001), and one by the authors’ group.  All these models include heat transfer within the 

body as well as between the body and its environment, as well as sweating, shivering, and 
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vasomotor functions.   The authors’ group has also been investigating human thermal 

dynamic modeling issues (Campbell et al.1994;Iyoho 2002; Thornton et al 2000 and 

2002) and are developing an advanced 2-D human thermal model, as part of a larger goal 

to design an automatic thermal controller for astronauts during extra vehicular activities 

(Iyoho 2002, Thornton et al 2002). 

 Quantitative comparisons among human thermoregulation models have been difficult 

due to the individual characteristics of each model in particular environmental conditions 

(Campbell et al 2002, Gonzalez et al 2001, Guan et al. 2003).  From a user point of view, 

it has not been clear which of the models would be best suited for a particular 

environment and application.  From a physiology point of view, many aspects of the 

human active (thermoregulatory/control) thermal system are still not well understood.  

The passive thermal system (conduction through body regions, etc.) has been modeled 

with more success, but the effect of uncertainties such as intra-subject and inter-subject 

variations in thermal parameters, continue to be poorly understood.  Hence, although 

human thermal models predict core and mean skin temperature fairly accurately, they fail 

to predict other thermal responses such as sweat production, and metabolic heat 

production, particularly in extreme conditions.  Important indicators for the thermal risk 

such as heart rate, and dehydration level due to the excess sweating are not typically 

considered explicitly in the models.  Perturbations such as fast transient and widely 

disparate environmental conditions, individual physiological differences, altitude, 

clothing, and terrain level also cause problems for such models.  As an example, causes 

for large variations in thermal responses and tolerance time limits among individuals 

continue to be poorly understood.           
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 A neural network model has been developed by our team to predict heat stress, using 

transient experimental thermal data from a group of subjects, details of which are 

provided in the next section.  The inputs to the model are prior values of core temperature 

(Tcore), heart rate (HR), skin temperature (Tsk) and seven ‘individual’ parameters, and 

the model outputs are future predictions of Tcore, HR and Tsk.  The seven parameters 

considered to characterize individual differences are gender, age, height, weight, maximal 

oxygen consumption (VO2max), basal metabolic rate (Minitial), and initial heart rate 

(HRinitial).   A methodology is then proposed to identify the relative importance of 

‘individual’ parameters on heat stress variables such as core temperature and heart rate, 

using a sensitivity analysis.  A method to calculate the relative importance of 

environmental conditions on those variables is also reported.  

 

MODEL DEVELOPMENT 

 The dataset used to develop the neural network was provided by Dr. Richard 

Gonzalez of US Army Research Institute of Environmental Medicine (USARIEM), 

Natick, MA, and contains thermal observations for 35 healthy male and female subjects 

ranging in age from 8 to 67 years.  The data were collected in compliance with 

appropriate guidelines.  For each subject, in a resting supine position through the 

experiment, 10 variables are measured for 140 minutes, in still air, with transient 

environmental conditions (from 9
°
C to 50

°
C and from dry to humid environments).   

After an initial period of 30 min at Ta 30
o
 C, the chamber temperature was increased at 

the rate of 1.5
o
C min

-1
 rising rapidly for the first 20 min and leveling off at 50

o
 C. 

Following a 30 min hot-dry exposure, the dew point temperature was raised to 32
o
 C and 

responses were observed for another 25 minutes after which the chamber temperature 
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was lowered falling rapidly and leveling off at 10
o
 C . For more details refer to Gonzalez 

et al. 1980.   The data set is divided into eight groups by age and gender as shown in 

Table 1.  Since the subjects are resting, the metabolic rate is considered constant for each 

subject, with a term added separately if shivering occurs.  

Modeling.  Three separate models are developed, two gender based models (male and 

female using male and female datasets respectively), and one ‘general’ combined model 

with gender as an input (using the entire dataset).  The general combined model has nine 

inputs which includes two environmental parameters (Ta, Pa) and seven individual 

characteristics (Age, Gender, VO2max, Weight, Height, Minitial, and HRinitial; see 

Table 2 for symbols and description) for the subjects with only gender variable being 

omitted in the two gender-based models.  The potential user thus has to provide only the 

environmental conditions and the individual characteristics as inputs.  The outputs of the 

model are Tsk, Tcore, and HR.   Esophageal temperature, Tes, and rectal temperature, 

Trec, were used to represent Tcore in the training process.  A feedforward neural network 

architecture is used for the models with an input layer, two hidden layers, and an output 

layer, using a back-propagation algorithm for update, with a mean square error 

performance function.  The architecture has feedback of one time-delayed value for each 

of the three outputs, making it a dynamic model.  The structure of the net for the 

combined model is 12 x 12 x 14 x 3, while for gender based models it is 11 x 10 x 10 x 3.  

The dataset provided 4759 patterns for training, each separated in time by one minute.   

An early stopping method [Amari et al. 1997, Pennes et al. 1948] is used to prevent over-

fitting and ensure generalization, with the data divided into three subsets 50% for 

training, 25% for validation, and 25% for testing subsets.  From the six models, the one 
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with the least  mean square error (mean square error, MSE) for the testing data set is 

selected.  The weights, biases and number of epochs for the network are then used to train 

the final model with the entire dataset.  

Sensitivity analysis.   We perform a sensitivity analysis with mean skin temperature 

(Tsk) and core temperature (Tcore) as outputs, and the individual parameters (Age, 

VO2max, HRinitial, Minitial, HRinitial, height, weight) as inputs.  The sensitivity 

derivative is defined as � (output)/ � (parameter) and this derivative is calculated by 

perturbing each input by one standard deviation of its value within the group, and noting 

its effect on the steady state value of the output.   Taking the ratio of the change in output 

to the change in input provides the sensitivity derivative.  This analysis is carried out for 

each input, one at a time, keeping the others constant, in four environmental conditions.  

An ‘average’ subject from each group is chosen as the representative subject for the 

sensitivity analyses (Table 3).  This value is then scaled by the largest magnitude in the 

column to provide a ranked estimate of its relative importance.  This results in the largest 

value in each column having a magnitude of 1 and the magnitudes and signs for each 

parameter provide an indication of its relative importance.   Sensitivity analysis provides 

further insights into system characteristics by permitting to rank the importance of the 

‘inputs’ on influencing the ‘outputs’.   Sensitivity analysis also serves as an additional 

tool to check whether the model has generalized adequately since it can be checked 

against known trends reported in the literature. 
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RESULTS AND DISCUSSION 

The neural network structures for our models were chosen based on extensive 

statistical analysis of the data and a review of the literature.   These analyses included 

correlations, ANOVA, and development of linear regression models.  Havenith et al. 

(1990) have shown that Ta, vapor pressure, and metabolic rate can explain 96% of the 

variance in mean skin temperature with Ta being the largest contributor.  This finding 

coincides with our multiple regression analysis of the dataset which gives a value 92% 

for the same check.  Havenith (1990) shows that a multiple regression analysis using Ta, 

Pa, M, % Fat, and sweating set point can explain 71% of the variance in Tcore.  

Regression analysis performed with our dataset showed that 61% of the variance could be 

explained when Tsk, HR, Evg, and age group were included along with Ta, Pa.  Moran 

et.al showed that 77 to 88% of the variance in heart rate can be explained by initial heart 

rate, metabolic rate, maximum evaporative rate, required evaporative rate, and time of 

exposure in minutes. Our data analysis showed (Table 4) that Tsk, Tes, Evg, Ta, Pa, and 

age group could explain 64% of the variance.  For the variance in heat storage rate, S, 92 

% could be explained by Ta, Pa, M, %Fat, Ad, VO2max, and sweating gain (Havenith et 

al. 1990). 

 Predictions of the models developed using a representative ‘average’ for each group 

(Table 3) compared well with actual data, some of which are shown in Figures 1-3.  

Actual data for all the subjects are superimposed in the figures with the prediction for a 

representative subject in the group with average properties.  The correlation coefficients 

between predicted values and experimental values are shown in Table 5 for each of the 
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subjects, for all the three outputs, showing good overall performance using gender-based 

models.  Several other similar investigations were performed which are not described due 

to space limitations, and the observations from the study are summarized next.  The 

model is found to successfully predict Tcore, HR and Tskin, given only two 

environmental variables and seven individual parameters as inputs to forecast three 

thermal response outputs.  Tcore and HR are two of the most important thermal 

predictors of thermal risk and they are products of complex internal and external 

interactions with the surrounding environment and within the body.  

Observations from sensitivity analysis 

 Sensitivity analysis is systematically performed using all three models under four 

different environmental conditions: normal (Ta=20, Pa=24), jungle (Ta=40, Pa=30), 

desert (Ta=43, Pa=10), and cold (Ta=5, Pa=10).   The dataset used for the first model has 

been categorized into four age groups for each gender.  From each age group an average 

subject is generated to test how well the model generalizes.  This average subject in each 

group has a mean value for each input (Table 3).  As mentioned earlier, Figures 1-3 show 

that the model has generalized well without over-fitting, since the thermal responses of 

these average subjects lie within the range of thermal outputs of the group, in transient 

environmental conditions.   Results of the sensitivity analyses are provided as ranked 

values of the scaled sensitivity derivatives( � (output)/ � (parameter)) in Tables 6 and 7.  

 Many interesting observations can be noted, some of which are described next, and 

they agree with findings reported in the literature.  For instance, Havenith et.al suggested 

that part of the variance in Tcore could be explained by the Ad/mass relationship for the 

subjects, with ‘big’ subjects who are characterized by large values of Ad (body surface 

area as a function of height and weight) and low Ad/mass having a lower Tcore.  One 
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physiological explanation is that subjects with high Ad have a larger surface area for heat 

loss to the environment and have higher heat storage capacity.  Havenith et al. found a 

positive correlation between Ad/mass ratio and core temperature not only for a warm-

humid or jungle, but also for a neutral and a hot-dry (desert) climate.  The positive 

correlation was highest in the warm-humid climate or jungle, however, implying that big 

subjects have the most marked advantage in the jungle or warm-humid climate.  Our 

sensitivity analysis yielded the same results.  As seen in Tables 6 and 7, an increase in 

weight, implying a smaller Ad/mass ratio, causes Tcore to decrease in most of subjects 

(negative value for the scaled derivative), with the largest effect visible in jungle and 

desert environments.  And the increase in height implying a larger Ad causes an increase 

in Tcore in most of the male groups but this was not true for female group 1.  With regard 

to the effect of fitness on thermoregulation, Gonzalez et al. showed that a higher value of 

gain in the rate of the total change in evaporative heat loss (�ESK) to the change in mean 

body temperature (�Tb) indicates a greater ease in handling heat stress by increased 

evaporation of sweat without incurring excessive excursions of internal body 

temperature.  And there was a significant positive correlation between �ESK /�Tb and the 

maximum aerobic capacity (VO2max).  The effect of VO2max on Tcore was confirmed 

in our sensitivity analysis where the increase of VO2max leads to a decrease in Tcore in 

all models in most environmental conditions. There were two cases with a positive 

increase in Tcore in desert conditions for male groups 1 and 3, using the male model.   

Age by itself does not seem to be a factor in thermoregulation since the sensitivity 

analysis shows no major effect on Tcore, Tskin and HR due to age.   
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 Havenith et. al, report that VO2max, Ad, and % body fat were responsible for 62 % of the 

variance in linear regression model for Tskin.   Their data set was obtained from 27 subjects (19 

men and 8 women) engaged in ergometer exercise in a warm humid climate (35 C, 80% 

humidity) for one hour. The data are different from ours where the subjects are seminude, in a 

supine resting position in transient environmental conditions.  However, our sensitivity study is 

consistent with this result.  Also, there was a gender-based difference in terms of parameter 

contribution to Tskin.   In males, VO2max was a main parameter with a negative impact on Tskin, 

implying partial acclimation, improved sweating and skin cooling.   However, in females, height 

and weight were the main parameters representing the heat loss capacity of the female body.   

But overall contributions of these parameters to Tskin were very small as Tair and Pa are the 

main driving factors in our data set.  

 Heart rate variation accounts for some of the gender-based differences in heat stress 

responses.  Women are reported to have higher heart rates than men (Stephenson et al. 

1993) since, on average, they have a greater surface area to body mass ratio (Nunneley et 

al. 1978), lower sweat rates (Frye et al. 1981), higher fat percentage, and lower aerobic 

fitness (Shapiro et al. 1980).   In a study presented by Wells et al. (1973), the authors 

noted that independent of other stresses, heat raised HR by 6.5 beats per minute for 

women.   Possibly the higher heart rate, elevated respiration and metabolic requirements 

occurring in female subjects implies an inadequacy of circulatory transport of oxygen for 

women in hot conditions (Havenith et al. 1990).   Havenith (1990) notes that the increase 

in HR needed is smaller for a higher Ad as it provides more heat loss surface, resulting in 

improved cooling and thus efficient heat removal from core to skin (McArdle et al.1991).   

Our findings indicate that the group with old women shows a negative effect on HR with 
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increase of Ad  (by increasing height by one standard deviation) in all four conditions, but 

the other female groups do not.  There are many such trends that can be determined from 

the sensitivity results in Tables 6 and 7, and we have discussed only some representative 

ones here.  It is also noted that we have not considered the effect of different exercise 

levels, and of factors such as hydration level, and non-thermal factors such as smoking, 

medication, and menstrual cycle, and these can be considered in future studies. 

 

CONCLUSIONS 

 A novel transient predictive thermal model is reported for resting semi-nude supine 

individuals, to reliably predict Tcore, Tskin, and HR in transient environmental conditions for 

individual subjects.   The model was then used to determine the relative importance of individual 

parameters on thermal stress variables, using a proposed sensitivity method.  An important 

contribution of the reported study is to demonstrate that the predictive thermal model 

development methodology using neural networks is viable for human thermal response studies 

and can identify the relative importance of the individual parameters and environmental inputs.  

The model is validated by demonstrating prediction trends that are consistent with the literature.  

The ranking of the relative importance of the inputs in Tables 6 and 7 for various conditions 

provide ‘fine-grained’ insights into the thermal stress response phenomena.  Some such insights 

are: fitness level is very important for predicting thermal risk but age is not; subjects with large 

Ad will have an advantage in handling heat stress in jungle and desert conditions; the effect of 

gender on the handling of thermal stress was not obvious from the model, but it seems that 

women usually have higher core temperature even if their individual physiological 

characteristics are matched with that of male, and this is something that needs further study.   

The sensitivity results in Tables 6 and 7 can be used for numerous other comparison studies, 
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depending on the application.  For instance, one can compare between environments (jungle, 

desert, neural, cold), between outputs, and between groups of individuals (Table 3). 

 The data set we have used was limited to 35 semi-nude subjects resting in a supine 

position and it will be interesting to determine trends with larger datasets, in varying 

environmental conditions and exercise levels.   Our study does, however, demonstrate 

that the proposed methodology for modeling and sensitivity analysis using neural 

networks has the potential to model and also discern the relative importance of the 

environmental and individual parameters on thermal stress responses in different 

conditions.   
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TABLES 

Table1.  Details of the experimental dataset. 

Gender Group N
o 
of Subjects Age (years) Surface Area 

 to mass ratio 

(Cm
2
 Kg

-1) 

Maximum Aerobic 

Capacity(VO2 max)

ml/(min-kg) 

Female F1 5 11.7 ± 1.6 321.3 ± 21.4 43.8 ± 1.3 

 F2 5 22.5 ± 2.3 307.3 ± 36.4 49.8 ± 1.3 

 F3 3 40.0 ± 6.0 279.3 ± 11.1 35.8 ± 1.3 

 F4 2 61.8 ± 2.0 290.3 ± 9.4 30.9 ± 1.3 

Male M1 5 11.8 ± 2.8 319.3 ± 35.9 47.8 ± 2.4 

 M2 5 22.3 ± 2.9 270.3 ± 14.2 47.1 ± 2.1 

 M3 5 34.0 ± 5.6 252.3 ± 11.9 44.4 ± 2.2 

 M4 5 60.2 ± 5.0 253.3 ± 18.6 27.7 ± 1.5 
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Table 2.  Description of the parameters. 

 Variables Description Unit 

Subject Identifier  

Group 1 to 4  

Age Age of a subject Years 

Ad Surface area  m2 

Gender Male or Female  

VO2 Max Max. aerobic capacity ml/(min-kg) 

Height  Inches 

Weight  Kg 

M initial Initial Metabolic Rate W*m-2 

In
d

iv
id

u
a
l 

 

C
h

a
ra

ct
e
ri

st
ic

s 

HR initial Initial Heart Rate Beat/min 

Time A total of 140 min Min 

Ta Air Temperature C 

C
o
n

tr
o
ll

ed
  

V
a
ri

a
b

le
s 

Pa Ambient Vapor Pressure In-Hg 

Tsk Skin Temperature C 

Tes Core Temperature (esophageal) C 

HR Heart Rate Beat/min 

Evg Evaporative Loss g/min 

ms 
Sweating rate sweat capsule mg/(min*cm2) 

Kchest Skin Conductance in Chest W/(m2C) 

Karm Skin Conductance W/(m2C) 

M Metabolic Free Energy production W*m-2 

Disc Discomfort Index  

M
ea

su
re

d
 V

a
ri

a
b

le
s 

Tsens Temperature Sensation Magnitude  

Esk Heat Transfer via evaporation from the skin surface W*m-2 

Tb Mean body temp. C 

w Skin wettedness  

R+C Dry Heat Loss W*m-2 

min/Tb∆  Mean body temp. rate W*m-2 

S Body Heat Storage Rate W*m-2 

Req Esk Required Evaporative Heat Loss W*m-2 

ET Effective Temp. C 

C
a
lc

u
la

te
d

 V
a
ri

a
b

le
s 

HRR Heart Rate Ratio  
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Table 3.  Average subject for each group, with mean individual parameters. 

Male Average 
Male of 
group 1 

SD Average 
Male of 
group 2 

SD Average 
Male of 
group 3 

SD Average 
Male of 
group 4 

SD 

Age (yrs) 11 2.58 22 3.69 34 6.22 60 5.56 

VO2 Max  (W*m-2) 48.55 6.29 47.11 5.93 46.08 7.61 27.6 3.94 

M initial (ml/(min-kg) 54.027 4.42 49.06 5.23 54.6 6.42 51.05 5.60 

HR initial (bpm) 72 8.64 73.6 5.16 76.5 4.56 83.46 3.82 

Height (inches) 57.38 6.34 70.9 2.68 73.13 3.32 66.85 2.40 

Weight (Kg) 39.1 12.65 70.24 8.04 77.21 4.63 72.61 2.76 

Female Average 
Female of 
group 1 

SD Average 
Female of 
group 2 

SD Average 
Female of 
group 3 

SD Average 
Female of 
group 4 

SD 

Age (yrs) 12 1.14 23 2.5 39 4.94 62 2.82 

VO2 Max  (W*m-2) 43.86 3.05 47.35 7.22 37 8.98 30.4 10.60 

M initial (ml/(min-kg) 50.88 6.92 46.32 11.48 47.66 1.26 41.25 7.99 

HR initial (bpm) 84 3.31 74 8.64 74.66 2.82 80 5.65 

Height (inches) 60.75 7.87 64.37 2.04 64.70 0.61 61.12 0.17 

Weight (Kg) 43.25 4.68 51.13 4.17 59.21 8.36 51 3.53 

SD: standard deviation of each group 
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Table 4. Regression Coefficients for various physiological heat stress reactions with 

environmental, heat production and individual’s parameters from Havenith et al. study (13). 

 

Sweating Dependent 

Variables 

Ta 

(oC) 

PH2O 

(kPa) 

M 

(kW) 

% 

Fat 

Surf:mass 

(m2kg-1) 

VO2max % 

VO2max 
set 

point 

gain 

S R2 

(%) 

R’2 

(%) 

S (J/g) x x x        88  

S (J/g) x x x x x x   x  92 33 

Rectal 

Temperature  

(oC) 

x x x x       38  

Rectal 

Temperature (oC) 

x x x x x x  x   60 37 

Skin  

Temperature (oC) 

x x x x       96  

HR (bpm) x x x x       75  

HR (bpm) x x x x   x    88 46 

Ta, Ambient temperature; PH2O, water vapor pressure; VO2 max, maximal oxygen uptake; r2, total variance explained by the 

equation; r’2, the fraction of the residual variance left after introduction of climatic and work rate parameters in the prediction equation, 

which is explained by individual’s parameters. 
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Table 5.  Coefficients of correlation (R) of predicted values against experimental values for each 

output for all groups using gender-based models.   

 

Group1 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 Female5 

Tsk 0.985 0.983 0.9728 0.993 0.999  0.9262 0.9715 0.9566 0.9825 0.9819 

Tcore 0.742 0.853 0.8720 0.778 0.942 0.7843     0.8188 0.9344 0.8504 0.8811   

HR 0.9207 0.8995 0.8757 0.9019 0.8732 0.9041      0.9225   0.8776 0.8998 0.9086 

Group2 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 Female5 

Tsk 0.9850 0.9922 0.9881 0.9930 0.9850 0.9851 0.9843 0.9917 0.9478  

Tcore 0.8705 0.7580 0.9322 0.7390 0.7772 0.8920 0.8561 0.9193 0.7759  

HR 0.9552 0.8983 0.9669 0.8838 0.8428 0.9135 0.8886 0.8893 0.7959  

Group3 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 Female5 

Tsk 0.9971 0.9963 0.9920 0.9900 0.9912 0.9870 0.9835 0.9748   

Tcore 0.9140 0.8381 0.8452 0.8141 0.8274 0.7921 0.8912 0.8798   

HR 0.9285 0.8334 0.7425 0.8433 0.8246 0.9262 0.8925 0.8574   

Group4 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 Female5 

Tsk 0.9843 0.9661 0.9783 0.9520 0.9800 0.9761 0.9750    

Tcore 0.8812 0.8203 0.8672 0.8460 0.8392 0.947 0.9192    

HR 0.9470 0.8437 0.8011 0.9054 0.8283 0.9318 0.8373    
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Table 6.  Ranked and scaled sensitivity derivatives in Jungle and Desert conditions for ‘average’ 

subject from each group. 

 

6a. Males 
 
 JUNGLE 
 Male Group 1 Male Group 2 Male Group 3 Male Group 4 

Skin ‘Height' 

 

'VO2max' 

'Weight' 

'HR    ' 

'M     ' 

'age   ' 

-1.0000 

 (0.0307) 

-0.8168 

-0.5168 

0.4580 

0.1808 

-0.0729 

'VO2max' 

 

    'Height' 

    'HR    ' 

    'age   ' 

    'M     ' 

    'Weight' 

-1.0000 

(0.0499) 

-0.6403 

0.5607 

-0.3570 

0.2425 

-0.1791 

  'VO2max' 

 

    'Height' 

    'HR    ' 

    'age   ' 

    'Weight' 

    'M     ' 

-1.0000 

(0.0402) 

-0.9099 

0.5445 

-0.3629 

-0.3210 

0.1272 

   'Height' 

 

    'HR    ' 

    'age   ' 

    'VO2max' 

    'M     ' 

    'Weight' 

-1.0000 

(0.0358) 

0.4420 

-0.3815 

-0.3348 

-0.1268 

0.1177 

Core 'Height' 

 

'VO2max' 

'Weight' 

'HR    ' 

'M     ' 

'age   ' 

-1.0000 

(0.0208) 

0.6244 

-0.5352 

-0.5329 

0.3199 

-0.0128 

  'VO2max' 

 

    'M     ' 

    'Height' 

    'Weight' 

    'HR    ' 

    'age   ' 

-1.0000 

(0.0456) 

0.6592 

0.5426 

-0.4719 

0.3152 

0.0543 

   'VO2max' 

 

    'M     ' 

    'Height' 

    'Weight' 

    'HR    ' 

    'age   ' 

-1.0000 

(0.0345) 

0.6557 

0.6164 

-0.4187 

0.3391 

0.1024 

'Height' 

 

    'M     ' 

    'age   ' 

    'Weight' 

    'HR    ' 

    'VO2max' 

1.0000 

(0.0186) 

0.4067 

0.3757 

-0.3748 

-0.1680 

-0.0047 

HR 'Height' 

 

'VO2max' 

'Weight' 

'HR    ' 

'M     ' 

'age   ' 

1.0000 

(0.6435) 

0.6887 

-0.6825 

-0.5687 

0.2964 

0.0407 

'VO2max' 

 

    'M     ' 

    'Weight' 

    'Height' 

    'HR    ' 

    'age   ' 

-1.0000 

(1.6084) 

0.6686 

-0.5244 

0.4324 

0.3781 

0.0388 

  'VO2max' 

 

    'M     ' 

    'Weight' 

    'HR    ' 

    'Height' 

    'age   ' 

-1.0000 

(1.1731) 

0.7125 

-0.5661 

0.4910 

0.4096 

0.1027 

'Height' 

 

    'Weight' 

    'M     ' 

    'age   ' 

    'VO2max' 

    'HR    ' 

1.0000 

(0.4831) 

-0.6204 

0.5774 

0.4706 

0.0639 

-0.0028 
                             DESERT    

 Male Group 1 Male Group 2 Male Group 3 Male Group 4 

Skin   'Height' 

    

 VO2max' 

    'age   ' 

    'M     ' 

    'Weight' 

    'HR    ' 

-1.0000 

(0.1226) 

-0.6771 

-0.1032 

-0.0824 

-0.0797 

0.0289 

  'Weight' 

 

    'Height' 

    VO2max' 

    'age   ' 

    'M     ' 

    'HR    ' 

-1.0000 

(0.0384) 

-0.9929 

-0.7021 

-0.1229 

-0.0891 

-0.0148 

  'Weight' 

 

    'HR    ' 

   'VO2max' 

    'M     ' 

    'age   ' 

    'Height' 

-1.0000 

(0.1588) 

-0.8961 

-0.4687 

-0.3690 

0.1485 

-0.0679 

'Height' 

 

    'VO2max' 

    'age   ' 

    'M     ' 

    'HR    ' 

    'Weight' 

1.0000 

(0.1146) 

0.7765 

-0.5112 

-0.1242 

-0.0624 

0.0616 

Core 'Height' 

    

'VO2max' 

    'HR    ' 

    'M     ' 

    'Weight' 

    'age   ' 

1.0000 

(0.0667) 

-0.6832 

0.0712 

0.0539 

0.0512 

-0.0173 

'Height' 

    'VO2max' 

    'Weight' 

    'HR    ' 

    'age   ' 

    'M     ' 

1.0000 

(0.0192) 

0.7685 

0.6059 

-0.1172 

0.0431 

0.0119 

'Weight' 

 

    'HR    ' 

   'VO2max' 

    'M     ' 

    'Height' 

    'age   ' 

1.0000 

(0.0536) 

0.8775 

0.6373 

0.3704 

0.2671 

-0.1984 

'VO2max' 

 

    'Height' 

    'HR    ' 

    'M     ' 

    'Weight' 

    'age   ' 

-1.0000 

(0.0127) 

-0.9101 

0.3905 

0.3741 

0.3580 

0.1439 

HR 'VO2max' 

 

    'Height' 

    'age   ' 

    'Weight' 

    'HR    ' 

    'M     ' 

-1.0000 

(0.8082) 

-0.9513 

0.8146 

-0.5613 

-0.2875 

0.0845 

'Weight' 

 

    'age   ' 

    VO2max' 

    'HR    ' 

    'M     ' 

    'Height' 

-1.0000 

(0.8205) 

0.6184 

0.5288 

-0.2391 

0.0714 

0.0368 

'Weight' 

 

    'age   ' 

    'Height' 

    VO2max' 

    'HR    ' 

    'M     ' 

-1.0000 

(1.2349) 

0.6460 

-0.2815 

0.1717 

-0.1112 

0.0678 

  'Height' 

 

    'VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

    'HR    ' 

1.0000 

(0.7449) 

0.8327 

-0.3591 

0.2020 

-0.1281 

0.0783 
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6b. Females 
 
 JUNGLE 
 Female Group 1 Female Group 2 Female Group 3 Female Group 4 

Skin 'Height' 

 

   'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

1.0000 

(0.2052) 

-0.0792 

-0.0422 

-0.0383 

0.0152 

0.0070 

  'HR    ' 

 

    'Height' 

    VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(0.0839) 

0.2866 

-0.2551 

-0.0998 

0.0254 

0.0046 

'Height' 

 

    'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

1.0000 

(0.2052) 

-0.0792 

-0.0422 

-0.0383 

0.0152 

0.0070 

  'HR    ' 

 

    'Height' 

    VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(0.0839) 

0.2866 

-0.2551 

-0.0998 

0.0254 

0.0046 

Core    'Height' 

 

   'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

-1.0000 

(0.0074) 

-0.7913 

-0.4197 

-0.3538 

0.1738 

0.0582 

'VO2max' 

 

    'Height' 

    'Weight' 

    'HR    ' 

    'age   ' 

    'M     ' 

-1.0000 

(0.0767) 

0.7765 

-0.3896 

0.0527 

0.0461 

0.0047 

   'Height' 

 

    'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

-1.0000 

(0.0074) 

-0.7913 

-0.4197 

-0.3538 

0.1738 

0.0582 

'VO2max' 

 

    'Height' 

    'Weight' 

    'HR    ' 

    'age   ' 

    'M     ' 

-1.0000 

(0.0767) 

0.7765 

-0.3896 

0.0527 

0.0461 

0.0047 

HR    'Height' 

 

   'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

1.0000 

(4.0794) 

-0.0464 

-0.0257 

-0.0183 

0.0110 

0.0034 

'HR    ' 

   

  'VO2max' 

    'Height' 

    'Weight' 

    'age   ' 

    'M     ' 

1.0000 

(2.9869) 

0.8947 

-0.6043 

0.3455 

-0.0492 

0.0217 

   'Height' 

 

    'VO2max' 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

1.0000 

(4.0794) 

-0.0464 

-0.0257 

-0.0183 

0.0110 

0.0034 

'HR    ' 

  

   'VO2max' 

    'Height' 

    'Weight' 

    'age   ' 

    'M     ' 

1.0000 

(2.9869) 

0.8947 

-0.6043 

0.3455 

-0.0492 

0.0217 
                             DESERT    

 Female Group 1 Female Group 2 Female Group 3 Female Group 4 

Skin 'Height' 

 

    'Weight' 

    'M     ' 

    'HR    '    

'VO2max' 

    'age   ' 

-1.0000 

(0.1737) 

-0.5117 

0.4560 

0.4544 

-0.3486 

0.0033 

'HR    ' 

 

    'Height' 

    'Weight' 

    'M     ' 

    'age   '    

'VO2max' 

-1.0000 

(0.0969) 

-0.6465 

-0.4915 

-0.3519 

0.1297 

-0.0638 

'Weight' 

 

    'M     ' 

    'HR    ' 

    'Height' 

    VO2max' 

    'age   ' 

-1.0000 

(0.2013) 

-0.1653 

0.1031 

0.0783 

0.0686 

0.0681 

'HR    ' 

 

   'VO2max' 

    'M     ' 

    'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(0.1002) 

-0.6901 

-0.3525 

-0.0950 

0.0926 

0.0846 

Core   'Height' 

 

   'VO2max' 

    'M     ' 

    'Weight' 

    'HR    ' 

    'age   ' 

-1.0000 

(0.2101) 

-0.3828 

0.3810 

-0.2437 

0.2225 

-0.0396 

'Height' 

 

    'HR    ' 

   'VO2max' 

'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(0.0888) 

-0.6387 

-0.5965 

-0.4501 

0.0513 

0.0464 

  'Weight' 

 

    'Height' 

   'VO2max' 

    'HR    ' 

    'M     ' 

    'age   ' 

-1.0000 

(0.0507) 

0.8240 

-0.5391 

-0.2055 

0.0592 

0.0520 

'Height' 

 

    'HR    ' 

    'Weight' 

   'VO2max' 

    'age   ' 

    'M     ' 

1.0000 

(0.2851) 

-0.1692 

-0.1195 

-0.1001 

0.0207 

0.0202 

HR   'M     ' 

 

    'HR    '    

'VO2max' 

    'Height' 

    'Weight' 

    'age   ' 

1.0000 

(0.9551) 

0.7674 

-0.5548 

-0.3551 

-0.3133 

-0.0079 

  'Height' 

 

    'HR    ' 

    VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(3.7397) 

0.5831 

0.4943 

0.2906 

-0.0351 

-0.0186 

'Height' 

  

   'VO2max' 

    'HR    ' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(1.2761) 

0.8468 

0.7491 

-0.1037 

-0.0921 

0.0340 

'Height' 

 

    'HR    ' 

    'Weight' 

    'age   ' 

    VO2max' 

    'M     ' 

-1.0000 

(10.9790) 

0.1449 

0.1163 

-0.0186 

0.0183 

-0.0015 

 

 

 

 

 

 

 



   

 114 

 

 

 

Table 7.  Ranked and scaled sensitivity derivatives in Neutral and Cold conditions for an 

‘average’ subject from each group. 

 

7a.  Males 
 
 NEUTRAL 
 Male Group 1 Male Group 2 Male Group 3 Male Group 4 

Skin 'VO2max' 

 

    'M     ' 

    'HR    ' 

    'age   ' 

    'Weight' 

    'Height' 

-1.0000 

(0.0596) 

0.7546 

0.6593 

0.3512 

-0.2115 

-0.0608 

  'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(0.0943) 

0.5339 

0.4549 

-0.3209 

-0.1890 

-0.0288 

'VO2max' 

 

    'Weight' 

    'M     ' 

    'age   ' 

    'HR    ' 

    'Height' 

-1.0000 

(0.0915) 

-0.5862 

0.4256 

-0.1335 

0.1155 

0.0658 

'VO2max' 

 

    'HR    ' 

    'M     ' 

    'Height' 

    'Weight' 

    'age   ' 

-1.0000 

(0.0761) 

0.7357 

0.6903 

-0.2913 

-0.2654 

-0.1324 

Core 'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(0.0494) 

0.9818 

0.7320 

-0.2322 

-0.1995 

0.0992 

   'M     ' 

 

    'HR    ' 

    'VO2max' 

    'Height' 

    'Weight' 

    'age   ' 

1.0000 

(0.0346) 

0.7116 

-0.5670 

0.2015 

-0.1186 

-0.1130 

    'M     ' 

 

    'HR    ' 

    'VO2max' 

    'age   ' 

    'Height' 

    'Weight' 

1.0000 

(0.0535) 

0.8582 

-0.5472 

-0.1770 

0.1097 

0.0093 

'Height' 

 

    'age   ' 

    'M     ' 

    'VO2max' 

    'Weight' 

    'HR    ' 

1.0000 

(0.0619) 

-0.3773 

0.2728 

0.2440 

0.1029 

0.0431 

HR 'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(1.7602) 

0.9260 

0.6919 

-0.2702 

-0.2027 

0.1044 

'M     ' 

 

    'VO2max' 

    'HR    ' 

    'Weight' 

    'Height' 

    'age   ' 

1.0000 

(1.1042) 

-0.8093 

0.7340 

-0.2925 

0.1750 

-0.1177 

'M     ' 

 

    'HR    ' 

    'VO2max' 

    'Weight' 

    'age   ' 

    'Height' 

1.0000 

(1.6003) 

0.8076 

-0.6502 

-0.2326 

-0.1512 

0.0669 

  'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'Height' 

    'age   ' 

-1.0000 

(1.6833) 

0.6670 

0.6355 

-0.2567 

-0.2002 

-0.0601 
                             COLD    

 Male Group 1 Male Group 2 Male Group 3 Male Group 4 

Skin 'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(0.1254) 

0.6508 

0.4718 

-0.3122 

-0.2065 

0.1588 

 'VO2max' 

 

    'M     ' 

    'HR    ' 

   'Weight' 

    'age   ' 

    'Height' 

-1.0000 

(0.0916) 

0.9661 

0.7239 

-0.3813 

-0.2169 

0.1440 

'VO2max' 

 

    'M     ' 

    'Weight' 

    'HR    ' 

    'Height' 

    'age   ' 

-1.0000 

(0.1099) 

0.8237 

-0.5119 

0.4979 

0.2050 

-0.1843 

'Height' 

 

    'M     ' 

    'VO2max' 

    'HR    ' 

    'age   ' 

    'Weight' 

1.0000 

(0.0864) 

0.7971 

-0.5506 

0.5298 

-0.4803 

-0.3115 

Core 'M     ' 

 

    'HR    '    

VO2max' 

    'Weight' 

    'Height' 

    'age   ' 

1.0000 

(0.0108) 

0.8668 

-0.8210 

-0.2639 

0.1094 

-0.0298 

  'M     ' 

    'VO2max' 

    'HR    ' 

    'Height' 

   'Weight' 

    'age   ' 

1.0000 

(0.0044) 

-0.8247 

0.6706 

0.4811 

0.0732 

-0.0485 

'HR    ' 

 

    'M     ' 

    'Weight' 

    'VO2max' 

    'age   ' 

    'Height' 

1.0000 

(0.0093) 

0.8360 

0.5040 

-0.3730 

-0.1399 

0.0718 

'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Height' 

    'Weight' 

    'age   ' 

-1.0000 

(0.0260) 

0.7896 

0.5192 

-0.2338 

-0.1972 

0.0144 

HR  'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'Height' 

    'age   ' 

-1.0000 

(0.9350) 

0.6692 

0.5025 

-0.3224 

0.1524 

-0.1220 

'VO2max' 

 

    'M     ' 

    'HR    '    

'Weight' 

    'Height' 

    'age   ' 

-1.0000 

(0.6525) 

0.9854 

0.7294 

-0.3266 

0.2299 

-0.1688 

   'M     ' 

 

    'VO2max' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'Height' 

1.0000 

(0.7283) 

-0.9832 

0.8712 

-0.2380 

-0.1957 

0.1582 

   'VO2max' 

 

    'M     ' 

    'HR    ' 

    'Weight' 

    'Height' 

    'age   ' 

-1.0000 

(0.9646) 

0.8780 

0.6396 

-0.3306 

-0.0959 

-0.0489 
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7b. Females   
 
 NEUTRAL 
 Female Group 1 Female Group 2 Female Group 3 Female Group 4 

Skin    'Height' 

 

    'HR    ' 

    'M     ' 

    

'VO2max' 

    'age   ' 

    'Weight' 

-1.0000 

(0.4401) 

0.1941 

0.1908 

-0.0468 

0.0060 

-0.0024 

'HR    ' 

 

    'Height' 

    'M     ' 

    'VO2max' 

    'Weight' 

    'age   ' 

1.0000 

(0.0379) 

0.4880 

-0.4250 

-0.3696 

0.1242 

0.0596 

   'M     ' 

 

    'Height' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'VO2max' 

1.0000 

(0.0145) 

-0.9927 

0.9741 

0.3912 

0.1264 

0.1055 

'Height' 

 

    'VO2max' 

    'HR    ' 

    'M     ' 

    'Weight' 

    'age   ' 

1.0000 

(0.0691) 

-0.7113 

0.4191 

0.2255 

-0.1747 

0.0765 

Core 'Height' 

 

    'HR    ' 

    'M     ' 

    

'VO2max' 

    'Weight' 

    'age   ' 

-1.0000 

(0.2805) 

0.1273 

0.1246 

-0.0501 

-0.0267 

-0.0001 

'Height' 

 

    'VO2max' 

    'HR    ' 

    'Weight' 

    'age   ' 

    'M     ' 

-1.0000 

(0.0919) 

0.6874 

-0.3885 

0.3716 

-0.0661 

0.0546 

   'Height' 

 

    'VO2max' 

    'HR    ' 

    'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(0.0331) 

-0.6904 

-0.5064 

-0.2698 

0.1636 

0.0627 

'Height' 

 

    'Weight' 

    'VO2max' 

    'HR    ' 

    'age   ' 

    'M     ' 

1.0000 

(0.3721) 

-0.1253 

-0.0920 

-0.0688 

0.0284 

0.0103 

HR 'HR    ' 

 

    'Height' 

    'M     ' 

    

'VO2max' 

    'Weight' 

    'age   ' 

1.0000 

(0.5884) 

-0.9977 

0.9580 

-0.2107 

-0.1902 

0.1173 

'Height' 

 

    'HR    ' 

    'VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(3.4201) 

0.8945 

-0.7080 

0.4223 

-0.0703 

0.0537 

'HR    ' 

 

    'Height' 

    'VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

1.0000 

(1.1482) 

-0.9973 

0.8577 

0.3942 

0.1622 

-0.0050 

'Height' 

 

    'HR    ' 

    'Weight' 

    'VO2max' 

    'M     ' 

    'age   ' 

-1.0000 

(14.1845) 

0.1828 

0.1232 

0.0477 

0.0248 

-0.0240 

                             COLD    

 Female Group 1 Female Group 2 Female Group 3 Female Group 4 

Skin 'Height' 

 

    'Weight' 

    'M     ' 

    'HR    ' 

    'age   ' 

    

'VO2max' 

-1.0000 

(0.5384) 

0.1941 

0.1908 

0.0468 

-0.0060 

0.0024 

'Height' 

 

    'HR    ' 

    'VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(0.3751) 

-0.5662 

-0.2842 

-0.1759 

0.0929 

-0.0589 

  'Height' 

 

    'Weight' 

    'M     ' 

    'age   ' 

    'VO2max' 

    'HR    ' 

-1.0000 

(0.3742) 

0.9927 

0.9741 

-0.3912 

-0.1264 

-0.1055 

  'HR    ' 

 

    'VO2max' 

    'Height' 

    'M     ' 

    'Weight' 

    'age   ' 

-1.0000 

(0.2593) 

-0.9295 

0.1834 

0.1763 

0.1172 

-0.0612 

Core 'Height' 

 

    'HR    ' 

    'M     ' 

    'Weight' 

    'age   ' 

    

'VO2max' 

-1.0000 

(0.2581) 

0.1273 

0.1246 

0.0501 

-0.0267 

-0.0001 

'VO2max' 

 

    'HR    ' 

    'Height' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(0.0906) 

-0.9480 

0.4039 

-0.3758 

0.0584 

0.0445 

'VO2max' 

 

    'HR    ' 

    'Height' 

    'M     ' 

    'Weight' 

    'age   ' 

-1.0000 

(0.0249) 

-0.6904 

-0.5064 

0.2698 

-0.1636 

-0.0627 

'Height' 

 

    'HR    ' 

    'VO2max' 

    'Weight' 

    'age   ' 

    'M     ' 

1.0000 

(0.4716) 

-0.1713 

-0.1411 

-0.1178 

0.0245 

0.0117 

HR 'HR    ' 

 

    'M     ' 

    'Height' 

    'Weight' 

    

'VO2max' 

    'age   ' 

1.0000 

(0.7461) 

0.9977 

0.9580 

0.2107 

-0.1902 

-0.1173 

  'Height' 

 

    'VO2max' 

    'HR    ' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(3.5811) 

0.6936 

0.6396 

0.4979 

0.1032 

-0.0772 

'Height' 

 

    'HR    ' 

    'VO2max' 

    'Weight' 

    'M     ' 

    'age   ' 

-1.0000 

(1.7732) 

0.9973 

0.8577 

0.3942 

0.1622 

-0.0050 

'Height' 

 

    'Weight' 

    'HR    ' 

    'M     ' 

    'age   ' 

    'VO2max' 

-1.0000 

(17.0163) 

0.1329 

0.0898 

0.0310 

-0.0309 

-0.0064 
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FIGUERS 

 

Figure 1. Experimental Tskin data for members of Female Group 2 and predictions for 

the ‘average’ person in that group.  
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Figure 2. Experimental Tcore data for members of Male Group 2 and predictions for the 

‘average’ person in that group. 
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Figure 3.  Experimental HR data for members of Male Group 2 and predictions for the 

‘average’ person in that group. 
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CHAPTER  6  

 

HUMAN THERMAL MODEL WITH EXTREMITIES  

FOR ASYMMETRIC ENVIRONMENTS 

 

 

Abstract.  A new computational model of the human thermal system is developed that accounts 

for asymmetric environments and includes extremities is reported. The model incorporates 2-

dimensional (radial and circumferential) heat transfer along with arterial and venous 

countercurrent blood flow.  Digits to predict toe and fingertip are modeled as well as 

arteriovenous anastomoses (AVAs), all of which are important in extremity discomfort. 

 

I. INTRODUCTION  

Humans are poor judges of their thermal state, and so are not able to control their thermal 

comfort well.  As an example, the authors have been working with NASA to automate thermal 

control in astronaut spacesuits.  NASA found during the first space flight that sufficient cooling 

of an astronaut could not be accomplished via air convection in the suit due to ventilation, and 

have since been using a liquid cooling garment (LCG) to circulate water for cooling the astronaut 

during space walks.  In the present arrangement, the astronaut controls the temperature of the 

water flowing through the LCG by manually adjusting the temperature control valve (TCV) 

located on the front of the space suit.  However, manually manipulating the TCV setting can 

dramatically reduce the productivity of the astronaut, distracting them from the extra-vehicular 

activity (EVA) mission at hand; and since an astronaut’s attention is focused on other things 

during EVA, there are time lags in the application of temperature control.  This can cause 
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overheating or overcooling; placing unneeded thermal stress on the astronaut, and degrading 

EVA performance.  Human thermal models are needed to accurately describe the transient heat 

transfer processes and predict the thermal response within an acceptable band of accuracy before 

an automatic controller can be designed.  Such human thermal models are also relevant for 

various other applications involving fire fighters, combat pilots, hazardous waste workers, and 

other industries where comfort in a thermally stressful environment needs to be insured. 

The development of mathematical models for human thermoregulation started in the early 

20th century [44].  Early models used simple representations for the human thermal system.  

However, in the 1960s, more detailed models were developed that incorporated our increased 

understanding of human thermoregulation, as these complexities became known, to improve 

accuracy [20, 44, 16].  Although many aspects of the human active thermal system are is still not 

understood well.  The passive thermal system has been computationally better modeled although 

the parametric and model approximates do present challenges.  The latter is due to unaccounted 

parameter variations between human subjects (inter-subject variations) and effects influencing 

the individual at different times (intra-subject variations).  It is advantageous for a modeler to 

identify important parameters of the passive thermal system and quantify their effect on the 

model’s response to gain a better understanding of modeling issues and limitations.   

Numerous human thermal models have been developed and used in many practical 

applications for the past sixty years, starting with the development of a steady-state model to 

analyze heat transfer in a resting human forearm by Pennes in 1948  [10].  This cylindrical model 

served as the basis for a more advanced model by Wissler [7] and it is still widely used for 

prediction of temperature elevation during hyperthermia [22, 23].  Subsequent advances in 

computing technology and increased experimental data on human physiology helped researchers 
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in developing better and more sophisticated human thermal models.   In the 1960s, early versions 

of the well-known Wissler [20], Stolwijk [14], and Gagge [3] models were being developed.  All 

later human thermal models for the most part, are probably extensions of these three 

mathematical models.  

However, due to the natural complexity of human thermoregulation, it has been difficult to 

study the issue of accuracy for such models.  Quantitative comparisons among models have also 

been difficult due to the individual characteristics of each model under particular environmental 

conditions [2, 24, 25].  From a user point of view, it has not been clear which of the models 

would be best suited for a particular environment and application. Various research teams [18, 

21, 26, 27] have developed models in the past decade to be used in environments that range from 

uniformly steady state to extremely transient and non-uniform.  Models such as the Kansas State 

University model [26, 28], the Berkeley model [27], and the MU model [18] are in development 

to achieve such objectives.  Even though these models incorporate more detail, they have their 

roots either in the Wissler [15] or the Stolwijk [14] models.  All these models include heat 

transfer within the body as well as between the body and its environment, as well as sweating, 

shivering, and vasomotor capabilities.   

This paper is organized as follows: section II provides a brief review of human thermal 

models, section III presents the additions made to the 41-Node Man and dynamic equations for 

numerical solutions, section IV reports the simulation results with discussion, and section V 

states the conclusions. 

 

II. PROPOSED 2-D MODEL WITH EXTREMITIES 

The thermal model presented in this paper, the MU Man model, incorporates many aspects of 

past human thermal models, especially the 41-Node Man [1] which is based on Stolwijk’s six-

segment, 25-node model [14].  The 14 major cylindrical segments include the head, torso, arms, 
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hands fingers, legs, feet and toes.  The five fingers on each hand are represented as one cylinder 

and so are the five toes on each foot neither of which are present in the 41-Node Man.  Similar to 

the 41-Node man, each segment contains four concentric layers representing the four layers the 

core, muscle, fat and skin regions.   

The MU Man model also incorporates two-dimensional (radial and angular) heat conduction 

within the body as opposed to the radial-only in the 41-Node man model.  Each body element in 

the model contains six angular sectors to account for these angular temperature variations.  The 

model utilizes finite difference method (FDM) to solve the system of equations.  The FDM 

approach was used as opposed to finite element method (FEM) to achieve faster execution for 

simulating a variety of input conditions [43].  Thermal modeling combining both FDM and FEM 

features has been successfully done [26], and could be an attractive alternative. 

The MU Man model incorporates heat exchange between tissues and arteries/veins where the 

arterial and venous temperatures vary from element to element in contrast to a single blood pool 

used by the 41-Node Man model.  In addition, the MU Man model incorporates the 

arteriovenous anastomoses (AVAs) in the digits along with the effects of cold-induced 

vasodilatation (CIVD), which will be important in studies dealing with extremity discomfort. 

A. Two-dimensional Conduction 

One-dimensional models cannot account for cases where disparate environmental conditions 

exist on different sides of the body.  A study by Hall and Klemm showed that when the body was 

exposed to cold (-6.7°C) and hot (82ºC and 93.3°C) radiative temperatures on different sides of 

the body, skin temperature differences between the anterior and posterior sides ranged between 

9-10ºC [4].  These experiments by Hall and Klemm were also validated through simulations of 

the two-dimensional model developed by Kuznetz where the environmental conditions of the 
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experiments were duplicated for the simulations [6].  Kuznetz’s model also predicted different 

anterior and posterior temperatures for the same body element.  For wall temperatures of -6.7° 

and 82º C, temperature differences between Kuznetz’s model and Hall and Klemm’s experiment 

never exceed 1.5º C.  A one-dimensional model where temperature does not vary with the angle 

cannot predict such temperature differences on different sides of the same body element. 

In addition, one-dimensional models cannot account for cases where non-uniform heat 

generation within body causes temperatures to vary for different sides of an element.  Non-

uniform heat generation can occur due to non-homogeneity of organs within an element.  Also, 

non-uniform heat generation can occur within muscles during exercise.  For example, a 

particular exercise could work the hamstrings, but not the quadriceps.  This would cause more 

heat generation in the back of the leg than in the front. 

B. Modeling the Digits  

For the development of this model, explicit modeling of digits (fingers and toes) was 

incorporated, which has been suggested by NASA to be important.  Studies have shown [5] that 

the digits, especially the fingers, respond to changes in the thermal environment quicker than all 

other locations of the body.  Thus, a change in a digit temperature is a good indication of thermal 

imbalance in the body.  Thus, a human thermal model that accurately predicts the digit thermal 

dynamics is important.   

Accurate digit modeling is also important in extra-vehicular activity (EVA) applications.  

During EVA, astronauts encounter situations where they must handle objects with glove 

protected fingers and hands.  If the object is at a different temperature than the glove, then heat 

transfer will occur between the glove and object.  This will cause some kind of thermal 



   

 124 

imbalance that will be detected first by the fingers.  Thus, thermal comfort must still be insured 

during such heat exchanges. 

C. Detailed Cardiovascular Model 

In the past, many different techniques have been used to thermally model blood [1, 3, 14, 15, 

16].  One technique is to use a single blood pool, which assumes that the blood temperature is the 

same throughout the body.  This assumption greatly simplifies the circulatory system.  Since, the 

arterial blood flow is so fast, it is assumed the blood temperature is homogeneous all throughout 

the body.  However, this blood modeling technique does not incorporate the fact that blood 

entering the tissue will exit the arteries approximately at the tissue temperature.  In addition, it is 

known that the blood temperature varies at different locations in the body.  Therefore, there is a 

need to incorporate a blood model that includes the explicit modeling of arteries and veins where 

blood temperature can vary at different areas in the body as seen in the Wissler model [15].  In 

independently modeling arteries and veins, heat transfer occurs between the arteries and tissue, 

and between the veins and tissue.  In addition, countercurrent heat exchange between arteries and 

veins approaches a realistic circulatory system.  However, problems arise due to the difficulty in 

determining parameters such as the heat transfer coefficients between the arteries and veins, 

between the arteries and tissue, and between the veins and tissue.   

D. AVA Modeling 

The arteriovenous anastomoses are basically shunts which directly connect the arteries and 

venous plexuses, through which nutrient materials, metabolic products, and gases are not 

normally exchanged with the tissue fluids [36].  The AVAs are located in all major organs and its 

diameters vary depending upon the size of the vessel from which an AVA arises.  In total length 

AVAs may vary form extremely short “side to side” shunts of only a few micrometers to true 
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vessels which may reach 2-4 mm, in length.  They have a relatively large diameter, on an 

average 35 µm (20—70 µm) as compared to capillaries (5—10 µm) and are richly supplied with 

nerve fibers [37].  For heat exchange, most of this vasculature is located in the hands, feet, ears 

and hairless regions of the face [38, 39].  When they are open, large amounts of blood can pass 

through to the venous plexuses.  It is estimated that blood flow into the subcutaneous venous 

plexuses can be as much as 30% of the total cardiac output [19].  Activation of sympathetic 

nerves leads to active vasoconstriction, and decrease in sympathetic activity leads to passive 

vasodilatation. In a moderately warm environment, the AVAs are open; and in the cold, the 

AVAs are almost closed.    Thus, AVAs play a key role in regards to the thermal comfort of 

extremities [5].  A few published models [33, 34] have incorporated AVA vasomotor control to 

improve skin blood flow rate in limbs.  Due to the importance of AVAs in human 

thermoregulation, the functions of the AVAs are included in this model, and its inclusion paves 

the way for future studies involving extremity discomfort. 

E. Cold-Induced Vasodilatation 

The phenomenon termed cold-induced vasodilatation (CIVD) most likely can be attributed to 

the AVAs.  In CIVD, sufficient cold exposure causes temporary cyclic increases in blood 

perfusion to the fingers, which in turn increases finger temperatures.  In general, CIVD is 

thought to be the body’s way of preventing cold injuries [29] and improving manual dexterity in 

the cold.  There have been a few noteworthy attempts to model a single digit during cold stress 

that include the CIVD phenomenon [30, 31].  For this study, the effects of CIVD on the finger 

will be modeled while using a whole-body simulation. 

F. Model Equations 

This model features three different clothing ensembles, nude, liquid cooling garment (LCG), 

and liquid cooling and ventilation garment (LCVG) with suit.  For this paper, the equations for 
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the nude human will be the focus.  However, the complete documentation of the model, 

including parameter values (which are too numerous to include in this paper), can be obtained if 

the reader desires further insight [18]. 

The human thermal system can be divided into two components.  The first is the passive 

thermal system that includes non-decision making heat transfer processes.  The second 

component is the active thermal system that includes all the decision-making processes such as 

sweating, shivering and vasomotor functions.  These active systems attempt to update parameters 

or heat exchange rates on-line depending on the thermal state of the simulated subject. 

Passive System 

This human thermal model utilizes 14 cylindrical elements to represent the human body as 

shown in Figure 1a.  Within each element are four concentric regions: the core, muscle, fat and 

skin layers as shown in Figure 1b.  Each element contains radially and angularly varying 

temperature nodes.  Each element contains six equally spaced angular sectors.  Six angular 

sectors were used since it was shown that this enough to insure accurate temperature deviations 

in the angular direction [7].  Figure 1c shows the nodal spacing within each sector for the nude 

case.  For the nude case, there are a total of 686 temperature nodes.  The heat equation for two-

dimensional conduction and heat generation is shown below. 
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The term on the left-hand side of Eq. 1 represents the heat storage, V represents the volume, C 

represents the thermal mass, the bracketed term on the right represents the conduction between 
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tissues, bloodQ&  represents the rate of heat addition due to blood, genQ& represents the rate of heat 

generation, and respQ& represents the rate of heat addition due to the respiratory system. 

Eq. 1 is used for tissue nodes in the middle of a specific tissue region.  However, there is a 

need for an equation for the temperature node at the interface between two distinct tissue regions.  

The following heat flux equality can be used for this purpose. 
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In Eq. 2, kin represents the conductivity of the tissue layer on the inside of the interface and kout 

represents the conductivity of the tissue layer on the outside of the interface.   

In addition, at the edge of the skin layer, the following boundary condition must be 

imposed. 
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For the nude case 
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where convQ& , radQ& , and latQ&  represent the rate of heat transfer to due to convection, radiation and 

latent heat loss, respectively.  It should be noted that latQ&  represents the latent heat loss for the 

entire body element.   

Convection - The rate of heat transfer due to convection from the surrounding air to a 

skin temperature node is  
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where h is the convection coefficient, A is the area of the skin surface and Tair is the ambient air 

temperature. 

Radiation - The rate of heat transfer due to radiation from the surroundings to the skin 

surface is 
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where A is the skin surface area, σ is the Stefan-Boltzmann constant, F is the interchange factor 

and Tr is the radiant temperature. 

4.1. RESPIRATORY HEAT LOSS - THE RATE OF RESPIRATORY HEAT LOSS HAS 

TWO COMPONENTS: SENSIBLE AND LATENT HEAT LOSS SUCH THAT  
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where Kresp is the percentage of the respiratory heat loss at a specific temperature node, MR is the 

metabolic rate, Tair,abs is the absolute air temperature, Pvair is water vapor pressure of air, Pgresp is 

the saturation pressure of water at the respiratory temperature, Cpair is the specific heat of air, 
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Pair,abs is the absolute air pressure, Tresp is the respiratory temperature, and G1 and G2 are 

empirical constants . 

Heat transfer due to blood - The rate of heat transfer due to the blood to each tissue 

node is  
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where  bbb Cpme && = , hAa is the heat transfer coefficient between the tissue and artery, hAv is the 

heat transfer coefficient between the tissue and vein, be&  is the thermal mass blood flow rate, and 

Ta and Tv are the artery and vein temperatures, respectively.  In this model, blood flow is 

assumed to originate at the heart flowing to tissue layers through the arteries, which flow into the 

capillary bed and then exits the tissue layer through the veins.  In this model, it is assumed that 

the blood entering tissue will exit the arteries approximately at the tissue temperature.  Thus, 

blood entering the capillaries will approximately be at the tissue temperature.  Thus, the term in 

Eq. 10 that involves be&  indicates perfect heat transfer within the capillary bed, or in other words 

that blood entering the capillary bed (at the tissue temperature) will exit at the vein temperature.   

Active System 

The active thermal system used in this thermal model utilizes the equations used for 

sweating, shivering and vasomotor actions from the 41-Node Man [1]. 

Latent heat transfer - The latent transfer of heat from the skin is comprised of two 

components: diffusion and active sweating such that 
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where A is the diffusion area, Pvair is the water vapor pressure of the environment, Pgskin is the 

saturated pressure of water at the skin temperature, Ksweat is the sweat distribution, Tset is the 

setpoint temperature, Tc is the core temperature, γsw is the skin mass distribution, and G4, G5 and 

G6 are empirical constants.  In addition, active sweating is limited by the maximum evaporative 

capacity 
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where Hmass is the mean mass transfer coefficient, hfg,air is the enthalpy of vaporization, Rw is the 

universal gas constant, and G7 is an empirical constant.  As state previously, latQ&  represents the 

latent heat loss from an entire body element.  The superscript “- or 0” indicates that the 

preceding term must be either negative or zero and the superscript “+ or 0” indicates that the 

preceding term must be either positive or zero. 

Shivering - The rate of heat production due to shivering is distributed within the muscle 

region of each element and is given by 
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where Tset,s is the skin setpoint temperature, Ts is the skin temperature, γsh is the skin mass 

distribution, Tset,c is the core setpoint temperature, Tc is the core temperature, Kshiver is the shiver 

distribution, G8 is an empirical constant and Mm/Mm0 is the muscle mass to nominal muscle mass 

ratio.  The superscript “+ or 0” indicates that the preceding term must be either positive or zero. 

Vasomotor functions - In this model, the vasomotor actions work either to increase or 

decrease the blood flow rate to the skin.  During vasodilatation, the blood flow rate to the skin is 

increased to encourage heat loss to the environment.  During vasoconstriction, the blood flow 

rate to the skin is decreased to inhibit heat transfer to the environment.  Vasodilatation occurs 

when the simulated subject is too warm, and vasoconstriction when cold.  The skin thermal mass 

blood flow rate is updated on-line using the following equation: 
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where Kdil is the vasodilatation distribution, Kcons is the vasoconstriction distribution, Ms/Ms0 is 

the skin mass to nominal skin mass ratio, and G9 and G10 are empirical constants.  The 

superscript “+ or 0” indicates that the preceding term must be either positive or zero. 
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 The AVA system – The AVA mechanism in our human thermal model is defined as a 

function of core temperature, mean skin temperature, and skin temperatures at the distal parts.  

The AVA model proposed here uses the framework developed by Takemori et al., which they 

used for modeling extremity blood perfusion in their own human thermal model [33].  Thus, the 

proposed AVA structure for our thermoregulatory model is 
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where dilemax_
&  is the maximum skin thermal mass blood flow in the hands, feet, fingers, or toes, 

AVALIM is a non-dimensional fraction related to the level of openness of the AVAs (0~1), a and b 

are weighting coefficients, and c is a constant.   

During CIVD, AVAlimb = 1, if the skin temperature at the finger is less than Tmin, where Tmin is 

the lowest skin temperature at which CIVD begins and varies from one individual to the next 

[40].  Another parameter that can be specified in the model is the length of time that the CIVD 

occurs before the AVAs begin constricting again, which also varies from person to person.  In 

reality, these parameters are based on individual characteristics (i.e. gender, age, level of cold 

acclimatization, genetics, etc.) as well as the thermal state (i.e. core and mean skin temperatures) 

of the simulated subject [40].  For instance, some studies have noticed a lower CIVD response in 

the elderly [41].  Gender studies have shown a greater hand and finger blood flow in men than in 

women, but gender studies involving CIVD have in general been inconclusive has to whether 

there are differences [40].  The CIVD response also appears to be more pronounced for cold 
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acclimatized persons [42].  The current model does not account for individual differences in 

regards to CIVD, but this will need to be accounted for in any future modeling endeavors.   

C. Numerical Solution 

The heat transfer equations are solved numerically using MATLAB™/SIMULINK™.  

Eqs.1-3 can be approximated using the following equation. 
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Thus, after substituting Eq. 20, Eq. 1 has the following numerical approximation. 
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In Eq. 21, Rr denotes the radius at the temperature node and L represents the length of the 

cylindrical segment. 

Likewise, the heat flux equality at a tissue interface represented by Eq. 2 must also be 

numerically approximated. This approximation is shown below. 
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The boundary condition at the skin edge represented by Eq. 3 can be numerically 

approximated using Eq. 20. However, for this model, an energy balance equation at the skin 

surface was utilized to improve the accuracy [6].  Thus, the equation for the outer skin energy 

balance can also be numerically approximated as shown below. 
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As seen from inspection, Eq. 21 cannot be used to represent the central core temperature 

node.    However, Osizik devised a finite-difference equation at the center of a cylindrical 

segment to be able to solve this particular problem [9].  Thus, an energy balance at the center of 

the core with radius ∆r/2 can be formulated using Osizik’s scheme. The numerical 

approximation at the central core temperature then can be written as 
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where T1, T2, …., T6 represent six temperature nodes (since there are six angular sectors) radially 

spaced at distance of ∆r from the central core temperature node.  T0 represents the temperature of 

the central core node. 

III. RESULTS AND DISCUSSION 
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A. Verification of the Need for 2-D Modeling 

The model was simulated using environmental conditions comparable to the experiments of 

Hall and Klemm [4].  For the simulation, the anterior and posterior sides of the body were 

exposed to 93.3 °C and –6.7 °C wall temperatures, respectively.  The total simulation time was 

30 minutes.  The simulated subject was assumed to weigh about 70 kg with a 169 cm height.  

The subject was assumed to be resting, thus the metabolic rate was 81.4 W.  The anterior 

temperatures were obtained by taking an average temperature of the frontal sectors (sectors 1-3).  

Similarly, the posterior temperatures were obtained by taking an average temperature of the rear 

sectors (sectors 4-6) 

Figures 2a and 2b show results that justify modeling two-dimensional heat flow.  The desired 

outputs were the anterior and posterior skin temperatures of the head, trunk, arm and leg.  The 

results clearly show that the model can predict temperature variations on the same body element.  

As anticipated, the anterior side temperatures of each body element were greater than the 

posterior side temperatures. 

Figure 3 shows a comparison of predicted posterior skin temperatures with the experimental 

results of Hall and Klemm.  The model tracks the experimental data fairly well with the 

difference in temperatures never exceeding 0.7 °C.  In general, the model predicts cooler 

posterior skin temperatures than the experiment, maybe due to over-prediction of heat loss due to 

active sweating.  There are a few reasons that might possibly explain this finding.  For one, the 

model assumes that latent heat loss for each body segment is evenly distributed to the front and 

back of the body.  However, this assumption might be incorrect if the body is exposed to 

disparate radiant temperatures.  In this particular case, where the back of the body is exposed to a 

cold radiant temperature, heat loss due to evaporation should occur more at the front of the body, 
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which is exposed to a hot radiant temperature.  In addition, the shivering and active sweating 

functions in the model are driven mainly by the difference in head core (hypothalamic) setpoint 

temperature. 

Figure 4 shows the predicted and experimental body core temperature results.  Again, there is 

a strong agreement between the model and experimental results.  As expected, the core 

temperature remains relatively constant throughout the simulation.  This is consistent with reality 

in that the body actively attempts to maintain a constant core temperature using vasomotor 

functions.  If the vasomotor functions aren’t sufficient enough to maintain thermal comfort, then 

the body either sweats or shivers to insure a comfortable thermal state. 

B. Prediction of Cold-induced Vasodilatation 

The model was simulated to show the effects of CIVD on finger temperature and compared 

with experimental findings featured in a work by Shitzer et al. [30] that those authors used to 

validate their own extremity model.  For the simulation, a bare hand is exposed to a 0°C ambient 

air temperature against negligible wind speed.  The CIVD was initiated by an increase in blood 

flow in the AVAs to about 16 times the blood flowrate normally observed during full 

constriction in the finger.  This increase in blood flowrate is a reasonable assumption [32] that 

was utilized to achieve some agreement with experimental data.   

The comparison in CIVD response between predicted and measured finger temperatures is 

shown in Figure 5.  Also shown is the predicted temperature response of a finger without the 

CIVD mechanism.  There is a fairly good agreement between measured and predicted responses, 

indicating that the model is capable of showing CIVD responses in the fingers.  As anticipated, 

the predicted response of finger temperature without CIVD is lower than the finger temperature 



   

 137 

response with CIVD during the oscillatory stage.  The obvious conclusion is that the CIVD 

mechanism reduces extremity discomfort and prevents injuries due to cold exposure. 

C. Comparison with Experiments Done by Grahn et al. [19] 

Grahn et al. [19] hypothesized and then validated through experimentation that the recovery 

from mild hypothermia can be achieved quickly by mechanically distending blood vessels in the 

hand with subatomic pressure, and then applying heat.  They concluded that AVAs play a key 

role in this phenomenon in that applying subatomic pressure in conjuction with heat opens the 

AVAs to full capacity, which in turn allows a high blood flow through the venous plexuses in the 

hand.  This blood is then heated and returns quickly to the core, thus somewhat directly heating 

the body core.  The experiments conducted by Grahn et al. showed that their method resulted in a 

maximum rate of change in the external auditory meatus temperature (TEAM) of 13.6 ± 2.1°C/h.  

This rate for the experimental group was 10 times faster than the maximum rate of the control 

group. 

The MU Model was simulated in an attempt to predict the results of Grahn et al. to validate 

the AVA model formulated in this paper.  The result of this simulation is shown in Figure 6.  

Here, the predicted TEAM of the MU Model is compared to that of a single experimental subject.  

The model shows good agreement with the experimental data, but more importantly the model 

predicted a maximum rewarming rate of 12.11°C/h, which also agrees well with the results 

found by Grahn et al.   
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IV. CONCLUSIONS 

The general structure for a two-dimensional human thermal model with extremities has been 

developed.  The model included finger and toe temperature predictions along with countercurrent 

heat exchange involving arteries and veins.  Arterial and venous countercurrent heat exchange is 

an especially nice feature in that it approaches a realistic representation of the human 

cardiovascular system especially when coupled with the modeling of the AVAs, which play a 

key role in thermoregulation.  The AVA model that was implemented was able to produce CIVD 

responses due to cold exposure.  In an example, many astronauts during EVA missions have 

reported extremity discomfort when handling cold objects in space; this is a psychological, as 

well as a physical distraction, most noticeably hindering manual dexterity.  In controlling 

thermal comfort, finger temperatures could be important feedback variables necessary for fine 

tuning the thermal state of an astronaut.  In presenting a general AVA model with CIVD, the 

model is made applicable for conducting extremity discomfort studies for persons subject to 

severe cold exposure at work or while participating in recreational activities.   

Results from simulations indicated that the model could also predict varying temperatures on 

a body segment due to disparate environmental conditions.  This is especially important, because 

astronauts are exposed to disparate environmental conditions during extra-vehicular activity 

(EVA) in space.  Thermal comfort must be insured even in thermally disparate environments.  

The model predicted slightly lower posterior skin temperatures than the experimental findings 

reported in the literature [4].   

Presently, the following features are being improved, now that the basic model has been 

successfully developed: shivering and sweating functions, heat transfer coefficients used in the 

cardiovascular model; better distribution of the AVA models throughout the body; and the 
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effects of fluid shifts due to microgravity.   Further validation of the model will also be 

performed using a human thermal facility in our laboratory. 
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VII. NOMENCLATURE 

Q&   Heat flow 

ρ  Density 

V Volume 

Cp Specific heat capacity 

T Temperature 

M Mass 

m&  Mass flow rate  

Gempirical  Empirically derived gain 

W Work 

ℜ  Blood flow reduction via vasoconstriction 

γ Weighting parameter 

K Various distribution value 

P Pressure 

Pv Partial water vapor pressure 

Pg Adiabatic saturation pressure of water 

A Area 

σ Stefan-Boltzmann constant 

F Interchange factor 

S Drive for sweating 

Rw Universal Gas constant for water 

Hmass Mass transfer coefficient 

hfg Heat of vaporization for water 

Vair Velocity of air 

H Height 

L Segment length 

R Radius 

h  Convection coefficient 

k Thermal conductivity 

r Denotes radial direction in 2-D conduction 

θ Denotes angular direction in 2-D 

conduction 

be&  Thermal mass blood flow rate 

hAa Heat transfer coefficient between arteries 

and tissue 

hAv Heat transfer coefficient between veins and 

tissue 
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Figure 1a:  Cylindrical representation of the human form with numbered elements. 
 

 
Figure 1b:  Concentric regions in each element 
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Figure 1c:  Cross-sectional view of an element and nodal spacing for the nude case. 



   

 145 

 

 

 

 

 

25

30

35

40

45

0 5 10 15 20 25 30

Time (min)

A
rm

 T
e
m

p
e
ra

tu
re

s
 (

C
)

Anterior

Posterior

 
Figure 2a:  Arm skin temperatures 
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Figure 2b:  Leg skin temperatures 
 

28

30

32

34

0 5 10 15 20 25

Time (min)

P
o

s
te

ri
o

r 
T

e
m

p
e
ra

tu
re

s
 (

C
)

Experiment

MU Model

 
Figure 3:  Comparison of MU Model predictions and experimental results for posterior skin 

temperature. 
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Figure 4:  Comparison of MU Model predictions and experimental results for body core 

temperature. 
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Figure 5:  Comparison of model and experimental results for the effect of CIVD on finger 

temperature response during cold exposure. 
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Figure 6:  Comparison of MU Model predictions and experimental results for external auditory 

meatus temperature. 
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CHAPTER  7 

SUMMARY, CONTRIBUTIONS AND FUTURE RESEARCH 

 

 

7.1 Summary & Contributions 

 

 Mathematical techniques and frameworks to study two classes of bio-systems have 

been proposed including a consideration of the uncertainties involved.  The approaches 

are illustrated by two real world Example Case systems, summarized below. 

Example Case I: 

• Cellular level modeling for neurons and networks, which is representative of complex 

nonlinear system with multiple inputs and outputs has been developed using two 

software platforms, GENESIS and Matlab/Simulink. 

• The mechanisms of action of a drug on prefrontal cortical cells is elucidated with two 

possible hypotheses, and a systematic methodology to study the excitability of cells 

under inhibitory post synaptic currents is developed.  

• Single cell models are developed for baroreceptor cells and it is shown to 

successfully model the conversion of an analog blood pressure signal to discrete firing 

patterns.  Also investigated is whether spike frequency adaptation is mediated by a pre- 

or post-synaptic mechanism.   

• At the network level, NTS cells which receive the baroreceptor afferents are modeled, 

and three specific network configurations are investigated as examples of the possible 

‘functional’ circuitry that can implement the required ‘signal transfer’ from a pulse 

synchronous format (baroreceptors) at the input to one that lacks  pulse-synchronocity in 
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the network (NTS neurons), back to a pulse synchronous format at the output (NTS 

output neuron).  

 

Example Case II: 

• Developed techniques to model and characterize the role of various subsystems and 

quantify the uncertainties, in a human thermal system, to capture inter-subject variations, 

to better understand variations in human thermal response under nominal (NASA 

astronauts) and extreme (warfighters and astronauts) environmental conditions. 

• The MU 2-D human thermal model is a general purpose model that can predict 

thermal responses of human beings in transient environmental conditions. This model 

was enhanced using more accurate modeling of digits incorporating arterio-venous 

anastomoses mechanisms that the fingers and toes use for better control of heat transfer. 

Also, a novel black box model has been developed using artificial neural network 

techniques to predict the thermal response of supine subjects to transient environmental 

conditions, using a US Army data set.  

 

Other Projects.   The author was also involved in another project, mathematical modeling 

of optimal triage in pediatric trauma care using advanced modeling techniques, and that 

study resulted in two journal papers listed below: 

• Burd, R. S., Jang, T., and Nair, S., “Evaluation of the relationship between mechanism of injury and 

outcome in pediatric trauma,” The Journal of Trauma (accepted for publication). 

 

• Burd, R. S., Jang, T. S., Nair, S. S., 2006, “Predicting hospital mortality among injured children 

using a national trauma database,” Journal of Trauma, 60:792-801. 
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In addition, he participated in an extensive human thermal experimental study involving 

7 male and 7 female subjects for a US Air Force project, and also developed a computer 

model for predicting thermal responses.  All these have not been discussed in the 

dissertation, but mentioned here since it was performed during the author’s Ph.D. 

program at MU. 

 

7.2 Future Research 

Cellular level: 

• There is evidence indicating a complex interaction between the transmission of 

dopamine (DA) and norepinephrine (NE) in the noradrenergic and dopaminergic 

projections that converge in the medial prefrontal cortex (mPFC). 

A computational network model of PFC pyramidal cells with both the 

noradrenergic (e.g. 1α  and 2α ) and dopaminergic receptors needs to be 

developed to study the complex interactions between various neurotransmitters 

such as DA, NE, glutamate, and their role in modulating signal to noise ratio..   

• A systematic study  needs to be performed to quantify the contribution of selected 

K+ currents on the excitability of functionally identified, barosensitive NTS 

neurons. 

• The network model of NTS circuitry is a ‘test-bed’ for a host of studies including 

comparisons with normal and diseased (cardiovascular, etc.) cases, elucidation of 

‘design’ sub-circuits within the circuitry, and characterization of robustness of the 

system. 

• The single cell and network computational models, after extensive validation,  

provide a platform for a variety of predictions, many of which can be used to 

prioritize possible wet lab experiments to be pursued. 

 

Systems level: 
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• Two statistical models using ANN have also been developed for the US Army 

and the US Air Force to predict individual human thermal responses under 

transient environmental conditions.  As a next step, it is suggested that a ‘hybrid 

model (see Fig. 7.1 below) be developed combining the existing first-principles 

human thermal models such as MU 2-D model with a carefully structured black 

box model of the ANN type  to capture nonlinearities and uncertainties with 

improved precision, and subsequently improve overall prediction of human 

thermal responses. 

 

Figure 7.1:  Proposed hybrid human thermal model. 
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APPENDIX 1 ----------- Air Force Project Model Users Manual 

 

APPENDIX 2 ----------- SAE Journal Paper 

 

APPENDIX 3 ----------- Pediatric Study Journal Paper 

 

APPENDIX 4 ----------- Software Developed 

 

                                               4.1 Genesis Programming for Cellular Modeling 

                                                   4.1.1 ADHD Single Cell and Network Model 

                                                   4.1.2 NTS Single Cell and Network Model 

                                                4.2 Artificial Neural Network Program for DOD Project 

                                                4.3 Artificial Neural Network Program for Air Force Project 

                                                4.4 Artificial Neural Network Program for Pediatric Study 

                                                4.5 SAS Programs including ANOVA, Multiple Imputation for missing    

                                                      data,  Logistic Regression Models,  

                                                      Multiple Linear Regression Models for Pediatric Study 

 

                                               4.6 GUI for DOD Project 

                                               4.7 GUI for NASA Space Suit Project 
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Appendix 1 

 

Air Force Project Model - Users Manual 
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USERS MANUAL – MU HEAT STRESS MODEL 

 

 

1.0 Range of applicability for the MU Heat Stress Model 

Experimentation was conducted at the following conditions with 7 male subjects: 

• 110 F, 20% RH  (Desert) 

• 95 F, 75% RH    (Jungle) 

• 75 F, 45% RH    (Neutral) 

 

The hybrid neural network model predictions are very good at temperature/humidity conditions that are 

near these conditions since only three points in the ambient temp/RH plane (see figure below) are available 

for generalization.  The model interpolates well between these conditions in order to provide valid solutions 

within the triangular zone shown geometrically in Fig. 1 below: 

 

Area of Interpolation

10

20

30

40

50

60

70

80

70 80 90 100 110

Temperature (F)

R
H

 (
%

)

 
 

Figure 1.  Ambient Temperature-RH  region where model predictions hold best. 

 

The model extrapolates reasonably well outside this triangular region so long as it is not too far, but the 

results are not guaranteed to be accurate too far outside this region.  More tests are necessary to generalize 

reliably to longer distances outside this region. 

 

Definition of the three typical subjects selected for the model predictions. 

The prediction of the model are based on 7 young fit males from ages 19-26 who were our subjects for the 

experimental data gathered, and so is valid for that age group and for young generally-fit males.   The 

model is valid for males within the following range: 

• Age from 19-26 years 

• Weight from 116-220 pounds 

• Height  63-73 inches 

• VO2 max from 33 to 54 ml/kg/min 

• Body fat percentage from 20 to 31 percent 

Among this group, we selected three typical subjects, labeled VERY FIT, FIT, and UNFIT in the program.  

The curves for very fit, fit and unfit subjects are taken from our experimental data where the following 

definitions hold for the three body types: 

• VERY FIT subject has VO2max of 54 ml/kg/min, height of 180 cm, weight of 181 lb, and body 

fat of 21.1% 

• FIT subject has VO2max of 43 ml/kg/min, height of 171 cm, weight of 177 lb, and body fat of 

24% 
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• UNFIT subject has VO2 max of 36 ml/kg/min, height of 165 cm, weight of 129 lb, and body fat of 

20.6% 

 

It is emphasized that the subject types are based on our data on young males and not for the general 

population.  More data are needed to generalize to other ages and body types. 

 

Casualty %.  The casualty % in the plot are based on the following ranges: 

 5% casualty  – corresponds to Core Temperature of 38 C 

           50% casualty – corresponds to Core Temperature of 39.5 C 

         100% casualty – corresponds to Core Temperature of 40 C 

 

 

2.0 Computer Requirements to Run the Model  

The PC should have the basic software described below to run the program.  

• Microsoft .NET Framework 1.1 

• Operating System 

o Microsoft Windows® Server 2003 (.NET is automatically installed), Windows XP 

Professional or Home Edition, Windows 2000, Windows Millenium Edition, Windows 

98, or Microsoft Windows NT® 4.0 Service Pack 6a  

o Internet Information Services (IIS) must be installed prior to .NET Framework for 

Windows 2003, XP Professional and 2000. 

• Processor 

o Client – 90-MHz Intel Pentium-class 

o Server – 133-MHz Intel Pentium-class 

•  Memory 

o Client – 32 MB of RAM, 96 MB recommended 

o Server – 128 MB of RAM, 256 MB recommended 

• Hard Disk 

o 40 MB required for installation 

o 110 MB additionally required 

• Microsoft Internet Explorer 5.01 or later 

• Microsoft Data Access Components 2.6 is necessary for data scenarios, 2.8 is recommended 

• Microsoft DirectX 9b is required to execute managed DirectX applications 

 

 

3.0 How to run the program MU Heat Stress Model.EXE 

• Predictive model –  This is a three subject prediction of casualties based on Core Temperature 

values 

• Model Files: Your computer should have a folder titled MU Heat Stress Model with the following: 

o MU Heat Stress Model.Exe – the file you need to doubleclick on. 

o Zedgraph.dll 

o Folder titled “Documentation for MU Heat Stress Model” 

o Helpfile1-GUI Help 

o Helpfile2-User’s Manual 

o Helpfile3-Workload Reference 

• Step by step procedure for running the model 

1. Doubleclick on the MU Heat Stress Model.EXE icon in the folder MU Heat Stress Model. 

2. Input the following parameters: ambient temperature, WBGT or relative humidity, MOPP, 

and activity level, as seen in the first column of Fig. 2. 

3. Hit ‘Estimate’.  This calculates the band of output tolerance time. 
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Figure 2:  Main screen for the User Interface. 
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• Main screen (Fig. 2) inputs 

o Environment  

� Temperature (ºC or ºF) 

� WBGT (ºC or ºF) or Relative Humidity (%) 

o MOPP level (0,2,4) 

o Activity level 

� Light (200 W) 

� Heavy (425 W) 

• Description of outputs 

o Core temperature v/s time assuming the person will continue exercising till core 

temperature reaches 40 C, or if time reaches 60 minutes.  If the time reaches 60 minutes 

without the core reaching 40C, the user should look click on the ‘No Effect Temperature’ 

button to see what the No Effect Temperature is for the selected ambient temperature and 

RH/WBGT.   The next bullet describes No Effect Temperature.. 

o “No effect” temperature – Temperature at which for a given relative humidity, wind speed 

and low to moderate activity level (for example 200 W, 350 W, and 425 W), no critical 

levels of heat strain will occur over the span of a day’s work while wearing MOPP 0,2,4.  

This has been obtained using the 39.5ºC core temperature criterion. 

 

 

4.0 Corrections to prediction for individual characteristics (OPTIONAL SECTION) 

In case the user desires to use this screen for evaluating subject thermal response for inputs not considered 

by our model (such as aerobic fitness, solar radiation, heat acclimation, hydration level, etc.), we provide 

some guidance on  corrections to tolerance time that could be used.  The following sections outline the 

corrections for differences in individual characteristics and solar radiation that can be used to correct the 

‘average’ model predictions. 

 

4.1 Physical Training & Aerobic Fitness 

• For individuals of lower aerobic fitness (~ max2oV& = 46 ± 2.9 ml/kg/min or less) working at 250 W 

or less 22 min. could be deducted from predicted tolerance time of a fitter (~ max2oV& = 59.5 ± 4.1 

ml/kg/min or more) individual, for MOPP-2 & MOPP-4 in jungle and desert climates.   

• At 425 W, subtract only 5 min. at similar MOPP levels and environmental conditions. 

 

4.2 Heat Acclimation and Acclimatization 

• For corrections due to acclimation see Table 1 below. 
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Table 1:  Corrections (min.) for non-acclimated individuals at a given threshold of core temperature (38.6 

and 39.5°C) predicted by Givoni & Goldman at various MOPP, activity and environments for young, fit 

males.  These values could be subtracted from the predicted tolerance time of an acclimated individual. 

Neutral Environment (75 F, 45% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 0 0 187* 0
MOPP 2 0 0 17 42

MOPP 4 56* 0 14 26

Jungle Environment (95 F, 75% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 22 0 8 10

MOPP 2 16 0 8 9

MOPP 4 15 0 8 9

Desert Environment (110 F, 20% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5
MOPP 0 165* 0 38 0

MOPP 2 34 86* 9 13

MOPP 4 27 101* 9 9  
 

* – For this environment and MOPP, an acclimated individual never reached the threshold, thus an 

arbitrary 250 min. tolerance time was assumed for the acclimated individual.  Thus, the value shown is 

equivalent to 250 minus the tolerance time of a non-acclimated individual. 

 

4.3 Hydration Level 

• For moderately and highly fit individuals, 19 and 9 min., respectively could be deducted from the 

predicted tolerance time due to a loss of ~2.5% body mass due to dehydration at a work rate of 250 W 

or less, and at MOPP-2 & MOPP-4 levels, jungle and desert.   

• At 425, subtract only 4 min. at similar MOPP levels and environmental conditions. 

 

4.4 Body Type 

• Approximately 34 minutes could be deducted from the predicted tolerance time to account for 

individuals with higher body fat (>18.9% in comparison to <10.9%) content while in full chemical-

defense posture exercising at low to moderate (<250 W) work rates.   

• At 425 W, 6 min. could be deducted. 

 

4.5 Gender 

 

4.5.1 Corrections for Gender Differences 

• At a low to moderate work rate (<250 W) the predicted tolerance time could be deducted by 

approximately 29 min. to account for gender differences when other individual characteristics (i.e. 

max2oV& , body mass, %body fat) are not matched at MOPP-2 and MOPP-4, and jungle and desert 

climates. 

• At 425, 4 min. could be deducted for similar conditions. 

 

4.5.2 Menstrual Cycle and Oral Contraceptives 

• The data for the female model was obtained during the luteal phase of the menstrual cycle, thus 

approximately 21 min. could be added to the predicted tolerance time during the follicular phase for 
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female contraceptive non-users during light to moderate work (<250 W) for MOPP-2,4 in jungle and 

desert environments. 

• At 425 W, the correction could be only 4 min. for similar MOPP levels and environments. 

• No corrections should be made for contraceptive users.  

 

4.6 Age 

• It might be reasonable to approximate the correction (min.) due to age for persons unmatched in 

individual characteristics by using the 

equation, Correction x x= − + −70 34 21948 2 762 0 0395 2. ( . . . ) , although care should be taken 

since the experimental study did not include males or chemical defense clothing; but it was an 

uncompensable heat stress study (48ºC, 10% RH). 

• For example, for 35, 25, and 20 years of age, approximately 0, 4, and 9 min. should be deducted from 

the tolerance time prediction due to age. 

 

4.7 Solar Load 

• As expected, the addition of a solar load on an individual will cause increased body temperatures, and 

thus will decrease the tolerance time. 

• For possible deductions in tolerance time due to solar load see Table 2 below. 
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Table 2:  Corrections (min.) due to solar load at a given threshold of core temperature (38.6 and 39.5°C) 

predicted by Givoni & Goldman at various MOPP, activity and environments for young, fit males.  These 

values should be subtracted from the predicted tolerance time of an individual working indoors. 

 

Neutral Environment (75 F, 45% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 0 0 0 0
MOPP 2 0 0 5 21

MOPP 4 0 0 3 11

Jungle Environment (95 F, 75% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 17 64* 2 5

MOPP 2 11 94* 1 2

MOPP 4 9 89* 1 2

Desert Environment (110 F, 20% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5
MOPP 0 0 0 13 0

MOPP 2 15 0 2 3

MOPP 4 11 0 1 0  
 

* – For this environment and MOPP, an individual working indoors never reached the threshold, thus an 

arbitrary 250 min. tolerance time was assumed for this individual.  Thus, the value shown is equivalent to 

250 minus the tolerance time of a individual working outdoors. 

 

 

ADDITIONAL INFORMATION 

• More details about modeling methodology, etc. can be found in several papers submitted to MACTEC 

as attachments to the Final Report. 
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USERS MANUAL – brief version 

 

1.0 System Requirements 

• Microsoft .NET Framework 1.1 

• Operating System 

o Microsoft Windows® Server 2003 (.NET is automatically installed), Windows XP 

Professional or Home Edition, Windows 2000, Windows Millenium Edition, Windows 

98, or Microsoft Windows NT® 4.0 Service Pack 6a  

o Internet Information Services (IIS) must be installed prior to .NET Framework for 

Windows 2003, XP Professional and 2000. 

• Processor 

o Client – 90-MHz Intel Pentium-class 

o Server – 133-MHz Intel Pentium-class 

•  Memory 

o Client – 32 MB of RAM, 96 MB recommended 

o Server – 128 MB of RAM, 256 MB recommended 

• Hard Disk 

o 40 MB required for installation 

o 110 MB additionally required 

• Microsoft Internet Explorer 5.01 or later 

• Microsoft Data Access Components 2.6 is necessary for data scenarios, 2.8 is recommended 

• Microsoft DirectX 9b is required to execute managed DirectX applications 

 

2.0 How to run the program 

• Predictive models – There are two predictions running concurrently in this program: (i) ‘subject’ 

prediction of tolerance time using the experimental data obtained from this study, and so is limited 

to specific group of people (see next subsection); and (ii) ‘average’ prediction of tolerance times 

based on the Givoni & Goldman average man prediction, along with corrections to the prediction 

based on differences in individual characteristics. 

o Prediction based on the experimental data from this study 

� Input range 

• Male (Female is coming) 

• Age range – 19 to 26 years 

• & maxVo2  – 33 to 54 ml/kg/min 

• % Body fat range – 20 to 31% 

• Weight range – 116.6 to 220 lb 

• Height range – 63 to 73 in. 

� Outputs 

• Tolerance time (minutes) 

• Core temperature and heart rate response (v/s time) 

o Givoni & Goldman ‘average’ man prediction with corrections 

� Outputs 

• Tolerance time for average man and woman (minutes) 

o UPPER LIMIT is displayed if the subject can tolerate for a 

long period.  See also NO EFFECT plots. 

• Suggested corrections to tolerance time of average prediction (minutes) 

o SCREENSHOT 

• Step by step procedure for running the model 

• Inputs 

o Environment  

� Neutral (75ºF, 45% RH)  

� Jungle (95ºF, 75% RH) 

� Desert (110ºF, 20% RH) 

o MOPP level (0 – 4) 
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o Activity level (200 or 425 W) 

o Description of individual characteristics   

� & maxVo2  - The maximum volume of oxygen (ml/kg/min) consumed by the 

body during exercise.  This value is an indication of the maximum capacity to 

do aerobic work. 

� Percent body fat – A measure of the amount of adipose (fat) tissue as a 

percentage of total body mass. 

� Weight (kg or lb), Height (cm or in.), and Age (years) 

o Additional characteristics to correct average man predictions 

� Heat acclimation – Heat acclimation refers to building up heat tolerance in a 

controlled laboratory, whereas heat acclimatization occurs in a natural setting, 

but often these terms are used interchangeably.  The average man prediction is 

for an acclimated individual, but a correction to the predicted tolerance for a 

non-acclimated individual is included. 

� Gender – A few studies in the past that looked into gender differences regarding 

heat stress response have concluded that females, when unmatched for 

individual characteristics, were more intolerant than their male counterparts.  

Thus, a correction due to gender for the average population is included. 

� Menstrual cycle phase – It has been observed that contraceptive non-users on 

average exhibit greater tolerance times in the early follicular phase in 

comparison to the mid-luteal phase during uncompensable heat stress, while 

contraceptive users have shown no significant differences in tolerance time 

between each phase.  Thus, the appropriate correction due to menstrual cycle 

phase is provided. 

� Solar load – The average man prediction can be corrected to account for short 

wave radiation from the sun.  This is accounted for when outdoor conditions are 

selected on the input screen. 

• Description of outputs 

o Tolerance time – The time at which physical signs of heat stress make it impossible for 

an individual to continue with their activity; or when upper thresholds of core 

temperature (≥39.5°C) or heart rate (>180 b/min for 3 min.) are encountered. 

o  Final core temperature and heart rate – The core temperature and heart rate upon 

cessation of activity due to severe heat strain.  A graph of the core temperature and heart 

rate response is also provided. 

o Physiological Strain Index (PSI) – The physiological strain index (PSI) is based on rectal 

(core) temperature and heart rate, and indicates the level of strain from a scale of 0-10:  

� PSI T t T T HR t HR HRre re re= − × − + − × −
− −5 39 5 5 1800 0

1

0 0

1[ ( ) ] [ . ] [ ( ) ] [ ]

 

o “No effect” temperature – Temperature at which for a given relative humidity, wind 

speed and low to moderate activity level (for example 170 W and 250 W), no critical 

levels of heat strain will occur over the span of a day’s work while wearing MOPP 2-4.  

This has been obtained using the 38.6ºC core temperature criterion. 

o Corrections – Suggested amount of time that should be subtracted from the predicted 

tolerance time of the average model based on differences in individual characteristics.  

This is explained in detail below. 

 

3.0 Corrections to prediction for individual characteristics  

 If a prediction model per se was developed for a particular group of individuals, for example 

young, fit males, then some corrections to tolerance time would be needed to expand this prediction to 

include those of differing individual characteristics.  The following sections outline the corrections for 

differences in individual characteristics and solar radiation, which can be used as a suggestion for 

correcting the prediction of the ‘average’ model. 

 

3.1 Physical Training & Aerobic Fitness 
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• For individuals of lower aerobic fitness (~ max2oV& = 46 ± 2.9 ml/kg/min or less) working at 250 W 

or less 22 min. could be deducted from predicted tolerance time of a fitter (~ max2oV& = 59.5 ± 4.1 

ml/kg/min or more) individual, for MOPP-2 & MOPP-4 in jungle and desert climates.   

• At 425 W, subtract only 5 min. at similar MOPP levels and environmental conditions. 

 

3.2 Heat Acclimation and Acclimatization 

• For corrections due to acclimation see Table 1 below. 

 

 

 

 

 

 

 

 

 

 

 

Table 1:  Corrections (min.) for non-acclimated individuals at a given threshold of core temperature (38.6 

and 39.5°C) predicted by Givoni & Goldman at various MOPP, activity and environments for young, fit 

males.  These values could be subtracted from the predicted tolerance time of an acclimated individual. 

Neutral Environment (75 F, 45% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 0 0 187* 0
MOPP 2 0 0 17 42

MOPP 4 56* 0 14 26

Jungle Environment (95 F, 75% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 22 0 8 10

MOPP 2 16 0 8 9

MOPP 4 15 0 8 9

Desert Environment (110 F, 20% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5
MOPP 0 165* 0 38 0

MOPP 2 34 86* 9 13

MOPP 4 27 101* 9 9  
* – For this environment and MOPP, an acclimated individual never reached the threshold, thus an 

arbitrary 250 min. tolerance time was assumed for the acclimated individual.  Thus, the value shown is 

equivalent to 250 minus the tolerance time of a non-acclimated individual. 

 

3.3 Hydration Level 

• For moderately and highly fit individuals, 19 and 9 min., respectively could be deducted from the 

predicted tolerance time due to a loss of ~2.5% body mass due to dehydration at a work rate of 250 W 

or less, and at MOPP-2 & MOPP-4 levels, jungle and desert.   

• At 425, subtract only 4 min. at similar MOPP levels and environmental conditions. 
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3.4 Body Type 

• Approximately 34 minutes could be deducted from the predicted tolerance time to account for 

individuals with higher body fat (>18.9% in comparison to <10.9%) content while in full chemical-

defense posture exercising at low to moderate (<250 W) work rates.   

• At 425 W, 6 min. could be deducted. 

 

3.5 Gender 

 

3.5.1 Corrections for Gender Differences 

• At a low to moderate work rate (<250 W) the predicted tolerance time could be deducted by 

approximately 29 min. to account for gender differences when other individual characteristics (i.e. 

max2oV& , body mass, %body fat) are not matched at MOPP-2 and MOPP-4, and jungle and desert 

climates. 

• At 425, 4 min. could be deducted for similar conditions. 

 

3.5.2 Menstrual Cycle and Oral Contraceptives 

• The data for the female model was obtained during the luteal phase of the menstrual cycle, thus 

approximately 21 min. could be added to the predicted tolerance time during the follicular phase for 

female contraceptive non-users during light to moderate work (<250 W) for MOPP-2,4 in jungle and 

desert environments. 

• At 425 W, the correction could be only 4 min. for similar MOPP levels and environments. 

• No corrections should be made for contraceptive users.  

 

3.6 Age 

• It might be reasonable to approximate the correction (min.) due to age for persons unmatched in 

individual characteristics by using the 

equation, Correction x x= − + −70 34 21948 2 762 0 0395 2. ( . . . ) , although care should be taken 

since the experimental study did not include males or chemical defense clothing; but it was an 

uncompensable heat stress study (48ºC, 10% RH). 

• For example, for 35, 25, and 20 years of age, approximately 0, 4, and 9 min. should be deducted from 

the tolerance time prediction due to age. 

 

3.7 Solar Load 

• As expected, the addition of a solar load on an individual will cause increased body temperatures, and 

thus will decrease the tolerance time. 

• For possible deductions in tolerance time due to solar load see Table 2 below. 
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Table 2:  Corrections (min.) due to solar load at a given threshold of core temperature (38.6 and 39.5°C) 

predicted by Givoni & Goldman at various MOPP, activity and environments for young, fit males.  These 

values should be subtracted from the predicted tolerance time of an individual working indoors. 

Neutral Environment (75 F, 45% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 0 0 0 0
MOPP 2 0 0 5 21

MOPP 4 0 0 3 11

Jungle Environment (95 F, 75% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5

MOPP 0 17 64* 2 5

MOPP 2 11 94* 1 2

MOPP 4 9 89* 1 2

Desert Environment (110 F, 20% rh)

Light Exercise, 200 W Heavy Exercise, 425 W

38.6 39.5 38.6 39.5
MOPP 0 0 0 13 0

MOPP 2 15 0 2 3

MOPP 4 11 0 1 0  
* – For this environment and MOPP, an individual working indoors never reached the threshold, thus an 

arbitrary 250 min. tolerance time was assumed for this individual.  Thus, the value shown is equivalent to 

250 minus the tolerance time of a individual working outdoors. 
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Appendix 

• More details can be found in the Final Report submitted to MACTEC. 

WORKLOAD INFORMATION 

 

A list of activities and the work rates associated with those are provided below (based on the 2000 ACGIH, TLVs 

and BEIs).   Note: The MU Heat Stress Model uses 200 W for ‘Light’ workload and 425 W for ‘Heavy’ workload.    

 

 

Light workloads 

 

Light Workloads are those that require less than 230 Watts.  The No Effect Temperature plot in the MU Heat Stress 

Model uses 200 Watts for Light workload. 

 

    ACTIVITY        JOB DESCRIPTION 

Sitting with moderate arm and leg movements  Administrative/paper work 

Standing with light work at a machine or bench and 

some walking 

Ground and aircraft maintenance personnel 

Hand and arm activities  Administrative/paper work  

Prolong standing and some walking  Century Duty 

Tow-tractors (i.e. missile/bomb towing) Munitions Specialists 

Troop transport  Transportation/deployed personnel 

Fueling aircraft, vehicles Fueling Specialist 

Towing Aircraft Aircraft maintenance/support 

 

 

Moderate workloads 

 

Moderate workloads require between 230 and 400 Watts.  The No Effect Temperature plot in the MU Heat Stress 

Model uses 300 Watts for Moderate workload. 

 

    ACTIVITY        JOB DESCRIPTION 

Moderate lifting and pushing (i.e. supplies, boxes, 

miscellaneous items) 

Crew Chiefs, Flight Chiefs, AGE, Load 

masters Ground and aircraft maintenance, 

mission support personnel 

Walking All deployed members 

Carrying items (i.e. around shoulder, and hips) All deployed members 

Performing mechanical work with hands Ground and aircraft maintenance personnel  

Decontamination of patients Hospital Augmentees 

Hand and arm activities ( heavy equipment 

operators) 

Civil Engineering/RED HORSE 
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Heavy workloads 

 

Heavy Workloads require more than 400 Watts.  The No Effect Temperature plot in the MU Heat Stress Model uses 

425 Watts for Heavy workload. 

 

    ACTIVITY        JOB DESCRIPTION 

Heavy lifting and pushing (i.e. bomb loading) Crew Chiefs, Flight Chiefs, AGE, Load 

masters, Ground and aircraft 

maintenance, munitions, mission support 

personnel 

Running All deployed members 

Carrying large and heavy objects All deployed members 

Filling sand bags All deployed members 

Carpentry work Civil Engineering 

Assembly work All deployed members 

Trench digging (Pick and Shovel) All deployed members 

Erecting tent cities All deployed members 

Transport and carrying patients/casualties on 

stretchers. 

Hospital Augmentees 
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ABSTRACT 

Transient human thermal response characteristics are 
investigated using two US Army experimental datasets 
as part of an on-going study to model thermal risk for the 
warfighter.   This paper reports two black box models 
developed as initial steps to understand the effect of 
individual differences on transient thermal response and 
risk.  In the first black box model, two transient climatic 
parameters and six individual characteristics are used as 
inputs to predict 12 thermal responses including two 
psychophysical outputs (temperature sensation 
magnitude, Tsens, and comfort vote, Disc) using 
experimental data from 35 subjects.   For the second 
black box model, additional individual characteristics are 
used to model Tcore, Tskin, and the time limit for the 
individual tolerance to heat stress with heavy clothing, 
using data from 22 subjects.  The insights developed 
using these component models will be used to develop a 
decision making framework to predict thermal risk for the 
warfighter. 

INTRODUCTION 

Researchers have developed thermal models using 
different approaches (i.e. analytical, statistical, empirical, 
and physiological) to forecast and to better understand 
human thermal responses under different environmental 
conditions [1-7]. Due to the complexity of human 
thermoregulation, however, the suitability of such models 
to real world applications has been limited.  Even though 
there have been several studies in the field of human 
thermal physiology, the complex thermal relationships 
between the body and the surrounding environment and 
within the human body itself are still poorly understood.  
Better characterization of the uncertainties involved, 
including physiological mechanisms and parameter 
variations will be important as we seek improved 
understanding of the thermophysiology. 

Brief Review.  The history of thermal modeling has 
begun with the development of a steady-state model to 

analyze heat transfer in a resting human forearm by 
Pennes in 1948 [1].  This cylindrical model served as the 
basis for a more advanced model by Wissler [2] and is 
still widely used for prediction of temperature elevation 
during hyperthermia [3, 4].  Subsequent advances in 
computing technology and increased experimental data 
on human physiology helped researchers in developing 
better and more sophisticated human thermal models.   
In the 1960s, early versions of the well-known Wissler 
[5], Stolwijk [6], and Gagge [7] models were being 
developed.  All later human thermal models for the most 
part, are probably extensions of these three 
mathematical models.  

Due to the natural complexity of human 
thermoregulation, it has been difficult to study the issue 
of accuracy for such models.  Quantitative comparisons 
among models have also been difficult due to the 
individual characteristics of each model under particular 
environmental conditions [2, 8, 9].  From a user point of 
view, it has not been clear which of the models would be 
best suited for a particular environment and application. 
Various research teams [10-13] have developed models 
in the past decade to be used in environments that 
range from uniformly steady state to extremely transient 
and non-uniform.  Models such as the Smith-FU (Kansas 
State University) model [12, 14], the Berkeley model 
[13], and the MU model [11] are in development to 
achieve such objectives.  Even though these models 
incorporate more detail, they have their roots either in 
the Wissler [15] or the Stolwijk [6] models.  All these 
models include heat transfer within the body and 
between the body and its environment, as well as 
sweating, shivering, and vasomotor capabilities.   Our 
own team has also been working for the past five years 
on understanding human thermal dynamic modeling 
issues [2,4,24] and in the development of an advanced 
2-D human thermal model, as part of a larger goal to 
design an automatic thermal controller for astronauts 
during extravehicular activities [17,23].  The present 
study draws upon the expertise developed by the group.   
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Drawbacks of current human thermal models.   All 
human thermal models so far have limited capability in 
predicting core and mean skin temperature under 
moderate conditions.  Models fail to accurately predict 
other thermal responses such as sweat production, 
metabolic heat production, regional heat generation due 
to exercise, and regional skin temperature.  Important 
indicators for the thermal risk forecast such as heart 
rate, and dehydration level due to the excess sweating 
are not considered in the models.  These models 
typically fail with perturbations such as fast transient and 
widely disparate environmental conditions, individual 
physiological differences, altitude, clothing, and terrain 
level.   

Our team is presently working on developing ‘hybrid’ 
architectures and models that include analytical as well 
as black box components for the prediction of thermal 
risk for the warfighter.   In particular, black box models 
using neural networks can be used in combination with 
the human thermal models to achieve better thermal 
response predictions.  For example, human thermal 
models calculate core and mean skin temperatures with 
reasonable accuracy and neural network models can 
take these values as inputs to predict other thermal 
responses (e.g. heart rate, stroke volume, sweat rate, 
heat or cold tolerance time limit, thermal sensation and 
discomfort) which the human thermal models have 
difficulty in predicting with high accuracy or simply can 
not predict. 

EFFECT OF INDIVIDUAL DIFFERENCES 

In this study, the parameters characterizing individual 
differences are gender, age, VO2, max.,  body surface 
area(Ad), and other parameters.  Using two datasets, 
the effects of these parameters on transient thermal 
response will be ascertained so that an overall black box 
model can eventually be developed (with Tcore and 
Tskin provided from a physiological state model at that 
stage)  to predict EV, HR, S and Tsensation reliably (Fig. 1).  
This paper reports the effects of individual differences as 
reflected through two black box models.  

The data used to develop the neural network was 
provided by the Biophysics & Biomedical Modeling 
Division, USARIEM, Natick, MA.  The first dataset 
contains thermal observations for 35 healthy male and 
female subjects, ages 8 to 67 years.  For each subject, 
in a resting supine position through the experiment, 10 
variables  are measured and nine are calculated against 
time for a total of 140 minutes in different time intervals 
on transient environmental conditions (from 9 

o
C to 50 

o
C and from dry to humid environments).   The data set 

is divided into eight groups by age and gender as shown 
in Table 1.  Since the subjects are resting, the metabolic 
rate is considered constant for each subject until the 
onset of shivering.  The second data set contains 
thermal observations for 22 subjects including both 
genders, from ages of 18 to 41 years, with heavy 
clothing.  The subjects in this case perform light exercise 

on a treadmill work alternating with rest, 15 min work/15 
rest in the constant environment, 40 C/ 20% rh with 
clothing, clo =2.0.  For each subject, four variables are 
measured (i.e. Tcore, Tskin, Evg, and VO2, max) against 
time until the subject decides that they cannot tolerate 
the thermal stress any more.   All subjects were 
acclimated by 10 day exposure to heat at 49 

o
C / 20 % 

rh prior to the experiment.   Females in this experiment 
were non-users of the birth control pill.  

FIRST MODEL -  Eight inputs are used for the neural 
network, which includes two environmental parameters 
(Ta, Pa) and six individual characteristics (Age, Gender, 
VO2,max, Ad, Minitial, and HRinitial) for the subjects.  This 
makes the model more realistic and general, as the 
potential user has to provide only the environmental 
conditions and the individual characteristics of a subject 
of interest.  The data were recorded in still air with the 
subjects resting.  Minitial and HRinitial are included as 
initial conditions to account for individual differences in 
thermal responses along with VO2,max, and body surface 
area Ad. 

The outputs of the model are Tskin, (R+C), M , Esk, W, 
Karm, Kchest, Tcore, HR, S, Tsens, and Disc.  All the 
variables are described in Table 2.   

Architecture and Training.  Four cascaded neural 
networks form the ‘model’ developed.  The back-
propagation algorithm with a mean square error 
performance function is used for the study.  The first 
component of the model has eight inputs (Ta, Pa, Age, 
Ad, Gender, VO2 max, Minitial, and HRinitial) to predict 
two basic thermal responses, mean skin temperature 
(Tsk) and dry sensible heat loss (R+C).  The architecture 
has feedback of one time delayed value for each of the 
two outputs making it a dynamic model.  This structure 
was chosen based on extensive statistical analysis of 
the data performed by our team, and on a review of the 
literature.  Havenith et.al [5] have shown that Ta, vapor 
pressure, and metabolic rate can explain 96% of the 
variance in mean skin temperature with Ta being the 
largest contributor.  This finding coincides with our 
multiple regression analysis of the dataset which results 
in a valued of 92.2%.   The second model takes the 
original 8 inputs plus the two outputs from the first model 
to forecast five new outputs (M, Esk, Wet, Karm, 
Kchest).  This model is just feed forward system with no 
time delay.  The third model then, takes the original 8 
inputs and the outputs from the two previous models and 
forecasts three outputs (Tcore, HR, and S).  Two-time 
delay values of the outputs were also fed back to the 
input layer in this component of the model.  Havenith [5] 
shows that a multiple regression analysis using Ta, Pa, 
M, % Fat, and Sweating set point can explain 71% of the 
variance in Tcore.  Regression analysis performed by 
our group showed that 61% of the variance could be 
explained when Tsk, HR, Evg, and age group were 
included along with Ta, Pa. Moran et.al [6] showed that 
from 77 to 88% of the variance in heart rate can be 
explained by initial heart rate, metabolic rate, maximum 
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evaporative rate, required evaporative rate, and time of 
exposure in minutes. Our regression analysis showed 
that Tsk, Tes, Evg, Ta, Pa, and age group could explain 
63.9% of the variance.  For the variance in heat storage 
rate, S, 92 % could be explained by Ta, Pa, M, %Fat, 
Ad, VO2,max, and Sweating gain [5].  The third neural 
network model inputs were justified using this 
observation.  The fourth component model takes all the 
previous inputs plus outputs to forecast temperature 
sensation magnitude (Tsens) and the discomfort vote 
(Disc).  These two parameters are psychophysical 
outputs, which are difficult to be forecasted since they 
include subjective judgment. 

SECOND MODEL. - This model predicts three 
different outputs (Tcore, Tskin, and time tolerance 
limits). Eight inputs are used for the neural network 
which include only one environmental parameter (VO2) 
and six individual characteristics (Age, Gender, VO2,max, 
Body surface area Ad, % Body Fat, Hrmax, Lean Body 
Mass, Evg) for the subjects.  The objective is to study 
individual difference in thermal responses based on 
solely individual physiological characteristics and 
exercise levels exposed to identical environmental 
conditions and clothing level (i.e. protection suit, clo=2). 

 The outputs of the model are Tskin, Tcore, and 
heat tolerance time limit for each subject.  All the 
variables are described in Table 5.   

Architecture and Training -  The back-propagation 
algorithm with a mean square error performance function 
is used for training using a 8 x 15 x 1 network.  The 
model to forecast Tcore has eight inputs (Age, BSA, % 
Body Fat, VO2max, HRmax, Gender, Lean Body Mass, 
VO2). The architecture has feedback of one time delayed 
value of the output, Tcore making it a dynamic model. 
Different models for gender group have been developed, 
as the nature of thermal response seems different for 
both groups.  The model for male group uses 4 inputs 
(Age, VO2max, BSA, VO2 max (LBM)),  while the model 
for female group uses 6 inputs (Age, Height, VO2max, 
Hrmax, %BF, VO2 max(LBM)) to specify mapping 
between inputs and output by gender. The mapping is 
justified by primary statistical analysis such as 
correlation analysis, and regression analysis.  

Representative predictions of the neural network model 
developed using the first dataset are compared with 
actual data in Figures 2-4.  For the partial validation of 
first data set, nine subjects varying in gender, age, and 
fitness levels are chosen (Table 3) from the for validating 
the model partially.  The correlation coefficients between 
predicted values and experimental values are shown in 
Table 4 for each of the subjects, for all the 12 outputs, 
showing good overall performance, and it shows that 
metabolic free heat production (M), conductivity in chest 
(Kchest), conductivity in arm (Karm), heart rate (HR), 
and the comfort vote indices (Disc) are the parameters 
with more individual variances, which the ‘general’ model 
is not able to capture accurately. For true validation 

another dataset containing different subjects and test 
conditions is needed.  

For the partial validation of second model, predictions for 
five randomly selected subjects in the second dataset 
are compared with experimental values. The coefficients 
of correlation for Tcore, Tskin, and Time limit are shown 
in the Table 6.  The prediction of Tcore was good with 
r=0.91 for all subjects while Tskin was less accurate with 
r=0.841 for all subjects. The model to forecast the time 
limit performed well for females (Table 7) but not so well 
for males (Table 8).  Several other similar investigations 
were performed which are not described due to space 
limitations, and the observations from the study are 
summarized next. 

 

OBSERVATIONS 

First data set 

This study has been successful in the sense that model 
only requires two environmental variables and six 
individual characteristic parameters as inputs to forecast 
12 thermal response outputs including some which are 
not possible to obtain using the conventional statistical 
approaches or physiological human thermal models.  It 
appears that older subjects, regardless of gender, show 
relatively different (i.e. lagging or less sensitive) thermal 
perceptions or responses to their thermal states, 
compared to the rest of group.  This was seen when 
considering Disc output for subjects male5 and female4, 
where the coefficient of correlation R is very low.  An 
interesting observation is that for Karm, Kchest, and HR 
in the female group, relatively strong correlations are 
seen between predicted and experimental values.  This 
may be because women make better use of cutaneous 
blood circulation to compensate for less effective 
evaporative heat loss compared to males; their patterns 
to heat stress are more stable than for men.  The 
metabolic free heat production (M) seems to be the 
variable that has the most variations in both genders. 
This production is mainly due to shivering, which occurs 
in very short period time so as to compensate sudden 
heat loss during cold stress. The discrepancies between 
predicted and experimental values maybe can be 
attributed to the measuring error during the collection of 
data, as it is very difficult to catch sharp increases in 
heat production. 

This study will now be extended to develop a heat strain 
model for soldiers under extreme environmental 
conditions. 

The second data set 

In this study, three outputs for subjects of different age, 
gender, and fitness level are calculated based on the 
individual characteristics and exercise level under 
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identical environmental conditions.  Different from the 
first data set, the second data set contains more 
parameters which describe better individual 
physiological characteristics such as % body fat, lean 
body mass.   For Tcore and Tskin, two outputs as a 
function of time are calculated and validated well 
implying that the models are able to map between 
individual characteristics and two main thermal 
responses when exercise level is only varied over the 
time for general relationship.  

One general model to predict the time limit for the heat 
tolerance did not perform well suggesting that gender 
play an important role in thermal risk.  This assumption 
was supported by the primary statistical analysis where 
the correlation between parameters and the output (i.e. 
time limit) showed no strong relationship for the 
combined group of female and male, but a correlation 
analysis for the female group showed a strong 
relationship between some parameters and the output 
(Table 7). The model was built using the statistically 
significant parameters as inputs and showed the 
improvement in the accuracy of prediction (r=0.91) for 
the female group. However, the model for the male 
group did not improve much suggesting different nature 
of thermal response due to the gender differences and 
the need for possibly additional physiological parameters 
for the male group.  

CONCLUSIONS 

The performance of the neural network black box 
models was good for both the datasets, considering their 
limited sizes.  Based on the results of the studies to 
date, the effect of individual differences in predicting 
transient thermal response and thermal risk can be 
summarized as follows:  (i) age and fitness level are very 
important variables for predicting thermal risk; (ii) 
transient responses due to gender differences were 
difficult to capture using a single model indicating its 
importance; (iii) the heat tolerance limit for females was 
captured well by a model but the same was not true for 
the male group; (iv) Tcore is not an absolute indicator for 
heat exhaustion as the Tcore at the time limit varied 
among individuals. It is suggested in this study that the 
use of a physiological strain index (PSI) based on core 
temperature (Tcore) and heart rate (HR) can possibly 
distinguish individual differences in heat tolerance time 
limit, thus improving the prediction accuracy [18].  
Individual heat tolerance levels depends on many factors 
such as fitness level (e.g. VO2 max, Maximum Heart 
rate), height, weight, % body fat.  It is possible that 
individual basal physiological parameters (e.g. basal 
metabolic rate, basal Tcore, basal heart rate), and some 
thermal factors such as hydration level, race, food 
intake, and non-thermal factors such as smoking, 
medication, menstrual cycle, drug use may also play a 
role, and it would be important to quantify the extent of 
their effect on tolerance limits. 

We are presently in the process of using all the insights 
to develop a single black box model as shown in Figure 
1, using appropriate interpolation techniques.  This black 
box model, in conjunction with physiological ones will, 
we believe, result in better prediction of transient thermal 
response and thermal risk due to the fact that human 
thermo-regulatory system is very complex and nonlinear 
making physiological modeling of these variables difficult 
in many ways.  

The use of neural the network algorithm will have greater 
potential when it is used in parallel with the existing or 
future human physiological thermal models, as the real 
human thermoregulatory system is complex and its 
detailed mechanisms remain mysterious. To this 
complex forecasting thermal comfort becomes 
unattainable task without artificial neural network models 
when its phenomena are not clearly understood and too 
complex to be expressed in explicit mathematical forms. 
The use of artificial neural network comes as an 
attractive alternative for the prediction of thermal 
responses of astronauts of different age, body type, and 
fitness level exposed to transient environmental 
conditions during extravehicular activities. The advance 
of computing technology and availability of large and 
complete data sets make this approach feasible and 
practical.  
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Table 1. Physical characteristics of the Natick dataset 1. 

Gender Group N
o 
of Subjects Age (years) Surface Area 

 of Body 

(Cm
2
 Kg

-1) 

Maximum Aerobic 

Capacity(VO2 max)

ml/(min-kg) 

Female 1 5 11.7 ± 1.6 321.3 ± 21.4 43.8 ± 1.3 

 2 5 22.5 ± 2.3 307.3 ± 36.4 49.8 ± 1.3 

 3 3 40.0 ± 6.0 279.3 ± 11.1 35.8 ± 1.3 

 4 2 61.8 ± 2.0 290.3 ± 9.4 30.9 ± 1.3 

Male 1 5 11.8 ± 2.8 319.3 ± 35.9 47.8 ± 2.4 

 2 5 22.3 ± 2.9 270.3 ± 14.2 47.1 ± 2.1 

 3 5 34.0 ± 5.6 252.3 ± 11.9 44.4 ± 2.2 

 4 5 60.2 ± 5.0 253.3 ± 18.6 27.7 ± 1.5 
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Table 2.  Descriptions of the parameters in dataset 1. 

 Variables Description Unit 

Subject Identifier  

Group I to IV   

Age Age of a subject Years 

AD Surface area  m2 

Gender Male or Female  

VO2 Max Max. aerobic capacity ml/(min-kg) 

Height  Inches 

Weight  Kg 

M initial Initial Metabolic Production W*m-2 

In
d

iv
id

u
a
l 

 

C
h

a
ra

ct
e
ri

st
ic

s 

HR initial Initial Heart Rate Beat/min 

Time A total of 140 min Min 

Ta Air Temperature C 

C
o
n

tr
o
ll

ed
  

V
a
ri

a
b

le
s 

Pa Ambient Vapor Pressure Torr=mmHg 

Tsk Skin Temperature C 

Tes Core Temperature C 

HR Heart Rate Beat/min 

Evg Evaporative Loss g/min 

ms 
Sweating rate sweat capsule mg/(min*cm2) 

Kchest Skin Conductance in Chest W/(m2C) 

Karm Skin Conductance W/(m2C) 

M Metabolic Free Energy production W*m-2 

Disc Discomfort Index  

M
ea

su
re

d
 V

a
ri

a
b

le
s 

Tsens Temperature Sensation Magnitude  

Esk Heat Transfer via evaporation from the skin surfaceW*m-2 

Tb Mean body temp. C 

w Skin wettedness  

R+C Dry Heat Loss W*m-2 

min/Tb∆  Mean body temp. rate W*m-2 

S Body Heat Storage Rate W*m-2 

Req. Esk Required Evaporative Heat Loss W*m-2 

ET Effective Temp. C 

C
a
lc

u
la

te
d

 V
a
ri

a
b

le
s 

HRR Heart Rate Ratio  
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Table 3.   Profiles of ‘typical’ subjects used for validation tests for dataset 1 

 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 

Age 8 25 21 39 64 10 26 32 60 

Ad 0.963 1.89 1.86 1.97 1.88 1.3 1.45 1.72 1.45 

VO2max 55.2 46.77 53.3 37.8 26.8 45.1 35.8 49.1 37.9 

HRinitial 72 64 68 84 76 80 84 72 76 

Minitial 56.9 51.2 55 48.6 40 54.8 62.7 45.9 46.9 

 

Table 4.  Coefficients of correlation (R) of predicted values with experimental values for 

each output (values with low R are marked in red.), for dataset 1. 

 Male1 Male2 Male3 Male4 Male5 Female1 Female2 Female3 Female4 

Tsk 0.995 0.984 0.987 0.992 0.987 0.957 0.99 0.985 0.981 

R+C 1 0.969 0.999 0.999 0.999 0.994 0.999 0.999 0.985 

M 0.983 0.548 0.903 0.927 0.823 0.955 0.774 0.941 0.777 

Esk 0.943 0.875 0.918 0.871 0.949 0.849 0.943 0.915 0.92 

Wett. 0.98 0.882 0.893 0.943 0.896 0.849 0.939 0.956 0.949 

Karm 0.91 0.87 0.772 0.931 0.77 0.897 0.949 0.948 0.938 

Kchest 0.955 0.985 0.895 0.94 0.788 0.827 0.915 0.948 0.835 

Tcore 0.967 0.902 0.951 0.91 0.911 0.921 0.962 0.938 0.977 

HR 0.954 0.924 0.928 0.762 0.904 0.963 0.91 0.964 0.905 

S 0.975 0.998 0.99 0.998 0.995 0.992 0.997 0.997 0.964 

Tsens 0.952 0.936 0.962 0.989 0.855 0.944 0.959 0.936 0.974 

Disc 0.852 0.839 0.912 0.874 0.631 0.862 0.883 0.854 0.0854 

 

176



  

  

 

Table 5.  Descriptions of the parameters in dataset 2.  

 Variables Description Unit 

Subject Identifier Non-dim 

Age Age of a subject Years 

Ad Body surface area  m2 

Gender Male or Female Non-dim 

VO2 Max Max. aerobic capacity ml/(min-kg) 

% BF Percentage of Body Fat Non-dim 

Lean Body Mass Mass without fat kg 

VO2 Max (LBM) Maximum VO2 for lean body Mass ml/(min-kg) 

BSA/Wt The ratio of BSA and Weight Non-dim 

Height  Inches 

Weight  Kg 

M initial Initial Metabolic Production W*m-2 

In
d

iv
id

u
a
l 

 

C
h

a
ra

ct
e
ri

st
ic

s 

HR maximum Maximum Heart Rate Beat/min 

Time Time limit for heat tolerance Min 

Ta Air Temperature 40 C. Constant C 

Air Velocity Air Velocity  0.4 m/s Constant M/s 

C
o
n

tr
o
ll

ed
  
V

a
ri

a
b

le
s 

Clo Clothing level  Clo=2. Constant M2K/W 

Tsk Skin Temperature C 

Tcore Core Temperature C 

Evg Evaporative Loss g/min 

O
u

tp
u

t 
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Table 6. Correlation between parameters in dataset 2: Female group 

 Age height Weight VO2max BSA %BF HR 

max 

LBM VO2 

LBM 

BSA/Wt Time 

Age 

1.00           
Height -

0.05 1.00          
Weight -

0.24 0.79 1.00         
VO2max 

0.21 0.41 -0.10 1.00        
BSA -

0.18 0.91 0.97 0.10 1.00       
%BF 

0.13 -0.76 -0.94 -0.11 -0.92 1.00      
HR max -

0.70 -0.17 0.00 -0.24 -0.06 0.17 1.00     
LBM -

0.23 0.79 1.00 -0.08 0.97 -0.95 -0.02 1.00    
VO2 

(LBM) 0.23 0.30 -0.24 0.99 -0.04 0.03 -0.21 -0.22 1.00   
BSA/Wt 

0.33 -0.54 -0.94 0.30 -0.84 0.88 -0.11 -0.94 0.43 1.00  
Time 

0.52 0.44 0.09 0.85 0.23 -0.33 -0.36 0.12 0.80 0.08 1.00 

 

Table 7. Comparison of the individual time limit for heat tolerance between experimental 

and calculated values for dataset 2: Female group. R=0.91, Error SD =12.19 

 

 

Fem1 Fem2 Fem3 Fem4 Fem5 Fem6 Fem7 Fem8 Fem9 

Experimental 130 130 180 140 130 105 90 90 120 

Calculated 130 150 180 130 130 125 90 115 120 

Error   0 +20 0 -10 0 +20 0 +25 0 

 

Table 8. Comparison of the individual time-limit (min) for heat tolerance between 

experimental and calculated values for dataset 2: Male group. R=0.69, Error SD =18.44 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

Experimental 135 155 145 150 180 105 180 150 105 155 135 130 120 

Calculated 125 145 145 145 145 125 180 145 125 145 135 165 125 

Error -10 -10 0 -5 -35 +20 0 -5 +20 -5 0 +35 +25 
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Figure 1.   Schematic of the proposed decision making model for thermal risk. 
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Figure 2.  Representative plot for the prediction of T skin (Male 4 from dataset 1) 

 

Figure 3.  Representative plot for the prediction of Comfort Vote (Male 4 from dataset 1). 
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Figure 4.   Representative plot for prediction of Heat Storage Rate (Female 1 from dataset 1). 

 

 

Fig 5. Plot for the correlation analysis between experimental against calculated values of 

Tcore with R=0.982 (Female 7 from dataset 2). 
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Fig  6. Plot for the predication of Tcore with R=0.982 (Female 7 from dataset 2). 
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Appendix 3 

 

Pediatric Study Journal Papers 

 

  3.1 Journal of Trauma (2006): Predicting Hospital Mortality 

Among Injured Children Using a National Trauma 

Database (in pdf) 

 

   3.2 PREDICTION OF EARLY MORTALITY IN 

PEDIATRIC TRAUMA  



Predicting Hospital Mortality Among Injured Children Using
a National Trauma Database
Randall S. Burd, MD, PhD, Tai S. Jang, MS, and Satish S. Nair, PhD

Purpose: The purpose of this study
was to develop a model that accurately
predicts mortality among injured children
based on components of the initial patient
evaluation and that is generalizable to
diverse acute care settings. Important pre-
dictive variables obtained in an emer-
gency setting are frequently missing in
even large national databases, limiting
their effectiveness for developing predic-
tions. In this study, a model predicting
pediatric trauma mortality was developed
using a national database and methods to
handle missing data that may avoid biases
that can occur restricting analyses to com-
plete cases.

Methods: Records of pediatric pa-
tients included in the National Pediatric
Trauma Registry (NPTR) between 1996
and 1999 were used as a training set in a
logistic regression model to predict hospi-
tal mortality using vital signs, Glasgow

Coma Scale (GCS) score, and intubation
status. Multiple imputation was applied to
handle missing data. The model was tested
using independent data from the NPTR
and National Trauma Data Bank (NTDB).

Results: Complete case analysis iden-
tified only GCS-eye and intubation status
as predictors of mortality. A model based
on complete case analysis had good dis-
crimination (c-index � 0.784) and excellent
calibration (Hosmer-Lemeshow c-statistic,
6.8) ( p > 0.05). Using multiple imputation,
three additional predictors of mortality
(systolic blood pressure, pulse, and GCS-
motor) were identified and improved
model performance was observed. The
model developed using multiple imputa-
tion had excellent discrimination (c-index,
0.947–0.973) in both test datasets. Cali-
bration was better in the NPTR testing set
than in the NTDB (Hosmer-Lemeshow c-
statistic, 9.2 for NPTR [ p > 0.05] and

258.2 for NTDB [ p < 0.05]). At a proba-
bility cutoff that minimized misclassifica-
tion in the training set, the false-negative
and false-negative rates of the model were
better than those obtained with either the
Revised Trauma Score (RTS) or Pediatric
Trauma Score using data from the NPTR
testing set. Although the false-positive
rates were lower with the RTS using data
from the NTDB, the false-negative rates of
the proposed model and the RTS were
similar in this test dataset.

Conclusions: Using multiple imputa-
tion to handle missing data, a model pre-
dicting pediatric trauma mortality was
developed that compared favorably with
existing trauma scores. Application of
these methods may produce predictive
trauma models that are more statistically
reliable and applicable in clinical practice.

Key Words: Child, Hospital mortal-
ity, Injury, Models, Statistical, Wounds.

J Trauma. 2006;60:792–801.

Trauma is an important threat to the health of children
with injuries, resulting in more deaths in children than all
other causes combined.1 Because injured children have

better outcomes at centers with specialized trauma care, ap-
propriate transport to these centers may reduce morbidity and
mortality.2,3 Early identification of children with severe in-
juries facilitates transport to designated trauma centers where
specialized care can be given. Appropriate triage can also
predict the level of initial hospital manpower and other re-

sources needed and determine the need for transfer to a
specialized trauma center after arrival to a hospital with
limited trauma expertise. Because only 5% of injured chil-
dren need the resources of a trauma center, a rapid method to
classify the severity of injury and to get the patients to the
appropriate facility is needed.4 Nondesignated trauma centers
can treat children with less severe injuries, whereas trauma
centers are needed to treat more severely injured children.
Undertriage puts children at risk of being treated at a hospital
not equipped to deliver specialized trauma care and rehabil-
itation. Overtriage to trauma centers dilutes the resources
needed for caring for severely injured children.

There remains a need for an effective pediatric-specific
trauma triage instrument. Features of the optimal triage tool
include accuracy, reproducibility, flexibility, and ease of
application at the location of injury. A triage tool that is
accurate will avoid misclassification and have acceptable
overtriage and undertriage rates. A reproducible tool will be
accurate when applied in different environments (e.g., in
different regions of the country or in a rural versus urban
setting) or by different raters. A tool that can be used in only
one institution will have limited use and not gain widespread
acceptance. A tool that is flexible will be able to easily evolve
as the care for injured children improves and the categories of
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triage change. Because a triage tool needs to be used in the
prehospital setting, it should be based on a simple set of
variables. On-scene caregivers, who are treating trauma pa-
tients and need to rapidly transport critically ill children, and
physicians in the emergency room cannot be expected to use
a complex triage system.

Several trauma scoring systems have been used to triage
injured children. The Revised Trauma Score (RTS) is a phys-
iologic score based on systolic blood pressure (SBP), respi-
ratory rate (RR), and Glasgow Coma Scale (GCS) scores.5

Although derived using adult trauma data, the RTS has been
validated as a potentially useful triage tool in children.6 The
Pediatric Trauma Score (PTS) was developed as a pediatric-
specific alternative to the RTS and combines physiologic and
anatomic variables including weight, airway status, SBP,
central nervous system status, presence of an open wound,
and presence of fractures.7,8 Although PTS has been shown to
correlate with injury severity in children, this score includes
subjective variables that may not be easy to obtain in an acute
care setting. A significant advantage of the PTS over the RTS
has not been shown.8,9 The Age-Specific Pediatric Trauma
Score (ASPTS) has been recently created from a state trauma
database using logistic regression methods and incorporates
the use of age-adjusted vital signs and GCS scores to predict
injury severity and probability of mortality.10 Because the
specificity of the ASPTS is better than the RTS, the ASPTS
is a promising alternative to the RTS and deserves further
study as a pediatric trauma triage tool in a separate dataset or
in a clinical setting.

The purpose of this study was to develop a model based
on components of the initial patient evaluation that accurately
predicts hospital mortality among injured children. Although
triage decisions can be based on other measures of severity of
illness, the model was evaluated as a triage tool using mor-
tality as the principal measure of outcome. Based on triage
targets established by a consensus panel of the Florida
Trauma Triage Study, the goal of this study was to develop a
tool that achieves an overtriage rate of �30% and an under-
triage rate of �5%.11 As with previous trauma scores, initial
vital signs and GCS scores were considered as potential
predictors. In addition to these physiologic parameters, intu-
bation status was also evaluated as a predictor because this
feature is easy to identify in an acute care setting and conveys
an increased likelihood of severe injury. The model was
developed and tested using data obtained from two separate
national datasets and compared with currently available triage
scores. Because variables obtained in an emergency setting
are frequently missing in trauma databases, methods to han-
dle missing data were used to avoid bias in the final model.12

METHODS
Data Sources and Subject Selection

This study has been approved by the Institutional Review
Board at UMDNJ-Robert Wood Johnson Medical School.
The NPTR is a database, started in 1985, that tracks the

management and outcome of injured children treated at par-
ticipating pediatric trauma centers or pediatric hospitals. Data
(n � 35,385) from the registry obtained between 1996 and
1999 were used as the training set and additional data ob-
tained between 1999 and 2001 (n � 15,818) were used as the
first testing set. Additional testing of the model was per-
formed using data obtained from the NTDB, a database
started in 1989 that contains over 730,000 cases from 268
adult and pediatric trauma centers. Because some trauma
centers have may have reported data to both the NPTR and
NTDB, only records in the NTDB from 2002 and 2003 (n �
16,868) were used to prevent overlap with data from the
NPTR. Records were excluded from analysis in the training
and testing sets if age was �17 years or was not recorded, vital
signs were outside of normal physiologic range (SBP �200, p �
250, RR �80), or hospital mortality was not reported.

Development of Prognostic Models
Input variables selected for modeling included the fol-

lowing clinical features recorded in the emergency room:
SBP, pulse, RR, components of the GCS score (GCS; GCS-
eye, GCS-motor, and GCS-verbal), mechanism of injury
(penetrating or blunt), and intubation status (not intubated or
intubated). The outcome variable studied was hospital mor-
tality. Pulse is not available in the NTDB and was handled as
missing and was imputed as described below.

An analysis was performed to assess the pattern of miss-
ing data and evaluate how missing data might impact mod-
eling. Missing data were observed for all input variables
except mechanism of injury, with the proportion of missing
data varying between 1% and 29% of cases (Table 1). The
relationship between the absence of each variable and other
covariates was evaluated using univariate logistic regression,
and between data absence and mortality using �2 analysis.

Modeling only using cases with complete data in all
fields (complete case analysis) requires that the cases repre-
sent a random sample of the entire dataset. This type of
missing data pattern is called missing completely at random
(MCAR). When data are MCAR, no relationship can be
expected between data absence and outcome. A more general
missing data pattern, missing at random (MAR), occurs when
the probability that a data point is missing may depend on the
values of other variables that were measured but not on the
true value of the data point that is missing.13 Most methods
for imputing missing data, such as multiple imputation, re-
quire that the missing data pattern is MAR. Direct proof that
a missing data pattern is MAR requires, however, that the
missing data are known. Although a MAR data pattern must
be assumed and cannot be proven, a relationship between
absence of a given variable and the values of other covariates
provides evidence of a potential MAR pattern. Because the
missing data pattern was not MCAR (see Results, below), we
assumed that the missing data pattern was MAR and applied
multiple imputation to impute missing values.
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An introduction to multiple imputation can be found in
several excellent sources.14–16 With the increasing availabil-
ity of software that can perform multiple imputation, this
powerful method now has been applied to a range of clinical
problems.16–19 Multiple imputation involves three phases.
First, missing data are filled in n times to generate n complete
datasets. Missing data are replaced in each of the n datasets
with possible values that represent the uncertainty of the
correct missing value rather than with a single value such as
a median, mean, or mode. Each of these n imputed datasets
are “complete” with measured and imputed values. The n
imputated datasets are then analyzed using conventional
methods ordinarily used for complete case analysis. Finally,
the results of the statistical analyses on each imputed dataset
are combined to give a final result.

Multiple imputation was used to construct 10 imputed
datasets from the training data. Values were imputed using a
regression that included age, SBP, pulse, RR, GCS-eye,
GCS-motor, GCS-verbal, GCS-total, mechanism of injury
(penetrating or blunt), and intubation status. Because the
normal ranges of SBP, pulse, and RR differ by age, these
variables were standardized to improve comparison among
all subjects after imputation. The mean and standard devia-
tion of SBP at each age were obtained from the training set
and used to standardize each recorded value of SBP in the
imputed datasets using the equation:

Recorded SBP � mean SBP for patient age

STDEV of SBP for patient age

Pulse and RR were similarly standardized. Standardized
vital signs, components of the GCS, and intubation status
were then used as predictors in logistic regression analyses
performed on each imputed dataset. The results of the anal-
yses performed on each of the 10 imputed datasets were then
combined to give the final result.

Model Validation
Because each testing dataset contained missing data,

multiple imputation was performed to “complete” each test-
ing dataset. Data from the training set and each testing set
were merged. Multiple imputation (n � 10) was then per-
formed on the merged datasets. A separate imputation was
performed for each testing dataset. After imputation, vitals
signs in the testing datasets were standardized using mean
and standard deviation values obtained from the training
dataset. The logistic regression model developed from the
training dataset was used to calculate an estimated probability
of hospital mortality for each case in the imputed testing
datasets. The mean of the probabilities for each case was
calculated and compared with the observed mortality to as-
sess the predictive capacity of the model.

Discrimination of the model was evaluated by calculating
the area under the ROC curve or c-index. Calibration (good-
ness of fit) of the model was assessed using the Hosmer-Ta
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Lemeshow (H-L) statistics. Cases were ordered based on the
probability of mortality estimated by the model and grouped
into deciles (c-statistic) or decines (h-statistic). The expected
and observed number of outcomes in each partition were
compared. An H-L statistic �15.5 (8 degrees of freedom; p �
0.05) shows that there is no significant difference between
observed and predicted values and excellent goodness of fit,
while an H-L statistic �15.5 shows a significant difference
between observed and predicted values and poor goodness of
fit. Calibration was also graphically displayed by plotting
predicted and observed mortality across all risk ranges. The
slope of the calibration curve was calculated using linear regres-
sion. The R2 value represents the proportion of variation of the
dependent variable (observed mortality rate) that is predicted
from the independent variable (predicted mortality rate). An R2

value of 1.0 indicates that all points lie on a straight line and that
the predicted mortality rate is able to predict the actual mortality
rate with 100% certainty. A perfectly calibrated model will have
a slope of 1 and a y-intercept at 0.

The model was also compared with RTS and PTS. A
cutoff probability was determined in the training dataset that
resulted in the least misclassification of cases (false-positive
and false-negative rates assumed to be equivalent). The RTS
was calculated in each testing dataset using imputed vital sign
and GCS values. A value of RTS �12 was used to designate
a high potential for mortality.5 The PTS was calculated for
most subjects in the NPTR testing set (93% of records) but
was not available in the NTDB. A score of �9 was consid-
ered to indicate a high potential for mortality.7 On the basis of
these cutoff points, sensitivity, specificity, and predictive values
were calculated for the individual scores. Overtriage (false-
positive) rate was defined as (1-specificity), whereas undertriage
(false-negative) rate was defined as (1-sensitivity).

Statistical Software
SPSS 12.0 (SPSS Inc., Chicago, IL) was used to perform

univariate logistic regression and to analyze continuous vari-
ables using the unpaired Student’s t test, ordinal variables
using the Mann-Whitney U test, and groups using �2 analy-
ses. Multiple imputation and development of the final logistic

regression model was performed using SAS 8.2 (PROC MI
and PROC MIANALYZE, SAS Institute, Cary, NC).16

RESULTS
Overview of Data

The mortality in the NPTR training set was 2.9%, in the
NPTR testing set was 2.6%, and in the NTDB dataset was
3.1%. Variables used for modeling in the three datasets are
shown in Table 1. In the three datasets, standardized SBP and
GCS were lower whereas standardized pulse was higher
among subjects who died. Subjects who died were more
commonly intubated than those who survived. Patients in the
NPTR who died were younger than those who survived,
whereas those in the NTDB who died were older than those
who survived. Although no differences in standardized respi-
ratory rate were observed in the NPTR, the standardized
respiratory rate was lower among patients in the NTDB who
died. The frequency of penetrating injuries among survivors
and non-survivors was similar in the NPTR, but more pene-
trating injuries were observed among nonsurvivors in the
NTDB (Table 1).

Missing variables were frequently observed among those
who died. Although there were 1,008 deaths in the NPTR
training set, only 17 deaths (0.07%) were observed among
23,689 subjects with complete data for the 7 variables used to
model. A logistic regression model based on these data had
good discrimination (ability to discriminate between patients
who live and those who die; c-index � 0.784) and excellent
calibration (accuracy of predicting the mortality rate; H-L
c-statistic � 6.4). Lower GCS-eye and intubation status were
the only significant predictors of mortality in the final model
(Table 2). When evaluated in each testing dataset, discrimi-
nation of the model was excellent (c-index � 0.965 in NPTR
testing set and 0.940 in NTDB), whereas calibration was not
as good (H-L c-statistic � 242.6 in NPTR testing set and
398.1 in NTDB).

Development of an Improved Model
To develop a model with improved performance, the

feasibility and effectiveness of multiple imputation was eval-

Table 2 Logistic Regression Analysis of Risk of Death in Pediatric Trauma Patients Based on Complete Data
(n � 23,695) in NPTR Training Set

Variable Coefficient SE p value Odds Ratio 95% CI
Lower Limit

95% CI
Upper Limit

Intercept �1.95 1.21 0.107
SBP—standardized �0.01 0.23 0.942 0.98 0.61 1.57
Pulse—standardized 0.44 0.23 0.058 1.55 0.98 2.45
RR—standardized �0.18 0.23 0.436 0.83 0.52 1.32
GCS-eye �0.77 0.36 0.036 0.46 0.22 0.95
GCS-motor �0.37 0.31 0.228 0.68 0.37 1.26
GCS-verbal �0.13 0.34 0.693 0.87 0.44 1.73
Intubated 2.63 0.67 0.0001 13.96 13.68 52.87

SE, standard error; CI, confidence interval; SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.

Mortality Prediction in Pediatric Trauma

Volume 60 • Number 4 795
187



uated. As shown in Table 1, missing values were observed for
all variables used for modeling except mechanism of injury
and age (records were not included for analysis if age was not
available). Values were most commonly missing for compo-
nents of the GCS. Data patterns in which some or all com-
ponents of GCS were missing were most frequent. A similar
missing data pattern was observed in the NPTR and the
NTDB (Table 3). In the NPTR training set, missing values of
each variable were less common among survivors than
among nonsurvivors (p � 0.001). Univariate logistic models
show that the absence of variables used to model mortality
was potentially associated with other variables (Table 4).
GCS-eye, GCS-motor, and intubation status were associated
with the absence of each modeling variable, whereas pulse
was associated with the absence of all but one variable.

Multiple imputation was performed to complete missing
data fields in the NPTR training set. Ten imputations were
performed to obtain values for 31,495 previously missing
values among the seven variables used for modeling. Data
from the original incomplete dataset were similar to those

obtained by imputation (Table 5). The addition of age as a
covariate was not associated with any improvement in either
discrimination or calibration of the model. Compared with
the model developed using complete case analysis, the model
developed using multiple imputation included three addi-
tional significant variables (standardized SBP, standardized
pulse, and GCS-motor; Table 6). The model obtained using
multiple imputation had improved discrimination (c-index �
0.958 versus 0.784) but decreased calibration (H-L c-statistic,
25.7 versus 6.8). In the final model, each unit decrease in
GCS-eye resulted in a 37% increase in risk of death, while
each unit decrease in GCS-motor resulted in a 59% increase
in risk of death. The risk of mortality was 19 times higher
when the subject was intubated.

Assessment of Model Performance
The logistic regression model was tested using indepen-

dent data from the NPTR and data from the NTDB. For each
subject, the probability of mortality was calculated from each
logistic regression equation using observed or imputed values

Table 3 Missing Data Patterns in the NPTR (Training and Testing Sets) and NTDB*

SBP Pulse RR GCS-eye GCS-motor GCS-verbal GCS-total Intubation
Status

Cases With
Pattern (%)

NPTR
� � � � � � � � 67
� � � � � � � � 10
� � � � � � � � 5
� � � � � � � � 3
� � � � � � � � 3
� � � � � � � � 2
� � � � � � � � 2
� � � � � � � � 2

NTDB
� � � � � � � � 68
� � � � � � � � 10
� � � � � � � � 9
� � � � � � � � 3
� � � � � � � � 3
� � � � � � � � 2

�, data is present; �, data is absent; *missing data patterns are shown that occur in at least 2% of subjects.
NPTR, National Pediatric Trauma Registry; NTDB, National Trauma Data Bank; SBP, systolic blood pressure; RR, respiratory rate; GCS,

Glasgow Coma Scale.

Table 4 Associations Between Missingness Data and Variables in NPTR Training Dataset and Mortality

Variables Used for Imputation

Absence of: Age SBP P RR GCS-eye GCS-motor GCS-verbal GCS-total Penetrating
Injury

Intubation
Status

Outcome
Mortality

SBP X NA X X X X X — X X X
Pulse — X NA — X X — X — X X
RR X — X NA X X X X X X X
GCS-eye X X X X NA X X X X X X
GCS-motor X — X X X NA X X — X X
GCS-verbal X X X X X X NA X — X X
Intubation Status — — — — X X — — X NA X

X, associated using univariate logistic regression (p � 0.05); —, no association using univariate logistic regression; NA, not applicable; SBP,
systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.
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of vitals signs, GCS components, and intubation status. The
model obtained using multiple imputation had better perfor-
mance than the model based on complete data when evaluated
using NPTR testing set data, but had similar performance using
NTDB data (Table 7). Subgroups with a blunt or penetrating
mechanism of injury were separately analyzed. Excellent dis-
crimination was observed in the test data (c-index, 0.947–0.973)
regardless of mechanism of injury. Model calibration, however,
was more variable, being generally better for the NPTR data
than the NTDB dataset (Table 8). The calibration curves showed
that the model over-predicted rather than under-predicted mor-
tality in the NTDB dataset (Fig. 1). Using probability estimates
in the training set, a cut-off probability of 0.009% resulted in the
least misclassification (false-positive rate equal to false-negative
rate). This cut-off value led to a similar misclassification in the
NPTR testing set but higher misclassification in the NTDB
(Table 9). The proposed model had a higher positive predictive
value and accuracy than either the RTS or PTS using NPTR
testing set data (p � 0.001), but performed worse than the RTS
using NTDB data (p � 0.001; Table 9).

DISCUSSION
In the current study, we have developed and tested a

model predicting pediatric trauma mortality using the NPTR

and NTDB. While the size and case-mix differences of these
databases are advantages for developing and testing a prog-
nostic trauma model, both databases have a significant
amount of missing data. This problem may be more apparent
among variables obtained in a prehospital setting or in the
emergency room because absence variables in these settings
may be related to the severity of injury.12 Although smaller or
regional databases may have less missing data, we felt that
the advantages of these larger datasets justified their use and
the application of methods for handling missing data.

In previous trauma studies, two methods have been used
to handle missing data. The most common method has been
to restrict the analysis to subjects for whom values of all
modeling variables are complete.10 When the number of
records with missing variables represents a small fraction of
the total number of records, complete case analysis is an
acceptable method for handling missing data, since exclusion
of records with incomplete data may have only minimal
impact on the relative contribution of predictors. When com-
plete case analysis is applied to datasets with a significant
amount of missing data, omission of incomplete data may
lead to biased results when the remaining cases are not
representative of the larger population that the data are in-
tended to represent. Biases that may result include both in-
clusion of nonpredictive covariates or omission of predictive

Table 5 Comparison of Values from the Original
NPTR Training Dataset with Values From the 10
Imputed Datasets

Variable Original Data Imputed Datasets

SBP—standardized
(mean �range�)

0.0 (�7.5–4.9) 0.0 (�7.4–5.0)

Pulse—standardized
(mean �range�)

0.0 (�5.1–5.6) 0.0 (�5.1–6.6)

RR—standardized
(mean �range�)

0.0 (�4.7–11.5) 0.0 (�4.4–11.9)

GCS-eye (median �range�) 4 (1–4) 4 (1–4)
GCS-motor (median �range�) 5 (1–5) 5 (1–5)
GCS-verbal (median �range�) 6 (1–6) 6 (1–6)
Intubated (%) 7 11

SBP, systolic blood pressure; RR, respiratory rate; GCS, Glas-
gow Coma Scale.

Table 6 Logistic Regression Analysis of Risk of Death in Pediatric Trauma Patients Based on Imputed NPTR
Training Data (n � 34,342)

Variable Coefficient SE P value Odds Ratio 95% CI
Lower Limit

95% CI
Upper Limit

Intercept �1.471 0.331
SBP—standardized �0.387 0.034 �0.0001 0.679 0.635 0.726
Pulse—standardized �0.131 0.037 0.0006 0.877 0.815 0.944
RR—standardized �0.007 0.038 0.852 0.993 0.922 1.071
GCS-eye �0.375 0.055 �0.0001 0.687 0.617 0.765
GCS-motor �0.589 0.038 �0.0001 0.555 0.515 0.598
GCS-verbal 0.020 0.070 0.776 1.020 0.888 1.172
Intubated 2.953 0.170 �0.0001 19.163 13.736 26.775

CI, confidence interval; SE, standard error; SBP, systolic blood pressure; RR, respiratory rate; GCS, Glasgow Coma Scale.

Table 7 Comparison of Discrimination and Calibration
of Models Developed Using Complete Case Analysis and
Multiple Imputation

Dataset
Model Based on
Complete Case

Analysis

Model Based on
Multiple

Imputation

Discrimination (c-index)
NPTR testing data 0.965 0.972
NTDB 0.940 0.947

Calibration (H-L c-statistic)
NPTR testing data 242.6 9.2
NTDB 398.1 258.2

Calibration (R2)
NPTR testing data 0.793 0.996
NTDB 0.922 0.877

Mortality Prediction in Pediatric Trauma

Volume 60 • Number 4 797
189



covariates. Because of these limitations, it is appropriate to
assess the likelihood that data are MCAR before proceeding
with complete case analysis. Other methods for handling
missing data have included ad hoc methods such as inserting
the mean, median, or mode values in missing data fields.20

These methods are convenient but generally produce results
with variances that are biased toward zero. Because of these
biases, standard measures for uncertainty of potential predic-
tors such as standard error and p values can be inaccurate
because these will not convey the true uncertainty of the
missing data. Inaccurate estimates of uncertainly may result
in a biased assessment of the relative contribution of individ-
ual predictors.13 Multiple imputation is a method for handling
missing data that avoids the biases associated with complete
case analysis or single imputation. With this method, statis-
tical inferences can be made based on information contained
in available complete data fields while reflecting the uncer-
tainty related to data absence. Although this method has been
increasingly used in a wide range of clinical studies, this
method has, to our knowledge, been applied in only one study
using trauma data.12

We first developed a predictive model using only records
with complete data. After exclusion of records with at least
one missing variable, only 69% of records remained from the
original dataset. An analysis of the missing data pattern
showed that components of the GCS were usually missing
together. For this reason, it is unlikely that a step-wise back-
ward elimination method would lead to an effective increase
in the sample size because of the previously observed impor-
tance of GCS as a predictor of trauma mortality. A backward
elimination method was also avoided because of the tendency
for this methodology to lead to data overfitting. There was
strong evidence that an analysis restricted to complete cases
would lead to a less precise model. Since the mortality in the
complete data substantially differed from that observed in the
entire training dataset (0.07% versus 3%), data in the training
set was unlikely to be MCAR. The observation that univariate
analysis showed a strong correlation between the absence of
potential predictors and mortality supported, but did not
prove, that the data were not MCAR.

When the analysis was performed on the 23,695 cases
with complete data, only GCS-eye and intubation status were
identified as significant predictors of mortality. Using multi-

Fig. 1. Calibration curve showing actual mortality rates across
deciles of predicted mortality risk for test cases.Data obtained from
NPTR training set (A), NPTR testing set (B) and NTDB (C). The line
with square bullets represents the actual prediction in each decile;
the dashed line represents perfect prediction. The vertical bars
indicate the number of cases in each risk group.

Table 8 Evaluation of Discrimination and Calibration on Testing Datasets

Testing Dataset Records (n) Actual
Mortality (%)

C-index
(95% CI)

H-L
c-statistic

H-L
h-statistic R2

NPTR testing data (all cases) 14,200 2.6 0.972 (0.966, 0.978) 9.2 6.8 0.996
NPTR testing data (blunt mechanism) 13,312 2.7 0.973 (0.967, 0.979) 8.4 11.8 0.987
NPTR testing data (penetrating mechanism) 888 2.6 0.952 (0.916, 0.988) 12.7 19.0 0.451
NTDB (all cases*) 16,868 3.1 0.947 (0.936, 0.959) 258.2 377.3 0.877
NTDB (blunt mechanism*) 14,700 2.8 0.953 (0.941, 0.965) 209.2 411.6 0.849
NTDB (penetrating mechanism*) 1,080 7.8 0.966 (0.943, 0.990) 19.9 18.4 0.696

* Pulse estimated using multiple imputation in all cases. CI, confidence interval; H-L, Hosmer-Lemeshow.
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ple imputation, we were able to increase the sample size by
45% (10,647 subjects) and increase the number of subjects
who died from 17 to 1,008. With the added statistical power,
three additional variables were observed to be significant
predictors of mortality (SBP, pulse, and GCS-motor), and the
resulting model had improved higher discrimination. The
inclusion of additional predictors suggested that information
contained in the incomplete records was relevant to mortality
prediction and was being incorporated into the final model.
The application of multiple imputation provided insight into
the relative contribution of individual predictors that was not
achievable using complete case analysis alone.

Similar to previous triage tools, initial vital signs and
components of the GCS were observed to be significant
predictors of hospital mortality.5–10 In contrast to other stud-
ies that have found RR to be an important predictor of
mortality, either alone or in combination with other variables,
we did not observe RR to be an important predictor of
hospital mortality. This difference may be attributable to our
representation of RR as a monotonic variable rather than
scoring RR for the predictive value of both tachypnea and
diminished RR, as is done in the RTS and ASPTS. Similarly,
components of the initial GCS were observed to be signifi-
cant predictors of hospital mortality, most likely reflecting
the importance of head injury as a cause of mortality among
injured children. The relative contribution of GCS-motor to
the final model is consistent with the previous finding that
GCS-motor contains most of the predictive power of the GCS
in relationship to mortality.21 It is interesting to note that
GCS-motor was not identified as a significant covariate in the
model based only on complete cases. Intubation status proved
to be the covariate with the largest predictive capacity. Al-
though anatomic variables that require interpretation have
been described as a limitation of other trauma scores, intu-
bation status is straightforward enough to determine even in
an acute care setting and easily conveys severity of injury.

To evaluate performance of the proposed model, we first
applied the methods described by Justice et al.22 These authors
describe a scheme for evaluating models using the related con-

cepts of accuracy and generalizibility. Accuracy is assessed
using conventional methods for evaluating discrimination and
calibration. Generalizibility is assessed by evaluating whether
the accuracy of the model is both reproducible and transport-
able. Reproducibility is defined as the maintenance of accu-
racy in data obtained from the same source as the training set.
Transportability is defined as the maintenance of accuracy in
data obtained from a different but related population or col-
lected using methods different from those used to obtain the
training data.

Based on performance using the NPTR training set, the
proposed model was found to be accurate since it satisfied
conventional standards of discrimination and calibration. The
model was also observed to be reproducible because it had
adequate discrimination and calibration using unique data
from the NPTR, the same dataset used for training. The
transportability of the model was more limited. Using the
NTDB testing data, discrimination of the model was excellent
but calibration was not as good. An analysis of the calibration
curves shows that application of the model in the NTDB resulted
in overtriage because predicted mortality was generally higher
than actual mortality. While the reproducibility of predictive
models has been frequently performed, evaluation of transport-
ability has frequently been omitted in previous studies.10,20 The
current findings emphasize that assessment of reproducibility
alone may lead to an overoptimistic assessment of the predictive
capacity of a model.

Several explanations may account for the more limited
transportability of the model to the NTDB database. The
NPTR and NTDB datasets were obtained from different types
of trauma centers. Centers reporting to the NPTR were gen-
erally pediatric trauma centers, whereas hospitals reporting to
the NTDB included both adult and pediatric trauma centers.
These differences are important since the outcome of children
treated at pediatric trauma centers may be better than those
treated at adult trauma centers.2,3 In addition, the profile of
children in each dataset differed; children in the NPTR were
younger and less frequently sustained penetrating injuries
than those in NTDB. Although we deliberately used a mini-

Table 9 Comparison of the Predictive Validity of the Proposed Model with the Revised Trauma Score (RTS) and
Pediatric Trauma Score (PTS)*

Testing Dataset Sensitivity Specificity Undertriage
(1-sensitivity)

Overtriage
(1-specificity)

Positive
Predictive Value

Negative
Predictive Value Accuracy

NPTR testing data
Proposed model 96 (94–98) 91 (90–91) 4 (2–6) 9 (9–10) 22 (20–24) 99 (99–99) 91 (90–91)

RTS 95 (93–97) 71 (70–72)� 5 (3–7) 29 (28–30)� 8 (7–9)� 99 (99–99) 72 (71–72)�
PTS† 99 (98–100)§ 71 (70–71)� 1 (0–2)§ 29 (29–30)� 7 (6–8)� 99 (99–99) 71 (70–72)�

NTDB‡
Proposed model 97 (95–98) 60 (59–61) 3 (2–5) 40 (39–41) 7 (7–8) 99 (99–99) 61 (60–62)
RTS 94 (92–96) 70 (69–71)� 6 (4–8) 30 (29–31)� 9 (9–10)� 99 (99–99) 71 (70–72)�

* All indicated values are percentages; 95% confidence intervals indicated in parentheses.
† based on values available in the NPTR database (n � 13,135).
‡ PTS not available in the NTDB.
§ P � 0.01.
� P � 0.001 compare to proposed model
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mal set of predictors in the model, additional variables may
need to be added to the proposed model to improve calibra-
tion across datasets obtained from different populations. Po-
tential variables to include in future refinements of the model
include the mechanism or intent of injury, transport time, and
prehospital treatments.

A second measure of model performance relates to its
clinical applicability. Although a predictive model may be
statistically valid, it may not have clinical value.23 One way
that we assessed the clinical value of our model was to
evaluate it against predetermined standards of overtriage and
undertriage. The model achieved our prestudy goal of achiev-
ing an undertriage rate of �5% using both testing datasets,
comparing favorably with the RTS and PTS. In contrast, the
model achieved the prestudy goal of an overtriage rate of
�30% only using data from the NPTR. An advantage of the
model over the RTS and PTS was observed using NPTR data
but not using NTDB data. Overtriage and undertriage are
both critical factors to measure when evaluating a triage tool
but do not have equivalent importance. Misclassifying pa-
tients who have high risk for mortality (undertriage) may
have an impact on outcome, whereas misclassifying those
who have low risk for mortality (overtriage) may lead to
increased resource utilization. Emphasizing undertriage as a
measure of clinical value, the proposed model performed
equivalently to both the RTS and PTS.

There are limitations of the proposed model that will
serve as the basis for future modification and evaluation. One
limitation of the proposed model is that it predicts mortality
alone. Although mortality is a simple criterion upon which to
base triage decisions, it is a complex variable. The implica-
tions for resource utilization and trauma center readiness can
be different when a death occurs in the emergency room
versus when it occurs at the end of an extended hospitaliza-
tion. For this reason, predicting the time of trauma death may
be as important as predicting death.

In contrast to previous trauma triage tools, the proposed
model does not rely on a simple score, but depends on a series
of calculations that includes standardization of vital signs for
age. Although decision tools that use a score to aid clinical
decision making have been successful in other settings, the
poor usability of even simple triage scores in a prehospital
and acute care settings has been recognized.24 The age-de-
pendency of vital signs necessarily requires a complex
method for handling these variables in pediatric trauma pa-
tients. For example, the ASPTS uses scoring based on age-
related vital sign ranges.10 As medical care moves toward
electronic acquisition and storage of data, the use of predic-
tive models that require more than simple calculations will
become more practical. The problem of calculation and im-
mediate interpretation by the user will be replaced by the
challenge of providing devices that have adequate user inter-
face and feedback.

The proposed model has additional limitations that are
also found in other triage tools. The GCS is an important

component of the model that can be difficult to assess in an
acute care setting. Because of the importance of head trau-
ma as a cause of pediatric trauma mortality, this variable is
common to other trauma scores that have been evaluated in
children, including the RTS, PTS, and ASPTS.5–10 Compo-
nents of the GCS, particularly GCS-verbal, can be difficult to
assess in critically ill or intubated patients.25 Age-related
adjustments are also needed when the GCS is applied to
younger children, making application of GCS to these pa-
tients more difficult. The frequent absence of components of
the GCS reflects the difficulties related to assessing this
variable. Previous studies have handled this problem by ei-
ther omitting records with incomplete GCS or using the
lowest possible score when components of the GCS (partic-
ularly GCS-verbal in intubated patients) cannot be accurately
accessed.26 Application of regression methods such as mul-
tiple imputation to predict missing GCS components is a
preferred solution since this will prevent loss of valuable data
and avoid biases that may arise from ad hoc methods of data
completion.

The proposed model is also intolerant of missing data.
Similar to other trauma triage tools, every variable is required
before a prediction can be obtained. In prehospital or other
acute care settings, even simple variables such as vital signs
may not be easy to immediately obtain because of the need
for rapid stabilization and transport. Estimation of missing
values using methods such as multiple imputation or Bayes-
ian methods may become practical even in a prehospital
setting as computer technologies are incorporated into these
locations. We envision that a computer-based prediction
model similar to that proposed here will be incorporated
directly into the electronic medical record of each injured
patient. When needed predictors are missing or have not yet
been obtained, available data from an individual patient can
be added to a larger existing dataset and multiple imputation
performed to “complete” missing data fields for that patient.
The now “complete” patient data can then be used to estimate
the probability of mortality using a logistic regression equa-
tion similar to that described.

Early and accurate triage will likely reduce the morbidity
and mortality of injured children.2,3 Although it may have
higher accuracy than existing triage tools, the proposed
model will require further validation that necessarily includes
prospective testing. The current study highlights the chal-
lenges of developing a triage tool and proposes a preliminary
model for usage in clinical settings. The goal of our work is
this area is to develop a triage tool that meets acceptable
standards of undertriage and overtriage and can easily be
implemented in real world settings.
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ABSTRACT 

Purpose: Most prehospital triage strategies are based on physiologic, anatomic and mechanism-

related variables. Measurement variability and prehospital provider interpretation can affect the 

accuracy of physiologic variables such as Glasgow coma score and vital signs, while prehospital 

provider interpretation can affect the accuracy of anatomic site assessment. The purpose of this 

study was to develop a model predicting early hospital mortality based on non-physiologic and 

non-anatomic prehospital variables. 

Methods: Patients <18 yrs (n=34,338) included in the National Pediatric Trauma Registry 

(NPTR) Phase III were used to develop a logistic regression model to predict early mortality (<4 

hrs after arrival). Covariates used in the model included mechanism of injury, scene vs. hospital 

transfer status, and prehospital treatment. Multiple imputation was used to handle missing 

values. NPTR Phase IV (n=14,200) data was used to test the model. Discrimination was tested 

using area under the ROC curve (ROC) and calibration using the Hosmer-Lemeshow (H-L) h-

statistic and calibration curve R
2
.  

Results: Early hospital mortality was observed in 0.8% of subjects in the training dataset and 

0.7% in the testing dataset. Significant (p<0.05) predictors of increased mortality included 

assault (OR 2.4), pedestrian accident (OR 2.9), gunshot wound (OR 5.6), transfer from the scene 

(OR 4.4), prehospital intubation (OR 10.1) and prehospital CPR (OR 45.6). Injury by a fall had a 

significantly lower risk of early mortality (OR 0.2, p<0.05). Other mechanisms had no 

significant association with mortality including motor vehicle, motorcycle, bike or ATV crash 

and stab injury. The model had excellent discrimination (ROC 0.945) and calibration (H-L 

statistic 5.2, p>0.05; R
2
=0.96) on data in the testing set. 

Conclusion: Non-physiologic and non-anatomic prehospital data can accurately predict early 
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hospital mortality among injured children. This model may be a useful adjunct to current triage 

tools for rapidly identifying a high risk subgroup of injured children who may benefit from early 

trauma center interventions. 

 

KEY WORDS: wounds and injury; child; hospital mortality; models, statistical 
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INTRODUCTION 

 Previous studies suggest that severely injured children have better outcomes when treated 

at trauma centers, particularly those with a pediatric expertise. The reasons for these observations 

have not been studied but likely relates to the resources and experience available at trauma 

centers. These 

  Advantages of trauma center: 

1. Improved quality of care by virtue of experience, QI, verification and maintenance of a 

broad range of servies 

2. Rapid availability of resources: CT scan, OR staff, in house trauma surgeons 

The prehospital decision of where to direct injured patients is complex. (to trauma center, to 

adult trauma center, to nearest hospital, by what mode (ground vs air). Trauma triage decisions 

are complex and based on: 

1. Criteria established using local, regional or national standards—also, the interpretation of 

these standards by prehospital providers is relevant 

2. Nearest hospital (even though this is used prehospital, the need for ER to other hospital 

transfer should be considered) 

3. Prehospital provider biases: belief of appropriate hospital for patient, practice pattern of 

prehospital provider, relationships of ambulances with hospital 

Cooper ME: patients triage based on ACS mechanism criteria alone (those without any 

anatomic or physiologic criteria) uncommonly had severe injury (ISS>15) (was this article 

only adults?) 
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Esposito TE: mechanism as a sole predictor of mortality was variable: high yield for pedest 

struck and those with vhenicular occu death and low for vehicular rollover. (was this article 

only adults?) 

Santaniello: mechanism of injury alone resulted in ‘appreciable’ undertriage with respect to 

mortality and severity of injury. In contrast, using mechanism has a high yield for identifying 

patients who are resource intensive: i.e., transfor from ED to OR or to ICU. 

Another point by Santaniello: many operations may potentially be able to be performed at the 

outlying hospital before transfer. The time delay associated with transport and reevaluation may 

be important in selected patients’ outcome. **urged evaluation of mechanism, anatomic and 

physiologic criteria based on “resource utilization and functional/operational issues”. 

 

Farrell LS: most children with severe injuries in NY treated at hospitals with a PICU (evidence 

that appropriate triage is being applied). (This article also has important review of the advantages 

of pediatric trauma centers). 

 

 

Previous evaluation of triage systems has been primarly based on severity of injury (as 

measured by ISS) and hospital death. Few have looked at the need for trauma center 

resources (ICU, operating room).  Also, few have looked at pediatric triage specifically. E.g., 

the physiologic criteria need to be modified to be pediatric specific, the importance of 

difference mechanism criteria may be different in kids. 

The reality is that ACS trauma triage criteria may be poorly followed. Most (60%) of adult 

trauma pts meeting at least one ACS criteria were transported to a non-trauma hospital. More 

importantly, about 25% of those with an ACS criteria and severe injury (ISS>15) were 

treated at non-trauma centers (Baez AA). 

The importance of appropriate initial triage has been shown by a long waiting time before 

transfer even among those rapidly identified at the referring hospital early on who would 

require transfer to a trauma facility. Factors such as communication delays between facilities, 
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availability as an appropriate transport team are factors which influence transport time even 

when a rapid decision to transfer is made (Ammon AA) 

 

The use of the NPTR is helpful: includes time until death. Also, in addition to ECODE, 

provides a brief written description of the injury that permits more detailed study of features 

of the injury than possible using ECODE alone.  

 

 

METHODS 

Data Sources and Subject Selection 

This study has been approved by the Institutional Review Board at UMDNJ-Robert 

Wood Johnson Medical School. The National Pediatric Trauma Registry (NPTR) is a database 

started in 1985 that tracks the management and outcome of injured children treated at 

participating pediatric trauma centers or pediatric hospitals. Data (n = 50,199) from the registry 

obtained between 1995 and 2001 were used. Variables available in the database included age, 

gender, type of injury (blunt, penetrating or other), external cause of injury (E-code), Injury 

Severity Score (ISS), emergency department and discharge disposition, length of ICU stay, total 

length of stay (LOS), mortality, time until death and cause of death (central nervous system 

injury-related, hypoxia, hypovolemia or hemorrhage, multiple organ failure or other/unknown). 

The NPTR also includes a brief description of the injury provided by the reporting hospital. E-

codes were used to assign a mechanism and intent (assault, self-inflicted, unintentional or 

undetermined/other) using the framework recommended by the Centers for Disease Control 

(CDC) for presenting injury mortality data.
16

 Because of their importance as a mechanism of 
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injury among children, falls were further classified as previously described into falls from a 

building, falls fro furniture, falls from playground equipment, falls from stairs, other falls from 

stairs, other falls from heights, falls on the same level and other/unspecified falls. Children with 

injuries related to an off-road motor vehicle (E821) were identified among those injured by other 

modes of transportation (‘transport, other’) based on the high morbidity and mortality associated 

with this mechanism in children. Patients >14 yrs old (n = 7,202) and those with an E-code 

representing injury by poisoning, drowning, overexertion or burn (n = 31) were not included in 

the analysis.  

Statistical Software 

 SPSS 12.0 (SPSS Inc., Chicago, IL) was used for all statistical calculations. Differences 

between groups were compared using Fisher’s exact test with significance defined as p<0.05. 

Kaplan-Meier product limit method was also used to analyze mortality. Time until death was a 

variable available in the database. Survivors were censored when discharged from the hospital. 

Survival rates were compared using the log rank test with significance defined as p<0.005 to 

account for multiple comparisons. Continuous variables were analyzed using the Student’s t-test. 

RESULTS 

Overview of Data 

 In the study, 42,966 injured children were identified, 63.6% of whom were male. The 

average age was 6.8 ± 4.2 yrs. The distribution of the type of injury among different mechanisms 

of injury is shown in Table 1. More injuries were due to blunt than either penetrating or other 

mechanisms. Penetrating injuries were most frequent among children injured by a cut/pierce, 

firearm, machinery or natural/environmental mechanism. Penetrating machinery injuries were 

most commonly from a saw (14/46, 30.3%), while penetrating injuries due to a 
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natural/environmental mechanism were most commonly from dog (606/748, 81.0%) or snake 

bites (77/748, 10.3%). The distribution of the intent of injury among different mechanisms of 

injury is shown in Table 2. Unintentional injuries were more frequent than injuries due to other 

intents (93.1%). Assaults were most common among children injured by a firearm, those being 

struck by a non-falling object and child abuse. Self-inflicted injuries were most frequent among 

those injured by a firearm or by suffocation.  

Type, Intent and Mechanism of Injury and Mortality 

 There were 1,232 deaths (2.9%). Children who died were younger (5.9 ± 4.4 vs. 6.7 ± 4.2 

yrs, p<0.001) and more commonly male (40.0% vs. 36.6%, p=0.02) than those how survived. 

Central nervous system injury was the leading cause of death followed by hypoxia, hemorrhage 

or hypovolemia, multiple organ failure and other or unknown causes (Table 3). While a similar 

percentage of deaths among children sustaining either a blunt or penetrating injury were due to a 

central nervous system cause (73.4% vs. 67.5%, p>0.05), death among children sustaining a 

penetrating injury were more commonly due to hypovolemia or hemorrhage than those dying 

from a blunt injury (16.9% vs. 5.8%, p<0.001). Compared to deaths due to other intents, deaths 

due to a self-inflicted injuries were less commonly from a central nervous system cause and 

more commonly from hypovolemia or hemorrhage (Table 3), consistent with the high percentage 

(45%) of penetrating injuries among children with self-inflicted injuries. More than 25% of 

deaths cause by a cut/pierce, machinery and motorcycle mechanism were due to hypovolemia or 

hemorrhage (Table 3). Death occurred most rapidly in children dying of hypovolemia or 

hemorrhage (Fig. 1). Mean survival was 17 hrs (95% CI, 5 to 29 hrs) for children dying of 

hypovolemia or hemorrhage, 29 hrs (95% CI, 17 to 42) for those dying of other or unknown 

causes, 52 hrs (95% CI 43 to 60) for those dying of CNS injury, 59 hrs (95% CI, 38 to 81) for 



 205 

those dying of hypoxia and 73 hrs (95% confidence interval [CI], 29 to 117) for those dying of 

multiple organ failure.  

Blunt and penetrating injuries had a similar mortality (Table 4) and time until death 

(Fig. 2). Patients injured by a penetrating or blunt mechanism had a lower mortality (p<0.001, 

Table 4) and died later after injury (Fig. 2) than those with other types of injury. Self-inflicted 

injuries had a higher mortality than injuries due to other intents (p<0.001, Table 4), with 76% 

(22/29) of deaths occurring within the 24 hrs after admission (Fig. 3). Unintentional injuries had 

the lowest mortality (p<0.001, Table 4).  

Deaths were observed for firearm injuries and suffocations in each intent category. 

Children sustaining a firearm injury that was either self-inflicted or due to an undetermined 

intent had a higher mortality than those injured in an assault or injured unintentionally (p<0.001, 

Table 4). Seventy-five percent (11/13) of deaths due to a self-inflicted firearm injury and 66% 

(4/6) of deaths due to a firearm injury of undetermined cause occurred within the first 24 hrs 

after admission (Fig. 4A). Self-inflicted firearm injuries leading to death were most commonly 

gunshot wounds to the head (10/13, 77%). CNS injury was the most common cause of death 

among children sustaining a self-inflicted or undetermined intent firearm injury (15/19, 79%). 

No significant difference in mortality was observed among suffocations due to each intent 

(p>0.05, Table 4). All self-inflicted suffocations (n = 31) were due to hanging. Sixty-nine 

percent (11/16) of deaths due to self-inflicted suffocations and 48% (10/21) of those due to 

unintentional suffocations occurred within the first 24 hrs after admission (Fig. 4B). 

Mechanisms were further analyzed after grouping by intent. Assaults due to either 

firearms or child abuse had a higher mortality than assaults due to other mechanisms (Table 4). 

Ninety-one percent (21/23) of deaths due to an assault by a firearm and 48% (108/227) of deaths 
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due to child abuse occurred with the first 24 hrs after admission (Fig 5A). Firearm injury and 

suffocation generally had the highest mortality among children injured by self-inflicted, 

unintentional or undetermined intent. The mortality of firearm and suffocation injuries was 

similar among those with self-inflicted and undetermined intents, while the mortality of 

unintentional suffocation injuries was higher than unintentional firearm injuries (Table 4, Fig. 5B 

to 5D).  

Resource Utilization and Outcome by Type, Intent and Mechanism of Injury 

 Children injured by a penetrating injury more frequently went to the operating room 

directly from the emergency department (p<0.001) and more frequently required surgery during 

their hospitalization (p<0.001) than those injured by a blunt or other mechanism (Table 5). 

Patients with unintentional injuries more commonly went to the operating room directly from the 

emergency department than those injured by an assault or undetermined cause (p<0.001, 

Table 5). No difference in the need for immediate surgery was observed between those 

sustaining either an unintentional or self-inflicted injury. Children sustaining an unintentional 

injury more commonly required surgical treatment during hospitalization than those sustaining 

injury by any other intent (p<0.005). Depending on the mechanism, the percentage of children 

requiring immediate surgery ranged from 0% to 50.8% and requiring surgery at any time during 

hospitalization ranged from 4.1% to 69.3% (Table 3). Mechanisms associated with a higher 

percentage of penetrating injury (including cut/pierce, firearm, machinery and 

natural/environmental mechanisms) more often required either immediate surgery or surgery at 

any time during hospitalization. Among mechanisms due only to a blunt type of injury, falls 

from playground equipment most often required immediate or delayed surgery (p<0.001).  
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 Patients injured by a penetrating mechanism had a shorter ICU LOS (0.8 ± 3.5 vs. 1.0 ± 

3.5 days, p=0.013) but longer total LOS (4.2 ± 6.5 vs. 3.8 ± 6.6 days, p=0.003) than those with a 

blunt mechanism. The ICU and total LOS were longer among children injured in an assault 

compared to those injured by undetermined or unintentional intent (p<0.001), but were not 

significantly different compared to those sustaining a self-inflicted injury (Table 5). Compared to 

children sustaining an unintentional injury, children sustaining a self-inflicted injury had a longer 

ICU LOS (p=0.017) but not longer total LOS (p>0.05). Children injured by a firearm, 

suffocation and child abuse had the longest ICU LOS, while those injured by a firearm, 

machinery or child abuse had the longest total LOS (Table 5).  

 Children injured by a penetrating injury less commonly had an ISS ≥15 than those injured 

by a blunt mechanism (7.9% vs. 16.0%, p<0.001). Fewer children injured unintentionally had an 

ISS ≥15 than those injured by other intents (p<0.001). No difference in the percentage of 

children with an ISS ≥15 was observed among those injured by an assault, self-inflicted or 

undetermined intent (Table 5). Severe injuries was highest among children injured by firearms 

(27.2%), unspecified motor vehicle traffic accidents (28.0%), suffocation (25.9%) and child 

abuse (48.4%) and lowest among those injured by a cut/pierce (3.3%) mechanism or by a fall 

related to playground equipment (2.8%).  

 No difference in emergency department or operating room or hospital mortality was 

observed among children with either a blunt or penetrating type of injury. Children sustaining a 

self-inflicted injury had a higher emergency department and overall mortality than those injured 

by other intents (p<0.001, Table 5). No differences were observed in the percentage of children 

dying in the operating room after injury by any intent. Injuries due to firearms, pedestrian 

accidents and suffocation had the highest emergency department mortality, while injuries due to 
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firearms, child abuse and suffocation had the highest hospital mortality (Table 5). The highest 

percentages of deaths in the operating room were observed among children injured by a firearm 

or in a motorcycle accident (Table 5). 

 Among survivors, discharge to a rehabilitation facility was more common among 

children sustaining a blunt compared to penetrating injury (p<0.001, Table 5). Children with 

self-inflicted injuries more commonly required inpatient rehabilitation care after discharge than 

those with injuries by other intents (p<0.02). No differences were observed among those injured 

by other intents. Children injured by a firearm or in a motor vehicle traffic accident generally had 

the highest rates of transfer to a rehabilitation facility, while those injured in a fall had the lowest 

(Table 5). 

DISCUSSION 

 In the current study, we observed that the features of the injury (type, intent and 

mechanism) provide important insight into patient outcome and resource utilization. While 

hospital mortality, site of mortality and time until death were similar between children injured by 

blunt and penetrating mechanisms, other measures of outcome and utilization differed.  

Compared to those sustaining penetrating injuries, children sustaining blunt injuries were more 

severely injured, required more acute care days and were more likely to require rehabilitation 

after discharge. Patients injured by a penetrating mechanism, however, more frequently required 

immediate or delayed surgical care and had a longer total LOS.  

 Differences in resource utilization and outcome were also observed among children 

injured by different intents. Unintentional injuries were more frequent than those due to other 

intents, with most being due to a motor vehicle traffic accident. Children sustaining unintentional 

injuries were less severely injured and required fewer critical care days but more commonly 
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required either immediate or delayed surgical care. Self-inflicted injuries were associated with a 

higher mortality than those due to other intents with most deaths occurring either in the 

emergency department or on the first day of admission. A high mortality of self-inflicted injuries 

has also been described using data from the National Trauma Database. The reason for the high 

mortality of self-inflicted injuries most likely relates to the mechanism of these injuries—

gunshot wounds to the head and suffocation by hanging. In addition to being associated with 

high, early hospital mortality, self-inflicted injuries more often required inpatient rehabilitation 

after discharge showing the long-term impact of these injuries. While resource utilization and 

severity of injury were similar between self-inflicted injuries and assaults, the early and overall 

mortality of self-inflicted injuries were higher. 

 Diverse patterns of resource utilization and outcome among the 28 different mechanisms 

of injury considered in this study were observed. To facilitate comparison, we considered a 

classification according to the level of trauma center resources required (e.g., need for surgical 

care or ICU days) and the severity of injury (ISS or mortality rate). For example, firearm injuries 

required significant trauma center resources and were associated with a high ISS and mortality, 

while falls on stairs required fewer resources and were associated with less severe injury. While 

suffocation injuries were associated with severe injury and high mortality, resource utilization 

was not the highest among different mechanism, likely related to early mortality among these 

patients. While cut/pierce injuries were more likely to be less severe and less likely to result in 

death, these injuries frequently required immediate or delayed surgical care. Using classification 

based on resource utilization and injury severity, we have proposed initial recommendations 

about the appropriateness of immediate or delayed triage to a trauma center. 
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 Similar to previous studies, more deaths were due to blunt injuries and unintentional 

injuries reflecting the high frequency of these categories of injury. CNS injury most common 

cause of death: previously observed in other studies 

Deaths related to penetrating injuries were more commonly attributed to volume loss than other 

mechanisms.  

With regards to type, blunt injuries were most common-consistent with previous observations- 

and were correspondingly the most common cause of death.  

 

ACS triage criteria (Cook C) 

Includes criteria based on mechanism: ejection, prolonge extrication, rollover, high-speed crash, 

survivor w. fatality fall>15 ft, auto vs. pedest, motorcycle>20mph. and based on type 

(penetrating with neurovascular compromise). 

Baystate: all penetrating of torso, head, neck and groin (type) and mechanism=fall >3x ght, 

survivor w. fatality, ejected, high speed and unrestrained, pedes vs. auto: Simon B 

 

The priorities of prehospital triage need to be established. The immediate need is appropriate 

availiabity of resources for treatment in ‘the golden hour’. As a measure of this outcome, need 

for transfer to the OR directly from the ER or death in the ER or death after transfer from the ER 

to OR (death in OR) are most important. Severity of injury may also be important. Triage 

decisions that focus on the need for trauma center expertise are critical but have a lesser urgency. 

Measures that may predict the need for trauma center facilities include the severity of injury, the 

need for ICU, the need for a surgical procedure during admission, LOS and overall hospital 

mortality. The time until death is a measure of the need for triage. Patients that die early in the 
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hospital course (ER or OR) need immediate trauma center care. Equally important are those 

children not dying immediately (ER or OR) but who die early during hospitalization (e.g., <24 

hrs). These patients require a facility equipped to manage complex critically ill patients around 

the clock.  
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FIGURE LEGENDS 

Figure 1.  Overall survival rates according to cause of death (Kaplan-Meier estimates). Overall: 

p<0.001. Pairwise: CNS vs. hypovolemia/hemorrhage, p<0.001; hypoxia vs. 

hypovolemia/hemorrhage, p<0.001; multiple organ failure (MOF) vs. hypovolemia/hemorrhage, 

p<0.001, other/unknown vs. hypovolemia/hemorrhage, p=0.03; CNS vs. other/unknown, 

p<0.001; hypoxia vs. other/unknown, p=0.009; MOF vs. other/unknown, p=0.03; p>0.05 for 

other combinations. 

 

Figure 2.  Overall survival rates according to type of injury (Kaplan-Meier estimates). Blunt vs. 

penetrating, p>0.05; blunt vs. other and penetrating vs. other, p<0.001. 

 

Figure 3.  Overall survival rates according to intent of injury (Kaplan-Meier estimates). Assault 

vs. unintentional, p<0.001; assault vs. self-inflicted, p<0.001; assault vs. undetermined, p=NS; 

undetermined vs. self-inflicted, p<0.001; unintentional vs. self-inflicted, p<0.001; unintentional 

vs. undetermined, p<0.001. 

 

Figure 4.  Overall survival rates among children sustaining firearm (A) or suffocation (B) 

injuries (Kaplan-Meier estimates). Firearm injuries (A): assault vs. self-inflicted, p<0.001; 

assault vs. undetermined, p<0.001; unintentional vs. self-inflicted, p<0.001; unintentional vs. 

undetermined, p<0.001; p=NS for other combinations. Suffocation injuries (B): assault vs. 

unintentional, p<0.001; assault vs. undetermined, p<0.001; assault vs. self-inflicted, p<0.001; 

self-inflicted vs. unintentional, p<0.001; p>0.05 for other combinations. 
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Figure 5. Overall survival rates among children injured by assault (A), self-inflicted (B), 

unintentional (C) or undetermined (D) intent (Kaplan-Meier estimates). Graphs for mechanisms 

without mortality are not shown. Assault: cut/pierce vs. firearm, p=0.03; other struck vs. firearm, 

p<0.001; cut/pierce vs. child abuse, p=0.01; other struck vs. child abuse, p<0.001; other struck 

vs. unspecified, p<0.001; p>0.05 for other combinations. Self-inflicted: firearm vs. suffocation, 

p>0.05. Unintentional: suffocation vs. all other mechanisms, p<0.001; firearm vs. pedestrian, 

other, p=0.02; firearm vs. all other mechanisms, p<0.005; firearm vs. suffocation, p<0.001. 

Undetermined: firearm vs. unspecified, p<0.001; suffocation vs. unspecified, p=0.009; firearm 

vs. suffocation, p>0.05. 

 

 

 

 

 

 . 
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Table 1. Distribution of Type of Injury Among Different Mechanisms of Injury* 

 Blunt Penetrating Other 

Mechanism of injury    

     Cut / pierce 27 (2.1) 1,237 (97.7) 2 (0.2) 

     Fall    

          Building 1,273 (100) -- -- 

          Furniture 2,242 (100) -- -- 

          Playground equipment 2,459 (100) -- -- 

          Stairs 1,206 (100) -- -- 

          Other falls from height 3,267 (100) -- -- 

         Falls on the same level 2,002 (99.8) 4 (0.2) -- 

          Other and unspecified 2,057 (100) -- -- 

     Firearm 7 (1.4) 510 (98.6) -- 

     Machinery 125 (69.8) 46 (25.6) 8 (4.5) 

     MV traffic    

          Occupant 7,871 (100) -- -- 

          Motorcyclist 217 (100) -- -- 

          Pedal cyclist 1,553 (100) -- -- 

          Pedestrian 4,618 (100) -- -- 

         Other 94 (100) -- -- 

     Pedal cyclist, other 2,268 (100) -- -- 

     Pedestrian, other 910 (99.7) 2 (0.21) -- 

     Transport, other    

          All-terrain vehicle 612 (100) -- -- 

          Other transport 735 (98.5) 10 (1.3) 1 (0.1) 

     Natural / environmental 275 (26.4) 748 (71.9) 16 (1.5) 

     Struck by, against    

          Struck by falling object 549 (100) -- -- 

          Other struck 336 (71.7) 87 (18.5) 45 (9.6) 

     Suffocation 56 (87.5) -- 8 (12.5) 

     Other specified, classifiable    

          Child abuse 1,736 (98.6) 18 (1.0) 5 (0.3) 

          Other 2,541 (94.4) 148 (5.5) -- 

     Other specified, not classifiable 100 (78.1) 27 (21.0) 1 (0.8) 

     Unspecified 434 (97.9) 7 (1.6) 2 (0.5) 

TOTAL 3,9570 (93.1) 2,844 (6.7) 88 (0.2) 

*percentage of all deaths shown in parentheses 
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Table 2. Distribution of Intent of Injury Among Different Mechanisms of Injury * 

 Assault Self-inflicted Unintentional Undetermined 

Mechanism of injury     

     Cut / pierce 91 (7.2) 1 (0.1) 1,175 (92.5) 3 (0.2) 

     Fall     

          Building -- -- 1,273 (100) -- 

          Furniture -- -- 2,242 (100) -- 

          Playground equipment -- -- 2,459 (100) -- 

          Stairs -- -- 1,206 (100) -- 

          Other falls from height 9 (0.3) 14 (0.4) 3,258 (99.2) 1 (0.1) 

         Falls on the same level -- -- 2,006 (100) -- 

          Other and unspecified -- -- 2,057 (100) -- 

     Firearm 260 (47.5) 18 (3.3) 257 (46.9) 12 (2.2) 

     Machinery -- -- 179 (100) -- 

     MV traffic     

          Occupant -- -- 7,871 (100) -- 

          Motorcyclist -- -- 217 (100) -- 

          Pedal cyclist -- -- 1,553 (100) -- 

          Pedestrian -- -- 4,618 (100) -- 

         Other -- -- 94 (100) -- 

     Pedal cyclist, other -- -- 2,268 (100) -- 

     Pedestrian, other -- -- 912 (100) -- 

     Transport, other     

          All-terrain vehicle -- -- 612 (100) -- 

          Other transport -- -- 746 (100) -- 

     Natural / environmental -- -- 1,039 (100) -- 

     Struck by, against     

          Struck by falling object -- -- 549 (100) -- 

          Other struck 263 (13.8) -- 1,636 (86.1) -- 

     Suffocation 4 (4.1) 31 (31.6) 60 (61.2) 3 (3.1) 

     Other specified, classifiable     

          Child abuse 1,759 (100) -- -- -- 

          Other 20 (4.3) 1 (0.2) 442 (95.2) 1 (0.2) 

     Other specified, not classifiable 53 (33.3) 15 (9.4) 75 (47.1) 16 (10.0) 

     Unspecified 21 (2.6) -- 428 (53.7) 348 (43.6) 

TOTAL 2,480 (5.8) 80 (0.2) 40,022 (93.1) 384 (0.9) 

*percentage of cases for each intent shown in parentheses 
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Table 3. Cause of Death Among Children Dying of Each Mechanism 

 

 

Central 

Nervous 

System Injury 

Hypoxia Hypovolemia/

hemorrhage 

Multiple 

Organ Failure 

Other or 

Unknown 

Type of Injury 
 

    

     Blunt 838 (73.3) 96 (8.4) 66 (5.8) 50 (4.37) 92 (8.1) 

     Penetrating 52 (67.5) 4 (5.2) 13 (16.8) 1 (1.3) 7 (9.1) 

     Other 4 (30.7) 5 (38.4) -- -- 4 (30.7) 

Intent  of injury 
 

    

     Assault 196 (76.8) 13 (5.1) 21 (8.2) 5 (2.0) 20 (7.8) 

     Self-inflicted 15 (51.7) 1 (3.4) 9 (31.0) 1 (3.4) 3 (10.3) 

     Undetermined 17 (73.9) 3 (13.0) 1 (4.3) -- 2 (8.7) 

     Unintentional 666 (72.0) 62 (6.7) 74 (8.0) 45 (4.9) 78 (8.4) 

Mechanism of injury      

     Cut / pierce 2 (50) -- 2 (50) -- -- 

     Fall      

          Building 19 (82.6) 1 (4.3) 1 (4.3) -- 2 (8.7) 

          Furniture 4 (100) -- -- -- -- 

          Playground equipment 3 (100) -- -- -- -- 

          Stairs 5 (83.3) -- -- -- 1 (16.7) 

          Other falls from height 5 (55.6) 2 (22.2) 1 (11.1) -- 1 (11.1) 

         Falls on the same level 5 (71.4) 1 (14.3) -- -- 1 (14.3) 

          Other and unspecified 2 (66.7) -- -- -- 1 (33.4) 

     Firearm 46 (69.7) 3 (4.6) 9 (13.7) 1 (1.6) 7 (10. 7) 

     Machinery 3 (75) -- 1 (25) -- -- 

     MV traffic      

          Occupant 298 (76.1) 28 (7.2) 19 (4.9) 16 (4.1) 31 (7.9) 

          Motorcyclist 5 (62.5) 1 (12.5) 2 (25) -- -- 

          Pedal cyclist 50 (75.8) 3 (4.5) 5 (7.6) 3 (4.5) 5 (7.6) 

          Pedestrian 159 (73.6) 8 (3.7) 18 (8.3) 16 (7.4) 15 (6.9) 

         Other 2 (100)     

     Pedal cyclist, other 7 (87.5) -- 1 (12.5) -- -- 

     Pedestrian, other 33 (68.8) 3 (6.25) 1 (2.0) 4 (8.3) 7 (14.6) 

     Transport, other      

          All-terrain vehicle 9 (60) 1 (6.7) 2 (13.4) 1 (6.7) 2 (13.3) 

          Other transport 8 (66.7) -- 1 (8.3) 1 (8.3) 2 (16.7) 

     Natural / environmental 11 (78.6) 1 (7.1) 2 (14.3) -- -- 

     Struck by, against      

          Struck by falling object 7 (46.7) 5 (33.3) 1 (6.7) 1 (6.7) 1 (6.7) 

          Other struck 6 (54.5) 3 (27. 3) 1 (9.1) -- 1 (9.1) 

     Suffocation 11 (29.0) 19 (50) -- 3 (7.9) 5 (13.2) 

     Other specified, classifiable      

          Child abuse 179 (78.9) 18 (7.9) 8 (3.5) 5 (2.2) 17 (7.5) 
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          Other 1 (9.1) 5 (45.5) 1 (9.1) -- 4 (36.4) 

     Other specified, not classifiable      

     Unspecified 14 (70) 3 (15) 3 (15) -- -- 

TOTAL 894 (72.6) 105 (8.5) 79 (6.4) 51 (4.1) 103 (8.4) 

*percentage of deaths for each mechanism shown in parentheses 
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Table 4. Type, Mechanism and Intent of Injury and Hospital Mortality Among Pediatric Trauma 

Patients* 

 Assault Self-inflicted Unintentional Undetermined Total 

Type of injury      

     Blunt 11.0 29.1 4.6 2.4 2.9 

     Penetrating 6.5 52.0 18.9 1.3 2.6 

     Other/undetermined 16.7 -- 0 14.6 14.4 

Mechanism of injury      

     Cut / pierce 2.2 0.0 0.2 0.0 0.3 

     Fall -- -- -- --  

          Building -- -- 1.8 -- 1.8 

          Furniture -- -- 0.2 -- 0.2 

          Playground equipment -- -- 0.1 -- 0.1 

          Stairs -- -- 0.5 -- 0.5 

          Other falls from height 0.0 0.0 0.3 0.0 0.3 

         Falls on the same level -- -- 0.3 -- 0.3 

          Other and unspecified -- -- 0.0 -- 0.0 

     Firearm 8.8 72.2 10.1 50.0 12.4 

     Machinery -- -- 2.2 -- 2.2 

     MV traffic -- -- -- --  

          Occupant -- -- 5.0 -- 5.0 

          Motorcyclist -- -- 3.7 -- 3.7 

          Pedal cyclist -- -- 4.2 -- 4.2 

          Pedestrian -- -- 4.7 -- 4.7 

         Other -- -- 2.1 -- 2.1 

     Pedal cyclist, other -- -- 0.4 -- 0.4 

     Pedestrian, other -- -- 5.3 -- 5.3 

     Transport, other -- -- -- --  

          All-terrain vehicle -- -- 2.5 -- 2.5 

          Other transport -- -- 1.6 -- 1.6 

     Natural / environmental -- -- 1.3 -- 1.3 

     Struck by, against -- -- -- --  

          Struck by falling object -- -- 2.7 -- 2.7 

          Other struck 0.4 -- 0.6 -- 0.6 

     Suffocation 0.0 51.6 35.0 33.3 38.8 

     Other specified, classifiable -- -- -- --  

          Child abuse 12.9 -- -- -- 12.9 

          Other 0.0 0.0 2.0 0.0 1.9 

     Other specified, not classifiable 0.0 0.0 0.0 0.0 0.0 

     Unspecified 9.5 -- 0.5 5.5 2.9 

TOTAL 10.3 36.3 2.3 6.8 2.9 
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Table 5. Resource Utilization and Outcome by Intent and Mechanism of Injury 

 ER to 

Operating 

Room     

(%) 

Any 

Operating 

Room     

(%) 

 

# of ICU 

Days 

(mean±SD) 

 

# Hospital    

Days 

(mean±SD) 

 

ISS ≥15 

(%) 

 

Died in 

ER    

(%) 

 

Died in 

OR    

(%) 

 

Mortality 

(%) 

 

Discharge to 

Rehabilitation 

Facility      

(%) 

Type of injury 
 

   
 

  
  

     Blunt 17.9 37.3 3.8 ± 6.6 1.0 ± 3.5 16.0 0.6 0.1 2.9 3.0 

     Penetrating 46.5 64.3 4.2 ± 6.6 0.9 ± 3.6 7.9 0.7 0.1 2.6 1.9 

     Other 22.2 34.4 4.4 ± 8.0 1.0 ± 3.5 16.0 6.7 0.0 14.4 3.9 

Intent  of injury 
 

   
 

  
  

     Assault 11.1 25.6 2.0 ± 4.7 6.4 ± 8.9 38.7 0.9 0.2 10.3 5.1 

     Self-inflicted 12.5 23.8 2.0 ± 4.1 6.1 ± 11.1 36.8 8.8 0.0 36.3 13.7 

     Undetermined 12.5 32.6 1.9 ± 3.1 1.1 ± 5.8 25.9 1.3 0.3 6.0 3.6 

     Unintentional 20.4 40.1 0.9 ± 3.4 3.7 ± 6.4 13.9 0.6 0.1 2.3 2.8 

Mechanism of injury          

     Cut / pierce 55.0 75.0 0.4 ± 2.9 3.7 ± 5.3 3.3 0.2 0.0 0.3 0.9 

     Fall          

          Building 9.3 21.8 0.9 ± 1.9 2.9 ± 3.8 16.7 0.3 0.0 1.8 2.5 

          Furniture 20.4 43.3 0.2 ± 1.0 1.8 ± 2.4 10.8 0.0 0.0 0.2 0.4 

          Playground equipment 39.9 68.6 0.1 ± 0.6 1.8 ± 2.4 2.8 0.0 0.0 0.1 0.1 

          Stairs 10.9 23.1 0.4 ± 1.5 2.0 ± 2.9 11.1 0.0 0.0 0.5 0.5 

          Other falls from height 18.3 34.7 0.5 ± 1.6 2.4 ± 3.9 14.0 0.0 0.0 0.3 0.8 

         Falls on the same level 27.3 56.8 0.2 ± 0.8 2.3 ± 3.2 4.9 0.0 0.0 0.3 0.4 

          Other and unspecified 25.7 51.6 0.2 ± 1.2 2.3 ± 3.5 6.3 0.0 0.0 0.1 0.4 

     Firearm 36.2 51.9 2.4 ± 5.5 6.8 ± 9.7 27.2 2.7 0.5 12.4 7.0 

     Machinery 50.8 67.0 1.3 ± 5.3 5.9 ± 9.8 12.6 0.0 0.0 2.2 3.5 

     MV traffic          

          Occupant 11.3 27.8 1.7 ± 4.9 5.0 ± 8.5 21.9 1.0 0.1 5.0 5.8 

          Motorcyclist 27.2 43.3 1.1 ± 2.4 4.8 ± 5.3 17.0 0.9 0.9 3.7 3.3 

          Pedal cyclist 14.4 32.3 1.6 ± 4.4 5.4 ± 9.5 21.4 0.8 0.2 4.2 6.8 

          Pedestrian 12.1 31.1 1.6 ± 4.9 5.4 ± 9.0 19.1 1.4 0.2 4.7 6.5 

         Other 16.0 35.1 2.2 ± 5.7 5.5 ± 8.6 28.0 0.0 0.0 2.1 3.3 

     Pedal cyclist, other 19.7 39.3 0.6 ± 1.9 3.0 ± 4.0 12.5 0.0 0.0 0.4 0.7 

     Pedestrian, other 13.6 27.0 1.4 ± 4.1 4.6 ± 7.2 18.6 2.5 0.0 5.3 2.7 

     Transport, other          

          All-terrain vehicle 23.2 45.6 1.3 ± 3.6 4.9 ± 6.6 17.7 0.7 0.2 2.5 4.6 

          Other transport 24.4 42.0 1.0 ± 3.3 4.3 ± 6.3 17.3 0.4 0.1 1.6 3.2 

     Natural / environmental 33.8 50.9 0.7± 2.5 3.5 ± 6.6 7.0 0.3 0.0 1.3 1.2 

     Struck by, against          

          Struck by falling object 22.0 43.2 1.0 ± 3.3 4.0 ± 5.7 13.8 0.9 0.0 2.7 2.6 

          Other struck 18.3 37.5 0.4 ± 1.3 3.0 ± 4.1 8.9 0.2 0.1 0.4 0.9 

     Suffocation 0.0 4.1 2.3 ± 4.3 4.1 ± 7.0 25.9 13.3 0.0 38.8 11.4 

     Other specified, classifiable          

          Child abuse 6.8 20.9 2.4 ± 4.9 7.3 ± 9.5 48.4 0.9 0.2 12.9 5.1 
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          Other 50.0 69.3 0.7 ± 2.9 3.4 ± 5.8 2.9 1.1 0.0 1.9 1.1 

     Other specified, not  

     classifiable 

23.3 42.8 0.5 ± 2.4 2.8 ± 4.8 4.5 0.0 0.0 0.0 1.3 

     Unspecified 20.7 48.0 0.6 ± 2.2 3.7 ± 5.3 14.2 0.1 0.1 2.4 1.8 

TOTAL 19.8 39.1 1.0 ± 3.5 3.8 ± 6.6 15.5 0.6 0.1 2.9 2.9 
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Appendix 4 items are provided separately on a CD which 

contains the following programs; 

 

 

 
 

4.1 Genesis Programming for Cellular Modeling 

4.1.1 ADHD Single Cell and Network Model 

4.1.2 NTS Single Cell and Network Model 

4.2 Artificial Neural Network Program for DOD Project 

4 .3 GUI for NASA Space Suit Project 

4.4 Artificial Neural Network Program for Air Force Project 
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